WO2016051975A1 - 炭化珪素エピタキシャル基板 - Google Patents
炭化珪素エピタキシャル基板 Download PDFInfo
- Publication number
- WO2016051975A1 WO2016051975A1 PCT/JP2015/073134 JP2015073134W WO2016051975A1 WO 2016051975 A1 WO2016051975 A1 WO 2016051975A1 JP 2015073134 W JP2015073134 W JP 2015073134W WO 2016051975 A1 WO2016051975 A1 WO 2016051975A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon carbide
- epitaxial layer
- less
- main surface
- single crystal
- Prior art date
Links
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 185
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 182
- 239000000758 substrate Substances 0.000 title claims abstract description 165
- 239000013078 crystal Substances 0.000 claims abstract description 111
- 230000003746 surface roughness Effects 0.000 claims abstract description 12
- 238000004439 roughness measurement Methods 0.000 claims abstract description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 138
- 239000007789 gas Substances 0.000 description 97
- 229910052757 nitrogen Inorganic materials 0.000 description 68
- 239000004065 semiconductor Substances 0.000 description 38
- 238000010438 heat treatment Methods 0.000 description 24
- 238000005259 measurement Methods 0.000 description 23
- 238000005229 chemical vapour deposition Methods 0.000 description 21
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 18
- 239000002019 doping agent Substances 0.000 description 17
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 16
- 238000004519 manufacturing process Methods 0.000 description 14
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 230000007774 longterm Effects 0.000 description 12
- 230000007246 mechanism Effects 0.000 description 12
- 238000009826 distribution Methods 0.000 description 10
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 9
- 230000015556 catabolic process Effects 0.000 description 9
- 239000012535 impurity Substances 0.000 description 9
- 239000001294 propane Substances 0.000 description 9
- 229910000077 silane Inorganic materials 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000005530 etching Methods 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 239000012159 carrier gas Substances 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000006698 induction Effects 0.000 description 6
- 239000011810 insulating material Substances 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000010453 quartz Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000010079 rubber tapping Methods 0.000 description 3
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- 238000004854 X-ray topography Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 2
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 239000005049 silicon tetrachloride Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229910003468 tantalcarbide Inorganic materials 0.000 description 2
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 2
- 239000005052 trichlorosilane Substances 0.000 description 2
- 101150054854 POU1F1 gene Proteins 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- 102000001999 Transcription Factor Pit-1 Human genes 0.000 description 1
- 108010040742 Transcription Factor Pit-1 Proteins 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- SLLGVCUQYRMELA-UHFFFAOYSA-N chlorosilicon Chemical compound Cl[Si] SLLGVCUQYRMELA-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- BUMGIEFFCMBQDG-UHFFFAOYSA-N dichlorosilicon Chemical compound Cl[Si]Cl BUMGIEFFCMBQDG-UHFFFAOYSA-N 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/83—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
- H10D62/832—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge being Group IV materials comprising two or more elements, e.g. SiGe
- H10D62/8325—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/20—Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02378—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/02447—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02529—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
- H01L21/02573—Conductivity type
- H01L21/02576—N-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/02634—Homoepitaxy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/50—Physical imperfections
- H10D62/57—Physical imperfections the imperfections being on the surface of the semiconductor body, e.g. the body having a roughened surface
Definitions
- the present disclosure relates to a silicon carbide epitaxial substrate.
- Patent Document 1 discloses a CVD (Chemical Vapor Deposition) apparatus that can be used for epitaxial growth of silicon carbide.
- a silicon carbide epitaxial substrate of the present disclosure includes a silicon carbide single crystal substrate and an epitaxial layer on the silicon carbide single crystal substrate.
- the diameter of the silicon carbide single crystal substrate is 100 mm or more.
- the thickness of the epitaxial layer is 10 ⁇ m or more.
- the carrier concentration of the epitaxial layer is 1 ⁇ 10 14 cm ⁇ 3 or more and 1 ⁇ 10 16 cm ⁇ 3 or less.
- the ratio of the standard deviation of the carrier concentration in the same plane to the average value of the carrier concentration in the plane of the epitaxial layer is 10% or less.
- the epitaxial layer has a main surface.
- the arithmetic average roughness Sa in the three-dimensional surface roughness measurement of the main surface is 0.3 nm or less.
