WO2016132603A1 - タンク耐圧試験時のタンク腐食防止方法 - Google Patents
タンク耐圧試験時のタンク腐食防止方法 Download PDFInfo
- Publication number
- WO2016132603A1 WO2016132603A1 PCT/JP2015/080053 JP2015080053W WO2016132603A1 WO 2016132603 A1 WO2016132603 A1 WO 2016132603A1 JP 2015080053 W JP2015080053 W JP 2015080053W WO 2016132603 A1 WO2016132603 A1 WO 2016132603A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tank
- pressure test
- corrosion inhibitor
- test water
- masking tape
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F11/00—Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
Definitions
- the present disclosure relates to a method for preventing tank corrosion during a tank pressure test, in which pressure resistant test water is injected into a tank, and when the pressure resistance of the tank against the injected pressure test water is tested, corrosion of the tank inner surface by microorganisms in the pressure test water is prevented. About.
- a large-capacity tank that stores liquefied gas (for example, LNG: liquefied natural gas) and other liquids is formed of a large number of metal plates. That is, a large capacity tank is formed by joining a large number of these metal plates to each other by welding. Therefore, the bottom surface and the inner peripheral surface of the tank are formed by these metal plates.
- Each of these metal plates is made of, for example, aluminum or an aluminum alloy.
- a pressure test is conducted on the tank formed in this way.
- the pressure resistance test is performed according to the following procedure. Fresh water such as river water or ground water or seawater is injected into the tank as pressure test water, and the tank is filled with this pressure test water. This state is maintained for a pressure test period (for example, one month). In this pressure test period, it is checked whether pressure test water leaks from the inside of the tank to the outside.
- the welded portion between the metal plates corrodes due to the influence of microorganisms present in the pressure test water. Since the oxide film is formed on the surface of each metal plate, the region where the oxide film exists on each metal plate is not corroded by microorganisms in the pressure test water. On the other hand, an oxide film is not formed on the welded portion between the metal plates, and therefore the welded portion between the metal plates is a region that is easily corroded by microorganisms in the pressure-resistant test water. Weld corrosion is caused by electrochemical action. This corrosion is promoted by microorganisms in the pressure test water.
- Patent Document 1 sodium azide was added to the pressure test water accumulated in the tank during the tank pressure test.
- sodium azide may adversely affect the human body. Therefore, it is desired to prevent corrosion of the welded portion between the metal plates forming the tank by another method in the pressure resistance test of the tank without using sodium azide.
- the purpose of the present disclosure is to perform the pressure test of the tank by injecting pressure test water into the tank, and without using sodium azide, the weld between the metal plates forming the tank is It is to prevent corrosion due to the effects of microorganisms.
- a tank that prevents corrosion of the tank when the pressure test water is injected into the tank and the pressure resistance of the tank against the injected pressure test water is tested.
- a tank corrosion prevention method during a pressure test The inner surface of the tank is formed by welding and joining a number of metal plates, Before injecting the pressure test water into the tank to test the pressure resistance of the tank, at the bottom of the tank, a corrosion inhibitor is applied to the weld between the metal plates, The total bottom area of the welded portion to which the corrosion inhibitor is applied at the bottom of the tank is the total non-bottom portion of the welded portion to which the corrosion inhibitor is applied on the inner surface of the tank other than the bottom of the tank.
- a tank corrosion prevention method during a tank pressure test which is wider than the area, is provided.
- a corrosion inhibitor is applied to the welded portion between the metal plates at the bottom of the tank.
- the total bottom area of the welded portion to which the corrosion inhibitor is applied at the bottom of the tank is made larger than the total non-bottom area of the welded portion to which the corrosion inhibitor is applied on the inner surface of the tank other than the bottom of the tank.
- FIG. 1B is a sectional view taken along line BB in FIG. 1A.
- FIG. It is CC sectional view taken on the line of FIG. 1B.
- It is the DD sectional view taken on the line of FIG. 1C.
- 5 is a flowchart illustrating a tank corrosion prevention method according to an embodiment of the present disclosure. This corresponds to a partially enlarged view of FIG. 1B showing a state where a masking tape is stuck on the bottom of the tank.
- FIG. 3B is a sectional view taken along line BB in FIG. 3A. It is CC sectional view taken on the line of FIG. 3B. This corresponds to FIG.
- FIG. 3A showing a state in which a corrosion inhibitor is applied to the bottom of the tank.
- FIG. 3B showing a state where a corrosion inhibitor is applied to the bottom of the tank.
- FIG. 3C showing a state in which a corrosion inhibitor is applied to the bottom of the tank. It is a figure explaining the application range of a corrosion inhibitor.
- FIG. 1A shows a tank 10 and ancillary equipment during a tank pressure test for implementing a tank corrosion prevention method according to the present disclosure.
- 1B is a cross-sectional view taken along line BB in FIG. 1A
- FIG. 1C is a cross-sectional view taken along line CC in FIG. 1B
- FIG. 1D is a cross-sectional view taken along line DD in FIG.
- the tank 10 is for holding a liquid to be stored.
- the liquid to be stored is, for example, liquefied natural gas (LNG).
- LNG liquefied natural gas
- the liquid to be stored may be a liquid other than liquefied natural gas.
