WO2016163332A1 - Fuel gas supply system for liquefied gas transport vessel - Google Patents
Fuel gas supply system for liquefied gas transport vessel Download PDFInfo
- Publication number
- WO2016163332A1 WO2016163332A1 PCT/JP2016/060999 JP2016060999W WO2016163332A1 WO 2016163332 A1 WO2016163332 A1 WO 2016163332A1 JP 2016060999 W JP2016060999 W JP 2016060999W WO 2016163332 A1 WO2016163332 A1 WO 2016163332A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- fuel gas
- pressure
- fuel
- gas supply
- Prior art date
Links
- 239000007789 gas Substances 0.000 title claims abstract description 204
- 239000002737 fuel gas Substances 0.000 title claims abstract description 122
- 239000007788 liquid Substances 0.000 claims abstract description 45
- 239000000446 fuel Substances 0.000 claims description 29
- 239000007921 spray Substances 0.000 claims description 15
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 239000000969 carrier Substances 0.000 claims 1
- 238000005507 spraying Methods 0.000 abstract description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 239000003949 liquefied natural gas Substances 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000005265 energy consumption Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B25/00—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
- B63B25/02—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
- B63B25/08—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
- B63B25/12—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
- B63B25/16—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H21/00—Use of propulsion power plant or units on vessels
- B63H21/38—Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0203—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
- F02M21/0215—Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0218—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
- F02M21/023—Valves; Pressure or flow regulators in the fuel supply or return system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M21/00—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
- F02M21/02—Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
- F02M21/0218—Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
- F02M21/0245—High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M31/00—Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture
- F02M31/02—Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating
- F02M31/12—Apparatus for thermally treating combustion-air, fuel, or fuel-air mixture for heating electrically
- F02M31/125—Fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
- F17C9/02—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/03—Treating the boil-off
- F17C2265/031—Treating the boil-off by discharge
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2265/00—Effects achieved by gas storage or gas handling
- F17C2265/06—Fluid distribution
- F17C2265/066—Fluid distribution for feeding engines for propulsion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2270/00—Applications
- F17C2270/01—Applications for fluid transport or storage
- F17C2270/0102—Applications for fluid transport or storage on or in the water
- F17C2270/0105—Ships
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/30—Use of alternative fuels, e.g. biofuels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
- Y02T70/50—Measures to reduce greenhouse gas emissions related to the propulsion system
- Y02T70/5218—Less carbon-intensive fuels, e.g. natural gas, biofuels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Definitions
- the present invention relates to a fuel gas supply system applied to a liquefied gas carrier ship equipped with a low-speed diesel engine capable of gas burning as a main engine.
- Patent Document 1 As a method for generating high-pressure fuel gas with low power consumption, a configuration in which liquefied natural gas is pressurized with a high-pressure liquid pump and heated to a high-pressure gas of about 30 MPa is known (Patent Document 1).
- boil-off gas When the liquefied gas in the cargo tank is changed to a high-pressure gas through the high-pressure liquid pump, the boil-off gas is not consumed as fuel, so the boil-off gas is forcibly burned to prevent an increase in the cargo tank pressure due to the generation of the boil-off gas. It is necessary to prepare a gas combustion device and a reliquefaction device for returning boil-off gas to liquid. However, burning boil-off gas increases the environmental load and reduces the energy efficiency of the entire liquefied gas carrier. Also, the operation of the reliquefaction device generally requires more energy than the operation of the high pressure gas compressor.
- the present invention aims to optimize boil-off gas processing and energy consumption in a liquefied gas carrier using a high-pressure gas compressor and a high-pressure liquid pump in combination with the operating state of the liquefied gas carrier.
- a fuel gas supply system for a liquefied gas carrier of the present invention includes a low-speed diesel engine that can be used as a main engine, a tank that stores liquefied gas, a high-pressure gas compressor that compresses boil-off gas generated in the tank, A high-pressure liquid pump that pressurizes liquefied gas from the tank, a first fuel gas supply line that supplies fuel gas from the tank to the low-speed diesel engine through the high-pressure gas compressor, and fuel gas from the tank to the low-speed diesel engine through the high-pressure liquid pump A second fuel gas supply line for supplying, and a first operation mode for supplying fuel gas to the low-speed diesel engine through the first fuel gas supply line and the second fuel gas supply line.
- the fuel gas supply amount by the gas supply line is controlled based on the tank pressure, and the second It is characterized by controlling on the basis of the amount of fuel gas supplied by the material gas supply line to the fuel gas required pressure of the low-speed diesel engine.
- the first operation mode is selected, and the boil-off gas is supplied to the low-speed diesel engine as fuel gas through the first fuel gas supply line.
- the liquefied gas in the tank is supplied to the low-speed diesel engine through the second fuel gas supply line as a shortage of fuel gas.
- the second operation mode for supplying the fuel gas to the low-speed diesel engine only through the first fuel gas supply line is selected. The amount of fuel gas supplied from the high pressure gas compressor is controlled based on the required fuel gas pressure of the low speed diesel engine.
- the third operation mode is selected to supply the liquefied gas in the cargo tank as fuel gas to the low-speed diesel engine only through the second fuel gas supply line.
- the discharge pressure of the high-pressure liquid pump is controlled based on the required fuel gas pressure of the low-speed diesel engine.
- either the first or the second operation mode is selected from the relationship between the fuel consumption amount of the low speed diesel engine and the boil-off gas generation amount.
- the final stage of the high-pressure gas compressor is preferably provided with a first circulation line for circulating the fuel gas from the discharge side to the suction side so that the pressure of the cargo tank is kept constant in the first operation mode. It is preferable to control the amount of fuel gas circulated by controlling the first valve provided in the first circulation line. Further, it is preferable that a second circulation line for circulating the liquefied gas from the discharge side to the upstream side of the high pressure liquid pump is provided. In the third operation mode, when the load of the low speed diesel engine is low, the high pressure liquid pump is minimized. It is preferable that the liquefied gas can be circulated upstream by controlling the second valve provided in the second circulation line while being driven by the capacity.
- the second fuel gas supply line includes a suction drum provided on the upstream side of the high-pressure liquid pump and a gas heater provided on the downstream side.
- the high-pressure gas compressor is a multi-stage compressor including a low-pressure stage and a final stage, and preferably includes a branch line for sending surplus gas from the low-pressure stage to the boil-off gas processing device.
- the liquefied gas carrier ship of the present invention is characterized by including the fuel gas supply system for the liquefied gas carrier ship.
- the high pressure gas compressor and the high pressure liquid pump can be used in combination to optimize the boil-off gas processing and energy consumption according to the operating state of the liquefied gas carrier ship.
- FIG. 1 It is a block diagram which shows the structure of the fuel gas supply system which is one Embodiment of this invention. Operation speed and use in (a) liquefied gas loading, (b) liquefied gas empty (with spray operation), (c) liquefied gas empty (no spray operation) in one embodiment of the present invention It is a graph which shows the relationship of fuel consumption.
- FIG. 1 is a block diagram showing a configuration of a fuel gas supply system according to an embodiment of the present invention.
- the fuel gas supply system 10 of this embodiment is applied to a ship that transports a liquefied gas such as natural gas, and the liquefied gas (LNG in this embodiment) is loaded on a cargo tank 11 provided in the hull.
- the main engine 12 is a low-speed diesel engine that can be gas-fired.
- the main engine 12 is supplied with boil-off gas (NATUREL BOG) that is naturally generated in the cargo tank 11 through a first fuel gas supply line 14 including a high-pressure gas compressor 13. Is possible.
- the boil-off gas generated in the cargo tank 11 is sent to the high-pressure gas compressor 13 through the upstream line of the first fuel gas supply line 14 and is compressed in the high-pressure gas compressor 13.
- the compressed boil-off gas is sent as “high pressure gas” to the main engine 12 through the first fuel gas supply line 14 on the downstream side.
- the high-pressure gas compressor 13 is, for example, a multistage compressor, and includes an upstream-side low-pressure stage 13A and a downstream-side final stage 13B.
- the fuel gas can be sent out as “low pressure gas” having a relatively low pressure through the branch line 15, and the fuel gas can be supplied to the gas-fired generator engine.
- surplus BOG that cannot be consumed by the main engine 12 or the generator engine is also supplied as fuel gas to the BOG processing device (boiler, gas combustion device, reliquefaction device) through the branch line 15.
- the line for sending the surplus gas to the BOG processing device may be configured to supply the decompressed gas from the discharge side of the final stage 13B of the high pressure gas compressor 13 to the required pressure of the BOG processing device.
- the low-pressure stage to the high-pressure stage are described as one multi-stage high-pressure gas compressor, but the low-pressure stage may be another compressor and the low-pressure gas compressor and the high-pressure gas compressor may be installed in series.
- a first circulation line 16 for returning the fuel gas to the suction side of the final stage 13B is provided on the discharge side of the final stage 13B.
- the first circulation line 16 is provided with a first valve 16V for controlling the flow rate of the recirculated gas, and the opening degree of the first valve 16V is controlled by the first controller 17.
- a pressure sensor 18 is provided on the discharge side of the final stage 13B, and the pressure value PV1 on the discharge side of the fuel gas supplied to the main engine 12 is measured.
- a pressure sensor 19 for measuring the pressure PV2 of the boil-off gas in the cargo tank 11 is provided on the upstream side of the first fuel gas supply line 14.
- the pressure PV2 is measured at one point in a common pipe of the plurality of cargo tanks 11.
- the pressure may be measured at a plurality of locations and the average may be set as the pressure PV2.
- the measured pressure values PV1 and PV2 are input to the first controller 17, the fuel gas request pressure SP1 of the main engine 12 from the main engine controller 20, and the pressure in the cargo tank 11 set by the operator.
- a set value SP2 or the like is input.
- the first controller 17 adjusts the opening degree of the first valve 16V of the first circulation line 16 based on these values, and boil-off gas supplied from the first fuel gas supply line 14 to the main engine 12. Control the amount of supply.
