WO2016192542A1 - 一种改性石墨负极材料的制备方法 - Google Patents
一种改性石墨负极材料的制备方法 Download PDFInfo
- Publication number
- WO2016192542A1 WO2016192542A1 PCT/CN2016/082871 CN2016082871W WO2016192542A1 WO 2016192542 A1 WO2016192542 A1 WO 2016192542A1 CN 2016082871 W CN2016082871 W CN 2016082871W WO 2016192542 A1 WO2016192542 A1 WO 2016192542A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- anode material
- resin
- preparing
- graphite
- powder
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical class [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 238000000034 method Methods 0.000 title claims abstract description 19
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 12
- 238000004519 manufacturing process Methods 0.000 title abstract 3
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 27
- 239000010439 graphite Substances 0.000 claims abstract description 27
- 239000002002 slurry Substances 0.000 claims abstract description 15
- 238000001035 drying Methods 0.000 claims abstract description 11
- 239000002243 precursor Substances 0.000 claims abstract description 6
- 238000010438 heat treatment Methods 0.000 claims abstract description 4
- 239000010405 anode material Substances 0.000 claims description 28
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 18
- 239000000843 powder Substances 0.000 claims description 16
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 14
- 229920005989 resin Polymers 0.000 claims description 12
- 239000011347 resin Substances 0.000 claims description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 10
- 238000000498 ball milling Methods 0.000 claims description 9
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 8
- 238000000227 grinding Methods 0.000 claims description 7
- 239000011261 inert gas Substances 0.000 claims description 7
- 239000011863 silicon-based powder Substances 0.000 claims description 7
- 238000002360 preparation method Methods 0.000 claims description 6
- 229910021383 artificial graphite Inorganic materials 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 5
- 238000007873 sieving Methods 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 229910021382 natural graphite Inorganic materials 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 239000005011 phenolic resin Substances 0.000 claims description 4
- 239000000919 ceramic Substances 0.000 claims description 3
- 239000003822 epoxy resin Substances 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- 239000004925 Acrylic resin Substances 0.000 claims description 2
- 229920000178 Acrylic resin Polymers 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 2
- 239000005062 Polybutadiene Substances 0.000 claims description 2
- 229920000180 alkyd Polymers 0.000 claims description 2
- 229910052786 argon Inorganic materials 0.000 claims description 2
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 229920002857 polybutadiene Polymers 0.000 claims description 2
- 229920001225 polyester resin Polymers 0.000 claims description 2
- 239000004645 polyester resin Substances 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 claims description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 abstract description 15
- 239000000463 material Substances 0.000 abstract description 15
- 229910001416 lithium ion Inorganic materials 0.000 abstract description 14
- 230000001351 cycling effect Effects 0.000 abstract 2
- 229910052710 silicon Inorganic materials 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- 239000000956 alloy Substances 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 230000002427 irreversible effect Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910007540 Li2Si Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000011858 nanopowder Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1393—Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1395—Processes of manufacture of electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention relates to a preparation method of a modified graphite anode material, in particular to a preparation method of a graphite anode material doped with metal nickel and metal silicon and treated by coating.
- Lithium-ion batteries are widely used in communication and electronic equipment because of their small size and high storage capacity and high discharge capacity for long-term use.
- Graphite has become the mainstream of lithium ion battery anode materials based on its safety and cost considerations; and various lithium ion battery anode materials using graphite materials as raw materials, and related preparation methods, have also been gradually developed.
- the commercial lithium ion battery anode material is made of graphite-based carbon material, has low lithium insertion/deintercalation potential, suitable reversible capacity, rich resources, and low price, and is an ideal anode material for lithium ion batteries.
- its theoretical specific capacity is only 372 mAh/g, which limits the further improvement of the specific energy of lithium-ion batteries and cannot meet the needs of the increasingly high-energy portable mobile power sources.
- SEI solid electrolyte membrane
- the solid electrolyte membrane is formed by reacting an electrolyte, a negative electrode material, and lithium ions, and irreversibly consuming lithium ions, which is a major factor in forming an irreversible capacity.
