[go: up one dir, main page]

WO2016143047A1 - モータの回転子及びこれを用いた圧縮機用モータ並びに圧縮機 - Google Patents

モータの回転子及びこれを用いた圧縮機用モータ並びに圧縮機 Download PDF

Info

Publication number
WO2016143047A1
WO2016143047A1 PCT/JP2015/056870 JP2015056870W WO2016143047A1 WO 2016143047 A1 WO2016143047 A1 WO 2016143047A1 JP 2015056870 W JP2015056870 W JP 2015056870W WO 2016143047 A1 WO2016143047 A1 WO 2016143047A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
flow path
electromagnetic steel
holes
hole
Prior art date
Application number
PCT/JP2015/056870
Other languages
English (en)
French (fr)
Inventor
一弥 熊谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US15/529,159 priority Critical patent/US10432050B2/en
Priority to PCT/JP2015/056870 priority patent/WO2016143047A1/ja
Priority to JP2017504469A priority patent/JP6422566B2/ja
Priority to CN201620130846.1U priority patent/CN205565930U/zh
Priority to CN201610094831.9A priority patent/CN105958686B/zh
Publication of WO2016143047A1 publication Critical patent/WO2016143047A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/32Rotating parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to a permanent magnet embedded type motor rotor used in a hermetic compressor, a compressor motor using the same, and a compressor.
  • a so-called permanent magnet embedded motor is used as a motor which is an electric element for a hermetic compressor.
  • the permanent magnet embedded motor is a stator fixed to a hermetically sealed container, a rotor in which permanent magnets made of a plurality of laminated magnetic steel plates are inserted and fixed in the stator, and compressed by the rotor.
  • a rotating shaft connected to the element.
  • a current is applied to the stator, a rotating magnetic field is generated from the stator.
  • the attraction and repulsion action between the rotating magnetic field and the permanent magnet of the rotor rotates the rotor, and the crankshaft fixed to the rotor rotates. Then, the refrigerant is compressed by the compression element of the compressor connected to the eccentric shaft portion of the crankshaft.
  • the refrigerant in the compressor is sucked from the suction portion, compressed by the compression element, and then discharged from the discharge portion through the refrigerant flow path provided in the gap between the motor as the electric element and the shell or the stator.
  • a refrigerant flow path through which the refrigerant penetrates in the axial direction may be provided also in the rotor.
  • the refrigerant flow path provided in the rotor is a path for the compressed refrigerant to move to the compressor discharge section, and at the same time, has an effect of cooling the motor rotor in the compressor that generates heat during driving. That is, the rotor generates heat due to the magnet surface eddy current generated when the rotating magnetic field is linked to the permanent magnet.
  • Patent Document 1 discloses a rotor in which a phase difference between a positive direction and a negative direction is provided at the position of a refrigerant flow path hole in the axial direction of the rotor in order to enhance the cooling effect of the rotor by the refrigerant flow path. Yes. And an unevenness
  • the electromagnetic steel sheet has an axial flow path on the rotor inner diameter side and a flow path extending from the outer periphery of the rotor toward the inner side in the radial direction.
  • a rotor is disclosed in which phases are shifted so that a flow path extending in the radial direction from each other communicates.
  • the present invention has been made in order to solve the above-described problems, and a rotor of a motor capable of expanding a flow path in the rotor and improving heat dissipation, a compressor motor using the same, and a compression
  • the purpose is to provide a machine.
  • the rotor of the motor of the present invention is provided on a plurality of magnet insertion holes into which the permanent magnets are inserted, on the inner peripheral side of the magnet insertion holes, and on the inner peripheral side of the flow path.
  • a rotor core having a shaft insertion hole into which a rotating shaft is inserted, and a permanent magnet inserted into a plurality of magnet insertion holes of the rotor core, the rotor core having both axial end surfaces Are provided with a suction port and a discharge port of a flow channel provided in the inside, and a flow channel hole extending in the circumferential direction inside the suction port and the discharge port.
  • the rotor of the motor of the present invention since the flow path formed in the circumferential direction of the rotating shaft is provided inside the rotor, the area of the flow path can be expanded and heat dissipation can be improved. The temperature of the permanent magnet can be lowered.
  • FIG. 1 is a cross-sectional view showing a compressor using a compressor motor according to Embodiment 1 of the present invention. It is a top view which shows an example of the rotor in the motor for compressors of FIG.
  • FIG. 3 is a cross-sectional view showing a II cross section of a rotor core in the rotor of FIG. 2.
  • FIG. 4 is a plan view showing an example of the penetrating electromagnetic steel sheet of FIG. 3 and a cross-sectional view showing an OO cross section.
  • FIG. 4 is a plan view showing an example of the long-hole electromagnetic steel sheet of FIG. 3 and a cross-sectional view showing an OO cross section.
  • FIG. 4 is a plan view showing an example of the long-hole electromagnetic steel sheet of FIG.
  • FIG. 11 is a cross-sectional view showing a II cross section of a rotor in which an end plate and a balance weight are attached to the rotor iron core of FIG. 10.
  • FIG. 1 is a cross-sectional view showing a compressor using a compressor motor according to Embodiment 1 of the present invention.
  • the compressor 1 is, for example, a one-cylinder sealed rotary compressor, and is accommodated in the sealed container 2, the sealed container 2, the compression element 10 that compresses the refrigerant, and the sealed container 2.
  • the compressor motor 20 is an electric element that drives the compression element 10, and the crankshaft 3 that connects the compression element 10 and the compressor motor 20.
  • the sealed container 2 is formed to extend in the axial direction (arrow Z direction), for example, and has an upper container 2a and a lower container 2b.
  • a compression element 10 is accommodated in the lower part of the hermetic container 2, and a compressor motor 20 is accommodated in the upper part of the hermetic container 2 (so-called vertical compressor).
  • the upper container 2a is provided with a discharge pipe 4 for discharging the refrigerant compressed in the compression element 10.
  • the lower container 2 b is provided with a suction port 5 through which the compression element 10 sucks the refrigerant, and a suction connection pipe 6 and a suction muffler 7 are connected to the suction port 5.
  • the suction muffler 7 has a role as an accumulator for storing the liquid refrigerant and a role for silencing the refrigerant sound.
  • the suction muffler 7 is connected to the compression element 10 via the suction connection pipe 6.
  • the compression element 10 sucks refrigerant from the suction port 5 and compresses it, and has a cylinder 11, a main bearing 12, a sub bearing 13, a rolling piston 14, and the like.
  • the cylinder 11 is fixed to the inner wall surface of the hermetic container 2, and a space serving as a compression chamber is formed in the cylinder 11.
  • a cylinder groove (not shown) extending in the radial direction is formed in the cylinder 11, and a vane (not shown) that reciprocates in the radial direction in the groove provided in the cylinder 11 is disposed in the cylinder groove.
  • the cylinder 11 is formed with a suction hole communicating with the suction port 5 and the internal space, and the refrigerant is sucked from the suction port 5 into the internal space.
  • the main bearing 12 and the sub-bearing 13 support the crankshaft 3 to be rotatable and are fixed to both ends in the axial direction (arrow Z direction) of the cylinder 11 to close the space in the cylinder 11.
  • the crankshaft 3 has a rotating shaft 3 a, an eccentric portion 3 b, and a countershaft portion 3 c, and the rotating shaft 3 a is fixed to the compressor motor 20.
  • the main bearing 12 supports the rotary shaft 3a in a rotatable manner, and the auxiliary bearing 13 supports the auxiliary shaft portion 3c in a rotatable manner.
  • the main bearing 12 is provided with a discharge port (not shown) through which compressed refrigerant is discharged, and a discharge muffler 11 a is disposed on the main bearing 12.
  • the rolling piston 14 is housed rotatably in a space in the cylinder 11 and is connected to the eccentric portion 3b of the crankshaft 3.
  • a compression chamber is formed when one end of the vane hits the outer periphery of the rolling piston 14. Then, the refrigerant gas compressed by the driving of the rolling piston 14 is discharged into the sealed container 2 through the cylinder 11, the main bearing 12 and the discharge muffler 11a, passes through the compressor motor 20, and is discharged from the discharge pipe 4 to the refrigeration cycle. Sent to the device.
