WO2016199317A1 - 流体発電装置及び回転子モジュール - Google Patents
流体発電装置及び回転子モジュール Download PDFInfo
- Publication number
- WO2016199317A1 WO2016199317A1 PCT/JP2015/072529 JP2015072529W WO2016199317A1 WO 2016199317 A1 WO2016199317 A1 WO 2016199317A1 JP 2015072529 W JP2015072529 W JP 2015072529W WO 2016199317 A1 WO2016199317 A1 WO 2016199317A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic
- module
- magnets
- guide
- conductor
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 49
- 230000005611 electricity Effects 0.000 title abstract 2
- 239000004020 conductor Substances 0.000 claims description 52
- 238000010248 power generation Methods 0.000 claims description 48
- 239000002184 metal Substances 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000011295 pitch Substances 0.000 claims description 6
- 230000005389 magnetism Effects 0.000 claims description 3
- 238000011084 recovery Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 229910000976 Electrical steel Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/04—Wind motors with rotation axis substantially parallel to the air flow entering the rotor having stationary wind-guiding means, e.g. with shrouds or channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D1/00—Wind motors with rotation axis substantially parallel to the air flow entering the rotor
- F03D1/06—Rotors
- F03D1/0608—Rotors characterised by their aerodynamic shape
- F03D1/0633—Rotors characterised by their aerodynamic shape of the blades
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
- H02K1/2706—Inner rotors
- H02K1/272—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
- H02K1/274—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
- H02K1/2753—Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
- H02K1/278—Surface mounted magnets; Inset magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/28—Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
- H02K1/30—Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures using intermediate parts, e.g. spiders
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/18—Structural association of electric generators with mechanical driving motors, e.g. with turbines
- H02K7/1807—Rotary generators
- H02K7/1823—Rotary generators structurally associated with turbines or similar engines
- H02K7/183—Rotary generators structurally associated with turbines or similar engines wherein the turbine is a wind turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/30—Wind motors specially adapted for installation in particular locations
- F03D9/32—Wind motors specially adapted for installation in particular locations on moving objects, e.g. vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/21—Rotors for wind turbines
- F05B2240/221—Rotors for wind turbines with horizontal axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/94—Mounting on supporting structures or systems on a movable wheeled structure
- F05B2240/941—Mounting on supporting structures or systems on a movable wheeled structure which is a land vehicle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2250/00—Geometry
- F05B2250/20—Geometry three-dimensional
- F05B2250/25—Geometry three-dimensional helical
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/20—Hydro energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Definitions
- the present invention relates to a power generator, and more particularly to a fluid power generator and a rotor module.
- the present inventor considers that there is room for improvement of the above-mentioned drawbacks, particularly researches, and uses academic principles to finally improve the above-mentioned drawbacks reasonably and effectively. Created the present invention that can do things.
- the present invention provides a hydroelectric generator and a rotor module, which can effectively improve the disadvantages of the conventional hydroelectric generator.
- the present invention provides a kind of fluid power generation apparatus, which includes a stator module and a rotor module, and the stator module includes a casing and a first magnetic guide module, and flows into the casing. Defining an axis that forms a passage and passes through the flow passage in the casing, and wherein the first magnetic guide module is configured by installing at least one first magnetic guide unit in the casing,
- the rotor module is rotatably disposed in the flow passage of the casing, and the rotor module includes a rotating part and a first magnetic module, and the rotating part includes a column and the column.
- the first magnetic module is mounted on a helical blade of the rotating part, the first magnetic module has both pole tips on both sides thereof, and the first magnetic module is Through these two magnetic pole ends, magnetic forces having different magnetism are generated. Among them, when the rotor module reaches a predetermined position rotated about the axis, both of the first magnetic force modules are generated. Each of the magnetic pole ends faces both ends of the first magnetic guide unit, so that the magnetic force generated from both the magnetic pole ends passes along the first magnetic module and the first magnetic guide unit to form one magnetic loop. Can be configured.
- Another aspect of the present invention provides a kind of rotor module, which is rotatably installed in a stator module, and the rotor module comprises a rotating part and a first magnetic module.
- the rotating part includes a column and a spiral blade connected to an outer edge of the column, and the column can rotate about one axis as the first magnetic module.
- the first magnetic module includes both magnets and one magnetic conductor, and the one ends of the magnets that are far from the column body. Both magnetic pole ends, and the first magnetic force module can generate different magnetic forces through the magnetic pole ends, and one of the two magnets. Generated magnetic force of the magnet can be transmitted until another magnet therein through the magnetic conductor.
- the fluid power generation device provided by the present invention has a magnetic loop constituted by the first magnetic module and the first magnetic guide unit. The effect of raising power generation can be achieved.
- FIG. 2 is an explanatory plan view of FIG. 1.
- FIG. 2 is a partial cross-sectional explanatory view of FIG. 1 (only a portion of the casing is cut).
- FIG. 3 is a cross-sectional explanatory view of a local part of the fluid power generation device of the present invention (only a portion of the casing is cut). It is a three-dimensional explanatory drawing of another rotor module of the fluid power generation device of the present invention.
- FIG. 3 is an explanatory diagram viewed by being cut locally along the X1-X1 cross-sectional line of FIG. 2.
- FIG. 7 is an operation explanatory diagram of FIG. 6.
- FIG. 3 is a partial cross-sectional explanatory view of another implementation state along the X1-X1 cross-sectional line of FIG. 2.
- FIG. 9 is an operation explanatory diagram of FIG. 8. It is explanatory drawing which applied the fluid electric power generating apparatus of this invention to the motor vehicle. It is explanatory drawing which looks at FIG. 10 from the bottom. It is explanatory drawing seen by cut
- FIG. 13 is an operation explanatory diagram of FIG. 12. It is explanatory drawing seen by cut
- FIG. 17 is an explanatory diagram viewed by being cut locally along the X2-X2 cross-sectional line in FIG. 16. It is a perspective view of another Example of the magnetic guide ring and core part of 4th Example of the fluid electric power generating apparatus of this invention.