- the tank 10 is a large-capacity tank capable of holding 1000 kiloliters or more (for example, 10,000 kiloliters or more) of liquid to be stored.
- an injection pipe 3 for injecting pressure test water into the tank 10 is provided.
- the injection pipe 3 injects pressure test water into the tank 10 through the manhole 2 provided in the tank 10.
- the pressure test water is different from the liquid to be stored.
- the pressure test water is river water, groundwater, or seawater, and contains microorganisms that can corrode the inner surface of the tank 10.
- the injection pipe 3 is provided with on-off valves 5 and 16.
- the injection pipe 3 branches from the branch point P1 of the engineering water pipe 7 and extends to the tank 10. River water, groundwater, or seawater is supplied to the industrial water pipe 7 as industrial water. Therefore, the injection pipe 3 injects industrial water from the engineering water pipe 7 into the tank 10 as pressure test water. However, the pressure test water may be supplied to the injection pipe 3 without passing through the engineering water pipe 7.
- a pH adjusting solution is introduced into the tank 10 in order to adjust the pH of the pressure test water in the tank 10 during the tank pressure test. Therefore, in FIG. 1A, the adjustment liquid tank 9, the introduction pipe 11, the on-off valve 13, the metering pump 15, and the line mixer 17 are provided.
- the pH adjusting liquid is held in the adjusting liquid tank 9.
- the introduction pipe 11 extends from the adjustment liquid tank 9 to the injection pipe 3.
- the on-off valve 13 is provided in the introduction pipe 11.
- the metering pump 15 is provided downstream of the on-off valve 13 in the introduction pipe 11.
- the line mixer 17 is provided in the injection pipe 3 on the downstream side of the joining point P ⁇ b> 2 where the introduction pipe 11 joins the injection pipe 3.
- the metering pump 15 When the metering pump 15 is operated with the on-off valves 13 and 16 open, the metering pump 15 supplies the pH adjusting liquid to the inside of the tank 10 through the introduction pipe 11, the junction P ⁇ b> 2 and the injection pipe 3. At this time, the pH adjusting liquid passes through the line mixer 17, and the pressure test water (for example, from the industrial water pipe 7) also passes through the line mixer 17. Therefore, the pH adjusting liquid and the pressure test water are mixed by the line mixer 17 and injected into the tank 10. Note that the amount of the pH adjusting liquid injected into the tank 10 is very small compared to the amount of pressure test water injected into the tank 10.
- the pH adjusting liquid is composed of, for example, a sodium hydroxide aqueous solution and a sodium metasilicate aqueous solution.
- a sodium hydroxide aqueous solution with a set concentration (wt%) is prepared in a set amount (volume)
- a sodium metasilicate aqueous solution with a set concentration (wt%) is prepared in a set amount (volume)
- these aqueous solutions are adjusted. Hold in the liquid tank 9.
- a flow meter 19 is provided on the upstream side of the joining point P2.
- the flow meter 19 measures the volumetric flow rate of the pressure test water flowing from the engineering water pipe 7 to the tank 10.
- a discharge pipe 8 is provided for discharging the pressure test water injected into the tank 10 to the outside of the tank 10 through the manhole 2 after the tank pressure test.
- the discharge pipe 8 is provided with an on-off valve 12. By opening the on-off valve 12, pressure-resistant test water inside the tank 10 is discharged outside the tank 10 through the discharge pipe 8.
- the discharge pipe 8 may be provided with a pump 14. When the pump 14 is operated, the pressure test water is forcibly discharged from the inside of the tank 10 to the outside.
- the inner surface of the tank 10 is formed by welding a large number of metal plates 21, 23, and 25.
- the liquid (the liquid to be stored and the pressure test water) stored in the tank 10 is in direct contact with the inner surface of the tank 10.
- Each metal plate 21, 23, 25 is made of, for example, aluminum or an aluminum alloy. Since the oxide film is formed on the surface of each metal plate 21, 23, 25, the region where the oxide film exists in each metal plate 21, 23, 25 is not corroded by microorganisms in the pressure test water. On the other hand, no oxide film is formed on the welded portion 27 between the metal plates. Therefore, the welded portion 27 between the metal plates 21, 23, 25 is a region that can be corroded by microorganisms in the pressure test water.
- a large number of metal plates 21 are annularly arranged on the bottom surface 4 of the tank 10 to form a part of the bottom surface 4.
- a large number of metal plates 23 are positioned inside the annularly arranged metal plate 21 to form the remaining portion of the bottom surface 4.
- a large number of metal plates 25 form the inner peripheral surface 6 of the tank 10.
- the first metal plate 21, the second metal plate 23, and the third metal plate 25 are simply referred to as metal plates 21, 23, 25, unless distinction is necessary.
- the bottom surface 4 has a radius of 10 m or more
- the inner peripheral surface 6 has a height of 10 m or more.
- the inner surface of the tank 10 includes the bottom surface 4 of the tank 10 and the inner peripheral surface 6 of the tank 10, and the inner peripheral surface 6 surrounds the bottom surface 4 and extends upward from the bottom surface 4.
- the tank 10 When the liquid to be stored is liquefied natural gas (LNG), the tank 10 has an inner tank and an outer tank.
- LNG liquefied natural gas
- each metal plate 21, 23, 25 forms an inner tank, and illustration of the outer tank is omitted.
