WO2016140302A1 - ポリイミド前駆体、並びに該前駆体を有する液晶配向剤、液晶配向膜及び液晶表示素子 - Google Patents
ポリイミド前駆体、並びに該前駆体を有する液晶配向剤、液晶配向膜及び液晶表示素子 Download PDFInfo
- Publication number
- WO2016140302A1 WO2016140302A1 PCT/JP2016/056560 JP2016056560W WO2016140302A1 WO 2016140302 A1 WO2016140302 A1 WO 2016140302A1 JP 2016056560 W JP2016056560 W JP 2016056560W WO 2016140302 A1 WO2016140302 A1 WO 2016140302A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquid crystal
- group
- polyimide precursor
- diamine
- formula
- Prior art date
Links
- 0 C*(C1OC1C(*)(P*)PN=O)=* Chemical compound C*(C1OC1C(*)(P*)PN=O)=* 0.000 description 15
- WZCQRUWWHSTZEM-UHFFFAOYSA-N Nc1cc(N)ccc1 Chemical compound Nc1cc(N)ccc1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 4
- WLHJCCUFRCTNRZ-UHFFFAOYSA-N C(CC1)CCC1(c1ccccc1)c1ccccc1 Chemical compound C(CC1)CCC1(c1ccccc1)c1ccccc1 WLHJCCUFRCTNRZ-UHFFFAOYSA-N 0.000 description 1
- GBGFUQOSVTZLFA-SVGFKBNWSA-N C(C[C@H]1CC2)C[C@H]1[C@H]1[C@H]2c2ccccc2CC1 Chemical compound C(C[C@H]1CC2)C[C@H]1[C@H]1[C@H]2c2ccccc2CC1 GBGFUQOSVTZLFA-SVGFKBNWSA-N 0.000 description 1
- UJOBWOGCFQCDNV-UHFFFAOYSA-N c1ccc2[nH]c(cccc3)c3c2c1 Chemical compound c1ccc2[nH]c(cccc3)c3c2c1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 1
- JWVCLYRUEFBMGU-UHFFFAOYSA-N c1ccc2ncncc2c1 Chemical compound c1ccc2ncncc2c1 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N c1cncnc1 Chemical compound c1cncnc1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N c1nc2ccccc2[nH]1 Chemical compound c1nc2ccccc2[nH]1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N c1nc2ccccc2[o]1 Chemical compound c1nc2ccccc2[o]1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- JIHQDMXYYFUGFV-UHFFFAOYSA-N c1ncncn1 Chemical compound c1ncncn1 JIHQDMXYYFUGFV-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C217/00—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
- C07C217/78—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
- C07C217/80—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
- C07C217/82—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
- C07C217/84—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom
- C07C217/86—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom to an acyclic carbon atom of a hydrocarbon radical containing six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/1003—Preparatory processes
- C08G73/1007—Preparatory processes from tetracarboxylic acids or derivatives and diamines
- C08G73/1025—Preparatory processes from tetracarboxylic acids or derivatives and diamines polymerised by radiations
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K19/00—Liquid crystal materials
- C09K19/52—Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
- C09K19/54—Additives having no specific mesophase characterised by their chemical composition
- C09K19/56—Aligning agents
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
Definitions
- the present invention relates to a polyimide precursor having a relatively large amount of radical generation, which can be used for a vertical alignment type liquid crystal display device produced by irradiating ultraviolet rays with voltage applied to liquid crystal molecules, and the polyimide precursor.
- the present invention relates to a liquid crystal alignment agent having a liquid crystal alignment film, a liquid crystal alignment film formed using the liquid crystal alignment agent, and a liquid crystal display element formed using the liquid crystal alignment film.
- a liquid crystal display element of a method in which liquid crystal molecules aligned perpendicular to the substrate respond by an electric field (also referred to as a vertical alignment (VA) method) is irradiated with ultraviolet rays while applying a voltage to the liquid crystal molecules in the manufacturing process.
- VA vertical alignment
- a photopolymerizable compound is previously added to the liquid crystal composition, and a polyimide-based vertical alignment film is used, and ultraviolet rays are applied while applying a voltage to the liquid crystal cell. Therefore, a technique for increasing the response speed of liquid crystal (PSA (Polymer Sustained Alignment) type element, see, for example, Patent Document 1 and Non-Patent Document 1) is known.
- PSA Polymer Sustained Alignment
- the direction in which the liquid crystal molecules incline in response to an electric field is usually controlled by protrusions provided on the substrate or slits provided on the display electrode, but photopolymerization is performed in the liquid crystal composition.
- photopolymerization is performed in the liquid crystal composition.
- the polymerizable compound reacts efficiently and exhibits the ability to fix alignment by irradiation with ultraviolet rays having a long wavelength without decomposition of components in the liquid crystal. Furthermore, it is necessary that unreacted polymerizable compound does not remain after ultraviolet irradiation and does not adversely affect the reliability of the liquid crystal display element.
- An object of the present invention is to improve the response speed of a liquid crystal display device obtained by using a step of reacting a polymerizable compound in a liquid crystal and / or a liquid crystal alignment film without the above-mentioned problems of the prior art.
- An object of the present invention is to provide a liquid crystal aligning agent, a liquid crystal aligning film, and a liquid crystal display element that can be used. More specifically, an object of the present invention is to provide a polyimide precursor having a relatively large amount of radical generation, and by using the polyimide precursor, the reaction of the polymerizable compound is promoted, and the pretilt angle in the liquid crystal is efficiently increased. The desired value is set to improve the response speed of the liquid crystal display element.
- the inventors of the present invention have made a polyimide precursor a specific structure in which a radical is generated by ultraviolet irradiation and a relatively large amount of radical is generated with respect to the polymer constituting the liquid crystal aligning agent.
- the reaction of the polymerizable compound in the liquid crystal display device obtained by using the step of reacting the polymerizable compound in the liquid crystal and / or the liquid crystal alignment film by introducing and using the liquid crystal aligning agent having the polyimide precursor.
- the said polyimide precursor characterized by having more radical generation amount at the time of light irradiation on the same conditions than the 2nd polyimide precursor formed on the same conditions as a polyimide precursor.
- the wavelength of light upon light irradiation is preferably 300 nm to 400 nm.
- the first photoradical-generating diamine may be 0.1 to 100 mol% in 100 mol% of all diamines constituting the polyimide precursor.
- the first photoradical-generating diamine is represented by the formula (A) (In the formula, Ar represents an aromatic hydrocarbon group which may have a substituent, R 101 represents a divalent organic group, R 102 to R 104 each independently represents a monovalent organic group) It is good to have the following structure.
- -R 101 - is -T 1 -ST 2- (Where T 1 and T 2 are each independently a single bond, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ).
- S is a single bond or an alkylene group having 1 to 20 carbon atoms which is unsubstituted or substituted by a fluorine atom (—CH 2 — or —CF 2 — in an alkylene group is —CH ⁇ CH—, or A group selected from group G (wherein the groups selected from group G are not adjacent to each other) (group G: —O—, —COO—, —OCO—, —NHCO—, -CONH-, -NH-, divalent carbocycle or divalent heterocycle))))
- group G wherein the groups selected from group G are not adjacent to each other
- any one of R 102 to R 104 is —OR 111 (where R 111 is an unsubstituted or substituted carbon atom having 1 to 20 carbon atoms)
- a linear, branched or cyclic alkyl group (wherein —CH 2 — or —CF 2 — in the alkyl group is —CH ⁇ CH— or a group selected from the following group G (provided that the group G is selected): Groups that are not adjacent to each other) (group G: —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, a divalent carbocycle or two Valent heterocycle)), and The other two are each independently a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, —OR 112 (R 112 is an unsubstituted or substituted carbon atom having 1 to 20 carbon atoms.
- a linear, branched or cyclic alkyl group or a group selected from the group consisting of optionally substituted aryl groups having 6 to 20 carbon atoms), a benzyl group, or a phenethyl group (In the case where the other two are the alkyl group or —OR 112 , they may be bonded to each other to form a ring).
- Ar may be a phenylene group.
- the first photoradical-generating diamine is represented by the following formula (2) (wherein Ar and R 101 to R 104 have the same definition as described above): It is good to be represented by
- the first photoradical-generating diamine may be represented by the following formula (3).
- the polyimide precursor may further have a side chain for vertically aligning the liquid crystal.
- the polyimide precursor may further have a side chain including a photoreactive group in the structure.
- a liquid crystal aligning agent comprising the polyimide precursor of any one of the above ⁇ 1> to ⁇ 11> and / or the polyimide of the above ⁇ 12>.
- a liquid crystal display element obtained by reacting the polymerizable compound by irradiating ultraviolet rays while applying a voltage, containing a polymerizable compound in the liquid crystal and / or the liquid crystal alignment film It is good to be used for manufacturing.
- a liquid crystal display device comprising the liquid crystal alignment film of ⁇ 15>.
- T 1 and T 2 are each independently a single bond, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N (CH 3 ) —, —CON (CH 3 ) —, or —N (CH 3 ) CO—
- S is a single bond or an alkylene group having 1 to 20 carbon atoms which is unsubstituted or substituted by a fluorine atom (—CH 2 — or —CF 2 — in an alkylene group is —CH ⁇ CH—, or
- group G wherein the groups selected from group G are not adjacent to each other) (group G: —O—, —COO—, —OCO—, —NHCO—, -CONH-, -NH-, divalent carbocycle or divalent hetero
- R 102 to R 104 is —OR 111 (wherein R 111 is an unsubstituted or linear or branched or cyclic alkyl group having 1 to 20 carbon atoms substituted by a fluorine atom (alkyl —CH 2 — or —CF 2 — in the group is replaced by —CH ⁇ CH— or a group selected from the following group G (provided that the groups selected from group G are not adjacent to each other): May be substituted (group G: —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, divalent carbocycle or divalent heterocycle)) And The other two are each independently a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, —OR 112 (R 112 is an unsubstituted or substituted carbon atom having 1 to 20 carbon atoms.
- a linear, branched or cyclic alkyl group or a group selected from the group consisting of optionally substituted aryl groups having 6 to 20 carbon atoms), a benzyl group, or a phenethyl group (In the case where the other two are the alkyl group or —OR 112 , they may be bonded to each other to form a ring).
- the diamine according to any one of the above ⁇ 17> to ⁇ 19> may be represented by the following formula (2) (Ar and R 101 to R 104 have the same definition as described above).
- the diamine of any one of the above ⁇ 17> to ⁇ 20> has the following formula (4) (R 103 and R 104 , and R 111 have the same definition as described above, and X 101 is a single bond or CO It is good to be represented by.
- the diamine of any of the above ⁇ 17> to ⁇ 21> may be selected from the group consisting of the following formulas (3) to (3) -12.
- a diamine selected from the group consisting of the following formulas (3) to (3) -12.
- the diamine of any one of the above items ⁇ 17> to ⁇ 25> may be 0.1 to 100 mol% in 100 mol% of all diamines constituting the polyimide precursor.
- the polyimide precursor according to ⁇ 26> or ⁇ 27> may further include a side chain for vertically aligning the liquid crystal.
- the side chain for vertically aligning the liquid crystal has the following formula [II-1] (in the formula [II-1], X 1 represents a single bond, — (CH 2 ) a — ( a represents an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—, X 2 is a single bond or (CH 2 ) b — (b is 1 to 15 X 3 represents a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O—, —COO— or OCO—.
- X 4 is a benzene ring, a cyclohexane ring, and represents a divalent cyclic group selected from heterocyclic, any hydrogen atom in these cyclic groups, an alkyl group having 1 to 3 carbon atoms, 1 to 3 carbon atoms An alkoxyl group, a fluorine-containing alkyl group having 1 to 3 carbon atoms, a fluorine-containing alkoxyl group having 1 to 3 carbon atoms, or a fluorine atom May be conversion, further, X 4 is may be a divalent organic group selected from an organic group having a carbon number of 17 to 51 having a steroid skeleton .
- X 5 is a benzene ring, cyclohexane ring and heterocyclic And an arbitrary hydrogen atom on these cyclic groups is an alkyl group having 1 to 3 carbon atoms, an alkoxyl group having 1 to 3 carbon atoms, or a fluorine-containing alkyl group having
- X 6 is an alkyl group having 1 to 18 carbon atoms, 1 to 18 carbon atoms And a fluorine-containing alkyl group having 1 to 18 carbon atoms or a fluorine-containing alkoxyl group having 1 to 18 carbon atoms.
- X 7 represents a single bond, —O—, —CH 2 O—, —CONH—, —NHCO—, —CON (CH 3 ) —, —N (CH 3 ) CO— And represents —COO— or OCO—, wherein X 8 represents an alkyl group having 8 to 22 carbon atoms or a fluorine-containing alkyl group having 6 to 18 carbon atoms.) It is good that it is at least one selected from.
- the polyimide precursor according to any one of the above ⁇ 26> to ⁇ 29> may further have a side chain containing a photoreactive group in the structure.
- a side chain containing a photoreactive group in the structure thereof The following formula [III] (In the formula [III], R 8 represents a single bond, —CH 2 —, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, — Represents N (CH 3 ) —, —CON (CH 3 ) —, or —N (CH 3 ) CO—, wherein R 9 is a single bond, alkylene having 1 to 20 carbon atoms which may be substituted with a fluorine atom The alkylene group —CH 2 — may be optionally substituted with —CF 2 — or —CH ⁇ CH—, and if any of the following groups are not
- Y 2 has 1 to 30 carbon atoms.
- An alkylene group, a divalent carbocycle or a heterocycle, and one or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocycle may be substituted with a fluorine atom or an organic group.
- —CH 2 — when the following groups are not adjacent to each other, —CH 2 — may be substituted by these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, — NH—, —NHCONH—, —CO—
- Y 3 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, —CO—, or represents a bond .
- Y 4 is .
- Y 5 is a single bond representing a cinnamoyl group, 1 to 3 carbon atoms
- An alkylene group, a divalent carbocycle or a heterocycle, and one or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocycle may be substituted with a fluorine atom or an organic group.
- Y 5 when the following groups are not adjacent to each other, —CH 2 — may be substituted with these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—, wherein Y 6 represents a photopolymerizable group which is an acryl group or a methacryl group. It is good to be represented by
- ⁇ 31> A polyimide obtained by imidizing any of the polyimide precursors of ⁇ 26> to ⁇ 30>.
- ⁇ 32> A liquid crystal aligning agent comprising the polyimide precursor of any one of the above ⁇ 26> to ⁇ 31> and / or the polyimide of the above ⁇ 31>.
- ⁇ 33> In the above ⁇ 32>, a liquid crystal display element obtained by reacting the polymerizable compound by irradiating ultraviolet rays while applying a voltage, containing a polymerizable compound in the liquid crystal and / or the liquid crystal alignment film It is good to be used for manufacturing.
- ⁇ 34> A liquid crystal alignment film formed with the liquid crystal aligning agent according to ⁇ 32> or ⁇ 33>.
- ⁇ 35> A liquid crystal display device comprising the liquid crystal alignment film of ⁇ 34>.
- a polyimide precursor having a relatively large amount of radical generation can be provided.
- a liquid crystal aligning agent having the polyimide precursor and / or a liquid crystal aligning film formed with the liquid crystal aligning agent even if the irradiation amount of ultraviolet rays is relatively low, A desired pretilt angle can be obtained in the liquid crystal, and accordingly, a vertical alignment type liquid crystal display element, particularly a PSA type liquid crystal display element, having a high response speed can be provided.