- the second is that the electrolyte is easily embedded in the lithium ion intercalation process.
- the electrolyte is reduced, and the resulting gas product causes the graphite sheet to peel off.
- the graphite sheet peels off and a new interface is formed, resulting in further SEI formation, irreversible capacity increase, and circulation.
- the stability is degraded.
- the order of the amorphous carbon formed by pyrolysis of the resin polymer The degree is low and the structure is relatively loose, and lithium ions can be relatively freely embedded and extracted therein without a large influence on the structure thereof.
- the new negative electrode materials are alloy materials, silicon-based oxide materials, and the like. Although the alloy material can provide a high reversible capacity, its cycle performance is not ideal. Although the silicon-based oxide material has a high reversible capacity and good cycle performance, it has the disadvantage that the irreversible capacity loss of the first cycle is large (usually greater than 50%). It has been found that metallic nickel and its oxides have higher specific capacity when used as a negative electrode material for lithium ion batteries. In addition, the ductility of metallic nickel is good, which can greatly reduce the expansion rate of electrode materials during lithium insertion and removal. However, the conductivity of nickel oxide is low, which affects the charge and discharge performance of the battery.
- Silicon is one of the most promising anode materials for carbon materials because silicon has the highest capacity of up to 4200 mAh/g and has a smooth discharge platform similar to graphite. However, similar to other high-capacity metals, silicon has very poor cycle performance and cannot perform normal charge and discharge cycles.
- silicon is used as a negative electrode material, the reversible formation and decomposition of Li2Si alloy is accompanied by a large volume change during the charge-discharge cycle, which causes mechanical splitting (cracking and chalking) of the alloy, resulting in collapse of the material structure and electrode material.
- the peeling off causes the electrode material to lose electrical contact, thereby causing a sharp drop in the cycle performance of the electrode, and finally causing electrode failure, so that it is difficult to practically apply in a lithium ion battery.
- the silicon film prepared by various deposition methods can prolong the cycle life of the material to a certain extent, but can not eliminate its high first irreversible capacity, thus restricting the practical use of the material.
- Another research trend to improve the performance of silicon anodes is to prepare composites or alloys of silicon and other materials. Among them, silicon/carbon composites prepared by combining the stability of carbon materials and the high specific capacity of silicon have shown great application. prospect.
- the present invention provides a method for preparing a modified graphite anode material, and the anode material prepared by the method has good electrochemical cycle stability even in the case of having a high capacity.
- the present invention provides a method for preparing a modified graphite anode material, comprising the following steps:
- the powder obtained in the step 2) is heated to a temperature of 5 to 20 ° C / min to 800 to 1000 ° C under the protection of an inert gas, and then kept for 3 to 10 hours, naturally cooled, and pulverized after cooling.
- the graphite negative electrode material of the present invention is obtained by sieving.
- the graphite described in the step 1) is a mixture of one or both of artificial graphite or natural graphite.
- the resin in the step 1) is one or a mixture of two or more of a phenol resin, an epoxy resin, an alkyd resin, a water-soluble polyester resin, an acrylic resin, and a polybutadiene resin.
- the particle diameter of the silicon powder and the nickel powder described in the step 1) is ⁇ 100 nm.
- the grinding ball is one of a non-metallic zirconia, a ceramic ball, and a polyurethane ball.
- step 1) the time of ball milling mixing in step 1) is 8 to 24 hours.
- the slurry drying in the step 2) is carried out under a vacuum negative pressure, and the pressure is ⁇ -0.1 MPa.
- the inert gas in the step 3) is one of nitrogen gas, argon gas and helium gas.