- the outer tub is disposed outside the inner tub so as to cover the inner tub.
- FIG. 2 is a flowchart showing a tank corrosion prevention method.
- Step S1 is performed before the pressure test water is injected into the tank 10.
- step S ⁇ b> 1 a person applies a corrosion inhibitor 31 to the welded portion 27 between the metal plates 21, 23, 25 at the bottom of the tank 10.
- the welded portion 27 present at the bottom of the tank 10 is only the welded portion 27 on the bottom surface 4 and the welded portion 27 in the region from the bottom surface 4 (outer peripheral edge of the bottom surface 4) to the coating upper limit height of the inner peripheral surface 6. Consists of. Therefore, in step S1, the welded portion 27 (all in this example) exists on the bottom surface 4 and the welded portion 27 (all in this example) exists on the inner peripheral surface 6 from the bottom surface 4 to the coating upper limit height. Then, the corrosion inhibitor 31 is applied. This is because the closer to the bottom surface 4 side of the tank 10, the more preferable it is to apply the corrosion inhibitor 31 to the welded portion 27.
- the application upper limit height may be determined based on the size of the tank 10 and other conditions.
- the application upper limit height is, for example, 10% or less of the total height of the tank 10.
- the coating upper limit height is a height within a height range of 0.2 m or more and 2.0 m or less.
- the coating upper limit height within a range of 0.2 m or more and 2.0 m or less from the bottom surface 4 is a height within a range where a person on the bottom surface 4 of the tank 10 can reach. Accordingly, the corrosion inhibitor 31 can be easily applied to the welded portion 27 of the inner peripheral surface 6 by the hand of the person on the bottom surface 4 of the tank 10. Further, from the bottom surface 4, corrosion by microorganisms may occur in the welded portion 27 of the inner peripheral surface 6 at a height of the upper limit of application within a range of 0.2 m to 2.0 m. Therefore, the corrosion of the welded portion 27 on the inner peripheral surface 6 of the tank 10 can be prevented by applying the corrosion inhibitor 31 to the welded portion 27 on the inner peripheral surface 6 in the region from the bottom surface 4 to the upper limit of application.
- the coating upper limit height may be a height within a height range of 1.0 m to 1.8 m, and a height within a height range of 1.2 m to 1.6 m. It may be.
- the application upper limit height may vary depending on the circumferential position of the inner peripheral surface 6 of the tank 10, or may be constant regardless of the circumferential position of the inner peripheral surface 6 of the tank 10.
- the inner surface of the bottom portion of the tank 10 is composed of only the bottom surface 4 and a region from the bottom surface 4 (outer peripheral edge of the bottom surface 4) to the coating upper limit height of the inner peripheral surface 6. That is, “the bottom of the tank 10” means the bottom surface 4 and the inner peripheral surface 6 up to the coating upper limit height. Further, “other than the bottom of the tank 10” means the inner peripheral surface 6 exceeding the coating upper limit height and the ceiling surface of the tank 10.
- the total area A1 of the welded portion 27 to which the corrosion inhibitor 31 is applied at the bottom of the tank 10 (hereinafter referred to as the total bottom area A1) is applied to the inner surface of the tank 10 other than the bottom of the tank 10.
- the total area A2 of the welded portion 27 (hereinafter referred to as the non-bottom total area A2) is made larger.
- Step S1 is preferably performed in this way.
- step S1 if there is a jig trace in the area from the bottom surface 4 (outer peripheral edge of the bottom surface 4) to the upper limit of application of the bottom surface 4 of the tank 10 and the inner peripheral surface 6 of the tank 10,
- the corrosion inhibitor 31 is also applied to the jig trace.
- the jig trace is a trace of the hanging piece attached to the metal plates 21, 23, 25.
- the suspension pieces are attached to the metal plates 21, 23, 25 in order to lift the metal plates 21, 23, 25 with heavy machinery or other machines. When the suspension piece is removed from the metal plates 21, 23, 25, the metal plates 21, 23, 25 leave traces where the suspension pieces are attached. This mark is a jig mark.
- Step S1 has Step S11 and Step S12.
- FIG. 3A corresponds to a partially enlarged view of FIG. 1B
- FIG. 3B is a cross-sectional view taken along the line BB of FIG. 3A
- FIG. 3C is a cross-sectional view taken along the line CC of FIG.
- step S ⁇ b> 11 as shown in FIGS. 3A, 3 ⁇ / b> B, and 3 ⁇ / b> C, masking tape 29 is applied to the inner surface of the tank 10 along the welded portion 27 on both sides in the width direction of the welded portion 27 on the inner surface of the bottom portion of the tank 10. .
- a person may apply a masking tape 29 to the inner surface of the tank 10 along the welded portions 27 on both sides in the width direction of all the welded portions 27 on the inner surface of the bottom of the tank 10.
- the lower end portion of the third metal plate 25 is welded to the upper surface of the first metal plate 21, and the welded portion 27 for this purpose extends along the outer peripheral edge of the bottom surface 4.
- the masking tape 29 is an adhesive tape that can be peeled off from the inner surface after being applied to the inner surface of the tank 10.
- FIG. 4A, 4B, and 4C show the tank 10 according to the embodiment of the present disclosure in which the corrosion inhibitor 31 is applied to the welded portion 27.