- the present embodiment is a kind of fluid power generation apparatus 100, particularly a kind of wind power generation apparatus, but the present invention is not limited to this. That is, the fluid power generation apparatus 100 of the present embodiment never excludes driving by a method other than wind power (for example: hydraulic power). Furthermore, in the present embodiment, the fluid power generation apparatus 100 is applied to the automobile 200 as an example (for example, FIG. 10 and FIG. 11), but the application range of the fluid power generation apparatus 100 of the present invention is here. Not limited. Among them, the fluid power generation device 100 includes one stator module 1 and one rotor module 2 attached in the stator module 1. The rotor module 2 can rotate with respect to the stator module 1. Thereby, the fluid power generation device 100 generates electric power.
- the structures of the stator module 1 and the rotor module 2 will be described first, and then the correspondence between the stator module 1 and the rotor module 2 will be described.
- the stator module 1 includes one casing 11 and one first magnetic guide module 12 installed on the casing 11.
- the casing 11 includes one elongated flow pipe 111 and both support portions 112.
- the flow pipe 111 is a circular pipe having a constant inner diameter, and has one flow passage 113 surrounded by the flow pipe 111.
- the flow pipe 111 is defined as one axis X passing through the flow passage 113.
- the axis X corresponds to the center line of the flow pipe 111 in the present embodiment, but the present invention is not limited to this.
- Both the support portions 112 are installed in opposite sides of the flow pipe 111 (for example, the left and right sides of the flow pipe 111 in FIG. 1).
- the structure of all the support portions 112 is suitable for flowing a fluid (for example, wind) into and out of the flow passage 113.
- the first magnetic guide module 12 includes several first magnetic guide units 121. These first magnetic guide units 121 are distributed on the flow pipe 111 of the casing 11. The quantity and density of the first magnetic guide unit 121 distributed in the casing 11 can be adjusted according to the demand of the designer, but no particular limitation is imposed here. Among them, all the first magnetic guide units 121 are buried in the flow pipe 111 (for example, FIG. 3), or the inner surface of the flow pipe 111 (for example, FIG. Fixed in the flow passage 113).
- all the first magnetic guide units 121 are connected to the core parts 1211 of both metals, the coils 1212 wound around the core parts 1211, and the both core parts 1211. It includes one guide part 1213 (for example: a metal material). Among them, the two core portions 1211 and the guide parts 1213 can be integrally connected or separated. In addition, all the first magnetic guide units 121 can be fixed to the flow pipe 111 of the casing 11 through the core portion 1211, and the center axis of all the core portions 1211 is one center line orthogonal to the axis X. It can be defined to be on C (as in FIG. 6). To go one step further, for example, as shown in FIG.
- the core portion 1211 is positioned inside the flow pipe 111, and the coil 1212 is wound around the core section 1211, and is placed inside the flow pipe 111.
- the core portion 1211 is fixed to the flow pipe 111, and the coil 1212 is wound around the core portion 1211 and located in the flow passage 113.
- the rotor module 2 is rotatably installed in the flow passage 113 of the casing 11. Moreover, the rotor module 2 includes one rotating part 21 that rotates about the axis X and one first magnetic module 22 that is installed on the rotating part 21. Among them, the rotating part 21 includes one column body 211 and one spiral blade 212 connected to the outer edge of the column body 211. Both ends of the column body 211 are pivoted at the centers of both support portions 112 of the casing 11. In the present embodiment, the center line of the column body 211 overlaps the axis X.
- the spiral blade 212 has several pitches corresponding to the length above the axis X, and the edge of the spiral blade 212 is at least one storage tank along one radial direction of the vertical axis X. 2121 (the radial direction is parallel to the center line C) is formed. To go one step further, the spiral blade 212 of the present embodiment is formed by denting both storage tanks 2121 (for example, FIG. 6) within the range of the half pitch of the corresponding axis X.
- the present invention is not limited to this.
- the rotating part 21 is formed with two spiral blades 212 on the column 211, but this embodiment may be adjusted and changed according to demand. it can.
- the rotating part 21 of the present embodiment can form a plurality of spiral blades 212 on the column body 211, and all the spiral blades 212 can be formed.
- the storage tank 2121 can be formed on a specific position according to a designer's request.
- the first magnetic module 22 includes two permanent magnets 221 (for example: magnet), one long bowl-shaped magnetic conductor 222 (for example: metal material, silicon steel, or iron), and Both position adjustment units 223 are included.
- the both position adjusting units 223 are installed in the two storage tanks 2121, respectively.
- the two magnets 221 are located in the two storage tanks 2121, respectively, and are installed on the two position adjusting units 223.
- the magnetic conductor 222 is embedded in the spiral blade 212, and both the magnets 221 are in contact with opposite ends of the magnetic conductor 222. Further, the opposite edges of the magnetic conductor 222 are relatively well cut off at the edges of the two magnets 221 that are away from each other, so that the magnetic force can be completely transmitted.
- the present invention is not limited to this.
- the two magnets 221 far away from one end of the column 211 are defined as both magnetic pole ends 2211, respectively.
- the first magnetic module 22 can generate magnetic forces having different magnetism through the magnetic pole ends 2211 (for example: the top side of the left magnet 221 in FIG. 6 is the N pole, and the top of the right magnet 221 is The side is the S pole).
- the magnetic force generated by one magnet 221 can be transmitted to the other magnet 221 through the magnetic conductor 222 described above.
- all the position adjustment units 223 include one spring 2231, one fixed frame 2232, and one active frame (movable frame) 2233.