  • the compressor motor 20 is composed of, for example, a brushless DC motor, and includes a stator 30 fixed in the hermetic container 2 and a rotor 40 rotatably accommodated on the inner peripheral side of the stator 30.
  • a lead wire 33 for supplying electric power from the outside of the sealed container 2 is connected to the stator 30, and the lead wire 33 is connected to a glass terminal 8 provided in the upper container 2 a.
  • the stator 30 is formed by stacking a plurality of punched thin electromagnetic steel sheets, and includes a stator core 31 around which a coil is wound and a coil 32 wound around the stator core 31.
  • the stator core 31 has an outer diameter larger than the inner diameter of the lower container 2b, and is fixed by being shrink-fitted into the lower container 2b.
  • FIG. 2 is a plan view showing an example of a rotor in the compressor motor of FIG. 1 and 2 has a rotor core 41 and a permanent magnet 42 inserted into a magnet insertion hole 41m of the rotor core 41.
  • the rotor core 41 is provided with a shaft insertion hole 41CL into which the rotation shaft 3a of the crankshaft 3 is inserted.
  • the shaft insertion hole 41CL has an inner diameter smaller than the outer diameter of the crankshaft 3, and the rotor core 41 is fixed to the rotating shaft 3a of the crankshaft 3 by shrink fitting or press fitting.
  • FIG. 3 is a cross-sectional view showing a II cross section of the rotor core in the rotor of FIG.
  • the rotor core 41 shown in FIGS. 1 to 3 is provided with a plurality of magnet insertion holes 41m into which the permanent magnets 42 are inserted, and on the inner peripheral side of the plurality of magnet insertion holes 41m, and a fluid (for example, a refrigerant gas) flows therethrough.
  • the channel 41FP is formed, and the shaft insertion hole 41CL is formed on the inner peripheral side of the channel 41FP and into which the rotary shaft 3a is inserted.
  • the flow path 41FP guides the refrigerant gas discharged from the compression element 10 to the upper part of the sealed container 2, and causes the refrigerant gas and the refrigerating machine oil guided to the upper part of the sealed container 2 to drop to the lower part of the sealed container 2. It is a passage. Furthermore, the flow path 41FP has a function of improving the heat dissipation of the rotor core 41 by circulating the refrigerant. In addition, between the airtight container 2 and the stator 30, the channel
  • the rotor 40 of FIG. 1 is disposed on an end surface in the axial direction (arrow Z direction) of the rotor core 41, and is fixed on the end plate 41E, an end plate 41E that prevents the permanent magnet 42 from jumping out during driving, Balance weights 46 and 47 for stabilizing the torque during driving are provided (see FIG. 7). Although the end plate 41E and the balance weights 46 and 47 are illustrated as separate parts, they may be the same member. The balance weights 46 and 47 are fixed to the rotor core 41 using rivets 48, respectively.
  • the rotor core 41 includes the suction port 41in and the discharge port 41out of the flow path 41FP provided on both end surfaces in the axial direction (arrow Z direction), and the suction port 41in and the discharge port 41out. And channel holes 41p, 41r, 41q extending in the circumferential direction are provided inside.
  • the rotor core 41 is formed by stacking a plurality of rotor core sheets formed by punching thin electromagnetic steel plates, and the suction port 41in, the discharge port 41out, and the flow path hole 41p are formed by holes punched in the electromagnetic steel plate. , 41r, 41q.
  • the plurality of electromagnetic steel plates include through electromagnetic steel plates 41X and long hole electromagnetic steel plates 41Y1, 41Y2.
  • the through electromagnetic steel plates 41X and the long hole electromagnetic steel plates 41Y1 and 41Y2 are laminated by bundling a predetermined number of pieces, for example, the group ⁇ of the through electromagnetic steel plates 41X, the group ⁇ of the long hole electromagnetic steel plates 41Y1, and the long hole electromagnetic steel plates. They are stacked in the order of the group ⁇ of 41Y2.
  • the group ⁇ of the through-hole electromagnetic steel plate 41X, the group ⁇ of the long-hole electromagnetic steel plate 41Y1, and the group ⁇ of the long-hole electromagnetic steel plate 41Y2 have the through-holes 41a to 41f and the passage holes 41p, 41q, 41r in the axial direction ( They are stacked so as to communicate in the direction of arrow Z). Further, the group ⁇ of the long hole electromagnetic steel plate 41Y1 and the group ⁇ of the long hole electromagnetic steel plate 41Y2 are stacked such that the flow path holes 41p, 41q, 41r communicate with each other in the axial direction (arrow Z direction).
  • FIG. 4 is a plan view showing an example of the through electromagnetic steel sheet shown in FIG. 3 and a cross-sectional view showing an OO cross section. 4 penetrates in the axial direction (arrow Z direction) on a plurality of magnet insertion holes 41m corresponding to the number N of magnetic poles into which the permanent magnets 42 are inserted, and on the inner peripheral side of the magnet insertion hole 41m. A plurality of through holes 41a to 41f are formed.
  • the through holes 41a to 41f are formed in a circular shape, for example, and serve as a flow path for circulating the refrigerant in the axial direction (arrow Z direction).
  • the through holes 41a to 41f are not limited in shape as long as they penetrate in the axial direction, and may be, for example, polygonal or elliptical.
  • a plurality of through holes 41a to 41f of the penetrating electromagnetic steel plate 41X located on the end surface of the rotor core 41 in the axial direction form a suction port 41in of the flow path 41FP.
  • FIG. 5 and 6 are a plan view and an OO cross-sectional view showing an example of the long-hole electromagnetic steel sheet shown in FIG.
  • the long hole electromagnetic steel plates 41Y1 and 41Y2 in FIG. 5 and FIG. 6 have the same shape, and are out of phase by a predetermined angle (for example, 180 °) around the rotation shaft 3a.
  • a plurality of (for example, three) passage holes 41p, 41q, and 41r extending in the circumferential direction are formed in the long hole electromagnetic steel plates 41Y1 and 41Y2. Note that the plurality of flow passage holes 41p, 41q, 41r of the long hole electromagnetic steel plate 41Y2 located on the end surface in the axial direction of the rotor core 41 in FIG. 3 form the discharge port 41out of the flow passage 41FP.
  • the through electromagnetic steel sheet 41X and the long hole electromagnetic steel sheets 41Y1 and 41Y2 communicate with the through holes 41a to 41f and the flow path holes 41p, 41q, and 41r when the magnet insertion hole 41m is aligned. It is formed in position and size. That is, if the long hole electromagnetic steel plates 41Y1 and 41Y2 rotate by a multiple of (360 / N) ° in the circumferential direction with respect to the rotation center and the phase shifts, the position of the magnet insertion hole 41m is aligned. In order to form one flow path 41FP in a state where the phases are shifted, the through holes 41a to 41f and the flow path holes 41p, 41q, 41r need to communicate with each other.
  • the flow path holes 41p, 41q, 41r to be filled are represented by the following formula (1).
  • N is the number of magnetic poles (an even number of 4 or more)
  • M is the number of flow path holes and is an integer satisfying M ⁇ N
  • A is the formation angle of a plurality of flow path holes. It is the sum. That is, the formula (1) indicates that the total angle A of the plurality of flow path holes 41p, 41q, 41r is equal to or more than M poles with respect to (360 / N) °, which is the formation interval of the magnet insertion holes 41m ( M + 1) means having a length less than the polar part.
  • the flow hole 41p, 41q, 41r between the long hole electromagnetic steel plates 41Y1, 41Y2 having different phases overlap each other at (360 / N) ° or less, and communicate with each other between the long hole electromagnetic steel plate 41Y1 and the long hole electromagnetic steel plate 41Y2.
  • a channel 41FP is formed.
  • the channel holes 41p, 41q, and 41r are formed wider than the 60 ° by a predetermined angle.
  • FIG. 7 is a cross-sectional view showing a state in which refrigerant flows through the rotor of FIG.
  • the flow path 41FP formed in the circumferential direction of the rotation shaft 3a is provided inside the rotor 40, the area of the flow path 41FP can be expanded and heat dissipation can be improved.
  • the temperature of the permanent magnet 42 can be lowered. Therefore, the amount of magnetic flux and the demagnetization resistance of the permanent magnet having temperature dependence can be improved.
  • FIG. 8 is a cross-sectional view showing an example of a II cross section of a rotor core in a conventional rotor.
