WO2016075749A1 - カートリッジ及び非燃焼型香味吸引器 - Google Patents
カートリッジ及び非燃焼型香味吸引器 Download PDFInfo
- Publication number
- WO2016075749A1 WO2016075749A1 PCT/JP2014/079779 JP2014079779W WO2016075749A1 WO 2016075749 A1 WO2016075749 A1 WO 2016075749A1 JP 2014079779 W JP2014079779 W JP 2014079779W WO 2016075749 A1 WO2016075749 A1 WO 2016075749A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow path
- flavor source
- cartridge
- aerosol
- source container
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24D—CIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
- A24D1/00—Cigars; Cigarettes
- A24D1/14—Tobacco cartridges for pipes
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/42—Cartridges or containers for inhalable precursors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/10—Chemical features of tobacco products or tobacco substitutes
- A24B15/16—Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
- A24B15/167—Chemical features of tobacco products or tobacco substitutes of tobacco substitutes in liquid or vaporisable form, e.g. liquid compositions for electronic cigarettes
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/10—Devices using liquid inhalable precursors
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/30—Devices using two or more structurally separated inhalable precursors, e.g. using two liquid precursors in two cartridges
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/40—Constructional details, e.g. connection of cartridges and battery parts
- A24F40/48—Fluid transfer means, e.g. pumps
- A24F40/485—Valves; Apertures
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F47/00—Smokers' requisites not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M11/00—Sprayers or atomisers specially adapted for therapeutic purposes
- A61M11/006—Sprayers or atomisers specially adapted for therapeutic purposes operated by applying mechanical pressure to the liquid to be sprayed or atomised
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M11/00—Sprayers or atomisers specially adapted for therapeutic purposes
- A61M11/04—Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
- A61M11/041—Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
- A61M11/042—Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters electrical
- A61M11/044—Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters electrical with electrodes immersed in the liquid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/0028—Inhalators using prepacked dosages, one for each application, e.g. capsules to be perforated or broken-up
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/06—Inhaling appliances shaped like cigars, cigarettes or pipes
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/10—Chemical features of tobacco products or tobacco substitutes
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24B—MANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
- A24B15/00—Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
- A24B15/18—Treatment of tobacco products or tobacco substitutes
- A24B15/22—Treatment of tobacco products or tobacco substitutes by application of electric or wave energy or particle radiation
-
- A—HUMAN NECESSITIES
- A24—TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
- A24F—SMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
- A24F40/00—Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
- A24F40/20—Devices using solid inhalable precursors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M15/00—Inhalators
- A61M15/0001—Details of inhalators; Constructional features thereof
- A61M15/0021—Mouthpieces therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/36—General characteristics of the apparatus related to heating or cooling
- A61M2205/3653—General characteristics of the apparatus related to heating or cooling by Joule effect, i.e. electric resistance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/82—Internal energy supply devices
- A61M2205/8206—Internal energy supply devices battery-operated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65B—MACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
- B65B43/00—Forming, feeding, opening or setting-up containers or receptacles in association with packaging
- B65B43/42—Feeding or positioning bags, boxes, or cartons in the distended, opened, or set-up state; Feeding preformed rigid containers, e.g. tins, capsules, glass tubes, glasses, to the packaging position; Locating containers or receptacles at the filling position; Supporting containers or receptacles during the filling operation
- B65B43/54—Means for supporting containers or receptacles during the filling operation
Definitions
- the present invention relates to a cartridge used for a non-combustion type flavor inhaler having a flavor source, and a non-combustion type flavor inhaler equipped with a detachable cartridge.
- Patent Document 1 There is known a non-combustion flavor inhaler that atomizes an aerosol source with electric power supplied from a battery (for example, Patent Document 1).
- a non-combustion type flavor inhaler includes an atomization unit for atomizing an aerosol source and a cartridge having a flavor source.
- the cartridge is replaceable and connected to the atomization unit.
- the first feature is a cartridge, a flavor source constituted by a plurality of raw material pieces that impart flavor to the aerosol generated by the non-burning type flavor inhaler, and a flavor source container that contains the flavor source;
- a mesh body disposed at at least one end of the flavor source container, and the mesh body has a plurality of openings, and each of the plurality of openings has an inner angle of 180 ° or less.
- Each of the plurality of apertures has a minimum width having the smallest width and a maximum width having the largest width as a width passing through the center of gravity of each of the plurality of apertures. The minimum width is smaller than the lower limit of the size of the plurality of raw material pieces, and the maximum width is larger than the minimum width.
- the second feature is summarized in that, in the first feature, the flavor source container and the mesh body are formed by integral molding.
- the third feature is summarized in that, in the first feature or the second feature, the lower limit of the size of the plurality of raw material pieces is 0.2 mm.
- the flavor source container forms an aerosol flow path extending along a predetermined direction, and the predetermined direction is the predetermined direction.
- the maximum size of the flavor source container is 40 mm or less, and the maximum size of the flavor source container is 20 mm or less in the direction orthogonal to the predetermined direction.
- the fifth feature is that, in the predetermined direction, the maximum size of the flavor source container is 25 mm or less, and in the direction orthogonal to the predetermined direction, The gist is that the maximum size of the flavor source container is 10 mm or less.
- the sixth feature is summarized as any one of the first to fifth features, wherein each of the plurality of openings has a quadrangular shape.
- a seventh feature is that, in any one of the first to sixth features, the plurality of apertures are arranged such that sides of the apertures adjacent to each other are parallel to each other.
- the eighth feature is that, in the seventh feature, the interval between adjacent openings is 0.15 mm or more and 0.30 mm or less.
- the ninth feature is summarized as any one of the first to eighth features, wherein the maximum width is larger than a lower limit of a size of the plurality of raw material pieces.
- the tenth feature is summarized as any one of the first to ninth features, wherein the maximum width is not less than ⁇ 2 times and not more than 6 times the minimum width.
- An eleventh feature is any one of the first feature to the tenth feature, wherein the flavor source container forms an aerosol flow path extending along a predetermined direction, and the mesh body is the flavor source. It is arranged at the upstream end on the aerosol flow path in the container, and the flavor source container has a protrusion protruding upstream from the outer edge of the mesh body in a cross section orthogonal to the aerosol flow path.
- the twelfth feature is any one of the first feature to the eleventh feature, wherein the flavor source container forms an aerosol flow path extending along a predetermined direction, and the inner wall surface of the flavor source container
- the gist is that a rib extending along the predetermined direction from upstream to downstream is provided.
- a thirteenth feature is any one of the first feature to the twelfth feature, wherein the flavor source container forms an aerosol flow path extending along a predetermined direction, and the outer wall surface of the flavor source container Is summarized as including a tapered shape that widens from upstream to downstream.
- the flavor source container forms an aerosol flow path extending along a predetermined direction, and is disposed downstream of the flavor source.
- the gist of the present invention is to provide a filter.
- a fifteenth feature is the fourteenth feature, wherein an inner wall surface of the flavor source container is provided with a rib extending along the predetermined direction from upstream to downstream, and the downstream end of the rib is The gist is that the filter does not reach the downstream end of the flavor source container and is in contact with the upstream end of the filter.
- a sixteenth feature is a non-combustion type flavor inhaler, comprising an atomizing section for atomizing an aerosol source without combustion, and the cartridge according to any one of the first to fifteenth features.
- the gist is to be detachable.
- a seventeenth feature is the sixteenth feature, wherein the non-combustion flavor inhaler comprises a first flow path disposed downstream of the atomization section as the aerosol flow path, and the cartridge is The aerosol flow path has a second flow path disposed downstream of the first flow path, and the second flow path is between the first flow path and the second flow path.
- the gist is that an aerosol flow adjusting chamber for adjusting the flow of the aerosol supplied from the first flow path is provided so as to suppress an uneven flow of the aerosol in the passage.
- FIG. 1 is a sectional view showing noncombustion type flavor suction device 1 concerning an embodiment.
- FIG. 2 is a cross-sectional view showing the power supply unit 10 according to the embodiment.
- FIG. 3 is a cross-sectional view showing the first cartridge 20 according to the embodiment.
- FIG. 4 is a diagram illustrating an internal structure of the first cartridge 20 according to the embodiment.
- FIG. 5 is a cross-sectional view showing the second cartridge 30 according to the embodiment.
- FIG. 6 is an exploded perspective view of the second cartridge 30 according to the embodiment.
- FIG. 7 is a cross-sectional view (AA cross-sectional view shown in FIG. 5) showing the flavor source container 31 according to the embodiment.
- FIG. 8 is a cross-sectional view (BB cross-sectional view shown in FIG.
- FIG. 9 is a diagram illustrating an example of the shape of the opening 32A according to the embodiment.
- FIG. 10 is a diagram illustrating an example of the shape of the opening 32A according to the embodiment.
- FIG. 11 is a diagram illustrating an example of the shape of the opening 32A according to the embodiment.
- FIG. 12 is a diagram illustrating an example of the shape of the opening 32A according to the embodiment.
- FIG. 13 is a diagram illustrating a connection state between the first cartridge 20 and the second cartridge 30 according to the embodiment.
- FIG. 14 is a view showing a CC cross section shown in FIG.
- FIG. 15 is a diagram mainly illustrating functional blocks of the control circuit 50 according to the embodiment.
- FIG. 16 is a diagram illustrating an example of duty ratio control according to the embodiment.
- FIG. 17 is a diagram illustrating an example of duty ratio control according to the embodiment.
- FIG. 18 is a flowchart illustrating a control method according to the embodiment.
- FIG. 19 is a diagram illustrating a connection state between the first cartridge 20 and the second cartridge 30 according to the first modification.
- FIG. 20 is a diagram illustrating a connection state between the first cartridge 20 and the second cartridge 30 according to the second modification.
- FIG. 21 is a diagram illustrating a connection state between the first cartridge 20 and the second cartridge 30 according to the third modification.
- FIG. 22 is a diagram for explaining the amount of aerosol according to the fourth modification.
- FIG. 23 is a diagram for explaining the amount of aerosol according to Modification 4.
- FIG. 24 is a diagram for explaining the amount of aerosol according to Modification 4.
- FIG. 25 is a diagram for explaining the amount of aerosol according to Modification 4.
- FIG. 26 is a diagram mainly illustrating functional blocks of the control circuit 50 according to the fifth modification.
- FIG. 27 is a diagram mainly illustrating functional blocks of the control circuit 50 according to the sixth modification.
- FIG. 28 is a diagram mainly illustrating functional blocks of the control circuit 50 according to the seventh modification.
- FIG. 29 is a diagram illustrating a package 300 according to Modification 8.
- the cartridge mentioned in the background art needs to be breathable so that the user can inhale the aerosol.
- a mesh body having a plurality of openings is disposed at at least one end of the cartridge.
- each of the plurality of openings provided in the mesh body needs to be small enough to suppress the dropping of the raw material pieces constituting the flavor source. Furthermore, in order to improve the extraction efficiency of the flavor component, it is preferable that the particle size of the raw material pieces constituting the flavor source is small.
- each of the plurality of apertures provided in the mesh body preferably has a large area in order to ensure a sufficient aperture ratio as a whole of the mesh body.
- a cartridge according to an outline of the disclosure includes a flavor source constituted by a plurality of raw material pieces that impart flavor to an aerosol generated by a non-burning type flavor inhaler, a flavor source container that contains the flavor source, and the flavor source A mesh body disposed at at least one end of the container.
- the mesh body has a plurality of openings.
- Each of the plurality of apertures has a polygonal shape having an inner angle of 180 ° or less.
- Each of the plurality of openings has a minimum width having the smallest width and a maximum width having the largest width as a width passing through the center of gravity of each of the plurality of openings.
- the minimum width is smaller than the lower limit of the size of the plurality of raw material pieces, and the maximum width is larger than the minimum width.
- each of the plurality of openings provided in the mesh body has a polygonal shape having an inner angle of 180 ° or less, and is the smallest width passing through the center of gravity of each of the plurality of openings. It has a minimum width having a width and a maximum width having the largest width.
- the minimum width is smaller than the size of the raw material pieces constituting the flavor source, the dropping of the raw material pieces constituting the flavor source can be suppressed, and the maximum width is larger than the minimum width, so the mesh body As a whole, the hole area ratio can be increased.
- the cartridge for the non-combustion type flavor inhaler it is possible to ensure the open area ratio of the mesh body as a whole while suppressing the dropping of the raw material pieces constituting the flavor source.
- FIG. 1 is a sectional view showing noncombustion type flavor suction device 1 concerning an embodiment.
- FIG. 2 is a cross-sectional view showing the power supply unit 10 according to the embodiment.
- FIG. 3 is a cross-sectional view showing the first cartridge 20 according to the embodiment.
- FIG. 4 is a diagram illustrating an internal structure of the first cartridge 20 according to the embodiment. However, it should be noted that the reservoir 21 described later is omitted in FIG.
- FIG. 5 is a side view showing the second cartridge 30 according to the embodiment.
- FIG. 6 is an exploded perspective view of the second cartridge 30 according to the embodiment.
- FIG. 1 is a sectional view showing noncombustion type flavor suction device 1 concerning an embodiment.
- FIG. 2 is a cross-sectional view showing the power supply unit 10 according to the embodiment.
- FIG. 3 is a cross-sectional view showing the first cartridge 20 according to the embodiment.
- FIG. 4 is a diagram illustrating an internal structure of the first cartridge 20 according to the embodiment. However,
- FIG. 7 is a cross-sectional view (AA cross-sectional view shown in FIG. 5) showing the flavor source container 31 according to the embodiment.
- FIG. 8 is a cross-sectional view (BB cross-sectional view shown in FIG. 7) showing the flavor source container 31 according to the embodiment.
- the flavor source 31A described below is omitted in FIG.
- the non-burning type flavor inhaler 1 has a shape extending along a predetermined direction A that is a direction from the non-suction end toward the suction end.
- the non-burning type flavor inhaler 1 is a device for sucking a flavor without burning.