- FIG. 4A, 4B, and 4C correspond to FIGS. 3A, 3B, and 3C, respectively.
- Step S12 will be described with reference to FIGS. 4A, 4B, and 4C.
- step S ⁇ b> 12 as shown in FIGS. 4A, 4 ⁇ / b> B, and 4 ⁇ / b> C, the corrosion inhibitor 31 is applied to the application range including the welded portion 27 on the inner surface of the bottom of the tank 10. As shown in FIG.
- this application range extends from a position on the masking tape on one side in the width direction to a position on the masking tape 29 on the other side in the width direction. And, it extends along the welded portion 27 in the longitudinal direction of the welded portion 27.
- the application range is indicated by a mesh.
- step S1 the corrosion inhibitor 31 may be applied to the welded portion 27 without applying the masking tape 29 to the inner surface of the tank 10.
- the corrosion inhibitor 31 is a fluid that is applied to the welded portion 27 and hardens (for example, hardens) to form a film.
- the corrosion inhibitor 31 only needs to form a coating that prevents the pressure-resistant test water injected into the tank 10 from reaching the welded portion 27.
- the coating with the corrosion inhibitor 31 can be peeled off from the welded portion 27.
- the corrosion inhibitor 31 may be an anticorrosion paint mainly composed of a resin.
- the corrosion inhibitor 31 is Melcoat (registered trademark).
- Melcoat is a product of Wadashin Chemical Industry Co., Ltd., and its product code is 73002 in one example.
- Melcoat has 0.1 to 1 weight percent methanol, 2.4 weight percent bis (2-ethylhexyl) phthalate, 17.1 weight percent toluene, and 50 to 60 weight percent methyl ethyl ketone.
- the additive is, for example, a plasticizer that gives the corrosion inhibitor 31 flexibility and adhesion.
- the corrosion inhibitor 31 may be an anticorrosion paint described in Japanese Patent No. 5346522 and Japanese Patent No. 4150104.
- step S1 when the corrosion inhibitor 31 applied to the welded portion 27 is hardened (cured) to form a film, the process proceeds to step S2.
- step S2 pressure test water is injected into the tank 10.
- industrial water as pressure test water is sent from the working water pipe 7 into the tank 10 through the injection pipe 3 due to the pressure in the working water pipe 7.
- the pressure test water may be injected into the tank 10 from the working water pipe 7 through the injection pipe 3 by providing a pump (not shown) in the injection pipe 3 and operating the pump.
- step S2 pressure test water is stored in the tank 10.
- pressure test water is injected into the tank 10 to 80% to 100% of the tank 10 capacity.
- step S ⁇ b> 2 a set amount of pH adjusting liquid is injected into the tank 10.
- step S ⁇ b> 2 a set amount of pH adjusting liquid is injected into the tank 10.
- the on-off valves 5 and 16 not only the on-off valves 5 and 16 but also the on-off valve 13 is opened to operate the metering pump 15.
- a predetermined amount of the pH adjusting liquid is sent from the introduction pipe 11 through the injection pipe 3 into the tank 10 by the metering pump 15.
- the pressure test water stored in the tank 10 is made alkaline with the pH adjusting liquid.
- the pH of the pressure test water stored in the tank 10 is set to a value in the range of 10.0 to 10.5.
- the pH adjusting liquid is mixed with the pressure test water by the line mixer 17 and supplied to the inside of the tank 10.
- the volume of the pH adjusting liquid injected into the tank 10 is small compared with the volume of the pressure test water injected into the tank 10 up to this point.
- the volume of the pressure test water to be injected into the tank 10 may be managed by the measured value by the flow meter 19.
- step S3 the pressure resistance of the tank 10 is tested with respect to the pressure of the pressure test water stored in the tank 10 in step S2. That is, the state in which the pressure test water is stored in the tank 10 in step S2 is maintained for a pressure test period (for example, a period of 1 month to 4 months), and the pressure test water in the tank 10 is maintained during this pressure test period. Is inspected for leaking to the outside of the tank 10.
- the pressure test period varies depending on the amount of pressure test water supplied into the tank 10 and the capacity of the tank 10.
- step S3 the pressure test water in the tank 10 is gently held without being stirred. Thereby, microorganisms in the pressure test water settle and concentrate on the bottom of the tank 10.
- step S4 the pressure test water is discharged from the inside of the tank 10 in step S4.
- the pressure test water is naturally discharged from the inside of the tank 10 to the outside through the discharge pipe 8 due to the gravity of the pressure test water inside the tank 10.
- the pump 14 is operated to discharge the pressure test water from the inside of the tank 10 to the outside through the discharge pipe 8. May be.
- step S ⁇ b> 4 an appropriate acidic liquid is added to the pressure test water in the tank 10 to neutralize the pressure test water, and then the pressure test water is discharged from the inside of the tank 10.
- the process proceeds to step S5.
- step S5 the person peels off the corrosion inhibitor 31 applied to the inner surface of the tank 10.
- step S ⁇ b> 1 when the masking tape 29 is stuck on the inner surface of the tank 10, a person peels off the masking tape 29 and the corrosion inhibitor 31 from the inner surface of the tank 10.
