WO2016194928A1 - グラスライニング、グラスライニングの製造方法及びグラスライニング機器の洗浄方法 - Google Patents
グラスライニング、グラスライニングの製造方法及びグラスライニング機器の洗浄方法 Download PDFInfo
- Publication number
- WO2016194928A1 WO2016194928A1 PCT/JP2016/066126 JP2016066126W WO2016194928A1 WO 2016194928 A1 WO2016194928 A1 WO 2016194928A1 JP 2016066126 W JP2016066126 W JP 2016066126W WO 2016194928 A1 WO2016194928 A1 WO 2016194928A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass lining
- glass
- lining
- cleaning
- dirt
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 105
- 238000004140 cleaning Methods 0.000 title claims abstract description 72
- 238000000034 method Methods 0.000 title claims description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 150000002484 inorganic compounds Chemical class 0.000 claims abstract description 19
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 19
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 36
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 11
- 229910001887 tin oxide Inorganic materials 0.000 claims description 11
- 229910052787 antimony Inorganic materials 0.000 claims description 10
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 9
- 238000003801 milling Methods 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 238000005406 washing Methods 0.000 abstract description 38
- 238000012360 testing method Methods 0.000 description 30
- 230000000694 effects Effects 0.000 description 25
- 230000003373 anti-fouling effect Effects 0.000 description 24
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 19
- 239000003921 oil Substances 0.000 description 16
- 235000019198 oils Nutrition 0.000 description 16
- 239000000126 substance Substances 0.000 description 11
- 230000007423 decrease Effects 0.000 description 10
- 239000007788 liquid Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 230000007704 transition Effects 0.000 description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052574 oxide ceramic Inorganic materials 0.000 description 6
- 239000011224 oxide ceramic Substances 0.000 description 6
- 230000007774 longterm Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 5
- 235000015112 vegetable and seed oil Nutrition 0.000 description 5
- 239000008158 vegetable oil Substances 0.000 description 5
- 230000035939 shock Effects 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- KBSFTOXMFLPGTE-UHFFFAOYSA-N [Gd].[Bi].O=[Ru] Chemical compound [Gd].[Bi].O=[Ru] KBSFTOXMFLPGTE-UHFFFAOYSA-N 0.000 description 1
- FSYNRRRTKKERNG-UHFFFAOYSA-N [Ir]=O.[Bi] Chemical compound [Ir]=O.[Bi] FSYNRRRTKKERNG-UHFFFAOYSA-N 0.000 description 1
- QYJAJBVRDQHCIH-UHFFFAOYSA-N [Ru]=O.[Bi].[In] Chemical compound [Ru]=O.[Bi].[In] QYJAJBVRDQHCIH-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910001508 alkali metal halide Inorganic materials 0.000 description 1
- 150000008045 alkali metal halides Chemical class 0.000 description 1
- 230000003669 anti-smudge Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- FKMAKJMCRYHKTL-UHFFFAOYSA-N dibismuth;oxygen(2-);ruthenium(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[O-2].[Ru+4].[Ru+4].[Bi+3].[Bi+3] FKMAKJMCRYHKTL-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000010773 plant oil Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000010288 sodium nitrite Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 239000012463 white pigment Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/14—Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B7/00—Cleaning by methods not provided for in a single other subclass or a single group in this subclass
- B08B7/0035—Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
- B08B7/0057—Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like by ultraviolet radiation
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/0005—Other surface treatment of glass not in the form of fibres or filaments by irradiation
- C03C23/002—Other surface treatment of glass not in the form of fibres or filaments by irradiation by ultraviolet light
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
- C03C23/0075—Cleaning of glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C8/00—Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
- C03C8/02—Frit compositions, i.e. in a powdered or comminuted form
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2207/00—Compositions specially applicable for the manufacture of vitreous enamels
- C03C2207/04—Compositions specially applicable for the manufacture of vitreous enamels for steel
Definitions
- the present invention relates to a glass lining used in a device such as a reactor used in a manufacturing process of a pharmaceutical, a chemical, a food, a semiconductor material, a polymer material, etc., a glass lining manufacturing method, and a glass lining composed of the glass lining.
- the present invention relates to a method for cleaning a glass lining device, which can effectively clean the device in a short time and can maintain low adhesion of dirt after cleaning for a long time.
- Patent Document 1 discloses a lining and a lining method that imparts conductivity and suppresses the lining from being charged by using a conductive oxide ceramic. Has been.
- Patent Document 1 The lining of (Patent Document 1) not only can suppress the charging of the lining while maintaining the corrosion resistance of the lining and the gloss of the surface, but also improves the base resistance, thermal shock resistance, and wear resistance. Although it was excellent in low adhesion, once the dirt adhered, there was a tendency that the dirt gradually attached. (3) Especially when the reactor is washed in batches and used to manufacture different types of products, the cleaning work is complicated and takes a lot of work time to prevent the problem of contamination. Therefore, there has been a strong demand for the development of a cleaning method that can perform cleaning and maintain the original self-cleaning property of glass for a long time after cleaning.
- the present invention achieves the above-mentioned demand, has a surface structure with a good balance between hydrophilicity and hydrophobicity, excellent antifouling properties against both oil stains and aqueous stains, and stains more than conventional GL.
- Glass lining that is hard to adhere, cleanability that can maintain long-term antifouling properties, self-cleaning properties, and low dirt adhesion, and a method for manufacturing glass linings, and hassle-free Can be efficiently cleaned in a short time to restore the original low adherence of dirt, dirt is difficult to adhere after washing, and antifouling and self-cleaning properties can be maintained over the long term
- the purpose of this invention is to provide a method for cleaning glass lining equipment with excellent cleaning efficiency, certainty, stability of cleaning effect, and reliability.
- a glass lining, a glass lining manufacturing method and a glass lining apparatus cleaning method of the present invention have the following configurations.
- the glass lining according to claim 1 of the present invention is a glass lining containing a conductive inorganic compound in a lining, and has a plurality of hydrophilic recesses and a mesh around the recesses having hydrophobicity. And a convex portion connected in a shape. This configuration has the following operations and effects.
- the aqueous liquid or dirt is divided by the convex portion and hardly spreads on the surface, and is easily washed away by the cleaning liquid. Excellent antifouling and cleaning properties.
- the surface is formed with fine recesses and protrusions, and the recesses are hydrophilic, the dirt is difficult to adhere to, and the cleaning liquid can easily enter between the dirt and the recesses, so that the dirt can be washed away effectively and easily.
- the self-cleaning property is excellent.
- the conductive inorganic compound can be appropriately selected from conductive oxide ceramic powders.
- conductive oxide ceramic powders for example, conductive zinc oxide, tin oxide, titanium oxide, zirconium oxide, potassium titanate, indium oxide, ITO (indium tin oxide), ruthenium oxide, bismuth-ruthenium oxide (Bi 2 Ru 2 O 7 ) , Indium-bismuth-ruthenium oxide (InBiRu 2 O 7 ), bismuth-iridium oxide (Bi 2 Ir 2 O 7 ), gadolinium-bismuth-ruthenium oxide (GdBiRu 2 O 7 ), etc.