- the non-burning type flavor inhaler 1 includes a power supply unit 10, a first cartridge 20, and a second cartridge 30.
- the first cartridge 20 is detachable from the power supply unit 10
- the second cartridge 30 is detachable from the first cartridge 20. In other words, each of the first cartridge 20 and the second cartridge 30 can be replaced.
- the power supply unit 10 has a shape extending along the predetermined direction A and includes at least a battery 11.
- the battery 11 may be a disposable battery or a rechargeable battery. It is preferable that the initial value of the output voltage of the battery 11 is in the range of 1.2V to 4.2V.
- the battery capacity of the battery 11 is preferably in the range of 100 mAh to 1000 mAh.
- the first cartridge 20 has a shape extending along the predetermined direction A.
- the first cartridge 20 includes a reservoir 21, an atomization unit 22, a flow path forming body 23, an outer frame body 24, and an end cap 25.
- the first cartridge 20 has a first flow path 20 ⁇ / b> X disposed downstream of the atomization unit 22 as an aerosol flow path extending along the predetermined direction A. It should be noted that in the aerosol flow path, the side close to the atomizing unit 22 is referred to as upstream, and the side away from the atomizing unit 22 is referred to as downstream.
- the reservoir 21 stores an aerosol source 21A.
- the reservoir 21 is located around the flow path forming body 23 in a cross section orthogonal to the first flow path 20X (predetermined direction A). In the embodiment, the reservoir 21 is located in the gap between the flow path forming body 23 and the outer frame body 24.
- the reservoir 21 is constituted by a porous body such as a resin web or cotton, for example.
- the reservoir 21 may be constituted by a tank that accommodates a liquid aerosol source 21A.
- the aerosol source 21A includes a liquid such as glycerin or propylene glycol.
- the atomization unit 22 atomizes the aerosol source 21 ⁇ / b> A without being combusted by the electric power supplied from the battery 11.
- the atomizing unit 22 is configured by a heating wire (coil) wound at a predetermined pitch, and the atomizing unit 22 has a resistance value in a range of 1.0 ⁇ to 3.0 ⁇ . It is preferable that it is constituted by heat rays.
- the predetermined pitch is not less than a value at which the heating wire does not contact, and is preferably a small value.
- the predetermined pitch is preferably 0.40 mm or less.
- the predetermined pitch is preferably constant in order to stabilize the atomization of the aerosol source 21A.
- the predetermined pitch is an interval between the centers of adjacent heating wires.
- the flow path forming body 23 has a shape extending along the predetermined direction A.
- the flow path forming body 23 has a cylindrical shape that forms the first flow path 20X extending along the predetermined direction A.
- the outer frame body 24 has a shape extending along the predetermined direction A.
- the outer frame body 24 has a cylindrical shape that accommodates the flow path forming body 23.
- the outer frame body 24 extends downstream from the end cap 25 and accommodates a part of the second cartridge 30.
- the end cap 25 is a cap that closes the gap between the flow path forming body 23 and the outer frame body 24 from the downstream side.
- the end cap 25 suppresses the situation where the aerosol source 21A stored in the reservoir 21 leaks to the second cartridge 30 side.
- the second cartridge 30 has at least a flavor source 31A.
- the second cartridge 30 is attached to the non-combustion type flavor inhaler 1.
- the second cartridge 30 is connected to the first cartridge 20. Specifically, a part of the second cartridge 30 is accommodated in the outer frame body 24 of the first cartridge 20 as described above.
- the second cartridge 30 has a shape extending along the predetermined direction A.
- the second cartridge 30 includes a flavor source container 31, a mesh body 32, a filter 33, and a cap 34.
- the 2nd cartridge 30 has the 2nd channel 30X arranged downstream from the 1st channel 20X as an aerosol channel.
- the second cartridge 30 imparts flavor to the aerosol by passing the aerosol atomized by the atomizing unit 22.
- the flavor can be imparted to the aerosol without heating the flavor source 31A. It should be noted that substantially no aerosol is generated from the flavor source 31A.
- the maximum size of the second cartridge 30 is preferably 40 mm or less. Furthermore, in the predetermined direction A, the maximum size of the second cartridge 30 is preferably 25 mm or less. On the other hand, in the predetermined direction A, the minimum size of the second cartridge 30 is preferably 5 mm or more. Furthermore, in the predetermined direction A, the minimum size of the second cartridge 30 is preferably 1 mm or more. In the direction orthogonal to the predetermined direction A, the maximum size of the second cartridge 30 is preferably 20 mm or less. Further, the maximum size of the second cartridge 30 in the direction orthogonal to the predetermined direction A is preferably 10 mm or less.
- the minimum size of the second cartridge 30 is preferably 3 mm or more. Furthermore, the minimum size of the second cartridge 30 in the direction orthogonal to the predetermined direction A is preferably 1 mm or more.
- the flavor source container 31 has a cylindrical shape and forms a second flow path 30X extending along the predetermined direction A.
- the flavor source container 31 houses the flavor source 31A.
- a flavor source 31A for imparting flavor to the aerosol is accommodated in the second flow path 30X.
- the size of the first flow path 20X is preferably small in order to ensure the volume of the reservoir 21 that stores the aerosol source 21A. Therefore, in the case where the second cartridge 30 is accommodated in the outer frame body 24 having a constant cross-sectional area over the aerosol flow path (predetermined direction A), as a result, the size of the second flow path 30X is as described above. It tends to be larger than the size of the first flow path 20X.
- the flavor source 31A is composed of a raw material piece that imparts flavor to the aerosol generated by the non-burning type flavor inhaler 1.
- the lower limit of the size of the raw material pieces is preferably 0.2 mm or more and 1.2 mm or less. Furthermore, it is preferable that the minimum of the size of a raw material piece is 0.2 mm or more and 0.7 mm or less. Since the specific surface area increases as the size of the raw material piece constituting the flavor source 31A is smaller, the flavor component is easily released from the raw material piece constituting the flavor source 31A.
- the flavor source 31A may be composed of plants other than tobacco (for example, mint, herbs, etc.).
- the flavor source 31A may be provided with a fragrance such as menthol.
- the raw material pieces constituting the flavor source 31A are obtained by sieving according to JIS Z 8815 using, for example, a stainless steel sieve conforming to JIS Z 8801.
- a stainless steel sieve having an opening of 0.71 mm the raw material pieces are screened for 20 minutes by a dry and mechanical shaking method, and then passed through a stainless steel sieve having an opening of 0.71 mm. Get raw material pieces.
- a stainless steel sieve having an opening of 0.212 mm the raw material pieces are sieved for 20 minutes by a dry and mechanical shaking method, and then passed through a stainless steel sieve having an opening of 0.212 mm. Remove raw material pieces.
- the flavor source container 31 has an upstream end (here, a mesh body 32) of the flavor source container 31 in a cross section orthogonal to the aerosol flow path (predetermined direction A). It is preferable to have a protruding portion 31E that protrudes from the outer edge of the outer edge to the upstream side (in the embodiment, the flow path forming body 23 or the end cap 25 side).
- the protrusion 31E may be provided continuously along the outer edge of the upstream end portion (here, the mesh body 32) of the flavor source container 31 and intermittently along the outer edge of the flavor source container 31. It may be provided.
- the protrusion part 31E is along the outer edge of the upstream end part (here, mesh body 32) of the flavor source container 31.
- the protrusion part 31E is along the outer edge of the upstream end part (here, mesh body 32) of the flavor source container 31.
- the outer wall surface of the flavor source container 31 preferably includes a tapered portion 31T that spreads from upstream to downstream as shown in FIGS.
- the taper portion 31 ⁇ / b> T only needs to be included in a part of the outer wall surface of the flavor source container 31.
- the taper angle ⁇ of the taper portion 31T is, for example, about 5 degrees.
- the inner wall surface of the flavor source container 31 is preferably provided with a rib 31R extending along the predetermined direction A from upstream to downstream as shown in FIG.
- the number of the ribs 31R is preferably 2 or more. It is preferable that the downstream end of the rib 31R does not reach the downstream end of the flavor source container 31.
- the length L2 from the mesh body 32 to the downstream end of the rib 31R is shorter than the length L1 from the mesh body 32 to the downstream end of the flavor source container 31.
- the downstream end of the rib 31R does not reach the downstream end of the flavor source container 31 and contacts the filter 33.
- the mesh body 32 is arranged upstream (non-suction side) from the flavor source 31A.
- the mesh body 32 is disposed at the upstream end of the flavor source container 31.
- the flavor source container 31 and the mesh body 32 are preferably formed by integral molding. That is, in the embodiment, the mesh body 32 is a part of the flavor source container 31.
- the flavor source container 31 and the mesh body 32 are preferably made of resin.
- the resin for example, one or more resins selected from polypropylene, polyethylene terephthalate, polyethylene resin, and ABS resin can be used. From the viewpoint of moldability and texture, the resin is preferably polypropylene.
- the flavor source container 31 and the mesh body 32 are formed by mold molding or injection molding.
- the mesh body 32 has a plurality of apertures 32A as shown in FIG.
- Each of the plurality of apertures 32A has a polygonal shape having an inner angle of 180 ° or less.
- Each of the plurality of openings 32A has a minimum width Wmin having the smallest width and a maximum width Wmax having the largest width as the width passing through the center of gravity of each of the plurality of openings 32A.
- the minimum width Wmin is smaller than the lower limit of the size of the raw material pieces constituting the flavor source 31A.
- the minimum width Wmin is the lower limit of the size of the raw material piece constituting the flavor source 31A from the viewpoint of suppressing the dropping of the raw material piece. It is preferably smaller than 1/2.
- the maximum width Wmax is larger than the minimum width Wmin.
- the maximum width Wmax is preferably larger than the lower limit of the size of the raw material piece.
- the maximum width Wmax is preferably not less than ⁇ 2 times and not more than 6 times the minimum width Wmin. That is, each of the plurality of openings 32A has a shape different from a circular shape.
- each of the plurality of openings 32A preferably has a quadrangular shape because the raw material pieces are unlikely to fit into the openings 32A.
- each side of the quadrangular shape of the opening 32A may include a non-linear portion generated in the manufacture of the opening 32A.
- each vertex of the quadrangular shape of the opening 32A may include a curved portion generated by manufacturing the opening 32A.
- each of the plurality of apertures 32A preferably has a shape selected from a square, a rectangle, a rhombus, a hexagon, and an octagon as shown in FIGS.
- Each of the plurality of apertures 32A may have one type as shown in FIGS. 9 to 11 or two types as shown in FIG.
- Each of the plurality of openings 32A may have three or more shapes. Note that each of the plurality of openings 32A preferably has a quadrangular shape from the viewpoint of the arrangement efficiency of the plurality of openings 32A, ease of manufacture, and the like.
- the plurality of openings 32A are arranged so that the sides of the openings 32A adjacent to each other are parallel to each other.
- the interval P between the adjacent openings 32A is preferably 0.15 mm or more and 0.30 mm or less. In such a case, it is preferable that the thickness of the mesh body 32 is 0.1 mm or more and 1 mm or less.
- the filter 33 is made of a predetermined fiber, and has such a roughness that a raw material piece does not pass through.
- the filter 33 is disposed downstream of the flavor source 31A.
- the filter 33 is, for example, an acetate filter.
- the cap 34 is provided downstream (suction side) from the filter 33.
- the flavor source container 31 here, the mesh body 32 is included
- the filter 33 the cap 34 are adhered or welded to each other.
- all the openings of the mesh body 32 are the above-described openings 32A, but the embodiment is not limited thereto.
- the openings of the mesh body 32 may include openings other than the openings 32A described above.
- FIG. 13 is a diagram illustrating a connection state between the first cartridge 20 and the second cartridge 30 according to the embodiment.
- FIG. 14 is a view showing a CC cross section shown in FIG. However, it should be noted that the reservoir 21, the atomizing unit 22, the flavor source 31A, the filter 33, and the cap 34 are omitted in FIG.
- the first flow path 20X is supplied between the first flow path 20X and the second flow path 30X so as to suppress the deviation of the aerosol flow in the second flow path 30X.
- An aerosol flow adjusting chamber G for adjusting the flow of aerosol is provided.
- the aerosol flow adjusting chamber G is formed between the downstream end portion of the flow path forming body 23 and the upstream end portion of the flavor source accommodating body 31.
- the aerosol flow adjustment chamber G is formed between the end cap 25 and the mesh body 32.
- the filling rate of the flavor source 31A accommodated in the flavor source container 31 may not be 100% with respect to the capacity of the flavor source container 31. That is, it is conceivable that voids are generated in the flavor source container 31. However, it goes without saying that the aerosol flow adjusting chamber G is different from the air gap generated when the filling rate of the flavor source 31A is not 100%.
- the second flow path 30X extends from the outer edge of the first flow path 20X.
- the length LG of the aerosol flow adjusting chamber G in the predetermined direction A may be determined in consideration of the largest shift distance among the shift distances. That is, the length LG of the aerosol flow adjustment chamber G may be determined according to the largest shift distance. From the viewpoint of suppressing the deviation in the flow of the aerosol flowing in the flavor source container 31, it is preferable that the length LG of the aerosol flow adjustment chamber G is longer as the maximum shift distance is longer.
- the length LG of the aerosol flow adjusting chamber G is preferably 1/10 or more of the largest shift distance.
- the aerosol flow adjustment chamber G in the predetermined direction A is determined according to the difference (that is, the shift distance) between the radius R1 of the first flow path 20X and the radius R2 of the second flow path 30X.
- the flavor source container 31 is upstream from the outer edge of the upstream end portion (here, the mesh body 32) of the flavor source container 31 in a cross section orthogonal to the aerosol flow path (predetermined direction A). It has a protruding portion 31E that protrudes to the side (in the embodiment, the flow path forming body 23 or the end cap 25 side). That is, the flavor source container 31 has a protruding portion 31E (first protruding portion) as a spacer that forms the aerosol flow adjusting chamber G.