- the spring 2231 may be replaced with a compression spring, an extension spring, or another recoverable member.
- the fixed frame 2232 and the active frame 2233 each have one tubular portion 2232a, 2233a and one side wing portion 2232b, 2233b extending vertically outward from the edge of each of the tubular portions 2232a, 2233a.
- the fixed frame 2232 is fixed to the top of the storage tank 2121 by its side wings 2232b (for example: Helisert coil screw), and there is one gap G that is separated between the outer surface of the tubular part 2232a and the side wall of the storage tank 2121. .
- the magnet 221 is attached to the inside of the tubular portion 2233a of the active framework 2233.
- the tubular portion 2233a of the active framework 2233 is movably installed in the tubular portion 2232a of the fixed framework 2232.
- the side wing 2233b of the active framework 2233 is provided adjacent to the bottom of the storage tank 2121. Thereby, the active framework 2233 has only one degree of freedom relative to the fixed framework 2232 through the above installation.
- the spring 2231 is installed in a gap G formed between the outer surface of the tubular portion 2232 a of the fixed frame 2232 and the side wall of the storage tank 2121.
- the opposite ends of the spring 2231 (for example, the top end and the bottom end of the spring 2231 in FIG. 6) are in contact with the side wing 2232b of the fixed frame 2232 and the side wing 2233b of the active frame 2233, respectively.
- the spring 2231 when the magnet 221 receives a force (for example, centrifugal force described below) and moves, the spring 2231 can be deformed.
- the spring 2231 that has deformed tends to return the magnet 221 (or the active framework 2233) to the position before the displacement.
- the active frame 2233 reciprocates with respect to the fixed frame 2232 (or the magnetic conductor 222) through the centrifugal force and the force applied by the spring 2231.
- the first magnetic force module 22 provides a design that allows the magnet 221 to reciprocate with respect to the storage tank 2121 mainly through the position adjustment unit 223.
- the position adjustment unit 223 of the present embodiment the above-described combination of the spring 2231, the fixed frame 2232, and the active frame 2233 is achieved.
- the structure of the spring 2231, the fixed frame 2232, and the active frame 2233 is changed on the premise that the magnet 221 can reach the purpose of reciprocal movement with respect to the storage tank 2121 through the position adjustment unit 223. Or may be omitted.
- the first magnetic module 22 of the present invention is directly installed on the rotating part 21 that does not directly form the storage tank 2121.
- stator module 1 and the rotor module 2 of this embodiment The above is described for the structure of the stator module 1 and the rotor module 2 of this embodiment. The following will continue to introduce the operating principle between the stator module 1 and the rotor module 2 and the relative relationship between them.
- the magnet 221 and the active framework 2233 are all located on the groove bottom of the storage tank 2121. At this time, the rotating part 21 of the magnet 221 is positioned. (Or the position relative to the storage tank 2121) is defined as the first position (as shown in FIG. 6).
- the rotating part 21 sets the axis X. Rotates as an axis.
- the two magnets 221 are moved to a second position (shown in FIG. 7) along the direction away from the axis X from the first position with respect to the rotating part 21 by the action of centrifugal force generated by the rotation of the rotating part 21. Move towards). Then, a restoring force is stored in the springs 2231 of all the position adjustment units 223, thereby driving both the magnets 221 back to the first position.
- the location of the second position where each of the magnets 221 is located is away from the groove bottom of the storage tank 2121 but protrudes from the edge of the rotating part 21 (that is, the inlet of the groove of the storage tank 2121).
- the tubular portion 2233a of the active frame 2233 is guided through the tubular portion 2232a of the fixed frame 2232, whereby the magnet 221 in the tubular portion 2233a of the active frame 2233 is guided.
- a linear motion can be performed with respect to the storage tank 2121.
- both the magnets 221 and the active framework 2233 are kept in the second position. That is, both the magnets 221 and the inner edge of the flow pipe 111 of the casing 11 are kept at the closest distance.
- both the magnetic pole ends 2211 of the first magnetic module 22 are respectively in the radial direction and one of the first magnetic guide units 121 therein.
- the two core portions (as shown in FIG. 7, the center lines C of the core portions pass through the magnets 221 when they are in the predetermined positions).
- both magnets 221 pass the magnetic force generated from their magnetic pole ends 2211 along the above-mentioned core parts 1211, so that an induction current is generated in the coils 1212 wound around the both core parts 121. Reaching the effect of power generation.
- the N first magnetic guide units 121 can be installed corresponding to the position of the casing 11 in the moving path of the magnet 221 of the first magnetic module 22, whereby all the magnets 221 are rotated parts.
- 21 is capable of generating an induced current with each of the N first magnetic guide units 121 in one rotation, and by adjusting the value of N, Can be achieved.
- M first magnetic force modules 22 are installed on the rotating part 21 and the moving path of the magnet 221 of the first magnetic force module 22 is set.
- N first magnetic guide units 121 can be installed corresponding to the position of the casing 11.
- N ⁇ M power generation operations can be performed on the first magnetic guide unit 121.
- the amount of power generation is significantly increased.
- both magnetic pole ends 2211 of the first magnetic module 22 are arranged in the radial direction, and one of the first magnetic poles therein.
- the magnetic force generated by the two magnets 221 from the magnetic pole end 2211 toward both cores of the guide unit 121 is converted into the first magnetic module 22 (that is, both magnets 221 and the magnetic conductor 222) and the first magnetic guide unit 121 (that is, both It passes along the core part 1211 and the guide part 1213), and one magnetic loop F can be comprised.
- the first magnetic guide module 12 includes a plurality of first magnetic guide units 121, when the rotor module 2 rotates about the axis X, the first magnetic force The module 22 is directed toward the first magnetic guide unit 121 in some order, and the magnetic force generated through the two magnetic pole ends 2211 passes along the first magnetic module 22 and the first magnetic guide unit 121 opposite to the first magnetic guide unit 121 to be magnetic. A loop F is formed.