- oxide ceramic powders such as perovskite oxides such as barium titanate.
- These conductive oxide ceramic powders are, for example, those in which antimony-doped tin oxide is coated on the surface of titanium oxide or silicon dioxide (SiO 2 ), and tin-doped indium oxide is coated on the surface of aluminum oxide (Al 2 O 3 ).
- a material imparted with conductivity by means such as partial replacement of the site can be used.
- the conductive oxide ceramic powder may be formed in a fiber shape, a column shape, a rod shape, a needle shape, a spherical shape, an indefinite shape, etc., among which a fiber shape, a column shape, a rod shape, or a needle shape is formed. What has been achieved is preferred.
- the conductive oxide ceramic powder is arranged in layers along the surface of the substrate, increasing the contact area between the powders, so that the conductivity can be reliably increased and the lining This is because the surface can be smoothed.
- the glass lining of the present application can suppress the charging of the lining while maintaining the corrosion resistance of the lining and the gloss of the surface, and can improve the thermal shock resistance of the lining (Patent Document 1).
- the conductive inorganic compound dissolves into the glass in a network form (network form), so that it has a surface structure in which concave portions having hydrophilicity and convex portions having hydrophobicity are formed.
- the concave portion has hydrophilicity due to high glass concentration
- the convex portion has hydrophobicity due to high concentration of the conductive inorganic compound.
- the Invention of Claim 2 is the glass lining of Claim 1, Comprising:
- the said conductive inorganic compound has the structure which is acicular antimony containing tin oxide.
- the thermal shock resistance can be enhanced, it has transparency, has excellent surface smoothness and glossiness, and is used for a reactor or the like. If there is, the friction with the contents is small and the generation of static electricity can be suppressed.
- Needle-like conductive antimony-containing tin oxide is excellent in conductivity and base resistance.
- the conductivity of the lining can be increased, charging can be suppressed, and base resistance can be improved.
- the lining can be prevented from being charged while maintaining the corrosion resistance of the lining and the gloss of the surface.
- the powder of the acicular conductive antimony-containing tin oxide a powder produced through a step of firing a starting material containing a tin component and an antimony component in the presence of an alkali metal halide is used.
- an antimony component having an Sb / Sn atomic ratio of 0.1 / 100 to 8/100, preferably 0.3 / 100 to 5/100 is used.
- the antimony component amount becomes smaller than 0.3 / 100, the conductivity tends to decrease, and as it becomes larger than 5/100, the transparency tends to decrease.
- the ratio is smaller than 0.1 / 100 or larger than 8/100, these tendencies are remarkable, so that neither is preferable.
- a third aspect of the present invention is the glass lining according to the first or second aspect, wherein the average diameter of the concave portion is 10 ⁇ m to 60 ⁇ m, and the height difference between the concave portion and the convex portion is 1 ⁇ m to 3 ⁇ m. have.
- the following functions and effects are provided in addition to the functions and effects of the first or second aspect.
- the shape when the concave portion is viewed in plan is mostly a circular shape or a substantially elliptical shape, but since it includes an irregular shape, the projected area when the concave portion is viewed in plan is converted to the area of a circle.
- the time diameter was defined as the average diameter of the recesses.
- the average diameter of the recesses is 10 ⁇ m to 60 ⁇ m, preferably 20 ⁇ m to 50 ⁇ m.
- the hydrophobic area of the glass lining surface increases, the contact area with the oil droplets tends to increase, and the lubricity tends to be lowered.
- the glass As the average diameter becomes larger than 50 ⁇ m, the glass There is a tendency that the hydrophilic area of the lining surface increases, the contact area with water droplets increases, and the sliding property tends to decrease. Moreover, when it becomes smaller than 10 micrometers or larger than 60 micrometers, these tendencies will become remarkable and neither is preferable.
- the height difference between the concave portion and the convex portion becomes lower than 1 ⁇ m, it becomes difficult to be affected by the convex portion, water droplets tend to adhere to the concave portion, and the sliding performance tends to be lowered, which is higher than 3 ⁇ m. As it becomes, the surface becomes rough and water drops tend to accumulate in the recesses, and the sliding performance tends to be lowered.
- Invention of Claim 4 is the glass lining of any one of Claim 1 thru
- the water contact angle of the glass lining surface is 30 ° or less hydrophilic, preferably 10 ° or less superhydrophilic, thereby providing excellent antifouling properties and self-cleaning properties.
- it is difficult for static electricity to accumulate, and since it has a charge-suppressing action, it is difficult to attract dirt, and a dirt prevention effect is obtained.
- the glass lining production method according to claim 5 of the present invention is the glass lining production method according to any one of claims 1 to 4, wherein the glass particle diameter in the slip before the glass lining is the same. 30 ⁇ m to 70 ⁇ m, and 3 to 6 parts by weight of a conductive inorganic compound is added to and mixed with 100 parts by weight of a glass frit when 40% to 75% of the total milling time has elapsed.
- This configuration has the following operations and effects.
- the glass particle diameter in the slip before the glass lining is 30 ⁇ m to 70 ⁇ m, and 3 to 6 parts by weight of the conductive inorganic compound is added to 100 parts by weight of the glass frit when 40% to 75% of the total milling time has elapsed.
- the glass particle diameter in the slip is preferably 30 ⁇ m to 70 ⁇ m.
- the average diameter of the hydrophilic recesses on the glass lining surface decreases, the hydrophobic area increases, the contact area with the oil droplets increases, and the lubricity tends to decrease.
- the diameter becomes larger than 70 ⁇ m the average diameter of the concave portion having hydrophilicity on the glass lining surface increases, the hydrophilic area increases, the contact area with water droplets increases, and the lubricity tends to decrease. Neither is preferred.
- the content of the conductive inorganic compound with respect to 100 parts by weight of the glass frit is preferably 3 to 6 parts by weight.
- the content of the conductive inorganic compound with respect to 100 parts by weight of the frit is less than 3 parts by weight, the antistatic effect tends to decrease, and when the content exceeds 6 parts by weight, the acid resistance of the lining decreases and the surface of the lining There is a tendency that the gloss and smoothness of the resin deteriorate, and dirt or the like tends to adhere to the surface of the lining.
- the conductive inorganic compound is added and mixed when 40% to 75% of the total milling time has elapsed, preferably 50% to 70%. If the conductive inorganic compound is added before 50% of the total milling time, the glass is insufficiently crushed, the glass particle diameter exceeds 70 ⁇ m, and the surface smoothness tends to be impaired, and the hydrophilicity of the glass lining surface. The average diameter of the recesses having a large area, the hydrophilic area increases, the area of contact with water droplets tends to increase, and the lubricity tends to decrease, and after 70%, the mill additive is dispersed.
- a glass lining device cleaning method is a glass lining device cleaning method constituted by the glass lining according to any one of claims 1 to 4, wherein the strength is 0. It has a configuration including an ultraviolet irradiation step of irradiating ultraviolet rays of 2 mW / cm 2 to 10 mW / cm 2 .