- the person removes the masking tape 29 from the inner surface of the tank 10 together with the masking tape 29 and the corrosion inhibitor 31 applied to the welded portion 27. That is, since the corrosion inhibitor 31 is also applied to the masking tape 29 and bonded to the masking tape 29, when the masking tape 29 is peeled off, the corrosion inhibitor 31 together with the masking tape 29 together with the inner surface of the tank 10 (welding) Part 27). Therefore, the corrosion inhibitor 31 can be easily peeled off from the inner surface of the tank 10.
- the coating range of the corrosion inhibitor 31 extends from the position on the masking tape 29 on one side in the width direction in the width direction of the welded portion 27 to the position on the masking tape 29 on the other side in the width direction.
- step S5 When the step S5 is finished, the pressure resistance test for the tank 10 is finished.
- the metal plates 21, 23, 25 forming the inner surface of the tank 10 may be made of a metal other than aluminum or an aluminum alloy.
- the robot may perform the operation of removing the agent 31.
- the corrosion inhibitor 31 may be applied to the welded portion 27 between the metal plates 21, 23, 25 at the bottom of the tank 10 without using the masking tape 29 described above.
- the other points are the same as described above.
- the total bottom area A1 of the welded portion 27 to which the corrosion inhibitor 31 is applied at the bottom of the tank 10 is applied to the inner surface of the tank 10 other than the bottom of the tank 10. It is wider than the non-bottom total area A2 of the welded portion 27 (for example, A2 / A1 is 0.1 or less). In this case, more preferably, A2 / A1 is zero.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Examining Or Testing Airtightness (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
前記タンクの内面は、多数の金属板を溶接接合することにより形成されており、
前記タンクの耐圧を試験するために前記タンクの内部に前記耐圧試験水を注入する前に、前記タンクの底部において、金属板同士の溶接部に腐食防止剤を塗布し、
前記タンクの前記底部において前記腐食防止剤が塗布される前記溶接部の底部総面積を、前記タンクの底部以外の前記タンクの前記内面において前記腐食防止剤が塗布される前記溶接部の非底部総面積よりも広くする、タンク耐圧試験時のタンク腐食防止方法が提供される。
また、タンクの底部において腐食防止剤が塗布される溶接部の底部総面積を、タンクの底部以外のタンクの内面において腐食防止剤が塗布される溶接部の非底部総面積よりも広くする。
そのために、図1Aでは、調整液槽9と、導入管11と、開閉弁13と、定量ポンプ15とラインミキサ17が設けられる。
したがって、pH調整液と耐圧試験水は、ラインミキサ17で混合されてタンク10の内部に注入される。なお、タンク10へ注入するpH調整液の量は、タンク10へ注入する耐圧試験水の量と比べて、ごくわずかである。
以下、第1金属板21、第2金属板23、第3金属板25を、区別が必要な場合を除き、単に金属板21,23,25と呼ぶ。
一例では、底面4は、10m以上の半径を有し、内周面6は10m以上の高さを有する。このように、タンク10の内面は、タンク10の底面4とタンク10の内周面6とからなり、内周面6は、底面4を囲み底面4から上方に延びている。
したがって、ステップS1において、底面4に存在する(この例では、全ての)溶接部27と、底面4から塗布上限高さまでの内周面6に存在する(この例では、全ての)溶接部27に、腐食防止剤31を塗布する。タンク10の底面4側であればあるほど、溶接部27に腐食防止剤31を塗布することが好ましいからである。
また、底面4から、0.2m以上2.0m以下の範囲内の塗布上限高さまでは、微生物による腐食が内周面6の溶接部27に生じ得る。したがって、底面4から塗布上限高さまでの領域において内周面6の溶接部27に腐食防止剤31を塗布することにより、タンク10の内周面6における溶接部27の腐食を防止できる。
なお、塗布上限高さは、タンク10の内周面6の周方向位置によって異なっていてもよいし、タンク10の内周面6の周方向位置によらず一定であってもよい。
すなわち、「タンク10の底部」とは、底面4と塗布上限高さまでの内周面6を意味する。また、「タンク10の底部以外」とは、塗布上限高さを超える内周面6とタンク10の天井面を意味する。
ここで、底部総面積A1に対する非底部総面積A2の比率R=A2/A1は、例えば、0.1以下である。これにより、タンク10の内面全体の溶接部27に腐食防止剤31を塗布する場合と比べて、腐食防止剤31の使用量を大幅に少なくすることができる。