- the present invention relates to a polyimide precursor having a relatively large amount of radical generation, a diamine constituting the polyimide, a liquid crystal alignment agent having the polyimide precursor, a liquid crystal alignment film formed using the liquid crystal alignment agent, and the A liquid crystal display element is provided.
- a polyimide precursor with a relatively large amount of radical generation The present invention provides a polyimide precursor having a relatively large amount of radical generation.
- the present invention provides a polyimide precursor using a first photoradical-generating diamine.
- the polyimide precursor using the first photoradical diamine was formed under the same conditions except that the first photoradical diamine was replaced with the second photoradical diamine represented by formula (1).
- the amount of radical generation upon light irradiation under the same conditions is larger than that of the second polyimide precursor.
- the wavelength of light “when irradiated with light under the same conditions” may be 300 to 400 nm, preferably 310 to 380 nm, more preferably 350 to 370 nm.
- the “polyimide precursor” means a product obtained by reacting a diamine component with a tetracarboxylic dianhydride component.
- “to a polyimide precursor using a diamine” or “a polyimide precursor is formed using a to diamine” means “to diamine” as a raw material for the polyimide precursor. It means being used.
- the “diamine” includes a case where it is a part or the whole of a raw material.
- a ⁇ diamine constituting a polyimide precursor means “a ⁇ diamine” is used as a raw material for the polyimide precursor to form the polyimide precursor.
- the “diamine” includes a case where it is a part or the whole of a raw material.
- the first photo radical generating diamine is 0.1 to 100 mol%, preferably 10 to 80 mol%, more preferably 30 out of 100 mol% of the total diamine constituting the polyimide precursor. It should be ⁇ 50 mol%.
- the first photoradical-generating diamine has the formula (A) (In the formula, Ar represents an aromatic hydrocarbon group which may have a substituent, R 101 represents a divalent organic group, R 102 to R 104 each independently represents a monovalent organic group) It is good to have the following structure.
- T 1 and T 2 are each independently a single bond, —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, —CH 2 O—, —N ( CH 3 ) —, —CON (CH 3 ) —, or —N (CH 3 ) CO—
- S is a single bond or an alkylene group having 1 to 20 carbon atoms which is unsubstituted or substituted by a fluorine atom (—CH 2 — or —CF 2 — in an alkylene group is —CH ⁇ CH—, or A group selected from group G (wherein the groups selected from group G are not adjacent to each other) (group G: —O—, —COO—, —OCO—, —NHCO—, -CONH-, -NH-, divalent carbocycle or divalent heterocycle
- R 102 to R 104 is —OR 111 (wherein R 111 is an unsubstituted or linear or branched or cyclic alkyl group having 1 to 20 carbon atoms substituted by a fluorine atom (alkyl —CH 2 — or —CF 2 — in the group is replaced by —CH ⁇ CH— or a group selected from the following group G (provided that the groups selected from group G are not adjacent to each other): May be substituted (group G: —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, divalent carbocycle or divalent heterocycle)) And The other two are each independently a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, —OR 112 (R 112 is an unsubstituted or substituted carbon atom having 1 to 20 carbon atoms.
- a linear, branched or cyclic alkyl group or a group selected from the group consisting of optionally substituted aryl groups having 6 to 20 carbon atoms), a benzyl group, or a phenethyl group (In the case where the other two are the alkyl group or —OR 112 , they may be bonded to each other to form a ring).
- Ar is preferably a group selected from phenylene, naphthylene and biphenylene. Since Ar to which carbonyl is bonded is involved in the absorption wavelength of ultraviolet rays, a structure having a long conjugate length such as naphthylene or biphenylene is preferable when the wavelength is increased. Ar may be substituted with a substituent, and such a substituent is preferably an electron-donating organic group such as an alkyl group, a hydroxyl group, an alkoxy group, and an amino group. However, when Ar has a structure such as naphthylene or biphenylene, the solubility becomes poor and the difficulty of synthesis increases. Therefore, a phenyl group is most preferred because sufficient characteristics can be obtained with a phenyl group when the wavelength of ultraviolet rays is in the range of 300 nm to 400 nm, preferably 310 to 380 nm.
- the first photoradical-generating diamine is preferably represented by the following formula (2) (Ar and R 101 to R 104 have the same definition as described above).
- the diaminobenzene may have a structure of any of o-phenylenediamine, m-phenylenediamine, and p-phenylenediamine. However, in terms of reactivity with acid dianhydride, diaminobenzene may be m-phenylenediamine or p-phenylenediamine. Phenylenediamine is preferred.
- the first photoradical-generating diamine is represented by the following formula (4) (R 103 and R 104 , and R 111 have the same definition as described above, and X 101 represents a single bond or CO).
- X 101 represents a single bond or CO).
- it is a diamine.
- examples of the first photoradical-generating diamine include, but are not limited to, the following formulas (3) to (3) -12.
- the first photoradical-generating diamine is particularly preferably a diamine represented by the formula (3).
- the polyimide precursor of the present invention preferably further has a side chain for vertically aligning the liquid crystal.
- the side chain for vertically aligning the liquid crystal is represented by the following formula [II-1] or [II-2].
- X 1 to X 6 and n are as defined above.
- X 7 and X 8 are as defined above.
- X 1 is a single bond, — (CH 2 ) a — (a is an integer of 1 to 15), —O—, —CH 2 O, from the viewpoint of availability of raw materials and ease of synthesis.
- -Or COO- is preferred, and more preferred is a single bond,-(CH 2 ) a- (a is an integer of 1 to 10), -O-, -CH 2 O- or COO-.
- X 2 is preferably a single bond or (CH 2 ) b — (b is an integer of 1 to 10).
- X 3 is preferably a single bond, — (CH 2 ) c — (c is an integer of 1 to 15), —O—, —CH 2 O— or COO— from the viewpoint of ease of synthesis.
- a single bond, — (CH 2 ) c — (c is an integer of 1 to 10), —O—, —CH 2 O— or COO— is preferable.
- X 4 is preferably an organic group having 17 to 51 carbon atoms having a benzene ring, a cyclohexane ring or a steroid skeleton from the viewpoint of ease of synthesis.
- X 5 is preferably a benzene ring or a cyclohexane ring.
- n is preferably 0 to 3 and more preferably 0 to 2 in view of availability of raw materials and ease of synthesis.
- X 6 is preferably an alkyl group having 1 to 18 carbon atoms, a fluorine-containing alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 18 carbon atoms, or a fluorine-containing alkoxyl group having 1 to 10 carbon atoms. More preferably, it is an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms. Particularly preferred is an alkyl group having 1 to 9 carbon atoms or an alkoxyl group having 1 to 9 carbon atoms.
- the organic group having 17 to 51 carbon atoms having a steroid skeleton in the present invention has 12 to 20 carbon atoms having a steroid skeleton.
- An organic group having 12 to 25 carbon atoms having a steroid skeleton is to be read as an organic group having 17 to 51 carbon atoms having a steroid skeleton.
- (2-25) to (2-96), (2-145) to (2-168), (2-217) to (2-240), (2-268) to (2-315) , (2-364) to (2-387), (2-436) to (2-483), or (2-603) to (2-615) are preferred.
- Particularly preferred combinations are (2-49) to (2-96), (2-145) to (2-168), (2-217) to (2-240), (2-603) to (2- 606), (2-607) to (2-609), (2-611), (2-612) or (2-624).
- X 7 is preferably a single bond, —O—, —CH 2 O—, —CONH—, —CON (CH 3 ) — or COO—, more preferably a single bond.
- X 8 is preferably an alkyl group having 8 to 18 carbon atoms.
- the side chain for vertically aligning the liquid crystal it is preferable to use a structure represented by the formula [II-1] from the viewpoint of enhancing and stabilizing the alignment of the liquid crystal.
- the ability of a polyimide precursor having a side chain for vertically aligning the liquid crystal to vertically align the liquid crystal varies depending on the structure of the side chain for vertically aligning the liquid crystal. As the amount of chains increases, the ability to orient liquid crystals vertically increases and decreases as they decrease. Moreover, when it has a cyclic structure, compared with what does not have a cyclic structure, there exists a tendency for the capability to orientate a liquid crystal vertically.
- the polyimide precursor of the present invention may have a photoreactive side chain.
- the photoreactive side chain has a functional group (also referred to as a photoreactive group in this specification) that can react by irradiation with light such as ultraviolet rays (UV) to form a covalent bond. That is, the polyimide precursor of the present invention preferably further has a side chain containing a photoreactive group in the structure.
- the photoreactive side chain may be directly bonded to the main chain of the polymer, or may be bonded via a linking group.
- the photoreactive side chain is represented, for example, by the following formula [III].
- R 8 , R 9 and R 10 are as defined above.
- R 8 is preferably a single bond, —O—, —COO—, —NHCO, or —CONH—.
- R 9 can be formed by a common organic synthetic method, but from the viewpoint of ease of synthesis, a single bond or an alkylene group having 1 to 12 carbon atoms is preferable.
- divalent carbocycle or heterocycle for replacing any —CH 2 — in R 9 include the following.
- R 10 is preferably a methacryl group, an acryl group or a vinyl group from the viewpoint of photoreactivity.
- the amount of the photoreactive side chain is preferably within a range in which the response speed of the liquid crystal can be increased by reacting with ultraviolet irradiation to form a covalent bond. In order to further increase the response speed of the liquid crystal It is preferable that it is as many as possible within a range that does not affect other characteristics.
- the method for producing a polyimide precursor using the first photoradical-generating diamine and a polyimide obtained by imidizing the polyimide precursor is not particularly limited. Examples thereof include a method of polymerizing a first photoradical-generating diamine and tetracarboxylic dianhydride, a method of polymerizing a first photoradical-generating diamine and other diamines and tetracarboxylic dianhydride, and the like.
- the same method as described above may be used for the method of producing a polyimide precursor further having a side chain and / or a photoreactive side chain for vertically aligning the liquid crystal, and a polyimide obtained by imidizing the polyimide precursor.
- the preferred method also includes a first photoradical-generating diamine containing a side chain for vertically aligning liquid crystals and / or a first photoradical-generating diamine containing a photoreactive side chain, and a tetracarboxylic acid diester.
- a method of polymerizing the anhydride is preferred.
- the first photo-radical-generating diamine is a dinitro compound through each step, a mononitro compound having an amino group with a protective group that can be removed in the reduction process, or a diamine, which is usually used for reduction. It can be obtained by converting the nitro group to an amino group or deprotecting the protecting group by reaction.
- the method for synthesizing the first photoradical-generating diamine synthesis method of the present invention is not particularly limited.
- the following formula (5) in formula (5), Ar, R 101 to R 104 are represented by the above formula (A And the same definition as in the above), and a method of synthesizing the compound by reducing the nitro group and converting it to an amino group.
- the method for reducing the nitro group is not particularly limited.
- a reduction method in which the unsaturated bond is not reduced can be used. As long as the unsaturated bond is not reduced, the reduction method is not particularly limited.
- hydrogen gas is used using reduced iron, tin, tin chloride, poisoned palladium-carbon, poisoned platinum-carbon as a catalyst. , Hydrazine, hydrogen chloride, ammonium chloride and the like.
- a reduction method in which the benzyl group is not cleaved can be used.
- the reduction method is not limited as long as the benzyl group is not cleaved.
- platinum black, rhodium-alumina, platinum sulfide carbon, reduced iron, iron chloride, tin, tin chloride, zinc, etc. are used as a catalyst, hydrogen gas, There are methods using hydrazine, hydrogen chloride, ammonium chloride and the like.
- reaction solvent a solvent that does not affect the reaction
- ester solvents such as ethyl acetate and methyl acetate
- aromatic hydrocarbon solvents such as toluene and xylene
- aliphatic hydrocarbon solvents such as n-hexane, n-heptane and cyclohexane, 1,2-dimethoxyethane, tetrahydrofuran
- Ether solvents such as dioxane
- alcohol solvents such as methanol and ethanol
- ketone solvents such as 2-butanone and 4-methyl-2-pentanone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl
- aprotic polar solvents such as -2-pyrrolidone and dimethyl sulfoxide, and water.
- the reaction temperature can be carried out at a temperature at which the reaction proceeds efficiently as long as it is below the boiling point of the solvent used without decomposition of the raw materials and products. Specifically, a temperature from ⁇ 78 ° C. to the boiling point of the solvent is preferable, and a temperature from 0 ° C. to the boiling point of the solvent is more preferable from the viewpoint of simplicity of synthesis.
- the method for synthesizing the compound of formula (5) is not particularly limited.
- R 102 of formula (5) is OR 111 (R 111 is the same as defined in ⁇ 6> above).
- R 111 is the same as defined in ⁇ 6> above.
- a method of introducing a substituent into the OH group can be mentioned.
- the method for introducing a substituent into the OH group is not particularly limited.
- L 1 in the following formula (7) is a halogen, an alkanesulfonyloxy group, or an arenesulfonyloxy group, R 111 is the same as defined in the above ⁇ 6>
- a method of reacting an alkyl halide or alkyl sulfonate ester under neutral conditions or alkaline conditions is
- reaction solvent and reaction temperature are the same as those described above, an alcohol solvent and water are not preferable because they may react with the raw material.
- alkyl halide examples include methyl iodide, ethyl iodide, n-propyl iodide, n-butyl iodide, n-octadecyl iodide, benzyl iodide, bromoethane, 1-bromopropane, 1-bromobutane and 1-bromo.
- the compound represented by the formula (5) is represented by the following formula (8)
- the compound represented by the above formula (6) and the vinyl ether represented by the following formula (9) are used.
- Examples of the synthesis method include a reaction in the presence of a catalyst or an acid catalyst.
- Ar, R 101 , R 103 , and R 104 have the same definitions as those in the formula (A), and R 211 is carbon that is unsubstituted or substituted by a fluorine atom.
- a linear, branched or cyclic alkyl group having 1 to 18 atoms (wherein —CH 2 — or —CF 2 — in the alkyl group is —CH ⁇ CH—, or a group selected from the following group G: The groups selected from Group G may not be adjacent to each other) (Group G: —O—, —COO—, —OCO—, —NHCO—, —CONH—, —NH—, divalent Or a divalent heterocyclic ring).
- R 211 is, in the above formula (8) is the same as the definition of R 211.
- Examples of the vinyl ether include ethyl vinyl ether, n-butyl vinyl ether, n-octadecyl vinyl ether, diethylene glycol monovinyl ether and the like.
- Examples of the acid catalyst include p-toluenesulfonic acid, pyridinium p-toluenesulfonate, methanesulfonic acid, and the like.
- the compound represented by the formula (5) is represented by the following formula (10) (in the formula (10), Ar, R 101 , R 103 and R 104 have the same definitions as those in the formula (A)). Is a synthesis method in which the compound represented by the above formula (6) and 3,4-dihydropyran are reacted in the absence of a catalyst or in the presence of an acid catalyst.
- Examples of the compound represented by the formula (12) include 2,4-dinitrofluorobenzene, 2,4-dinitrochlorobenzene, 2,4-dinitrobromobenzene, 2,4-dinitroiodobenzene, 3,5-dinitrochlorobenzene, Examples include 3,5-dinitroiodobenzene, 3,4-dinitrofluorobenzene, 3,4-dinitrochlorobenzene, 2,3-dinitrochlorobenzene, and the like.