- the surface density of pits caused by threading screw dislocations is 1000 cm ⁇ 2 or less. In the pit, the maximum depth from the main surface is 8 nm or more.
- FIG. 8 is a schematic sectional view taken along line VIII-VIII in FIG. It is a schematic plan view which shows the structure around a susceptor.
- a silicon carbide epitaxial substrate of the present disclosure includes a silicon carbide single crystal substrate, and an epitaxial layer on the silicon carbide single crystal substrate.
- the diameter of the silicon carbide single crystal substrate is 100 mm or more.
- the thickness of the epitaxial layer is 10 ⁇ m or more.
- the carrier concentration of the epitaxial layer is 1 ⁇ 10 14 cm ⁇ 3 or more and 1 ⁇ 10 16 cm ⁇ 3 or less.
- the ratio of the standard deviation of the carrier concentration in the same plane to the average value of the carrier concentration in the plane of the epitaxial layer is 10% or less.
- the epitaxial layer has a main surface.
- the arithmetic average roughness Sa in the three-dimensional surface roughness measurement of the main surface is 0.3 nm or less.
- the surface density of pits caused by threading screw dislocations is 1000 cm ⁇ 2 or less. In the pit, the maximum depth from the main surface is 8 nm or more.
- the silicon carbide epitaxial substrate of the present disclosure is a substrate in which the in-plane uniformity of the carrier concentration in the epitaxial layer and the surface property of the epitaxial layer are compatible. That is, in the epitaxial substrate of the present disclosure, the in-plane uniformity of the carrier concentration is high, the surface roughness of the epitaxial layer is small, and the abundance of deep pits is reduced on the surface of the epitaxial layer.
- the ratio ( ⁇ / ave) of the standard deviation ( ⁇ ) of the carrier concentration in the same surface to the average value (ave) of the carrier concentration in the surface is the in-plane uniformity of the carrier concentration. Show. It can be evaluated that the lower the ratio, the higher the in-plane uniformity of the carrier concentration.
- the carrier concentration indicates an effective carrier concentration measured by a mercury probe type CV measuring device. The area of the probe is 0.01 cm 2 .
- the average value and the standard deviation of the carrier concentration are determined based on the measurement results at nine points in the plane. Nine points in the plane are set in a cross shape.
- FIG. 1 is a schematic diagram illustrating the measurement position of carrier concentration. As shown in FIG. 1, in silicon carbide epitaxial substrate 100, the cross point is one of measurement points 5, and is near the center of silicon carbide epitaxial substrate 100. The intervals between the measurement points 5 are approximately equal.
- the arithmetic average roughness Sa is a three-dimensional surface property parameter defined in the international standard ISO25178.
- the arithmetic average roughness Sa is a roughness obtained by extending the arithmetic average roughness Ra to a surface.
- the arithmetic average roughness Sa can be measured using, for example, a white interference microscope. In measurement, the measurement area is 255 ⁇ m square.
- the pit is a groove-like minute defect formed on the surface of the epitaxial layer.
- the pits are thought to originate from threading screw dislocations, threading edge dislocations and threading mixed dislocations in the epitaxial layer.
- a threading mixed dislocation containing a screw dislocation component is also regarded as a threading screw dislocation.
- the present inventor has found a manufacturing method capable of reducing the depth of pits derived from threading screw dislocations. That is, according to the manufacturing method of the present disclosure, the areal density of pits due to threading screw dislocations and the maximum depth from the main surface of the epitaxial layer is 8 nm or more can be suppressed to 1000 cm ⁇ 2 . Moreover, according to the manufacturing method of this indication, arithmetic mean roughness Sa can also be 0.3 nm or less in the surface of an epitaxial layer. Details of the manufacturing method of the present disclosure will be described later.
- the etch pit method Whether or not the pit is caused by threading screw dislocation is confirmed by the etch pit method or the X-ray topography method.
- an etch pit method is used.
- pits caused by threading screw dislocations can be determined as follows.
- the etching conditions shown here are merely examples, and the etching conditions may be changed according to, for example, the thickness of the epitaxial layer, the doping concentration, and the like. The following conditions assume a case where the thickness of the epitaxial layer is about 10 ⁇ m to 50 ⁇ m.