- This configuration has the following operations and effects. (1) Since the intensity of ultraviolet rays irradiated in the ultraviolet irradiation step is 0.2 mW / cm 2 to 10 mW / cm 2 , cleaning can be performed efficiently in a short time, and the reliability and efficiency of cleaning Excellent in properties.
- cleaning method of the glass lining apparatus of this application can be applied to various glass lining apparatuses, it can be used especially suitably for a reactor.
- the hard-to-removable organic substances adhering to the surface of the glass lining device can be decomposed by oxidation or the like by performing the ultraviolet ray irradiation step. Dirt remaining in the process can be surely removed in a short time, and cleaning reliability and efficiency are excellent.
- the hydrophilicity can be recovered, and the antifouling property after washing is excellent.
- the use of industrial water, tap water, ion-exchanged water, distilled water, ultrapure water, and a surfactant can be appropriately selected and used depending on the usage state of the glass lining device.
- the solvent used can be appropriately selected and used depending on the type of contents. It can be washed with a solvent capable of dissolving the residual contents, for example, acetone, tetrahydrofuran, methanol, toluene, ethanol and the like.
- the inside of the reactor is usually cleaned and agitated by storing water in the reactor. However, when the degree of contamination is small, it may be cleaned with a spray ball or the like.
- the type (wavelength), intensity, irradiation time, and the like of the ultraviolet rays irradiated in the ultraviolet irradiation step can be selected according to the type of dirt, and the type of light source to be used can be selected as appropriate.
- an ultraviolet irradiation process is performed after performing a water washing process and a solvent washing process, before performing wet washing, such as a water washing process and a solvent washing process, by performing an ultraviolet irradiation process before wet washing, at the time of wet washing.
- wet washing such as a water washing process and a solvent washing process
- the light source used in the ultraviolet irradiation process is not limited as long as it can irradiate short wavelength ultraviolet rays (UVC) having a wavelength of 100 nm to 280 nm, but a low pressure mercury lamp (sterilization lamp), an excimer lamp, a metal halide lamp, an LED lamp, etc. are preferable. Used for. Since the ultraviolet ray irradiated in the ultraviolet ray irradiation step is a short wavelength ultraviolet ray having a wavelength of 100 nm to 280 nm, it can be decomposed into a volatile substance by cutting the interatomic bond of most organic compounds with a large light energy. It has a strong bactericidal action, and it has excellent cleaning reliability and efficiency.
- UVC ultraviolet rays
- the contact angle on the surface of the glass lining device can be reduced to the super hydrophilic region, and even stubborn dirt can be removed, and the reliability and reliability of cleaning are excellent. Furthermore, since the surface of the glass lining apparatus can be sterilized and the residual organic substances can be removed, the growth of fungi using the residual organic substances as a nutrient source can be prevented, and the hygiene is excellent in antibacterial properties and cleanliness after washing.
- the intensity of the ultraviolet ray irradiated in the ultraviolet irradiation step varies depending on the wavelength (type) of the irradiated ultraviolet ray, the irradiation time of the ultraviolet ray, the type of dirt, etc., but at room temperature and normal humidity, 0.2 mW / cm 2 to 10 mW / cm 2 It is preferably 0.2 mW / cm 2 to 2 mW / cm 2 . As the intensity of ultraviolet rays becomes smaller than 0.2 mW / cm 2 , the ultraviolet irradiation time becomes longer, and the cleaning efficiency tends to be lowered, which is not preferable.
- the ultraviolet irradiation time in the ultraviolet irradiation step varies depending on the wavelength (type) of the irradiated ultraviolet rays, the intensity of the ultraviolet rays, the type of dirt, etc., but is preferably 2 hours to 120 hours.
- the glass lining, the glass lining manufacturing method, and the glass lining apparatus cleaning method of the present invention the following advantageous effects can be obtained.
- it has the following effects. (1) Excellent balance between hydrophilicity and hydrophobicity on the surface, and excellent antifouling properties against both oily and aqueous stains, making it difficult for dirt to adhere to conventional GL, and antifouling after washing It is possible to provide a glass lining excellent in stability and sustainability of the cleaning effect capable of maintaining the property and self-cleaning property for a long period of time.
- Example 1 On the surface of a plate material 100 mm long and 100 mm wide made of SS400 material, 74.5 mol% (SiO 2 + ZrO 2 ), 20.2 mol% (Li 2 O + Na 2 O + K 2 O), and (CaO + SrO) 50 parts by weight of H 2 O, 2.5 parts by weight of colloidal silica, 0.2 parts by weight increase with respect to 100 parts by weight of the high corrosion resistance frit composed of 3.2% by mole and the others of 2.1% by mole Viscous polysaccharide, 0.2 parts by weight of sodium nitrite, 1 part by weight of white pigment (F-101 manufactured by Toago Material Technology Co., Ltd.) were added, milled, glazed and dried, then 780 ° C
- the test piece of Example 1 was obtained by firing 6 minutes at ⁇ 830 ° C. and applying lining several times until the
- Example 2 (Example 2) Implemented except adding 5 parts by weight of ZrO 2 (H4 manufactured by Nitto Denko) and 5 parts by weight of SiO 2 (pure meteorite powder: manufactured by Iwatsuki Kasumi) to 100 parts by weight of the high corrosion resistance frit.
- a test piece of Example 2 was obtained in the same manner as Example 1.
- the glass is excellent in the balance of hydrophobic and hydrophilic oxides uniformly dispersed on the GL surface, and excellent in antifouling properties against both oil stains and aqueous stains.
- Example 3 The glass particle diameter in the slip before glass lining is 30 ⁇ m to 70 ⁇ m, and 5 parts by weight of acicular antimony-containing tin oxide is added to 100 parts by weight of the high corrosion resistance frit when the milling time is 60%, After glazing and drying, a test piece of Example 3 was obtained in the same manner as in Example 1 except that it was baked at 800 ° C. to 860 ° C. for 7.5 minutes, which was 20% longer than that of Example 1.
- the test piece of Example 3 is conductive and has excellent anti-smudge property, melting into glass, and excellent surface gloss. The results of photographing the surface of the test piece of Example 3 with a microscope at 200 times and 500 times are shown in FIG. 1 and FIG. From FIG. 1 and FIG.
- tin oxide melts into the glass in a network, and fine irregularities are formed on the surface (the average diameter of the recesses is 20 ⁇ m to 50 ⁇ m, and the height difference between the recesses and the protrusions is 1 ⁇ m to 3 ⁇ m).
- the concave portion has hydrophilicity due to high glass concentration
- the convex portion has hydrophobicity due to high tin oxide concentration. Thereby, it is thought that it is excellent in the balance between hydrophilicity and hydrophobicity on the surface of the glass lining, and excellent in antifouling properties and cleanability against both oily and aqueous stains.