- Examples of the compound represented by the formula (14) include 2-hydroxy-1- (4- (hydroxymethyl) phenyl) -2-methyl-1-propanone, 1-hydroxycyclohexyl (4- (2-hydroxyethyl) phenyl )) Ketone, 1-hydroxycyclohexyl (4-hydroxyphenyl) ketone, 2-hydroxy-1- (4-((2-hydroxyethyl) thio) phenyl) -2-methyl-1-propanone, 2-hydroxy-1 -(4-hydroxyphenyl) -2-methyl-1-propanone, 2-hydroxy-1- (4- (2-hydroxyethoxy) phenyl) -2-methyl-1-propanone, 1- (3,4-dihydroxy Phenyl) -2-hydroxy-2-methyl-1-propanone, 2-hydroxy-1- (4- (2-hydroxyethyl) phenyl) -2- Chill-1-propanone, 2-hydroxy-1- (4- (3-hydroxypropyl) phenyl) -2-methyl-1-propanone and the like
- the protecting group is not particularly limited, and examples thereof include a tetrahydropyranyl group, a benzyl group, a p-methoxybenzyl group, a methoxymethyl group, a trimethylsilyl group, a t-butyldimethylsilyl group, an acetyl group, a benzoyl group, and a trityl group. Is mentioned.
- the method for introducing a tertiary hydroxyl group after protecting the primary hydroxyl group of the compound represented by formula (14) is not particularly limited.
- R 102 in formula (5) is OR 111
- the formula The same conditions as in the case of synthesizing the compound represented by formula (5) from the compound represented by (6) can be used.
- Examples of the compound represented by the formula (16) include 3,5-dinitrobenzyl chloride, methanesulfonic acid (3,5-dinitrobenzyl), 2,4-dinitrobenzyl chloride, methanesulfonic acid (2,4-dinitrobenzyl). ) And the like.
- the compound represented by the formula (5) is represented by the following formula (17) (in the formula (17), Ar, R 102 to R 104 , S, and T 2 are the same as defined in the above ⁇ 5>)
- the method etc. are mentioned.
- the reaction solvent and reaction temperature are the same as described above, but a protic solvent such as an alcohol solvent or water can be used unless it reacts with the raw material.
- Examples of the compound represented by the formula (18) include 3,5-dinitrobenzoyl chloride.
- Examples of the compound represented by the formula (19) include 3,5-dinitrobenzoic acid.
- Examples of the dehydrating condensing agent include dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, diisopropylcarbodiimide, 1,1′-carbonyldiimidazole, bis (2-oxo-3-oxazolinidyl) phosphinic acid Chloride, di-2-pyridyl carbonate, triphenyl phosphite, dimethoxy-1,3,5-triazinylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N,
- a diamine having a specific side chain structure is preferably used as a part of the diamine component.
- a diamine represented by the following formula [2] also referred to as a specific side chain diamine compound.
- X represents a structure represented by the above formula [II-1] or [II-2], n represents an integer of 1 to 4, and 1 is particularly preferable.
- n represents an integer of 1 to 4, and 1 is particularly preferable.
- the specific side chain diamine it is preferable to use a diamine represented by the following formula [2-1] from the viewpoint that a high and stable liquid crystal vertical alignment can be obtained.
- X 1 , X 2 , X 3 , X 4 , X 5 , and n in the above formula [2-1] are the same as defined in each of the above formula [II-1], and Preferable ones are also the same as defined above in Formula [II-1].
- m is an integer of 1 to 4.
- it is an integer of 1.
- Specific examples of the specific side chain diamine include structures represented by the following formulas [2a-1] to [2a-31].
- R 1 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or CH 2 OCO—
- R 2 represents a linear or branched group having 1 to 22 carbon atoms.
- R 3 is, -COO -, - OCO -, - CONH -, - NHCO -, - COOCH 2 -, - CH 2 OCO -, - CH 2 O -, - OCH 2 - or CH 2 - indicates, R 4 Is a linear or branched alkyl group having 1 to 22 carbon atoms, a linear or branched alkoxyl group having 1 to 22 carbon atoms, a linear or branched, fluorine-containing alkyl group having 1 to 22 carbon atoms, or It is a fluorine-containing alkoxyl group.
- R 5 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2 —, —CH 2 —, —O—.
- NH—, and R 6 represents a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group or a hydroxyl group.
- R 7 is a linear or branched alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
- R 8 is a linear or branched alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
- a 4 is a linear or branched alkyl group having 3 to 20 carbon atoms which may be substituted with a fluorine atom
- a 3 is a 1,4-cyclohexylene group or a 1,4-phenylene group
- a 2 is an oxygen atom or a COO - * (wherein "*" bond marked with binds to a 3) is
- a 1 is an oxygen atom or a COO - * (However, bond marked with "*" Is bonded to (CH 2 ) a 2 ).
- a 1 is an integer of 0 or 1
- a 2 is an integer of 2 to 10
- a 3 is an integer of 0 or 1.
- Examples of the diamine having a specific side chain structure represented by the formula [II-2] include diamines represented by the following formulas [2b-1] to [2b-10].
- a 1 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
- a 1 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or NH—.
- a 2 represents a linear or branched alkyl group having 1 to 22 carbon atoms or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms.
- Said diamine can also be used 1 type or in mixture of 2 or more types according to characteristics, such as a liquid crystal aligning property at the time of setting it as a liquid crystal aligning film, a pretilt angle, a voltage holding characteristic, and a stored charge.
- the diamine having a side chain for vertically aligning the liquid crystal is preferably used in an amount of 5 to 50 mol% of the diamine component used for the synthesis of the polyamic acid, more preferably 10 to 40 mol% of the diamine component, and particularly preferably. Is from 15 to 30 mol%.
- the use of a diamine having a side chain that vertically aligns the liquid crystal is particularly excellent in terms of improving the response speed and the ability to fix and align the liquid crystal.
- the diamine having a photoreactive side chain is, for example, a diamine having a side chain represented by the formula [3], and specifically, the following general formula [3] (R in the formula [3] 8 , the definitions of R 9 and R 10 are the same as those in the above formula [III], but are not limited thereto.
- the bonding position of the two amino groups (—NH 2 ) in the formula [3] is not limited. Specifically, with respect to the linking group of the side chain, 2, 3 position, 2, 4 position, 2, 5 position, 2, 6 position, 3, 4 position on the benzene ring, 3, 4 position, 5 positions. Among these, from the viewpoint of reactivity when synthesizing a polyamic acid, positions 2, 4, 2, 5, or 3, 5 are preferable. Considering the ease in synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable. Specific examples of the diamine having a photoreactive side chain include the following.
- X 9 and X 10 are each independently a single bond, —O—, —COO—, —NHCO—, or —NH—, a bonding group that is —NH—, and Y is a carbon atom that may be substituted with a fluorine atom Represents an alkylene group of 1 to 20.
- examples of the diamine having a photoreactive side chain include a diamine having a group causing a photodimerization reaction and a group causing a photopolymerization reaction represented by the following formula in the side chain.
- Y 1 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, or —CO—.
- Y 2 is an alkylene group having 1 to 30 carbon atoms, a divalent carbocycle or a heterocycle, and one or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocycle are fluorine atoms or organic It may be substituted with a group.
- Y 2 when the following groups are not adjacent to each other, —CH 2 — may be substituted with these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—.
- Y 3 represents —CH 2 —, —O—, —CONH—, —NHCO—, —COO—, —OCO—, —NH—, —CO—, or a single bond.
- Y 4 represents a cinnamoyl group.
- Y 5 is a single bond, an alkylene group having 1 to 30 carbon atoms, a divalent carbocycle or a heterocycle, and one or more hydrogen atoms of the alkylene group, divalent carbocycle or heterocycle are fluorine atoms Alternatively, it may be substituted with an organic group.
- —CH 2 — may be substituted with these groups; —O—, —NHCO—, —CONH—, —COO—, —OCO—, —NH—, —NHCONH—, —CO—.
- Y 6 represents a photopolymerizable group which is an acrylic group or a methacryl group.
- the diamine having a photoreactive side chain depends on the liquid crystal alignment property when it is used as a liquid crystal alignment film, the pretilt angle, the voltage holding property, the characteristics such as accumulated charge, the response speed of the liquid crystal when it is used as a liquid crystal display device, etc. 1 type or 2 types or more can be mixed and used.
- the diamine having a photoreactive side chain is preferably used in an amount of 10 to 70 mol%, more preferably 20 to 60 mol%, particularly preferably 30 to 50 mol% of the diamine component used for the synthesis of the polyamic acid. It is.
- the above-mentioned other diamines can be used alone or in combination of two or more according to properties such as liquid crystal orientation, pretilt angle, voltage holding property, and accumulated charge when the liquid crystal alignment film is formed.
- the tetracarboxylic dianhydride component to be reacted with the diamine component is not particularly limited. Specifically, pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2, 3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3,3 ′, 4-biphenyltetra Carboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxy) Phen
- the liquid crystal aligning agent of the present invention may contain a polymerizable compound having a photopolymerizable or photocrosslinkable group at two or more terminals as required.
- a polymerizable compound is a compound having two or more terminals having a group that undergoes photopolymerization or photocrosslinking.
- the polymerizable compound having a photopolymerizable group is a compound having a functional group that causes polymerization upon irradiation with light.
- the compound having a photocrosslinking group is at least one selected from a polymer of a polymerizable compound, a polyimide precursor, and a polyimide obtained by imidizing the polyimide precursor by irradiating light. It is a compound having a functional group capable of reacting with the polymer and crosslinking with these polymers.
- a compound having a photocrosslinkable group also reacts with a compound having a photocrosslinkable group.
- the side chain and the photoreactive property for aligning the liquid crystal vertically are used.
- the response speed can be remarkably improved, and the response speed can be sufficiently improved even with a small amount of the polymerizable compound added.
- Examples of the group that undergoes photopolymerization or photocrosslinking include monovalent groups represented by the following formula (IV).
- R 12 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
- Z 1 represents a divalent aromatic ring or heterocyclic ring which may be substituted with an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms.
- Z 2 represents a monovalent aromatic ring or heterocyclic ring which may be substituted with an alkyl group having 1 to 12 carbon atoms or an alkoxyl group having 1 to 12 carbon atoms.
- the polymerizable compound examples include a compound having a photopolymerizable group at each of two ends represented by the following formula (V), a terminal having a photopolymerizable group represented by the following formula (VI), and light.
- examples thereof include a compound having a terminal having a cross-linking group and a compound having a photo-crosslinking group at each of two terminals represented by the following formula (VII).
- R 12, Z 1 and Z 2 are the same as R 12, Z 1 and Z 2 in the formula (IV), Q 1 is a divalent organic group is there.
- Q 1 has a ring structure such as a phenylene group (—C 6 H 4 —), a biphenylene group (—C 6 H 4 —C 6 H 4 —), a cyclohexylene group (—C 6 H 10 —), and the like. Preferably it is. This is because the interaction with the liquid crystal tends to increase.
- V examples include a polymerizable compound represented by the following formula (R-1).
- R-1 a polymerizable compound represented by the following formula (R-1).
- V and W are each represented by a single bond or —R 1 O—, and R 1 is a linear or branched alkylene group having 1 to 10 carbon atoms, preferably , -R 1 O-, wherein R 1 is a linear or branched alkylene group having 2 to 6 carbon atoms.
- V and W may be the same or different, but synthesis is easy when they are the same.
- the photopolymerization or photocrosslinking group is a polymerizable compound having an acrylate group or a methacrylate group instead of an ⁇ -methylene- ⁇ -butyrolactone group
- the acrylate group or methacrylate group is a spacer such as an oxyalkylene group.
- the polymerizable compound having a structure bonded to a phenylene group via a can significantly improve the response speed particularly like the polymerizable compound having ⁇ -methylene- ⁇ -butyrolactone groups at both ends. .
- a polymerizable compound having a structure in which an acrylate group or a methacrylate group is bonded to a phenylene group through a spacer such as an oxyalkylene group has improved heat stability, and a high temperature, for example, a firing temperature of 200 ° C. or higher. Can withstand enough.
- the manufacturing method of the said polymeric compound is not specifically limited, For example, it can manufacture according to the following synthesis example.
- taraga and the like represented by the following reaction formula are proposed by P. Talaga, M. Schaeffer, C. Benezra and JLStampf, Synthesis, 530 (1990).
- 2- (bromomethyl) propenoic acid can be synthesized by reacting with aldehyde or ketone using SnCl 2 .
- Amberlyst 15 is a strongly acidic ion exchange resin manufactured by Rohm and Haas.
- R ′ represents a monovalent organic group.
- 2- (bromomethyl) acrylic acid is represented by the following reaction formula: K. Ramarajan, K. Kamalingam, DJO 'Donnell and KDBerlin, Organic Synthesis, vol.61, 56-59 (1983) Can be synthesized by the method proposed in
- ⁇ Synthesis of polyamic acid> In obtaining a polyamic acid by a reaction between a diamine component and tetracarboxylic dianhydride, a known synthesis method can be used. In general, a diamine component and a tetracarboxylic dianhydride component are reacted in an organic solvent. The reaction between the diamine component and tetracarboxylic dianhydride is advantageous in that it proceeds relatively easily in an organic solvent and no by-products are generated.
- the organic solvent used in the above reaction is not particularly limited as long as the generated polyamic acid is soluble. Furthermore, even if it is an organic solvent in which a polyamic acid does not melt
- organic solvent used in the above reaction examples include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N-methylformamide, N-methyl-2-pyrrolidone, and N-ethyl-2.
- -Pyrrolidone 2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethyl Sulfoxide, ⁇ -butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, Tilcerosolve acetate, butylcellosolve acetate, ethylcellosolve acetate, butyl carbitol, ethyl carbitol, ethylene glycol, ethylene glycol
- the method of reacting a diamine component and a tetracarboxylic dianhydride component in an organic solvent is to stir a solution in which the diamine component is dispersed or dissolved in the organic solvent, and the tetracarboxylic dianhydride component as it is or an organic solvent.
- Dispersing or dissolving in a solution adding a diamine component to a solution obtained by dispersing or dissolving a tetracarboxylic dianhydride component in an organic solvent, alternating tetracarboxylic dianhydride component and diamine component Any of the methods of adding to In addition, when the diamine component or tetracarboxylic dianhydride component is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. The body may be mixed and reacted to form a high molecular weight body.
- the temperature at the time of reacting the diamine component and the tetracarboxylic dianhydride component is, for example, in the range of ⁇ 20 ° C. to 150 ° C., preferably ⁇ 5 ° C. to 100 ° C.
- the total concentration of the diamine component and the tetracarboxylic dianhydride component is preferably 1 to 50% by mass, and more preferably 5 to 30% by mass with respect to the reaction solution.
- the ratio of the total number of moles of the tetracarboxylic dianhydride component to the total number of moles of the diamine component in the polymerization reaction can be selected according to the molecular weight of the polyamic acid to be obtained. Similar to the usual polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced, and 0.8 to 1.2 if it shows a preferred range.
- the method for synthesizing the polyamic acid used in the present invention is not limited to the above-described method, and in the same manner as the general polyamic acid synthesis method, instead of the tetracarboxylic dianhydride, a tetracarboxylic acid having a corresponding structure is used.
- the corresponding polyamic acid can also be obtained by reacting by a known method using a tetracarboxylic acid derivative such as acid or tetracarboxylic acid dihalide.
- Examples of the method of imidizing the polyamic acid to form a polyimide include thermal imidization in which a polyamic acid solution is heated as it is, and catalytic imidation in which a catalyst is added to the polyamic acid solution.
- the imidation ratio from polyamic acid to polyimide is not necessarily 100%.
- the temperature at which the polyamic acid is thermally imidized in the solution is 100 ° C. to 400 ° C., preferably 120 ° C. to 250 ° C., and is preferably carried out while removing water generated by the imidation reaction from the system.
