[go: up one dir, main page]

WO2016163201A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2016163201A1
WO2016163201A1 PCT/JP2016/057540 JP2016057540W WO2016163201A1 WO 2016163201 A1 WO2016163201 A1 WO 2016163201A1 JP 2016057540 W JP2016057540 W JP 2016057540W WO 2016163201 A1 WO2016163201 A1 WO 2016163201A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
terminal
smoothing capacitor
prevention circuit
power
Prior art date
Application number
PCT/JP2016/057540
Other languages
English (en)
French (fr)
Inventor
秀太 石川
光利 白田
佑季 石井
正喜 後藤
静里 田村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680019941.7A priority Critical patent/CN107624217B/zh
Priority to JP2016550278A priority patent/JP6054007B1/ja
Publication of WO2016163201A1 publication Critical patent/WO2016163201A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC
    • H02M5/42Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters
    • H02M5/44Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC
    • H02M5/443Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M5/45Conversion of AC power input into AC power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into DC by static converters using discharge tubes or semiconductor devices to convert the intermediate DC into AC using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/06Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/12Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • H02M7/44Conversion of DC power input into AC power output without possibility of reversal by static converters
    • H02M7/48Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power converter, and more particularly to a circuit structure for suppressing an inrush current to a smoothing capacitor that is generated when power is turned on.
  • a large-capacity capacitor is often installed to stabilize the rectified DC voltage.
  • a short circuit of the capacitor occurs when the power is turned on, and a large current flows, leading to damage to the equipment.
  • an inrush prevention circuit is used to prevent this.
  • the inrush prevention circuit is generally inserted into a DC line immediately after rectification.
  • the inrush prevention circuit and the smoothing capacitor can be arranged in series.
  • positioned the inrush prevention circuit in series with the smoothing capacitor is disclosed.
  • the inrush prevention circuit By arranging the inrush prevention circuit in series with the smoothing capacitor in this way, even if the power supply is accidentally connected to the output terminal on the inverter side, the inrush current is prevented from flowing, and the electronic components of the inverter can be damaged. There is no advantage. Further, since the magnitude of the current flowing through the switch of the inrush prevention circuit is the current after being shunted to the inverter, the inrush prevention circuit and the smoothing capacitor are connected in series as shown in FIG. When connected, the magnitude of the current decreases. Therefore, there is an advantage that the rated capacity of a relay, thyristor, or transistor used as a switch can be reduced to reduce cost and size (see Patent Document 1).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to suppress an increase in impedance of the entire circuit and prevent an increase in the cost of the power conversion device.
  • the power conversion device includes a converter that converts alternating current output from an alternating current power source into direct current, a smoothing capacitor that charges direct current, and an inverter that converts direct current into alternating current,
  • a smoothing capacitor and an inrush prevention circuit are connected in series between a line connecting the plus terminal of the inverter and the plus terminal of the converter and a line connecting the minus terminal of the inverter and the minus terminal of the converter,
  • the first conductor connecting the inverter positive terminal to the inrush prevention circuit and the third conductor connecting the negative terminal of the smoothing capacitor to the inverter negative terminal are arranged opposite to each other, and the direction of the current flowing in the first conductor And the direction of the current flowing through the third conductor is reversed
  • the second conductor and the third conductor connecting the inrush prevention circuit to the positive side terminal of the smoothing capacitor are arranged to face each other, and the direction of the current flowing through the second conductor and the direction of the current flowing through the third conductor are reversed.
  • FIG. 1 is a circuit diagram showing a power conversion device according to a first embodiment.
  • 1 is a perspective view showing a circuit arrangement structure according to Embodiment 1.
  • FIG. 1 is a main circuit diagram illustrating a power conversion device according to a first embodiment.
  • 6 is a perspective view showing a circuit arrangement structure according to a second embodiment.
  • FIG. 6 is a circuit diagram showing a power conversion device according to a third embodiment.
  • FIG. 6 is a circuit diagram showing a power conversion device according to a fourth embodiment.
  • FIG. 9 is a circuit diagram showing a power conversion device according to a fifth embodiment.
  • FIG. 10 is a circuit diagram showing a power conversion device according to a sixth embodiment.
  • FIG. 10 is a circuit diagram showing a power conversion device according to a sixth embodiment. It is a schematic diagram for demonstrating operation
  • FIG. 10 is a perspective view showing a power relay according to a seventh embodiment. It is a perspective view which shows the relationship between the power relay by Embodiment 7, and a bus bar. 3 is a schematic diagram showing a switch side Y.
  • FIG. FIG. 20 is a perspective view showing a circuit arrangement structure according to an eighth embodiment.
  • FIG. 10 is a circuit diagram showing a configuration of a rush prevention circuit according to a ninth embodiment.
  • FIG. 1 is a circuit diagram showing a general power converter, and is a circuit diagram in which an inrush prevention circuit and a smoothing capacitor are not connected in series.
  • FIG. 2 shows an example in which an inrush prevention circuit and a smoothing capacitor are arranged in series, and shows a basic circuit configuration of this embodiment.
  • the three-phase power source 1 is input to the rectifier 2 (converter) to convert alternating current into direct current and charge the smoothing capacitor 6.
  • the rectifier 2 converter
  • a diode is used as the rectifier 2 and full-wave rectification is performed by the rectifier 2 in which the diode is configured as a bridge.
  • the inrush prevention circuit 3 of the smoothing capacitor 6 is connected in series to the smoothing capacitor 6, and the resistor 4 and the switch 5 are connected in parallel.
  • a power relay is used as the switch 5
  • a thyristor or a transistor may be used.
  • the power module 8 constitutes an inverter circuit.
  • the snubber capacitor 7 is disposed near the power module 8 and has a role of suppressing a surge voltage during switching.
  • a motor 9 is installed at the output of the power module 8.
  • the smoothing capacitor 6 and the inrush prevention circuit 3 are connected in series.
  • the inrush prevention circuit 3 When the power is turned on, the inrush current is suppressed by turning off the switch 5 and charging the smoothing capacitor 6 through the resistor 4. After the smoothing capacitor 6 is charged, the switch 5 is turned on so that no current flows through the resistor 4. Thereby, inrush current can be suppressed.