- the invention adopts the nano powder, thereby avoiding the volume effect of the metal silicon powder due to the large particle size during charging and discharging, ensuring the stability of the material during charging and discharging, and simultaneously compounding with graphite. Solved the shortcomings such as low capacity of single graphite anode material;
- the invention adopts vacuum low-temperature negative pressure to carry out slurry drying, which can not only avoid the agglomeration of the powder in the high temperature state, but also can recycle the organic solvent, thereby playing the role of energy saving and environmental protection;
- the co-intercalation performance of the graphite anti-electrolyte can be effectively improved, and at the same time, the resin has too many small molecules in the resin during the heat treatment, which will cause coating after the overflow process. Excessive voids are created on the surface of the material, which serve to cushion the volume of the silicon powder and ensure the stability of the material system.
- the graphite anode material prepared by the invention has high specific capacity, and the material is modified to effectively improve the conductivity of the material and improve the cycle stability of the material. Therefore, the anode material has high energy density and good cycle stability when used for a lithium ion battery.
- the charge-discharge voltage is 1.0-2.5V, and the charge-discharge rate is 0.5C.
- the battery performance can be tested. The test results are shown in Table 1.
- Table 1 compares the performance of negative electrode materials in different examples and comparative examples.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种改性石墨负极材料的制备方法,包括如下步骤:(1)前驱体浆料制备;(2)前驱体干燥;(3)热处理。本发明制备的石墨负极材料具备较高的比容量,通过对材料进行改性,有效提高了材料的导电性,改善了材料的循环稳定性。因此使得该负极材料在用于锂离子电池时,具有较高的能量密度和良好的循环稳定性。
Description
本发明涉及一种改性石墨负极材料的制备方法,具体涉及一种掺有金属镍和金属硅,并通过包覆处理的石墨负极材料的制备方法。
锂离子电池具有体积小,及长时间使用下仍维持高储电量与高放电量等优点,因而被广泛地被运用在通讯、电子等设备中。“石墨材”基于其安全性与成本考量,已然成为锂离子电池负极材料的原料主流;而各式以石墨材为原料的锂离子电池负极材料,以及相关的制备方法,也逐渐被开发出来。