- Catalytic imidation of polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to a polyamic acid solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
- the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
- Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
- Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
- the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
- the polyamic acid ester is a reaction of a tetracarboxylic acid diester dichloride with a diamine similar to the synthesis of the polyamic acid, a suitable condensing agent with a diamine similar to the synthesis of the tetracarboxylic acid diester and the polyamic acid, It can be produced by reacting in the presence of a base or the like. It can also be obtained by previously synthesizing a polyamic acid by the above method and esterifying the carboxylic acid in the amic acid using a polymer reaction. Specifically, for example, tetracarboxylic acid diester dichloride and diamine in the presence of a base and an organic solvent at ⁇ 20 ° C.
- a polyamic acid ester By reacting for ⁇ 4 hours, a polyamic acid ester can be synthesized.
- the polyimide can also be obtained by heating the polyamic acid ester at a high temperature to promote dealcoholization and ring closure.
- the reaction solution may be poured into a poor solvent and precipitated.
- the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water.
- the polymer precipitated in a poor solvent and collected by filtration can be dried by normal temperature or reduced pressure at room temperature or by heating.
- the operation of re-dissolving the recovered polymer in an organic solvent and repeating the reprecipitation recovery is repeated 2 to 10 times, impurities in the polymer can be reduced.
- the poor solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of poor solvents selected from these because purification efficiency is further improved.
- the liquid crystal aligning agent of the present invention contains the polyimide precursor, and the content of the polyimide precursor is preferably 1 to 20% by mass, more preferably 3 to 15% by mass, and particularly preferably 3 to 10% by mass. It is. Further, when the polymerizable compound having a photopolymerizable or photocrosslinkable group at each of two or more terminals is contained, the content thereof is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the polymer. The amount is preferably 5 to 30 parts by mass.
- the liquid crystal aligning agent of this invention may contain other polymers other than the said polyimide precursor.
- the content of such other polymer in all the components of the polymer is preferably 0.5 to 80% by mass, more preferably 20 to 50% by mass.
- the molecular weight of the polymer of the liquid crystal aligning agent is determined by GPC (Gel Permeation Chromatography) in consideration of the strength of the liquid crystal aligning film obtained by applying the liquid crystal aligning agent, the workability at the time of forming the coating film, and the uniformity of the coating film. )
- the weight average molecular weight measured by the method is preferably 5,000 to 1,000,000, more preferably 10,000 to 150,000.
- the solvent contained in the liquid crystal aligning agent is not particularly limited, and may be the above-described polyimide precursor and a polymerizable compound each having a photopolymerizable or photocrosslinkable group at two or more terminals contained as necessary. What is necessary is just to be able to dissolve or disperse the contained components.
- combination of said polyamic acid can be mentioned. Among them, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone and 3-methoxy-N, N-dimethylpropanamide are soluble. To preferred. Of course, two or more kinds of mixed solvents may be used.
- a solvent that improves the uniformity and smoothness of the coating film mixed with a solvent in which the components of the liquid crystal aligning agent are highly soluble examples include isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, butyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, Ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol monobutyl ether, propylene glycol-tert-butyl ether, dipropylene glycol,
- the liquid crystal aligning agent may contain components other than those described above. Examples thereof include compounds that improve the film thickness uniformity and surface smoothness when a liquid crystal aligning agent is applied, and compounds that improve the adhesion between the liquid crystal aligning film and the substrate. Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants.
- F-top EF301, EF303, EF352 manufactured by Tochem Products
- MegaFuck F171, F173, R-30 manufactured by Dainippon Ink
- Florard FC430, FC431 manufactured by Sumitomo 3M
- Asahi Guard AG710 Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.) and the like.
- the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the total amount of the polymer contained in the liquid crystal aligning agent. .
- compounds that improve the adhesion between the liquid crystal alignment film and the substrate include functional silane-containing compounds and epoxy group-containing compounds.
- a phenol compound such as 2,2′-bis (4-hydroxy-3,5-dihydroxymethylphenyl) propane or tetra (methoxymethyl) bisphenol may be added. .
- These compounds are preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the polymer contained in the liquid crystal aligning agent.
- the liquid crystal aligning agent is added with a dielectric or conductive material for the purpose of changing the electrical properties such as the dielectric constant or conductivity of the liquid crystal aligning film as long as the effects of the present invention are not impaired. May be.
- liquid crystal aligning agent By applying this liquid crystal aligning agent on a substrate and baking it, a liquid crystal alignment film for vertically aligning liquid crystals can be formed.
- the response speed of the liquid crystal display element using the liquid crystal aligning film obtained can be made quick.
- the polymerizable compound that has two or more terminal groups that are photopolymerized or photocrosslinked, which may be contained in the liquid crystal aligning agent of the present invention is not contained in the liquid crystal aligning agent, or the liquid crystal aligning agent.
- the photoreaction becomes highly sensitive even in the so-called PSA mode, and a tilt angle can be imparted even with a small amount of ultraviolet irradiation.
- a cured film obtained by applying the liquid crystal aligning agent of the present invention to a substrate and then drying and baking as necessary can be used as a liquid crystal aligning film as it is.
- the cured film is rubbed, irradiated with polarized light or light of a specific wavelength, or treated with an ion beam, or a voltage is applied to the liquid crystal display element after filling the liquid crystal as a PSA alignment film It is also possible to irradiate with UV. In particular, it is useful to use as an alignment film for PSA.
- the substrate to be used is not particularly limited as long as it is a highly transparent substrate.
- Glass plate polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyetherketone ,
- Plastic substrates such as trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, triacetyl cellulose, diacetyl cellulose, and acetate butyrate cellulose can be used.
- a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplifying the process.
- an opaque material such as a silicon wafer can be used as long as the substrate is only on one side, and in this case, a material that reflects light such as aluminum can be used.
- the application method of the liquid crystal aligning agent is not particularly limited, and examples thereof include screen printing, offset printing, flexographic printing, and other printing methods, ink jet methods, spray methods, roll coating methods, dip, roll coater, slit coater, spinner and the like. From the standpoint of productivity, the transfer printing method is widely used industrially, and is preferably used in the present invention.
- the coating film formed by applying the liquid crystal aligning agent by the above method can be baked to obtain a cured film.
- the drying process after applying the liquid crystal aligning agent is not necessarily required, but if the time from application to baking is not constant for each substrate, or if baking is not performed immediately after application, the drying process is performed. It is preferable.
- the drying is not particularly limited as long as the solvent is removed to such an extent that the shape of the coating film is not deformed by transporting the substrate or the like.
- a method of drying on a hot plate at a temperature of 40 ° C. to 150 ° C., preferably 60 ° C. to 100 ° C., for 0.5 minutes to 30 minutes, preferably 1 minute to 5 minutes.
- the firing temperature of the coating film formed by applying the liquid crystal aligning agent is not limited, and is, for example, 100 to 350 ° C, preferably 120 to 300 ° C, and more preferably 150 ° C to 250 ° C.
- the firing time is 5 minutes to 240 minutes, preferably 10 minutes to 90 minutes, and more preferably 20 minutes to 90 minutes. Heating can be performed by a generally known method such as a hot plate, a hot air circulating furnace, an infrared furnace, or the like.
- the thickness of the liquid crystal alignment film obtained by firing is not particularly limited, but is preferably 5 to 300 nm, more preferably 10 to 100 nm.
- a liquid crystal cell can be produced by a known method after forming a liquid crystal alignment film on a substrate by the above method.
- the liquid crystal display element include two substrates disposed so as to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal aligning agent provided between the substrate and the liquid crystal layer.
- a vertical alignment type liquid crystal display device comprising a liquid crystal cell having the above-described liquid crystal alignment film.
- the liquid crystal aligning agent of the present invention is applied onto two substrates and baked to form a liquid crystal aligning film, and the two substrates are arranged so that the liquid crystal aligning films face each other.
- a liquid crystal layer composed of liquid crystal is sandwiched between two substrates, that is, a liquid crystal layer is provided in contact with the liquid crystal alignment film, and ultraviolet rays are applied while applying a voltage to the liquid crystal alignment film and the liquid crystal layer.
- This is a vertical alignment type liquid crystal display device including a liquid crystal cell to be manufactured.
- the liquid crystal alignment film formed of the liquid crystal alignment agent of the present invention is used to irradiate ultraviolet rays while applying voltage to the liquid crystal alignment film and the liquid crystal layer to polymerize the polymerizable compound, and the photoreactive property of the polymer.
- the alignment of the liquid crystal is more efficiently fixed, and the liquid crystal display device is remarkably excellent in response speed.
- the substrate used in the liquid crystal display element of the present invention is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving liquid crystal is formed.
- a substrate on which a transparent electrode for driving liquid crystal As a specific example, the thing similar to the board
- a substrate provided with a conventional electrode pattern or protrusion pattern may be used.
- the liquid crystal aligning agent of the present invention since the liquid crystal aligning agent of the present invention is used, a line of 1 to 10 ⁇ m, for example, is formed on one side substrate. / Slit electrode pattern is formed, and it is possible to operate even in the structure where slit pattern or projection pattern is not formed on the counter substrate.
- the liquid crystal display element of this structure can simplify the process at the time of manufacture and has high transmittance. Can be obtained.
- a high-performance element such as a TFT type element
- an element in which an element such as a transistor is formed between an electrode for driving a liquid crystal and a substrate is used.
- a transmissive liquid crystal display element it is common to use a substrate as described above.
- an opaque substrate such as a silicon wafer may be used. Is possible.
- a material such as aluminum that reflects light can be used for the electrode formed on the substrate.
- the liquid crystal material constituting the liquid crystal layer of the liquid crystal display element of the present invention is not particularly limited, and a liquid crystal material used in a conventional vertical alignment method, for example, a negative type such as MLC-6608 or MLC-6609 manufactured by Merck & Co., Inc. Liquid crystal can be used.
- a liquid crystal containing a polymerizable compound represented by the following formula can be used.
- a known method can be used as a method of sandwiching the liquid crystal layer between two substrates. For example, a pair of substrates on which a liquid crystal alignment film is formed is prepared, and spacers such as beads are dispersed on the liquid crystal alignment film on one substrate so that the surface on which the liquid crystal alignment film is formed is on the inside. Then, the other substrate is bonded, and liquid crystal is injected under reduced pressure to seal.
- a liquid crystal cell can also be produced by a method in which the other substrate is bonded to each other so as to be inside, and sealing is performed.
- the thickness of the spacer is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
- the step of producing a liquid crystal cell by irradiating ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer includes, for example, applying an electric field between the electrodes installed on the substrate to apply an electric field to the liquid crystal alignment film and the liquid crystal layer. And applying ultraviolet rays while maintaining this electric field.
- the voltage applied between the electrodes is, for example, 5 to 30 Vp-p, preferably 5 to 20 Vp-p.
- the irradiation amount of ultraviolet rays is, for example, 1 to 60 J, preferably 40 J or less, and the smaller the irradiation amount of ultraviolet rays, the lowering of reliability caused by the destruction of the members constituting the liquid crystal display element can be suppressed, and the irradiation time of ultraviolet rays can be reduced. This is preferable because the manufacturing efficiency is increased.
- the polymerizable compound when ultraviolet rays are irradiated while applying a voltage to the liquid crystal alignment film and the liquid crystal layer, the polymerizable compound reacts to form a polymer, and the direction in which the liquid crystal molecules are tilted is stored by this polymer.
- the pretilt angle of the obtained liquid crystal display element can be set to a desired value, and the response speed can be increased.
- a polyimide precursor having a side chain for vertically aligning liquid crystal and a photoreactive side chain when irradiated with ultraviolet rays while applying a voltage to the liquid crystal alignment film and the liquid crystal layer, and the polyimide precursor as an imide Since the photoreactive side chains of at least one polymer selected from the polyimide obtained by the reaction or the photoreactive side chains of the polymer react with the polymerizable compound, the liquid crystal display element obtained The response speed can be increased.
- the pretilt angle of the liquid crystal display element depends on the liquid crystal alignment film used, that is, the liquid crystal aligning agent used, the polyimide precursor used, and the first photoradical-generating diamine used.
- the polyimide precursor of the present invention particularly a polyimide precursor having a relatively large amount of radical generation, the amount of radical generation during UV irradiation increases.
- the reaction of the above-described polymerizable compound is promoted, so that in the case of the same wavelength, the pretilt angle of the liquid crystal display element obtained with a small irradiation amount can be set to a desired value.
- the response speed can be increased.
- the pretilt angle of a liquid crystal display element tends to be farther from 90 ° as the amount of UV irradiation in forming the liquid crystal display element increases.
- the molecular weights of the polyimide precursor and the imidized polymer are measured by a GPC (room temperature gel permeation chromatography) apparatus, and the number average molecular weight (hereinafter also referred to as Mn) and the weight average molecular weight as polyethylene glycol and polyethylene oxide equivalent values (hereinafter also referred to as Mn). Hereinafter, it is also referred to as Mw).
- GPC device Room temperature gel permeation chromatography (GPC) device (SSC-7200) manufactured by Senshu Scientific Co., Ltd.
- Standard sample for preparing calibration curve TSK standard polyethylene oxide (weight average molecular weight (Mw) about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polyethylene glycol (peak top manufactured by Polymer Laboratories) Molecular weight (Mp) about 12,000, 4,000, 1,000).
- Mw weight average molecular weight
- Mp peak top manufactured by Polymer Laboratories
- Mp Molecular weight
- the imidation ratio of polyimide in the synthesis example was measured as follows. 20 mg of polyimide powder was put into an NMR sample tube (NMR sampling tube standard, ⁇ 5 (manufactured by Kusano Kagaku)), and deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS (tetramethylsilane) mixed product) (1. 0 ml) was added and completely dissolved by sonication. This solution was measured for proton NMR at 500 MHz with an NMR measuring instrument (JNW-ECA500) (manufactured by JEOL Datum).
- the imidation rate is determined based on protons derived from structures that do not change before and after imidation as reference protons, and the peak integrated value of these protons and proton peaks derived from NH groups of amic acid that appear in the vicinity of 9.5 ppm to 10.0 ppm. It calculated
- Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
- x is a proton peak integrated value derived from NH group of amic acid
- y is a peak integrated value of reference proton
- ⁇ is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
- Step 1 Synthesis of 1- (4- (2,4-dinitrophenoxy) ethoxy) phenyl) -2-hydroxy-2-methylpropanone
- 2,4- 100.0 g of dinitrofluorobenzene [Mw: 186.10 g / mol], 0.538 mol)
- 120.6 g of 2-hydroxy-4 ′-(2-hydroxyethoxy) -2-methylpropiophenone [Mw : 224.25 g / mol], 0.538 mol
- 81.7 g of triethylamine [Mw: 101.19 g / mol], 0.807 mol) and 1000 g of THF were added and refluxed for 24 hours.
- the mixture was concentrated on a rotary evaporator, ethyl acetate was added, and this was washed several times with pure water and physiological saline, and
- Step 2 Synthesis of 1- (4- (2,4-diaminophenoxy) ethoxy) phenyl) -2-hydroxy-2-methylpropanone (DA-1)
- DA-1 4-(2-,4-diaminophenoxy) ethoxy) phenyl) -2-hydroxy-2-methylpropanone
- the dinitrobenzene derivative obtained in Step 1 was added to a 1 L four-necked flask in 100. Weigh 10.0 g ([Mw: 390.34 g / mol], 0.256 mol) and 10.0 g of iron-doped platinum carbon (3 wt% manufactured by Evonic), add 500 ml of THF, and perform vacuum degassing and hydrogen replacement. Fully conducted and allowed to react for 24 hours at room temperature.