- the power generation amount is generated by the magnetic loop F configured by the first magnetic module 22 and the first magnetic guide unit 121. Reach the effect of raising. And the quantity of the 1st magnetic guide unit 121 can be increased according to a demand, and electric power generation amount can be raised further.
- the rotational speed of the rotating part 21 gradually decreases and rotates until the speed stops.
- the centrifugal force is smaller than the restoring force, and the spring 2231 gradually releases the restoring force at the same time, and arrives at the side wings 2232b of the fixed frame 2232 and the side wings 2233b of the active frame 2233, and further advances.
- the magnet 221 fixed to the active framework 2233 is driven from the second position to the first position.
- the driving force required to rotate the stationary rotating part 21 is larger than the required driving force of the rotating rotating part 21 during rotation. Therefore, how to reduce the necessary driving force of the stationary rotating part 21, that is, it is possible to move the magnet 221 by driving the centrifugal force through the position adjusting unit 223 of this embodiment. That is the purpose of the design.
- the explanation of the relation will be described as follows.
- the magnet 221 When the magnet 221 is located at the first position (as shown in FIG. 6), a first resistance force is generated between the rotor module 2 and the stator module 1 to prevent the rotor module 2 from rotating.
- a second resistance force is generated between the rotor module 2 and the stator module 1 so as to prevent the rotor module 2 from rotating.
- the resistance force that prevents the generated rotation of the rotor module 2 is also larger.
- the magnet 221 is relatively close to the stator module 1 in the second position, and the magnet 221 is relatively far from the stator module 1 in the first position. Therefore, the second resistance is greater than the first resistance.
- the fluid power generation apparatus 100 of this embodiment is useful for use in a low place or situation instead of the flow velocity (for example: wind speed).
- the magnet 221 when the rotating part 21 is rotating, it must be useful for the power generation condition, and therefore the magnet 221 needs to be guided near the first magnetic guide unit 121. Therefore, the magnet 221 is located at the second position adjacent to the stator module 1, so that the first magnetic module 22 and the corresponding first magnetic guide unit 121 constitute the magnetic loop F, and the magnet An induced current can be generated in the coil 1212 through 221.
- the rotor module 2 shown in the present invention is applied to the fluid power generation apparatus 100 as an example, but is not limited to the fluid power generation apparatus 100. That is, the above rotor module 2 can also be used independently at an appropriate place or apparatus, and there is no particular limitation here.
- the stator module 1 of the present embodiment can also be provided with one second magnetic guide module 13 in the casing 11, and the second magnetic guide module 13 includes a plurality of second magnetic guide modules 13. Two magnetic guide units 131 may be included.
- one second magnetic module 23 can be installed on the spiral blade 212 of the rotating part 21. Among them, the structure of the second magnetic guide module 13 and the second magnetic module 23 and the principle of installation are almost the same as the first magnetic guide module 12 and the first magnetic module 22 described above. The module 13 and the second magnetic module 23 will not be described in detail.
- the position of the spring 2231 in the position adjusting unit 223 can also be adjusted according to the demand of the designer. For example: As shown in FIGS. 8 and 9, the magnets 221 are separated from the magnetic conductor 222 and located above the magnetic conductor 222 and below the magnet 221 at the bottom of the storage tank. The magnetic conductor 222 is locally exposed, whereby a spring 2231 can be provided between the magnet 221 and the magnetic conductor 222. More specifically, one end of each of the springs 2231 is in contact with both magnets 221, and the other end of both springs 2231 is in contact with the magnetic conductor 222.
- FIG. 12 to 14 show a second embodiment of the present invention.
- the present embodiment is generally similar to the first embodiment, and the description of the same portion is omitted.
- the difference between the two is mainly that the magnet of the first embodiment can move with respect to the magnetic conductor 222, whereas the magnet 221 and the magnetic conductor 222 in this embodiment move in common. .
- the first magnetic force module 22 of this embodiment includes only one position adjustment unit 223.
- the two magnets 221 and the magnetic conductor 222 of the first magnetic module 22 and the position adjustment unit 223 are all installed in the same storage tank 2121.
- the magnets 221 are in contact with opposite ends of the magnetic conductor 222, respectively.
- the fixed frame 2232 is fixed to the top of the storage tank 2121 with the side wings 2232b (for example, a helicate coil screw).
- the magnet 221 and the magnetic conductor 222 are attached to the inside of the tubular portion 2233a of the active framework 2233.
- the tubular portion 2233a of the active framework 2233 is movably installed in the tubular portion 2233a of the fixed framework 2232.
- the side wing 2233b of the active framework 2233 is provided adjacent to the bottom of the storage tank 2121. Thereby, there is only one degree of freedom in which the active framework 2233 corresponds to the fixed framework 2232 through the above installation.
- the portion of the storage tank 2121 below the magnetic conductor 222 is recessed, and a spring 2231 is provided therein, and both ends of the spring 2231 are respectively connected to the bottom of the storage tank 2121 and the magnetic conductor 222. Abut.
- the two magnets 221 and the magnetic conductor 222 are driven along the direction away from the axis X from the first position (as shown in FIG. 12) with respect to the storage tank 2121 by the driving of the centrifugal force generated by the rotation of the rotating part 21. Move toward the second position. Then, the spring 2231 of the position adjusting unit is driven so as to tend to store the recovery force for recovering the two magnets 221 and the two magnetic conductors 222 to the first position.
- the position of the spring 2231 in the position adjusting unit 223 can be adjusted according to the demand of the designer.
- one gap G can be separated between the outer surface of the tubular portion 2232 a of the fixed frame 2232 and the side wall of the storage tank 2121.