- the fuel gas supply system 10 of this embodiment further includes a second fuel gas supply line 21.
- the second fuel gas supply line 21 includes a pump 22 disposed near the bottom in the cargo tank 11, and liquefied gas in the cargo tank 11 is pumped up by the pump 22 in accordance with an operation mode to be described later.
- the pumped liquefied gas is temporarily stored in the suction drum 23.
- a high pressure liquid pump 24 is connected to the downstream side of the suction drum 23, and the liquefied gas in the suction drum 23 is pressurized and sent to the gas heater 25.
- the gas heater 25 the liquefied gas pressurized by the high-pressure liquid pump 24 is heated and vaporized and supplied to the main engine 12 as a high-pressure gas.
- a line for supplying fuel gas to the gas-fired generator engine downstream of the gas heater 25 in order to use the liquefied gas as fuel for the gas-fired generator engine may be branched.
- the high-pressure liquid pump 24 is driven by a motor 26, and the motor 26 is driven and controlled by a second controller 28 through an inverter 27.
- a second circulation line 29 for returning the liquefied gas to the suction drum 23 is provided on the downstream side of the high-pressure liquid pump 24, and a second circulation line 29 for controlling the flow rate of the returned liquefied gas is provided in the second circulation line 29.
- a valve 29V is provided.
- the second controller 28 receives the fuel gas required pressure SP1 from the main engine controller 20 and is measured by a pressure sensor 30 provided between the high pressure liquid pump 24 and the gas heater 25 in the second fuel gas supply line 21.
- the pressure value PV3 is input.
- the second controller 28 adjusts the opening degree of the second valve 29V and controls the driving of the motor 26 in accordance with the operation mode and the operation state.
- the motor 26 may be a hydraulic drive motor. In that case, the drive of the hydraulic drive motor is controlled not through the inverter 27 but through a hydraulic drive source.
- the second circulation line 29 is guided to the suction drum 23, but may be guided to the cargo tank 11.
- the suction drum 23 is provided with a third circulation line 31 for returning the boil-off gas in the drum to the upstream side (cargo tank 11 side) of the first fuel gas supply line 14. Is provided with a third valve 31V.
- a fourth valve 21V for keeping the load of the pump constant is provided immediately after leaving the cargo tank 11 of the second fuel gas supply line 21, and a high pressure liquid pump 24 is provided immediately downstream thereof.
- a branch line 32 for adjusting the supply pressure of the liquefied gas to be supplied to is provided, and the branch line 32 includes a fifth valve 32V.
- the NPSH (effective suction head) of the high-pressure liquid pump 24 can be sufficiently secured without installing the suction drum 23, and the suction drum 23 that degass the gas vaporized between the cargo tank 11 and the high-pressure liquid pump 24.
- the suction drum 23 is not necessarily provided. In this case, the third circulation line 31 is not provided, and the second circulation line 29 is guided to the cargo tank 11.
- surplus BOG through the branch line 15 is supplied to the BOG processing device (boiler, gas combustion device, reliquefaction device) by opening the opening of the sixth valve 15V provided in the branch line 15. It is controlled by adjusting with the third controller 33.
- the third controller 33 receives the cargo tank pressure value PV2 and the pressure set value SP2 set by the operator, adjusts the opening of the sixth valve 15V based on these values, and converts the surplus BOG to the BOG processing device. To supply.
- Figures 2 (a) to 2 (c) show (a) the relationship between operating speed and fuel consumption when liquefied gas is loaded, and (b) when spray work is performed when liquefied gas is empty. It is a graph which shows the relationship between the operation speed and use fuel consumption of (c), and the relationship between the operation speed and use fuel consumption when the spray operation
- the horizontal axis represents the ship operating speed
- the vertical axis represents the fuel consumption.
- a curve S is a curve showing the relationship between the ship speed and the fuel consumption (fuel gas supply amount / unit time), and the fuel consumption is approximately the cube of the ship speed.
- Is proportional to A straight line L (NATURAL BOG) in FIG. 2A is an amount per unit time at which the liquefied gas (natural gas) in the cargo tank 11 spontaneously evaporates and becomes boil-off gas.
- the first operation mode is selected when the vehicle is operated on the higher speed side (high speed operation region) than the operation point P (NATURER BOG 100% speed) in a state where the liquefied gas is loaded.
- the boil-off gas compressed by the high pressure gas compressor 13 is supplied to the main engine 12 through the first fuel gas supply line 14, and an insufficient amount of fuel is supplied through the second fuel gas supply line 21. That is, in the first operation mode, the pump 22, the high pressure liquid pump 24, and the gas heater 25 are driven to generate high pressure gas from the liquefied gas in the cargo tank 11, and together with the boil-off gas compressed by the high pressure gas compressor 13, the main engine 12. To supply.
- the first controller 17 controls the first valve 16V of the high-pressure gas compressor 13 so that the measured pressure value PV2 on the cargo tank 11 side becomes the pressure SP2 set by the operator.
- the second controller 28 monitors the discharge-side pressure value PV3 of the high-pressure liquid pump 24 so that the discharge pressure of the second fuel gas supply line 21 becomes the fuel gas required pressure SP1 of the main engine 12, and the high-pressure liquid The drive of the pump 24 is controlled.
- the second operation mode compressor mode
- the high-pressure gas compressor 13 is operated. Only the first fuel gas supply line 14 to be used is used. That is, the operation of the main engine 12 is performed using only the boil-off gas, and when there is surplus gas, the gas is supplied to the BOG processing device (boiler, gas combustion device, reliquefaction device) through the branch line 15.
- the first controller 17 monitors the pressure value PV1 on the discharge side so that the discharge pressure of the first fuel gas supply line 14 becomes the fuel gas required pressure SP1 of the main engine 12, thereby increasing the pressure.
- the first valve 16V of the gas compressor 13 is controlled.
- FIG. 2 (b) shows the operation mode when the spray operation is performed in the operation when the liquefied gas is empty.
- a straight line Ls is the amount of boil-off gas per unit time generated in the spray operation, and varies up and down depending on the amount of liquid used in the spray operation.
- the intersection point Ps between the curve S and the straight line Ls is a point where the amount of boil-off gas generated by the spray work and the boat speed are balanced.
- the first operation mode is selected on the higher speed side than the operation point Ps
- the second operation mode is selected on the lower speed side than the operation point Ps or the operation point Ps.
- Compressor mode is selected. That is, either the first or second operation mode is selected from the relationship between the fuel consumption of the low speed diesel engine and the boil-off gas generation amount.
- the surplus boil-off gas is removed from the BOG treatment device (boiler) through the branch line 15 as in FIG. , Gas combustion device, reliquefaction device). Even when the liquefied gas is empty, some liquefied gas is stored in order to use the liquefied gas as a spray liquid for cooling the cargo tank and as fuel for the main engine. The cargo tank 11 is not completely emptied.
- FIG. 2 (c) is a graph corresponding to the operation mode when the spray operation is not performed in the operation when the liquefied gas is empty.
- the third operation mode (pump mode) is selected, and fuel gas is supplied to the main engine 12 only through the second fuel gas supply line. That is, high pressure gas is generated from the liquefied gas in the cargo tank 11 using the pump 22, the high pressure liquid pump 24, and the gas heater 25, and supplied to the main engine 12.
- the first fuel gas supply line 14 is not used, and the high-pressure gas compressor 13 is turned off.
- the second controller 28 increases the pressure so that the discharge pressure of the second fuel gas supply line 21 becomes the fuel gas required pressure SP1 of the main engine 12 as in the first operation mode.
- the discharge side pressure value PV3 of the liquid pump 24 is monitored to control the driving of the high-pressure liquid pump 24.
- the third operation mode when it is necessary to supply the fuel gas to the main engine 12 with a supply amount lower than the fuel gas supply amount at the minimum capacity (the minimum rotation speed of the motor 26) at which the high-pressure liquid pump 24 can operate.
- the second controller 28 drives the high-pressure liquid pump 24 with the minimum capacity that can be operated, and opens the second valve 29V to discharge the surplus fuel discharged from the high-pressure liquid pump 24 to the suction drum 23 in the second circulation line. Reflux through 29.
- the cruise speed of the ship is set to the operating point P or a slightly lower speed, and the ship navigates at the cruise speed most of the time, so for example near the operating point P in FIG. Driven. That is, when the liquefied gas is loaded, only the substantially high-pressure gas compressor 13 is driven, and most of the boil-off gas is consumed as fuel for the main engine 12. Only when the operation in the high-speed operation region is necessary, the high-pressure liquid pump 24 is driven to generate high-pressure gas directly from the liquefied gas. Further, since most of the time during the operation when the liquefied gas is empty is not sprayed, the operation mode of FIG.
- boil-off gas processing and energy consumption can be optimized in accordance with the operating state of the liquefied gas carrier ship by using the high-pressure gas compressor and the high-pressure liquid pump together.
- the discharge amount from the high pressure gas compressor is the cargo tank pressure. Is controlled so that only the discharge amount from the high-pressure liquid pump becomes the required pressure of the main engine, so the parameters to be controlled differ between the high-pressure gas compressor and the high-pressure liquid pump.
- the discharge amount of the high pressure gas compressor is supplied with priority (consumption of boil-off gas is given priority), and the control of both is prevented from interfering with each other. Only the shortage is supplied by the high-pressure liquid pump.
- the main engine may be a gas-only low-speed diesel engine, but it may be a dual-fuel low-speed diesel engine with oil fuel. In this case, for example, oil is used as an additional fuel in a high-speed operation region. May be used.
- the liquefied gas carrier ship carrying LNG mainly composed of methane is described, but the present invention is also applicable to a liquefied gas carrier ship carrying cargo other than LNG.