治具跡は、金属板21,23,25に吊りピースを取り付けた跡である。吊りピースは、金属板21,23,25を重機や他の機械で吊り上げるために、金属板21,23,25に取り付けられる。吊りピースを、金属板21,23,25から取り外すと、金属板21,23,25には、吊りピースを取り付けた跡が残る。この跡が、治具跡である。
この場合、ステップS11では、タンク10底部の内面において、すべての溶接部27の幅方向両側に、溶接部27に沿ってマスキングテープ29を人がタンク10の内面に張るのがよい。なお、第3金属板25の下端部は第1金属板21の上面に溶接接合されており、このためのその間の溶接部27は、底面4の外周縁に沿って延びている。マスキングテープ29は、タンク10の内面に貼った後に、この内面から剥がせる粘着テープである。
ステップS12を図4A,図4B,図4Cに基づいて説明する。
ステップS12では、図4A,図4B,図4Cに示すように、タンク10の底部の内面において、溶接部27を含む塗布範囲に腐食防止剤31を塗布する。この塗布範囲は、図5に示すように、溶接部27の幅方向において、この幅方向一方側のマスキングテープ上の位置から、この幅方向他方側のマスキングテープ29上の位置まで延びており、かつ、この溶接部27の長手方向において、この溶接部27に沿って延びている。図5において、塗布範囲を網目で示している。ステップS12により、タンク10の底部の内面において、溶接部27が腐食防止剤31に完全に覆われる。
別の例では、腐食防止剤31は、特許第5346522号や特許第4150104号に記載された防食塗料であってよい。
pH調整液により、ステップS2を終えた時点で、タンク10の内部に蓄えられた耐圧試験水をアルカリ性にする。好ましくは、ステップS2を終えた時点で、タンク10の内部に蓄えられた耐圧試験水のpHが、10.0以上10.5以下の範囲内の値となるようにする。このようなpHの調整により、次のステップS3において、タンク10の内面(金属板21,23,25同士の溶接部27)の腐食を、より確実に防止する。
耐圧試験水の重力を利用する代わりに、または、耐圧試験水の重力を利用することに加えて、ポンプ14を作動させて、タンク10の内部から外部へ耐圧試験水を排出管8を通して排出してもよい。
なお、ステップS4において、タンク10内の耐圧試験水に適宜の酸性液を加えて耐圧試験水を中和し、その後、タンク10の内部から耐圧試験水を排出するのがよい。ステップS4により、タンク10内部から耐圧試験水を完全に排出したら、ステップS5へ進む。
ステップS1において、マスキングテープ29をタンク10の内面に貼っている場合には、マスキングテープ29と腐食防止剤31をタンク10の内面から人が剥がす。
この時、マスキングテープ29を、マスキングテープ29と溶接部27に塗布された腐食防止剤31とともにタンク10の内面から人が剥がす。すなわち、腐食防止剤31はマスキングテープ29にも塗布されてマスキングテープ29に結合しているので、マスキングテープ29を剥がすと、マスキングテープ29と共に腐食防止剤31も一緒に、タンク10の内面(溶接部27)から剥がれる。したがって、腐食防止剤31を、容易にタンク10の内面から剥がすことができる。
A2 非底部総面積
2 マンホール
3 注入管
4 底面
5 開閉弁
6 内周面
7 工水管
8 排出管
9 調整液槽
10 タンク
11 導入管
12 開閉弁
13 開閉弁
14 ポンプ
15 定量ポンプ
16 開閉弁
17 ラインミキサ
19 流量計
21 第1金属板
23 第2金属板
25 第3金属板
27 溶接部
29 マスキングテープ
31 腐食防止剤
Claims (8)
- 耐圧試験水をタンクに注入し、注入した前記耐圧試験水に対する前記タンクの耐圧を試験する時に、前記タンクの腐食を防止するタンク耐圧試験時のタンク腐食防止方法であって、
前記タンクの内面は、多数の金属板を溶接接合することにより形成されており、
前記タンクの耐圧を試験するために前記タンクの内部に前記耐圧試験水を注入する前に、前記タンクの底部において、金属板同士の溶接部に腐食防止剤を塗布し、
前記タンクの前記底部において前記腐食防止剤が塗布される前記溶接部の底部総面積を、前記タンクの底部以外の前記タンクの前記内面において前記腐食防止剤が塗布される前記溶接部の非底部総面積よりも広くする、タンク耐圧試験時のタンク腐食防止方法。 - 前記腐食防止剤を塗布する前記溶接部は、前記タンクの内面全体における前記溶接部のうち、前記タンクの前記底部に存在する前記溶接部のみである、請求項1に記載のタンク耐圧試験時のタンク腐食防止方法。
- 前記タンクの前記内面は、前記タンクの底面と前記タンクの内周面とからなり、該内周面は、前記底面を囲み前記底面から上方に延びており、
前記タンクの前記底部に存在する前記溶接部は、前記底面における前記溶接部と、前記内周面のうち前記底面から塗布上限高さまでの領域における前記溶接部とからなる、請求項1に記載のタンク耐圧試験時のタンク腐食防止方法。 - 前記タンクの前記内面は、前記タンクの底面と前記タンクの内周面とからなり、該内周面は、前記底面を囲み前記底面から上方に延びており、
前記タンクの前記底部に存在する前記溶接部は、前記底面における前記溶接部と、前記内周面のうち前記底面から塗布上限高さまでの領域における前記溶接部とからなる、請求項2に記載のタンク耐圧試験時のタンク腐食防止方法。 - (A)前記タンクの前記内部に前記耐圧試験水を注入する前に、前記タンクの前記内面において、前記腐食防止剤を塗布する前記溶接部の幅方向両側に、該溶接部に沿ってマスキングテープを前記タンクの前記内面に張り、
(B)前記タンクの前記内面において、前記腐食防止剤を塗布する前記溶接部を含む塗布範囲に前記腐食防止剤を塗布し、該塗布範囲は、該溶接部の幅方向において、幅方向一方側のマスキングテープ上の位置から幅方向他方側のマスキングテープ上の位置まで延びており、かつ、該溶接部の長手方向において、該溶接部に沿って延びており、
(C)前記タンクの前記内部に前記耐圧試験水を注入し、
(D)前記耐圧試験水を、前記タンクの前記内部に耐圧試験期間だけ保持させ、
(E)前記タンクの前記内部から前記耐圧試験水を排出し、
(F)前記マスキングテープと前記腐食防止剤を前記タンクの前記内面から剥がす、請求項1に記載のタンク耐圧試験時のタンク腐食防止方法。 - (A)前記タンクの前記内部に前記耐圧試験水を注入する前に、前記タンクの前記内面において、前記腐食防止剤を塗布する前記溶接部の幅方向両側に、該溶接部に沿ってマスキングテープを前記タンクの前記内面に張り、
(B)前記タンクの前記内面において、前記腐食防止剤を塗布する前記溶接部を含む塗布範囲に前記腐食防止剤を塗布し、該塗布範囲は、該溶接部の幅方向において、幅方向一方側のマスキングテープ上の位置から幅方向他方側のマスキングテープ上の位置まで延びており、かつ、該溶接部の長手方向において、該溶接部に沿って延びており、
(C)前記タンクの前記内部に前記耐圧試験水を注入し、
(D)前記耐圧試験水を、前記タンクの前記内部に耐圧試験期間だけ保持させ、
(E)前記タンクの前記内部から前記耐圧試験水を排出し、
(F)前記マスキングテープと前記腐食防止剤を前記タンクの前記内面から剥がす、請求項2に記載のタンク耐圧試験時のタンク腐食防止方法。 - (A)前記タンクの前記内部に前記耐圧試験水を注入する前に、前記タンクの前記内面において、前記腐食防止剤を塗布する前記溶接部の幅方向両側に、該溶接部に沿ってマスキングテープを前記タンクの前記内面に張り、