- the spring 2231 is provided in the gap G.
- the opposite ends of the spring 2231 (for example, the top and bottom ends of the spring 2231 in FIG. 14) are in contact with the side wing 2232b of the fixed frame 2232 and the side wing 2233b of the active frame 2233, respectively.
- the spring 2231 can also be a structural cage (not shown) representing a generally C-shaped or U-shaped plate shape, which is similar to a leaf spring.
- the central portion of the plate-shaped spring 2231 is fixed to the bottom of the storage tank 2121, and both ends of the plate-shaped spring 2231 correspond to the both magnets, and thus correspond to the magnet 221 and the magnetic conductor 222.
- FIG. 15 shows a third embodiment of the present invention.
- the present embodiment is generally similar to the first embodiment, and the description of the same portion is omitted.
- the difference between the two is mainly that both magnets of the first embodiment can move with respect to the spiral blade 2121, whereas both magnets 221 and the magnetic conductor 222 in this embodiment are the spiral blades. It is a point that cannot move with respect to 2121.
- the first magnetic module 22 of this embodiment does not include the position adjustment unit 223.
- the two magnets 221 and the magnetic conductor 222 of the first magnetic module 22 are buried in the spiral blade 212.
- the magnets 221 are in contact with opposite ends of the magnetic conductor 222.
- both magnetic pole ends 2211 of both magnets 221 appear outward from the edge of the spiral blade 212, respectively.
- the present invention is not limited to this.
- 16 to 18 show a fourth embodiment of the present invention. This embodiment is generally similar to the above embodiments, and the description of the same parts is omitted. The main difference is the first magnetic guide module 12 and the guide part 1213.
- the first magnetic guide module 12 includes one guide part 1213, that is, one of the first magnetic guide units 121 includes the guide part 1213.
- the other first magnetic guide unit 121 is simply provided with a core portion 1211 and a coil 1212.
- the guide part 1213 is provided in the casing 11 and includes a circular magnetic guide ring 1213a and at least one magnetic guide connecting portion 1213b connected between the magnetic guide rings 1213a.
- a plurality of the magnetic guide connecting portions 1213b are exemplified.
- both the cores 1211 of all the first magnetic guide units 121 are positioned inside the magnetic guide rings 1213a, respectively, and both the cores 1211 of all the first magnetic guide units 121 are respectively
- the magnets 221 connected to both the magnetic guide rings 1213a and located above the first magnetic force module 22 are located within the space surrounded by the both magnetic guide rings 1213a.
- One magnetic guide unit 121 passes through the one core portion 1211 therein, one magnetic guide ring 1213a therein, the adjacent magnetic guide connection portion 1213b, and another magnetic guide ring 1213a therein in order, And it transmits to another core part 1211 in it. That is, the magnetic force passes through the first magnetic module 22, the core portions 1211 of all the first magnetic guide units 121, and the guide parts 1213 in order, thereby forming one magnetic loop F.
- the outer surface of the guide part 1213 does not protrude from the outer surface of the casing 11.
- the outer surface of the guide part 1213 is cut almost equally to the outer surface of the casing 11.
- the present invention is not limited to this.
- the guide part 1213 can also be buried in the casing 11 (not shown).
- the guide part 1213 of the first magnetic guide module 12 has been described as an example.
- the guide part (not shown) of the second magnetic guide module 13 is also described above. Twelve guide parts 1213 can be formed.
- the magnetic guide ring 1213a and the core part 1211 connected to the magnetic guide ring 1213a can be formed into an integral or separate coupling type structure as shown in FIG. It can be formed by stacking a plurality of metal plates 1214 (for example: silicon steel plate, iron) along the parallel direction. That is, the circular ring-shaped portion 1214a of the metal plate 1214 is stacked on each other to form the magnetic guide ring 1213a, and the T-shaped protrusion connected to the inside of the metal plate 1214 and the ring-shaped portion 1214a.
- the core portion 1211 was configured by stacking the portions 1214b.
- the magnetic guide connecting portion 1213b can also be formed by stacking one or more metal plates 1214 (not shown), but there is no particular limitation here.
- the guide part 1213 when the guide part 1213 is manufactured through the design of the guide part 1213 of the present embodiment, it can be further easily coupled with the casing 11. This simplifies the processing difficulty and assembly complexity of the stator module 1, and goes one step further in production and production.
- the fluid power generation apparatus provided by the embodiment of the present invention can pass through the first magnetic guide unit of the first magnetic guide module and the first magnetic guide module when the rotor module can rotate with respect to the stator module.
- the constructed magnetic loop reaches the effect of raising the power generation amount.
- the quantity of the 1st magnetic guide unit of a 1st magnetic guide module can be increased according to a demand, and can further raise electric power generation.
- the rotor module is designed so that the magnet can be moved by centrifugal force.
- the magnet When the rotating parts are stationary and there is no demand for power generation, the magnet is in the first position away from the stator module. Positioned, thereby lowering the resistance force between the magnet and the stator module, and effectively lowering the driving force required for further rotation of the rotating part that is stationary. Therefore, the hydroelectric power generation installation of the present embodiment is useful for use in a low place or situation instead of the flow velocity (for example: wind speed).
- the demand will help the power generation conditions, so the magnet is located in the second position adjacent to the stator module, and thus the first magnetic module and its opposite first
- the magnetic guide unit can form a magnetic loop, and an induced current is generated in the coil.
- the fluid power generation apparatus of the present embodiment employs a long casing and has a fluid flow velocity passage that can be used effectively. And the hydroelectric generator can be installed with rotating parts with spiral blades in the flow passage, so that the first magnetic module and its corresponding first magnetic guide unit can increase the quantity according to demand Thus, the total power generation amount can be effectively increased.