- the gas pressure at the engine inlet required by the low-speed diesel engine varies depending on the properties of the fuel gas used (for example, ethane), and may require a higher pressure than when LNG is used as the fuel (for example, 40 MPa). ⁇ 60 MPa) can be applied in the same manner as the embodiment mainly composed of methane.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Ocean & Marine Engineering (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
A fuel gas supply system for liquefied gas transport vessel is provided with a first fuel gas supply line 14, which supplies boil-off gas (BOG) in a cargo tank 11 as fuel gas to a main engine 12 via a high-pressure gas compressor 13, and a second fuel gas supply line 21, which draws in liquefied gas in the cargo tank 11 with a pump 22, and uses a high-pressure liquid pump 24 and a gas heater 25 to generate high-pressure gas. During travel while carrying liquefied gas, if the amount of fuel gas is sufficient using only the BOG, only the first fuel gas supply line 14 is used, and if the amount is not sufficient, the second fuel gas supply line 21 also is used. During travel when there is no liquefied gas load and a spraying operation is not being performed, only the second fuel gas supply line 21 is used.
Description
本発明は、ガス焚きが可能な低速ディーゼル機関を主機関として搭載した液化ガス運搬船に適用される燃料ガス供給システムに関する。
The present invention relates to a fuel gas supply system applied to a liquefied gas carrier ship equipped with a low-speed diesel engine capable of gas burning as a main engine.
環境負荷の低減やエネルギー消費改善の観点から、近年ではLNG運搬船の主機関にガス焚き低速ディーゼル機関を採用し、LNGカーゴタンク内で自然に発生するボイルオフガス(NATURAL BOG)を主機関の燃料として利用する構成が知られている。しかし、ガス焚き低速ディーゼル機関へは30MPa程度の圧力を持つ燃料ガスを供給する必要がある。そのためボイルオフガスを燃料に用いる場合、このボイルオフガスを高圧ガスコンプレッサにより30MPa程度まで圧縮する必要があるが、高圧ガスコンプレッサを用いた方式は消費電力が大きいと言う問題がある。一方、低い消費電力で高圧燃料ガスを生成する方法として、液化天然ガスを高圧液ポンプで加圧し、これを加熱して30MPa程度の高圧ガスとする構成が知られている(特許文献1)。
In recent years, from the viewpoint of reducing environmental impact and improving energy consumption, a gas-fired low-speed diesel engine has been adopted as the main engine of the LNG carrier, and boil-off gas (NATUREL BOG) that is naturally generated in the LNG cargo tank is used as the main engine fuel. The configuration to be used is known. However, it is necessary to supply fuel gas having a pressure of about 30 MPa to the gas-fired low-speed diesel engine. Therefore, when boil-off gas is used as fuel, it is necessary to compress this boil-off gas to about 30 MPa with a high-pressure gas compressor. However, the method using a high-pressure gas compressor has a problem that power consumption is large. On the other hand, as a method for generating high-pressure fuel gas with low power consumption, a configuration in which liquefied natural gas is pressurized with a high-pressure liquid pump and heated to a high-pressure gas of about 30 MPa is known (Patent Document 1).
高圧液ポンプを通してカーゴタンク内の液化ガスを高圧ガスにする場合、ボイルオフガスが燃料として消費されないため、ボイルオフガスの発生によるカーゴタンクの圧力上昇を防止するには、ボイルオフガスを強制的に燃焼するガス燃焼装置やボイルオフガスを液に戻すための再液化装置を用意する必要がある。しかし、ボイルオフガスを燃焼させると環境負荷を増大させ、液化ガス運搬船全体のエネルギー効率も低下させる。また再液化装置の運転には、一般的に高圧ガスコンプレッサの運転よりも大きなエネルギーを必要とする。
When the liquefied gas in the cargo tank is changed to a high-pressure gas through the high-pressure liquid pump, the boil-off gas is not consumed as fuel, so the boil-off gas is forcibly burned to prevent an increase in the cargo tank pressure due to the generation of the boil-off gas. It is necessary to prepare a gas combustion device and a reliquefaction device for returning boil-off gas to liquid. However, burning boil-off gas increases the environmental load and reduces the energy efficiency of the entire liquefied gas carrier. Also, the operation of the reliquefaction device generally requires more energy than the operation of the high pressure gas compressor.
本発明は、液化ガス運搬船において、高圧ガスコンプレッサおよび高圧液ポンプを併用して、液化ガス運搬船の運航状態に合わせ、ボイルオフガスの処理、エネルギー消費を最適化することを目的としている。
The present invention aims to optimize boil-off gas processing and energy consumption in a liquefied gas carrier using a high-pressure gas compressor and a high-pressure liquid pump in combination with the operating state of the liquefied gas carrier.
本発明の液化ガス運搬船用燃料ガス供給システムは、主機関として用いられるガス焚き可能な低速ディーゼル機関と、液化ガスを貯蔵するタンクと、タンク内で発生するボイルオフガスを圧縮する高圧ガスコンプレッサと、タンク内からの液化ガスを加圧する高圧液ポンプと、高圧ガスコンプレッサを通してタンクから低速ディーゼル機関へ燃料ガスを供給する第1燃料ガス供給ラインと、高圧液ポンプを通してタンクから低速ディーゼル機関へ燃料ガスを供給する第2燃料ガス供給ラインと、第1燃料ガス供給ラインおよび第2燃料ガス供給ラインを通して燃料ガスを低速ディーゼル機関に供給する第1運転モードとを備え、第1運転モードでは、第1燃料ガス供給ラインによる燃料ガスの供給量をタンクの圧力に基づいて制御し、第2燃料ガス供給ラインによる燃料ガスの供給量を低速ディーゼル機関の燃料ガス要求圧力に基づいて制御することを特徴としている。
A fuel gas supply system for a liquefied gas carrier of the present invention includes a low-speed diesel engine that can be used as a main engine, a tank that stores liquefied gas, a high-pressure gas compressor that compresses boil-off gas generated in the tank, A high-pressure liquid pump that pressurizes liquefied gas from the tank, a first fuel gas supply line that supplies fuel gas from the tank to the low-speed diesel engine through the high-pressure gas compressor, and fuel gas from the tank to the low-speed diesel engine through the high-pressure liquid pump A second fuel gas supply line for supplying, and a first operation mode for supplying fuel gas to the low-speed diesel engine through the first fuel gas supply line and the second fuel gas supply line. The fuel gas supply amount by the gas supply line is controlled based on the tank pressure, and the second It is characterized by controlling on the basis of the amount of fuel gas supplied by the material gas supply line to the fuel gas required pressure of the low-speed diesel engine.
液化ガス積載時の運航において、低速ディーゼル機関の燃料消費量がボイルオフガス発生量よりも多いときに第1運転モードが選択され、第1燃料ガス供給ラインを通してボイルオフガスを低速ディーゼル機関へ燃料ガスとして供給し、不足する分の燃料ガスとして第2燃料ガス供給ラインを通してタンク内の液化ガスを低速ディーゼル機関へ供給する。また、液化ガス積載時の運航において、低速ディーゼル機関の燃料消費量がボイルオフガス発生量以下のときには、第1燃料ガス供給ラインのみを通して燃料ガスを低速ディーゼル機関へ供給する第2運転モードが選択され、高圧ガスコンプレッサからの燃料ガス供給量は、低速ディーゼル機関の燃料ガス要求圧力に基づいて制御される。
In operation when loading liquefied gas, when the fuel consumption of the low-speed diesel engine is larger than the amount of boil-off gas generated, the first operation mode is selected, and the boil-off gas is supplied to the low-speed diesel engine as fuel gas through the first fuel gas supply line. The liquefied gas in the tank is supplied to the low-speed diesel engine through the second fuel gas supply line as a shortage of fuel gas. In addition, when the liquefied gas is loaded, when the fuel consumption of the low-speed diesel engine is less than the boil-off gas generation amount, the second operation mode for supplying the fuel gas to the low-speed diesel engine only through the first fuel gas supply line is selected. The amount of fuel gas supplied from the high pressure gas compressor is controlled based on the required fuel gas pressure of the low speed diesel engine.
液化ガス空荷時の運航において、スプレー作業(液化ガスをカーゴタンクに受け入れる際に、急激な温度差によるカーゴタンクの破損を防止するために、カーゴタンク内に残した液化ガスをカーゴタンク内に噴霧し液化ガスの気化熱によってカーゴタンクを予冷する作業)を行わないときには、第2燃料ガス供給ラインのみを通してカーゴタンク内の液化ガスを低速ディーゼル機関へ燃料ガスとして供給する第3運転モードが選択され、高圧液ポンプの吐出圧力は、低速ディーゼル機関の燃料ガス要求圧力に基づいて制御される。また、液化ガス空荷時の運航において、スプレー作業を行うときには、第1または第2運転モードの何れかが、低速ディーゼル機関の燃料消費量とボイルオフガス発生量との関係から選択される。
During operation when liquefied gas is empty, spray work (when liquefied gas is received in the cargo tank, the liquefied gas left in the cargo tank is put into the cargo tank to prevent damage to the cargo tank due to a sudden temperature difference. If the cargo tank is not precooled by the heat of vaporization of the liquefied gas, the third operation mode is selected to supply the liquefied gas in the cargo tank as fuel gas to the low-speed diesel engine only through the second fuel gas supply line. The discharge pressure of the high-pressure liquid pump is controlled based on the required fuel gas pressure of the low-speed diesel engine. Further, when the spray operation is performed in the operation when the liquefied gas is empty, either the first or the second operation mode is selected from the relationship between the fuel consumption amount of the low speed diesel engine and the boil-off gas generation amount.