  • the inrush prevention circuit 3 By arranging the inrush prevention circuit 3 in series with the smoothing capacitor 6, the negative terminal (N terminal) 11 of the power module 8 through the inrush prevention circuit 3 and the smoothing capacitor 6 from the plus terminal (P terminal) 10 of the power module 8. This increases the distance until the impedance increases.
  • the inductance component is a problem, and there is a concern that the surge voltage between the P terminal and the N terminal at the time of switching of the power module 8 increases and exceeds the withstand voltage of the power module 8. Therefore, since it is necessary to increase the capacity of the snubber capacitor 7 to suppress the surge voltage, the cost of the power converter is increased. Conventionally, even if an inrush prevention circuit is inserted in series with a smoothing capacitor, it is not considered to suppress an increase in inductance, and an increase in cost cannot be avoided.
  • the arrangement and wiring of the components of the power conversion device that can suppress the increase in inductance are configured. That is, when the switching element of the power module 8 is switched from the connected state to the disconnected state, an overshoot portion is generated in the voltage curve, and the voltage at this time becomes a surge voltage.
  • the voltage increment ⁇ V from the steady voltage among the surge voltages generated when the switching element operates to shift from the state where the electrical circuit is connected to the state where the electrical circuit is disconnected is the inductance of the wiring L,
  • ⁇ V L ⁇ (di / dt). Therefore, in order to reduce the surge voltage, it is preferable to reduce the inductance L due to the wiring inductance. Therefore, the present invention is devised to reduce the wiring inductance.
  • FIG. 3 is a perspective view showing a circuit arrangement structure according to the first embodiment, and shows a structure between the P terminal and the N terminal of the power module 8.
  • FIG. 4 is a main circuit diagram.
  • the switch 5, the smoothing capacitor 6, the power module 8, and the bus bars for connecting them, which are important components in the present embodiment, are shown.
  • the bus bar 12 connects the P terminal 10 of the power module 8 to the inrush prevention circuit 3.
  • the bus bar 13 connects the inrush prevention circuit 3 to the plus side terminal of the smoothing capacitor 6.
  • the bus bar 14 is connected from the negative terminal of the smoothing capacitor 6 to the N terminal 11 of the power module 8.
  • the bus bars 12, 13, and 14 having a three-dimensional structure are employed as the first conductor, the second conductor, and the third conductor.
  • the bus bar 12 and the bus bar 13 have a positive potential, and the bus bar 14 has a negative potential.
  • the bus bar 12 and the bus bar 14 are arranged to face each other, and the bus bar 12 is connected to the inrush prevention circuit 3.
  • the bus bar 13 and the bus bar 14 are arranged to face each other and are connected to the terminals of the smoothing capacitor 6. By doing so, the inductance between the P terminal and the N terminal of the power module 8 is reduced. That is, since the direction of the current flowing through the bus bar 12 and the direction of the current flowing through the bus bar 14 are opposite at the portion where the bus bar 12 and the bus bar 14 face each other, the mutual inductance becomes negative, and the portion where the bus bar 13 and the bus bar 14 face each other.
  • FIG. FIG. 5 is a perspective view showing a circuit arrangement structure according to the second embodiment, and shows a structure between the P terminal and the N terminal of the power module 8.
  • the switch 5, the smoothing capacitor 6, the power module 8, and the bus bar for connecting them, which are important components in the present embodiment, are extracted and shown.
  • the power module 8, the inrush prevention circuit 3, and the smoothing capacitor 6 are arranged on a straight line, and these are connected. That is, in the present embodiment, the upper surface portion on which the terminals of the power module 8, the inrush prevention circuit 3 and the smoothing capacitor 6 are arranged is arranged on the same plane, and the power module 8, the inrush prevention circuit 3 and the smoothing capacitor 6 are arranged.
  • the terminals are arranged on a straight line. Further, in the configuration of the bus bar 12, the bus bar 13, and the bus bar 14, the bus bar 12 and the bus bar 14 are disposed to face each other, and the bus bar 12 is connected to the inrush prevention circuit 3. The bus bar 13 and the bus bar 14 are arranged to face each other and are connected to the terminals of the smoothing capacitor 6.
  • the length of the wiring between the input and output is further shortened. Impedance between the N terminals can be reduced.
  • the inductance between the P terminal and the N terminal of the power module 8 can be reduced by making the bus bar between the P terminal and the N terminal face each other.
  • an increase in impedance between the P terminal and the N terminal of the power module 8 can be suppressed, and the surge voltage at the time of switching the switch is reduced to prevent the snubber capacitor 7 from increasing in capacity. be able to. Thereby, the cost increase of a power converter device can be suppressed.
  • FIG. 6 is a circuit diagram showing a power converter according to the third embodiment.
  • a DC reactor 15 is disposed in order to convert the three-phase power supply 1 into direct current using the rectifier 2 and suppress harmonics of the power supply current in this direct current portion.
  • the inrush prevention circuit 3 is connected in series with the smoothing capacitor 6 and is configured by connecting the resistor 4 and the switch 5 in parallel.
  • the power module 8 constitutes an inverter circuit.
  • the snubber capacitor 7 is arranged near the power module 8 and has a role of suppressing a surge voltage at the time of switching.
  • a motor 9 is installed at the output of the power module 8.
  • the same structure as the wiring structure described in the first and second embodiments is employed.
  • the inductance between the P terminal and the N terminal can be reduced, and the surge voltage does not increase, so that the capacity of the snubber capacitor 7 can be suppressed.
  • the cost increase of the power conversion device can be suppressed.
  • FIG. 7 is a circuit diagram showing a power converter according to the fourth embodiment.
  • an AC reactor 16 is disposed between the three-phase power source 1 and the rectifier 2 in order to suppress harmonics of the power source current.
  • the direct current is converted from the three-phase power source 1 using the rectifier 2.
  • the inrush prevention circuit 3 is connected in series with the smoothing capacitor 6 and is configured by connecting the resistor 4 and the switch 5 in parallel.
  • the power module 8 constitutes an inverter circuit.
  • the snubber capacitor 7 is arranged near the power module 8 and has a role of suppressing a surge voltage at the time of switching.
  • a motor 9 is installed at the output of the power module 8.
  • the same structure as the wiring structure described in the first and second embodiments is employed.