- first flow path 20X the entire downstream end portion of the flow path forming body 23 (first flow path 20X) is preferably exposed to the aerosol flow adjusting chamber G.
- second flow path 30X The entire upstream end of the flavor source container 31 (second flow path 30X) is preferably exposed to the aerosol flow adjustment chamber G.
- the aerosol flow adjusting chamber G does not include a portion projecting upstream from the downstream end of the flow path forming body 23 (first flow path 20X). It is preferable that the aerosol flow adjusting chamber G does not include a portion projecting downstream from the upstream end portion of the flavor source container 31 (second flow path 30X). Thereby, it is possible to prevent the aerosol from staying in an unnecessary space.
- the inner wall surface constituting the aerosol flow adjusting chamber G extends from the outer edge of the downstream end portion of the flow path forming body 23 (first flow path 20X) to the outer edge of the upstream end portion of the flavor source container 31 (second flow path 30X). It is preferable to continue without including a step.
- the outer edge 25out of the end cap 25 is in contact with the inner wall surface 24in of the outer frame body 24 in the cross section orthogonal to the aerosol flow path (predetermined direction A).
- the inner edge 25in of the cap 25 is preferably located between the outer edge 25out of the flow path forming body 23 and the inner edge 25in of the flow path forming body 23. This makes it difficult to remove the end cap 25 from the downstream side. Further, when the end cap 25 is disposed in the outer frame body 24, the end cap 25 is unlikely to interfere with the flow path forming body 23.
- FIG. 15 is a diagram mainly illustrating functional blocks of the control circuit 50 according to the embodiment.
- the non-burning type flavor inhaler 1 includes a notification unit 40 and a control circuit 50.
- the notification unit 40 notifies various information.
- reporting part 40 may be comprised by the light emitting element, may be comprised by the vibration element, and may be comprised by the sound output element.
- the notification unit 40 may be a combination of two or more elements among a light emitting element, a vibration element, and a sound output element.
- the notification unit 40 is preferably provided in the power supply unit 10, but the embodiment is not limited to this.
- the notification unit 40 may be provided in the first cartridge 20 or may be provided in the second cartridge 30.
- the control circuit 50 includes a detection unit 51, a notification control unit 52, and a power control unit 53.
- the detection unit 51 detects a puffing operation.
- the detection unit 51 is connected to the suction sensor and detects the puffing operation based on the output result of the suction sensor.
- the detection unit 51 detects power supply from the battery 11 to the atomization unit 22.
- the detection unit 51 is connected to a voltage sensor provided on a power line connecting the battery 11 and the atomization unit 22, and detects power supply based on the output result of the voltage sensor. .
- the notification control unit 52 controls the notification unit 40 to notify various information.
- the notification control unit 52 controls the notification unit 40 to notify the replacement timing of the second cartridge 30 in response to detection of the replacement timing of the second cartridge 30.
- the notification unit 40 may notify the replacement timing of the second cartridge 30 by light emission of the light emitting element, may notify the replacement timing of the second cartridge 30 by vibration of the vibration element, and outputs sound.
- the replacement timing of the second cartridge 30 may be notified by the output sound of the element.
- the notification control unit 52 detects the replacement timing of the second cartridge 30 based on the number of puff operations or the energization time to the atomization unit 22.
- the number of puff operations can be specified by the puff operation detected by the detection unit 51 described above.
- the energization time to the atomization unit 22 can be specified by the power supply detected by the detection unit 51 described above.
- the notification control unit 52 includes a counter 52X that counts the number of puff operations or the energization time to the atomization unit 22.
- the notification control unit 52 detects the replacement timing of the second cartridge 30 and resets the count value of the counter 52X when the count value of the counter 52X reaches a predetermined value.
- the notification control unit 52 preferably resets the count value of the counter 52X after the second cartridge 30 is replaced.
- the notification control unit 52 notifies the replacement timing of the second cartridge 30 when the count value of the counter 52X reaches a predetermined value, and resets the count value of the counter 52X by a predetermined operation by the user.
- the user's predetermined operation is a hardware interface (for example, a switch or button) for turning on or off the power source of the non-combustion flavor inhaler 1 or a hardware interface for controlling power supply to the atomizing unit 22.
- a hardware interface for example, a switch or button
- the operation of the hardware interface may be performed.
- the predetermined user operation may be an operation of blowing in from the suction port of the non-combustion flavor inhaler 1 as long as the detection unit 51 can detect the puff operation.
- the user's predetermined operation is a mode in which the detection unit 51 can detect a puffing operation and can be distinguished from a general puffing operation, a breathing operation (for example, two inhaling operations in a short time) It may be.
- the counter 52X may be a count-up type counter or a count-down type counter.
- the notification control unit 52 controls the notification unit 40 to notify the replacement timing of the first cartridge 20 in response to detection of the replacement timing of the first cartridge 20.
- the notification control unit 52 detects the replacement timing of the first cartridge 20 based on the number of replacements of the second cartridge 30. Specifically, the notification control unit 52 detects the replacement timing of the first cartridge 20 when the number of replacements of the second cartridge 30 reaches a predetermined number.
- the notification control unit 52 controls the notification unit 40 to notify the replacement timing of the battery 11 or the charging timing of the battery 11 in response to detection of the replacement timing of the battery 11 or the charging timing of the battery 11.
- the notification control unit 52 preferably detects the replacement timing of the battery 11 or the charging timing of the battery 11 based on the output voltage of the battery 11.
- the notification control unit 52 preferably detects the replacement timing or the charging timing of the battery 11 when the output voltage of the battery 11 falls below a predetermined threshold.
- the embodiment is not limited to this, and the notification control unit 52 determines the replacement timing of the battery 11 or the charging timing of the battery 11 based on the number of puff operations or the energization time to the atomization unit 22. It may be detected. Specifically, the notification control unit 52 may detect the replacement timing of the battery 11 or the charging timing of the battery 11 when the number of puff operations or the energization time to the atomization unit 22 exceeds a predetermined threshold.
- the notification unit 40 like the replacement timing of the second cartridge 30, emits light from the light emitting element, vibrates the vibration element, or outputs sound from the sound output element.
- the charging timing of the battery 11 is notified.
- the power control unit 53 outputs, as an instruction to the battery 11, a predetermined instruction that instructs the battery 11 so that the amount of aerosol atomized by the atomizing unit 22 falls within a desired range.
- the output of the predetermined instruction may be performed once for each puff operation.
- the power control unit 53 instructs the battery 11 to output power to the atomization unit 22 during the puff period during which the puff operation is performed, but during the non-puff period during which the puff operation is not performed. It should be noted that the output of power to the battery 11 is not instructed.
- the puff period and the non-puff period can be specified by the puff operation detected by the detection unit 51 described above.
- the power control unit 53 controls the predetermined instruction so that the amount of aerosol atomized by the atomization unit 22 falls within a desired range. For example, the power control unit 53 changes the predetermined instruction as the charged amount of the battery 11 decreases. Further, the power control unit 53 stops the power supply from the battery 11 to the atomization unit 22 when a predetermined period has elapsed since the start of power supply to the atomization unit 22. In other words, the power control unit 53 stops the power supply from the battery 11 to the atomization unit 22 when the puff period exceeds a predetermined period even within the puff period in which the user is actually performing the puff operation. To do.
- the power control unit 53 stops the power supply from the battery 11 to the atomizing unit 22 when the puff operation is completed even before the predetermined period has elapsed since the puff operation was started.
- no aerosol is generated during the period when the puff operation is not performed (non-puff period), so that the aerosol stays and condenses in the aerosol flow path during the non-puff period, and droplets are generated.
- the situation in which the aerosol generated by the subsequent puffing operation is trapped in the droplet can be suppressed, and the possibility of hindering the supply of the aerosol amount in the desired range and the deterioration of the taste caused by the droplet can be suppressed.
- the predetermined period is shorter than the upper limit value of the standard puff period derived from the statistics of the user's puff period. Furthermore, it is preferable that the predetermined period is shorter than the average value of the puff periods derived from the statistics of the user's puff period. Of course, the average value of the puff period is shorter than the upper limit value of the standard puff period.
- the predetermined period is determined in order to suppress variations in the user's puff period, there must be a certain number or more of users whose puff period is longer than the predetermined period. From this point of view, the predetermined period is preferably derived from statistics. Furthermore, since the predetermined period is shorter than the average value of the puff periods derived from the statistics, the energization time to the atomizing unit 22 in the majority of the puff operations can be fixed to the predetermined period. It is possible to suppress the variation in the amount of aerosol caused by the above.
- the predetermined period is 1 second or more and 3 seconds or less.
- the energization time to the atomizing unit 22 is not too short compared to the puff period, and the uncomfortable feeling given to the user is reduced.
- the predetermined period is 3 seconds or less, the puffing operation in which the energization time to the atomizing unit 22 is fixed to the predetermined period can be set to a certain number or more.
- the predetermined period may be 1.5 seconds or more and 2.5 seconds or less. Thereby, the discomfort given to the user can be further reduced, and the puffing operation in which the energization time to the atomizing unit 22 is fixed for a predetermined period can be increased.
- the predetermined period is predetermined.
- the predetermined period is preferably determined according to a standard puff period derived from statistics of puff periods of a plurality of users.
- the standard puff period can be derived from the statistics of the user's puff period, and is a period between the lower limit value of the plurality of user puff periods and the upper limit value of the plurality of user puff periods. It is.
- the lower limit value and the upper limit value may be derived, for example, as a lower limit value and an upper limit value of a 95% confidence interval of the average value based on the distribution of the user's puff period data, and m ⁇ n ⁇ (where m is an average value) Value, ⁇ is a standard deviation, and n is a positive real number).
- the power control unit 53 preferably controls the amount of power supplied from the battery 11 to the atomization unit 22 by pulse control. In such a case, the power control unit 53 outputs an instruction to increase the duty ratio output to the battery 11 in one puff operation as the stored amount of the battery 11 decreases as the predetermined instruction is changed. It is preferable to do.
- the power control unit 53 controls an on-time interval (pulse interval) for supplying power from the battery 11 to the atomization unit 22. Specifically, the power control unit 53 increases the duty ratio output to the battery 11 in one puff operation by changing the pulse interval P1 to the pulse interval P2.
- the power control unit 53 controls the length (pulse width) of the on time for supplying power from the battery 11 to the atomization unit 22. Specifically, the power control unit 53 increases the duty ratio output to the battery 11 in one puff operation by changing the pulse width W1 to the pulse width W2.
- the power control unit 53 may increase the duty ratio stepwise or continuously increase the duty ratio as a predetermined instruction is changed in accordance with a decrease in the charged amount of the battery 11.
- the power control unit 53 estimates the charged amount of the battery 11 based on the voltage value output from the battery 11.
- the electric power control part 53 may estimate the electrical storage amount of the battery 11 based on the frequency
- FIG. The number of puff operations can be specified by the puff operation detected by the detection unit 51 described above.
- the energization time to the atomization unit 22 can be specified by the power supply detected by the detection unit 51 described above.
- the power control unit 53 stops the power supply from the battery 11 to the atomization unit 22 until the count value is reset after the count value of the counter 52X reaches a predetermined value.
- the power control unit 53 preferably stops the power supply from the battery 11 to the atomization unit 22 until the count value is reset after the replacement timing of the second cartridge 30 is notified. That is, the power supply from the battery 11 to the atomizing unit 22 is stopped until the second cartridge 30 is replaced. Therefore, the use of the second cartridge 30 that can only impart a small amount of flavor to the aerosol is suppressed.
- FIG. 18 is a flowchart illustrating a control method according to the embodiment.
- FIG. 18 is a flowchart showing a method for controlling the amount of power supplied from the battery 11 to the atomization unit 22 in one puff operation. It should be noted that the flow shown in FIG. 18 starts upon detection of the start of the puff operation.
- the non-combustion flavor inhaler 1 (that is, the power control unit 53) outputs power to the atomizing unit 22 during the puff period during which the puff operation is performed. It should be noted that the battery 11 is not instructed to output power to the atomizing unit 22 during the non-puff period when the puff operation is not performed.
- the non-combustion flavor inhaler 1 (that is, the power control unit 53) estimates the charged amount of the battery 11. As described above, the non-combustion flavor inhaler 1 preferably estimates the amount of electricity stored in the battery 11 based on the voltage value output from the battery 11.
- step S20 the non-combustion flavor inhaler 1 (that is, the power control unit 53) determines a predetermined instruction (for example, duty ratio) to be output to the battery 11. Specifically, the non-combustion flavor inhaler 1 determines the duty ratio to be output to the battery 11 so that the duty ratio increases as the stored amount of the battery 11 decreases. In other words, the non-combustion flavor inhaler 1 outputs an instruction to increase the duty ratio as a change of the predetermined instruction.
- a predetermined instruction for example, duty ratio
- step S30 the non-combustion flavor inhaler 1 (that is, the power control unit 53) determines whether or not a predetermined period has elapsed since the start of power supply to the atomizing unit 22. In other words, the non-burning type flavor inhaler 1 determines whether or not the puff period exceeds a predetermined period. If the determination result is YES, the non-combustion flavor inhaler 1 proceeds to the process of step S50, and if the determination result is NO, the process proceeds to step S40.
- step S40 the non-combustion flavor inhaler 1 (that is, the power control unit 53) determines whether or not the puffing operation has ended.
- the determination result is NO
- the non-combustion flavor inhaler 1 returns to the process of step S30, and when the determination result is YES, the non-combustion flavor inhaler 1 stops the power supply to the atomizing unit 22 and a series of steps.
- the process ends.
- the end of the puff operation may be detected by the detection unit 51 as long as the detection unit 51 can detect the puff operation as described above.
- the end of the puffing operation may be detected by operating a hardware interface (for example, a switch or a button) for switching whether or not to apply power to the atomizing unit 22.
- step S50 the non-combustion flavor inhaler 1 (that is, the power control unit 53) supplies power from the battery 11 to the atomizing unit 22 even during the puff period in which the user is actually performing the puffing operation. Stop.