- Aromatic diamine compound (DA-A) Synthesis of 1- (4- (2- (2,4-diaminophenoxy) ethoxy) phenyl) -2-methoxy-2-methylpropan-1-one An aromatic diamine compound (DA-A) was synthesized by the following route. The aromatic diamine compound (DA-A) corresponds to the above-mentioned specific diamine compound.
- IRGACURE 2959 (2-hydroxy-1- (4- (2-hydroxyethoxy) phenyl) -2-methylpropan-1-one, 50.0 g, 223 mmol) was dissolved in THF (200 g), and p-toluenesulfonic acid was dissolved. Monohydrate (0.424 g, 2.23 mmol) was added, and 3,4-dihydro-2H-pyran (23.4 g, 279 mmol) was added dropwise over 10 minutes and reacted at room temperature for 3 hours.
- the crude DA-A-3 (45.7 g) was dissolved in DMF (79.9 g), 1-fluoro-2,4-dinitrobenzene (35.7 g, 192 mmol), and triethylamine (29.1 g, 288 mmol) and stirred at room temperature for 24 hours. Thereafter, toluene (274 g) and water (274 g) were added and stirred, the aqueous layer was discarded, the organic layer was washed twice with water (274 g), and the organic layer was concentrated.
- Step 5 Synthesis of 1- (4- (2- (2,4-dinitrophenoxy) ethoxy) phenyl) -2-methoxy-2-methylpropan-1-one (DA-A)
- DA-A-4 (10.0 g, 24.7 mmol) was dissolved in THF, 1% platinum-carbon (0.2% Fe-doped, 59.5 wt% water content, 0.62 g) was added, and the hydrogen pressure was reduced to 0. The mixture was stirred at 2 to 0.5 MPa. After 3 hours, the completion of the reaction was confirmed by HPLC, the catalyst was filtered, the filtrate was concentrated, toluene (30 g) was added, the mixture was stirred at 65 ° C. for 30 minutes, cooled to 0 ° C., and the precipitated solid was removed.
- NMP (44.0 g) was added to the obtained polyimide powder (A) (6.0 g), and the mixture was dissolved by stirring at 70 ° C. for 20 hours.
- 3AMP (1 mass% NMP solution) 6.0g, NMP (4.0g), and BCS (40.0g) were added to this solution, and the liquid crystal aligning agent (A1) was obtained by stirring at room temperature for 5 hours.
- liquid crystal aligning agent (A1) obtained in Example 1 Using the liquid crystal aligning agent (A1) obtained in Example 1, a liquid crystal cell was produced according to the procedure shown below.
- the liquid crystal aligning agent (A1) obtained in Example 1 was spin-coated on the ITO surface of an ITO electrode substrate on which an ITO electrode pattern having a pixel size of 100 ⁇ m ⁇ 300 ⁇ m and a line / space of 5 ⁇ m was formed, After drying for 90 seconds on this hot plate, baking was performed in a hot air circulation oven at 200 ° C. for 30 minutes to form a liquid crystal alignment film having a thickness of 100 nm.
- liquid crystal aligning agent (A1) spin-coating the liquid crystal aligning agent (A1) on the ITO surface in which the electrode pattern is not formed, and drying for 90 seconds with a hot plate at 80 ° C., baking is performed in a hot air circulation oven at 200 ° C. for 30 minutes, A liquid crystal alignment film having a thickness of 100 nm was formed. After spraying 4 ⁇ m bead spacers on the liquid crystal alignment film of one of the two substrates, a sealant (solvent type thermosetting epoxy resin) was printed thereon. Next, the surface of the other substrate on which the liquid crystal alignment film was formed was faced inward and bonded to the previous substrate, and then the sealing agent was cured to produce an empty cell. A liquid crystal cell was produced by injecting a polymerizable compound-containing liquid crystal MLC-3023 (trade name, manufactured by Merck & Co., Inc.) into the empty cell by a reduced pressure injection method.
- a polymerizable compound-containing liquid crystal MLC-3023 trade name, manufactured by Merck
- UV irradiation: 6J / cm 2 or 10J / cm 2 In a state where a DC voltage of 15 V was applied to the obtained liquid crystal cell, the liquid crystal cell was irradiated with UV through a 365 nm bandpass filter from the outside of the liquid crystal cell at 6 J / cm 2 or 10 J / cm 2 . The illuminance of UV was measured using UV-MO3A manufactured by ORC. Thereafter, for the purpose of deactivating the unreacted polymerizable compound remaining in the liquid crystal cell, UV (UV lamp: FLR40SUV32 /) was used with a UV-FL irradiation apparatus manufactured by Toshiba Lighting & Technology Co., Ltd.
- the obtained liquid crystal cell was disposed between a pair of polarizing plates in a measuring apparatus configured in the order of a backlight, a pair of polarizing plates in a crossed Nicol state, and a light amount detector.
- the pattern of the ITO electrode in which the line / space was formed was set at an angle of 45 ° with respect to the crossed Nicols.
- a rectangular wave having a voltage of ⁇ 7 V and a frequency of 1 kHz is applied to the liquid crystal cell, and the change until the luminance observed by the light amount detector is saturated is captured by an oscilloscope, and the luminance when no voltage is applied is obtained.
- a voltage of 0% and ⁇ 7 V was applied, the value of saturated luminance was taken as 100%, and the time taken for the luminance to change from 10% to 90% was taken as the response speed.
- control liquid crystal aligning agent ( B1) was synthesized in the same manner as in Example 1, except for using DA-1 (13.22 g, 40.0 mmol) instead of “DA-A (13.78 g, 40.0 mmol)” in Example 1, the control liquid crystal aligning agent ( B1) was synthesized. Specifically, the control liquid crystal aligning agent (B1) was synthesized as follows. That is, BODA (10.01 g, 40.0 mmol), 3AMPDA (4.85 g, 20.0 mmol), DA-1 (13.22 g, 40.0 mmol), DA-2 (15.22 g, 40.0 mmol) were added. After dissolving in NMP (164.6 g) and reacting at 60 ° C.
- CBDA 11.57 g, 59.0 mmol
- NMP 54.9 g
- acetic anhydride 46.4 g
- pyridine 14.4 g
- This reaction solution was poured into methanol (3300 ml), and the resulting precipitate was filtered off. This deposit was wash
- the imidation ratio of this polyimide was 73%, the number average molecular weight was 23000 and the weight average molecular weight was 64000.
- NMP (44.0 g) was added to the obtained polyimide powder (B) (6.0 g), and the mixture was dissolved by stirring at 70 ° C. for 20 hours.
- 3AMP (1 mass% NMP solution) 6.0g, NMP (4.0g), and BCS (40.0g) were added to this solution, and the liquid crystal aligning agent (B1) was obtained by stirring at room temperature for 5 hours.
- a control liquid crystal cell was prepared in the same manner as in Example 1 except that the liquid crystal aligning agent (B1) was used instead of the “liquid crystal aligning agent (A1)” in Example 1. Moreover, about the obtained control liquid crystal cell, operation similar to an Example was performed and the pretilt angle and the response speed were measured. The results are shown in Table 1.
- Table 1 shows the following. That is, the control liquid crystal cell of Control Examples 1 and 2 (using the control liquid crystal aligning agent (B1) obtained using the control diamine (DA-1)) and Examples 1 and 2 (aromatic diamine compound (DA-A))
- the pretilt angle is separated from 90 °. ing.
- the liquid crystal cells of Examples 1 and 2 can have a desired pretilt angle and a desired response speed at a lower UV irradiation amount than the liquid crystal cells of Control Examples 1 and 2.
- the aromatic diamine compound (DA-A) used in the liquid crystal cells of Examples 1 and 2 has a larger amount of radical generation during UV irradiation than the diamine (DA-1) used in the control liquid crystal cell.
- DA-A aromatic diamine compound
- the liquid crystal cells of Examples 1 and 2 may require less UV irradiation at the same wavelength than the control liquid crystal cells of Control Examples 1 and 2, liquid crystal damage due to shortening of the UV irradiation time can be reduced. Costs can be reduced.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Medicinal Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Liquid Crystal (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Liquid Crystal Substances (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
このような垂直配向方式の液晶表示素子では、予め液晶組成物中に光重合性化合物を添加し、かつポリイミド系などの垂直配向膜を用い、液晶セルに電圧を印加しながら紫外線を照射することで、液晶の応答速度を速くする技術(PSA(Polymer Sustained Alignment)方式素子、例えば、特許文献1及び非特許文献1参照。)が知られている。
さらに、光重合性化合物を液晶組成物ではなく、液晶配向膜中に添加することによっても、液晶表示素子の応答速度が速くなることが報告されている(SC-PVA型液晶ディスプレイ、例えば、非特許文献2参照)。
より具体的には、本発明の目的は、ラジカル発生量が相対的に多いポリイミド前駆体を提供し、該ポリイミド前駆体により、重合性化合物の反応を促進させて、液晶におけるプレチルト角を効率よく所望の値とし、液晶表示素子の応答速度を向上させることにある。
<3> 上記<1>又は<2>において、ポリイミド前駆体を構成する全ジアミン100モル%中、前記第1の光ラジカル発生ジアミンが、0.1~100モル%であるのがよい。
<4> 上記<1>~<3>において、第1の光ラジカル発生ジアミンが、式(A)
(式中、Arは置換基を有してもよい芳香族炭化水素基を表し、
R101は2価の有機基を表し、
R102~R104は各々独立に、1価の有機基を表す)
の構造を有するのがよい。
(式中、
T1及びT2はそれぞれ独立して、単結合、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CH2O-、-N(CH3)-、-CON(CH3)-、又は-N(CH3)CO-であり、
Sは、単結合、又は非置換若しくはフッ素原子によって置換されている炭素原子数1~20のアルキレン基(アルキレン基中の-CH2-又は-CF2-は、-CH=CH-、又は次の群Gから選ばれる基(ただし、該群Gから選ばれる基は互いに隣り合わない)に置き換えられていてもよい(群G:-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは二価の複素環))である)
で表されるのがよい。
他の2つが、各々独立に、炭素数1~20の直鎖又は分岐鎖又は環状のアルキル基、-OR112(R112は、非置換若しくはフッ素原子によって置換されている炭素原子数1~20の直鎖又は分岐鎖又は環状のアルキル基、置換基を有してもよい炭素数6~20のアリール基からなる群から選ばれる基を表す)で表される基、ベンジル基、又はフェネチル基である(他の2つが前記アルキル基又は-OR112である場合、互いに結合して環を形成してもよい)のがよい。
<8> 上記<1>~<7>のいずれかにおいて、第1の光ラジカル発生ジアミンが、下記式(2)(式中、Ar及びR101~R104は、上述と同じ定義を有する)で表されるのがよい。