- a relatively good implementation method of the fluid power generation device of the present invention is that a storage tank is formed through the rotating parts and a position adjusting unit is installed so that the magnet is smooth between the first position and the second position. It can move back and forth.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- Wind Motors (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Hydraulic Turbines (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
Abstract
Description
1 ステータモジュール
11 ケーシング
111 流通管
112 支持部
113 流動通路
12 第一磁気ガイドモジュール
121 第一磁気ガイドユニット
1211 芯部
1212 コイル
1213 ガイドパーツ
1213a 磁気ガイドリング
1213b 磁気ガイド接続部
1214 金属板
1214a リング状の部位
1214b 突出しの部位
13 第二磁気ガイドモジュール
131 第二磁気ガイドユニット
2 回転子モジュール
21 ローテーチングパーツ
211 柱体
212 螺旋式羽根
2121 貯蓄タンク
22 第一磁力モジュール
221 磁石
2211 磁極端
222 磁気導体
223 位置調整ユニット
2232 固定骨組み
2232a 管状部
2232b 側翼部
2233 活動骨組み
2233a 管状部
2233b 側翼部
23 第二磁力モジュール
X 軸線
C 中心線
G 隙間
F 磁気ループ
200 自動車
Claims (17)
- 一種の流体発電装置であって、
ステータモジュール、および回転子モジュールを具備し、
前記ステータモジュールは、ケーシングおよび第一磁気ガイドモジュールを有し、前記ケーシング内に流動通路を形成し、かつ前記ケーシングに前記流動通路を通過する軸線があると定義し、
さらに前記第一磁気ガイドモジュールは前記ケーシングに少なくとも一つの第一磁気ガイドユニットを設置して構成され、
一方前記回転子モジュールは、回転可能に前記ケーシングの流動通路内に配置し、かつ、
前記回転子モジュールは、
ローテーチングパーツ、および第一磁力モジュールを有し、
前記ローテーチングパーツは柱体と、前記柱体の外縁に繋がっている螺旋式羽根を含み、そして前記柱体は前記軸線を軸心として回転し、
前記第一磁力モジュールは、前記ローテーチングパーツの螺旋式羽根の上に取り付けられており、前記第一磁力モジュールはその両側に両磁極端を有しており、かつ前記第一磁力モジュールは前記両磁極端を通じて、それぞれ磁性の違う磁力を発生し、
その中、前記回転子モジュールは、前記軸線を軸心として回転してある予定の位置までに達した時、前記第一磁力モジュールの両磁極端は、それぞれ前記第一磁気ガイドユニットの両端に向かい合い、これによって、前記両磁極端から発生した磁力が前記第一磁力モジュールと前記第一磁気ガイドユニットに沿って通過して一つの磁気ループを構成する事を特徴とする流体発電装置。 - 前記第一磁力モジュールは両磁石と一つの磁気導体を含み、前記両磁石の前記柱体から遠く離れている一端をそれぞれ前記両磁極端とし、かつ、前記両磁石の中の一つの磁石が発生した磁力は前記磁気導体を通じて、もう一つの磁石までに伝えることができる請求項1に記載の流体発電装置。
- 前記両磁石はそれぞれ前記磁気導体の相反する両端に当接し、かつ前記両磁石と前記磁気導体は前記螺旋式の羽根に埋置され、そして前記両磁石と前記磁気導体は前記螺旋式羽根に対して移動することができない請求項2に記載の流体発電装置。
- 前記第一磁力モジュールは一つの位置調整ユニットを含み、また前記螺旋式羽根のへりがへこんで一つの貯蓄タンクを形成し、そして前記両磁石と、前記磁気導体、および位置調整ユニットは、前記貯蓄タンク内に取り付けられ、前記両磁石はそれぞれ前記磁気導体の相反する両端に当接しており、その中、前記両磁石と前記磁気導体は前記ローテーチングパーツの回転により発生した遠心力により、前記貯蓄タンクに対して、第一位置から前記軸線を離れる方向に沿って第二位置に向って移動し、そして前記位置調整ユニットに前記両磁石と前記磁気導体が前記第一位置に回復する回復力を蓄える請求項2に記載の流体発電装置。
- 前記位置調整ユニットはバネを有しており、かつ前記バネの両端はそれぞれ前記貯蓄タンクの底と前記磁気導体に当接している請求項4に記載の流体発電装置。
- 前記第一磁力モジュールは両位置調整ユニットを含み、また前記螺旋式羽根のへりはへこんでいて両貯蓄タンクが形成されており、前記両位置調整ユニットはそれぞれ前記両貯蓄タンク内に架設し、かつ前記両磁石はそれぞれ前記両貯蓄タンク内に位置し、かつ別々に前記両位置調整ユニットに架設され、そして前記磁気導体は前記螺旋式羽根に埋設されており、その中、前記両磁石は前記ローテーチングパーツの回転により発生した遠心力により、前記磁気導体に対して、第一位置から前記軸線を離れる方向に沿って第二位置に向って移動し、そして前記両位置調整ユニットにそれぞれ前記両磁石が前記第一位置に戻る回復力を蓄えることができる請求項2に記載の流体発電装置。
- 前記全ての位置調整ユニットはバネを有しており、かつ前記両バネの一端はそれぞれ前記両磁石に当接し、又、前記両バネのもう一端は前記磁気導体に当接している請求項6に記載の流体発電装置。
- 前記螺旋式の羽根は前記軸線上の長さに対応して数個のピッチを含んでおり、そして前記第一磁力モジュールは前記螺旋式羽根の半分のピッチの位置の範囲内に対応している請求項1に記載の流体発電装置。
- 前記第一磁気ガイドモジュールが数個の第一磁気ガイドユニットを備え、前記回転子モジュールが軸線を軸心として回転している時、前記第一磁力モジュールは順番に前記いくらかの第一磁気ガイドユニットに向かい合い、これにより、前記両磁極端の出した磁力が前記第一磁力モジュール、およびその向かい合った第一磁気ガイドユニットに沿って一つの磁気ループを構成させる請求項1乃至8のいずれかに記載の流体発電装置。
- 前記第一磁気ガイドユニットは両芯部、両コイル、および一つのガイドパーツを含み、前記両芯部は前記第一磁気ガイドユニットの両端に位置し、前記両コイルはそれぞれ前記の両芯部に巻き付き、前記ガイドパーツは前記両芯部とつながり、前記回転子モジュールが軸線を軸心として予定の位置までに回転した時、前記両磁極端はそれぞれ前記芯部に向かい合い、前記両磁極端の出した磁力がそれぞれ前記両芯部を通り、以って前記両コイルがそれぞれ誘導電流を発生させる請求項1乃至8のいずれかに記載の流体発電装置。
- 前記ガイドパーツは前記ケーシングに設け、前記ガイドパーツは両磁気ガイドリング、および前記両磁気ガイドリングの間を連接した少なくとも一つの磁気ガイド接続部を含み、前記両芯部はそれぞれ前記両磁気ガイドリングの内側に位置し、かつ前記両芯部はそれぞれ前記両磁気ガイドリングに連接している請求項10に記載の流体発電装置。