  • the inductance between the P terminal and the N terminal can be reduced, and the surge voltage does not increase, so that the capacity of the snubber capacitor 7 can be suppressed.
  • the cost increase of the power conversion device can be suppressed.
  • FIG. FIG. 8 is a circuit diagram showing a power converter according to the fifth embodiment.
  • a single-phase power supply 17 is applied.
  • the single phase power supply 17 is converted to direct current using a rectifier 18 and the smoothing capacitor 6 is charged.
  • the inrush prevention circuit 3 is connected in series with the smoothing capacitor 6 and is configured by connecting the resistor 4 and the switch 5 in parallel.
  • the power module 8 constitutes an inverter circuit.
  • the snubber capacitor 7 is disposed near the power module 8 and has a role of suppressing a surge voltage during switching.
  • a motor 9 is installed at the output of the power module 8.
  • a DC reactor or an AC reactor may be inserted as in the third and fourth embodiments.
  • the same structure as the wiring structure described in the first and second embodiments is employed.
  • the inductance between the P terminal and the N terminal can be reduced, and the surge voltage does not increase, so that the capacity of the snubber capacitor 7 can be suppressed.
  • the cost increase of the power conversion device can be suppressed.
  • FIG. 9 is a circuit diagram showing a power converter according to the sixth embodiment.
  • a rectifier circuit in which switching elements are configured as a bridge is employed as the input-side converter. That is, in FIG. 9, a power transistor or the like is used to constitute a converter so that ignition control can be performed.
  • the three-phase power source 1 is converted to direct current using the converter 19 and the smoothing capacitor 6 is charged.
  • the inrush prevention circuit 3 is connected in series with the smoothing capacitor 6 and is configured by connecting the resistor 4 and the switch 5 in parallel.
  • a power module and a motor constituting an inverter circuit are installed on the right side of the inrush prevention circuit 3 and the smoothing capacitor 6.
  • the snubber capacitor 7 is disposed near the power module and has a role of suppressing a surge voltage during switching.
  • a motor is installed at the output of the power module.
  • FIG. 10 is a circuit diagram showing a power converter according to another embodiment.
  • the power converter on the input side may be a single-phase circuit.
  • the same structure as the wiring structure described in the first and second embodiments is employed. As a result, the inductance between the P terminal and the N terminal can be reduced, and the surge voltage does not increase, so that the capacity of the snubber capacitor 7 can be suppressed. Furthermore, the cost increase of the power conversion device can be suppressed.
  • FIG. 11 is a schematic diagram for explaining the operation of the power relay
  • FIG. 12 is a perspective view showing the power relay.
  • the power relay includes an electromagnetic side X that controls ON / OFF and a switch side Y that operates as a switch.
  • the inrush prevention circuit 3 the current flows on the switch side Y.
  • a current flows through the operating coil 30 on the electromagnetic side X and the iron core 100 is magnetized, the iron piece 101 moves, and this movement is transmitted (arrow Z), so that the movable contact 31 becomes a fixed contact 32 on the switch side Y.
  • a current flows through contact.
  • FIG. 12 is a perspective view showing the relationship between the power relay and the bus bar.
  • the bus bar 14 and the bus bar 12 are arranged to face each other, and the bus bar 13 and the bus bar 14 are arranged to face each other.
  • the bus bar 14, which is the minus bus bar is wired in parallel with the internal wiring 23 of the relay.
  • FIG. 14 is a schematic diagram showing the switch side Y.
  • FIG. 14A shows an OFF state
  • FIG. 14B shows an ON state.
  • the internal wiring 23 and the bus bar 14 are parallel in the ON state.
  • FIG. 15 is a perspective view showing the present embodiment.
  • a rectifier 2 (converter), a power module 8, a switch 5, and a smoothing capacitor 6 are connected to a printed circuit board 24.
  • a method for mounting the printed circuit board 24 will be described. For example, by arranging a first pattern (first conductor) corresponding to the bus bar 12 on the upper surface of the two-layer substrate and a third pattern (third conductor) corresponding to the bus bar 14 on the lower surface, both can be made to face each other.
  • the inductance can be reduced.
  • a second pattern (second conductor) corresponding to the bus bar 13 on the upper surface of the two-layer substrate and a third pattern corresponding to the bus bar 14 on the lower surface both can be made to face each other, thereby reducing inductance. can do. That is, the patterns mounted on the printed circuit board 24 are employed as the first conductor, the second conductor, and the third conductor. 15 shows a case where the power module 8, the switch 5, and the smoothing capacitor 6 are all disposed on the upper surface of the printed circuit board 24, but each component may be mounted on either the upper surface or the lower surface.
  • the circuit diagram and the operating principle are the same as those described in the first embodiment.
  • the configurations of the second to seventh embodiments can be employed.
  • the surfaces on which the terminals of the power module 8, the inrush prevention circuit 3 and the smoothing capacitor 6 are arranged are arranged on the same plane, and the terminals of the power module 8, the inrush prevention circuit 3 and the smoothing capacitor 6 are arranged on a straight line. be able to.
  • a rectifier circuit in which diodes are bridged can be used as the converter.
  • a rectifier circuit in which switching elements are bridged can be used as a converter.
  • the inrush prevention circuit 3 is configured by connecting the resistor 4 and the switch 5 in parallel, and the internal wiring constituting the switch 5 and the third pattern are arranged to face each other, and the direction of the current flowing through the internal wiring is determined. The direction of the current flowing through the third pattern can be reversed.
  • FIG. 16 is a circuit diagram showing a semiconductor element as a switch.
  • FIG. 16A shows a case where a thyristor 25 is used as a switch.
  • the switch is configured by anti-parallel of a thyristor 25 and a diode 26.
  • the smoothing capacitor 6 is charged via the resistor 4.
  • the thyristor 25 When charging is completed, the thyristor 25 is turned on to short-circuit the inrush prevention circuit 3.
  • the reason why the diode 26 is provided in reverse parallel is that it is necessary for the smoothing capacitor 6 to discharge. Without the diode 26, the smoothing capacitor 6 cannot be discharged.
  • FIG. 16B is a circuit diagram showing the case where the MOSFET 27 is used. Also in this case, the operation can be performed in the same manner as described above. When the MOSFET 27 is used, the diode 26 can be omitted because the MOSFET can flow in the reverse direction.
  • FIG. 16C is a perspective view showing the case where the IGBT 28 is used. Also in this case, it can be operated by the same means as in the case of using a thyristor. By using the inrush prevention circuit of the present embodiment, the circuit inductance can be reduced as in the first embodiment. It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)