  • the conventional rotor core shown in FIG. 8 is composed only of a group ⁇ in which through electromagnetic steel plates 41X having refrigerant flow paths only in the axial direction (arrow Z direction) are stacked. A refrigerant flow path linearly penetrating in the axial direction (arrow Z direction) is formed.
  • the flow path surface area of the refrigerant flow is small, it is difficult to obtain a heat dissipation property that suppresses the above-described decrease in the demagnetization resistance of the permanent magnet.
  • the rotor core 41 includes the through electromagnetic steel plates 41X in which a plurality of through holes 41a to 41f penetrating in the axial direction is formed in addition to the long hole electromagnetic steel plates 41Y1 and 41Y2, the effective surface area of the flow path is increased.
  • the thickness of the rotor 40 in the axial direction (arrow Z direction) can be adjusted while increasing.
  • the penetrating electromagnetic steel sheet 41X is laminated on the end face in the axial direction (arrow Z direction), and the plurality of through holes 41a to 41f are all in communication with any one of the flow path holes 41p, 41q, 41r.
  • the suction port 41in through holes 41a to 41f
  • the balance weights 46 and 47 see FIG. 7
  • the refrigerant flows into the channel from other through holes to the channel hole. To do.
  • coolant inflow port formed in the end surface of the rotor 40 can be suppressed.
  • FIG. 9 is a cross-sectional view showing a state in which a balance weight is attached to the conventional rotor of FIG.
  • the end plate 41 ⁇ / b> E and the balance weights 46 and 47 are attached to the rotor, one or more of the plurality of channels are blocked. Then, since the refrigerant does not flow in the blocked channel, the effective surface area of the channel may be reduced.
  • the end plate 41E and the balance weights 46, 47 are disposed on the end surface of the iron core of the rotor 40, and the balance weights 46, 47 allow the suction port 41in (through holes 41a to 41f) or the discharge port. Even when a part of 41out (channel holes 41p, 41q, 41r) is blocked, the refrigerant can be circulated from the other inlet 41in or the outlet 41out to the entire inside of one channel 41FP. Thereby, the effective surface area of the flow path 41FP increases, and the rotor 40 with good heat dissipation can be obtained.
  • the plurality of long hole electromagnetic steel plates 41Y1 and 41Y2 are in phase with each other so that the positions of the magnet insertion holes 41m coincide.
  • the channel holes 41p, 41q, 41r between the long hole electromagnetic steel plates 41Y1, 41Y2 can be reliably communicated with each other.
  • FIG. FIG. 11 is a cross-sectional view showing the II cross section of the rotor core of the motor according to the second embodiment of the present invention.
  • FIG. 11 is a cross section taken along the II line of the rotor with end plates and balance weights attached to the rotor core of FIG.
  • the rotor 140 will be described with reference to FIGS. 10 and 11. 10 and FIG. 11, parts having the same configuration as the rotor 40 of FIG. 3 are denoted by the same reference numerals and description thereof is omitted.
  • the rotor 140 of FIG. 10 differs from the rotor 40 of FIG. 3 in that the flow path 41FP is formed by using the long hole electromagnetic steel plates 41Y1 and 41Y2 without using the through electromagnetic steel plate 41X.
  • the rotor 140 is formed by alternately laminating long-hole electromagnetic steel plates 41Y1 and 41Y2. That is, the long hole electromagnetic steel plates 41Y1 are stacked by (N / M) types (rounded up after the decimal point) while being rotated by (360 / N) ° ⁇ M with respect to the rotation center and shifted in phase. Then, the channel holes 41p, 41q, 41r of the laminated long-hole electromagnetic steel plates 41Y1, 41Y2 are in communication with each other in the axial direction, and the channel 41FP extends substantially spirally in the circumferential direction while having a step shape. Formed as follows.
  • the refrigerant is a suction port 41in (flow path) of the long hole electromagnetic steel sheets 41Y1 and 41Y2 located on the end face of the rotor. The refrigerant flows into the entire flow path 41FP from the holes 41p, 41q, 41r) and flows out from the discharge port 41out (flow path holes 41p, 41q, 41r).
  • the rotor 40 has the flow channel 41FP formed in the circumferential direction of the rotating shaft 3a, so that the area of the flow channel 41FP is enlarged, Since heat dissipation can be improved, the temperature of the permanent magnet 42 can be lowered. Further, even when the balance weights 46 and 47 are attached, the refrigerant can be circulated through the entire flow path formed in the rotor 140, and the effective surface area of the flow path can be increased by the conventional rotor (see FIG. 8). ) Can be improved.
  • FIG. 12 to 17 are plan views showing an example of the rotor core according to the third embodiment of the present invention.
  • the rotor cores 241, 341, and 441 will be described with reference to FIGS.
  • parts having the same configuration as the rotor core 41 of the first embodiment in the rotor cores 241, 341, and 441 are denoted by the same reference numerals, and description thereof is omitted.
  • the rotor cores 241, 341, and 441 in FIGS. 12 to 17 are different from the rotor core 41 in the first embodiment in the number of magnetic poles N, an integer M, and a total angle A.
  • A 60 °.
  • the range of the angle at which the channel hole 441p is formed is 60 so that the channel hole 441p of the long hole electromagnetic steel plate 441Y1 communicates with the channel hole 441p of the other long hole electromagnetic steel plate. It is wider than the angle by a predetermined angle. Then, as shown in FIG.
  • the rotor cores 241, 341, 441 have the flow channel 41FP formed in the circumferential direction of the rotation shaft 3a, so that the flow channel 41FP Since the area can be expanded and the heat dissipation can be improved, the temperature of the permanent magnet 42 can be lowered. Further, even when the balance weights 46 and 47 are attached, the refrigerant can be circulated through the entire flow paths formed in the rotor cores 241, 341, and 441, and the effective surface area of the flow paths can be increased by the conventional rotation. This can be improved over the child (see FIG. 8).
  • 12 to 17 illustrate the case where the long hole electromagnetic steel sheets 241Y1 to 241Y4, 341Y1 to 341Y3, and 441Y1 are laminated, the penetration electromagnetic steel sheet 41X is interposed as in the first embodiment.
  • long hole electromagnetic steel sheets 241Y1 to 241Y4, 341Y1 to 341Y3, and 441Y1 may be stacked without using the penetrating electromagnetic steel sheet 41X.
  • FIG. 18 is a plan view showing an example of the long hole electromagnetic steel sheet in the rotor core of the fourth embodiment according to the present invention
  • FIG. 19 is a plan view showing the rotor core using the long hole electromagnetic steel sheet of FIG.
  • the rotor core 541 will be described with reference to FIG.
  • symbol is attached
  • 18 differs from the rotor core 41 of the first embodiment in that a plurality of flow paths 541FP1 and 541FP2 are formed.
  • the integer M is not only in the condition of N ⁇ M but also in the condition of integer M ⁇ (N / 2) ⁇ 1 (M is 2 or more).
  • the rotor core 541 has a plurality of flow paths 541FP1 and 541FP2 formed in the circumferential direction of the rotation shaft 3a. Since the area can be expanded and the heat dissipation can be improved, the temperature of the permanent magnet 42 can be lowered. In the fourth embodiment, as in the first embodiment, it may be laminated so that the penetrating electromagnetic steel plate 41X is interposed.
  • the embodiment of the present invention is not limited to the above embodiment.
  • the hermetic compressor 1 of FIG. 1 is a so-called one-cylinder compressor
  • a two-cylinder rotary compressor having two compression elements 10 may be used.
  • 1 illustrates the case where the compression element 10 and the compressor motor 20 are arranged in the vertical direction (arrow Z direction) in the hermetic compressor 1 of FIG. Good.
  • 1 illustrates the case where the hermetic compressor is a rotary compressor, the compression structure of the scroll compressor, the reciprocating compressor, or the like as long as the motor is a hermetic compressor disposed in a hermetic container. It doesn't matter.
  • the case where the same-shaped long-hole electromagnetic steel sheets are stacked while being rotated and shifted in phase is illustrated, but the flow-path holes are in communication with each other in the circumferential direction.
  • the long hole electrical steel sheets having different shapes may be laminated.
  • the long hole electrical steel plates 41Y1, 41Y2 as shown in FIGS. 4 and 5 are used for one group ⁇ , ⁇
  • a long-hole electromagnetic steel sheet 441Y1 as shown in FIGS. 16 and 17 may be used.
  • the flow path area can be changed in the axial direction, and a flow path that matches the temperature characteristics of the rotor can be formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