- 複数個の金属板を積み重ねることで、前記磁気ガイドリング、及びそれに連結している前記芯部を一体に形成した請求項11に記載の流体発電装置。
- 一種の回転子モジュールであって、それは回転可能にステータモジュール内に設置されており、
前記回転子モジュールは、ローテーチングパーツおよび第一磁力モジュールを具備し、
前記ローテーチングパーツは柱体、および前記柱体の外縁に繋がっている螺旋式羽根を有し、そして前記柱体は一つの軸線を軸心として回転する事ができ、
前記第一磁力モジュールは、前記ローテーチングパーツの螺旋式羽根の上に取り付けられており、前記第一磁力モジュールは、両磁石と一つの磁気導体を含み、前記両磁石が前記柱体から遠く離れている一端をそれぞれ両磁極端とし、かつ、前記第一磁力モジュールは、前記両磁極端を通じてそれぞれ磁性の違う磁力を出すことができて、前記両磁石のその中の一つの磁石の発生した磁力は、前記磁気導体を通じてその中のもう一つの磁石までに伝えることができる事を特徴とする回転子モジュール。 - 前記両磁石はそれぞれ前記磁気導体の相反する両端に当接し、かつ前記両磁石と前記磁気導体は前記螺旋式の羽根に埋設しており、そして前記両磁石と前記磁気導体は前記螺旋式の羽根に対して移動することができず、しかも前記両磁石の磁極端はそれぞれ前記螺旋式の羽根のへりから外へ現れる請求項13に記載の回転子モジュール。
- 前記第一磁力モジュールは一つの位置調整ユニットを含み、また前記螺旋式羽根のへりがへこんで一つの貯蓄タンクを形成し、そして前記両磁石と、前記磁気導体、および位置調整ユニットは、前記貯蓄タンク内に取り付けられ、前記両磁石はそれぞれ前記磁気導体の相反する両端に当接しており、そして、前記両磁石と前記磁気導体は前記ローテーチングパーツの回転により発生した遠心力により、前記貯蓄タンクに対して、第一位置から前記軸線を離れる方向に沿って第二位置に向って移動し、これにより、前記位置調整ユニットに前記両磁石と前記磁気導体が前記第一位置に戻る回復力を蓄える請求項13に記載の回転子モジュール。
- 前記第一磁力モジュールは両位置調整ユニットを含み、また前記螺旋式羽根のへりがへこんで二つの貯蓄タンクを形成し、そして前記両位置調整ユニットはそれぞれ前記貯蓄タンク内に取り付けられ、そして前記両磁石はそれぞれ前記両貯蓄タンク内に位置し、かつ別々に前記両位置調整ユニットに架設され、そして前記磁気導体は前記螺旋式羽根に埋設され、その中、前記両磁石は前記ローテーチングパーツの回転により発生した遠心力により、前記磁気導体に対して、第一位置から前記軸線を離れる方向に沿って第二位置に向って移動し、これにより、前記両位置調整ユニットに前記両磁石がそれぞれ前記第一位置に戻る回復力を蓄える請求項13に記載の回転子モジュール。
- 前記螺旋式羽根は前記軸線上の長さに対応して数個のピッチを含んでおり、そして前記第一磁力モジュールは前記螺旋式羽根に半分のピッチの位置の範囲内に対応している請求項13乃至16のいずれかに記載の回転子モジュール。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/580,762 US20180142675A1 (en) | 2015-06-08 | 2015-08-07 | Wind electricity generation device and rotor assembly |
JP2017523083A JP6528033B2 (ja) | 2015-06-08 | 2015-08-07 | 風力発電装置及び回転子モジュール |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104118535A TWI602989B (zh) | 2015-06-08 | 2015-06-08 | 風力發電裝置及轉子組件 |
TW104118535 | 2015-06-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016199317A1 true WO2016199317A1 (ja) | 2016-12-15 |
Family
ID=57503521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/072529 WO2016199317A1 (ja) | 2015-06-08 | 2015-08-07 | 流体発電装置及び回転子モジュール |
Country Status (4)
Country | Link |
---|---|
US (1) | US20180142675A1 (ja) |
JP (1) | JP6528033B2 (ja) |
TW (1) | TWI602989B (ja) |
WO (1) | WO2016199317A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3091559B1 (fr) * | 2019-01-03 | 2021-08-06 | Rohee Jean Christophe Rene Andre | Système éolien (et adaptable en hydrolien) intégrable dans tous type de moyens de transport ; produisant de l’énergie pour alimenter des batteries par le déplacement |
WO2021133315A2 (en) * | 2019-12-24 | 2021-07-01 | Gazi Universitesi | On-vehicle energy harvesting device with rotor blade |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3244719A1 (de) * | 1982-12-03 | 1984-06-07 | GST Gesellschaft für Systemtechnik mbH, 4300 Essen | Windgenerator |
JPH06505542A (ja) * | 1991-07-20 | 1994-06-23 | コスモス エントヴィックルングス ウント フォルシュングスアンシュタルト | 衛生設備 |
JPH10285890A (ja) * | 1997-03-31 | 1998-10-23 | Mitsuhiro Fukada | 永久磁石型発電機 |
JP2000166131A (ja) * | 1998-12-02 | 2000-06-16 | Yoho Han | モ―タ或いは発電機用のステ―タ |
WO2006065248A2 (en) * | 2004-12-17 | 2006-06-22 | Composite Support & Solutions, Inc. | Diffuser-augmented wind turbine |
JP2013151929A (ja) * | 2012-01-25 | 2013-08-08 | Kunihiro Miyake | 微風でも羽根車が回転する回転機構と発電機構 |