- Etching uses potassium hydroxide (KOH) melt.
- the temperature of the KOH melt is about 500 to 550 ° C.
- the etching time is about 5 to 10 minutes.
- the surface of the epitaxial layer is observed using a normalsky differential interference microscope.
- Pits originating from threading screw dislocations form larger etch pits than pits originating from threading edge dislocations.
- Etch pits derived from threading screw dislocations have, for example, a hexagonal planar shape, and the length of the hexagonal diagonal is typically about 30 to 50 ⁇ m.
- Etch pits derived from threading edge dislocations are, for example, hexagonal in plan and smaller than etch pits derived from threading screw dislocations. In the etch pit derived from the threading edge dislocation, the length of the hexagonal diagonal is typically about 15 to 20 ⁇ m.
- the X-ray topography method is used.
- the thickness of the epitaxial layer is about 10 ⁇ m to 50 ⁇ m
- the threading screw dislocation is observed with a stronger contrast than the threading edge dislocation.
- the maximum depth from the main surface in the pit is measured using an AFM (Atomic Force Microscope).
- AFM Acoustic Force Microscope
- the AFM for example, “Dimension300” manufactured by Veeco can be adopted.
- a model “NCHV-10V” manufactured by Bruker is suitable for the AFM cantilever.
- each AFM condition is set as follows.
- the measurement mode is set to the tapping mode.
- the measurement area in the tapping mode is set to 5 ⁇ m square.
- the scanning speed in the measurement region is 5 seconds per cycle, the number of scanning lines is 512, and the measurement points per scanning line are 512.
- the control displacement of the cantilever is set to 15.50 nm.
- the areal density of pits having a maximum depth of 8 nm or more from the main surface is measured by using both the above AFM measurement and a defect inspection apparatus equipped with a confocal differential interference microscope.
- a defect inspection apparatus including a confocal differential interference microscope a WASAVI series “SICA 6X” manufactured by Lasertec Corporation can be used.
- the magnification of the objective lens is 10 times.
- a pit shape having a maximum depth of 8 nm or more is defined.
- the entire surface of the epitaxial layer is analyzed to detect pits that satisfy the definition. By dividing the number of detected pits by the surface area of the epitaxial layer, the surface density of the pits can be calculated.
- the entire surface in this measurement usually does not include a region not used for a semiconductor device.
- the region not used for the semiconductor device is, for example, a region 3 mm from the edge of the substrate.
- the surface density of pits may be 100 cm ⁇ 2 or less.
- the surface density of pits may be 10 cm ⁇ 2 or less.
- the surface density of the pits may be 1 cm ⁇ 2 or less.
- the diameter of the silicon carbide single crystal substrate may be 150 mm or more.
- the diameter of the silicon carbide single crystal substrate may be 200 mm or more.
- the ratio of the standard deviation of the carrier concentration in the same plane to the average value of the carrier concentration in the plane of the epitaxial layer may be 5% or less.
- the maximum depth from the main surface may be 20 nm or more.
- the planar shape of the pits may include a first width extending in a first direction and a second width extending in a second direction perpendicular to the first direction. In this case, the first width is at least twice the second width.
- the silicon carbide epitaxial substrate of the present disclosure may have the following configuration. That is, the silicon carbide epitaxial substrate includes a silicon carbide single crystal substrate and an epitaxial layer on the silicon carbide single crystal substrate.
- the diameter of the silicon carbide single crystal substrate is 100 mm or more.
- the thickness of the epitaxial layer is 10 ⁇ m or more.
- the carrier concentration of the epitaxial layer is 1 ⁇ 10 14 cm ⁇ 3 or more and 1 ⁇ 10 16 cm ⁇ 3 or less.
- the ratio of the standard deviation of the carrier concentration in the same plane to the average value of the carrier concentration in the plane of the epitaxial layer is 10% or less.
- the epitaxial layer has a main surface.
- the arithmetic average roughness Sa in the three-dimensional surface roughness measurement of the main surface is 0.3 nm or less.
- the surface density of pits caused by threading screw dislocations is 1000 cm ⁇ 2 or less.
- the planar shape of the pit includes a first width extending in the first direction and a second width extending in a second direction perpendicular to the first direction.