 モータの回転子は、永久磁石が挿入される複数の磁石挿入穴と、磁石挿入穴の内周側に設けられ、流体が流通する流路と、回転軸が挿入される軸挿入穴とが形成された回転子鉄心と、回転子鉄心の複数の磁石挿入穴に挿入された永久磁石とを有する。回転子鉄心には、軸方向の両端面に設けられた流路の吸入口及び吐出口と、吸入口及び吐出口に通じ、内部において周方向に延びる流路穴とが設けられている。

Description

モータの回転子及びこれを用いた圧縮機用モータ並びに圧縮機
 この発明は、密閉型圧縮機に使用される永久磁石埋め込み型のモータ回転子及びこれを用いた圧縮機用モータ並びに圧縮機に関するものである。
 密閉型圧縮機用の電動要素であるモータとして、いわゆる永久磁石埋め込み型モータが用いられている。永久磁石埋め込み型モータは、密閉容器に固定された固定子と、固定子内に配置され、積層された複数の電磁鋼板からなる永久磁石が挿入された回転子と、回転子に固定され、圧縮要素に連結された回転軸とを有している。固定子に電流が印加されることにより固定子から回転磁界が発生する。回転磁界と回転子の永久磁石との吸引反発作用により回転子が回転し、回転子に固定されたクランクシャフトが回転する。そして、クランクシャフトの偏心軸部に接続された圧縮機の圧縮要素により冷媒が圧縮される。
 圧縮機中の冷媒は、吸入部から吸入され圧縮要素で圧縮された後、電動要素であるモータとシェルとの隙間又は固定子に設けられた冷媒流路を通過して吐出部から吐出される。この際、回転子においても冷媒が軸方向に貫通する冷媒流路を設けることがある。回転子に設けられた冷媒流路は、圧縮された冷媒が圧縮機吐出部に移動するための経路であると同時に、駆動時に発熱を伴う圧縮機内モータ回転子を冷却する作用を有する。すなわち、回転磁界が永久磁石と鎖交する際に発生する磁石表面渦電流により、回転子が発熱する。また、永久磁石の磁束量、減磁耐力は温度依存性を持ち、一般的に高温になるほど減磁耐力は低下する傾向にある。そこで、回転子内に冷媒を流通させることにより、回転子の放熱性を高めることが提案されている(例えば、特許文献1、2参照)。
 特許文献1には、冷媒流路による回転子の冷却効果を高めるため、回転子の軸方向の冷媒流路穴の位置に正方向と負方向の位相差が設けられた回転子が開示されている。そして、正方向と負方向の穴が連通するように位相を180°毎に変化させながら電磁鋼板を積層させることにより、流路表面に凹凸が設けられる。特許文献2には、電磁鋼板が回転子内径側に軸方向の流路と、回転子外周から半径方向の内側に向かって延びる流路とを有し、電磁鋼板の内径側の流路と外周から半径方向に延びる流路とが連通するように位相をずらして積層された回転子が開示されている。
特開2011-254576号公報 特開2014-138543号公報
 特許文献1、2のモータの回転子において、冷媒流路の軸方向においては貫通するほぼ直線状の流路が形成された状態になっている。しかしながら、このような流路の形状の場合、流路表面積が小さいため、上述した永久磁石の減磁耐力の低下を抑制するほどの放熱性を得るのが難しい。
 本発明は、上記のような課題を解決するためになされたもので、回転子における流路を拡大し放熱性を向上させることができるモータの回転子及びこれを用いた圧縮機用モータ並びに圧縮機を提供することを目的とするものである。
 本発明のモータの回転子は、永久磁石が挿入される複数の磁石挿入穴と、磁石挿入穴の内周側に設けられ、流体が流通する流路と、流路の内周側に設けられ回転軸が挿入される軸挿入穴とが形成された回転子鉄心と、回転子鉄心の複数の磁石挿入穴に挿入された永久磁石とを有し、回転子鉄心には、軸方向の両端面に設けられた流路の吸入口及び吐出口と、吸入口及び吐出口に通じ、内部において周方向に延びる流路穴とが設けられたものである。
 本発明のモータの回転子によれば、回転子の内部において、回転軸の周方向に形成された流路を有することにより、流路の面積が拡大され、放熱性を向上させることができるため、永久磁石の温度を低下させることができる。
図1は本発明の実施の形態1における圧縮機用モータを用いた圧縮機を示す断面図である。 図1の圧縮機用モータにおける回転子の一例を示す平面図である。 図2の回転子における回転子鉄心のI-I断面を示す断面図である。 図3の貫通電磁鋼板の一例を示す平面図及びO-O断面を示す断面図である。 図3の長穴電磁鋼板の一例を示す平面図及びO-O断面を示す断面図である。 図3の長穴電磁鋼板の一例を示す平面図及びO-O断面を示す断面図である。 図3の回転子に冷媒が流れる様子を示す断面図である。 従来の回転子における回転子鉄心のI-I断面の一例を示す断面図である。 図8の従来の回転子にバランスウェイトが取り付けられた様子を示す断面図である。 本発明に係る実施の形態2のモータの回転子鉄心のI-I断面を示す断面図である。 図10の回転子鉄心に端板及びバランスウェイトを取り付けた回転子のI-I断面を示す断面図である。 本発明に係る実施の形態3の回転子鉄心の一例を示す平面図である。 本発明に係る実施の形態3の回転子鉄心の一例を示す平面図である。 本発明に係る実施の形態3の回転子鉄心の一例を示す平面図である。 本発明に係る実施の形態3の回転子鉄心の一例を示す平面図である。 本発明に係る実施の形態3の回転子鉄心の一例を示す平面図である。 本発明に係る実施の形態3の回転子鉄心の一例を示す平面図である。 本発明に係る実施の形態4の回転子鉄心における長穴電磁鋼板の一例を示す平面図である。 図18の長穴電磁鋼板を用いた回転子鉄心を示す平面図である。
実施の形態1.
 以下、図面を参照しながら本発明のモータの回転子及びこれを用いた圧縮機用モータ並びに圧縮機の実施の形態について説明する。図1は本発明の実施の形態1における圧縮機用モータを用いた圧縮機を示す断面図である。圧縮機1は、例えば1シリンダ型の密閉型のロータリ圧縮機であって、密閉容器2と、密閉容器2内に収容され、冷媒を圧縮する圧縮要素10と、密閉容器2内に収容され、圧縮要素10を駆動する電動要素である圧縮機用モータ20と、圧縮要素10と圧縮機用モータ20とを連結するクランクシャフト3とを有している。
 密閉容器2は、例えば軸方向(矢印Z方向)に延びて形成されており、上部容器2aと下部容器2bとを有する。密閉容器2の下部には圧縮要素10が収納されており、密閉容器2の上部には圧縮機用モータ20が収納されている(いわゆる縦型の圧縮機)。上部容器2aには、圧縮要素10において圧縮された冷媒を吐出する吐出管4が設けられている。下部容器2bには圧縮要素10が冷媒を吸入するための吸入口5が設けられており、吸入口5には吸入連結管6及び吸入マフラー7が接続されている。吸入マフラー7は液冷媒を貯留するアキュムレータとしての役割と冷媒音を消音する役割とを有し、吸入マフラー7は吸入連結管6を介して圧縮要素10に連結されている。
 圧縮要素10は、冷媒を吸入口5から吸入して圧縮するものであり、シリンダ11、主軸受12、副軸受13、ローリングピストン14等を有している。シリンダ11は、密閉容器2の内壁面に固定されており、シリンダ11内には圧縮室になる空間が形成されている。シリンダ11には径方向に延びる図示しないシリンダ溝が形成されており、シリンダ溝にはシリンダ11に設けられた溝内を径方向に往復運動する図示しないベーンが配置されている。シリンダ11には吸入口5及び内部の空間に通じる吸入孔が形成されており、冷媒は吸入口5から内部の空間へ吸入される。
 主軸受12および副軸受13は、クランクシャフト3を回転可能に支持するとともに、シリンダ11の軸方向(矢印Z方向)の両端に固定され、シリンダ11内の空間を閉塞している。ここで、クランクシャフト3は、回転軸3aと、偏心部3bと、副軸部3cとを有しており、回転軸3aが圧縮機用モータ20に固定されている。また、主軸受12は回転軸3aを回転可能に支持しており、副軸受13は副軸部3cを回転可能に支持している。主軸受12には、圧縮された冷媒が吐出される図示しない吐出口が設けられており、主軸受12上には吐出マフラー11aが配置されている。
 ローリングピストン14は、シリンダ11内の空間に回転可能に収納されており、クランクシャフト3の偏心部3bに接続されている。そして、ベーンの一端がローリングピストン14の外周に当たることにより圧縮室が形成される。そして、ローリングピストン14の駆動により圧縮された冷媒ガスは、シリンダ11、主軸受12及び吐出マフラー11aを介して密閉容器2内に吐出され、圧縮機用モータ20を通り、吐出管4から冷凍サイクル装置へ送り出される。
 圧縮機用モータ20は、例えばブラシレスDCモータからなっており、密閉容器2内に固定された固定子30と、固定子30の内周側に回転可能に収容された回転子40とを備える。固定子30には、密閉容器2の外部から電力を供給するためのリード線33が接続され、リード線33は上部容器2aに設けられたガラス端子8に接続される。
 固定子30は、打抜き形成された薄板電磁鋼板が複数枚積層されたものであって、コイルが巻線される固定子鉄心31と、固定子鉄心31に巻線されたコイル32とを備える。固定子鉄心31は、外径が下部容器2bの内径より大きく形成されており、下部容器2bに焼嵌めされることにより固定される。
 図2は図1の圧縮機用モータにおける回転子の一例を示す平面図である。図1及び図2の回転子40は、回転子鉄心41と、回転子鉄心41の磁石挿入穴41mに挿入された永久磁石42とを有する。回転子鉄心41には、クランクシャフト3の回転軸3aが挿入される軸挿入穴41CLが設けられている。軸挿入穴41CLは内径がクランクシャフト3の外径より小さく形成されており、回転子鉄心41はクランクシャフト3の回転軸3aに焼嵌めもしくは圧入等により固定されている。
 図3は図2の回転子における回転子鉄心のI-I断面を示す断面図である。図1~図3の回転子鉄心41には、永久磁石42が挿入される複数の磁石挿入穴41mと、複数の磁石挿入穴41mの内周側に設けられ、流体(例えば冷媒ガス)が流通する流路41FPと、流路41FPの内周側に設けられ、回転軸3aが挿入される軸挿入穴41CLとが形成されている。磁石挿入穴41mは磁極数N(4以上の偶数であって例えばN=6)だけ形成されており、複数の磁石挿入穴41mにそれぞれ永久磁石42が挿入されている。