Abstract

 パワーモジュール(8)のプラス端子から突入防止回路(3)までを接続するブスバー(12)と平滑コンデンサ(6)のマイナス側端子からパワーモジュール(8)のマイナス端子までを接続するブスバー(14)を対向して配置させるとともに、ブスバー(12)に流れる電流の向きとブスバー(14)に流れる電流の向きが逆になるようにし、更に突入防止回路(3)から平滑コンデンサ(6)のプラス側端子までを接続するブスバー(13)とブスバー(14)を対向して配置させるとともに、ブスバー(13)に流れる電流の向きとブスバー(14)に流れる電流の向きが逆になるようにすることにより、パワーモジュール(8)のプラス端子とマイナス端子間のインダクタンスを小さくする。

Description

電力変換装置
 この発明は電力変換装置に関するものであり、特に電源投入時に発生する平滑コンデンサへの突入電流を抑制する回路構造に関するものである。
 インバータ等の電力変換器では整流後の直流電圧を安定化させるために、大容量のコンデンサが設置されていることが多い。これら大容量のコンデンサを設置した場合、電源投入時にコンデンサの短絡が発生し、大電流が流れ、機器の破損に繋がる。これを防ぐために突入防止回路が用いられることはよく知られている。突入防止回路は一般的に整流直後の直流ラインに挿入する。この場合突入防止回路と平滑コンデンサを直列に配置することができる。特許文献1においては、突入防止回路を平滑コンデンサと直列に配置した例が開示されている。
 このように突入防止回路を平滑コンデンサと直列に配置することにより、誤ってインバータ側の出力端子に電源が接続されても、突入電流が流れることを防止し、インバータの電子部品を破損させることがないという利点がある。さらに突入防止回路のスイッチに流れる電流の大きさは、インバータに分流した後の電流となるため、後で述べる図1の構成に比べ、図2に示すように突入防止回路と平滑コンデンサを直列に接続した場合に電流の大きさは小さくなる。そのためスイッチとして使用するリレー、サイリスタまたはトランジスタの定格容量を下げ、低コスト、小型化を図ることができるという利点がある(特許文献1参照)。
特開平1-214270号公報
 上記特許文献1に示すように突入防止回路と平滑コンデンサとを直列に配置した場合、インバータと平滑コンデンサの間に突入防止回路を挿入するため、インバータのプラス端子からマイナス端子までの距離が大きくなってしまう。このためインピーダンスが大きくなり、インバータスイッチング時のサージ電圧の増加に繋がってしまう。従ってインバータの近くに配置されるスナバコンデンサの容量を大きくする必要があり、電力変換器のコスト増加に繋がってしまう。
 この発明は、上記のような問題点を解決するためになされたものであり、回路全体のインピーダンスの増加を抑え、電力変換装置のコスト増加を防ぐことを目的とするものである。
 この発明に係る電力変換装置は、交流電源から出力される交流を直流に変換するコンバータと、直流を充電する平滑コンデンサと、直流を交流に変換するインバータとを備え、
 インバータのプラス端子とコンバータのプラス端子とを結ぶ線と、インバータのマイナス端子とコンバータのマイナス端子とを結ぶ線との間において、平滑コンデンサと突入防止回路とを直列に接続したものであって、
 インバータのプラス端子から突入防止回路までを接続する第1導体と平滑コンデンサのマイナス側端子からインバータのマイナス端子までを接続する第3導体を対向して配置させるとともに、第1導体に流れる電流の向きと第3導体に流れる電流の向きが逆になるようにし、
 更に突入防止回路から平滑コンデンサのプラス側端子までを接続する第2導体と第3導体を対向して配置させるとともに、第2導体に流れる電流の向きと第3導体に流れる電流の向きが逆になるようにしたものである。
 以上のように構成することにより、回路全体のインピーダンスの増加を抑えることができ、サージ電圧が大きくならないため、電力変換装置のコストの増加を防ぐことができる。
一般的な電力変換装置を示す回路図である。 実施の形態1による電力変換装置を示す回路図である。 実施の形態1による回路配置構造を示す斜視図である。 実施の形態1による電力変換装置を示す主要回路図である。 実施の形態2による回路配置構造を示す斜視図である。 実施の形態3による電力変換装置を示す回路図である。 実施の形態4による電力変換装置を示す回路図である。 実施の形態5による電力変換装置を示す回路図である。 実施の形態6による電力変換装置を示す回路図である。 実施の形態6による電力変換装置を示す回路図である。 パワーリレーの動作を説明するための模式図である。 実施の形態7によるパワーリレーを示す斜視図である。 実施の形態7によるパワーリレーとブスバーの関係を示す斜視図である。 スイッチ側Yを示す模式図である。 実施の形態8による回路配置構造を示す斜視図である。 実施の形態9による突入防止回路の構成を示した回路図である。
実施の形態1.
 図1は一般的な電力変換装置を示す回路図であり、突入防止回路と平滑コンデンサが直列に接続されていない回路図である。図2は突入防止回路と平滑コンデンサを直列に配置した例を示すものであり、本実施形態の基本回路構成を示すものである。図2において、三相電源1を整流器2(コンバータ)へ入力することで交流を直流に変換し、平滑コンデンサ6に充電する。図2においては整流器2としてダイオードを使用し、ダイオードをブリッジ構成した整流器2により全波整流するようにしている。平滑コンデンサ6の突入防止回路3は平滑コンデンサ6に対して直列に接続され、抵抗4とスイッチ5が並列に接続されている。本実施形態ではスイッチ5としてパワーリレーを使用する場合について説明する。又パワーリレーの他にサイリスタやトランジスタを使用してもよい。パワーモジュール8はインバータ回路を構成している。スナバコンデンサ7はパワーモジュール8の近くに配置され、スイッチング時のサージ電圧を抑制する役割を持つ。パワーモジュール8の出力にはモータ9を設置する。本実施形態においては、パワーモジュール8のプラス端子(P端子)10と整流器2のプラス端子とを結ぶ線と、パワーモジュール8のマイナス端子(N端子)11と整流器2のマイナス端子とを結ぶ線との間において、平滑コンデンサ6と突入防止回路3とを直列に接続したものである。
 次に突入防止回路3の動作について説明する。電源投入時はスイッチ5をOFFし、平滑コンデンサ6に抵抗4を介して充電させることによって、突入電流を抑制する。平滑コンデンサ6が充電された後、スイッチ5をONして、抵抗4に電流が流れないようにする。これにより突入電流を抑制することができる。突入防止回路3を平滑コンデンサ6と直列に配置したことにより、パワーモジュール8のプラス端子(P端子)10から突入防止回路3及び平滑コンデンサ6を介したパワーモジュール8のマイナス端子(N端子)11までの距離が長くなってしまい、インピーダンスが増加する。
 特にインダクタタンス成分が問題であり、パワーモジュール8のスイッチング時のP端子とN端子間のサージ電圧が大きくなり、パワーモジュール8の耐圧を超えてしまうことが懸念される。そこでスナバコンデンサ7の容量を増加させて、サージ電圧を抑制する必要があるため、電力変換装置のコスト増加を招く。従来においては、突入防止回路を平滑コンデンサと直列に挿入しても、インダクタンスの上昇を抑制することを考慮しておらず、コストの増加が避けられなかった。