目前商业化锂离子电池负极材料采用的是石墨类碳材料,具有较低的锂嵌入/脱嵌电位、合适的可逆容量且资源丰富、价格低廉等优点,是比较理想的锂离子电池负极材料。但其理论比容量只有372mAh/g,因而限制了锂离子电池比能量的进一步提高,不能满足日益发展的高能量便携式移动电源的需求。同时,石墨作为负极材料时,在首次充放电过程中在其表面形成一层固体电解质膜(SEI)。固体电解质膜是电解液、负极材料和锂离子等相互反应形成,不可逆地消耗锂离子,是形成不可逆容量的一个主要的因素;其二是在锂离子嵌入的过程中,电解质容易与其共嵌在迁出的过程中,电解液被还原,生成的气体产物导致石墨片层剥落,尤其在含有PC的电解液中,石墨片层脱落将形成新界面,导致进一步SEI形成,不可逆容量增加,同时循环稳定性下降。而树脂类聚合物热解后形成的无定形碳的有序
度低,结构比较松散,锂离子能相对自由地在其中嵌入和脱出而不会对其结构产生大的影响。
由于石墨负极材料的局限性,因此对新型负极材料的开发非常必要。新型的负极材料有合金材料、硅基氧化物材料等。合金材料虽然能提供较高的可逆容量,但其循环性能不够理想。硅基氧化物材料虽然具有较高的可逆容量和较好的循环性能,但它的缺点是首次循环不可逆容量损失较大(常大于50%)。研究发现,金属镍及其氧化物作为锂离子电池的负极材料时,具有较高的比容量,此外金属镍具的延展性好,可使电极材料在锂的嵌脱过程中膨胀率大大降低。但是氧化镍的导电率低,影响了电池的充放电性能。
硅是一种最有希望取代碳材料的负极材料,这是因为硅具有高达4200mAh/g的最高容量;并且具有类似于石墨的平稳的放电平台。但与其它高容量金属相似,硅的循环性能非常差,不能进行正常的充放电循环。硅作为负极材料使用时,在充放电循环过程中,Li2Si合金的可逆生成与分解伴随着巨大的体积变化,会引起合金的机械分裂(产生裂缝与粉化),导致材料结构的崩塌和电极材料的剥落而使电极材料失去电接触,从而造成电极的循环性能急剧下降,最后导致电极失效,因此在锂离子蓄电池中很难实际应用。研究表明,小粒径的硅或其合金无论在容量上还是在循环性能上都有很大的提高,当合金材料的颗粒达到纳米级时,充放电过程中的体积膨胀会大大减轻,性能也会有所提高,但是纳米材料具有较大的表面能,容易发生团聚,反而会使充放电效率降低并加快容量的衰减,从而抵消了纳米颗粒的优
点;采用各种沉积方法制备的硅膜能够在一定程度上延长材料的循环寿命,却不能消除其较高的首次不可逆容量,从而制约了这种材料的实用化。另外一种改善硅负极性能的研究趋势就是制备硅与其它材料的复合材料或合金,其中,结合碳材料的稳定性和硅的高比容量特性而制备的硅/碳复合材料显示了巨大的应用前景。
发明内容
为了克服现有技术的不足,本发明提供一种改性石墨负极材料的制备方法,使用该方法制备的负极材料,在拥有高容量的情况下,还具有良好的电化学循环稳定性。
为了实现上述目的,本发明提供一种改性石墨负极材料的制备方法,包括如下步骤:
1)前驱体浆料制备:按照石墨∶树脂∶镍粉∶硅粉=100∶3~10∶3~5∶1~5的重量比例,称取各组分分散于有机溶剂乙醇中,调节固含量至20%~40%,加入研磨球,进行球磨混合;
2)前驱体干燥:将球磨完毕后的浆料在30~40℃温度下进行干燥,得到粉体;
3)热处理:将步骤2)中所得到的粉体在惰性气体的保护下,以5~20℃/min的速度升温至800~1000℃,再保温3~10h,自然降温,冷却后经过粉碎、筛分即得到本发明所述的石墨负极材料。
进一步,步骤1)中所述的石墨为人造石墨或者天然石墨中的一种或两者的混合。
进一步,步骤1)中所述树脂为酚醛树脂、环氧树脂、醇酸树脂、水溶性聚酯树脂、丙烯酸树脂、聚丁二烯树脂中的一种或两种以上的混合物。
进一步,步骤1)中所述的硅粉和镍粉的粒径≤100nm。
进一步,步骤1)中研磨球采用的是非金属材质的氧化锆求、陶瓷球、聚氨酯球中的一种。
进一步,步骤1)中球磨混合的时间为8~24h。
进一步,步骤2)中浆料干燥是在真空负压状态下进行的,其压力≤-0.1Mpa。
进一步,步骤3)中惰性气体为氮气、氩气、氦气中的一种。
本发明的有益效果如下:
1、本发明通过选用纳米粉体,避免了金属硅粉因粒径较大而在充放电时产生的体积效应,保证了材料的在充放电过程中的稳定性,同时和石墨进行复合处理,解决了单一石墨负极材料容量偏低等缺点;
2、本发明采用真空低温负压进行浆料干燥,不仅可避免粉体在高温状态下干燥产生团聚,同时可对有机溶剂进行回收利用,起到节能环保的作用;
3、通过在石墨表面包覆一层无定形碳,能有效提高石墨抗电解液的共嵌性能,同时树脂在热处理过程中,树脂内的小分子过多,在溢出过程中会造成包覆后材料的表面产生过多的空隙,这些空隙可以起到缓冲硅粉的体积效应,保证材料体系的稳定。
本发明制备的石墨负极材料具备较高的比容量,通过对材料进行改性,有效提高了材料的导电性,改善了材料的循环稳定性。因此使得该负极材料在用于锂离子电池时,具有较高的能量密度和良好的循环稳定性。