- the power control unit 53 stops the power supply from the battery 11 to the atomization unit 22 when a predetermined period has elapsed since the start of power supply to the atomization unit 22.
- the predetermined period is shorter than the upper limit value of the standard puff period derived from the statistics of the user's puff period. Therefore, even if a user whose puff period is longer than the predetermined period uses the non-combustion type flavor inhaler, an extreme decrease in the amount of electricity stored in the battery 11 is suppressed, and the amount of aerosol atomized by the atomizing unit 22 is reduced. It is easy to control the predetermined instruction so that it falls within the desired range.
- the amount of electricity stored in the battery 11 decreases from the start of smoking (the initial stage where the amount of electricity stored in the battery 11 is sufficient) to the end of smoking.
- the amount of aerosol supplied per puffing operation can be kept within a desired range.
- the power control unit 53 changes a predetermined instruction to be output to the battery 11 in one puff operation as the stored amount of the battery 11 decreases. Suppressing the difference in the amount of power actually supplied from the battery 11 to the atomization unit 22 between the initial stage in which the battery 11 has a sufficient amount of charge and the final stage in which the battery 11 has an insufficient amount of charge Can do. Thereby, the amount of aerosol atomized by the atomization unit 22 can be within a desired range regardless of the length of the user's puff period and the amount of electricity stored in the battery 11.
- the notification control unit 52 controls the notification unit 40 to notify the replacement timing of the second cartridge 30 in response to detection of the replacement timing of the second cartridge 30. Therefore, the user can easily grasp the replacement timing of the second cartridge 30.
- the notification control unit 52 controls the notification unit 40 to notify the replacement timing of the first cartridge 20 in response to detection of the replacement timing of the first cartridge 20. Therefore, the user can easily grasp the replacement timing of the first cartridge 20.
- the notification control unit 52 detects the replacement timing (life) of the first cartridge 20 based on the number of replacements of the second cartridge 30. Therefore, it is easy to detect the replacement timing of the first cartridge 20. Furthermore, the possibility that the lifetime of the first cartridge 20 will be exhausted while the second cartridge 30 is being used can be reduced. Needless to say, the replacement timing (life) of the first cartridge 20 corresponds to the number of second cartridges 30 that can be used for one first cartridge 20 (number of replacements).
- the notification control unit 52 controls the notification unit 40 to notify the replacement timing of the battery 11 or the charging timing of the battery 11 in response to detection of the replacement timing of the battery 11 or the charging timing of the battery 11. Therefore, the user can easily grasp the replacement timing of the battery 11 or the charging timing of the battery 11.
- the power control unit 53 stops the power supply from the battery 11 to the atomization unit 22 until the count value is reset after the count value of the counter 52X reaches a predetermined value. Therefore, the power supply from the battery 11 to the atomizing unit 22 is stopped until the second cartridge 30 is replaced. Therefore, the use of the second cartridge 30 that can only impart a small amount of flavor to the aerosol is suppressed.
- the power control unit 53 controls a predetermined instruction so that the amount of aerosol atomized by the atomizing unit 22 falls within a desired range, and starts supplying power to the atomizing unit 22 for a predetermined period.
- power supply from the battery 11 to the atomizing unit 22 is stopped. Therefore, since the variation in the amount of power consumed by one puff operation is reduced, the detection accuracy of the replacement timing of the second cartridge 30 is detected when the replacement timing of the second cartridge 30 is detected based on the number of puff operations. Will improve.
- the aerosol supplied from the first flow path 20X is suppressed so as to suppress the deviation of the aerosol flow in the second flow path 30X.
- An aerosol flow adjustment chamber G for adjusting the flow is provided. Accordingly, the aerosol supplied from the first flow path 20X can easily pass through the flavor source without being biased in the second flow path 30X.
- the reservoir 21 is located around the flow path forming body 23 in a cross section orthogonal to the first flow path 20X (predetermined direction A). Accordingly, the volume of the reservoir 21 that stores the aerosol source 21A can be secured while suppressing the entire length of the first cartridge 20 in the first flow path 20X (predetermined direction A).
- the size of the second channel 30X is larger than the size of the first channel 20X in a cross section orthogonal to the aerosol channel (predetermined direction A).
- the first flow path 20X is small in the cross section orthogonal to the aerosol flow path (predetermined direction A)
- the volume of the reservoir 21 located around the flow path forming body 23 can be secured.
- the size of the second flow path 30X is large in the cross section orthogonal to the aerosol flow path (predetermined direction A)
- the flavor components can be efficiently extracted from the flavor source 31A.
- the outer edge 25out of the end cap 25 is in contact with the inner wall surface 24in of the outer frame body 24, and the inner edge 25in of the end cap 25 forms the flow path. It is located between the outer edge 25out of the body 23 and the inner edge 25in of the flow path forming body 23. This makes it difficult to remove the end cap 25 from the downstream side. Further, when the end cap 25 is disposed in the outer frame body 24, the end cap 25 is unlikely to interfere with the flow path forming body 23.
- the second flow path 30X extends from the outer edge of the first flow path 20X.
- the distance to the outer surface is the shift distance
- the length LG of the aerosol flow adjusting chamber G in the predetermined direction A is determined according to the largest shift distance among the shift distances.
- each of the plurality of openings 32A provided in the mesh body 32 has a polygonal shape having an inner angle of 180 ° or less.
- Each of the plurality of openings 32A has a minimum width Wmin having the smallest width and a maximum width Wmax having the largest width as the width passing through the center of gravity of each of the plurality of openings 32A.
- the minimum width Wmin is smaller than the size of the raw material pieces constituting the flavor source 31A, it is possible to suppress the dropping of the raw material pieces constituting the flavor source 31A, and the maximum width Wmax is smaller than the minimum width Wmin. Since it is large, the hole area ratio can be increased as a whole of the mesh body.
- the second cartridge 30 for the non-combustion type flavor inhaler it is possible to ensure the open area ratio of the mesh body 32 as a whole while suppressing the dropping of the raw material pieces constituting the flavor source.
- the maximum width Wmax of the opening 32A is larger than the lower limit of the size of the raw material pieces constituting the flavor source 31A. Therefore, the hole area ratio of the mesh body 32 as a whole is improved.
- the maximum width Wmax of the opening 32A is not less than ⁇ 2 times and not more than 6 times the minimum width Wmin of the opening 32A. Therefore, when the maximum width Wmax is not less than ⁇ 2 times the minimum width Wmin, the opening ratio of the mesh body 32 as a whole is improved, and when the maximum width Wmax is not more than 6 times the minimum width Wmin, the mesh body A strength of 32 can be maintained.
- each of the plurality of apertures 32A has a shape selected from a square, a rectangle, a rhombus, a hexagon, and an octagon.
- the plurality of openings 32A are arranged such that the sides of the openings 32A adjacent to each other are parallel to each other.
- An interval P between the adjacent openings 32A is 0.15 mm or more and 0.30 mm or less.
- the inner wall surface of the flavor source container 31 is provided with a rib 31R extending along the predetermined direction A from upstream to downstream. Therefore, while the rib 31R reinforces the flavor source container 31, the aerosol flow in the predetermined direction A is not inhibited by the rib 31R in the flavor source container 31, and the flavor component can be easily taken out from the flavor source 31A.
- the outer wall surface of the flavor source container 31 includes a tapered portion 31T that spreads from upstream to downstream. Therefore, the second cartridge 30 is easily fitted to the outer frame body 24 of the first cartridge 20, and the second cartridge 30 is prevented from dropping while allowing a manufacturing error in the outer shape of the flavor source container 31.
- the length L2 from the mesh body 32 to the downstream end of the rib 31R is shorter than the length L1 from the mesh body 32 to the downstream end of the flavor source container 31.
- the downstream end of the rib 31 ⁇ / b> R does not reach the downstream end of the flavor source container 31 and contacts the filter 33. Therefore, the rib 31R functions to position the filter 33 while reinforcing the flavor source container 31.
- the flavor source container 31 has a protruding portion 31E (first protruding portion) as a spacer forming the aerosol flow adjusting chamber G.
- the flavor source container 31 does not have the protruding portion 31E.
- FIG. 19 is a diagram illustrating a connection state between the first cartridge 20 and the second cartridge 30 according to the first modification.
- the reservoir 21, the atomizing unit 22, the flavor source 31A, the filter 33, and the cap 34 are omitted.
- the flavor source container 31 has a main body portion 31P for storing the flavor source 31A and a flange portion 31Q disposed on the side surface of the main body portion 31P.
- the flange portion 31Q protrudes outward from the main body portion 31P and protrudes to the outer side of the outer frame body 24 at least as much as the inner surface.
- the flange portion 31 ⁇ / b> Q is provided on the side surface of the downstream end portion of the main body portion 31 ⁇ / b> P, but is not limited thereto. It may be provided anywhere on the side surface of the main body 31P.
- the distance L3 from the downstream end portion of the outer frame body 24 to the end cap 25 (that is, the distance from the portion where the outer frame body 24 contacts the flange portion 31Q to the downstream end portion of the end cap 25) is the main body portion. It is longer than the length L4 of 31P (that is, the distance from the upstream end portion of the flange portion 31Q to the upstream end portion of the main body portion 31P). Therefore, the flange portion 31Q is caught by the downstream end portion of the outer frame body 24, thereby adjusting the flow of aerosol supplied from the first flow path 20X even if the flavor source container 31 does not have the protruding portion 31E.
- An aerosol flow regulating chamber G is formed.
- the distance from the downstream end portion of the outer frame body 24 to the downstream end portion of the flow path forming body 23 is a flange portion.
- the distance from the portion in contact with 31Q to the downstream end of the flow path forming body 23) is greater than the length of the main body 31P (that is, the distance from the upstream end of the flange 31Q to the upstream end of the main body 31P). Also long.
- the flavor source container 31 has a protruding portion 31E (first protruding portion) as a spacer forming the aerosol flow adjusting chamber G.
- the flavor source container 31 does not have the protruding portion 31E.
- FIG. 20 is a diagram illustrating a connection state between the first cartridge 20 and the second cartridge 30 according to the second modification.
- the reservoir 21, the atomizing unit 22, the flavor source 31A, the filter 33, and the cap 34 are omitted in FIG.
- the protrusion 25E is in contact with the upstream end of the flavor source container 31 (preferably, the outer edge of the upstream end).
- the end cap 25 protrudes from the outer edge of the downstream end portion of the end cap 25 in a cross section orthogonal to the aerosol flow path (predetermined direction A) to the downstream side (flavor source container 31 side).
- the protruding portion 25 ⁇ / b> E may be provided continuously along the outer edge of the end cap 25, or may be provided intermittently along the outer edge of the end cap 25.
- the protrusion 25E is provided continuously along the outer edge of the end cap 25. Thereby, it is possible to prevent the aerosol from staying in the space formed in the upstream portion of the tapered portion 31T.
- the flow of the aerosol supplied from the first flow path 20X is adjusted even if the flavor source container 31 does not have the protrusion 31E.
- An aerosol flow conditioning chamber G is formed.
- the flow path forming body 23 is an outer edge of the downstream end portion of the flow path forming body 23 in a cross section orthogonal to the aerosol flow path (predetermined direction A). To the projecting portion 25E projecting to the downstream side (flavor source container 31 side).
- the first flow path 20X when viewed from the predetermined direction A, completely overlaps with the second flow path 30X.
- the size of the second flow path 30X is preferably larger than the size of the first flow path 20X.
- the size of the second flow path 30X is not particularly limited, but is approximately the same as the size of the first flow path 20X. It may be smaller than the size of the first flow path 20X. However, the size of the second flow path 30X may be larger than the size of the first flow path 20X.
- Modification Example 4 of the embodiment will be described with reference to FIGS. In the following, differences from the embodiment will be mainly described. 22 to 25, the vertical axis represents the amount of aerosol (TPM (Total Particulate Matter in FIGS. 22 to 25) (mg / puff motion), and the horizontal axis represents the number of puff motions ( Puff number). The vertical axis and the horizontal axis represent larger values as the distance from the intersection of the two increases.
- TPM Total Particulate Matter in FIGS. 22 to 25
- Puff number the number of puff motions
- the power control unit 53 stops the power supply from the battery 11 to the atomization unit 22 when a predetermined period has elapsed since the start of power supply to the atomization unit 22. To do.
- the predetermined period is shorter than the upper limit value of the standard puff period derived from the statistics of the user's puff period.
- the amount of aerosol atomized by the atomization unit 22 depends on the puff period during which the user actually performs the puff operation and the output voltage output to the battery 11.
- the standard puff period derived from the statistics of the user's puff period follows a normal distribution with an average of 2.4 seconds and a standard deviation of 1 second
- the upper limit value of the standard puff period is derived as m + n ⁇ (where m is an average value, ⁇ is a standard deviation, and n is a positive real number). It is about 3 to 4 seconds.
- sample E the initial value of the output voltage of the battery 11 is 4.2 V, and the battery capacity of the battery 11 is 220 mAh. Moreover, the atomization part 22 is comprised with the heating wire wound, and the resistance value of a heating wire is 3.5 (ohm).
- sample E1 shows the relationship between the number of puffs and the amount of aerosol when sample E is aspirated in a puff period of 2 seconds per puffing operation. The relationship between the number of puffs and the amount of aerosol when aspiration is performed in a puff period of 3 seconds per puff operation is shown.
- the probability of suctioning with a puff period of 3 seconds or more per puff operation as shown in sample E2 is about 27. It should be noted that this is an event that can occur sufficiently.
- sample F1 shows the relationship between the number of puffs and the amount of aerosol when sample F is aspirated in a puff period of 2 seconds per puffing operation.
- the relationship between the number of puffs and the amount of aerosol when aspiration is performed in a puff period of 3 seconds per puff operation is shown.
- the power control unit 53 atomizes from the battery 11 when a predetermined period (2.2 seconds in this case) has elapsed since the start of power supply to the atomization unit 22.