JP2014515253A (ja) * | 2011-05-16 | 2014-06-26 | サーブ インジェニエリー | 電流発生タービン |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW431049B (en) * | 1999-05-31 | 2001-04-21 | Fan Yang Feng | Stator used for electric motor or electric generator |
CN101826824A (zh) * | 2009-03-05 | 2010-09-08 | 罗莎国际有限公司 | 物理能量动力转换转子、其转动方法及发电机组 |
TWI467122B (zh) * | 2011-09-14 | 2015-01-01 | Wan Chun Hsu | 離心式永久磁石加熱裝置 |
TWM511544U (zh) * | 2015-06-08 | 2015-11-01 | Kunihiro Miyake | 流體發電裝置及轉子組件 |
-
2015
- 2015-06-08 TW TW104118535A patent/TWI602989B/zh not_active IP Right Cessation
- 2015-08-07 US US15/580,762 patent/US20180142675A1/en not_active Abandoned
- 2015-08-07 WO PCT/JP2015/072529 patent/WO2016199317A1/ja active Application Filing
- 2015-08-07 JP JP2017523083A patent/JP6528033B2/ja not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3244719A1 (de) * | 1982-12-03 | 1984-06-07 | GST Gesellschaft für Systemtechnik mbH, 4300 Essen | Windgenerator |
JPH06505542A (ja) * | 1991-07-20 | 1994-06-23 | コスモス エントヴィックルングス ウント フォルシュングスアンシュタルト | 衛生設備 |
JPH10285890A (ja) * | 1997-03-31 | 1998-10-23 | Mitsuhiro Fukada | 永久磁石型発電機 |
JP2000166131A (ja) * | 1998-12-02 | 2000-06-16 | Yoho Han | モ―タ或いは発電機用のステ―タ |
WO2006065248A2 (en) * | 2004-12-17 | 2006-06-22 | Composite Support & Solutions, Inc. | Diffuser-augmented wind turbine |
JP2014515253A (ja) * | 2011-05-16 | 2014-06-26 | サーブ インジェニエリー | 電流発生タービン |
JP2013151929A (ja) * | 2012-01-25 | 2013-08-08 | Kunihiro Miyake | 微風でも羽根車が回転する回転機構と発電機構 |
Also Published As
Publication number | Publication date |
---|---|
TW201643315A (zh) | 2016-12-16 |
JPWO2016199317A1 (ja) | 2018-03-15 |
TWI602989B (zh) | 2017-10-21 |
US20180142675A1 (en) | 2018-05-24 |
JP6528033B2 (ja) | 2019-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102460917B (zh) | 用于小电器的电动马达 | |
US10014749B2 (en) | Fluid electricity generation device with dual-case | |
KR101239077B1 (ko) | 발전기모듈 및 이를 구비한 풍력발전장치 | |
US9887605B2 (en) | Wind-driven electricity generation device and rotor assembly thereof | |
JP2014207858A (ja) | 多相スイッチドリラクタンスモータ装置の制御方法 | |
CN106911239A (zh) | 电机 | |
EP3309945A1 (en) | Rotary electric machine and non-contact power generator | |
CN104471838A (zh) | 电机单元和包括电机单元的格栅遮板驱动装置 | |
CN103095092A (zh) | 电力机械 | |
WO2018143452A1 (ja) | 風力発電装置 | |
WO2016199317A1 (ja) | 流体発電装置及び回転子モジュール | |
WO2018117148A1 (ja) | 風力発電装置及びその回転子モジュール | |
TWM511544U (zh) | 流體發電裝置及轉子組件 | |
JP6104890B2 (ja) | 電流発生タービン | |
US20170194822A1 (en) | Nested stator structure for dc motor | |
TWI581546B (zh) | 轉子組件及流體發電裝置 | |
CN210977741U (zh) | 波浪发电机 | |
KR102373398B1 (ko) | 회전 전기 | |
KR100916530B1 (ko) | 직선운동 발전기 | |
US20120068567A1 (en) | Polyphasic axial electric current generator with pivoting magnets | |
WO2017037840A1 (ja) | 発電装置及びステーターモジュール | |
JP2015050892A (ja) | 発電システム | |
JP5288332B2 (ja) | リニアモータ、およびリニアモータの電機子 | |
US20120248782A1 (en) | Flying-magnet-dynamo applied in electrical energy generation from Wind, Marine or Mechanical energy transformation | |
CN101527499A (zh) | 一种电机装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15895001 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017523083 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15580762 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15895001 Country of ref document: EP Kind code of ref document: A1 |