实施例1
按照石墨∶树脂∶镍粉∶硅粉=100∶10∶3∶3的比例,称取1000g人造石墨、100g酚醛树脂、30g镍粉、30g硅粉,按照固含量为30%的比例,称取2706g的乙醇溶剂中,采用氧化锆研磨球,球磨12h,得到均匀浆料;再将浆料在-0.1Mpa、30℃的条件下,干燥10h,得到粉体;再将粉体在惰性气体的保护下,以10℃/min的速度升温至1000℃,再保温3h,自然降温,冷却后过筛即得到本发明石墨负极材料。
实施例2
按照石墨∶树脂∶镍粉∶硅粉=100∶5∶5∶1的比例,称取1000g天然石墨、50g环氧树脂、50g镍粉、10g硅粉,按照固含量为40%的比例,称取1665g的乙醇溶剂中,采用氧化锆研磨球,球磨12h,得到均匀浆料;再将浆料在-0.1Mpa、40℃的条件下,干燥80h,得到粉体;再将粉体在惰性气体的保护下,以20℃/min的速度升温至800℃,再保温10h,自然降温,冷却后过筛即得到本发明石墨负极材料。
实施例3
按照石墨∶树脂∶镍粉∶硅粉=100∶8∶4∶3的比例,称取1000g人造石墨、80g酚醛树脂、40g镍粉、30g硅粉,按照固含量为30%的比例,称取2683g的乙醇溶剂中,采用陶瓷研磨球,球磨12h,得到均匀浆料;再将浆料在-0.1Mpa、35℃的条件下,干燥9h,得到粉体;再将粉体在惰性气体的保护下,以10℃/min的速度升温至850℃,再保温14h,自然降温,冷却后过筛即得到本发明石墨负极材料。
对比例1
实施例1中的人造石墨。
对比例2
实施例2中的天然石墨。
电化学性能测试
为检验本发明方法制备的改性锂离子电池石墨负极材料的性能,用半电池测试方法进行测试,用以上实施例和比较例的负极材料∶乙炔黑∶PVDF(聚偏氟乙烯)=93∶3∶4(重量比),加适量NMP(N-甲基吡咯烷酮)调成浆状,涂布于铜箔上,经真空110℃干燥8小时制成负极片;以金属锂片为对电极,电解液为1mol/L LiPF6/EC+DEC+DMC=1∶1∶1,聚丙烯微孔膜为隔膜,组装成电池。充放电电压为1.0~2.5V,充放电速率为0.5C,对电池性能进行能测试,测试结果见表1。
表1为不同实施例和比较例中负极材料的性能比较
以上显示和描述了本发明的基本原理、主要特征及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明的要求保护范围由所附的权利要求书及其等效物界定。
Claims (8)
- 一种改性石墨负极材料的制备方法,包括如下步骤:1)前驱体浆料制备:按照石墨∶树脂∶镍粉∶硅粉=100∶3~10∶3~5∶1~5的重量比例,称取各组分分散于有机溶剂乙醇中,调节固含量至20%~40%,加入研磨球,进行球磨混合;2)前驱体干燥:将球磨完毕后的浆料在30~40℃温度下进行干燥,得到粉体;3)热处理:将步骤2)中所得到的粉体在惰性气体的保护下,以5~20℃/min的速度升温至800~1000℃,再保温3~10h,自然降温,冷却后经过粉碎、筛分即得到本发明所述的石墨负极材料。
- 根据权利要求1所述的一种改性石墨负极材料的制备方法,其特征在于,步骤1)中所述的石墨为人造石墨或者天然石墨中的一种或两者的混合。
- 根据权利要求1所述的一种改性石墨负极材料的制备方法,其特征在于,步骤1)中所述树脂为酚醛树脂、环氧树脂、醇酸树脂、水溶性聚酯树脂、丙烯酸树脂、聚丁二烯树脂中的一种或两种以上的混合物。
- 根据权利要求1所述的一种改性石墨负极材料的制备方法,其特征在于,步骤1)中所述的硅粉和镍粉的粒径≤100nm。
- 根据权利要求1所述的一种改性石墨负极材料的制备方法,其特征在于,步骤1)中研磨球采用的是非金属材质的氧化锆求、陶瓷球、聚氨酯球中的一种。
- 根据权利要求1所述的一种改性石墨负极材料的制备方法,其特征在于,步骤1)中球磨混合的时间为8~24h。
- 根据权利要求1所述的一种改性石墨负极材料的制备方法,其特征在于,步骤2)中浆料干燥是在真空负压状态下进行的,其压力≤-0.1Mpa。
- 根据权利要求1所述的一种改性石墨负极材料的制备方法,其特征在于,步骤3)中惰性气体为氮气、氩气、氦气中的一种。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510305083.XA CN104868159A (zh) | 2015-06-05 | 2015-06-05 | 一种改性石墨负极材料的制备方法 |
CN201510305083.X | 2015-06-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016192542A1 true WO2016192542A1 (zh) | 2016-12-08 |
Family