- the power supply to the unit 22 is stopped.
- the predetermined period of 2.2 seconds is shorter than the upper limit value of the standard puff period derived from the statistics of the user's puff period and shorter than the average value of the puff period.
- sample G the configuration of the battery 11 is the same as Samples E and F.
- the atomization part 22 is comprised with the heating wire wound by predetermined pitch, and the resistance value of a heating wire differs from the samples E and F in the point which is 2.9 (ohm).
- sample G1 shows the relationship between the number of puffs and the amount of aerosol when sample G is aspirated in a puff period of 2 seconds per puffing operation. The relationship between the number of puffs and the amount of aerosol when aspiration is performed in a puff period of 3 seconds per puff operation is shown.
- the power control unit 53 atomizes from the battery 11 when a predetermined period (2.2 seconds in this case) has elapsed since the start of power supply to the atomization unit 22. The power supply to the unit 22 is stopped.
- sample H the configurations of the battery 11 and the atomizing unit 22 are the same as in sample G.
- the predetermined pitch of the heating wire constituting the atomizing section 22 is uniformly wound in the range of 0.35 mm to 0.40 mm and is narrower than the predetermined pitch of the sample G.
- sample H1 shows the relationship between the number of puffs and the amount of aerosol when sample H is aspirated in a puff period of 2 seconds per puff operation.
- Sample H2 is sample H The relationship between the number of puffs and the amount of aerosol when aspiration is performed in a puff period of 3 seconds per puff operation is shown.
- the power control unit 53 starts when power supply to the atomization unit 22 is started and a predetermined period (here, 2.2 seconds) has elapsed.
- the power supply from the battery 11 to the atomizing unit 22 is stopped.
- the duty ratio at the time of supplying power to the atomizing unit 22 is changed depending on the value of the output voltage of the battery 11 detected by the detecting unit 51. Specifically, as described above, the output voltage of the battery 11 decreases as the amount of power stored in the battery 11 decreases, so that the power supplied to the atomization unit 22 according to the decrease in the output voltage of the battery 11. Increase the duty ratio.
- the puff period is 3 seconds and The amount of aerosol varies greatly between 2 seconds. Further, as can be seen by comparing the slopes of the sample E1 and the sample E2, the variation in the amount of aerosol from the initial puff to the final puff becomes more remarkable as the puff period, that is, the energization time becomes longer.
- the inventors pay attention to such a result, set a predetermined period shorter than the upper limit value of the standard puff period derived from the statistics of the user's puff period, and apply to the atomizing unit 22 in one puff operation.
- a predetermined period shorter than the upper limit value of the standard puff period derived from the statistics of the user's puff period, and apply to the atomizing unit 22 in one puff operation.
- FIG. 23 by stopping the power supply from the battery 11 to the atomization unit 22 when a predetermined period has elapsed since the start of power supply, as shown in FIG. It was found that fluctuations in the amount of aerosol from the initial puff to the final puff can be suppressed. Thereby, the fluctuation
- the inventors pay attention to such a result so that the amount of aerosol atomized by the atomizing unit 22 falls within a desired range when the energization time to the atomizing unit 22 is a predetermined period.
- the amount of aerosol atomized by the atomizing unit 22 over the longer number of puffs from the initial puff to the final puff is desired as shown in FIG. 24. I found out that it could fit in the range.
- the sample G2 shown in FIG. 24 and the sample F2 shown in FIG. 23 are compared, the sample G2 has the amount of aerosol atomized by the atomization unit 22 over a longer number of puffs than the sample F2 within a desired range.
- the fluctuation range of the aerosol amount from the initial puff to the final puff is larger than the fluctuation range in the sample F2. This is because the amount of power supplied from the battery 11 to the atomizing unit 22 in one puff operation increases due to the change in the configuration of the atomizing unit 22.
- the rate of decrease in the amount of aerosol can be reduced by paying attention to such results and making the following changes.
- the decrease rate of the amount of aerosol can be reduced by increasing the duty ratio of the electric power supplied to the atomization unit 22 in accordance with the decrease in the output voltage of the battery 11.
- the rate of decrease in the amount of aerosol can be reduced by narrowing the predetermined pitch of the heating wire.
- the atomization is performed over the entire period from the initial puff to the final puff for both H1 having a puff period of 2 seconds and H2 having a puff period of 3 seconds. It has been found that the amount of aerosol atomized by the part 22 falls within a desired range.
- the inventors obtained new knowledge that it is effective to perform the following control on the power supply from the battery 11 to the atomization unit 22.
- the power control unit 53 stops the power supply from the battery 11 to the atomization unit 22 when a predetermined period has elapsed since the start of power supply to the atomization unit 22.
- the predetermined period is preferably shorter than the upper limit value of the standard puff period derived from the statistics of the user's puff period and shorter than the average value of the puff period.
- the resistance value of the heating wire of the atomization unit 22 is determined so that the amount of aerosol in a desired range is atomized when the energization time to the atomization unit 22 is a predetermined period.
- the resistance value of the heating wire is the energization time to the atomizing unit 22 on the assumption that the voltage supplied from the battery 11 to the atomizing unit 22 is a voltage at the final stage where the storage amount of the battery 11 is insufficient. Is preferably determined so that the amount of aerosol atomized by the atomizing unit 22 falls within a desired range.
- the power control unit 53 outputs the output voltage of the battery 11 so that the amount of aerosol atomized by the atomizing unit 22 falls within a desired range over the entire period from the initial puff to the final puff.
- the duty ratio of the electric power supplied to the atomizing unit 22 is increased in accordance with the decrease in.
- the amount of aerosol is desired from the initial stage where the charged amount of the battery 11 is sufficient to the final stage where the charged amount of the battery 11 is insufficient, regardless of the length of the user's puff period. It becomes easy to fit in the range.
- the atomization unit 22 is adjusted at least at the start of use of the atomization unit 22 (in other words, the battery 11 is fully charged) by adjusting the predetermined pitch and resistance value of the heating wires constituting the atomization unit 22. At the time of charging), a larger amount of aerosol than the desired range of the aerosol supply amount can be atomized in one puffing operation.
- the predetermined instruction (in this case, the duty ratio) output from the power control unit 53 is predetermined so that the amount of aerosol atomized by the atomizing unit 22 in a predetermined period falls within a desired range. It is determined based on the length of the period. In other words, by setting the predetermined period, the predetermined instruction is determined based on the length of the predetermined period in a state where variation in the amount of aerosol due to the variation in the length of the user's puff period is suppressed.
- the upper limit of the amount of aerosol (desired range) atomized by the atomizing unit 22 is preferably 4.0 mg / 1 puff operation. Furthermore, the upper limit is preferably 3.0 mg / 1 puff operation. When the above-described value is the upper limit, deterioration of the raw material pieces constituting the flavor source 31A accommodated in the second cartridge 30 is suppressed.
- the lower limit of the amount of aerosol (desired range) atomized by the atomizing unit 22 is preferably 0.1 mg / 1 puff operation.
- the above-described value is the lower limit, it is possible to supply an amount of aerosol that does not cause the user to feel deficient, and to extract the flavor component from the flavor source 31A accommodated in the second cartridge 30.
- the predetermined period is determined according to the standard puff period derived from the statistics of the puff periods of a plurality of users.
- the predetermined period is derived from the statistics of the puff period of the user who actually uses the non-burning type flavor inhaler 1.
- FIG. 26 is a diagram mainly illustrating functional blocks of the control circuit 50 according to the fifth modification.
- the same components as those in FIG. 15 are denoted by the same reference numerals, and the description of the same components as those in FIG. 15 is omitted.
- control circuit 50 includes a memory 54 and a calculation unit 55 in addition to the configuration shown in FIG.
- the memory 54 stores a puff period during which the user performs a puff operation.
- the calculation unit 55 calculates the above-described predetermined period from the puff period statistics stored in the memory 54. That is, the predetermined period is derived from the puff period statistics stored in the memory 54. However, it should be noted that the predetermined period is shorter than the upper limit of the standard puff period described above.
- the calculation unit 55 calculates a predetermined period according to the following procedure.
- a predetermined period (I seconds) is determined in advance according to a standard puff period derived from statistics of puff periods of a plurality of users.
- an average value is derived from statistics of the puff period detected in a certain period (for example, from the start of use of the first cartridge 20 until the replacement of the first cartridge 20).
- the predetermined period is changed to an average value (X seconds).
- the duty ratio is changed so that the amount of power supplied to the atomizing unit 22 when sucked for X seconds becomes equal to the amount of power supplied when initially sucked (when sucked for I seconds). That is, when average value (X) ⁇ initial setting value (I), the duty ratio corresponding to each battery voltage is relatively increased. On the other hand, when average value (X)> initial setting value (I), the duty ratio is lowered.
- the predetermined period is recalculated every fixed period (for example, replacement of the first cartridge 20).
- the predetermined period is derived from statistics of the puff period of the user who actually uses the non-burning type flavor inhaler 1. Therefore, a period suitable for the user can be set as a predetermined period that is referred to when power supply from the battery 11 to the atomization unit 22 is stopped. Specifically, by setting a predetermined time suitable for the user's actual puff period, compared to the case of using a predetermined period derived from the statistics of a plurality of users' puff periods, the Discomfort can be reduced by supplying the aerosol over the entire period, and for a user with a short puff period, the number of puff operations in which aerosol in a desired range is supplied can be increased.
- the predetermined period is determined according to the standard puff period derived from the statistics of the puff periods of a plurality of users.
- the predetermined period is derived from the statistics of the puff period of the user who actually uses the non-burning type flavor inhaler 1.
- FIG. 27 is a diagram mainly illustrating functional blocks of the control circuit 50 according to the sixth modification.
- components similar to those in FIG. 15 are given the same reference numerals, and descriptions of components similar to those in FIG. 15 are omitted.
- control circuit 50 includes a memory 54 and an interface 56 in addition to the configuration shown in FIG.
- the memory 54 stores a puff period during which the user performs a puff operation.
- the interface 56 is an interface for communicating with an external device 200 provided separately from the non-combustion flavor inhaler 1.
- the interface 56 may be a USB port, a wired LAN module, a wireless LAN module, or a short-range communication module (for example, Bluetooth or Felica).
- the external device 200 may be a personal computer or a smartphone.
- the interface 56 transmits the puff period stored in the memory 54 to the external device 200.
- the interface 56 receives from the external device 200 a predetermined period calculated from the statistics based on the puff period by the external device 200.
- the external device 200 calculates the predetermined period in the same manner as the calculation unit 55 according to the fifth modification.
- the predetermined period is derived from statistics of the puff period of the user who actually uses the non-burning type flavor inhaler 1. Therefore, a period suitable for the user can be set as a predetermined period that is referred to when power supply from the battery 11 to the atomization unit 22 is stopped. Specifically, by setting a predetermined time suitable for the user's actual puff period, compared to the case of using a predetermined period derived from the statistics of a plurality of users' puff periods, the Discomfort can be reduced by supplying the aerosol over the entire period, and for a user with a short puff period, the number of puff operations in which aerosol in a desired range is supplied can be increased.
- the notification control unit 52 includes the counter 52X that counts the number of puff operations or the energization time to the atomization unit 22.
- the notification control unit 52 includes a first counter 52A and a second counter as a counter 52X that counts the number of puff operations or the energization time to the atomization unit 22. 52B.
- the lifetime of the first cartridge 20 is the lifetime of the second cartridge 30 ⁇ T (T is an integer) + ⁇ .
- T is an integer
- ⁇ is a value smaller than the lifetime of the second cartridge 30, but is not particularly limited.
- the notification control unit 52 detects the replacement timing of the second cartridge 30 when the count value of the first counter 52A reaches the first predetermined value.
- the notification control unit 52 detects the replacement timing of the first cartridge 20 when the count value of the second counter 52B reaches the second predetermined value.
- the second predetermined value is an integer multiple of the first predetermined value.
- the notification control unit 52 detects the replacement timing of the second cartridge 30 and increments the count value of the second counter 52B when the count value of the first counter 52A reaches the predetermined value P. Also good. Accordingly, the notification control unit 52 may detect the replacement timing of the first cartridge 20 when the count value of the second counter 52B reaches the predetermined value Q. That is, the notification control unit 52 may detect the replacement timing of the first cartridge 20 when the number of replacements of the second cartridge 30 reaches a predetermined number (predetermined value Q), as in the above-described embodiment. .
- the notification control unit 52 detects the replacement timing of the first cartridge 20 based on the number of replacements of the second cartridge 30 as a result. It should be noted that.
- the notification control unit 52 detects the replacement timing of the second cartridge 30 and resets the count value of the first counter 52A when the count value of the first counter 52A reaches the first predetermined value. May be.
- the notification control unit 52 detects the replacement timing of the second cartridge 30 when the count value of the first counter 52A reaches the first predetermined value, and sets the count value of the first counter 52A by the user's predetermined operation. It may be reset.
- the power control unit 53 stops the power supply from the battery 11 to the atomization unit 22 until the count value is reset after the count value of the first counter 52A reaches the first predetermined value. Is preferred.
- the notification control unit 52 detects the replacement timing of the first cartridge 20 and resets the count value of the second counter 52B when the count value of the second counter 52B reaches the second predetermined value. May be.
- the notification control unit 52 detects the replacement timing of the first cartridge 20 when the count value of the second counter 52B reaches the second predetermined value, and sets the count value of the second counter 52B by a predetermined operation of the user. It may be reset.
- the power control unit 53 stops the power supply from the battery 11 to the atomization unit 22 until the count value is reset after the count value of the second counter 52B reaches the second predetermined value. Is preferred.
- FIG. 29 is a diagram illustrating a package 300 according to Modification 8.
- the package 300 includes a first cartridge 20 and a second cartridge 30.
- the number of the second cartridges 30 is determined according to the life of the first cartridge 20.
- the package 300 shown in FIG. 29 has one first cartridge 20 and five second cartridges 30.