更に、高圧ガスコンプレッサの最終段には、吐出側から吸込み側へと燃料ガスを循環させる第1循環ラインが設けられることが好ましく、第1運転モードにおいて、カーゴタンクの圧力を一定に維持するように第1循環ラインに設けた第1弁を制御して循環される燃料ガスの量を制御することが好ましい。また、高圧液ポンプの吐出側から上流側へと液化ガスを循環させる第2循環ラインが設けられることが好ましく、第3運転モードにおいて、低速ディーゼル機関の負荷が低いときに、高圧液ポンプを最少容量で駆動しつつ第2循環ラインに設けた第2弁を制御して液化ガスを上流側へと循環させることが可能であることが好ましい。
Further, the final stage of the high-pressure gas compressor is preferably provided with a first circulation line for circulating the fuel gas from the discharge side to the suction side so that the pressure of the cargo tank is kept constant in the first operation mode. It is preferable to control the amount of fuel gas circulated by controlling the first valve provided in the first circulation line. Further, it is preferable that a second circulation line for circulating the liquefied gas from the discharge side to the upstream side of the high pressure liquid pump is provided. In the third operation mode, when the load of the low speed diesel engine is low, the high pressure liquid pump is minimized. It is preferable that the liquefied gas can be circulated upstream by controlling the second valve provided in the second circulation line while being driven by the capacity.
また、第2燃料ガス供給ラインは、高圧液ポンプの上流側に設けられるサクションドラムと下流側に設けられるガスヒータとを備える。高圧ガスコンプレッサは、低圧段と最終段とを備える多段コンプレッサであり、低圧段から余剰ガスをボイルオフガス処理装置へと送出する分岐ラインを備えることが好ましい。
The second fuel gas supply line includes a suction drum provided on the upstream side of the high-pressure liquid pump and a gas heater provided on the downstream side. The high-pressure gas compressor is a multi-stage compressor including a low-pressure stage and a final stage, and preferably includes a branch line for sending surplus gas from the low-pressure stage to the boil-off gas processing device.
本発明の液化ガス運搬船は、上記液化ガス運搬船用燃料ガス供給システムを備えたことを特徴としている。
The liquefied gas carrier ship of the present invention is characterized by including the fuel gas supply system for the liquefied gas carrier ship.
本発明によれば、液化ガス運搬船において、高圧ガスコンプレッサおよび高圧液ポンプを併用して、液化ガス運搬船の運航状態に合わせ、ボイルオフガスの処理、エネルギー消費を最適化することができる。
According to the present invention, in the liquefied gas carrier ship, the high pressure gas compressor and the high pressure liquid pump can be used in combination to optimize the boil-off gas processing and energy consumption according to the operating state of the liquefied gas carrier ship.
以下、本発明の実施形態について添付図面を参照して説明する。
図1は、本発明の一実施形態である燃料ガス供給システムの構成を示すブロック図である。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a block diagram showing a configuration of a fuel gas supply system according to an embodiment of the present invention.
図1は、本発明の一実施形態である燃料ガス供給システムの構成を示すブロック図である。 Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a block diagram showing a configuration of a fuel gas supply system according to an embodiment of the present invention.
本実施形態の燃料ガス供給システム10は、天然ガスなどの液化ガスを運搬する船舶に適用され、液化ガス(本実施形態ではLNG)は船体内に設けられたカーゴタンク11に積載される。主機関12は、ガス焚き可能な低速ディーゼル機関であり、主機関12には高圧ガスコンプレッサ13を含む第1燃料ガス供給ライン14を通してカーゴタンク11内で自然発生するボイルオフガス(NATURAL BOG)を供給することが可能である。
The fuel gas supply system 10 of this embodiment is applied to a ship that transports a liquefied gas such as natural gas, and the liquefied gas (LNG in this embodiment) is loaded on a cargo tank 11 provided in the hull. The main engine 12 is a low-speed diesel engine that can be gas-fired. The main engine 12 is supplied with boil-off gas (NATUREL BOG) that is naturally generated in the cargo tank 11 through a first fuel gas supply line 14 including a high-pressure gas compressor 13. Is possible.
カーゴタンク11内で発生するボイルオフガスは、第1燃料ガス供給ライン14の上流側ラインを通して高圧ガスコンプレッサ13へ送られ、高圧ガスコンプレッサ13において圧縮される。そして圧縮されたボイルオフガスは「高圧ガス」として、下流側の第1燃料ガス供給ライン14を通して主機関12へと送出される。高圧ガスコンプレッサ13は例えば多段コンプレッサであり、上流側の低圧段13Aと下流側の最終段13Bを備える。例えば低圧段13Aからは、分岐ライン15を通して相対的に圧力が低い「低圧ガス」として燃料ガスを送出可能で、ガス焚き発電機エンジンに燃料ガスを供給可能である。また、主機関12や発電機エンジンで消費しきれない余剰BOGについても、分岐ライン15を通してBOG処理装置(ボイラ、ガス燃焼装置、再液化装置)に燃料ガスとして供給する。また、余剰ガスをBOG処理装置へ送出するラインは、高圧ガスコンプレッサ13の最終段13Bの吐出側からBOG処理装置の要求圧力まで減圧して供給するように構成しても良い。なお、本実施形態では、低圧段から高圧段までを一つの多段高圧ガスコンプレッサとして記載するが、低圧段を別のコンプレッサとして低圧ガスコンプレッサと高圧ガスコンプレッサを直列に設置する構成としてもよい。
The boil-off gas generated in the cargo tank 11 is sent to the high-pressure gas compressor 13 through the upstream line of the first fuel gas supply line 14 and is compressed in the high-pressure gas compressor 13. The compressed boil-off gas is sent as “high pressure gas” to the main engine 12 through the first fuel gas supply line 14 on the downstream side. The high-pressure gas compressor 13 is, for example, a multistage compressor, and includes an upstream-side low-pressure stage 13A and a downstream-side final stage 13B. For example, from the low pressure stage 13A, the fuel gas can be sent out as “low pressure gas” having a relatively low pressure through the branch line 15, and the fuel gas can be supplied to the gas-fired generator engine. Further, surplus BOG that cannot be consumed by the main engine 12 or the generator engine is also supplied as fuel gas to the BOG processing device (boiler, gas combustion device, reliquefaction device) through the branch line 15. Further, the line for sending the surplus gas to the BOG processing device may be configured to supply the decompressed gas from the discharge side of the final stage 13B of the high pressure gas compressor 13 to the required pressure of the BOG processing device. In the present embodiment, the low-pressure stage to the high-pressure stage are described as one multi-stage high-pressure gas compressor, but the low-pressure stage may be another compressor and the low-pressure gas compressor and the high-pressure gas compressor may be installed in series.
高圧ガスコンプレッサ13において最終段13Bの吐出側には、最終段13Bの吸込み側へと燃料ガスを還流するための第1循環ライン16が設けられる。第1循環ライン16には、還流されるガス流量を制御するための第1弁16Vが設けられ、第1弁16Vの開度は、第1制御器17により制御される。また最終段13Bの吐出側には、圧力センサ18が設けられ、主機関12へ供給される燃料ガスの吐出側における圧力値PV1が測定される。一方、第1燃料ガス供給ライン14の上流側には、カーゴタンク11内のボイルオフガスの圧力PV2を測定するための圧力センサ19が設けられる。なお、カーゴタンク11は船体内に複数設けられているが、本実施形態では圧力PV2を複数のカーゴタンク11の共通管における1点で計測している。しかし複数箇所で圧力を計測しその平均を圧力PV2としてもよい。
In the high-pressure gas compressor 13, a first circulation line 16 for returning the fuel gas to the suction side of the final stage 13B is provided on the discharge side of the final stage 13B. The first circulation line 16 is provided with a first valve 16V for controlling the flow rate of the recirculated gas, and the opening degree of the first valve 16V is controlled by the first controller 17. A pressure sensor 18 is provided on the discharge side of the final stage 13B, and the pressure value PV1 on the discharge side of the fuel gas supplied to the main engine 12 is measured. On the other hand, a pressure sensor 19 for measuring the pressure PV2 of the boil-off gas in the cargo tank 11 is provided on the upstream side of the first fuel gas supply line 14. Although a plurality of cargo tanks 11 are provided in the hull, in this embodiment, the pressure PV2 is measured at one point in a common pipe of the plurality of cargo tanks 11. However, the pressure may be measured at a plurality of locations and the average may be set as the pressure PV2.
第1制御器17には、これらの測定された圧力値PV1、PV2が入力されるとともに、主機コントローラ20から主機関12の燃料ガス要求圧力SP1、およびオペレータにより設定されるカーゴタンク11内の圧力設定値SP2などが入力される。第1制御器17は、後述するようにこれらの値に基づき第1循環ライン16の第1弁16Vの開度調整を行い、第1燃料ガス供給ライン14から主機関12へ供給されるボイルオフガスの供給量を制御する。
The measured pressure values PV1 and PV2 are input to the first controller 17, the fuel gas request pressure SP1 of the main engine 12 from the main engine controller 20, and the pressure in the cargo tank 11 set by the operator. A set value SP2 or the like is input. As will be described later, the first controller 17 adjusts the opening degree of the first valve 16V of the first circulation line 16 based on these values, and boil-off gas supplied from the first fuel gas supply line 14 to the main engine 12. Control the amount of supply.
本実施形態の燃料ガス供給システム10には、更に第2燃料ガス供給ライン21を備える。第2燃料ガス供給ライン21は、カーゴタンク11内の底付近に配置されるポンプ22を備え、後述する運転モードに応じて、カーゴタンク11内の液化ガスはポンプ22により汲み上げる。第2燃料ガス供給ライン21では、汲み上げられた液化ガスは、サクションドラム23に一時的に貯留される。そしてサクションドラム23の下流側には高圧液ポンプ24が接続され、サクションドラム23内の液化ガスが加圧されてガスヒータ25へと送り出される。ガスヒータ25では、高圧液ポンプ24により加圧された液化ガスが加熱・気化され、高圧ガスとして主機関12へと供給される。また、第1燃料ガス供給ライン14が使用されない場合においても、液化ガスをガス焚き発電機エンジンの燃料に使用するために、ガスヒータ25の下流にガス焚き発電機エンジンへ燃料ガスを供給するラインを設けるか、サクションドラム23の前からガス焚き発電機エンジンにガスを供給するためのラインを分岐させてもよい。
The fuel gas supply system 10 of this embodiment further includes a second fuel gas supply line 21. The second fuel gas supply line 21 includes a pump 22 disposed near the bottom in the cargo tank 11, and liquefied gas in the cargo tank 11 is pumped up by the pump 22 in accordance with an operation mode to be described later. In the second fuel gas supply line 21, the pumped liquefied gas is temporarily stored in the suction drum 23. A high pressure liquid pump 24 is connected to the downstream side of the suction drum 23, and the liquefied gas in the suction drum 23 is pressurized and sent to the gas heater 25. In the gas heater 25, the liquefied gas pressurized by the high-pressure liquid pump 24 is heated and vaporized and supplied to the main engine 12 as a high-pressure gas. Even when the first fuel gas supply line 14 is not used, a line for supplying fuel gas to the gas-fired generator engine downstream of the gas heater 25 in order to use the liquefied gas as fuel for the gas-fired generator engine. Alternatively, a line for supplying gas to the gas-fired generator engine from the front of the suction drum 23 may be branched.