ID=53913832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/082871 WO2016192542A1 (zh) | 2015-06-05 | 2016-05-20 | 一种改性石墨负极材料的制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104868159A (zh) |
WO (1) | WO2016192542A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113078320A (zh) * | 2021-03-26 | 2021-07-06 | 山东大学 | 一种三聚氰胺改性石墨负极材料及其制备方法及应用 |
CN113942993A (zh) * | 2021-09-29 | 2022-01-18 | 东方电气集团科学技术研究院有限公司 | 一种制备硬炭微球的方法 |
CN114345480A (zh) * | 2021-12-06 | 2022-04-15 | 山西沁新能源集团股份有限公司 | 一种用于石墨负极材料制备的湿法研磨方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104868159A (zh) * | 2015-06-05 | 2015-08-26 | 田东 | 一种改性石墨负极材料的制备方法 |
CN106129522A (zh) * | 2016-08-31 | 2016-11-16 | 合肥国轩高科动力能源有限公司 | 一种利用锂离子电池负极回收石墨的制备方法 |
CN108682818A (zh) * | 2018-05-21 | 2018-10-19 | 北方奥钛纳米技术有限公司 | 干法制备改性石墨的方法及电池 |
CN115732686A (zh) * | 2021-08-27 | 2023-03-03 | 蜂巢能源科技有限公司 | 负极极片及其制备方法和固态锂离子电池 |
CN114156477A (zh) * | 2021-11-29 | 2022-03-08 | 广东凯金新能源科技股份有限公司 | 一种氟掺杂改性石墨负极材料及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101339987A (zh) * | 2008-07-21 | 2009-01-07 | 长沙市海容电子材料有限公司 | 一种锂离子电池硅碳复合负极材料及其制备方法 |
EP2579365A1 (en) * | 2011-10-05 | 2013-04-10 | Samsung SDI Co., Ltd. | Negative active material and lithium battery containing the negative active material |
CN103606661A (zh) * | 2013-11-11 | 2014-02-26 | 南京工业大学 | 一种利用机械化学法合成锂离子电池负极材料的方法 |
CN104617269A (zh) * | 2015-01-23 | 2015-05-13 | 深圳市贝特瑞新能源材料股份有限公司 | 一种硅合金复合负极材料、制备方法及锂离子电池 |
CN104868159A (zh) * | 2015-06-05 | 2015-08-26 | 田东 | 一种改性石墨负极材料的制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101442124B (zh) * | 2007-11-19 | 2011-09-07 | 比亚迪股份有限公司 | 锂离子电池负极用复合材料的制备方法及负极和电池 |
CN103311514B (zh) * | 2013-06-05 | 2015-12-09 | 深圳市斯诺实业发展有限公司 | 一种改性锂离子电池石墨负极材料的制备方法 |
-
2015
- 2015-06-05 CN CN201510305083.XA patent/CN104868159A/zh active Pending
-
2016
- 2016-05-20 WO PCT/CN2016/082871 patent/WO2016192542A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101339987A (zh) * | 2008-07-21 | 2009-01-07 | 长沙市海容电子材料有限公司 | 一种锂离子电池硅碳复合负极材料及其制备方法 |