- Test 1 oil stain repetition test
- UVC ultraviolet rays
- each test piece is washed with ion-exchanged water and washed with ethanol at room temperature, and each test is performed at a temperature of 20 ° C. ⁇ 5 ° C. and a humidity of 50 ⁇ 10%.
- the contact angle after irradiating the surface of the piece with short wavelength ultraviolet rays (UVC) having a wavelength of 240 nm to 270 nm at an intensity of 2 mW / cm 2 for 21 hours was measured by the same method and conditions as described above.
- UVC ultraviolet rays
- Example 3 Example 3.
- Example 3 Example 3.
- Test 2 (Aqueous soil adhesion test) For the test pieces of Examples 1 to 3, after the surface was contaminated with vegetable oil, washing with flowing water and washing with ethanol were performed in this order, and short wavelength ultraviolet rays (UVC) having a wavelength of 240 nm to 270 nm were irradiated for 120 hours at an intensity of 1 mW / cm 2. Then, it was left indoors at a temperature of 20 ° C. ⁇ 5 ° C. and a humidity of 50 ⁇ 10% for 100 hours. Thereafter, 5 ⁇ L of water droplets (ion exchange water) were dropped on the surface of each test piece, and the contact angle (initial value) was measured within 1 minute. The temperature at the time of contact angle measurement was 20 ° C.
- UVC ultraviolet rays
- test piece was installed with an inclination of about 15 degrees in an outdoor exposure state (when it does not rain, spraying tap water about once every two days). Each test piece was washed with ion-exchanged water every time a predetermined period of time was passed, washed with ethanol at room temperature, and the surface of each test piece had a wavelength of 240 nm at a temperature of 20 ° C. ⁇ 5 ° C. and humidity of 50 ⁇ 10%.
- the contact angle after 21 hours of irradiation with short wavelength ultraviolet rays (UVC) of ⁇ 270 nm at an intensity of 2 mW / cm 2 was measured by the same method and conditions as described above.
- UVC ultraviolet rays
- Example 4 shows the transition of the contact angle when this cycle is repeated seven times. From the transition of the contact angle after outdoor exposure in FIG. 4, it was found that the contact angle tended to increase in the order of Example 3 ⁇ Example 2 ⁇ Example 1 immediately after long-term exposure (before cleaning). In particular, Example 3 maintained a hydrophilic region of about 20 ° at the maximum. In addition, even after cleaning and UV irradiation, Examples 2 and 3 each fall to the superhydrophilic region near a contact angle of 10 °, whereas Example 1 sometimes falls only to around 20 °. Was also confirmed.
- Test 3 (Small UV test) For the test pieces of Examples 1 to 3, after the surface was contaminated with vegetable oil, washing with flowing water and washing with ethanol were performed in this order, and short wavelength ultraviolet rays (UVC) having a wavelength of 240 nm to 270 nm were irradiated for 120 hours at an intensity of 1 mW / cm 2. Then, it was left indoors at a temperature of 20 ° C. ⁇ 5 ° C. and a humidity of 50 ⁇ 10% for 100 hours. Thereafter, 5 ⁇ L of water droplets (ion exchange water) were dropped on the surface of each test piece, and the contact angle (initial value) was measured within 1 minute. The temperature at the time of contact angle measurement was 20 ° C.
- UVC ultraviolet rays
- each test piece is washed with ion-exchanged water and washed with ethanol at room temperature, and each test is performed at a temperature of 20 ° C. ⁇ 5 ° C. and a humidity of 50 ⁇ 10%.
- the contact angle when the surface of the piece was irradiated with short wavelength ultraviolet rays (UVC) having a wavelength of 240 nm to 270 nm at an intensity of 0.2 mW / cm 2 for 6 to 168 hours was measured by the same method and conditions as described above. The transition of the contact angle at this time is shown in FIG. From FIG.
- Example 5 the transition of the contact angle was confirmed when the plant oil was washed with water, washed with ethanol, and irradiated with a small amount of ultraviolet light (0.2 mW / cm 2 ).