- the number of second cartridges 30 is determined so that the life of one first cartridge 20 is exhausted when five second cartridges 30 are used up.
- the first cartridge 20 has a permissible puff count that is the number of puff operations allowed for the first cartridge 20 or a permissible energization time that is the energization time allowed for the first cartridge 20.
- the allowable number of puffs and the allowable energization time are values for suppressing the exhaustion of the aerosol source 21A.
- the allowable puff count and the allowable energization time are upper limit values that can stably supply the aerosol source 21A to the atomizing unit 22 and atomize an appropriate aerosol.
- the replacement timing of the second cartridge 30 the number of puff operations or the timing at which the energization time to the atomizing unit 22 reaches a predetermined value is determined.
- the number of second cartridges 30 is an integer part of the quotient obtained by dividing the allowable number of puffs or the allowable energization time by a predetermined value.
- the allowable number of puffs or the allowable energization time may not be divisible by a predetermined value.
- the lifetime of the first cartridge 20 may be a lifetime having a margin with respect to the number of the second cartridges 30.
- the replacement timing of the second cartridge 30 is the timing at which the number of puff operations or the energization time to the atomizing unit 22 reaches the first predetermined value.
- the replacement timing of the first cartridge 20 is the number of times of the puff operation or the timing when the energization time to the atomizing unit 22 reaches the second predetermined value.
- the second predetermined value is an integer multiple T of the first predetermined value.
- the integer multiple T is the number of second cartridges 30 included in the package 300.
- the first cartridge 20 has the end cap 25, but the embodiment is not limited to this.
- the first cartridge 20 may not have the end cap 25.
- the aerosol flow adjusting chamber G is formed between the downstream end portion of the flow path forming body 23 and the upstream end portion of the flavor source accommodating body 31.
- the second cartridge 30 is accommodated in the first cartridge 20 (projecting portion 25E), but the embodiment is not limited to this.
- the power supply unit 10 may house the first cartridge 20 and the second cartridge 30.
- the 1st cartridge 20 and the 2nd cartridge 30 may be connected by the end surface which counters mutually.
- the first cartridge 20 and the second cartridge 30 are connected by screwing, for example.
- the end cap 25 is preferably joined to the reservoir 21 in order to suppress refilling of the aerosol source 21A into the reservoir 21 and the like.
- the end cap 25 has a protruding portion 25E that protrudes to the downstream side (flavor source container 31 side) from the outer edge of the end cap 25 in a cross section perpendicular to the aerosol flow path (predetermined direction A).
- the embodiment is not limited to this.
- the protruding portion 25E protruding from the outer edge of the flow path forming body 23 in the cross section orthogonal to the aerosol flow path (predetermined direction A) to the downstream side (flavor source container 31 side).
- the flow path forming body 23 may have.
- the protrusion 25E contacts the upstream end of the flavor source container 31 (for example, the outer edge of the upstream end).
- the atomizing portion 22 is a heating wire (coil) wound at a predetermined pitch.
- the embodiment is not limited to this.
- the shape of the heating wire which comprises the atomization part 22 is arbitrary.
- the atomizing unit 22 is configured by a heating wire.
- the atomization unit 22 may atomize the aerosol source 21A using ultrasonic waves.
- the first cartridge 20 is replaceable.
- the embodiment is not limited to this. Specifically, instead of the first cartridge 20, an atomizing unit having a reservoir 21 and an atomizing unit 22 is provided in the non-combustion type flavor inhaler 1, and the atomizing unit is a unit that is not replaced. Good.
- the second cartridge 30 is replaceable.
- the embodiment is not limited to this.
- a flavor source unit having a flavor source 31A is provided in the non-combustion type flavor inhaler 1, and the flavor source unit may be a unit that is not replaced.
- the second cartridge 30 is an essential feature.
- the first cartridge 20 and the second cartridge 30 are replaceable.
- the embodiment is not limited to this.
- the configuration of the first cartridge 20 and the second cartridge 30 may be provided in the non-combustion type flavor inhaler 1.
- the package 300 includes one first cartridge 20. However, the embodiment is not limited to this. The package 300 may include two or more first cartridges 20.
- the power control unit 53 controls the amount of power supplied from the battery 11 to the atomization unit 22 by pulse control.
- the power control unit 53 may control the output voltage of the battery 11. In such a case, the power control unit 53 may output an instruction to increase the instruction voltage output to the battery 11 as the stored amount of the battery 11 decreases as the predetermined instruction is changed.
- the power control unit 53 outputs an instruction to increase the duty ratio output to the battery 11 in one puff operation as the stored amount of the battery 11 decreases as the predetermined instruction is changed.
- the power control unit 53 may output an instruction to extend a predetermined period for stopping the power supply from the battery 11 to the atomization unit 22 as the stored amount of the battery 11 decreases as the change of the predetermined instruction. .
- the detection unit 51 is connected to a voltage sensor provided on a power line connecting the battery 11 and the atomization unit 22, and detects power supply based on the output result of the voltage sensor.
- the embodiment is not limited to this.
- the detection unit 51 may be connected to a current sensor provided on a power line connecting the battery 11 and the atomization unit 22, and may detect power supply based on the output result of the current sensor.
- the power control unit 53 instructs the battery 11 to output power to the atomization unit 22 during the puff period during which the puff operation is performed, but the atomization is performed during the non-puff period during which the puff operation is not performed.
- the battery 11 is not instructed to output power to the unit 22.
- the power control unit 53 may switch the output of power to the atomization unit 22 according to an operation of a hardware interface (for example, a switch or a button) for outputting power to the atomization unit 22. That is, the puff operation and the non-puff operation are switched according to the operation of the hardware interface.
- a hardware interface for example, a switch or a button
- the present invention it is possible to provide a cartridge and a non-combustion type flavor inhaler that can ensure the open area ratio of the mesh body as a whole while suppressing the falling off of the raw material pieces constituting the flavor source. .
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Anesthesiology (AREA)
- Pulmonology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Toxicology (AREA)
- Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Cigarettes, Filters, And Manufacturing Of Filters (AREA)
- Secondary Cells (AREA)
Abstract
Description
背景技術で触れたカートリッジは、ユーザがエアロゾルを吸引できるように通気性を有する必要がある。例えば、複数の開孔を有するメッシュ体がカートリッジの少なくとも一端に配置される。
(非燃焼型香味吸引器)
以下において、実施形態に係る非燃焼型香味吸引器について説明する。図1は、実施形態に係る非燃焼型香味吸引器1を示す断面図である。図2は、実施形態に係る電源ユニット10を示す断面図である。図3は、実施形態に係る第1カートリッジ20を示す断面図である。図4は、実施形態に係る第1カートリッジ20の内部構造を示す図である。但し、図4では、後述するリザーバ21が省略されていることに留意すべきである。図5は、実施形態に係る第2カートリッジ30を示す側面図である。図6は、実施形態に係る第2カートリッジ30の分解斜視図である。図7は、実施形態に係る香味源収容体31を示す断面図(図5に示すA-A断面図)である。図8は、実施形態に係る香味源収容体31を示す断面図(図7に示すB-B断面図)である。但し、図6では、後述する香味源31Aが省略されていることに留意すべきである。
以下において、実施形態に係る第1カートリッジ20と第2カートリッジ30との接続状態について説明する。図13は、実施形態に係る第1カートリッジ20と第2カートリッジ30との接続状態を示す図である。図14は、図13に示すC-C断面を示す図である。但し、図13では、リザーバ21、霧化部22、香味源31A、フィルタ33及びキャップ34が省略されていることに留意すべきである。
以下において、実施形態に係る制御回路について主として説明する。図15は、実施形態に係る制御回路50の機能ブロックを主として示す図である。
以下において、実施形態に係る制御方法について説明する。図18は、実施形態に係る制御方法を示すフロー図である。図18は、1回のパフ動作において電池11から霧化部22に供給される電力量の制御方法を示すフロー図である。なお、図18に示すフローは、パフ動作の開始の検知によって開始することに留意すべきである。
実施形態では、電力制御部53は、霧化部22への電力供給を開始してから所定期間が経過した場合に、電池11から霧化部22に対する電力供給を停止する。所定期間は、ユーザのパフ期間の統計から導き出される標準パフ期間の上限値よりも短い。従って、パフ期間が所定期間よりも長いユーザが非燃焼型香味吸引器を使用しても、電池11の蓄電量の極端な減少が抑制され、霧化部22によって霧化されるエアロゾルの量が所望範囲に収まるように所定指示を制御しやすい。
以下において、実施形態の変更例1について説明する。以下においては、実施形態に対する相違点について主として説明する。
以下において、実施形態の変更例2について説明する。以下においては、実施形態に対する相違点について主として説明する。
以下において、実施形態の変更例3について説明する。以下においては、実施形態に対する相違点について主として説明する。
以下において、実施形態の変更例4について、図22~図25を参照しながら説明する。以下においては、実施形態に対する相違点について主として説明する。図22~図25において、縦軸は、エアロゾルの量(図22~図25では、TPM(Total Particulate Matter)量)(mg/パフ動作)を表しており、横軸は、パフ動作の回数(Puff number)を表している。縦軸及び横軸は、両者の交点から離れるほど、大きな値を表している。
以下において、実施形態の変更例5について説明する。以下においては、実施形態に対する相違点について主として説明する。
変更例5では、所定期間は、非燃焼型香味吸引器1を実際に使用するユーザのパフ期間の統計から導き出される。従って、電池11から霧化部22に対する電力供給を停止する際に参照される所定期間として、ユーザに適した期間をセットすることができる。詳細には、ユーザの実際のパフ期間に適した所定時間をセットすることによって、複数のユーザのパフ期間の統計から導き出される所定期間を用いるケースと比べて、パフ期間が長いユーザについては、パフ期間の全体に亘るエアロゾルの供給によって違和感を軽減することができ、パフ期間が短いユーザについては、所望範囲のエアロゾルが供給されるパフ動作の数を増やすことができる。
以下において、実施形態の変更例6について説明する。以下においては、実施形態に対する相違点について主として説明する。
変更例6では、所定期間は、非燃焼型香味吸引器1を実際に使用するユーザのパフ期間の統計から導き出される。従って、電池11から霧化部22に対する電力供給を停止する際に参照される所定期間として、ユーザに適した期間をセットすることができる。詳細には、ユーザの実際のパフ期間に適した所定時間をセットすることによって、複数のユーザのパフ期間の統計から導き出される所定期間を用いるケースと比べて、パフ期間が長いユーザについては、パフ期間の全体に亘るエアロゾルの供給によって違和感を軽減することができ、パフ期間が短いユーザについては、所望範囲のエアロゾルが供給されるパフ動作の数を増やすことができる。
以下において、実施形態の変更例7について説明する。以下においては、実施形態に対する相違点について主として説明する。