 そこで本実施形態ではインダクタンスの増加を抑制することのできる電力変換装置の部品の配置及び配線を構成したものである。即ち、パワーモジュール8のスイッチング素子を接続状態から切断状態にすることにより、電圧曲線にオーバーシュートの部分が生じ、このときの電圧がサージ電圧となる。このようにスイッチング素子が動作して電気回路が接続されている状態から切断されている状態に移行するときに生じるサージ電圧のうち定常的な電圧からの電圧増分ΔVは、配線のインダクタンスをL、電流をi、および時間をtとしたときに、ΔV=L・(di/dt)で表される。従ってサージ電圧を小さくするためには、配線インダクタンスによるインダクタンスLを小さくすることが好ましいので、本発明ではこの配線インダクタンスを小さくするよう工夫をするものである。
 図3は実施の形態1による回路配置構造を示す斜視図であり、パワーモジュール8のP端子とN端子間の構造を示している。又図4は主要回路図である。図3において、本実施形態において重要な構成要素となるスイッチ5、平滑コンデンサ6、パワーモジュール8及びそれらを結線するためのブスバーを抽出して示している。結線するための配線は3つ存在し、ブスバー12(第1導体)、ブスバー13(第2導体)、ブスバー14(第3導体)が必要となる。ブスバー12はパワーモジュール8のP端子10から突入防止回路3までを結線する。ブスバー13は突入防止回路3から平滑コンデンサ6のプラス側端子までを接続する。そしてブスバー14は平滑コンデンサ6のマイナス側端子からパワーモジュール8のN端子11まで接続する。本実施形態においては、第1導体、第2導体、第3導体として立体的な構造を有するブスバー12、13、14を採用したものである。
 そしてブスバー12とブスバー13はプラス側電位となり、ブスバー14がマイナス側電位となる。図3に示すように、ブスバー12とブスバー14を対向して配置するとともに、ブスバー12を突入防止回路3に接続させる。そしてブスバー13とブスバー14を対向して配置するとともに、それぞれ平滑コンデンサ6の端子に接続させる。こうすることでパワーモジュール8のP端子とN端子間のインダクタンスが小さくなる。即ちブスバー12とブスバー14が対向している部分でブスバー12に流れる電流とブスバー14に流れる電流の向きが逆であるから、相互インダクタンスが負となり、又ブスバー13とブスバー14が対向している部分でブスバー13に流れる電流とブスバー14に流れる電流の向きが逆であるから、相互インダクタンスが負となり、従って自己インダクタンスとの和であるインダクタンス全体の値が小さくなる。以上のように構成することにより、パワーモジュール8のP端子とN端子間のインピーダンスの増加を抑えることができ、スナバコンデンサ7の大容量化を防ぐことができる。よって電力変換装置のコストの上昇を抑えることができる。
実施の形態2.
 図5は実施の形態2による回路配置構造を示す斜視図であり、パワーモジュール8のP端子とN端子間の構造を示している。図5においては、本実施形態において重要な構成要素となるスイッチ5、平滑コンデンサ6、パワーモジュール8及びそれらを結線するためのブスバーを抽出して示している。図5において、パワーモジュール8と突入防止回路3と平滑コンデンサ6を一直線上に配置し、これらを結線する構成としたものである。即ち本実施形態においては、パワーモジュール8と突入防止回路3と平滑コンデンサ6の端子が設置されている上面部を同一平面上に配置するとともに、パワーモジュール8と突入防止回路3と平滑コンデンサ6の端子が一直線上に配置されるようにしたものである。更にブスバー12、ブスバー13、ブスバー14の構成において、ブスバー12とブスバー14を対向して配置するとともに、ブスバー12を突入防止回路3に接続させる。そしてブスバー13とブスバー14を対向して配置するとともに、それぞれ平滑コンデンサ6の端子に接続させる。
 このようにパワーモジュール8と突入防止回路3と平滑コンデンサ6を一直線上に配置することで、入出力間の配線の長さが更に短くなり、実施の形態1と比較して、更にP端子とN端子間のインピーダンスを低減することができる。又実施の形態1と同様に、P端子とN端子間のブスバーを対向させることによって、パワーモジュール8のP端子とN端子間のインダクタンスを小さくすることもできる。以上のように本実施形態によれば、パワーモジュール8のP端子とN端子間のインピーダンスの増加を抑えることができ、スイッチ切替時のサージ電圧を小さくしてスナバコンデンサ7の大容量化を防ぐことができる。これにより電力変換装置のコスト上昇を抑えることができる。
実施の形態3.
 図6は実施の形態3による電力変換装置を示す回路図である。図6において、三相電源1から整流器2を用いて直流に変換し、この直流部には電源電流の高調波を抑えるため、直流リアクトル15が配置されている。突入防止回路3は平滑コンデンサ6と直列に接続され、抵抗4とスイッチ5が並列に接続されていることにより構成されている。パワーモジュール8はインバータ回路を構成している。
 スナバコンデンサ7はパワーモジュール8の近くに配置し、スイッチング時のサージ電圧を抑制する役割を持つ。パワーモジュール8の出力にはモータ9を設置する。本実施形態においては、新たに直流リアクトル15を追加した場合においても、上記実施の形態1、2で説明した配線構造と同一の構造を採用したものである。これによりP端子とN端子間のインダクタンスを低減することができ、サージ電圧が大きくならないため、スナバコンデンサ7の容量を抑えることができる。さらに電力変換装置のコスト上昇を抑えることができる。
実施の形態4.
 図7は実施の形態4による電力変換装置を示す回路図である。図7において、三相電源1と整流器2の間に電源電流の高調波を抑えるため、交流リアクトル16が配置されている。三相電源1から整流器2を用いて直流に変換する。突入防止回路3は平滑コンデンサ6と直列に接続され、抵抗4とスイッチ5が並列に接続されることにより構成される。パワーモジュール8はインバータ回路を構成している。
 スナバコンデンサ7はパワーモジュール8の近くに配置し、スイッチング時のサージ電圧を抑制する役割を持つ。パワーモジュール8の出力にはモータ9を設置する。本実施形態においては、新たに交流リアクトル16を追加した場合においても、上記実施の形態1、2で説明した配線構造と同一の構造を採用したものである。これによりP端子とN端子間のインダクタンスを低減することができ、サージ電圧が大きくならないため、スナバコンデンサ7の容量を抑えることができる。さらに電力変換装置のコスト上昇を抑えることができる。
実施の形態5.
 図8は実施の形態5による電力変換装置を示す回路図である。本実施形態においては、単相電源17を適用したものである。単相電源17から整流器18を用いて直流に変換し、平滑コンデンサ6に充電する。突入防止回路3は平滑コンデンサ6と直列に接続され、抵抗4とスイッチ5が並列に接続されることにより構成される。パワーモジュール8はインバータ回路を構成している。スナバコンデンサ7はパワーモジュール8の近くに配置し、スイッチング時のサージ電圧を抑制する役割を持つ。パワーモジュール8の出力にはモータ9を設置する。
 本実施形態においても、上記実施の形態3、実施の形態4のように、直流リアクトルや交流リアクトルを挿入してもよい。本実施形態では単相整流器を用いた場合においても、上記実施の形態1、2で説明した配線構造と同一の構造を採用したものである。これによりP端子とN端子間のインダクタンスを低減することができ、サージ電圧が大きくならないため、スナバコンデンサ7の容量を抑えることができる。さらに電力変換装置のコスト上昇を抑えることができる。