- the contact angle was less than 15 ° after ultraviolet irradiation for about 24 hours, and the difference between Examples 1 and 2 was confirmed even with a small amount of ultraviolet light.
- UVC ultraviolet rays
- the present invention has a macroscopic balance between hydrophilicity and hydrophobicity, excellent antifouling properties against both oily and aqueous stains, less likely to adhere to dirt than conventional GL, antifouling after washing, self Cleaning performance that can maintain the cleaning performance for a long period of time, providing a glass lining excellent in low adhesion of dirt and a manufacturing method of the glass lining, and performing efficient cleaning in a short time without trouble, The original low dirt adherence can be restored, dirt hardly adheres after washing, and anti-fouling and self-cleaning properties can be maintained for a long time. It is possible to provide a method for cleaning a glass lining device that is excellent in reliability and reliability, and contribute to the spread of glass lining devices and the improvement of reliability.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Surface Treatment Of Glass (AREA)
- Paints Or Removers (AREA)
- Detergent Compositions (AREA)
- Cleaning In General (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
そして、比抵抗の大きな有機系等の液体や固体を内容物として用いるリアクタや輸送管等の場合には、内容物とライニングとの間で発生した静電気による帯電を防止するため、ライニングと金属製基材との導通を改善する方策が試みられている。
例えば、本願出願人が出願して特許された(特許文献1)には、導電性酸化物セラミックを用いることにより、導電性を付与してライニングが帯電するのを抑制するライニング及びライニング方法が開示されている。
(1)近年、国内の製薬、化学会社は高付加価値製品の製造へ特化しつつあり、さらに高純度、高品質な製品製造に適したGL製品が求められると共に、洗浄作業の効率化が望まれていた。
(2)(特許文献1)のライニングは、ライニングの耐食性や表面の光沢を維持したまま、ライニングの帯電を抑制することができるだけでなく、耐塩基性、耐熱衝撃性、耐摩耗性を向上させることができ、低付着性にも優れるものであったが、一度汚れが付着すると、徐々に汚れが付着し易くなるという傾向があった。
(3)特に、リアクタをバッチ毎に洗浄して種類の異なる製品の製造に使用する場合、コンタミの問題が起きないようするには洗浄作業が煩雑で多大な作業時間を有することから、短時間で効率的に洗浄を行うことができ、洗浄後にガラス本来のセルフクリーニング性を長期的に維持することができる洗浄方法の開発が強く望まれていた。
本発明の請求項1に記載のグラスライニングは、ライニングに導電性無機化合物を含有するグラスライニングであって、親水性を有する複数の凹部と、疎水性を有し複数の前記凹部の周囲を網目状に接続する凸部と、を備えた構成を有している。
この構成により、以下のような作用、効果を有する。
(1)親水性を有する複数の凹部と、疎水性を有し複数の凹部の周囲を網目状に接続する凸部が形成されることにより、表面での親水性と疎水性のバランスに優れ、油汚れと水性の汚れの両方に対して防汚性に優れるため、従来のGLより汚れが付着し難く、洗浄後の防汚性、セルフクリーニング性を長期的に維持することができ、洗浄効果の安定性、持続性に優れる。
(2)油性の液体や汚れは、親水性を有する凹部には付着し難く、凹部の周囲の疎水性を有する凸部のみに付着するため、洗浄時に凹部に入り込む洗浄液によって浮き上がるようにして流れ易く、油汚れの防汚性、洗浄性に優れる。
(3)親水性を有する凹部の周囲に疎水性を有する凸部が形成されることにより、水性の液体や汚れが凸部で分断され表面に拡がり難く、洗浄液によって洗い流され易く、水性の汚れの防汚性、洗浄性に優れる。
(4)表面に微細な凹部と凸部が形成され、凹部が親水性を有することにより、汚れが付着し難く、洗浄液が汚れと凹部との間に入り込み易く、汚れを効果的かつ容易に洗い流すことができ、セルフクリーニング性に優れる。
本願のグラスライニングは、ライニングの耐食性や表面の光沢を維持したまま、ライニングの帯電を抑制することができ、ライニングの熱衝撃性を高めることができるという(特許文献1)のような従来のグラスライニングの特徴に加え、導電性無機化合物がネットワーク状(網目状)にガラスに溶け込むことにより、親水性を有する凹部と、疎水性を有する凸部が形成された表面構造を併せ持ったものである。凹部はガラス濃度が高いことにより親水性を有し、凸部は導電性無機化合物の濃度が高いことにより疎水性を有している。
この構成により、請求項1の作用、効果に加え、以下のような作用、効果を有する。
(1)導電性無機化合物が、針状導電性アンチモン含有酸化錫であることにより、熱衝撃性を高めることができ、透明性を有し、表面平滑性と光沢性に優れ、リアクタ等に用いた場合は内容物との摩擦が小さく静電気の発生を抑制することができる。
(2)針状導電性アンチモン含有酸化錫は導電性、耐塩基性に優れるので、フリットに少量添加するだけでライニングの導電性を高め、帯電を抑制すると共に、耐塩基性を高めることができ、ライニングの耐食性や表面の光沢を維持したまま、ライニングの帯電を抑制することができる。
(3)錫を所定量含有することにより、接触角を数度~約25度高めることができ、エマルジョンやサスペンジョンの粒子等の接触面積を小さくし、付着力を弱めることができる。
この構成により、請求項1又は2の作用、効果に加え、以下のような作用、効果を有する。
(1)凹部の平均直径が10μm~60μmで凹部と凸部との高低差が1μm~3μmであることにより、液体が表面全体に拡がり難く、接触面積を低下させることができ、滑水性、滑油性共に高くなり、セルフクリーニング性が高まる。
この構成により、請求項1乃至3の内いずれか1項の作用、効果に加え、以下のような作用、効果を有する。
(1)水に対する接触角が30度以下であることにより、グラスライニング表面と油汚れ等との間に水が入り込み易く、油汚れ等を浮き上がらせることができ、防汚性、セルフクリーニング性に優れる。
この構成により、以下のような作用、効果を有する。
(1)グラスライニング前のスリップ中のガラス粒子径が30μm~70μmであり、ガラスフリット100重量部に導電性無機化合物3重量部~6重量部をミル挽き時間合計の40%~75%経過時に添加、混合することにより、従来のGLと同様に耐食性や表面の光沢を維持したまま、帯電を抑制することができると共に、理由は不明であるが導電性無機化合物が凝集したためと思われるネットワーク(網目)を形成し、親水性を有する複数の凹部と、疎水性を有し複数の凹部の周囲を網目状に接続する凸部が形成された表面構造を得ることができ、従来のGLより汚れが付着し難く、洗浄後の防汚性、セルフクリーニング性を長期的に維持することができ、洗浄効果の安定性、持続性に優れるグラスライニングを製造することができる。
ガラスフリット100重量部に対する導電性無機化合物の含有量は、3重量部~6重量部が好ましいる。フリット100重量部に対する導電性無機化合物の含有量が、3重量部より少なくなるにつれ帯電抑制効果が低下する傾向があり、6重量部より多くなるにつれライニングの耐酸性が低下すると共に、ライニングの表面の光沢や平滑性が低下して、ライニングの表面に汚れ等が付着し易くなる傾向があり、いずれも好ましくない。
この構成により、以下のような作用、効果を有する。
(1)紫外線照射工程で照射される紫外線の強度が、0.2mW/cm2~10mW/cm2であることにより、短時間で効率的に洗浄を行うことができ、洗浄の確実性、効率性に優れる。