 流路41FPは、例えば圧縮要素10から吐出された冷媒ガスを密閉容器2の上部へ導くとともに、密閉容器2の上部に導かれた冷媒ガス及び冷凍機油を密閉容器2の下部に落下させるための通路である。さらに、流路41FPは、冷媒が流通することにより回転子鉄心41の放熱性を向上させる機能を有している。なお、密閉容器2と固定子30との間には、流路41FPと同様の役割を有し、上述した密閉容器2の上部と下部とを連通する通路が形成されている。
 図1の回転子40は、回転子鉄心41の軸方向(矢印Z方向)の端面に配置され、永久磁石42が駆動時に飛び出すのを防止する端板41Eと、端板41E上に固定され、駆動時のトルクを安定させるためのバランスウェイト46、47とを有する(図7参照)。なお、端板41Eとバランスウェイト46、47とは別部品である場合について例示しているが、同一部材であってもよい。バランスウェイト46、47は、それぞれ回転子鉄心41にリベット48を用いて固定されている。
 ここで、図3に示すように、回転子鉄心41は、軸方向(矢印Z方向)の両端面に設けられた流路41FPの吸入口41in及び吐出口41outと、吸入口41in及び吐出口41outに通じ、内部において周方向に延びる流路穴41p、41r、41qとが設けられている。回転子鉄心41は、薄板の電磁鋼板を打抜いて形成された複数の回転子鉄心シートを積層したものであり、電磁鋼板に打ち抜かれた穴によって吸入口41in及び吐出口41outと流路穴41p、41r、41qとが形成される。
 具体的には、複数の電磁鋼板には、貫通電磁鋼板41Xと長穴電磁鋼板41Y1、41Y2とが含まれている。貫通電磁鋼板41Xと長穴電磁鋼板41Y1、41Y2とは、それぞれ所定の枚数分を束ねて積層されており、例えば貫通電磁鋼板41Xの群α、長穴電磁鋼板41Y1の群β、長穴電磁鋼板41Y2の群γの順に積層されている。そして、貫通電磁鋼板41Xの群αと長穴電磁鋼板41Y1の群β及び長穴電磁鋼板41Y2の群γとは、貫通穴41a~41fと流路穴41p、41q、41rとが互いに軸方向(矢印Z方向)に連通するように積層される。また、長穴電磁鋼板41Y1の群β及び長穴電磁鋼板41Y2の群γは、流路穴41p、41q、41r同士が互いに軸方向(矢印Z方向)に連通するように積層される。
 図4は図3の貫通電磁鋼板の一例を示す平面図及びO-O断面を示す断面図である。図4の貫通電磁鋼板41Xは、上述した永久磁石42が挿入される磁極数N個分の複数の磁石挿入穴41mと、磁石挿入穴41mの内周側に軸方向(矢印Z方向)に貫通する複数の貫通穴41a~41fとが形成されている。なお、図4においては、例えば6個の貫通穴41a~41fが回転中心に対し(360/N)°=60°間隔で形成されている場合について例示する。
 貫通穴41a~41fは、例えば円形状に形成されており、冷媒を軸方向(矢印Z方向)に流通させる流路になる。なお、貫通穴41a~41fは、軸方向に貫通しているものであればその形状は問わず、例えば多角形状もしくは楕円状等であってもよい。そして、回転子鉄心41の軸方向の端面に位置する貫通電磁鋼板41Xの複数の貫通穴41a~41fが流路41FPの吸入口41inを形成している。
 図5及び図6は図3の長穴電磁鋼板の一例を示す平面図及びO-O断面を示す断面図である。図5と図6との長穴電磁鋼板41Y1、41Y2は、同一形状を有するものであり、回転軸3aを中心に位相が所定角度(例えば180°)ずれたものである。長穴電磁鋼板41Y1、41Y2には、周方向に延びる複数(例えば3個)の流路穴41p、41q、41rが形成されている。なお、図3の回転子鉄心41の軸方向の端面に位置する長穴電磁鋼板41Y2の複数の流路穴41p、41q、41rは流路41FPの吐出口41outを形成している。
 ここで、貫通電磁鋼板41Xと長穴電磁鋼板41Y1、41Y2とは、磁石挿入穴41mの位置合わせをしたときに、貫通穴41a~41f及び流路穴41p、41q、41rに互いに連通するような位置及び大きさに形成されている。つまり、長穴電磁鋼板41Y1、41Y2は、回転中心に対し周方向に(360/N)°の倍数だけ回転して位相がずれれば、磁石挿入穴41mの位置が合う。この位相をずらした状態において1つの流路41FPを形成するためには、貫通穴41a~41fと流路穴41p、41q、41r同士が互いに連通する必要がある。
 貫通電磁鋼板41X及び長穴電磁鋼板41Y1、41Y2が積層されるとき、磁石挿入穴41mの位置を位置合わせしながら、貫通穴41a~41f及び流路穴41p、41q、41rを連通させるという条件を満たす流路穴41p、41q、41rは、下記式(1)のようになる。
Figure JPOXMLDOC01-appb-M000002
 上記式(1)において、Nは磁極数(4以上の偶数)であり、Mは流路穴の個数であってM<Nを満たす整数であり、Aは複数の流路穴の形成角度の総和である。つまり、式(1)は、複数の流路穴41p、41q、41rの合計角度Aが、磁石挿入穴41mの形成間隔である(360/N)°に対し、M極分以上であって(M+1)極分未満の長さを有することを意味している。また、合計角度Aが(360/N)°×M未満である場合、磁石挿入穴41mが一致するように長穴電磁鋼板41Y1、41Y2を回転させて位相をずらしたときに、長穴電磁鋼板41Y1、41Y2の流路穴41p、41q、41r同士が互いに連通することができない。
 式(1)を満たす流路穴41p、41q、41rを有する図4の長穴電磁鋼板41Y1が、磁石挿入穴41mが配置される間隔である(360/N)°×Mだけ回転させ位相をずらすと、図5の長穴電磁鋼板41Y2の状態になる。そして、図3のように、長穴電磁鋼板41Y1の群βと長穴電磁鋼板41Y2の群γとが積層される。つまり、位相をずらした(N/M)種類の長穴電磁鋼板41Y1、41Y2が積層される。すると、位相の異なる長穴電磁鋼板41Y1、41Y2同士の流路穴41p、41q、41rが(360/N)°以下で重なり、長穴電磁鋼板41Y1と長穴電磁鋼板41Y2との間に互いに連通する流路41FPが形成される。
 より詳細には、図4及び図5の長穴電磁鋼板41Y1、41Y2は、磁極数N=6、整数(穴数)M=3、合計角度A=180°の場合について例示しており、長穴電磁鋼板41Y1は、回転軸3aを中心に周方向に角度(A/M)°だけ延びる長穴形状を(360/N)°間隔で配置している。つまり、長穴電磁鋼板41Y1には、(A/M)°=180°/3=60°だけ周方向に延びた流路穴41p、41q、41rが(360/N)°=360/6=60°間隔で形成されている。なお、図4及び図5においては、流路穴41p、41q、41rは60°よりも所定の角度だけ広く形成されている。そして、(360/N)°×M=(360/6)×3=180度だけ位相をずらした(N/M)=(6/3)=2種類(小数点以下繰り上げ)の長穴電磁鋼板41Y1と長穴電磁鋼板41Y2とが積層される。
 図7は図3の回転子に冷媒が流れる様子を示す断面図である。図7に示すように、回転子40の内部において、回転軸3aの周方向に形成された流路41FPを有することにより、流路41FPの面積が拡大され、放熱性を向上させることができるため、永久磁石42の温度を低下させることができる。よって、温度依存性を持つ永久磁石の磁束量、減磁耐力を改善することができる。
 すなわち、図8は従来の回転子における回転子鉄心のI-I断面の一例を示す断面図である。図8の従来の回転子鉄心は軸方向(矢印Z方向)のみに冷媒流路をもつ貫通電磁鋼板41Xが積層された群αのみで構成されている。軸方向(矢印Z方向)に直線状に貫通した冷媒流路が形成された状態になっている。このように、冷媒流の流路表面積が小さいため、上述した永久磁石の減磁耐力の低下を抑制するほどの放熱性を得るのが難しい。
 その他の方法として、流路表面積を拡大させ放熱性を向上させるために、冷媒流路に凹凸形状等を設けることが考えられる。さらに、冷媒流路拡大のために、軸方向の冷媒流路の本数を増やす、もしくは軸方向以外に半径方向にも冷媒流路を形成する方法が考えられる。しかしながら、冷媒流路が、磁石挿入穴付近もしくは磁石挿入穴よりも外周部に形成されている場合、電磁鋼板の磁路が縮小するために磁束密度が高くなる。このため、磁気飽和を起こす、もしくは固定子の作る回転磁界と回転子磁石による吸引反発作用に磁気的なアンバランスが生じる場合があり、性能低下もしくは騒音の増大に繋がる場合がある。一方、図3の回転子40においては、周方向に流路41FPを有するものであるため、有効表面積を図8の従来の回転子40よりも向上させることができる。
 また、回転子鉄心41が、上記長穴電磁鋼板41Y1、41Y2に加えて、軸方向に貫通した複数の貫通穴41a~41fが形成された貫通電磁鋼板41Xを有することにより、流路の有効表面積を増加させながら、回転子40の軸方向(矢印Z方向)の厚みを調整することができる。
 この際、貫通電磁鋼板41Xは、軸方向(矢印Z方向)の端面に積層されており、複数の貫通穴41a~41fがいずれも流路穴41p、41q、41rのいずれかに連通している場合、バランスウェイト46、47により吸入口41in(貫通穴41a~41f)の一部が塞がれた場合においても(図7参照)、他の貫通穴から流路穴へ冷媒が流路に流入する。このため、回転子40の端面に形成された冷媒の流入口が塞がれたことによる流路の有効表面積の減少を抑制することができる。
 具体的には、図9は図8の従来の回転子にバランスウェイトが取り付けられた様子を示す断面図である。図9のように、回転子に端板41E及びバランスウェイト46、47が取り付けられた場合、複数の流路のうち、1つもしくは複数の塞がれてしまう流路が存在する。すると、塞がれた流路内には冷媒が流通しないため、流路の有効表面積が減少してしまう場合がある。
 一方、図7の回転子40において、端板41E及びバランスウェイト46、47が回転子40の鉄心の端面に配置され、バランスウェイト46、47により吸入口41in(貫通穴41a~41f)又は吐出口41out(流路穴41p、41q、41r)の一部が塞がれた場合においても、他の吸入口41in又は吐出口41outから1つの流路41FP内全体に冷媒を流通させることができる。これにより、流路41FPの有効表面積が増大することになり、放熱性のよい回転子40を得ることができる。
 また、流路穴の合計角度Aが上記式(1)を満たすように形成されている場合、磁石挿入穴41mの位置が一致するように、複数の長穴電磁鋼板41Y1、41Y2同士が位相をずらして積層された際に、長穴電磁鋼板41Y1、41Y2間の流路穴41p、41q、41r同士を確実に連通させることができる。