変更例7では、第2所定値が第1所定値の整数倍であるため、第2カートリッジ30の交換を繰り返す場合であっても、第1カートリッジ20及び第2カートリッジ30の交換タイミングを同タイミングで報知することによって、ユーザの利便性を向上することができる。
以下において、実施形態の変更例8について説明する。以下においては、実施形態に対する相違点について主として説明する。
変更例8では、第2カートリッジ30の数は、第1カートリッジ20の寿命に応じて定められるため、第2カートリッジ30の交換を繰り返す場合であっても、第1カートリッジ20及び第2カートリッジ30の交換タイミングが揃うため、ユーザの利便性が向上する。言い換えると、パッケージ300に含まれる第2カートリッジ30を使い切ることによって、第1カートリッジ20の交換タイミングをユーザが容易に把握することができる。
本発明は上述した実施形態によって説明したが、この開示の一部をなす論述及び図面は、この発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
Claims (17)
- 非燃焼型香味吸引器が発生するエアロゾルに香味を付与する複数の原料片によって構成される香味源と、
前記香味源を収容する香味源収容体と、
前記香味源収容体の少なくとも一端に配置されるメッシュ体とを備え、
前記メッシュ体は、複数の開孔を有しており、
前記複数の開孔のそれぞれは、180°以下の内角を有する多角形の形状を有しており、
前記複数の開孔のそれぞれは、前記複数の開孔のそれぞれの重心を通る幅として、最も小さい幅を有する最小幅と、最も大きい幅を有する最大幅とを有しており、
前記最小幅は、前記複数の原料片のサイズの下限よりも小さく、
前記最大幅は、前記最小幅よりも大きいことを特徴とすることを特徴とするカートリッジ。 - 前記香味源収容体及び前記メッシュ体は、一体成形によって形成されていることを特徴とする請求項1に記載のカートリッジ。
- 前記複数の原料片のサイズの下限は、0.2mmであることを特徴とする請求項1又は請求項2のいずれかに記載のカートリッジ。
- 前記香味源収容体は、所定方向に沿って延びるエアロゾル流路を形成しており、
前記所定方向において、前記所定方向において、前記香味源収容体の最大サイズは、40mm以下であり、
前記所定方向に直交する方向において、前記香味源収容体の最大サイズは20mm以下であることを特徴とする請求項1乃至請求項3のいずれかに記載のカートリッジ。 - 前記所定方向において、前記香味源収容体の最大サイズは、25mm以下であり、
前記所定方向に直交する方向において、前記香味源収容体の最大サイズは10mm以下であることを特徴とする請求項1乃至請求項4のいずれかに記載のカートリッジ。 - 前記複数の開孔のそれぞれは、四角形の形状を有することを特徴とする請求項1乃至請求項5のいずれかに記載のカートリッジ。
- 前記複数の開孔は、互いに隣合う開孔のそれぞれが有する辺が平行になるように配置されていることを特徴とする請求項1乃至請求項6のいずれかに記載のカートリッジ。
- 互いに隣合う開孔の間隔は、0.15mm以上0.30mm以下であることを特徴とする請求項7に記載のカートリッジ。
- 前記最大幅は、前記複数の原料片のサイズの下限よりも大きいことを特徴とする請求項1乃至請求項8のいずれかに記載のカートリッジ。
- 前記最大幅は、前記最小幅の√2倍以上6倍以下であることを特徴とする請求項1乃至請求項9のいずれかに記載のカートリッジ。
- 前記香味源収容体は、所定方向に沿って延びるエアロゾル流路を形成しており、
前記メッシュ体は、前記香味源収容体内のエアロゾル流路上において上流端部に配置されており、
前記香味源収容体は、前記エアロゾル流路に直交する断面における前記メッシュ体の外縁から上流側に突出する突出部を有することを特徴とする請求項1乃至請求項10のいずれかに記載のカートリッジ。 - 前記香味源収容体は、所定方向に沿って延びるエアロゾル流路を形成しており、
前記香味源収容体の内壁面には、上流から下流に向けて前記所定方向に沿って延びるリブが設けられることを特徴とする請求項1乃至請求項11のいずれかに記載のカートリッジ。 - 前記香味源収容体は、所定方向に沿って延びるエアロゾル流路を形成しており、
前記香味源収容体の外壁面は、上流から下流に向けて広がるテーパ形状を含むことを特徴とする請求項1乃至請求項12のいずれかに記載のカートリッジ。 - 前記香味源収容体は、所定方向に沿って延びるエアロゾル流路を形成しており、
前記香味源よりも下流に配置されたフィルタを備えることを特徴とする請求項1乃至請求項13のいずれかに記載のカートリッジ。 - 前記香味源収容体の内壁面には、上流から下流に向けて前記所定方向に沿って延びるリブが設けられており、
前記リブの下流端部は、前記香味源収容体の下流端部に達せずに前記フィルタの上流端部と接していることを特徴とする請求項14に記載のカートリッジ。 - 燃焼を伴わずにエアロゾル源を霧化する霧化部を備え、
請求項1乃至請求項15のいずれかに記載のカートリッジを着脱可能に備えることを特徴とする非燃焼型香味吸引器。 - 前記エアロゾル流路として、前記霧化部よりも下流側に配置された第1流路を備え、
前記カートリッジは、前記エアロゾル流路として、前記第1流路よりも下流側に配置された第2流路を有しており、
前記第1流路と前記第2流路との間には、前記第2流路内のエアロゾルの流れの偏りを抑制するように、前記第1流路から供給される前記エアロゾルの流れを調整するエアロゾル流調整チャンバが設けられることを特徴とする請求項16に記載の非燃焼型香味吸引器。
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14906082.4A EP3205219B1 (en) | 2014-11-10 | 2014-11-10 | Cartridge and non-burning type flavor inhaler |
CN201480083240.0A CN107072310B (zh) | 2014-11-10 | 2014-11-10 | 烟弹以及非燃烧型香味吸取器 |
PCT/JP2014/079779 WO2016075749A1 (ja) | 2014-11-10 | 2014-11-10 | カートリッジ及び非燃焼型香味吸引器 |
EP20187667.9A EP3747290B1 (en) | 2014-11-10 | 2014-11-10 | Cartridge and non-burning type flavor inhaler |
KR1020177014601A KR101939004B1 (ko) | 2014-11-10 | 2014-11-10 | 카트리지 및 비연소형 향미 흡인기 |
AU2014411337A AU2014411337A1 (en) | 2014-11-10 | 2014-11-10 | Cartridge and non-burning type flavor inhaler |
JP2016558468A JP6330054B2 (ja) | 2014-11-10 | 2014-11-10 | カートリッジ及び非燃焼型香味吸引器 |
MYPI2017701634A MY182482A (en) | 2014-11-10 | 2014-11-10 | Cartridge and non-burning type flavor inhaler |
EA201791036A EA032720B1 (ru) | 2014-11-10 | 2014-11-10 | Картридж и ингалятор ароматизирующего вещества без горения |
TW104126966A TWI594704B (zh) | 2014-11-10 | 2015-08-19 | 匣體及非燃燒型香味吸嚐器 |
US15/590,660 US10653179B2 (en) | 2014-11-10 | 2017-05-09 | Cartridge and non-burning type flavor inhaler |
AU2019204391A AU2019204391B2 (en) | 2014-11-10 | 2019-06-21 | Cartridge and non-burning type flavor inhaler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/079779 WO2016075749A1 (ja) | 2014-11-10 | 2014-11-10 | カートリッジ及び非燃焼型香味吸引器 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/590,660 Continuation US10653179B2 (en) | 2014-11-10 | 2017-05-09 | Cartridge and non-burning type flavor inhaler |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016075749A1 true WO2016075749A1 (ja) | 2016-05-19 |
Family
ID=55953862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/079779 WO2016075749A1 (ja) | 2014-11-10 | 2014-11-10 | カートリッジ及び非燃焼型香味吸引器 |
Country Status (10)
Country | Link |
---|---|
US (1) | US10653179B2 (ja) |
EP (2) | EP3205219B1 (ja) |
JP (1) | JP6330054B2 (ja) |
KR (1) | KR101939004B1 (ja) |
CN (1) | CN107072310B (ja) |
AU (2) | AU2014411337A1 (ja) |
EA (1) | EA032720B1 (ja) |
MY (1) | MY182482A (ja) |
TW (1) | TWI594704B (ja) |
WO (1) | WO2016075749A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018216430A1 (ja) * | 2017-05-26 | 2018-11-29 | 日本たばこ産業株式会社 | 香味源ユニット及び香味吸引器 |
JP2019522479A (ja) * | 2016-07-07 | 2019-08-15 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | たばこインサートを備えた不燃性ベイピング要素 |
WO2020145041A1 (ja) | 2019-01-11 | 2020-07-16 | 日本たばこ産業株式会社 | 喫煙または吸引による慢性閉塞性肺疾患のリスクのインビトロ評価方法 |
WO2020153465A1 (ja) * | 2019-01-24 | 2020-07-30 | 日本たばこ産業株式会社 | たばこカプセル及び間接加熱式たばこ製品 |
JP2020524502A (ja) * | 2017-06-23 | 2020-08-20 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | 不燃性ベイピング装置 |
JP2020527037A (ja) * | 2017-09-26 | 2020-09-03 | ケーティー・アンド・ジー・コーポレーション | エアロゾル生成装置のヒータに供給されるバッテリの電力を制御する方法及びそのエアロゾル生成装置 |
WO2020234916A1 (ja) | 2019-05-17 | 2020-11-26 | 日本たばこ産業株式会社 | 香味吸引器用のたばこロッド |
WO2020234915A1 (ja) | 2019-05-17 | 2020-11-26 | 日本たばこ産業株式会社 | 香味吸引器用のたばこロッド |
WO2021070932A1 (ja) | 2019-10-10 | 2021-04-15 | 日本たばこ産業株式会社 | 非燃焼型香味吸引器用のたばこマスターバッチおよびこれを含むたばこ材料 |
WO2023276378A1 (ja) * | 2021-06-29 | 2023-01-05 | 日本たばこ産業株式会社 | 焙煎コーヒー豆を含む香味発生セグメント |
RU2794119C1 (ru) * | 2017-07-17 | 2023-04-11 | Раи Стретеджик Холдингс, Инк. | Курительное изделие для курения без нагрева и без сжигания |
WO2023058750A1 (ja) | 2021-10-08 | 2023-04-13 | 日本たばこ産業株式会社 | 霧化用液体およびその製造方法 |
US11883579B2 (en) | 2017-07-17 | 2024-01-30 | Rai Strategic Holdings, Inc. | No-heat, no-burn smoking article |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10244793B2 (en) | 2005-07-19 | 2019-04-02 | Juul Labs, Inc. | Devices for vaporization of a substance |
US10279934B2 (en) | 2013-03-15 | 2019-05-07 | Juul Labs, Inc. | Fillable vaporizer cartridge and method of filling |
US10058129B2 (en) | 2013-12-23 | 2018-08-28 | Juul Labs, Inc. | Vaporization device systems and methods |
US20160366947A1 (en) | 2013-12-23 | 2016-12-22 | James Monsees | Vaporizer apparatus |
USD825102S1 (en) | 2016-07-28 | 2018-08-07 | Juul Labs, Inc. | Vaporizer device with cartridge |
USD842536S1 (en) | 2016-07-28 | 2019-03-05 | Juul Labs, Inc. | Vaporizer cartridge |
US10076139B2 (en) | 2013-12-23 | 2018-09-18 | Juul Labs, Inc. | Vaporizer apparatus |
US10159282B2 (en) | 2013-12-23 | 2018-12-25 | Juul Labs, Inc. | Cartridge for use with a vaporizer device |
EP3086671B1 (en) | 2013-12-23 | 2018-09-26 | Juul Labs UK Holdco Limited | Vaporization device systems |
KR101924744B1 (ko) * | 2014-11-10 | 2018-12-03 | 니뽄 다바코 산교 가부시키가이샤 | 비연소형 향미 흡인기 |
UA124185C2 (uk) | 2014-12-05 | 2021-08-04 | Джуул Лебз, Інк. | Пристрій для точного контролю дози |
WO2016135959A1 (ja) * | 2015-02-27 | 2016-09-01 | 日本たばこ産業株式会社 | 非燃焼型香味吸引器 |
WO2017139595A1 (en) | 2016-02-11 | 2017-08-17 | Pax Labs, Inc. | Fillable vaporizer cartridge and method of filling |
CO2018009342A2 (es) | 2016-02-11 | 2018-09-20 | Juul Labs Inc | Cartuchos de fijación segura para dispositivos vaporizadores |
US10405582B2 (en) | 2016-03-10 | 2019-09-10 | Pax Labs, Inc. | Vaporization device with lip sensing |
MA44627A (fr) * | 2016-04-04 | 2019-02-13 | Nexvap Sa | Inhalateur mobile et récipient s'utilisant conjointement |
USD849996S1 (en) | 2016-06-16 | 2019-05-28 | Pax Labs, Inc. | Vaporizer cartridge |
USD851830S1 (en) | 2016-06-23 | 2019-06-18 | Pax Labs, Inc. | Combined vaporizer tamp and pick tool |
USD836541S1 (en) | 2016-06-23 | 2018-12-25 | Pax Labs, Inc. | Charging device |
CN109414056A (zh) * | 2016-07-29 | 2019-03-01 | 菲利普莫里斯生产公司 | 包括含有凝胶的筒的气溶胶生成系统 |
US10791760B2 (en) | 2016-07-29 | 2020-10-06 | Altria Client Services Llc | Aerosol-generating system including a cartridge containing a gel |
MY201540A (en) | 2016-12-02 | 2024-02-28 | Vmr Products Llc | Combination vaporizer |
EP3583859A4 (en) | 2017-05-12 | 2020-12-16 | Japan Tobacco Inc. | BATTERY UNIT INSPECTION DEVICE AND BATTERY UNIT INSPECTION SYSTEM |
USD887632S1 (en) | 2017-09-14 | 2020-06-16 | Pax Labs, Inc. | Vaporizer cartridge |
CN111246759B (zh) * | 2017-10-24 | 2023-09-26 | 日本烟草产业株式会社 | 气溶胶生成装置、气溶胶生成装置的控制方法 |
EP3793744B1 (en) * | 2018-05-16 | 2022-09-28 | Philip Morris Products S.A. | Atomiser assembly with oscillation chamber |
JP7312194B2 (ja) * | 2018-05-16 | 2023-07-20 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | 二つのアトマイザー組立品を備えるエアロゾル発生装置 |
US11413409B2 (en) | 2018-09-12 | 2022-08-16 | Juul Labs, Inc. | Vaporizer including positive temperature coefficient of resistivity (PTCR) heating element |
US11376377B2 (en) | 2018-11-05 | 2022-07-05 | Juul Labs, Inc. | Cartridges for vaporizer devices |
JP6647435B1 (ja) | 2019-01-17 | 2020-02-14 | 日本たばこ産業株式会社 | エアロゾル吸引器用の電源ユニット |
US11096419B2 (en) | 2019-01-29 | 2021-08-24 | Rai Strategic Holdings, Inc. | Air pressure sensor for an aerosol delivery device |
US11207711B2 (en) | 2019-08-19 | 2021-12-28 | Rai Strategic Holdings, Inc. | Detachable atomization assembly for aerosol delivery device |
US11889861B2 (en) * | 2019-09-23 | 2024-02-06 | Rai Strategic Holdings, Inc. | Arrangement of atomization assemblies for aerosol delivery device |
US11785991B2 (en) | 2019-10-04 | 2023-10-17 | Rai Strategic Holdings, Inc. | Use of infrared temperature detection in an aerosol delivery device |
US11304451B2 (en) | 2019-10-18 | 2022-04-19 | Rai Strategic Holdings, Inc. | Aerosol delivery device with dual reservoir |
KR102471062B1 (ko) * | 2020-06-26 | 2022-11-25 | 주식회사 케이티앤지 | 에어로졸 전달 카트리지 및 그 에어로졸 전달 카트리지를 구비한 에어로졸 생성장치 |
GB202016480D0 (en) * | 2020-10-16 | 2020-12-02 | Nicoventures Trading Ltd | Aerosol provision device |