高圧液ポンプ24は、モータ26により駆動され、モータ26はインバータ27を通して第2制御器28によって駆動制御される。高圧液ポンプ24の下流側には、液化ガスをサクションドラム23へ還流するための第2循環ライン29が設けられ、第2循環ライン29には還流される液化ガス流量を制御するための第2弁29Vが設けられる。第2制御器28には、主機コントローラ20から燃料ガス要求圧力SP1が入力されるとともに、第2燃料ガス供給ライン21の高圧液ポンプ24とガスヒータ25の間に設けられる圧力センサ30で測定された圧力値PV3が入力される。第2制御器28は、後述するように、運転モードや運転状態に応じて、第2弁29Vの開度調整を行うとともに、モータ26の駆動を制御する。また、モータ26は油圧駆動モータとしてもよく、その場合、インバータ27ではなく、油圧駆動源を通して油圧駆動モータの駆動を制御する。また、本実施形態では第2循環ライン29はサクションドラム23に導かれているが、カーゴタンク11へと導かれてもよい。
The high-pressure liquid pump 24 is driven by a motor 26, and the motor 26 is driven and controlled by a second controller 28 through an inverter 27. A second circulation line 29 for returning the liquefied gas to the suction drum 23 is provided on the downstream side of the high-pressure liquid pump 24, and a second circulation line 29 for controlling the flow rate of the returned liquefied gas is provided in the second circulation line 29. A valve 29V is provided. The second controller 28 receives the fuel gas required pressure SP1 from the main engine controller 20 and is measured by a pressure sensor 30 provided between the high pressure liquid pump 24 and the gas heater 25 in the second fuel gas supply line 21. The pressure value PV3 is input. As will be described later, the second controller 28 adjusts the opening degree of the second valve 29V and controls the driving of the motor 26 in accordance with the operation mode and the operation state. The motor 26 may be a hydraulic drive motor. In that case, the drive of the hydraulic drive motor is controlled not through the inverter 27 but through a hydraulic drive source. In the present embodiment, the second circulation line 29 is guided to the suction drum 23, but may be guided to the cargo tank 11.
なお、サクションドラム23には、ドラム内のボイルオフガスを第1燃料ガス供給ライン14の上流側(カーゴタンク11側)へと還流するための第3循環ライン31が設けられ、第3循環ライン31には、第3弁31Vが設けられる。また、第2燃料ガス供給ライン21のカーゴタンク11を出た直ぐのところには、ポンプの負荷を一定に保つための第4弁21Vが設けられるとともに、その直ぐ下流側には高圧液ポンプ24へ供給する液化ガスの供給圧力を調整するための分岐ライン32が設けられ、分岐ライン32は、第5弁32Vを備える。
The suction drum 23 is provided with a third circulation line 31 for returning the boil-off gas in the drum to the upstream side (cargo tank 11 side) of the first fuel gas supply line 14. Is provided with a third valve 31V. A fourth valve 21V for keeping the load of the pump constant is provided immediately after leaving the cargo tank 11 of the second fuel gas supply line 21, and a high pressure liquid pump 24 is provided immediately downstream thereof. A branch line 32 for adjusting the supply pressure of the liquefied gas to be supplied to is provided, and the branch line 32 includes a fifth valve 32V.
また、サクションドラム23を設置しなくても高圧液ポンプ24のNPSH(有効吸込みヘッド)が十分確保され、カーゴタンク11と高圧液ポンプ24との間で気化したガスをガス抜きするサクションドラム23に代わる手段が設けられる場合には、サクションドラム23を必ずしも設けなくともよく、その場合、第3循環ライン31も設けず、第2循環ライン29はカーゴタンク11に導かれる。
Further, the NPSH (effective suction head) of the high-pressure liquid pump 24 can be sufficiently secured without installing the suction drum 23, and the suction drum 23 that degass the gas vaporized between the cargo tank 11 and the high-pressure liquid pump 24. When an alternative means is provided, the suction drum 23 is not necessarily provided. In this case, the third circulation line 31 is not provided, and the second circulation line 29 is guided to the cargo tank 11.
なお、本実施形態において、分岐ライン15を通した余剰BOGのBOG処理装置(ボイラ、ガス燃焼装置、再液化装置)への供給は、分岐ライン15に設けられた第6弁15Vの開度を第3制御器33により調整することにより制御される。第3制御器33には、カーゴタンク圧力値PV2と、オペレータにより設定される圧力設定値SP2が入力され、これらの値に基づき第6弁15Vの開度を調整し、余剰BOGをBOG処理装置へと供給する。
In the present embodiment, surplus BOG through the branch line 15 is supplied to the BOG processing device (boiler, gas combustion device, reliquefaction device) by opening the opening of the sixth valve 15V provided in the branch line 15. It is controlled by adjusting with the third controller 33. The third controller 33 receives the cargo tank pressure value PV2 and the pressure set value SP2 set by the operator, adjusts the opening of the sixth valve 15V based on these values, and converts the surplus BOG to the BOG processing device. To supply.
次に図1、図2を参照して、本実施形態の燃料ガス供給システム10の第1、第2燃料ガス供給ライン14、21を用いた第1~第3運転モードにおける主機関12への燃料ガス供給の態様について説明する。
Next, referring to FIG. 1 and FIG. 2, to the main engine 12 in the first to third operation modes using the first and second fuel gas supply lines 14 and 21 of the fuel gas supply system 10 of the present embodiment. A mode of fuel gas supply will be described.
図2(a)~図2(c)は、それぞれ(a)液化ガス積載時の運航速度と使用燃料消費量の関係、(b)液化ガス空荷時の運航においてスプレー作業を行っているときの運航速度と使用燃料消費量の関係、(c)液化ガス空荷時の運航においてスプレー作業を行っていないときの運航速度と使用燃料消費量の関係を示すグラフである。なお図2(a)~図2(c)において横軸は船の運航速度、縦軸は燃料消費量である。
Figures 2 (a) to 2 (c) show (a) the relationship between operating speed and fuel consumption when liquefied gas is loaded, and (b) when spray work is performed when liquefied gas is empty. It is a graph which shows the relationship between the operation speed and use fuel consumption of (c), and the relationship between the operation speed and use fuel consumption when the spray operation | work is not performed in the operation at the time of (c) liquefied gas empty load. In FIGS. 2 (a) to 2 (c), the horizontal axis represents the ship operating speed, and the vertical axis represents the fuel consumption.
図2(a)~図2(c)において、曲線Sは、船速と燃料消費量(燃料ガス供給量/単位時)の関係を示す曲線であり、燃料消費量は略船速の3乗に比例する。図2(a)の直線L(NATURAL BOG)は、カーゴタンク11内の液化ガス(天然ガス)が自然蒸発し、ボイルオフガスとなる単位時間当たりの量である。
2 (a) to 2 (c), a curve S is a curve showing the relationship between the ship speed and the fuel consumption (fuel gas supply amount / unit time), and the fuel consumption is approximately the cube of the ship speed. Is proportional to A straight line L (NATURAL BOG) in FIG. 2A is an amount per unit time at which the liquefied gas (natural gas) in the cargo tank 11 spontaneously evaporates and becomes boil-off gas.
すなわち図2(a)において、ボイルオフガスのみ、かつその全てを主機関12及びガス焚き発電機エンジンの燃料として利用すると、曲線Sと直線Lの交点Pに対応する船速が得られる。一方、運転点Pよりも高速側では、曲線Sと直線Lの差が、追加する必要のある燃料量となり、運転点Pよりも低速側では、直線Lと曲線Sの差が余剰ボイルオフガスとなる。
That is, in FIG. 2A, when only boil-off gas and all of it is used as fuel for the main engine 12 and the gas-fired generator engine, a boat speed corresponding to the intersection P between the curve S and the straight line L is obtained. On the other hand, on the higher speed side than the operating point P, the difference between the curve S and the straight line L is the amount of fuel that needs to be added, and on the lower speed side than the operating point P, the difference between the straight line L and the curve S is the surplus boil-off gas. Become.
本実施形態では、液化ガスが積載された状態で運転点P(NATURAL BOG100%速度)よりも高速側(高速運転領域)で運航されるときには、第1運転モード(ハイブリッドモード)が選択される。第1運転モードでは、第1燃料ガス供給ライン14を通して高圧ガスコンプレッサ13で圧縮したボイルオフガスを主機関12へ供給するとともに、第2燃料ガス供給ライン21を通して足りない分の燃料を供給する。すなわち、第1運転モードでは、ポンプ22、高圧液ポンプ24、およびガスヒータ25が駆動されカーゴタンク11内の液化ガスから高圧ガスを生成し、高圧ガスコンプレッサ13で圧縮されたボイルオフガスと共に主機関12へ供給する。
In the present embodiment, the first operation mode (hybrid mode) is selected when the vehicle is operated on the higher speed side (high speed operation region) than the operation point P (NATURER BOG 100% speed) in a state where the liquefied gas is loaded. In the first operation mode, the boil-off gas compressed by the high pressure gas compressor 13 is supplied to the main engine 12 through the first fuel gas supply line 14, and an insufficient amount of fuel is supplied through the second fuel gas supply line 21. That is, in the first operation mode, the pump 22, the high pressure liquid pump 24, and the gas heater 25 are driven to generate high pressure gas from the liquefied gas in the cargo tank 11, and together with the boil-off gas compressed by the high pressure gas compressor 13, the main engine 12. To supply.