<11> 上記<1>~<10>のいずれかにおいて、ポリイミド前駆体が光反応性基を構造中に含む側鎖をさらに有するのがよい。
<12>
上記<1>~<11>のいずれかのポリイミド前駆体をイミド化して得られるポリイミド。
<14> 上記<13>において、液晶中及び/又は液晶配向膜中に重合性化合物を含有し、電圧を印加しながら紫外線を照射することにより前記重合性化合物を反応させて得られる液晶表示素子の製造に用いられるのがよい。
<15> 上記<13>又は<14>の液晶配向剤を有して形成される液晶配向膜。
<16> 上記<15>の液晶配向膜を具備する液晶表示素子。
(式中、Arは、置換基を有してもよい芳香族炭化水素基を表し、
R101は2価の有機基を表し、
R102~R104は各々独立に、1価の有機基を表す)
で表される構造を有するジアミン。
(式中、T1及びT2はそれぞれ独立して、単結合、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CH2O-、-N(CH3)-、-CON(CH3)-、又は-N(CH3)CO-であり、
Sは、単結合、又は非置換若しくはフッ素原子によって置換されている炭素原子数1~20のアルキレン基(アルキレン基中の-CH2-又は-CF2-は、-CH=CH-、又は次の群Gから選ばれる基(ただし、該群Gから選ばれる基は互いに隣り合わない)に置き換えられていてもよい(群G:-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは二価の複素環))である)
で表されるのがよい。
R102~R104のうち、いずれか1つが、-OR111(R111は、非置換若しくはフッ素原子によって置換されている炭素原子数1~20の直鎖又は分岐鎖又は環状のアルキル基(アルキル基中の-CH2-又は-CF2-は、-CH=CH-、又は次の群Gから選ばれる基(ただし、該群Gから選ばれる基は互いに隣り合わない)に置き換えられていてもよい(群G:-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは二価の複素環)で置換されていてもよい)であり、
他の2つが、各々独立に、炭素数1~20の直鎖又は分岐鎖又は環状のアルキル基、-OR112(R112は、非置換若しくはフッ素原子によって置換されている炭素原子数1~20の直鎖又は分岐鎖又は環状のアルキル基、置換基を有してもよい炭素数6~20のアリール基からなる群から選ばれる基を表す)で表される基、ベンジル基、又はフェネチル基である(他の2つが前記アルキル基又は-OR112である場合、互いに結合して環を形成してもよい)であるのがよい。
で表されるジアミン。
<27> 上記<26>において、ポリイミド前駆体を構成する全ジアミン100モル%中、上記<17>~<25>のいずれかのジアミンが、0.1~100モル%であるのがよい。
<28> 上記<26>又は<27>のポリイミド前駆体において、液晶を垂直に配向させる側鎖をさらに有するのがよい。
<29> 上記<28>において、液晶を垂直に配向させる側鎖が、下記式[II-1](式[II-1]中、X1は、単結合、-(CH2)a-(aは1~15の整数である)、-O-、-CH2O-、-COO-又はOCO-を表す。X2は、単結合又は(CH2)b-(bは1~15の整数である)を表す。X3は、単結合、-(CH2)c-(cは1~15の整数である)、-O-、-CH2O-、-COO-又はOCO-を表す。X4はベンゼン環、シクロヘキサン環、及び複素環から選ばれる2価の環状基で表し、これらの環状基の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよく、さらに、X4は、ステロイド骨格を有する炭素数17~51の有機基から選ばれる2価の有機基であってもよい。X5はベンゼン環、シクロヘキサン環及び複素環から選ばれる2価の環状基を表し、これらの環状基上の任意の水素原子は、炭素数1~3のアルキル基、炭素数1~3のアルコキシル基、炭素数1~3のフッ素含有アルキル基、炭素数1~3のフッ素含有アルコキシル基又はフッ素原子で置換されていてもよい。nは0~4の整数を表す。X6は炭素数1~18のアルキル基、炭素数1~18のフッ素含有アルキル基、炭素数1~18のアルコキシル基、又は炭素数1~18のフッ素含有アルコキシル基を表す。)
及び
[II-2]
(式[II-2]中、X7は、単結合、-O-、-CH2O-、-CONH-、-NHCO-、-CON(CH3)-、-N(CH3)CO-、-COO-又はOCO-を表す。X8は、炭素数8~22のアルキル基又は炭素数6~18のフッ素含有アルキル基を表す。)
から選ばれる少なくとも1つであるのがよい。
<31> 上記<30>において、光反応性基を構造中に含む側鎖が、
下記式[III]
(式[III]中、R8は、単結合、-CH2-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CH2O-、-N(CH3)-、-CON(CH3)-、又は-N(CH3)CO-を表す。R9は、単結合、フッ素原子で置換されていてもよい炭素数1~20のアルキレン基を表し、アルキレン基の-CH2-は-CF2-又は-CH=CH-で任意に置換されていてもよく、次のいずれかの基が互いに隣り合わない場合、これらの基に置換されていてもよい;-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは複素環。R10は、下記式R10-1~R10-7からなる群から選択される光反応性基を表す。)
又は
式(IV)
(Y1は-CH2-、-O-、-CONH-、-NHCO-、-COO-、-OCO-、-NH-、又は-CO-を表す。Y2は、炭素数1~30のアルキレン基、二価の炭素環若しくは複素環であり、このアルキレン基、二価の炭素環若しくは複素環の1つ又は複数の水素原子は、フッ素原子若しくは有機基で置換されていてもよい。Y2は、次の基が互いに隣り合わない場合、-CH2-がこれらの基に置換されていてもよい;-O-、-NHCO-、-CONH-、-COO-、-OCO-、-NH-、-NHCONH-、-CO-。Y3は、-CH2-、-O-、-CONH-、-NHCO-、-COO-、-OCO-、-NH-、-CO-、又は単結合を表す。Y4はシンナモイル基を表す。Y5は単結合、炭素数1~30のアルキレン基、二価の炭素環若しくは複素環であり、このアルキレン基、二価の炭素環若しくは複素環の1つ又は複数の水素原子は、フッ素原子若しくは有機基で置換されていてもよい。Y5は、次の基が互いに隣り合わない場合、-CH2-がこれらの基に置換されていてもよい;-O-、-NHCO-、-CONH-、-COO-、-OCO-、-NH-、-NHCONH-、-CO-。Y6はアクリル基又はメタクリル基である光重合性基を示す。)
で表されるのがよい。
<32> 上記<26>~<31>のいずれかのポリイミド前駆体及び/又は上記<31>のポリイミドを有する液晶配向剤。
<33> 上記<32>において、液晶中及び/又は液晶配向膜中に重合性化合物を含有し、電圧を印加しながら紫外線を照射することにより前記重合性化合物を反応させて得られる液晶表示素子の製造に用いられるのがよい。
<34> 上記<32>又は<33>の液晶配向剤を有して形成される液晶配向膜。
<35> 上記<34>の液晶配向膜を具備する液晶表示素子。
また、本発明により、該ポリイミド前駆体を有する液晶配向剤及び/又は該液晶配向剤を有して形成される液晶配向膜を用いることにより、紫外線の照射量を相対的に低くしても、液晶において所望のプレチルト角を得ることができ、これに伴って、応答速度が速い垂直配向方式の液晶表示素子、特にPSA型液晶表示素子を提供することができる。
<ラジカル発生量が相対的に多いポリイミド前駆体>
本発明は、ラジカル発生量が相対的に多いポリイミド前駆体を提供する。
具体的には、本発明は、第1の光ラジカル発生ジアミンを用いたポリイミド前駆体を提供する。
第1の光ラジカル発生ジアミンを用いたポリイミド前駆体は、該第1の光ラジカル発生ジアミンを式(1)で表される第2の光ラジカル発生ジアミンに代えた以外、同一の条件で形成した第2のポリイミド前駆体よりも、同一条件下での光照射時のラジカル発生量が多いことを特徴とする。
ここで、「同一条件下での光照射時」の光の波長は、300nm~400nm、好ましくは310~380nm、より好ましくは350~370nmであるのがよい。
また、本明細書において、「~~ジアミンを用いたポリイミド前駆体」又は「ポリイミド前駆体は、~~ジアミンを用いて形成される」とは、ポリイミド前駆体の原料として「~~ジアミン」が用いられていることを意味する。ここで、該「ジアミン」は、原料の一部である場合又は全部である場合を含む。
本明細書において、「ポリイミド前駆体を構成する~~ジアミン」とは、ポリイミド前駆体の原料として「~~ジアミン」が用いられて、該ポリイミド前駆体が形成されていることを意味する。ここで、該「ジアミン」は、原料の一部である場合又は全部である場合を含む。
(式中、Arは置換基を有してもよい芳香族炭化水素基を表し、
R101は2価の有機基を表し、
R102~R104は各々独立に、1価の有機基を表す)
の構造を有するのがよい。
ここで、T1及びT2はそれぞれ独立して、単結合、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CH2O-、-N(CH3)-、-CON(CH3)-、又は-N(CH3)CO-であり、
Sは、単結合、又は非置換若しくはフッ素原子によって置換されている炭素原子数1~20のアルキレン基(アルキレン基中の-CH2-又は-CF2-は、-CH=CH-、又は次の群Gから選ばれる基(ただし、該群Gから選ばれる基は互いに隣り合わない)に置き換えられていてもよい(群G:-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは二価の複素環))である。
他の2つが、各々独立に、炭素数1~20の直鎖又は分岐鎖又は環状のアルキル基、-OR112(R112は、非置換若しくはフッ素原子によって置換されている炭素原子数1~20の直鎖又は分岐鎖又は環状のアルキル基、置換基を有してもよい炭素数6~20のアリール基からなる群から選ばれる基を表す)で表される基、ベンジル基、又はフェネチル基である(他の2つが前記アルキル基又は-OR112である場合、互いに結合して環を形成してもよい)のがよい。
カルボニルが結合しているArは、紫外線の吸収波長に関与するため、長波長化する場合、ナフチレンやビフェニレンのような共役長の長い構造が好ましい。Arには置換基が置換していても良く、かかる置換基は、アルキル基、ヒドロキシル基、アルコキシ基、アミノ基などのような電子供与性の有機基が好ましい。
しかしながら、Arがナフチレンやビフェニレンのような構造になると溶解性が悪くなり、合成の難易度も高くなる。そのため、紫外線の波長が300nm~400nm、好ましくは310~380nmの範囲であればフェニル基でも十分な特性が得られるため、フェニル基が最も好ましい。
本発明のポリイミド前駆体は、液晶を垂直に配向させる側鎖をさらに有するのが好ましい。
液晶を垂直に配向させる側鎖は、下記の式[II-1]又は式[II-2]で表される。
式[II-1]中、X1~X6、及びnは、上記で定義されたとおりである。また、式[II-2]中、X7、X8は、上記で定義されたとおりである。
X6は、なかでも、炭素数1~18のアルキル基、炭素数1~10のフッ素含有アルキル基、炭素数1~18のアルコキシル基又は炭素数1~10のフッ素含有アルコキシル基が好ましい。より好ましくは、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基である。特に好ましくは、炭素数1~9のアルキル基又は炭素数1~9のアルコキシル基である。
また、国際公開公報の各表に掲載される(2-605)~(2-629)では、本発明におけるステロイド骨格を有する炭素数17~51の有機基が、ステロイド骨格を有する炭素数12~25の有機基と示されているが、ステロイド骨格を有する炭素数12~25の有機基は、ステロイド骨格を有する炭素数17~51の有機基と読み替えるものとする。なかでも、(2-25)~(2-96)、(2-145)~(2-168)、(2-217)~(2-240)、(2-268)~(2-315)、(2-364)~(2-387)、(2-436)~(2-483)又は(2-603)~(2-615)の組み合わせが好ましい。特に好ましい組み合わせは、(2-49)~(2-96)、(2-145)~(2-168)、(2-217)~(2-240)、(2-603)~(2-606)、(2-607)~(2-609)、(2-611)、(2-612)又は(2-624)である。
なお、液晶を垂直に配向させる側鎖を有するポリイミド前駆体が液晶を垂直に配向させる能力は、液晶を垂直に配向させる側鎖の構造によって異なるが、一般的に、液晶を垂直に配向させる側鎖の量が多くなると液晶を垂直に配向させる能力は上がり、少なくなると下がる。また、環状構造を有すると、環状構造を有さないものと比較して、液晶を垂直に配向させる能力が高い傾向がある。
本発明のポリイミド前駆体は、光反応性の側鎖を有していてもよい。光反応性の側鎖は、紫外線(UV)等の光の照射によって反応し、共有結合を形成し得る官能基(本明細書中、光反応性基ともいう)を有する。即ち、本発明のポリイミド前駆体は、光反応性基を構造中に含む側鎖をさらに有するのがよい。
光反応性の側鎖は、重合体の主鎖に直接結合していてもよく、また、結合基を介して結合していてもよい。光反応性の側鎖は、例えば、下記式[III]で表される。
光反応性の側鎖の存在量は、紫外線の照射によって反応し共有結合を形成することにより液晶の応答速度を速めることができる範囲であることが好ましく、液晶の応答速度をより速めるためには、他の特性に影響が出ない範囲で、可能な限り多いことが好ましい。
第1の光ラジカル発生ジアミンを用いたポリイミド前駆体及び該ポリイミド前駆体をイミド化したポリイミドを製造する方法は特に限定されない。例えば、第1の光ラジカル発生ジアミンとテトラカルボン酸二無水物を重合させる方法、第1の光ラジカル発生ジアミン及びそれ以外のジアミンとテトラカルボン酸二無水物を重合させる方法、などが挙げられる。
本発明において、第1の光ラジカル発生ジアミンは、各ステップを経てジニトロ体、或いは、還元工程で除去可能な保護基を施したアミノ基を有するモノニトロ体、或いは、ジアミンを合成し、通常用いる還元反応にてニトロ基をアミノ基に変換あるいは保護基を脱保護することにより得ることができる。
構造に不飽和結合部位を持つ場合、不飽和結合が還元されない還元方法を用いることができる。
不飽和結合が還元されない限り、その還元方法に特に制限はないが、例えば、還元鉄、スズ、塩化スズ、被毒されたパラジウム-炭素、被毒された白金-炭素を触媒として用い、水素ガス、ヒドラジン、塩化水素、塩化アンモニウムなどによって行う方法がある。
構造にベンジル結合部位を持つ場合、ベンジル基が切断されない還元方法を用いることができる。
ベンジル基が切断されない限り、その還元方法に制限はないが、例えば、白金黒、ロジウム-アルミナ、硫化白金炭素、還元鉄、塩化鉄、スズ、塩化スズ、亜鉛などを触媒として用い、水素ガス、ヒドラジン、塩化水素、塩化アンモニウムなどによって行う方法がある。
ハロゲン化アルキルとしては、ヨウ化メチル、ヨウ化エチル、ヨウ化n-プロピル、ヨウ化n-ブチル、ヨウ化n-オクタデシル、ヨウ化ベンジル、ブロモエタン、1-ブロモプロパン、1-ブロモブタン、1-ブロモオクタデカン、ベンジルブロミド、クロロエタン、1-クロロプロパン、1-クロロブタン、1-クロロオクタデカン、ベンジルクロリド、メタンスルホン酸メチル、メタンスルホン酸エチル、メタンスルホン酸n-プロピル、メタンスルホン酸n-ブチル、メタンスルホン酸n-オクタデシル、メタンスルホン酸ベンジルなどが挙げられる。
なお、式(8)中、Ar,R101、R103、R104は、上記式(A)中のそれぞれの定義と同じであり、R211は、非置換若しくはフッ素原子によって置換されている炭素原子数1~18の直鎖又は分岐鎖又は環状のアルキル基(アルキル基中の-CH2-又は-CF2-は、-CH=CH-、又は次の群Gから選ばれる基(ただし、該群Gから選ばれる基は互いに隣り合わない)に置き換えられていてもよい(群G:-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは二価の複素環)で置換されていてもよい。)である。
また、式(9)中、R211は、上記式(8)中の、R211の定義と同じである。
酸触媒としては、p-トルエンスルホン酸、p-トルエンスルホン酸ピリジニウム、メタンスルホン酸などが挙げられる。
式(5)で表される化合物が、下記式(10)(式(10)中、Ar,R101、R103、R104は、上記式(A)中のそれぞれの定義と同じである)で表される場合には、上記式(6)で表される化合物と、3,4-ジヒドロピランとを、無触媒下、もしくは、酸触媒下で反応させる合成法が挙げられる。
式(13)で表される化合物の合成法に特に制限はないが、例えば、式(13)のR102がOR111で表される場合には、下記式(14)(式(14)中、Ar,R103、R104は、上記式(A)中のそれぞれの定義と同じであり、S,T2は、上記<5>に記載の定義と同じである)で表される化合物の一級水酸基を保護基によって保護し、残った三級水酸基に置換基を導入後、一級水酸基の保護基を脱保護する方法が挙げられる。
保護基については、特に制限はないが、例えば、テトラヒドロピラニル基、ベンジル基、p-メトキシベンジル基、メトキシメチル基、トリメチルシリル基、t-ブチルジメチルシリル基、アセチル基、ベンゾイル基、トリチル基などが挙げられる。
各保護基の脱保護方法については、特に制限はなく、一般的な脱保護反応条件を適用することができる。
式(19)で表される化合物としては、3,5-ジニトロ安息香酸などが挙げられる。
脱水縮合剤としては、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、ジイソプロピルカルボジイミド、1,1’-カルボニルジイミダゾール、ビス(2-オキソ-3-オキサゾリニジル)ホスフィン酸塩化物、ジ-2-ピリジル炭酸塩、トリフェニルホスファイト、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムテトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが挙げられる。
液晶を垂直に配向させる側鎖をポリイミド前駆体に導入する方法は、特定側鎖構造を有するジアミンをジアミン成分の一部に用いることが好ましい。特に下記の式[2]で示されるジアミン(特定側鎖型ジアミン化合物ともいう)を用いることが好ましい。
特定側鎖型ジアミンとしては、高くて安定な液晶の垂直配向性を得ることができる点から、下記の式[2-1]で示されるジアミンを用いることが好ましい。
なお、式[2-1]中、mは1~4の整数である。好ましくは、1の整数である。
特定側鎖型ジアミンは、具体的には、例えば、下記の式[2a-1]~式[2a-31]で示される構造が挙げられる。
なお、式中、R1は-O-、-OCH2-、-CH2O-、-COOCH2-又はCH2OCO-を示し、R2は炭素数1~22の直鎖状若しくは分岐状アルキル基、炭素数1~22の直鎖状若しくは分岐状アルコキシル基、炭素数1~22の直鎖状若しくは分岐状の、フッ素含有アルキル基又はフッ素含有アルコキシル基である。
R3は、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH2-、-CH2OCO-、-CH2O-、-OCH2-又はCH2-を示し、R4は炭素数1~22の直鎖状若しくは分岐状アルキル基、炭素数1~22の直鎖状若しくは分岐状アルコキシル基、炭素数1~22の直鎖状若しくは分岐状の、フッ素含有アルキル基又はフッ素含有アルコキシル基である。
R5は、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH2-、-CH2OCO-、-CH2O-、-OCH2-、-CH2-、-O-又はNH-を示し、R6はフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基又は水酸基である。
R7は炭素数3~12の直鎖状又は分岐状アルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。
R8は炭素数3~12の直鎖状又は分岐状アルキル基であり、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。
A4はフッ素原子で置換されていてもよい炭素数3~20の直鎖状又は分岐状アルキル基であり、A3は1,4-シクロへキシレン基又は1,4-フェニレン基であり、A2は酸素原子又はCOO-*(ただし、「*」を付した結合手がA3と結合する)であり、A1は酸素原子又はCOO-*(ただし、「*」を付した結合手が(CH2)a2)と結合する)である。また、a1は0又は1の整数であり、a2は2~10の整数であり、a3は0又は1の整数である。