実施の形態2.
 本発明に係る実施の形態2のモータの回転子鉄心のI-I断面を示す断面図、図11は図10の回転子鉄心に端板及びバランスウェイトを取り付けた回転子のI-I断面を示す断面図であり、図10及び図11を参照して回転子140について説明する。なお、図10及び図11の回転子140において図3の回転子40と同一の構成を有する部位には同一の符号を付してその説明を省略する。図10の回転子140が図3の回転子40と異なる点は、貫通電磁鋼板41Xを用いずに、長穴電磁鋼板41Y1、41Y2を用いて流路41FPが形成されている点である。
 図10及び図11に示すように、回転子140は、長穴電磁鋼板41Y1、41Y2を交互に積層させ形成されている。つまり、長穴電磁鋼板41Y1が、回転中心に対し(360/N)°×Mずつ回転させて位相をずらした状態で(N/M)種類分(小数点以下繰り上げ)積層されたものである。すると、積層された長穴電磁鋼板41Y1、41Y2の流路穴41p、41q、41r同士が軸方向において連通した状態になり、流路41FPは段差形状を有しながら周方向にほぼ螺旋状に延びるように形成される。
 回転子鉄心141の軸方向の端面に端板41E及びバランスウェイト46、47が配置される場合、バランスウェイト46、47により端面に位置する長穴電磁鋼板41Y1の一部の流路穴41r、41p、41qが塞がれることになる。一方で、長穴電磁鋼板41Y1、41Y2は、複数の流路穴を有するものであるため、冷媒は回転子の端面に位置する長穴電磁鋼板41Y1、41Y2の開いている吸入口41in(流路穴41p、41q、41r)から流路41FP全体へ冷媒が流入し、吐出口41out(流路穴41p、41q、41r)から流出することになる。
 上記実施の形態2の場合であっても、実施の形態1と同様、回転子40が回転軸3aの周方向に形成された流路41FPを有することにより、流路41FPの面積が拡大され、放熱性を向上させることができるため、永久磁石42の温度を低下させることができる。また、バランスウェイト46、47が取り付けられた場合であっても、回転子140に形成された流路全体に冷媒を流通させることができ、流路の有効表面積を従来の回転子(図8参照)よりも向上させることができる。
実施の形態3.
 図12~図17は本発明に係る実施の形態3の回転子鉄心の一例を示す平面図であり、図12~図17を参照して回転子鉄心241、341、441について説明する。なお、図12~図17の回転子鉄心241、341、441において実施の形態1の回転子鉄心41と同一の構成を有する部位には同一の符号を付してその説明を省略する。図12~図17の回転子鉄心241、341、441が実施の形態1の回転子鉄心41と異なる点は、磁極数N、整数M、合計角度Aである。
 図12及び図13の回転子鉄心241の長穴電磁鋼板241Y~241Y4は、磁極数N=4、整数(流路穴の個数)M=1であって、上記式(1)を満たす流路穴241pの合計角度A=120°に設定されたものである。なお、整数M=1であるため、流路穴241pが形成される角度の範囲はA/M=120°になっている。そして、図13(A)~(D)に示すように、長穴電磁鋼板241Y1が360/N×M=360/4×1=90°毎に回転軸3aに対し回転して位相がずれた状態で積層されていく。つまり、回転子鉄心241は、N/M=4つの位相がずれた状態の長穴電磁鋼板241Y1~241Y4が積層された状態になっている。
 図14及び図15の回転子鉄心341の長穴電磁鋼板341Y1~341Y3は、磁極数N=6、整数(流路穴の個数)M=2であって、上記式(1)を満たす流路穴241pの合計角度A=150°に設定したものである。なお、整数M=2であるため、流路穴241pが形成される角度の範囲は(A/M)=75°になっている。そして、図15(A)~(C)に示すように、長穴電磁鋼板341Y1が(360/N)°×M=360/6×2=120°毎に回転軸3aに対し回転して位相がずれた状態で積層されていく。つまり、回転子鉄心341は、(N/M)=3つの位相がずれた状態の長穴電磁鋼板341Y1~341Y3が積層された状態になっている。
 図16及び図17の回転子鉄心441の長穴電磁鋼板441Y1は、磁極数N=6、整数(穴数)M=1であって、上記式(1)を満たす流路穴441pの合計角度A=60°に設定したものである。なお、整数M=1であるため、流路穴441pが形成される角度の範囲はA/M=60°になっている。また、実施の形態1と同様、長穴電磁鋼板441Y1の流路穴441pが他の長穴電磁鋼板の流路穴441pに連通するように、流路穴441pが形成される角度の範囲は60°よりも所定の角度だけ広く形成されている。そして、図17に示すように、長穴電磁鋼板441Y1が360/N×M=360/6×1=60°毎に回転軸に対し回転して位相がずれた状態で積層されていく。つまり、回転子鉄心441は、N/M=6つの位相がずれた状態の長穴電磁鋼板441Y1が積層された状態になっている。
 上記実施の形態3の場合であっても、実施の形態1と同様、回転子鉄心241、341、441が回転軸3aの周方向に形成された流路41FPを有することにより、流路41FPの面積が拡大され、放熱性を向上させることができるため、永久磁石42の温度を低下させることができる。また、バランスウェイト46、47が取り付けられた場合であっても、回転子鉄心241、341、441に形成された流路全体に冷媒を流通させることができ、流路の有効表面積を従来の回転子(図8参照)よりも向上させることができる。
 なお、図12~図17において、長穴電磁鋼板241Y1~241Y4、341Y1~341Y3、441Y1が積層される場合について例示しているが、実施の形態1のように、貫通電磁鋼板41Xが介在するように積層されたものでもよいし、実施の形態2のように、貫通電磁鋼板41Xを用いずに、長穴電磁鋼板241Y1~241Y4、341Y1~341Y3、441Y1が積層されたものでもよい。
実施の形態4.
 図18は本発明に係る実施の形態4の回転子鉄心における長穴電磁鋼板の一例を示す平面図、図19は図18の長穴電磁鋼板を用いた回転子鉄心を示す平面図であり、図18を参照して回転子鉄心541について説明する。なお、図18の回転子鉄心541において実施の形態1の回転子鉄心41と同一の構成を有する部位には同一の符号を付してその説明を省略する。図18の回転子鉄心541が実施の形態1の回転子鉄心41と異なる点は、複数の流路541FP1、541FP2が形成される点である。
 回転子鉄心541において、複数の流路541FP1、541FP2が形成される際、整数Mは、N<Mという条件だけでなく、整数M≦(N/2)-1(Mは2以上)という条件が加えられる。図16及び図17において、長穴電磁鋼板541Y1は磁極数N=6、整数M=2(小数点繰り上げ)に設定されており、2つの流路穴541p、541qを設けた場合について例示している。そして、上記式(1)を満たす流路穴541p、541qの合計角度A=120°に設定したものである。なお、整数M=2であるため、流路穴541pが形成される角度の範囲はA/M=60°になっている。
 この長穴電磁鋼板541Y1が360/N×M=360/6×2=120°毎に回転軸に対し回転して位相がずれた状態で積層されていく。つまり、回転子鉄心541は、N/M=3つの位相がずれた状態の長穴電磁鋼板541Y1が積層された状態になっている。すると、長穴電磁鋼板541Y1の穴数=2つの互いに独立した流路541FP1、541FP2が形成されることになる。
 上記実施の形態4の場合であっても、実施の形態1と同様、回転子鉄心541が回転軸3aの周方向に形成された複数の流路541FP1、541FP2を有することにより、流路41FPの面積が拡大され、放熱性を向上させることができるため、永久磁石42の温度を低下させることができる。なお、実施の形態4においても、実施の形態1のように、貫通電磁鋼板41Xが介在するように積層されたものでもよい。
 本発明の実施の形態は、上記実施の形態に限定されない。例えば、図1の密閉型圧縮機1がいわゆる1シリンダ型の圧縮機からなる場合について例示しているが、圧縮要素10を2つ有する2シリンダ型のロータリ圧縮機であってもよい。また、図1の密閉型圧縮機1において、圧縮要素10と圧縮機用モータ20とが鉛直方向(矢印Z方向)に配列された場合について例示しているが、水平方向に配列されたものでもよい。また、図1において、密閉型圧縮機がロータリ型圧縮機の場合について例示しているが、スクロール型、レシプロ型等、電動機が密閉容器内に配置される密閉型圧縮機であればその圧縮構造を問わない。
 さらに、上記実施の形態1~4において、同一形状の長穴電磁鋼板が回転して位相をずらした状態で積層される場合について例示しているが、周方向に流路穴が互いに連通した状態で形成されているものであればよく、異なる形状を有する長穴電磁鋼板を積層するようにしてもよい。例えば図3に示すような群α、β、γの積層構造が2つある場合、一方の群β、γには図4及び図5に示すような長穴電磁鋼板41Y1、41Y2が用いられ、他方の一方の群β、γには図16及び図17に示すような長穴電磁鋼板441Y1が用いられても良い。すると、回転子が軸方向において異なる温度分布を有するような場合、軸方向に流路面積を変えることができ、回転子の温度特性に合致した流路を形成することができる。
 1 圧縮機、2 密閉容器、2a 上部容器、2b 下部容器、3 クランクシャフト、3a 回転軸、3b 偏心部、3c 副軸部、4 吐出管、5 吸入口、6 吸入連結管、7 吸入マフラー、8 ガラス端子、10 圧縮要素、11 シリンダ、11a 吐出マフラー、12 主軸受、13 副軸受、14 ローリングピストン、15 吐出マフラー、20 圧縮機用モータ、30 固定子、31 固定子鉄心、32 コイル、33 リード線、40、140 回転子、41、141、241、341、441、541 回転子鉄心、41CL 軸挿入穴、41E 端板、41FP、541FP1、541FP2 流路、41X 貫通電磁鋼板、41Y1、41Y2、241Y1、341Y1、441Y1、541Y1 長穴電磁鋼板、41a~41f 貫通穴、41in 吸入口、41m 磁石挿入穴、41out 吐出口、41p、41q、41r、241p、441p、541p、541q 流路穴、42 永久磁石、46、47 バランスウェイト、48 リベット、A 合計角度、M 整数(流通穴の個数)、N 磁極数。