第1運転モードでは、第1制御器17は、カーゴタンク11側の測定圧力値PV2がオペレータにて設定された圧力SP2となるように高圧ガスコンプレッサ13の第1弁16Vを制御する。そして第2制御器28は、第2燃料ガス供給ライン21の吐出圧が、主機関12の燃料ガス要求圧力SP1となるように、高圧液ポンプ24の吐出側圧力値PV3をモニタして高圧液ポンプ24の駆動を制御する。
In the first operation mode, the first controller 17 controls the first valve 16V of the high-pressure gas compressor 13 so that the measured pressure value PV2 on the cargo tank 11 side becomes the pressure SP2 set by the operator. The second controller 28 monitors the discharge-side pressure value PV3 of the high-pressure liquid pump 24 so that the discharge pressure of the second fuel gas supply line 21 becomes the fuel gas required pressure SP1 of the main engine 12, and the high-pressure liquid The drive of the pump 24 is controlled.
また、液化ガスが積載された状態で運転点P、または運転点Pよりも低速側(減速運転領域)で運航されるときには、第2運転モード(コンプレッサモード)が選択され、高圧ガスコンプレッサ13を用いる第1燃料ガス供給ライン14のみを使用する。すなわち、ボイルオフガスのみを用いて主機関12の運転が行われ、余剰ガスがある場合は、分岐ライン15を通してBOG処理装置(ボイラ、ガス燃焼装置、再液化装置)へガスを供給する。
When the liquefied gas is loaded and operated at the operation point P or at a lower speed side (deceleration operation region) than the operation point P, the second operation mode (compressor mode) is selected, and the high-pressure gas compressor 13 is operated. Only the first fuel gas supply line 14 to be used is used. That is, the operation of the main engine 12 is performed using only the boil-off gas, and when there is surplus gas, the gas is supplied to the BOG processing device (boiler, gas combustion device, reliquefaction device) through the branch line 15.
第2運転モードでは、第1制御器17は、第1燃料ガス供給ライン14の吐出圧が、主機関12の燃料ガス要求圧力SP1となるように、吐出側の圧力値PV1をモニタして高圧ガスコンプレッサ13の第1弁16Vを制御する。
In the second operation mode, the first controller 17 monitors the pressure value PV1 on the discharge side so that the discharge pressure of the first fuel gas supply line 14 becomes the fuel gas required pressure SP1 of the main engine 12, thereby increasing the pressure. The first valve 16V of the gas compressor 13 is controlled.
図2(b)には、液化ガス空荷時の運航においてスプレー作業が行われるときの運航形態が示される。図2(b)において、直線Lsは、スプレー作業で発生する単位時間当たりのボイルオフガスの量であり、スプレー作業で使用する液の量により上下に変化する。曲線Sと直線Lsの交点Psは、スプレー作業によるボイルオフガス発生量と船速が釣り合う点である。図2(a)のときと同様に、運転点Psよりも高速側では第1運転モード(ハイブリッドモード)が選択され、運転点Ps、または運転点Psよりも低速側では、第2運転モード(コンプレッサモード)が選択される。すなわち、第1または第2運転モードの何れかが、低速ディーゼル機関の燃料消費量とボイルオフガス発生量との関係から選択される。
FIG. 2 (b) shows the operation mode when the spray operation is performed in the operation when the liquefied gas is empty. In FIG. 2B, a straight line Ls is the amount of boil-off gas per unit time generated in the spray operation, and varies up and down depending on the amount of liquid used in the spray operation. The intersection point Ps between the curve S and the straight line Ls is a point where the amount of boil-off gas generated by the spray work and the boat speed are balanced. As in FIG. 2A, the first operation mode (hybrid mode) is selected on the higher speed side than the operation point Ps, and the second operation mode (hybrid mode) is selected on the lower speed side than the operation point Ps or the operation point Ps. Compressor mode) is selected. That is, either the first or second operation mode is selected from the relationship between the fuel consumption of the low speed diesel engine and the boil-off gas generation amount.
また、スプレー作業により発生するボイルオフガス量が、主機関12及び発電機エンジンによる消費量を上回るときには、図2(a)のときと同様に、分岐ライン15を通して余剰ボイルオフガスをBOG処理装置(ボイラ、ガス燃焼装置、再液化装置)へ供給する。なお、液化ガス空荷時の運航であっても、液化ガスをカーゴタンク冷却用のスプレー液として、また主機関の燃料として使用するために、幾らかの液化ガスが貯蔵されており、全てのカーゴタンク11が完全に空にされているわけではない。
Further, when the amount of boil-off gas generated by the spraying operation exceeds the consumption by the main engine 12 and the generator engine, the surplus boil-off gas is removed from the BOG treatment device (boiler) through the branch line 15 as in FIG. , Gas combustion device, reliquefaction device). Even when the liquefied gas is empty, some liquefied gas is stored in order to use the liquefied gas as a spray liquid for cooling the cargo tank and as fuel for the main engine. The cargo tank 11 is not completely emptied.
図2(c)は、液化ガス空荷時の運航においてスプレー作業が行われないときの運航形態に対応するグラフである。この運航形態では、第3運転モード(ポンプモード)が選択され、第2燃料ガス供給ラインのみを通して燃料ガスが主機関12へと供給される。すなわち、ポンプ22、高圧液ポンプ24、およびガスヒータ25を使用してカーゴタンク11内の液化ガスから高圧ガスが生成され主機関12へ供給される。そして第1燃料ガス供給ライン14は使用されず、高圧ガスコンプレッサ13はオフされる。
FIG. 2 (c) is a graph corresponding to the operation mode when the spray operation is not performed in the operation when the liquefied gas is empty. In this mode of operation, the third operation mode (pump mode) is selected, and fuel gas is supplied to the main engine 12 only through the second fuel gas supply line. That is, high pressure gas is generated from the liquefied gas in the cargo tank 11 using the pump 22, the high pressure liquid pump 24, and the gas heater 25, and supplied to the main engine 12. The first fuel gas supply line 14 is not used, and the high-pressure gas compressor 13 is turned off.
第3運転モードにおいて、第2制御器28は、第1運転モードのときと同様に、第2燃料ガス供給ライン21の吐出圧が、主機関12の燃料ガス要求圧力SP1となるように、高圧液ポンプ24の吐出側圧力値PV3をモニタして高圧液ポンプ24の駆動を制御する。また、第3運転モードにおいて、高圧液ポンプ24の運転可能な最少容量(モータ26の最少回転数)における燃料ガス供給量よりも低い供給量で主機関12へ燃料ガスを供給する必要がある場合、第2制御器28は、高圧液ポンプ24を運転可能な最少容量で駆動するとともに、第2弁29Vを開いて高圧液ポンプ24から吐出される余剰な燃料をサクションドラム23に第2循環ライン29を通して還流する。
In the third operation mode, the second controller 28 increases the pressure so that the discharge pressure of the second fuel gas supply line 21 becomes the fuel gas required pressure SP1 of the main engine 12 as in the first operation mode. The discharge side pressure value PV3 of the liquid pump 24 is monitored to control the driving of the high-pressure liquid pump 24. Further, in the third operation mode, when it is necessary to supply the fuel gas to the main engine 12 with a supply amount lower than the fuel gas supply amount at the minimum capacity (the minimum rotation speed of the motor 26) at which the high-pressure liquid pump 24 can operate. The second controller 28 drives the high-pressure liquid pump 24 with the minimum capacity that can be operated, and opens the second valve 29V to discharge the surplus fuel discharged from the high-pressure liquid pump 24 to the suction drum 23 in the second circulation line. Reflux through 29.
なお、船の巡航速度は、運転点P、あるいはそれよりも僅かに低い速度に設定され、船舶は、殆どの時間を巡航速度で航行するので、例えば図2(a)の運転点P付近で運転される。すなわち、液化ガス積載時には、略高圧ガスコンプレッサ13のみが駆動され、ボイルオフガスの殆どが、主機関12の燃料として消費される。そして高速運転領域での運転が必要な場合のみ、高圧液ポンプ24が駆動され液化ガスから直接的に高圧ガスが生成される。また、液化ガス空荷時の運航において殆どの時間は、スプレー作業が行われているわけではないので、殆ど図2(c)の運航形態がとられ、高圧ガスコンプレッサ13を運転することなく、高圧液ポンプ24により燃料ガス供給がなされる。一方、スプレー作業が行われ、ボイルオフガスが発生する場合には、高圧ガスコンプレッサ13が駆動され、ボイルオフガスは略全て主機関12の燃料として利用される。
It should be noted that the cruise speed of the ship is set to the operating point P or a slightly lower speed, and the ship navigates at the cruise speed most of the time, so for example near the operating point P in FIG. Driven. That is, when the liquefied gas is loaded, only the substantially high-pressure gas compressor 13 is driven, and most of the boil-off gas is consumed as fuel for the main engine 12. Only when the operation in the high-speed operation region is necessary, the high-pressure liquid pump 24 is driven to generate high-pressure gas directly from the liquefied gas. Further, since most of the time during the operation when the liquefied gas is empty is not sprayed, the operation mode of FIG. 2 (c) is almost taken without operating the high-pressure gas compressor 13, Fuel gas is supplied by the high-pressure liquid pump 24. On the other hand, when a spray operation is performed and boil-off gas is generated, the high-pressure gas compressor 13 is driven, and almost all of the boil-off gas is used as fuel for the main engine 12.