実施の形態6.
 図9は実施の形態6による電力変換装置を示す回路図である。本実施形態においては、入力側のコンバータとして、スイッチング素子をブリッジ構成した整流回路を採用したものである。即ち図9においてはパワートランジスタ等を使用してコンバータを構成し、点弧制御できるようにしたものである。三相電源1からコンバータ19を用いて直流に変換し、平滑コンデンサ6に充電する。突入防止回路3は平滑コンデンサ6と直列に接続され、抵抗4とスイッチ5が並列に接続されることにより構成される。又図9においては図示されていないが、突入防止回路3及び平滑コンデンサ6の右横にはインバータ回路を構成するパワーモジュール及びモータが設置されている。スナバコンデンサ7はパワーモジュールの近くに配置し、スイッチング時のサージ電圧を抑制する役割を持つ。パワーモジュールの出力にはモータを設置する。
 三相電源1側の電力変換器がスイッチングする点で上記実施形態1~5とは異なる。図10は別の形態による電力変換装置を示す回路図である。図10に示すように、入力側の電力変換器を単相の回路としてもよい。本実施形態においても、上記実施の形態1、2で説明した配線構造と同一の構造を採用したものである。これによりP端子とN端子間のインダクタンスを低減することができ、サージ電圧が大きくならないため、スナバコンデンサ7の容量を抑えることができる。さらに電力変換装置のコスト上昇を抑えることができる。
実施の形態7.
 前記においてスイッチ5としてパワーリレーを使用することに言及したが、本実施形態では、このパワーリレー内部のインダクタンスも低減するための構造について説明する。図11はパワーリレーの動作を説明するための模式図、図12はパワーリレーを示す斜視図である。図11において、パワーリレーはON/OFFを制御する電磁側Xとスイッチとして動作するスイッチ側Yとから構成される。突入防止回路3において電流が流れるのはスイッチ側Yである。電磁側Xにおいて操作コイル30に電流が流れ鉄心100が磁化されることにより、鉄片101が移動し、この動きが伝えられることにより(矢印Z)、スイッチ側Yにおいて可動接点31が固定接点32に接触することにより電流が流れる。
 図12において、電磁側Xの入出力端子21が細い端子2つに相当しており、スイッチ側Yの入出力端子22が太い端子2つに相当しており、スイッチの内部配線23は、2つの入出力端子22を結ぶように構成される。図13はパワーリレーとブスバーの関係を示す斜視図である。ブスバー14とブスバー12を対向させて配置させるとともに、ブスバー13とブスバー14を対向させて配置させる。本実施形態においては更にパワーリレー内部のインダクタンスを低減するために、マイナス側のブスバーであるブスバー14をリレーの内部配線23と平行になるように配線する。これにより内部配線23に流れる電流とブスバー14に流れる電流の向きが逆となり、相互インダクタンスが負となり、従って自己インダクタンスとの和であるインダクタンス全体の値が小さくなる。図14はスイッチ側Yを示す模式図であり、図14(A)はOFFの状態を示すとともに、図14(B)はONの状態を示している。図14(B)に示すように、ONの状態においては内部配線23とブスバー14とが平行になっている。これによりパワーリレーの内部インピーダンスを低減することができ、スナバコンデンサ7の容量の低減を実現することができる。さらに電力変換装置のコスト上昇を抑えることができる。
実施の形態8.
 上記実施の形態1から実施の形態7においては、パワーモジュール8とスイッチ5と平滑コンデンサ6をそれぞれ接続するための配線としてブスバーを用いた場合について説明した。これに対してプリント基板上に配線を実装して構成することもできる。
 図15は本実施の形態を示す斜視図であり、プリント基板24に整流器2(コンバータ)とパワーモジュール8とスイッチ5と平滑コンデンサ6が接続されている。次にプリント基板24の実装方法を説明する。例えば2層基板の上面にブスバー12に相当する第1パターン(第1導体)、下面にブスバー14に相当する第3パターン(第3導体)を配置することによって両者を対向させることができ、これによりインダクタンスを低減することができる。同様に2層基板の上面をブスバー13に相当する第2パターン(第2導体)、下面にブスバー14に相当する第3パターンを配置することによって両者を対向させることができ、これによりインダクタンスを低減することができる。即ち第1導体、第2導体、第3導体としてプリント基板24に実装されたパターンを採用したものである。又図15では、パワーモジュール8とスイッチ5と平滑コンデンサ6はプリント基板24のすべて上面に配置されている場合を示しているが、それぞれの部品に対し上面下面のどちらに実装してもよい。本実施の形態を適用することで、インダクタンスを低減することができる。
 尚回路図及び動作原理については上記実施の形態1で説明した場合と同じである。又本実施形態においても上記実施の形態2~7の構成を採用することができる。例えばパワーモジュール8と突入防止回路3と平滑コンデンサ6の端子が設置されている面を同一平面上に配置するとともに、パワーモジュール8と突入防止回路3と平滑コンデンサ6の端子を一直線上に配置させることができる。又コンバータとしてダイオードをブリッジ構成した整流回路を使用することができる。又コンバータとしてスイッチング素子をブリッジ構成した整流回路を使用することができる。更には、突入防止回路3は抵抗4とスイッチ5が並列に接続されることにより構成され、スイッチ5を構成する内部配線と第3パターンを対向して配置させるとともに、内部配線に流れる電流の向きと第3パターンに流れる電流の向きが逆になるようにすることもできる。
実施の形態9.
 実施の形態1から実施の形態8においては、突入防止回路3の構造は抵抗4とスイッチ5が並列接続されるリレーについて説明した。本実施の形態ではこれとは異なる突入防止回路の構成について説明する。スイッチとしては、トランジスタ等の半導体素子で代用できる。図16はスイッチとして半導体素子を採用したものを示す回路図であり、図16(A)はスイッチとしてサイリスタ25を用いた場合を示しており、スイッチをサイリスタ25とダイオード26の逆並列で構成したものである。簡単な動作例については、サイリスタ25をOFFした場合、抵抗4を介して平滑コンデンサ6を充電する。充電が完了したら、サイリスタ25をONして突入防止回路3を短絡させる。逆並列にダイオード26を設けているのは、平滑コンデンサ6が放電するために必要だからであり、ダイオード26が無いと、平滑コンデンサ6は放電できなくなる。
 図16(B)はMOSFET27を用いた場合を示す回路図である。この場合についても上記と同様な方法で動作させることができる。MOSFET27を用いる場合、MOSFETは逆向きに流すことができるので、ダイオード26を省略することもできる。図16(C)はIGBT28を用いた場合を示す斜視図である。この場合についてもサイリスタを用いた場合と同様な手段で動作させることができる。本実施の形態の突入防止回路を用いることで実施の形態1と同様回路のインダクタンスを低減することができる。
 尚本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。