(2)紫外線照射工程で紫外線を照射して、グラスライニング機器の表面に付着している疎水化の原因となっている有機物質を紫外線の光エネルギーによりラジカル化し分解することにより、グラスライニング機器の表面を親水化して、セルフクリーニング性能を得ることができ、汚れが付着し難く、洗浄後の防汚性に優れる。
(3)紫外線照射工程を有することにより、グラスライニング機器の表面における接触角を低下させることができ、空気中の汚れ等による接触角の変動が少なく、安定した接触角を保つことができ、汚れが付着し難く、防汚性、セルフクリーニング性を発揮することが可能で、洗浄効果の安定性、信頼性に優れる。
尚、水洗工程及び溶媒洗浄工程を行った後に、紫外線照射工程を行うことにより、グラスライニング機器の表面に付着した難除去性有機物を酸化等して分解することができるので、水洗工程及び溶媒洗浄工程で残留した汚れを短時間で確実に除去することができ、洗浄の確実性、効率性に優れる。
元来、表面平滑性及び親水性に優れるグラスライニング機器に対して一般的な水洗工程及び溶媒洗浄工程を行った後に、紫外線照射工程を行うことにより、グラスライニング機器表面の元来の表面平滑性及び親水性を回復させることができ、洗浄後の防汚性に優れる。
水洗工程では、グラスライニング機器の使用状況に応じて工業用水、水道水、イオン交換水、蒸留水、超純水、界面活性剤の使用の有無を適宜、選択して使用することができる。
溶媒洗浄工程では、内容物の種類により使用溶媒を適宜、選択して使用することができる。残留内容物を溶解することができる溶媒、例えば、アセトン、テトラヒドロフラン、メタノール、トルエン、エタノール等にて洗浄することができる。
尚、グラスライニング機器の内、リアクタ内部の洗浄作業は、通常、リアクタ内に水を貯めて撹拌して行うが、汚れの度合いが少ない場合などは、スプレーボール等により洗浄してもよい。
尚、紫外線照射工程は、水洗工程及び溶媒洗浄工程を行った後に行われるが、水洗工程や溶媒洗浄工程等のウェット洗浄を行う前にもウェット洗浄前紫外線照射工程を行うことにより、ウェット洗浄時の薬液等の濡れ性を向上させることや、表面の微細な凹凸の隅々まで薬液等を浸透させることができ、薬液等の使用量の低減を図り、ウェット洗浄を効率的かつ効果的に行うことができる。
紫外線照射工程で照射される紫外線が、100nm~280nmの波長を有する短波長紫外線であることにより、大きな光エネルギーで大部分の有機化合物の原子間結合を切断して揮発性物質に分解することが可能で、強い殺菌作用があり、洗浄の確実性、効率性に優れる。また、グラスライニング機器の表面における接触角を超親水性領域まで低下させて、頑固な汚れまで除去することができ、洗浄の確実性、信頼性に優れる。さらに、グラスライニング機器表面の殺菌、並びに残留有機物質を除去できることから、残留有機物質を栄養源とした菌類の増殖を防止することができ、衛生的で洗浄後の抗菌性、清潔性に優れる。
また、紫外線照射工程における紫外線の照射時間は、照射する紫外線の波長(種類)、紫外線の強度、汚れの種類等によっても異なるが、2時間~120時間であることが好ましい。様々な汚れを確実に分解し、グラスライニング機器の表面の接触角を低下させて、セルフクリーニング性を向上させることができ、洗浄効果の安定性、持続性に優れるためである。尚、紫外線の照射時間が2時間より短くなるにつれ、汚れを十分に除去できなくなり、洗浄後の防汚性、セルフクリーニング性が低下し易く、120時間より長くなるにつれ、洗浄に時間がかかり、グラスライニング機器の稼働率が低下し易くなる傾向があり、いずれも好ましくない。
請求項1に記載の発明によれば、以下のような効果を有する。
(1)表面での親水性と疎水性のバランスに優れ、油汚れと水性の汚れの両方に対して防汚性に優れることにより、従来のGLより汚れが付着し難く、洗浄後の防汚性、セルフクリーニング性を長期的に維持することができる洗浄効果の安定性、持続性に優れたグラスライニングを提供することができる。
(1)熱衝撃性が高く、透明性を有し、表面平滑性と光沢性に優れ、リアクタ等に用いた場合は内容物との摩擦が小さく静電気の発生を抑制することができる高品質性に優れたグラスライニングを提供することができる。
(1)液体が表面全体に拡がり難く、接触面積を低下させることができ、滑水性、滑油性共に高いセルフクリーニング性に優れたグラスライニングを提供することができる。
(1)グラスライニング表面と油汚れ等との間に水が入り込み易く、油汚れ等を浮き上がらせることができる防汚性、セルフクリーニング性に優れたグラスライニングを提供することができる。
(1)従来のGLと同様に耐食性や表面の光沢を維持したまま、帯電を抑制することができると共に、導電性無機化合物が凝集したためと思われるネットワーク(網目)を形成し、親水性を有する複数の凹部と、疎水性を有し複数の凹部の周囲を網目状に接続する凸部が形成された表面構造を得ることができ、従来のGLより汚れが付着し難く、洗浄後の防汚性、セルフクリーニング性を長期的に維持することができ、洗浄効果の安定性、持続性に優れるグラスライニングを製造することができる品質の信頼性、安定性に優れたグラスライニングの製造方法を提供することができる。
(1)短時間で効率的に洗浄を行うことができ、洗浄の確実性、効率性に優れ、洗浄後の防汚性に優れたグラスライニング機器の洗浄方法を提供することができる。
(実施例1)
SS400材で形成された縦100mm、横100mmの板材の表面に、(SiO2+ZrO2)が74.5モル%、(Li2O+Na2O+K2O)が20.2モル%、(CaO+SrO)が3.2モル%、その他が2.1モル%で組成された高耐食性フリット100重量部に対して50重量部のH2O、2.5重量部のコロイダルシリカ、0.2重量部の増粘多糖類、0.2重量部の亜硝酸Na、1重量部の白色顔料(東罐マテリアル・テクノロジー(株)製F-101)を添加してミル挽きを行い、施釉、乾燥後、780℃~830℃にて6min焼成し、厚み1mmになるまで複数回ライニングを施工し、実施例1の試験片を得た。
上記高耐食性フリット100重量部に対して5重量部のZrO2(日東電工製H4)、5重量部のSiO2(純硅石粉:岩月化鑛製)を添加してミル挽きした以外は実施例1と同様にして実施例2の試験片を得た。
上記グラスはGL表面に均一に分散した疎水性と親水性酸化物のバランスに優れ、油汚れと水性の汚れの両方に対して防汚性に優れる。
グラスライニング前のスリップ中のガラス粒子径を30μm~70μmとし、上記高耐食性フリット100重量部に対して5重量部の針状アンチモン含有酸化錫をミル挽き時間60%経過時に添加し、ミル挽き、施釉、乾燥後、800℃~860℃にて実施例1より20%程度長い7.5min焼成した以外は実施例1と同様にして実施例3の試験片を得た。
実施例3の試験片は、導電性が有り静電気による汚れの付着防止、ガラスへの溶け込み、表面光沢性にも優れるものである。
実施例3の試験片の表面をマイクロスコープで200倍及び500倍に拡大して撮影した結果を図1及び図2に示す。
図1及び図2から、酸化錫がネットワーク状にガラスに溶け込み、表面に微細な凹凸(凹部の平均直径は20μm~50μm、凹部と凸部との高低差は1μm~3μm)が形成されていることがわかる。凹部はガラス濃度が高いことにより親水性を有し、凸部は酸化錫の濃度が高いことにより疎水性を有している。これにより、グラスライニング表面での親水性と疎水性のバランスに優れ、油汚れと水性の汚れの両方に対して防汚性及び洗浄性に優れるものと考えられる。
実施例1~3の試験片について、表面を植物油で汚染した後、流水洗浄、エタノール流液洗浄の順に行い、波長240nm~270nmの短波長紫外線(UVC)を強度1mW/cm2で120時間照射してから温度20℃±5℃、湿度50±10%で100時間室内に放置した。
その後、各試験片の表面に5μLの水滴(イオン交換水)を垂らして1分以内に接触角(初期値)を測定した。尚、接触角測定時の温度は20℃±5℃、湿度は湿度50±10%とした。
次に、表面を植物油で汚染した後、各試験片をイオン交換水にて流水洗浄し、エタノールによる流液洗浄を常温にて行い、温度20℃±5℃、湿度50±10%で各試験片の表面に波長240nm~270nmの短波長紫外線(UVC)を強度2mW/cm2で21時間照射後の接触角を上記と同様の方法、条件にて測定した。尚、比較のために実施例1の試験片については、流水洗浄とエタノール流液洗浄のみを行い、紫外線照射を行わない場合についても上記と同様の方法、条件にて接触角を測定した。このサイクルを10回繰り返し行った際の接触角の推移を図3に示す。
図3から、初期の接触角は実施例1が最も大きく実施例2、3の順番に小さかった。油汚れ付着・洗浄・紫外線照射10回繰り返し後の接触角は実施例1(紫外線照射無し)が最も大きく、実施例1(紫外線照射あり)>実施例2=実施例3の順番に小さくなった。特に、実施例2及び3については、10度以下の超親水性領域まで接触角が低下していることがわかった。
実施例1~3の試験片について、表面を植物油で汚染した後、流水洗浄、エタノール流液洗浄の順に行い、波長240nm~270nmの短波長紫外線(UVC)を強度1mW/cm2で120時間照射してから温度20℃±5℃、湿度50±10%で100時間室内に放置した。
その後、各試験片の表面に5μLの水滴(イオン交換水)を垂らして1分以内に接触角(初期値)を測定した。尚、接触角測定時の温度は20℃±5℃、湿度は湿度50±10%とした。