GB202016481D0 (en) * | 2020-10-16 | 2020-12-02 | Nicoventures Holdings Ltd | Aerosol provision device |
US11969545B2 (en) | 2020-12-01 | 2024-04-30 | Rai Strategic Holdings, Inc. | Liquid feed systems for an aerosol delivery device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62175896U (ja) * | 1986-04-25 | 1987-11-09 | ||
JPH04229166A (ja) * | 1990-08-17 | 1992-08-18 | Rothmans Internatl Tobacco Ltd | 喫煙物品 |
WO2009157240A1 (ja) * | 2008-06-25 | 2009-12-30 | 日本たばこ産業株式会社 | 喫煙物品 |
WO2010095660A1 (ja) * | 2009-02-23 | 2010-08-26 | 日本たばこ産業株式会社 | 非加熱型香味吸引器 |
JP2010535530A (ja) * | 2007-08-10 | 2010-11-25 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | 蒸留ベースの喫煙物品 |
WO2013111320A1 (ja) * | 2012-01-27 | 2013-08-01 | 日本たばこ産業株式会社 | 香味カートリッジ及び非加熱型香味吸引器 |
WO2014156537A1 (ja) * | 2013-03-28 | 2014-10-02 | 日本たばこ産業株式会社 | 非加熱型香味吸引器 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0429758Y2 (ja) * | 1986-12-23 | 1992-07-17 | ||
SE8703827D0 (sv) * | 1987-10-05 | 1987-10-05 | Svenska Tobaks Ab | Tobaksportion |
CN2041138U (zh) * | 1988-05-30 | 1989-07-19 | 王乃盈 | 防糊锅底箅帘及配件 |
IL108780A (en) * | 1993-02-27 | 1999-06-20 | Fisons Plc | inhaler |
JP3325756B2 (ja) | 1995-12-28 | 2002-09-17 | ポリプラスチックス株式会社 | ネズミ用容器 |
JP2003088862A (ja) | 2001-09-17 | 2003-03-25 | Hitachi Chem Co Ltd | 陽イオン交換樹脂収納カートリッジの交換構造とその交換構造を備えた軟水化装置 |
EP1609376A1 (en) * | 2003-04-01 | 2005-12-28 | Shusei Takano | Nicotine suction pipe and nicotine holder |
JP2006223158A (ja) | 2005-02-16 | 2006-08-31 | Minoru Ebihara | 代替タバコ |
US20090293888A1 (en) * | 2008-05-30 | 2009-12-03 | Vapor For Life | Portable vaporizer for plant material |
AT507187B1 (de) * | 2008-10-23 | 2010-03-15 | Helmut Dr Buchberger | Inhalator |
CA2807635C (en) * | 2010-08-24 | 2015-11-24 | Hirofumi Matsumoto | Non-heating type flavor inhalator and method of manufacturing flavor cartridge |
US9149586B2 (en) * | 2011-02-07 | 2015-10-06 | Seibo Ping-Cheng SHEN | Herbal vaporization apparatus and method |
US20120255546A1 (en) | 2011-04-11 | 2012-10-11 | Visionary Road | Portable vaporizer |
CN202154031U (zh) * | 2011-06-22 | 2012-03-07 | 赵今擎 | 生氧戒烟器 |
UA113744C2 (xx) * | 2011-12-08 | 2017-03-10 | Пристрій для утворення аерозолю з внутрішнім нагрівачем | |
US9326547B2 (en) | 2012-01-31 | 2016-05-03 | Altria Client Services Llc | Electronic vaping article |
WO2013181796A1 (zh) * | 2012-06-05 | 2013-12-12 | Liu Qiuming | 电子烟及其吸杆 |
WO2014089174A2 (en) * | 2012-12-06 | 2014-06-12 | Aerodesigns, Inc. | Aerosol dispenser with edible cartridge |
TW201429417A (zh) * | 2013-01-29 | 2014-08-01 | Japan Tobacco Inc | 非加熱型香味抽吸具 |
US10390562B2 (en) * | 2013-07-23 | 2019-08-27 | Altria Client Services Llc | Electronic smoking article |
US10039321B2 (en) * | 2013-11-12 | 2018-08-07 | Vmr Products Llc | Vaporizer |
CN203563693U (zh) * | 2013-12-04 | 2014-04-30 | 林光榕 | 一种无棉电子烟的储液装置 |
CN203735480U (zh) * | 2013-12-31 | 2014-07-30 | 深圳市凯神科技股份有限公司 | 加热非燃烧型电子烟 |
US9010335B1 (en) * | 2014-05-13 | 2015-04-21 | Njoy, Inc. | Mechanisms for vaporizing devices |
US20150351453A1 (en) * | 2014-06-04 | 2015-12-10 | Joseph Cruz | Smoking apparatus accessory and method of using the same |
US9986762B2 (en) * | 2014-09-17 | 2018-06-05 | Fontem Holdings 4 B.V. | Device for storing and vaporizing liquid media |
GB201418817D0 (en) * | 2014-10-22 | 2014-12-03 | British American Tobacco Co | Apparatus and method for generating an inhalable medium, and a cartridge for use therewith |
-
2014
- 2014-11-10 EP EP14906082.4A patent/EP3205219B1/en active Active
- 2014-11-10 EP EP20187667.9A patent/EP3747290B1/en active Active
- 2014-11-10 WO PCT/JP2014/079779 patent/WO2016075749A1/ja active Application Filing
- 2014-11-10 AU AU2014411337A patent/AU2014411337A1/en not_active Abandoned
- 2014-11-10 KR KR1020177014601A patent/KR101939004B1/ko not_active Expired - Fee Related
- 2014-11-10 CN CN201480083240.0A patent/CN107072310B/zh active Active
- 2014-11-10 EA EA201791036A patent/EA032720B1/ru not_active IP Right Cessation
- 2014-11-10 MY MYPI2017701634A patent/MY182482A/en unknown
- 2014-11-10 JP JP2016558468A patent/JP6330054B2/ja active Active
-
2015
- 2015-08-19 TW TW104126966A patent/TWI594704B/zh active
-
2017
- 2017-05-09 US US15/590,660 patent/US10653179B2/en not_active Expired - Fee Related
-
2019
- 2019-06-21 AU AU2019204391A patent/AU2019204391B2/en not_active Ceased
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62175896U (ja) * | 1986-04-25 | 1987-11-09 | ||
JPH04229166A (ja) * | 1990-08-17 | 1992-08-18 | Rothmans Internatl Tobacco Ltd | 喫煙物品 |
JP2010535530A (ja) * | 2007-08-10 | 2010-11-25 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | 蒸留ベースの喫煙物品 |
WO2009157240A1 (ja) * | 2008-06-25 | 2009-12-30 | 日本たばこ産業株式会社 | 喫煙物品 |
WO2010095660A1 (ja) * | 2009-02-23 | 2010-08-26 | 日本たばこ産業株式会社 | 非加熱型香味吸引器 |
WO2013111320A1 (ja) * | 2012-01-27 | 2013-08-01 | 日本たばこ産業株式会社 | 香味カートリッジ及び非加熱型香味吸引器 |
WO2014156537A1 (ja) * | 2013-03-28 | 2014-10-02 | 日本たばこ産業株式会社 | 非加熱型香味吸引器 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3205219A4 * |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12161156B2 (en) | 2016-07-07 | 2024-12-10 | Altria Client Services Llc | Non-combustible vaping element with tobacco insert |
JP2019522479A (ja) * | 2016-07-07 | 2019-08-15 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | たばこインサートを備えた不燃性ベイピング要素 |
US11672277B2 (en) | 2016-07-07 | 2023-06-13 | Altria Client Services Llc | Non-combustible vaping element with tobacco insert |
JP7021125B2 (ja) | 2016-07-07 | 2022-02-16 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | たばこインサートを備えた不燃性ベイピング要素 |
CN110691524A (zh) * | 2017-05-26 | 2020-01-14 | 日本烟草产业株式会社 | 香味源单元以及香味吸引器 |
EP3636085A4 (en) * | 2017-05-26 | 2021-03-03 | Japan Tobacco, Inc. | FLAVOR SOURCE UNIT AND TASTE INHALER |
JP7100024B2 (ja) | 2017-05-26 | 2022-07-12 | 日本たばこ産業株式会社 | 香味源ユニット及び香味吸引器 |
US11213070B2 (en) | 2017-05-26 | 2022-01-04 | Japan Tobacco Inc. | Flavor source unit and flavor inhaler |
WO2018216430A1 (ja) * | 2017-05-26 | 2018-11-29 | 日本たばこ産業株式会社 | 香味源ユニット及び香味吸引器 |
EA038503B1 (ru) * | 2017-05-26 | 2021-09-08 | Джапан Тобакко Инк. | Блок источника аромата и ароматический ингалятор |
KR102414585B1 (ko) * | 2017-05-26 | 2022-06-29 | 니뽄 다바코 산교 가부시키가이샤 | 향미원 유닛 및 향미 흡인기 |
JP2022001043A (ja) * | 2017-05-26 | 2022-01-06 | 日本たばこ産業株式会社 | 香味源ユニット及び香味吸引器 |
KR20190138875A (ko) * | 2017-05-26 | 2019-12-16 | 니뽄 다바코 산교 가부시키가이샤 | 향미원 유닛 및 향미 흡인기 |
JPWO2018216430A1 (ja) * | 2017-05-26 | 2019-11-07 | 日本たばこ産業株式会社 | 香味源ユニット及び香味吸引器 |
TWI694780B (zh) * | 2017-05-26 | 2020-06-01 | 日商日本煙草產業股份有限公司 | 香味源單元及香味吸嚐器 |
JP7112433B2 (ja) | 2017-06-23 | 2022-08-03 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | 不燃性ベイピング装置 |
US11992605B2 (en) | 2017-06-23 | 2024-05-28 | Altria Client Services Llc | Non-combustible vaping device |
JP2020524502A (ja) * | 2017-06-23 | 2020-08-20 | フィリップ・モーリス・プロダクツ・ソシエテ・アノニム | 不燃性ベイピング装置 |
RU2794119C1 (ru) * | 2017-07-17 | 2023-04-11 | Раи Стретеджик Холдингс, Инк. | Курительное изделие для курения без нагрева и без сжигания |
US11883579B2 (en) | 2017-07-17 | 2024-01-30 | Rai Strategic Holdings, Inc. | No-heat, no-burn smoking article |
JP2020527037A (ja) * | 2017-09-26 | 2020-09-03 | ケーティー・アンド・ジー・コーポレーション | エアロゾル生成装置のヒータに供給されるバッテリの電力を制御する方法及びそのエアロゾル生成装置 |
KR20210102330A (ko) | 2019-01-11 | 2021-08-19 | 니뽄 다바코 산교 가부시키가이샤 | 흡연 또는 흡인에 의한 만성 폐색성 폐 질환의 리스크의 인비트로 평가 방법 |
WO2020145041A1 (ja) | 2019-01-11 | 2020-07-16 | 日本たばこ産業株式会社 | 喫煙または吸引による慢性閉塞性肺疾患のリスクのインビトロ評価方法 |
WO2020152827A1 (ja) * | 2019-01-24 | 2020-07-30 | 日本たばこ産業株式会社 | たばこカプセル及び間接加熱式たばこ製品 |
WO2020153465A1 (ja) * | 2019-01-24 | 2020-07-30 | 日本たばこ産業株式会社 | たばこカプセル及び間接加熱式たばこ製品 |
WO2020234915A1 (ja) | 2019-05-17 | 2020-11-26 | 日本たばこ産業株式会社 | 香味吸引器用のたばこロッド |
JPWO2020234916A1 (ja) * | 2019-05-17 | 2020-11-26 | ||
EP4360474A2 (en) | 2019-05-17 | 2024-05-01 | Japan Tobacco, Inc. | Tobacco rod for flavor inhaler |
WO2020234916A1 (ja) | 2019-05-17 | 2020-11-26 | 日本たばこ産業株式会社 | 香味吸引器用のたばこロッド |
JP7595005B2 (ja) | 2019-05-17 | 2024-12-05 | 日本たばこ産業株式会社 | 香味吸引器用のたばこロッド |
WO2021070932A1 (ja) | 2019-10-10 | 2021-04-15 | 日本たばこ産業株式会社 | 非燃焼型香味吸引器用のたばこマスターバッチおよびこれを含むたばこ材料 |
WO2023276378A1 (ja) * | 2021-06-29 | 2023-01-05 | 日本たばこ産業株式会社 | 焙煎コーヒー豆を含む香味発生セグメント |
JP7642816B2 (ja) | 2021-06-29 | 2025-03-10 | 日本たばこ産業株式会社 | 焙煎コーヒー豆を含む香味発生セグメント |
WO2023058750A1 (ja) | 2021-10-08 | 2023-04-13 | 日本たばこ産業株式会社 | 霧化用液体およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20170078765A (ko) | 2017-07-07 |
TWI594704B (zh) | 2017-08-11 |
AU2019204391B2 (en) | 2021-03-25 |
EP3205219B1 (en) | 2020-12-23 |
EA032720B1 (ru) | 2019-07-31 |
EP3205219A1 (en) | 2017-08-16 |
AU2019204391A1 (en) | 2019-07-11 |
EP3205219A4 (en) | 2018-06-20 |
JP6330054B2 (ja) | 2018-05-23 |
EP3747290A2 (en) | 2020-12-09 |
CN107072310A (zh) | 2017-08-18 |
KR101939004B1 (ko) | 2019-01-15 |
JPWO2016075749A1 (ja) | 2017-06-08 |
EP3747290A3 (en) | 2021-02-24 |
US20170238608A1 (en) | 2017-08-24 |
CN107072310B (zh) | 2020-08-04 |
EP3747290B1 (en) | 2023-04-19 |
TW201616990A (zh) | 2016-05-16 |
MY182482A (en) | 2021-01-25 |
AU2014411337A1 (en) | 2017-06-29 |
EA201791036A1 (ru) | 2017-09-29 |
US10653179B2 (en) | 2020-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6461421B1 (ja) | 非燃焼型香味吸引器 | |
JP6498838B1 (ja) | 非燃焼型香味吸引器及び制御方法 | |
JP6330054B2 (ja) | カートリッジ及び非燃焼型香味吸引器 | |
JP6251418B2 (ja) | 非燃焼型香味吸引器 | |
JP7242770B2 (ja) | カートリッジ及び非燃焼型香味吸引器 | |
JP6913193B2 (ja) | カートリッジ及び非燃焼型香味吸引器 | |
JP6660418B2 (ja) | カートリッジ及び非燃焼型香味吸引器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14906082 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016558468 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014906082 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177014601 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201791036 Country of ref document: EA |
|
ENP | Entry into the national phase |
Ref document number: 2014411337 Country of ref document: AU Date of ref document: 20141110 Kind code of ref document: A |