EP2579365A1 (en) * | 2011-10-05 | 2013-04-10 | Samsung SDI Co., Ltd. | Negative active material and lithium battery containing the negative active material |
CN103606661A (zh) * | 2013-11-11 | 2014-02-26 | 南京工业大学 | 一种利用机械化学法合成锂离子电池负极材料的方法 |
CN104617269A (zh) * | 2015-01-23 | 2015-05-13 | 深圳市贝特瑞新能源材料股份有限公司 | 一种硅合金复合负极材料、制备方法及锂离子电池 |
CN104868159A (zh) * | 2015-06-05 | 2015-08-26 | 田东 | 一种改性石墨负极材料的制备方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113078320A (zh) * | 2021-03-26 | 2021-07-06 | 山东大学 | 一种三聚氰胺改性石墨负极材料及其制备方法及应用 |
CN113942993A (zh) * | 2021-09-29 | 2022-01-18 | 东方电气集团科学技术研究院有限公司 | 一种制备硬炭微球的方法 |
CN114345480A (zh) * | 2021-12-06 | 2022-04-15 | 山西沁新能源集团股份有限公司 | 一种用于石墨负极材料制备的湿法研磨方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104868159A (zh) | 2015-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105489855B (zh) | 高容量型锂离子电池用核壳硅碳复合负极材料及其制备方法 | |
WO2016192542A1 (zh) | 一种改性石墨负极材料的制备方法 | |
CN105680023B (zh) | 一种高倍率硅基复合材料的制备方法、负极材料和锂电池 | |
CN110048101B (zh) | 一种硅氧碳微球复合负极材料及其制备方法与应用 | |
WO2017024720A1 (zh) | 一种高容量锂离子电池负极材料的制备方法 | |
CN102522561A (zh) | 一种锂离子电池负极材料及其制备方法 | |
CN105226285B (zh) | 一种多孔硅碳复合材料及其制备方法 | |
WO2022193286A1 (zh) | 负极材料及其制备方法、电化学装置及电子装置 | |
CN106025211A (zh) | 一种高容量锂离子电池硅基负极材料的制备方法 | |
WO2017024719A1 (zh) | 一种高容量锂电池负极材料的制备方法 | |
CN107946568B (zh) | 一种高性能氧化亚硅/硬碳/石墨复合材料及其制备方法与应用 | |
WO2017024897A1 (zh) | 一种改性锂电池负极材料的制备方法 | |
CN110931756A (zh) | 高性能且粒径可调控的硅碳复合负极材料及其制备方法 | |
CN106784741B (zh) | 一种碳硅复合材料、其制备方法及包含该复合材料的锂离子电池 | |
CN108682813A (zh) | 一种硅碳复合材料的制备方法及应用 | |
CN113380998A (zh) | 一种硅碳负极材料及其制备方法和应用 | |
WO2016202164A1 (zh) | 一种炭/石墨/锡复合负极材料的制备方法 | |
CN114520328B (zh) | 一种锂离子电池负极材料及其制备与负极和电池 | |
CN108682787A (zh) | 一种锂离子电池极片及其制备方法 | |
WO2017024896A1 (zh) | 一种金属锡掺杂复合钛酸锂负极材料的制备方法 | |
CN102887504B (zh) | 一种锂离子电池负极用碳材料的制备方法 | |
CN108288705B (zh) | 一种锂离子电池用硅碳负极材料及其制备方法 | |
WO2017024902A1 (zh) | 一种改性锂电池钛酸锂负极材料的制备方法 | |
CN102130336B (zh) | 一种锂离子电池用层次孔结构炭负极材料及制备方法 | |
CN110550635B (zh) | 一种新型的碳包覆硅氧负极材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16802465 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16802465 Country of ref document: EP Kind code of ref document: A1 |