次に、試験片を屋外暴露状態(雨が降らない時は2日に1回程度水道水噴霧)において約15度傾斜をつけ設置した。所定期間経過毎に各試験片をイオン交換水にて流水洗浄し、エタノールによる流液洗浄を常温にて行い、温度20℃±5℃、湿度50±10%で各試験片の表面に波長240nm~270nmの短波長紫外線(UVC)を強度2mW/cm2で21時間照射後の接触角を上記と同様の方法、条件にて測定した。このサイクルを7回繰り返し行った際の接触角の推移を図4に示す。
図4の屋外暴露後の接触角の推移から、長期間暴露直後(洗浄前)において実施例3<実施例2<実施例1の順番に接触角が大きくなる傾向がわかった。特に、実施例3は最大でも約20°程度の親水領域を維持していた。
また、洗浄・紫外線照射後においても実施例2及び3は毎回接触角10°付近の超親水領域まで低下しているのに対して、実施例1は20°付近までしか低下しない場合があることも確認された。
実施例1~3の試験片について、表面を植物油で汚染した後、流水洗浄、エタノール流液洗浄の順に行い、波長240nm~270nmの短波長紫外線(UVC)を強度1mW/cm2で120時間照射してから温度20℃±5℃、湿度50±10%で100時間室内に放置した。
その後、各試験片の表面に5μLの水滴(イオン交換水)を垂らして1分以内に接触角(初期値)を測定した。尚、接触角測定時の温度は20℃±5℃、湿度は湿度50±10%とした。
次に、表面を植物油で汚染した後、各試験片をイオン交換水にて流水洗浄し、エタノールによる流液洗浄を常温にて行い、温度20℃±5℃、湿度50±10%で各試験片の表面に波長240nm~270nmの短波長紫外線(UVC)を強度0.2mW/cm2で6~168時間照射した際の接触角を上記と同様の方法、条件にて測定した。このときの接触角の推移を図5に示す。
図5から、植物油付着後に水洗い、エタノール洗浄し少量紫外線(0.2mW/cm2)を照射した際の接触角の推移を確認した。実施例3においては24時間程度の紫外線照射後に接触角が15°を下回っており、少量紫外線においても実施例1、2との優位差が確認された。
Claims (6)
- ライニングに導電性無機化合物を含有するグラスライニングであって、
親水性を有する複数の凹部と、疎水性を有し複数の前記凹部の周囲を網目状に接続する凸部と、を備えたことを特徴とするグラスライニング。 - 前記導電性無機化合物が、針状導電性アンチモン含有酸化錫であることを特徴とする請求項1に記載のグラスライニング
- 前記凹部の平均直径が10μm~60μmで前記凹部と前記凸部との高低差が1μm~3μmであることを特徴とする請求項1又は2に記載のグラスライニング。
- 水に対する接触角が30度以下であることを特徴とする請求項1乃至3の内いずれか1項に記載のグラスライニング。
- 請求項1乃至4の内いずれか1項に記載のグラスライニングの製造方法であって、
グラスライニング前のスリップ中のガラス粒子径が30μm~70μmであり、ガラスフリット100重量部に導電性無機化合物3重量部~6重量部をミル挽き時間合計の40%~75%経過時に添加、混合することを特徴とするグラスライニングの製造方法。 - 請求項1乃至4の内いずれか1項に記載のグラスライニングで構成されたグラスライニング機器の洗浄方法であって、
強度が0.2mW/cm2~10mW/cm2の紫外線を照射する紫外線照射工程を備えたことを特徴とするグラスライニング機器の洗浄方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017521964A JP6391820B2 (ja) | 2015-06-01 | 2016-06-01 | グラスライニング、グラスライニングの製造方法及びグラスライニング機器の洗浄方法 |
DE112016002450.9T DE112016002450T5 (de) | 2015-06-01 | 2016-06-01 | Glasfutter, Verfahren zum Herstellen eines Glasfutters und Verfahren zum Reinigen von glasgefütterten Artikeln |
US15/571,334 US10351467B2 (en) | 2015-06-01 | 2016-06-01 | Glass lining, method for manufacturing glass lining and method for cleaning glass-lined articles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-111760 | 2015-06-01 | ||
JP2015111760 | 2015-06-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016194928A1 true WO2016194928A1 (ja) | 2016-12-08 |
Family
ID=57440256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/066126 WO2016194928A1 (ja) | 2015-06-01 | 2016-06-01 | グラスライニング、グラスライニングの製造方法及びグラスライニング機器の洗浄方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US10351467B2 (ja) |
JP (1) | JP6391820B2 (ja) |
DE (1) | DE112016002450T5 (ja) |
WO (1) | WO2016194928A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5034017A (ja) * | 1973-07-26 | 1975-04-02 | ||
JP2005200726A (ja) * | 2004-01-16 | 2005-07-28 | Nisshin Steel Co Ltd | 意匠性に優れた琺瑯鋼板及びその製造方法 |
JP4473642B2 (ja) * | 2004-04-30 | 2010-06-02 | 八光産業株式会社 | ライニング及びライニング方法 |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3795499A (en) | 1969-10-11 | 1974-03-05 | Ngk Insulators Ltd | Method of producing semi-conducting glaze compositions |
JPS493816B1 (ja) | 1969-10-11 | 1974-01-29 | ||
JPH0442571A (ja) | 1990-06-08 | 1992-02-13 | Mitsubishi Electric Corp | 半導体集積回路装置における集積回路素子の配置方法 |
JP2643044B2 (ja) | 1991-10-30 | 1997-08-20 | 神鋼パンテツク株式会社 | グラスライニング層の局部補修方法 |
JP3783742B2 (ja) | 1996-07-19 | 2006-06-07 | 池袋琺瑯工業株式会社 | 導電性グラスライニング組成物 |
JP3432399B2 (ja) | 1997-10-21 | 2003-08-04 | 池袋琺瑯工業株式会社 | 導電性グラスライニング組成物 |
US8056370B2 (en) * | 2002-08-02 | 2011-11-15 | 3M Innovative Properties Company | Method of making amorphous and ceramics via melt spinning |
DE10325768A1 (de) | 2003-06-05 | 2004-12-23 | Chemetall Gmbh | Beschichtungssystem für Glasoberflächen, Verfahren zu dessen Herstellung und dessen Anwendung |
JP2007270295A (ja) | 2006-03-31 | 2007-10-18 | Kobelco Eco-Solutions Co Ltd | 導電性グラスライニング、導電性グラスライニング製構造物及び導電性グラスライニングの施工方法 |
JP4777814B2 (ja) | 2006-03-31 | 2011-09-21 | 株式会社神鋼環境ソリューション | 多層導電性グラスライニング、多層導電性グラスライニング製構造物及び多層導電性グラスライニングの施工方法 |
US8168551B2 (en) | 2006-08-07 | 2012-05-01 | Ikebukuro Horo Kogyo Co., Ltd. | Cover coating composition for glass lining |
JP2009143781A (ja) | 2007-12-17 | 2009-07-02 | Ikebukuro Horo Kogyo Kk | グラスライニング構造 |