Claims (9)

  1.  交流電源から出力される交流を直流に変換するコンバータと、上記直流を充電する平滑コンデンサと、上記直流を交流に変換するインバータとを備え、
     上記インバータのプラス端子と上記コンバータのプラス端子とを結ぶ線と、上記インバータのマイナス端子と上記コンバータのマイナス端子とを結ぶ線との間において、上記平滑コンデンサと突入防止回路とを直列に接続した電力変換装置において、
     上記インバータの上記プラス端子から上記突入防止回路までを接続する第1導体と上記平滑コンデンサのマイナス側端子から上記インバータのマイナス端子までを接続する第3導体を対向して配置させるとともに、上記第1導体に流れる電流の向きと上記第3導体に流れる電流の向きが逆になるようにし、
     更に上記突入防止回路から上記平滑コンデンサのプラス側端子までを接続する第2導体と上記第3導体を対向して配置させるとともに、上記第2導体に流れる電流の向きと上記第3導体に流れる電流の向きが逆になるようにした電力変換装置。
  2.  上記第1導体、上記第2導体、上記第3導体としてブスバーを採用した請求項1記載の電力変換装置。
  3.  上記コンバータと上記平滑コンデンサと上記インバータとを接続するプリント基板を設け、上記第1導体、上記第2導体、上記第3導体として上記プリント基板に実装されたパターンを採用した請求項1記載の電力変換装置。
  4.  上記インバータと上記突入防止回路と上記平滑コンデンサの端子が設置されている面を同一平面上に配置するとともに、上記インバータと上記突入防止回路と上記平滑コンデンサの端子を一直線上に配置させた請求項1から請求項3のいずれか1項に記載の電力変換装置。
  5.  上記コンバータとしてダイオードをブリッジ構成した整流回路を使用した請求項1から請求項4のいずれか1項に記載の電力変換装置。
  6.  上記コンバータとしてスイッチング素子をブリッジ構成した整流回路を使用した請求項1から請求項4のいずれか1項に記載の電力変換装置。
  7.  上記突入防止回路は抵抗とスイッチが並列に接続されることにより構成され、上記スイッチを構成する内部配線と上記第3導体を対向して配置させるとともに、上記内部配線に流れる電流の向きと上記第3導体に流れる電流の向きが逆になるようにした請求項1から請求項6のいずれか1項に記載の電力変換装置。
  8.  上記突入防止回路は抵抗と半導体素子が並列に接続されることにより構成され、上記半導体素子にはダイオードが逆並列に接続されている請求項1から請求項6のいずれか1項に記載の電力変換装置。
  9.  上記突入防止回路の上記半導体素子はサイリスタ、IGBT、MOSFETのいずれかにより構成されている請求項8に記載の電力変換装置。
PCT/JP2016/057540 2015-04-07 2016-03-10 電力変換装置 WO2016163201A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680019941.7A CN107624217B (zh) 2015-04-07 2016-03-10 电力转换装置
JP2016550278A JP6054007B1 (ja) 2015-04-07 2016-03-10 電力変換装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015078190 2015-04-07
JP2015-078190 2015-04-07

Publications (1)

Publication Number Publication Date
WO2016163201A1 true WO2016163201A1 (ja) 2016-10-13