(B)前記タンクの前記内面において、前記腐食防止剤を塗布する前記溶接部を含む塗布範囲に前記腐食防止剤を塗布し、該塗布範囲は、該溶接部の幅方向において、幅方向一方側のマスキングテープ上の位置から幅方向他方側のマスキングテープ上の位置まで延びており、かつ、該溶接部の長手方向において、該溶接部に沿って延びており、
(C)前記タンクの前記内部に前記耐圧試験水を注入し、
(D)前記耐圧試験水を、前記タンクの前記内部に耐圧試験期間だけ保持させ、
(E)前記タンクの前記内部から前記耐圧試験水を排出し、
(F)前記マスキングテープと前記腐食防止剤を前記タンクの前記内面から剥がす、請求項3に記載のタンク耐圧試験時のタンク腐食防止方法。 - (A)前記タンクの前記内部に前記耐圧試験水を注入する前に、前記タンクの前記内面において、前記腐食防止剤を塗布する前記溶接部の幅方向両側に、該溶接部に沿ってマスキングテープを前記タンクの前記内面に張り、
(B)前記タンクの前記内面において、前記腐食防止剤を塗布する前記溶接部を含む塗布範囲に前記腐食防止剤を塗布し、該塗布範囲は、該溶接部の幅方向において、幅方向一方側のマスキングテープ上の位置から幅方向他方側のマスキングテープ上の位置まで延びており、かつ、該溶接部の長手方向において、該溶接部に沿って延びており、
(C)前記タンクの前記内部に前記耐圧試験水を注入し、
(D)前記耐圧試験水を、前記タンクの前記内部に耐圧試験期間だけ保持させ、
(E)前記タンクの前記内部から前記耐圧試験水を排出し、
(F)前記マスキングテープと前記腐食防止剤を前記タンクの前記内面から剥がす、請求項4に記載のタンク耐圧試験時のタンク腐食防止方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017500281A JP6460493B2 (ja) | 2015-02-17 | 2015-10-26 | タンク耐圧試験時のタンク腐食防止方法 |
AU2015383332A AU2015383332B2 (en) | 2015-02-17 | 2015-10-26 | Method for preventing tank corrosion at tank pressure resistance testing |
KR1020177021367A KR101947579B1 (ko) | 2015-02-17 | 2015-10-26 | 탱크 내압 시험시의 탱크 부식 방지 방법 |
US15/545,942 US20180002819A1 (en) | 2015-02-17 | 2015-10-26 | Method for preventing tank corrosion at tank pressure resistance testing |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-028146 | 2015-02-17 | ||
JP2015028146 | 2015-02-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016132603A1 true WO2016132603A1 (ja) | 2016-08-25 |
Family
ID=56692183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/080053 WO2016132603A1 (ja) | 2015-02-17 | 2015-10-26 | タンク耐圧試験時のタンク腐食防止方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180002819A1 (ja) |
JP (1) | JP6460493B2 (ja) |
KR (1) | KR101947579B1 (ja) |
AU (1) | AU2015383332B2 (ja) |
WO (1) | WO2016132603A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5850444A (ja) * | 1981-09-21 | 1983-03-24 | Three Bondo Koji Yokohama Kk | タンクの注水検査方法 |
JPS628733B2 (ja) * | 1980-06-11 | 1987-02-24 | Toyo Kanetsu Kk | |
JPH0242907B2 (ja) * | 1982-09-16 | 1990-09-26 | ||
JP2007132834A (ja) * | 2005-11-11 | 2007-05-31 | Mitsubishi Heavy Ind Ltd | Lngタンクの水張り試験方法およびそのシステム、並びにlngタンクおよびその建造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5336523A (en) * | 1988-05-24 | 1994-08-09 | Rheem Australia Limited | Method of coating and testing a tank |
JP2514233B2 (ja) * | 1988-08-03 | 1996-07-10 | 株式会社クボタ | 田植機の苗植付装置 |
US5215247A (en) * | 1990-09-12 | 1993-06-01 | Lewis Brian M | Corrosion resistant insert |
JP2986018B1 (ja) | 1998-08-24 | 1999-12-06 | 関西電力株式会社 | 平底タンク底板裏面防食方法及びその防食装置 |
FR2851336B1 (fr) | 2003-02-14 | 2005-09-23 | Saipem Sa | Methode de test de reservoir cryogenique comportant une protection cathodique |
US7886874B2 (en) * | 2005-07-18 | 2011-02-15 | Pennsy Corporation | Wheel flange lubricating device |
-
2015
- 2015-10-26 US US15/545,942 patent/US20180002819A1/en not_active Abandoned
- 2015-10-26 KR KR1020177021367A patent/KR101947579B1/ko not_active Expired - Fee Related
- 2015-10-26 WO PCT/JP2015/080053 patent/WO2016132603A1/ja active Application Filing
- 2015-10-26 JP JP2017500281A patent/JP6460493B2/ja active Active