JP5148982B2 (ja) | 2007-12-18 | 2013-02-20 | 池袋琺瑯工業株式会社 | グラスライニング用上ぐすり組成物 |
JP5164550B2 (ja) | 2007-12-18 | 2013-03-21 | 池袋琺瑯工業株式会社 | グラスライニング用上ぐすり組成物 |
JP2009197252A (ja) | 2008-02-19 | 2009-09-03 | Kobelco Eco-Solutions Co Ltd | 低溶出性グラスライニング及びその製造方法、並びに低溶出性グラスライニング製構造物 |
JP2010015109A (ja) * | 2008-07-07 | 2010-01-21 | Sony Corp | 光学フィルムおよびその製造方法、防眩性偏光子、ならびに表示装置 |
JP5460367B2 (ja) | 2010-02-15 | 2014-04-02 | 池袋琺瑯工業株式会社 | グラスライニング組成物 |
WO2012023957A1 (en) * | 2010-08-19 | 2012-02-23 | Lehigh University | Microlens array for solar cells |
JP5398773B2 (ja) * | 2011-04-07 | 2014-01-29 | 富士フイルム株式会社 | 放射線検出装置 |
DE102011115379B4 (de) | 2011-10-10 | 2018-09-27 | Schott Ag | Beschichtetes Glas- oder Glaskeramik-Substrat mit haptischen Eigenschaften und Glaskeramik-Kochfeld |
KR101555411B1 (ko) * | 2012-10-12 | 2015-09-23 | 닛토덴코 가부시키가이샤 | 투명 도전성 필름 및 그 용도 |
DE202012012372U1 (de) * | 2012-12-20 | 2013-01-16 | Schott Ag | Beschichtetes Glas- oder Glaskeramik-Substrat mit haptischen Eigenschaften |
JP6008739B2 (ja) * | 2012-12-27 | 2016-10-19 | 日揮触媒化成株式会社 | 撥水性透明被膜付基材およびその製造方法 |
JP6199605B2 (ja) * | 2013-05-27 | 2017-09-20 | 日東電工株式会社 | ハードコートフィルム及びハードコートフィルム巻回体 |
CN106405710B (zh) * | 2013-07-05 | 2018-03-30 | 大日本印刷株式会社 | 防眩膜、偏振片、液晶面板和图像显示装置 |
KR102087422B1 (ko) * | 2013-09-18 | 2020-03-11 | 미쯔비시 케미컬 주식회사 | 적층 필름과 그의 제조 방법, 터치 패널 장치, 화상 표시 장치 및 모바일 기기 |
JP6458804B2 (ja) * | 2014-08-04 | 2019-01-30 | Agc株式会社 | 透光性構造体 |
CN107924002B (zh) * | 2015-08-31 | 2020-11-13 | Agc株式会社 | 透光性结构体、其制造方法及物品 |
-
2016
- 2016-06-01 US US15/571,334 patent/US10351467B2/en active Active
- 2016-06-01 DE DE112016002450.9T patent/DE112016002450T5/de active Pending
- 2016-06-01 JP JP2017521964A patent/JP6391820B2/ja active Active
- 2016-06-01 WO PCT/JP2016/066126 patent/WO2016194928A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5034017A (ja) * | 1973-07-26 | 1975-04-02 | ||
JP2005200726A (ja) * | 2004-01-16 | 2005-07-28 | Nisshin Steel Co Ltd | 意匠性に優れた琺瑯鋼板及びその製造方法 |
JP4473642B2 (ja) * | 2004-04-30 | 2010-06-02 | 八光産業株式会社 | ライニング及びライニング方法 |
Also Published As
Publication number | Publication date |
---|---|
US10351467B2 (en) | 2019-07-16 |
JP6391820B2 (ja) | 2018-09-19 |
JPWO2016194928A1 (ja) | 2018-03-29 |
DE112016002450T5 (de) | 2018-03-01 |
US20180072612A1 (en) | 2018-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH1050159A (ja) | 防汚性と水滴付着防止性を兼ね備えた碍子 | |
CN104085165B (zh) | 一种二氧化钛光触媒涂层的制备方法 | |
EP2900764B1 (en) | Coatable composition, soil-resistant composition, soil-resistant articles, and methods of making the same | |
JPH10204323A (ja) | 親水性被膜形成用コーティング液およびその製造方法 | |
CN101605607B (zh) | 光催化薄膜、形成光催化薄膜的方法以及覆盖有光催化薄膜的制品 | |
WO2016194928A1 (ja) | グラスライニング、グラスライニングの製造方法及びグラスライニング機器の洗浄方法 | |
CN102060447B (zh) | 具有防止静电和截止紫外线双功能的透明镀膜玻璃及其制备方法 | |
CN107903667B (zh) | 一种多功能的超亲水涂层及其制备方法 | |
JP5221237B2 (ja) | 微粒子固定化無機材料及びその製造方法 | |
JP5328009B2 (ja) | 熱交換器用フィン材 | |
US20150246350A1 (en) | Coatable Composition, Photocatalytic Articles, and Methods of Making the Same | |
JP3858176B2 (ja) | 膜構造材料 | |
JP6487933B2 (ja) | 低反射コーティング、低反射コーティング付ガラス板、低反射コーティングを有するガラス板、ガラス基板、光電変換装置、及び低反射コーティングを製造する方法 | |
EP3257909B1 (en) | Emulsion type coating | |
JP2005060532A (ja) | 光触媒分散液及びその製造方法 | |
JP3661814B2 (ja) | 膜構造材及びその清浄化方法 | |
JPWO2014017575A1 (ja) | 光触媒塗布液およびその製造方法並びに光触媒体 | |
JP2010125357A (ja) | 塗装物 | |
Kumar et al. | Self-cleaning properties of nanostructured TiO2 thin films synthesized via facile, cost-effective spin coating technique | |
JP3024748B2 (ja) | 親水性部材 | |
JP5346315B2 (ja) | アモルファス過酸化チタン粒子、親水性塗料、親水性塗膜層、建築材 | |
JP2011126948A (ja) | ガラス用コート剤及びその製造方法 | |
JP2001072929A (ja) | 透明帯電防止膜形成用塗料および透明帯電防止膜付基材 | |
JPH10225393A (ja) | 浴 槽 | |
JP3104620B2 (ja) | 親水性弾性部材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16803362 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017521964 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15571334 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112016002450 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16803362 Country of ref document: EP Kind code of ref document: A1 |