A1は、炭素数1~22のアルキル基又はフッ素含有アルキル基を示す。
上記のジアミンは、液晶配向膜とした際の液晶配向性、プレチルト角、電圧保持特性、蓄積電荷などの特性に応じて、1種又は2種以上を混合して使用することもできる。
液晶を垂直に配向させる側鎖を有するジアミンを用いると、応答速度の向上や液晶の配向固定化能力の点で特に優れる。
光反応性の側鎖を有するジアミンとしては、例えば、式[3]で表される側鎖を有するジアミンであり、具体的には、下記の一般式[3](式[3]中のR8、R9及びR10の定義は、上記式[III]と同じである)で表されるジアミンを挙げることができるが、これに限定されるものではない。
光反応性の側鎖を有するジアミンは、具体的には以下のものが挙げられる。
式中、X9、X10は、それぞれ独立に、単結合、-O-、-COO-、-NHCO-、又は-NH-である結合基、Yはフッ素原子で置換されていてもよい炭素数1~20のアルキレン基を表す。
また、光反応性の側鎖を有するジアミンは、ポリアミック酸の合成に用いるジアミン成分の10~70モル%を用いることが好ましく、より好ましくは20~60モル%、特に好ましくは30~50モル%である。
なお、ポリイミド前駆体及び/又は、ポリイミドを製造する場合、本発明の効果を損わない限りにおいて、上記したジアミン以外のその他のジアミンをジアミン成分として併用することができる。具体的には、例えば、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ビフェニル、3,3’-トリフルオロメチル-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2’-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2’-ビス(4-アミノフェニル)プロパン、2,2’-ビス(3-アミノフェニル)プロパン、2,2’-ビス(3-アミノ-4-メチルフェニル)プロパン、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカンなどの芳香族ジアミン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタンなどの脂環式ジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどの脂肪族ジアミンが挙げられる。
上記のジアミン成分と反応させるテトラカルボン酸二無水物成分は特に限定されない。具体的には、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸、1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸、オキシジフタルテトラカルボン酸、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロヘプタンテトラカルボン酸、2,3,4,5-テトラヒドロフランテトラカルボン酸、3,4-ジカルボキシ-1-シクロへキシルコハク酸、2,3,5-トリカルボキシシクロペンチル酢酸、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸、ビシクロ[4,3,0]ノナン-2,4,7,9-テトラカルボン酸、ビシクロ[4,4,0]デカン-2,4,7,9-テトラカルボン酸、ビシクロ[4,4,0]デカン-2,4,8,10-テトラカルボン酸、トリシクロ[6.3.0.0<2,6>]ウンデカン-3,5,9,11-テトラカルボン酸、1,2,3,4-ブタンテトラカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドリナフタレン-1,2-ジカルボン酸、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロへキサン-1,2-ジカルボン酸、テトラシクロ[6,2,1,1,0,2,7]ドデカ-4,5,9,10-テトラカルボン酸、3,5,6-トリカルボキシノルボルナン-2:3,5:6ジカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸等が挙げられる。勿論、テトラカルボン酸二無水物も、液晶配向膜にした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上併用してもよい。
本発明の液晶配向剤には、必要に応じ、2つ以上の末端に光重合又は光架橋する基を有する重合性化合物を含有しても良い。かかる重合性化合物は、光重合又は光架橋する基を有する末端を二つ以上持っている化合物である。ここで、光重合する基を有する重合性化合物とは、光を照射することにより重合を生じさせる官能基を有する化合物である。また、光架橋する基を有する化合物とは、光を照射することにより、重合性化合物の重合体や、ポリイミド前駆体、及び、このポリイミド前駆体をイミド化して得られるポリイミドから選択される少なくとも一種の重合体と反応してこれらと架橋することができる官能基を有する化合物である。なお、光架橋する基を有する化合物は、光架橋する基を有する化合物同士でも反応する。
光重合又は光架橋する基としては、下記式(IV)で表される一価の基が挙げられる。
式中、R12は、水素原子、又は炭素数1~4のアルキル基を表す。Z1は、炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基によって置換されていてもよい二価の芳香環若しくは複素環を表す。Z2は炭素数1~12のアルキル基又は炭素数1~12のアルコキシル基によって置換されていてもよい一価の芳香環若しくは複素環を表す。
なお、下記式(V)~(VII)において、R12、Z1及びZ2は上記式(IV)におけるR12、Z1及びZ2と同じであり、Q1は二価の有機基である。Q1は、フェニレン基(-C6H4-)、ビフェニレン基(-C6H4-C6H4-)、シクロヘキシレン基(-C6H10-)等の環構造を有していることが好ましい。液晶との相互作用が大きくなりやすいためである。
なお、下記式中、R’は一価の有機基を表す。
ジアミン成分とテトラカルボン酸二無水物との反応により、ポリアミック酸を得るにあたっては、公知の合成手法を用いることができる。一般的には、ジアミン成分とテトラカルボン酸二無水物成分とを有機溶媒中で反応させる方法である。ジアミン成分とテトラカルボン酸二無水物との反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。
上記の重合反応における、ジアミン成分の合計モル数に対するテトラカルボン酸二無水物成分の合計モル数の比率は、得ようとするポリアミック酸の分子量に応じて選択できる。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなり、好ましい範囲を示すならば0.8~1.2である。
上記したポリアミック酸をイミド化させてポリイミドとする方法としては、ポリアミック酸の溶液をそのまま加熱する熱イミド化、ポリアミック酸の溶液に触媒を添加する触媒イミド化が挙げられる。なお、ポリアミック酸からポリイミドへのイミド化率は、必ずしも100%である必要はない。
ポリアミック酸の触媒イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
本発明の液晶配向剤は、上記ポリイミド前駆体を含有するが、該ポリイミド前駆体の含有量は1~20質量%が好ましく、より好ましくは3~15質量%、特に好ましくは3~10質量%である。また、2つ以上の末端に光重合又は光架橋する基をそれぞれ有する重合性化合物を含有する場合、その含有量は、上記重合体100質量部に対して、1~50質量部が好ましく、さらに好ましくは5~30質量部である。
液晶配向剤が有する重合体の分子量は、液晶配向剤を塗布して得られる液晶配向膜の強度及び、塗膜形成時の作業性、塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000が好ましく、10,000~150,000がより好ましい。
膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製)、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。これらの界面活性剤の使用割合は、液晶配向剤に含有される重合体の総量100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
さらに、液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。
上記の方法で液晶配向剤を塗布して形成される塗膜は、焼成して硬化膜とすることができる。液晶配向剤を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を行うことが好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については特に限定されない。例えば、温度40℃~150℃、好ましくは60℃~100℃のホットプレート上で、0.5分~30分、好ましくは1分~5分乾燥させる方法が挙げられる。
また、焼成して得られる液晶配向膜の厚みは特に限定されないが、好ましくは5~300nm、より好ましくは10~100nmである。
本発明の液晶表示素子は、上記の方法により、基板に液晶配向膜を形成した後、公知の方法で液晶セルを作製できる。液晶表示素子の具体例としては、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ本発明の液晶配向剤により形成された上記液晶配向膜とを有する液晶セルを具備する垂直配向方式の液晶表示素子である。具体的には、本発明の液晶配向剤を2枚の基板上に塗布して焼成することにより液晶配向膜を形成し、この液晶配向膜が対向するように2枚の基板を配置し、この2枚の基板の間に液晶で構成された液晶層を挟持し、すなわち、液晶配向膜に接触させて液晶層を設け、液晶配向膜及び液晶層に電圧を印加しながら紫外線を照射することで作製される液晶セルを具備する垂直配向方式の液晶表示素子である。
透過型の液晶表示素子の場合は、上記の如き基板を用いることが一般的であるが、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。
一般に、液晶表示素子のプレチルト角は、液晶表示素子を形成する際のUV照射量が多いほど、90°から離れる傾向にある。
なお、以下における、化合物の略号と構造、及び各特性の測定方法は、以下のとおりである。
DMF:N、N-ジメチルホルムアミド
THF:テトラヒドロフラン
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
(ジアミン)
DA-A:1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-メトキシ-2-メチルプロパン-1-オン
DA-1:1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン
DA-2:4-(4-(4-ヘプチルシクロヘキシル)フェノキシ)ベンゼン-1,3-ジアミン
3AMPDA:3,5-ジアミノ-N-(ピリジン-3-イルメチル)ベンズアミド
(酸二無水物)
BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
(添加剤)
3AMP:3-ピコリルアミン
装置:フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)INOVA-400(Varian製)400MHz
溶媒:重クロロホルム(CDCl3)、又は重水素化ジメチルスルホキシド(DMSO-d6)
標準物質:テトラメチルシラン(TMS)
積算回数:8、又は、32。
装置:フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)INOVA-400(Varian製)100MHz
溶媒:重クロロホルム(CDCl3)、又は重水素化ジメチルスルホキシド(DMSO-d6)
標準物質:テトラメチルシラン(TMS)
積算回数:256。
ポリイミド前駆体及び該イミド化重合体の分子量は、GPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量(以下、Mnとも言う。)と重量平均分子量(以下、Mwとも言う。)を算出した。
GPC装置:センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC-7200)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・H2O)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分。
合成例におけるポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末20mgをNMRサンプル管(NMRサンプリングチューブスタンダード,φ5(草野科学製))に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05%TMS(テトラメチルシラン)混合品)(1.0ml)を添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500)(日本電子データム製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
イミド化率(%)=(1-α・x/y)×100
上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
(対照合成例1:芳香族ジアミン化合物(DA-1)の合成)
攪拌子と窒素導入管を備えた2L四口フラスコに、2,4-ジニトロフルオロベンゼンを100.0g([Mw:186.10g/mol]、0.538mol)、2-ヒドロキシ-4’-(2-ヒドロキシエトキシ)-2-メチルプロピオフェノンを120.6g([Mw:224.25g/mol]、0.538mol)、トリエチルアミンを81.7g([Mw:101.19g/mol]、0.807mol)、THFを1000g加え、24時間還流させた。反応終了後、ロータリーエバポレーターで濃縮し、酢酸エチルを加え、これを純水と生理食塩水にて数回洗浄した後、無水硫酸マグネシウムで乾燥させた。
1H NMR (400 MHz,CDCl3)δ:8.75(Ar:1H)、8.48~8.45(Ar:1H)、8.09~8.05(Ar:2H)、7.34~7.31(Ar:1H)7.00~6.96(Ar:2H)、4.65~4.63(-CH2-:2H)、4.52~4.49(-CH2-:2H)、4.16(-OH:1H)、1.66~1.60(-CH3×2、6H) Total:18H.
1L四口フラスコにStep1で得たジニトロベンゼン誘導体を100.0g([Mw:390.34g/mol]、0.256mol)と鉄がドープされた白金カーボン(Evonic社製 3wt%)を10.0g計り取り、THFを500ml加え、減圧脱気及び水素置換を十分に行い、室温で24時間反応させた。
1H NMR (400 MHz,CDCl3)δ:8.09~8.05(Ar:2H)、7.01~6.97(Ar:2H)、6.70~6.68(Ar:1H)、6.12(Ar:1H)、4.36~4.33(-CH2-:2H)、4.29~4.27(-OH&-CH2-:3H)、3.7(-NH2:2H)、3.39(-NH2:2H)、1.64~1.63(-CH3×2:6H) Total:22H.
芳香族ジアミン化合物(DA-A):1-(4-(2-(2,4-ジアミノフェノキシ)エトキシ)フェニル)-2-メトキシ-2-メチルプロパン-1-オンの合成
以下に示す5ステップの経路で芳香族ジアミン化合物(DA-A)を合成した。尚、芳香族ジアミン化合物(DA-A)は、上述した特定ジアミン化合物に該当する。
1H NMR (DMSO-d6):δ 8.22 (d, J = 9.0 Hz, 2H, C6H4), 7.02 (d, J = 9.0 Hz, 2H, C6H4), 5.68 (s, 1H, OH), 4.66 (t, J = 3.6 Hz, 1H, CH), 4.22 (t, J = 4.8 Hz, 2H, CH2), 4.07-3.92 (m, 1H, CH2), 3.81-3.70 (m, 2H, CH2), 3.47-3.42 (m, 1H, CH2), 1.77-1.41 (m, 6H, CH2), 1.40 (s, 6H, C(CH3)2). 13C{1H} NMR (DMSO-d6):δ 202.4, 162.3, 162.1, 132.9, 127.9, 114.2, 98.5, 93.9, 93.6, 77.1, 70.2, 67.8, 65.5, 63.1, 62.0, 61.7, 59.9, 30.7, 30.6, 28.6, 25.6, 25.4, 20.8, 19.5 (each s).
1H NMR (DMSO-d6):δ 8.19 (d, J = 8.8 Hz, 2H, C6H4), 7.06 (d, J = 8.8 Hz, 2H, C6H4), 4.66 (s, 1H, CH), 4.24-4.22 (m, 2H, CH2), 3.97-3.92 (m, 1H, CH), 3.80-3.72 (m, 2H, CH2), 3.47-3.43 (m, 1H, CH), 3.08 (s, 3H, CH3), 1.71-1.60 (m, 2H, CH2), 1.53-1.46 (m, 4H, (CH2)2), 1.41 (s, 6H, C(CH3)2). 13C{1H} NMR (DMSO-d6):δ 201.35, 162.6, 132.2, 127.5, 114.6, 98.5, 83.1, 67.9, 65.5, 61.7, 52.2, 30.6, 24.5, 24.9, 19.4 (each s).
1H NMR (DMSO-d6):δ 8.20 (d, J = 9.0 Hz, 2H, C6H4), 7.05 (d, J = 9.0 Hz, 2H, C6H4), 4.96 (t, J = 5.4 Hz, 1H, OH), 4.10 (t, J = 4.8 Hz, 2H, CH2), 3.97-3.92 (dt, J = 5.4, 4.8 Hz, 2H, CH2), 3.09 (s, 3H, CH3), 1.42 (s, 6H, C(CH3)2). 13C{1H} NMR (DMSO-d6):δ 200.3, 162.8, 132.2, 127.4, 114.6, 83.1, 70.2, 59.8, 52.2, 24.9 (each s).
1H NMR (DMSO-d6):δ 8.73 (d, J = 2.8 Hz, 1H, C6H3), 8.50 (dd, J = 9.2, 2.8 Hz, 1H, C6H3), 8.16 (d, J = 8.8 Hz, 2H, C6H4), 7.65 (d, J = 9.2 Hz, 1H, C6H3), 7.37 (d, J = 8.8 Hz, 2H, C6H4), 4.71-4.69 (m, 2H, CH2), 4.45-4.43 (m, 2H, CH2), 3.04 (s, 3H, CH3), 1.37 (s, 6H, C(CH3)2). 13C{1H} NMR (DMSO-d6):δ 201.4, 162.2, 156.0, 140.3, 139.2, 132.2, 129.7, 127.8, 121.6, 116.4, 114.7, 83.1, 69.6, 66.5, 52.2, 24.8 (each s).
1H NMR (DMSO-d6): δ 8.20 (d, J = 9.2 Hz, 2H, C6H4), 7.08 (d, J = 9.2 Hz, 2H, C6H4), 6.57 (d, J = 8.4 Hz, 1H, C6H3), 5.96 (d, J = 2.4 Hz, 1H, C6H3), 5.77 (dd, J = 9.2, 2.8 Hz, 1H, C6H3), 4.48 (s, 2H, NH2), 4.42 (s, 2H, NH2), 4.34-4.32 (m, 2H, CH2), 4.12-4.10 (m, 2H, CH2), 3.08 (s, 3H, CH3), 1.41 (s, 6H, C(CH3)2). 13C{1H} NMR (DMSO-d6): δ 201.4, 162.6, 144.2, 139.6, 137.4, 132.3, 127.6, 116.3, 114.7, 102.7, 101.8, 83.1, 68.9, 67.4, 52.2, 24.9 (each s).