以上のように、本実施形態によれば、高圧ガスコンプレッサおよび高圧液ポンプを併用して、液化ガス運搬船の運航状態に合わせ、ボイルオフガスの処理、エネルギー消費を最適化することができる。
As described above, according to the present embodiment, boil-off gas processing and energy consumption can be optimized in accordance with the operating state of the liquefied gas carrier ship by using the high-pressure gas compressor and the high-pressure liquid pump together.
また、本実施形態では、第1燃料ガス供給ラインの高圧ガスコンプレッサと第2燃料ガス供給ラインの高圧液ポンプを同時に駆動する第1運転モードにおいて、高圧ガスコンプレッサからの吐出量は、カーゴタンク圧力を一定値とするように制御し、高圧液ポンプからの吐出量のみ主機関の要求圧力となるように制御しているので、制御対象パラメータが高圧ガスコンプレッサと高圧液ポンプとで異なることになり、高圧ガスコンプレッサの吐出量が優先して供給され(ボイルオフガスの消費が優先され)、両者の制御が互いに干渉することが防止される。そして、不足分のみ高圧液ポンプで供給される。
In this embodiment, in the first operation mode in which the high pressure gas compressor of the first fuel gas supply line and the high pressure liquid pump of the second fuel gas supply line are simultaneously driven, the discharge amount from the high pressure gas compressor is the cargo tank pressure. Is controlled so that only the discharge amount from the high-pressure liquid pump becomes the required pressure of the main engine, so the parameters to be controlled differ between the high-pressure gas compressor and the high-pressure liquid pump. The discharge amount of the high pressure gas compressor is supplied with priority (consumption of boil-off gas is given priority), and the control of both is prevented from interfering with each other. Only the shortage is supplied by the high-pressure liquid pump.
なお、主機関はガス専燃の低速ディーゼル機関であってもよいが、オイル燃料との2元燃料焚き低速ディーゼル機関であってもよく、その場合には例えば高速運転領域においてオイルを追加燃料として利用してもよい。また、本実施形態ではメタンを主成分とするLNGを運ぶ液化ガス運搬船を対象に記載したが、LNG以外の貨物を運ぶ液化ガス運搬船についても適用可能である。使用する燃料ガス(例えばエタンなど)の性状により、低速ディーゼル機関が要求する機関入口のガス圧力は様々であり、LNGを燃料として使用する場合よりも高い圧力が必要となる場合がある(例えば40MPa~60MPa)が、メタンを主成分とした実施形態と同様に適用できる。
The main engine may be a gas-only low-speed diesel engine, but it may be a dual-fuel low-speed diesel engine with oil fuel. In this case, for example, oil is used as an additional fuel in a high-speed operation region. May be used. In this embodiment, the liquefied gas carrier ship carrying LNG mainly composed of methane is described, but the present invention is also applicable to a liquefied gas carrier ship carrying cargo other than LNG. The gas pressure at the engine inlet required by the low-speed diesel engine varies depending on the properties of the fuel gas used (for example, ethane), and may require a higher pressure than when LNG is used as the fuel (for example, 40 MPa). ~ 60 MPa) can be applied in the same manner as the embodiment mainly composed of methane.
10 燃料ガス供給システム
11 カーゴタンク
12 主機関
13 高圧ガスコンプレッサ
13A 低圧段
13B 最終段
14 第1燃料ガス供給ライン
16 第1循環ライン
16V 第1弁
17 第1制御器
18、19、30 圧力センサ
20 主機コントローラ
21 第2燃料ガス供給ライン
22 ポンプ
23 サクションドラム
24 高圧液ポンプ
25 ガスヒータ
28 第2制御器
29 第2循環ライン
29V 第2弁 DESCRIPTION OFSYMBOLS 10 Fuel gas supply system 11 Cargo tank 12 Main engine 13 High pressure gas compressor 13A Low pressure stage 13B Final stage 14 1st fuel gas supply line 16 1st circulation line 16V 1st valve 17 1st controller 18, 19, 30 Pressure sensor 20 Main controller 21 Second fuel gas supply line 22 Pump 23 Suction drum 24 High pressure liquid pump 25 Gas heater 28 Second controller 29 Second circulation line 29V Second valve
11 カーゴタンク
12 主機関
13 高圧ガスコンプレッサ
13A 低圧段
13B 最終段
14 第1燃料ガス供給ライン
16 第1循環ライン
16V 第1弁
17 第1制御器
18、19、30 圧力センサ
20 主機コントローラ
21 第2燃料ガス供給ライン
22 ポンプ
23 サクションドラム
24 高圧液ポンプ
25 ガスヒータ
28 第2制御器
29 第2循環ライン
29V 第2弁 DESCRIPTION OF
Claims (10)
- 主機関として用いられるガス焚き可能な低速ディーゼル機関と、
液化ガスを貯蔵するタンクと、
前記タンク内で発生するボイルオフガスを圧縮する高圧ガスコンプレッサと、
前記タンク内からの液化ガスを加圧する高圧液ポンプと、
前記高圧ガスコンプレッサを通して前記タンクから前記低速ディーゼル機関へ燃料ガスを供給する第1燃料ガス供給ラインと、
前記高圧液ポンプを通して前記タンクから前記低速ディーゼル機関へ燃料ガスを供給する第2燃料ガス供給ラインと、
前記第1燃料ガス供給ラインおよび前記第2燃料ガス供給ラインを通して燃料ガスを前記低速ディーゼル機関に供給する第1運転モードとを備え、
前記第1運転モードでは、前記第1燃料ガス供給ラインによる燃料ガスの供給量を前記タンクの圧力に基づいて制御し、前記第2燃料ガス供給ラインによる燃料ガスの供給量を前記低速ディーゼル機関の燃料ガス要求圧力に基づいて制御する
ことを特徴とする液化ガス運搬船用燃料ガス供給システム。 A gas-fired low-speed diesel engine used as the main engine;
A tank for storing liquefied gas;
A high-pressure gas compressor for compressing boil-off gas generated in the tank;
A high-pressure liquid pump for pressurizing the liquefied gas from the tank;
A first fuel gas supply line for supplying fuel gas from the tank to the low-speed diesel engine through the high-pressure gas compressor;
A second fuel gas supply line for supplying fuel gas from the tank to the low-speed diesel engine through the high-pressure liquid pump;
A first operation mode for supplying fuel gas to the low-speed diesel engine through the first fuel gas supply line and the second fuel gas supply line;
In the first operation mode, the amount of fuel gas supplied from the first fuel gas supply line is controlled based on the pressure of the tank, and the amount of fuel gas supplied from the second fuel gas supply line is controlled by the low-speed diesel engine. A fuel gas supply system for a liquefied gas carrier ship, which is controlled based on a required fuel gas pressure. - 液化ガス積載時の運航において、前記低速ディーゼル機関の燃料消費量がボイルオフガス発生量よりも多いときに前記第1運転モードが選択され、前記第1燃料ガス供給ラインを通してボイルオフガスを前記低速ディーゼル機関へ燃料ガスとして供給し、不足する分の燃料ガスとして前記第2燃料ガス供給ラインを通して前記タンク内の液化ガスを前記低速ディーゼル機関へ供給することを特徴とする請求項1に記載の液化ガス運搬船用燃料ガス供給システム。 In operation when loading liquefied gas, when the fuel consumption of the low-speed diesel engine is larger than the boil-off gas generation amount, the first operation mode is selected, and the boil-off gas is supplied to the low-speed diesel engine through the first fuel gas supply line. 2. The liquefied gas carrier according to claim 1, wherein the liquefied gas in the tank is supplied to the low-speed diesel engine through the second fuel gas supply line as a shortage of fuel gas. Fuel gas supply system.
- 液化ガス積載時の運航において、前記低速ディーゼル機関の燃料消費量がボイルオフガス発生量以下のときには、前記第1燃料ガス供給ラインのみを通して燃料ガスを前記低速ディーゼル機関へ供給する第2運転モードが選択され、前記高圧ガスコンプレッサからの燃料ガス供給量は、前記低速ディーゼル機関の燃料ガス要求圧力に基づいて制御されることを特徴とする請求項1または請求項2に記載の液化ガス運搬船用燃料ガス供給システム。 In operation when loading liquefied gas, when the fuel consumption of the low-speed diesel engine is less than the boil-off gas generation amount, the second operation mode for supplying fuel gas to the low-speed diesel engine only through the first fuel gas supply line is selected 3. The fuel gas for a liquefied gas carrier according to claim 1, wherein a fuel gas supply amount from the high-pressure gas compressor is controlled based on a fuel gas demand pressure of the low-speed diesel engine. Supply system.
- 液化ガス空荷時の運航において、スプレー作業を行わないときには、前記第2燃料ガス供給ラインのみを通して前記タンク内の液化ガスを前記低速ディーゼル機関へ燃料ガスとして供給する第3運転モードが選択され、前記高圧液ポンプの吐出圧力は、前記低速ディーゼル機関の燃料ガス要求圧力に基づいて制御されることを特徴とする請求項1~3の何れか一項に記載の液化ガス運搬船用燃料ガス供給システム。 In the operation when the liquefied gas is empty, when the spray operation is not performed, the third operation mode is selected in which the liquefied gas in the tank is supplied as fuel gas to the low-speed diesel engine only through the second fuel gas supply line. The fuel gas supply system for a liquefied gas carrier ship according to any one of claims 1 to 3, wherein a discharge pressure of the high-pressure liquid pump is controlled based on a required fuel gas pressure of the low-speed diesel engine. .
- 液化ガス空荷時の運航において、スプレー作業を行うときには、前記第1または第2運転モードの何れかが、前記低速ディーゼル機関の燃料消費量とボイルオフガス発生量との関係から選択されることを特徴とする請求項3に記載の液化ガス運搬船用燃料ガス供給システム。 In the operation when the liquefied gas is empty, when performing the spray operation, either the first or second operation mode is selected from the relationship between the fuel consumption of the low-speed diesel engine and the boil-off gas generation amount. The fuel gas supply system for a liquefied gas carrier ship according to claim 3.