Family

ID=57073143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057540 WO2016163201A1 (ja) 2015-04-07 2016-03-10 電力変換装置

Country Status (3)

Country Link
JP (1) JP6054007B1 (ja)
CN (1) CN107624217B (ja)
WO (1) WO2016163201A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT521941A1 (de) * 2018-12-13 2020-06-15 Schneider Electric Power Drives Gmbh Umrichter
CN112671255A (zh) * 2019-10-15 2021-04-16 发那科株式会社 电动机驱动装置
EP3955453A1 (en) * 2020-08-11 2022-02-16 Fuji Electric Co., Ltd. Power conversion device
CN114123464A (zh) * 2021-11-18 2022-03-01 庆安集团有限公司 基于超级电容器的登机门控制系统及控制方法
WO2023084726A1 (ja) * 2021-11-12 2023-05-19 三菱電機株式会社 電力変換装置及び冷凍サイクル適用機器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10741313B1 (en) * 2019-02-06 2020-08-11 Eaton Intelligent Power Limited Bus bar assembly with integrated surge arrestor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174492U (ja) * 1984-04-23 1985-11-19 株式会社安川電機 インバ−タの突入電流抑制装置
JPH01214270A (ja) * 1988-02-23 1989-08-28 Mitsubishi Electric Corp インバータ装置
JPH03285570A (ja) * 1990-03-30 1991-12-16 Mitsubishi Electric Corp インバータ装置
JPH03293973A (ja) * 1990-02-20 1991-12-25 Mitsubishi Electric Corp インバータ装置
JP2013090408A (ja) * 2011-10-17 2013-05-13 Denso Corp 電力変換装置
WO2014188803A1 (ja) * 2013-05-21 2014-11-27 日立オートモティブシステムズ株式会社 電力変換装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2242580B (en) * 1990-03-30 1994-06-15 Mitsubishi Electric Corp Inverter unit with improved bus-plate configuration
FR2864711B1 (fr) * 2003-12-30 2006-04-21 Soule Protection Surtensions Dispositif de protection contre les surtensions avec eclateurs en parallele a declenchement simultane
US7327166B2 (en) * 2005-08-18 2008-02-05 Texas Intruments Incorporated Reference buffer with improved drift
JP5205595B2 (ja) * 2006-12-07 2013-06-05 日産自動車株式会社 電力変換装置およびモータ駆動システム
JP2010045218A (ja) * 2008-08-13 2010-02-25 Toshiba Discrete Technology Kk 電力用半導体装置
JP5506740B2 (ja) * 2011-05-31 2014-05-28 日立オートモティブシステムズ株式会社 電力変換装置
CN203553917U (zh) * 2013-08-16 2014-04-16 深圳市中鹏电子有限公司 一种二级的电源防护和分配装置
JP2015065767A (ja) * 2013-09-25 2015-04-09 東芝ライテック株式会社 整流回路、電子回路及び電子機器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174492U (ja) * 1984-04-23 1985-11-19 株式会社安川電機 インバ−タの突入電流抑制装置
JPH01214270A (ja) * 1988-02-23 1989-08-28 Mitsubishi Electric Corp インバータ装置
JPH03293973A (ja) * 1990-02-20 1991-12-25 Mitsubishi Electric Corp インバータ装置
JPH03285570A (ja) * 1990-03-30 1991-12-16 Mitsubishi Electric Corp インバータ装置
JP2013090408A (ja) * 2011-10-17 2013-05-13 Denso Corp 電力変換装置
WO2014188803A1 (ja) * 2013-05-21 2014-11-27 日立オートモティブシステムズ株式会社 電力変換装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT521941A1 (de) * 2018-12-13 2020-06-15 Schneider Electric Power Drives Gmbh Umrichter
CN112671255A (zh) * 2019-10-15 2021-04-16 发那科株式会社 电动机驱动装置
EP3955453A1 (en) * 2020-08-11 2022-02-16 Fuji Electric Co., Ltd. Power conversion device
CN114079388A (zh) * 2020-08-11 2022-02-22 富士电机株式会社 电力转换装置
WO2023084726A1 (ja) * 2021-11-12 2023-05-19 三菱電機株式会社 電力変換装置及び冷凍サイクル適用機器
CN114123464A (zh) * 2021-11-18 2022-03-01 庆安集团有限公司 基于超级电容器的登机门控制系统及控制方法

Also Published As

Publication number Publication date
JPWO2016163201A1 (ja) 2017-04-27
JP6054007B1 (ja) 2016-12-27
CN107624217B (zh) 2019-12-24
CN107624217A (zh) 2018-01-23

Similar Documents

Publication Publication Date Title
JP6054007B1 (ja) 電力変換装置
CN102647097B (zh) 电源设备
US20080013352A1 (en) Active rectifier system with power factor correction
JP2006187147A (ja) 双方向絶縁型dc−dcコンバータ
US9281755B2 (en) Inverter with coupled inductances
CN109245508B (zh) 电子设备
EP0538825B1 (en) Power converting apparatus
US20140347904A1 (en) Power converter
US10270366B2 (en) Device and method for generating a negative voltage for a high side switch in an inverter
CA2515111C (en) Generator for arc welder with high power factor
US20090310394A1 (en) Direct-current power supply apparatus
JP5963197B2 (ja) 交流交流双方向電力変換器
KR101522134B1 (ko) 전력 변환 장치
US10554143B2 (en) SYNDEM converter—a power electronic converter with all voltage and current sensors connected to a common reference point
JP5407744B2 (ja) 交流−直流変換装置
JP5389221B2 (ja) 車両用電源装置
JP7280124B2 (ja) 2つの直流電圧モードを有する電力変換装置及びモータ駆動装置
US7495937B2 (en) PWM cycloconverter
JP2013062904A (ja) 回生型モータ端サージ電圧抑制装置、モータ駆動システム、および、回生型モータ端サージ電圧抑制方法
JP2017093210A (ja) 無停電電源装置
JP2008131756A (ja) 電力変換装置
JP2016152634A (ja) 電力変換装置
EP2490335A2 (en) Semiconductor device
JP3764270B2 (ja) 電力変換装置
JP6218244B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016550278

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776370

Country of ref document: EP

Kind code of ref document: A1