<液晶配向剤の合成>
BODA(10.01g、 40.0mmol)、3AMPDA(4.85g、20.0mmol)、DA-A(13.78g、40.0mmol)、DA-2(15.22g、40.0mmol)をNMP(166.2g)中で溶解し、60℃で5時間反応させたのち、CBDA(11.57g、59.0mmol)とNMP(55.4g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。
このポリアミック酸溶液(250g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(45.9g)、およびピリジン(14.2g)を加え、70℃で3時間反応させた。この反応溶液をメタノール(3300ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(A)を得た。このポリイミドのイミド化率は72%であり、数平均分子量は14000、重量平均分子量は38000であった。
得られたポリイミド粉末(A)(6.0g)にNMP(44.0g)を加え、70℃にて20時間攪拌して溶解させた。この溶液に3AMP(1質量%NMP溶液)6.0g、NMP(4.0g)、BCS(40.0g)を加え、室温で5時間攪拌することにより液晶配向剤(A1)を得た。
実施例1で得られた液晶配向剤(A1)を用いて下記に示すような手順で液晶セルの作製を行った。
実施例1で得られた液晶配向剤(A1)を、画素サイズが100μm×300μmでライン/スペースがそれぞれ5μmのITO電極パターンが形成されているITO電極基板のITO面にスピンコートし、80℃のホットプレートで90秒間乾燥した後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。
また、液晶配向剤(A1)を電極パターンが形成されていないITO面にスピンコートし、80℃のホットプレートで90秒乾燥させた後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。
上記の2枚の基板について一方の基板の液晶配向膜上に4μmのビーズスペーサーを散布した後、その上からシール剤(溶剤型熱硬化タイプのエポキシ樹脂)を印刷した。次いで、もう一方の基板の液晶配向膜が形成された側の面を内側にして、先の基板と貼り合せた後、シール剤を硬化させて空セルを作製した。この空セルにPSA用重合性化合物含有液晶MLC-3023(メルク社製商品名)を減圧注入法によって注入し、液晶セルを作製した。
<<UV照射:6J/cm2又は10J/cm2>>
得られた液晶セルに15VのDC電圧を印加した状態で、この液晶セルの外側から365nmのバンドパスフィルターを通したUVを6J/cm2又は10J/cm2、該液晶セルに照射した。なお、UVの照度は、ORC社製UV-MO3Aを用いて測定した。その後、液晶セル中に残存している未反応の重合性化合物を失活させる目的で、電圧を印加していない状態で東芝ライテック社製UV-FL照射装置を用いてUV(UVランプ:FLR40SUV32/A-1)を30分間照射した。
その後、UV照射後のセルについて画素部分のプレチルト角を測定した。なお、プレチルト角は、名菱テクニカ製LCDアナライザーLCA-LUV42Aを用いて、測定した。その結果を表1に示す。
まず、バックライト、クロスニコルの状態にした一組の偏光板、光量検出器の順で構成される測定装置において、一組の偏光板の間に、得られた液晶セルを配置した。このとき、ライン/スペースが形成されているITO電極のパターンがクロスニコルに対して45°の角度になるようにした。そして、上記の液晶セルに電圧±7V、周波数1kHzの矩形波を印加し、光量検出器によって観測される輝度が飽和するまでの変化をオシロスコープにて取り込み、電圧を印加していない時の輝度を0%、±7Vの電圧を印加し、飽和した輝度の値を100%として、輝度が10%から90%まで変化するのにかかる時間を応答速度とした。
<対照液晶配向剤の合成>
実施例1における「DA-A(13.78g、40.0mmol)」の代わりに、DA-1(13.22g、40.0mmol)を用いた以外、実施例1と同様に対照液晶配向剤(B1)を合成した。具体的には、次のように対照液晶配向剤(B1)を合成した。
即ち、BODA(10.01g、 40.0mmol)、3AMPDA(4.85g、20.0mmol)、DA-1(13.22g、40.0mmol)、DA-2(15.22g、40.0mmol)をNMP(164.6g)中で溶解し、60℃で5時間反応させたのち、CBDA(11.57g、59.0mmol)とNMP(54.9g)を加え、40℃で10時間反応させポリアミック酸溶液を得た。
このポリアミック酸溶液(250g)にNMPを加え6.5質量%に希釈した後、イミド化触媒として無水酢酸(46.4g)、およびピリジン(14.4g)を加え、70℃で3時間反応させた。この反応溶液をメタノール(3300ml)に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(B)を得た。このポリイミドのイミド化率は73%であり、数平均分子量は23000、重量平均分子量は64000であった。
得られたポリイミド粉末(B)(6.0g)にNMP(44.0g)を加え、70℃にて20時間攪拌して溶解させた。この溶液に3AMP(1質量%NMP溶液)6.0g、NMP(4.0g)、BCS(40.0g)を加え、室温で5時間攪拌することにより液晶配向剤(B1)を得た。
実施例1における「液晶配向剤(A1)」の代わりに液晶配向剤(B1)を用いた以外、実施例1と同様に対照液晶セルを作製した。
また、得られた対照液晶セルについて、実施例と同様の操作を行い、プレチルト角及び応答速度を測定した。その結果を表1に示す。
即ち、対照例1及び2(対照ジアミン(DA-1)を用いて得られた対照液晶配向剤(B1)を使用)の対照液晶セルと実施例1及び2(芳香族ジアミン化合物(DA-A)を用いて得られた液晶配向剤(A1)を使用)の液晶セルを比較すると、実施例1及び2の液晶セルの方が、同一照射量の光照射時に、プレチルト角が90°から離れている。
また、実施例1及び2の液晶セルは、対照例1及び2の液晶セルよりも、低UV照射量で所望のプレチルト角及び所望の応答速度を備えることが可能であることがわかる。これは、実施例1及び2の液晶セルに用いられる芳香族ジアミン化合物(DA-A)、のUV照射時のラジカル発生量が、対照液晶セルに用いられるジアミン(DA-1)よりも多いことに依る。
実施例1及び2の液晶セルは、対照例1及び2の対照液晶セルよりも、同一波長でのUV照射量が少なくてよいため、UV照射時間の短縮による液晶のダメージを軽減でき、液晶作製のコストを抑えることができる。
Claims (18)
- 前記光照射時の光の波長が、300nm~400nmである請求項1に記載のポリイミド前駆体。
- 前記ポリイミド前駆体を構成する全ジアミン100モル%中、前記第1の光ラジカル発生ジアミンが、0.1~100モル%である請求項1又は2に記載のポリイミド前駆体。
- 前記-R101-が、-T1-S-T2-
(式中、
T1及びT2はそれぞれ独立して、単結合、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CH2O-、-N(CH3)-、-CON(CH3)-、又は-N(CH3)CO-であり、
Sは、単結合、又は非置換若しくはフッ素原子によって置換されている炭素原子数1~20のアルキレン基(アルキレン基中の-CH2-又は-CF2-は、-CH=CH-、又は次の群Gから選ばれる基(ただし、該群Gから選ばれる基は互いに隣り合わない)に置き換えられていてもよい(群G:-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは二価の複素環))である)
で表される請求項4に記載のポリイミド前駆体。 - 前記R102~R104のうち、いずれか1つが、-OR111(R111は、非置換若しくはフッ素原子によって置換されている炭素原子数1~20の直鎖又は分岐鎖又は環状のアルキル基(アルキル基中の-CH2-又は-CF2-は、-CH=CH-、又は次の群Gから選ばれる基(ただし、該群Gから選ばれる基は互いに隣り合わない)に置き換えられていてもよい(群G:-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、二価の炭素環若しくは二価の複素環)で置換されていてもよい)であり、
他の2つが、各々独立に、炭素数1~20の直鎖又は分岐鎖又は環状のアルキル基、-OR112(R112は、非置換若しくはフッ素原子によって置換されている炭素原子数1~20の直鎖又は分岐鎖又は環状のアルキル基、置換基を有してもよい炭素数6~20のアリール基からなる群から選ばれる基を表す)で表される基、ベンジル基、又はフェネチル基である(他の2つが前記アルキル基又は-OR112である場合、互いに結合して環を形成してもよい)、請求項4又は5に記載のポリイミド前駆体。 - 前記Arがフェニレン基である請求項4~6のいずれか1項に記載のポリイミド前駆体。
- 液晶を垂直に配向させる側鎖をさらに有する請求項1~9のいずれか1項に記載のポリイミド前駆体。
- 光反応性基を構造中に含む側鎖をさらに有する請求項1~10のいずれか1項に記載のポリイミド前駆体。
- 請求項1~11のいずれか1項に記載のポリイミド前駆体をイミド化して得られるポリイミド。
- 請求項1~11のいずれか1項記載のポリイミド前駆体及び/又は請求項12に記載のポリイミドを有する液晶配向剤。
- 液晶中及び/又は液晶配向膜中に重合性化合物を含有し、電圧を印加しながら紫外線を照射することにより前記重合性化合物を反応させて得られる液晶表示素子の製造に用いられる請求項13に記載の液晶配向剤。
- 請求項13又は14に記載の液晶配向剤を有して形成される液晶配向膜。
- 請求項15に記載の液晶配向膜を具備する液晶表示素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201680025765.8A CN107531904B (zh) | 2015-03-04 | 2016-03-03 | 聚酰亚胺前体、以及具有该前体的液晶取向剂、液晶取向膜及液晶表示元件 |
JP2017503708A JP6753392B2 (ja) | 2015-03-04 | 2016-03-03 | ポリイミド前駆体、並びに該前駆体を有する液晶配向剤、液晶配向膜及び液晶表示素子 |
KR1020177027841A KR102600209B1 (ko) | 2015-03-04 | 2016-03-03 | 폴리이미드 전구체, 그리고 그 전구체를 갖는 액정 배향제, 액정 배향막 및 액정 표시 소자 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015041976 | 2015-03-04 | ||
JP2015-041976 | 2015-03-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016140302A1 true WO2016140302A1 (ja) | 2016-09-09 |
Family
ID=56848362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/056560 WO2016140302A1 (ja) | 2015-03-04 | 2016-03-03 | ポリイミド前駆体、並びに該前駆体を有する液晶配向剤、液晶配向膜及び液晶表示素子 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6753392B2 (ja) |
KR (1) | KR102600209B1 (ja) |
CN (1) | CN107531904B (ja) |
TW (2) | TWI810976B (ja) |
WO (1) | WO2016140302A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018097155A1 (ja) * | 2016-11-22 | 2018-05-31 | 日産化学工業株式会社 | 液晶表示素子の製造方法並びに液晶表示素子用基板及び液晶表示素子組立体 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI850341B (zh) * | 2019-02-27 | 2024-08-01 | 日商日產化學股份有限公司 | 液晶配向處理劑、液晶配向膜及液晶顯示元件 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007002065A (ja) * | 2005-06-22 | 2007-01-11 | Fujifilm Holdings Corp | 液晶材料、その製造方法、及び、該液晶材料を含む表示素子 |
WO2015033921A1 (ja) * | 2013-09-03 | 2015-03-12 | 日産化学工業株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100228722B1 (ko) * | 1997-09-12 | 1999-11-01 | 김충섭 | 알콕시 치환체를 갖는 신규 가용성 폴리이미드수지 및 그의 제조방법 |
CN1483057A (zh) * | 2000-12-26 | 2004-03-17 | 日产化学工业株式会社 | 苯二胺衍生物、使用苯二胺衍生物的聚酰亚胺前体及聚酰亚胺、以及液晶取向处理剂 |
JP4175826B2 (ja) | 2002-04-16 | 2008-11-05 | シャープ株式会社 | 液晶表示装置 |
WO2004052962A1 (ja) * | 2002-12-11 | 2004-06-24 | Nissan Chemical Industries, Ltd. | 新規なジアミノベンゼン誘導体、それを用いたポリイミド前駆体およびポリイミド、並びに液晶配向処理剤 |
KR101831011B1 (ko) * | 2010-02-26 | 2018-02-21 | 닛산 가가쿠 고교 가부시키 가이샤 | 액정 표시 소자 및 액정 배향제 |
KR20180072830A (ko) * | 2011-09-08 | 2018-06-29 | 닛산 가가쿠 고교 가부시키 가이샤 | 액정 배향 처리제, 액정 배향막 및 액정 표시 소자 |
JP6146577B2 (ja) * | 2011-12-28 | 2017-06-14 | 日産化学工業株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
KR102008788B1 (ko) * | 2013-01-23 | 2019-08-08 | 제이에스알 가부시끼가이샤 | Psa 모드 액정 표시 소자용 액정 배향제, psa 모드 액정 표시 소자용 액정 배향막, 그리고 psa 모드 액정 표시 소자 및 그의 제조 방법 |
JP6213281B2 (ja) * | 2013-03-19 | 2017-10-18 | Jnc株式会社 | 感光性ジアミン、液晶配向剤および液晶表示素子 |
-
2016
- 2016-03-03 TW TW111122478A patent/TWI810976B/zh active
- 2016-03-03 WO PCT/JP2016/056560 patent/WO2016140302A1/ja active Application Filing
- 2016-03-03 JP JP2017503708A patent/JP6753392B2/ja active Active
- 2016-03-03 TW TW105106511A patent/TWI781080B/zh active
- 2016-03-03 CN CN201680025765.8A patent/CN107531904B/zh active Active
- 2016-03-03 KR KR1020177027841A patent/KR102600209B1/ko active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007002065A (ja) * | 2005-06-22 | 2007-01-11 | Fujifilm Holdings Corp | 液晶材料、その製造方法、及び、該液晶材料を含む表示素子 |
WO2015033921A1 (ja) * | 2013-09-03 | 2015-03-12 | 日産化学工業株式会社 | 液晶配向剤、液晶配向膜及び液晶表示素子 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018097155A1 (ja) * | 2016-11-22 | 2018-05-31 | 日産化学工業株式会社 | 液晶表示素子の製造方法並びに液晶表示素子用基板及び液晶表示素子組立体 |
JPWO2018097155A1 (ja) * | 2016-11-22 | 2019-10-17 | 日産化学株式会社 | 液晶表示素子の製造方法並びに液晶表示素子用基板及び液晶表示素子組立体 |
JP7227557B2 (ja) | 2016-11-22 | 2023-02-22 | 日産化学株式会社 | 液晶表示素子の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107531904B (zh) | 2020-10-30 |
TW202239823A (zh) | 2022-10-16 |
JP6753392B2 (ja) | 2020-09-09 |
KR102600209B1 (ko) | 2023-11-08 |
KR20170125923A (ko) | 2017-11-15 |
TW201702289A (zh) | 2017-01-16 |
TWI781080B (zh) | 2022-10-21 |
CN107531904A (zh) | 2018-01-02 |
JPWO2016140302A1 (ja) | 2017-12-14 |
TWI810976B (zh) | 2023-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6725885B2 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
JP5387793B2 (ja) | 液晶配向剤 | |
JP6172463B2 (ja) | 液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法 | |
JP6635272B2 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
JP6864271B2 (ja) | 液晶配向剤、液晶配向膜及び液晶表示素子 | |
JP5975227B2 (ja) | 液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法 | |
WO2012133819A1 (ja) | 液晶配向剤、液晶配向膜、液晶表示素子及び液晶表示素子の製造方法並びに重合性化合物 | |
WO2013099804A1 (ja) | 液晶配向剤、液晶配向膜、液晶表示素子及びジアミン化合物 | |
WO2013100068A1 (ja) | 液晶配向剤、液晶表示素子、液晶表示素子の製造方法及び重合性化合物 | |
CN110192148B (zh) | 液晶表示元件的制造方法以及液晶表示元件用基板和液晶表示元件组装体 | |
KR102600209B1 (ko) | 폴리이미드 전구체, 그리고 그 전구체를 갖는 액정 배향제, 액정 배향막 및 액정 표시 소자 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16758994 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017503708 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177027841 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16758994 Country of ref document: EP Kind code of ref document: A1 |