- 前記高圧ガスコンプレッサの最終段には、吐出側から吸込み側へと燃料ガスを循環させる第1循環ラインが設けられ、前記第1運転モードにおいて、前記タンクの圧力を一定に維持するように前記第1循環ラインに設けた第1弁を制御して循環される燃料ガスの量を制御することを特徴とする請求項1~5の何れか一項に記載の液化ガス運搬船用燃料ガス供給システム。 The final stage of the high-pressure gas compressor is provided with a first circulation line for circulating fuel gas from the discharge side to the suction side, and the first pressure is set to maintain the tank pressure constant in the first operation mode. The fuel gas supply system for a liquefied gas carrier ship according to any one of claims 1 to 5, wherein the amount of fuel gas circulated is controlled by controlling a first valve provided in one circulation line.
- 前記高圧液ポンプの吐出側から上流側へと液化ガスを循環させる第2循環ラインが設けられ、前記第3運転モードにおいて、前記高圧液ポンプを運転可能な最少容量で駆動しつつ前記第2循環ラインに設けた第2弁を制御して液化ガスを前記上流側へと循環させることが可能であることを特徴とする請求項4に記載の液化ガス運搬船用燃料ガス供給システム。 A second circulation line for circulating the liquefied gas from the discharge side to the upstream side of the high pressure liquid pump is provided, and in the third operation mode, the second circulation is performed while driving the high pressure liquid pump with a minimum capacity that can be operated. The fuel gas supply system for a liquefied gas carrier ship according to claim 4, wherein a liquefied gas can be circulated to the upstream side by controlling a second valve provided in the line.
- 前記第2燃料ガス供給ラインが、前記高圧液ポンプの上流側に設けられるサクションドラムと下流側に設けられるガスヒータとを備えることを特徴とする請求項1~7の何れか一項に記載の液化ガス運搬船用燃料ガス供給システム。 The liquefaction according to any one of claims 1 to 7, wherein the second fuel gas supply line includes a suction drum provided on the upstream side of the high-pressure liquid pump and a gas heater provided on the downstream side. Fuel gas supply system for gas carriers.
- 前記高圧ガスコンプレッサが、低圧段と最終段とを備える多段コンプレッサであり、前記低圧段から余剰ガスをボイルオフガス処理装置へと送出する分岐ラインを備えることを特徴とする請求項1~8の何れか一項に記載の液化ガス運搬船用燃料ガス供給システム。 9. The high-pressure gas compressor is a multi-stage compressor including a low-pressure stage and a final stage, and includes a branch line for sending surplus gas from the low-pressure stage to a boil-off gas processing device. A fuel gas supply system for a liquefied gas carrier according to claim 1.
- 請求項1~9の何れか一項に記載の液化ガス運搬船用燃料ガス供給システムを備えたことを特徴とする液化ガス運搬船。 A liquefied gas carrier comprising the fuel gas supply system for a liquefied gas carrier according to any one of claims 1 to 9.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177028575A KR102562868B1 (en) | 2015-04-10 | 2016-04-04 | Fuel gas supply system for liquefied gas carrier |
CN201680020243.9A CN107614858B (en) | 2015-04-10 | 2016-04-04 | Fuel gas supply system for liquefied gas carrier |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015080941A JP6541059B2 (en) | 2015-04-10 | 2015-04-10 | Fuel gas supply system for liquefied gas carrier |
JP2015-080941 | 2015-04-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016163332A1 true WO2016163332A1 (en) | 2016-10-13 |
Family
ID=57071866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/060999 WO2016163332A1 (en) | 2015-04-10 | 2016-04-04 | Fuel gas supply system for liquefied gas transport vessel |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6541059B2 (en) |
KR (1) | KR102562868B1 (en) |
CN (1) | CN107614858B (en) |
WO (1) | WO2016163332A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6959801B2 (en) * | 2017-08-31 | 2021-11-05 | 川崎重工業株式会社 | Spray vaporization rate prediction method and equipment, and operation support method and system for liquefied gas carrier |
WO2019045523A1 (en) | 2017-09-01 | 2019-03-07 | 삼성중공업 주식회사 | Device and method for transporting liquid cargo in pressurization type |
CN112413393A (en) * | 2020-10-30 | 2021-02-26 | 沪东中华造船(集团)有限公司 | Automatic control method and system for pressure of liquefied natural gas storage tank of LNG ship |
CN117163269B (en) * | 2023-11-01 | 2024-01-23 | 中海油能源发展股份有限公司采油服务分公司 | Fuel management method and fuel management system for LNG carrier |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012177333A (en) * | 2011-02-25 | 2012-09-13 | Mitsubishi Heavy Ind Ltd | Gas fuel supply device, high pressure gas injecting diesel engine and liquefied gas fuel supply method of high pressure gas injecting diesel engine |
JP2014104847A (en) * | 2012-11-27 | 2014-06-09 | Mitsubishi Heavy Ind Ltd | Cold use device for low-temperature liquefied fuel |
JP2014515072A (en) * | 2011-03-22 | 2014-06-26 | デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド | Fuel supply system for high pressure natural gas injection engine with excess boil-off gas consumption means |
US20140196474A1 (en) * | 2011-05-31 | 2014-07-17 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Cold heat recovery apparatus using an lng fuel, and liquefied gas carrier including same |
JP2014215032A (en) * | 2013-04-24 | 2014-11-17 | ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド | LNG fuel supply system |
JP2015505941A (en) * | 2012-10-24 | 2015-02-26 | デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド | Ship liquefied gas treatment system |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2870206B1 (en) * | 2004-05-14 | 2006-08-04 | Alstom Sa | INSTALLATION FOR SUPPLYING GASEOUS FUEL TO AN ENERGY PRODUCTION ASSEMBLY OF A LIQUEFIED GAS TRANSPORT VESSEL. |
FR2879261B1 (en) * | 2004-12-10 | 2007-04-13 | Alstom Sa | INSTALLATION FOR THE DELIVERY OF GASEOUS FUEL TO AN ENERGY PRODUCTION ASSEMBLY OF A LIQUEFIED GAS TRANSPORT VESSEL |
KR101076266B1 (en) * | 2007-07-19 | 2011-10-26 | 대우조선해양 주식회사 | System for supplying fuel gas in lng carrier |
US9239186B2 (en) * | 2011-03-11 | 2016-01-19 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Method for operating fuel supply system for marine structure having reliquefaction apparatus and high-pressure natural gas injection engine |
KR20120107831A (en) * | 2011-03-22 | 2012-10-04 | 대우조선해양 주식회사 | System for supplying fuel for high pressure natural gas injection engine having means for consuming excess boil off gas |
KR101334002B1 (en) * | 2013-04-24 | 2013-11-27 | 현대중공업 주식회사 | A treatment system of liquefied natural gas |
-
2015
- 2015-04-10 JP JP2015080941A patent/JP6541059B2/en active Active
-
2016
- 2016-04-04 KR KR1020177028575A patent/KR102562868B1/en active Active
- 2016-04-04 CN CN201680020243.9A patent/CN107614858B/en active Active
- 2016-04-04 WO PCT/JP2016/060999 patent/WO2016163332A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012177333A (en) * | 2011-02-25 | 2012-09-13 | Mitsubishi Heavy Ind Ltd | Gas fuel supply device, high pressure gas injecting diesel engine and liquefied gas fuel supply method of high pressure gas injecting diesel engine |
JP2014515072A (en) * | 2011-03-22 | 2014-06-26 | デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド | Fuel supply system for high pressure natural gas injection engine with excess boil-off gas consumption means |
US20140196474A1 (en) * | 2011-05-31 | 2014-07-17 | Daewoo Shipbuilding & Marine Engineering Co., Ltd. | Cold heat recovery apparatus using an lng fuel, and liquefied gas carrier including same |
JP2015505941A (en) * | 2012-10-24 | 2015-02-26 | デウ シップビルディング アンド マリーン エンジニアリング カンパニー リミテッド | Ship liquefied gas treatment system |
JP2014104847A (en) * | 2012-11-27 | 2014-06-09 | Mitsubishi Heavy Ind Ltd | Cold use device for low-temperature liquefied fuel |
JP2014215032A (en) * | 2013-04-24 | 2014-11-17 | ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド | LNG fuel supply system |
Also Published As
Publication number | Publication date |
---|---|
JP2016200068A (en) | 2016-12-01 |
CN107614858A (en) | 2018-01-19 |
CN107614858B (en) | 2020-01-03 |
JP6541059B2 (en) | 2019-07-10 |
KR20170142167A (en) | 2017-12-27 |
KR102562868B1 (en) | 2023-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5746301B2 (en) | Fuel gas supply system for liquefied gas carrier | |
CN104024619B (en) | Fuel combination supply system and method for the engine of ship | |
US10683831B2 (en) | Gas treatment system and vessel including the same | |
JP6322155B2 (en) | Fuel gas supply system for liquefied gas carrier | |
KR101772765B1 (en) | Treatment system of liquefied natural gas | |
JP6600247B2 (en) | Ship | |
WO2016163332A1 (en) | Fuel gas supply system for liquefied gas transport vessel | |
KR101884823B1 (en) | System for supplying fuel gas in ships | |
JP6521444B2 (en) | Fuel gas supply system for ships | |
JP6239027B2 (en) | Fuel gas supply system for liquefied gas carrier | |
JP2018135091A (en) | Fuel gas supply system for liquefied gas carrier | |
KR101903763B1 (en) | System for supplying fuel gas in ships | |
KR102369070B1 (en) | Fuel gas supplying system in ships | |
KR102179197B1 (en) | Gas treatment system and ship having the same | |
KR102137902B1 (en) | Gas treatment system and ship having the same | |
KR102369064B1 (en) | Fuel gas supplying system in ships | |
JP2015135120A (en) | Fuel gas supply system for liquefied gas carrying vessel | |
JP2019056347A (en) | Fuel feed system and fuel supply method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16776498 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177028575 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16776498 Country of ref document: EP Kind code of ref document: A1 |