Claims (10)

  1.  永久磁石が挿入される複数の磁石挿入穴と、前記磁石挿入穴の内周側に設けられ、流体が流通する流路と、前記流路の内周側に設けられ回転軸が挿入される軸挿入穴とが形成された回転子鉄心と、
     前記回転子鉄心の複数の前記磁石挿入穴に挿入された永久磁石と
     を有し、
     前記回転子鉄心には、軸方向の両端面に設けられた前記流路の吸入口及び吐出口と、前記吸入口及び前記吐出口に通じ、内部において周方向に延びる流路穴とが設けられているモータの回転子。
  2.  前記回転子鉄心は、複数の電磁鋼板を積層して形成されたものであり、
     複数の電磁鋼板は、周方向に延びる貫通した流路穴を有する複数の長穴電磁鋼板を含む請求項1に記載のモータの回転子。
  3.  複数の前記長穴電磁鋼板は、同一形状を有するものであり、回転軸を中心として周方向に回転させて前記流路穴の位相をずらし、前記流路穴が互いに連通しながら周方向にずれた状態で積層されている請求項2に記載のモータの回転子。
  4.  前記流路穴は、磁極数N、前記流路穴の個数M(M<N)、前記流路穴の回転軸に対する形成範囲の角度の合計角度をAとしたとき、下記式(2)を満たすものであり、
     前記回転子鉄心には、(360/N)°×M度毎に周方向に位相をずらした(N/M)層の複数の前記長穴電磁鋼板が含まれている請求項3に記載のモータの回転子。
    Figure JPOXMLDOC01-appb-M000001
  5.  前記流路穴の個数Mは、M≦(N/2)-1の関係を有するものであり、
     前記回転子鉄心は、互いに独立した複数の前記流路を有する請求項4に記載のモータの回転子。
  6.  前記回転子鉄心は、積層された複数の前記長穴電磁鋼板の前記流路穴が連通された1つの前記流路を有する請求項2~4のいずれか1項に記載のモータの回転子。
  7.  複数の前記電磁鋼板は、前記磁石挿入穴と、前記磁石挿入穴の内周側に設けられ、軸方向に貫通する複数の貫通穴とが形成された貫通電磁鋼板を含み、
     前記貫通電磁鋼板は、前記貫通穴が前記長穴電磁鋼板の流路穴に連通するように積層されている請求項2~6のいずれか1項に記載のモータの回転子。
  8.  前記貫通電磁鋼板は、軸方向の端面に積層されており、
     端面に積層された前記貫通電磁鋼板のすべての前記貫通穴は、それぞれ前記長穴電磁鋼板の前記流路穴に連通している請求項7に記載のモータの回転子。
  9.  請求項1~8のいずれか1項に記載のモータの回転子と、
     前記回転子の外周に配置され、コイルを有する固定子とを備えた圧縮機用モータ。
  10.  請求項9に記載の圧縮機用モータと、
     前記圧縮機用モータに接続され、前記圧縮機用モータの駆動により回転するクランクシャフトと、
     前記クランクシャフトに接続され、流体を圧縮する圧縮要素と
     を備えた圧縮機。
PCT/JP2015/056870 2015-03-09 2015-03-09 モータの回転子及びこれを用いた圧縮機用モータ並びに圧縮機 WO2016143047A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/529,159 US10432050B2 (en) 2015-03-09 2015-03-09 Motor rotor, and compressor motor and compressor incorporated with the motor rotor
PCT/JP2015/056870 WO2016143047A1 (ja) 2015-03-09 2015-03-09 モータの回転子及びこれを用いた圧縮機用モータ並びに圧縮機
JP2017504469A JP6422566B2 (ja) 2015-03-09 2015-03-09 モータの回転子及びこれを用いた圧縮機用モータ並びに圧縮機
CN201620130846.1U CN205565930U (zh) 2015-03-09 2016-02-19 马达的转子和使用该马达的转子的压缩机用马达及压缩机
CN201610094831.9A CN105958686B (zh) 2015-03-09 2016-02-19 马达的转子和使用该马达的转子的压缩机用马达及压缩机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/056870 WO2016143047A1 (ja) 2015-03-09 2015-03-09 モータの回転子及びこれを用いた圧縮機用モータ並びに圧縮機