- 2015-10-26 AU AU2015383332A patent/AU2015383332B2/en not_active Ceased
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS628733B2 (ja) * | 1980-06-11 | 1987-02-24 | Toyo Kanetsu Kk | |
JPS5850444A (ja) * | 1981-09-21 | 1983-03-24 | Three Bondo Koji Yokohama Kk | タンクの注水検査方法 |
JPH0242907B2 (ja) * | 1982-09-16 | 1990-09-26 | ||
JP2007132834A (ja) * | 2005-11-11 | 2007-05-31 | Mitsubishi Heavy Ind Ltd | Lngタンクの水張り試験方法およびそのシステム、並びにlngタンクおよびその建造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20170120584A (ko) | 2017-10-31 |
AU2015383332A1 (en) | 2017-07-13 |
JPWO2016132603A1 (ja) | 2017-11-02 |
KR101947579B1 (ko) | 2019-02-13 |
AU2015383332B2 (en) | 2018-06-14 |
US20180002819A1 (en) | 2018-01-04 |
JP6460493B2 (ja) | 2019-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ossai et al. | Pipeline failures in corrosive environments–A conceptual analysis of trends and effects | |
CN104865179B (zh) | 一种集输管道缓蚀剂膜层评价试验装置 | |
Rashidi et al. | Crevice corrosion theory, mechanisms and prevention methods | |
MXPA06013044A (es) | Metodo y sistema para la prueba de fugas de un tanque de gas natural liquidificado por llenado de agua. | |
JP6460493B2 (ja) | タンク耐圧試験時のタンク腐食防止方法 | |
JP2986018B1 (ja) | 平底タンク底板裏面防食方法及びその防食装置 | |
Quale et al. | Cathodic protection by distributed sacrificial anodes–A new cost-effective solution to prevent corrosion of subsea structures | |
JP7026342B1 (ja) | 湿式内外表面処理装置及び湿式内外表面処理方法 | |
CN201074719Y (zh) | 管道修补器 | |
JP7171036B2 (ja) | パイプシステムの漏れ又は漏れのリスクを減少させる方法 | |
CN211231776U (zh) | 一种防腐蚀的阀门 | |
Mosher et al. | Methodology for the Evaluation of Batch Corrosion Inhibitor Films and their Integrity | |
Shouse et al. | Corrosion prevention technology break-through | |
US20220152650A1 (en) | Corrosion laminate system | |
O'Dea et al. | Galvanic Corrosion in Water and Wastewater Structures: Coupling Stainless Steel and Carbon Steel Metals Leads to Accelerated Corrosion | |
CN211450065U (zh) | 一种地下防腐管道 | |
KR100695958B1 (ko) | 표면 전처리 후 일시 방청을 위한 고 도장상응성 방청제 | |
JP5309635B2 (ja) | ガス配管の補修方法 | |
Mgonja | The Impacts of corrosion in weld joints and surfaces of oil and gas pipelines: A Review | |
KR200274401Y1 (ko) | 콘크리트수조의 배관부 | |
Yin | The Shielding Effect of Polyethylene Coating Disbondment on Permeability of Cahtodic Protection Current and the Resulting Pipeline Corrosion | |
Narasimhavarman | Engaging degradation mechanisms of materials in a tourney. An investigation into the philosophy of material selection as a mitigating measure and strategy | |
Kharusi et al. | Field Experience of Various Coating Systems in Oil & Gas Industry | |
Blokus et al. | Safety analysis of the system of crude oil transhipment | |
KR20030069529A (ko) | 콘크리트수조의 배관부 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15882704 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017500281 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2015383332 Country of ref document: AU Date of ref document: 20151026 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15545942 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20177021367 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15882704 Country of ref document: EP Kind code of ref document: A1 |