Publications (1)

Publication Number Publication Date
WO2016143047A1 true WO2016143047A1 (ja) 2016-09-15

Family

ID=56818932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056870 WO2016143047A1 (ja) 2015-03-09 2015-03-09 モータの回転子及びこれを用いた圧縮機用モータ並びに圧縮機

Country Status (4)

Country Link
US (1) US10432050B2 (ja)
JP (1) JP6422566B2 (ja)
CN (2) CN205565930U (ja)
WO (1) WO2016143047A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018074759A (ja) * 2016-10-28 2018-05-10 日産自動車株式会社 回転電機のロータ
WO2024161555A1 (ja) * 2023-02-01 2024-08-08 ファナック株式会社 電動機のステータコア、ステータ、電動機、及び、ステータコアを製造する方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143047A1 (ja) * 2015-03-09 2016-09-15 三菱電機株式会社 モータの回転子及びこれを用いた圧縮機用モータ並びに圧縮機
KR102069537B1 (ko) * 2016-01-27 2020-02-11 미쓰비시덴키 가부시키가이샤 착자 방법, 회전자, 전동기 및 스크롤 압축기
JP7078360B2 (ja) * 2017-06-27 2022-05-31 トヨタ自動車株式会社 ロータコア
US10923972B2 (en) 2017-12-01 2021-02-16 American Axle & Manufacturing, Inc. Electric motor having stator with laminations configured to form distinct cooling channels
JP6755921B2 (ja) * 2018-10-19 2020-09-16 本田技研工業株式会社 ロータ
DE102018220407A1 (de) * 2018-11-28 2020-05-28 Robert Bosch Gmbh Rotor einer elektrischen Maschine
CN109510340B (zh) * 2018-12-14 2020-06-26 新疆金风科技股份有限公司 冲片、电机铁芯、电机系统及风力发电机组
CN111697730A (zh) * 2019-03-13 2020-09-22 福特全球技术公司 包括冷却管道的转子、转子成型方法以及电机冷却系统
CN113890235A (zh) * 2021-10-26 2022-01-04 山东博源精密机械有限公司 一种新能源汽车的铸铝转子及其散热装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181644A (ja) * 1987-01-22 1988-07-26 Mayekawa Mfg Co Ltd 密封型電動機の回転子の冷却装置
JP2001016826A (ja) * 1999-06-29 2001-01-19 Shinko Electric Co Ltd 電動機ロータ及び電動機の冷却方法
JP2008178233A (ja) * 2007-01-19 2008-07-31 Daikin Ind Ltd モータおよび圧縮機

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1118339A (ja) * 1997-06-27 1999-01-22 Aisin Aw Co Ltd モータ
JP2004129407A (ja) 2002-10-03 2004-04-22 Nissan Motor Co Ltd 電動機の冷却構造
JP4096858B2 (ja) 2002-10-23 2008-06-04 日産自動車株式会社 車両用電動モータの冷却装置
JP2006166543A (ja) * 2004-12-06 2006-06-22 Matsushita Electric Ind Co Ltd 電動機
JP4755117B2 (ja) 2007-01-29 2011-08-24 三菱電機株式会社 永久磁石埋込型モータの回転子及び送風機及び圧縮機
JP5118920B2 (ja) * 2007-08-28 2013-01-16 トヨタ自動車株式会社 ロータおよび回転電機
JP2011254576A (ja) 2010-05-31 2011-12-15 Aisin Seiki Co Ltd 回転電機用ロータ
DE102010038529A1 (de) * 2010-07-28 2012-02-02 Siemens Aktiengesellschaft Fluidgekühlte elektrische Maschine
JP5740416B2 (ja) 2013-01-18 2015-06-24 東芝三菱電機産業システム株式会社 回転電機
JP2014220901A (ja) * 2013-05-08 2014-11-20 三菱電機株式会社 永久磁石埋込型回転電機
WO2015148258A1 (en) * 2014-03-27 2015-10-01 Prippel Technologies, Inc. Induction motor with transverse liquid cooled rotor and stator
US20160261169A1 (en) * 2015-03-07 2016-09-08 Atieva, Inc. Motor Rotor Cooling System
WO2016143047A1 (ja) * 2015-03-09 2016-09-15 三菱電機株式会社 モータの回転子及びこれを用いた圧縮機用モータ並びに圧縮機
JP6269600B2 (ja) * 2015-07-06 2018-01-31 トヨタ自動車株式会社 回転電機のロータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181644A (ja) * 1987-01-22 1988-07-26 Mayekawa Mfg Co Ltd 密封型電動機の回転子の冷却装置
JP2001016826A (ja) * 1999-06-29 2001-01-19 Shinko Electric Co Ltd 電動機ロータ及び電動機の冷却方法
JP2008178233A (ja) * 2007-01-19 2008-07-31 Daikin Ind Ltd モータおよび圧縮機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018074759A (ja) * 2016-10-28 2018-05-10 日産自動車株式会社 回転電機のロータ
WO2024161555A1 (ja) * 2023-02-01 2024-08-08 ファナック株式会社 電動機のステータコア、ステータ、電動機、及び、ステータコアを製造する方法

Also Published As

Publication number Publication date
JP6422566B2 (ja) 2018-11-14
US20180048202A1 (en) 2018-02-15
JPWO2016143047A1 (ja) 2017-09-14
CN105958686A (zh) 2016-09-21
CN205565930U (zh) 2016-09-07
CN105958686B (zh) 2019-03-01
US10432050B2 (en) 2019-10-01

Similar Documents

Publication Publication Date Title
JP6422566B2 (ja) モータの回転子及びこれを用いた圧縮機用モータ並びに圧縮機
JP6858845B2 (ja) ロータ、電動機、圧縮機および空気調和装置
KR101188558B1 (ko) 유도 전동기 및 밀폐형 압축기
JP6571293B2 (ja) 回転子、回転電機、および圧縮機
KR100927926B1 (ko) 단상 전동기 및 밀폐형 압축기
JP5143166B2 (ja) 単相誘導電動機及び密閉型圧縮機
JP5490251B2 (ja) 誘導電動機の回転子及び誘導電動機及び圧縮機及び送風機及び空気調和機
US8410655B2 (en) Stator, motor, and compressor
EP2113985A1 (en) Motor, and compressor
JP6305535B2 (ja) 回転子、電動機、圧縮機、及び送風機
CN107431394A (zh) 压缩机用永久磁铁埋入型电动机、压缩机以及制冷循环装置
CN109923757B (zh) 永久磁铁式旋转电机及使用永久磁铁式旋转电机的压缩机
JP6328342B2 (ja) ロータ、電動機、圧縮機および冷凍空調機
JP2010226830A (ja) 電動機及びそれを搭載した圧縮機
CN106464046A (zh) 压缩机、制冷循环装置和空调机
JP5159807B2 (ja) 単相誘導電動機及び密閉型圧縮機
JP6556342B2 (ja) 固定子、モータ、圧縮機および冷凍サイクル装置
JP2011147313A (ja) 電動機および圧縮機並びに冷凍サイクル装置
JP5230574B2 (ja) 圧縮機用電動機及び圧縮機及び冷凍サイクル装置
CN107534370A (zh) 压缩机用电动机、压缩机及制冷循环装置
JP6641476B2 (ja) 回転子、電動機、及び、圧縮機
JP4969216B2 (ja) 永久磁石同期電動機及び圧縮機
JP2005168299A (ja) 電動機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15884543

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15529159

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017504469

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15884543

Country of ref document: EP

Kind code of ref document: A1