- the first width is at least twice the second width.
- the maximum depth from the main surface is 20 nm or more.
- FIG. 2 is a schematic cross-sectional view showing an example of the configuration of the silicon carbide epitaxial substrate of the present disclosure.
- silicon carbide epitaxial substrate 100 includes a silicon carbide single crystal substrate 10 and an epitaxial layer 20 on silicon carbide single crystal substrate 10.
- the silicon carbide single crystal substrate is composed of a silicon carbide single crystal.
- the polytype of the silicon carbide single crystal may be 4H—SiC, for example. 4H—SiC tends to be superior to other polytypes in terms of electron mobility, breakdown field strength, and the like.
- the conductivity type of the silicon carbide single crystal substrate may be n-type, for example.
- the diameter of the silicon carbide single crystal substrate is 100 mm or more.
- the diameter may be 150 mm or more, 200 mm or more, or 250 mm or more.
- the upper limit of the diameter is not particularly limited.
- the upper limit of the diameter may be 300 mm, for example.
- the thickness of the silicon carbide single crystal substrate may be, for example, about 10 ⁇ m to 5 mm.
- the thickness of the silicon carbide single crystal substrate is preferably not less than 250 ⁇ m and not more than 650 ⁇ m.
- the silicon carbide single crystal substrate includes a first main surface 11 and a second main surface 12 located on the opposite side of the first main surface 11.
- First main surface 11 is in contact with epitaxial layer 20.
- the first main surface may be a (0001) plane or a (000-1) plane.
- the first main surface may be a surface inclined by 1 ° or more and 8 ° or less from the (0001) plane or the (000-1) plane.
- the direction in which the first main surface is inclined may be, for example, the ⁇ 11-20> direction.
- the angle inclined from the predetermined crystal plane is also referred to as an off angle.
- the off angle may be 2 ° or more, or 3 ° or more.
- the off angle may be 7 ° or less, 6 ° or less, or 5 ° or less.
- the epitaxial layer 20 is a homoepitaxial layer formed on the first major surface 11.
- the epitaxial layer 20 is on the first major surface 11.
- Epitaxial layer 20 has a main surface 21 on the side opposite to the interface with silicon carbide single crystal substrate 10.
- the thickness of the epitaxial layer is 10 ⁇ m or more.
- the thickness of the epitaxial layer may be 15 ⁇ m or more, 30 ⁇ m or more, or 50 ⁇ m or more.
- the upper limit of the thickness of the epitaxial layer is not particularly limited.
- the upper limit of the thickness of the epitaxial layer may be, for example, 200 ⁇ m, 150 ⁇ m, or 100 ⁇ m.
- the epitaxial layer contains nitrogen as a dopant.
- the average value of the carrier concentration is 1 ⁇ 10 14 cm ⁇ 3 or more and 1 ⁇ 10 16 cm ⁇ 3 or less.
- the average value of the carrier concentration may be 5 ⁇ 10 14 cm ⁇ 3 or more, or 1 ⁇ 10 15 cm ⁇ 3 or more. Further, the average value of the carrier concentration may be 8 ⁇ 10 15 cm ⁇ 3 or less, or 5 ⁇ 10 15 cm ⁇ 3 or less.
- the in-plane uniformity ( ⁇ / ave) of the carrier concentration is 10% or less.
- a smaller in-plane uniformity value is preferable and ideally zero.
- the in-plane uniformity may be 5% or less, 3% or less, or 1% or less.
- the arithmetic average roughness Sa in the three-dimensional surface roughness measurement of the main surface is 0.3 nm or less.
- the arithmetic average roughness Sa may be 0.2 nm or less, or 0.15 nm or less.
- the main surface 21 of the epitaxial layer has “shallow pit 1” having a maximum depth of less than 8 nm and “deep pit 2” having a maximum depth of 8 nm or more. These pits may be caused by threading screw dislocation (TSD), threading edge dislocation (TED), or the like in the epitaxial layer.
- TSD threading screw dislocation
- TED threading edge dislocation
- the surface density of pits having a maximum depth of 8 nm or more due to threading screw dislocations is 1000 cm ⁇ 2 or less.
- the surface density of the pits may be 100 cm ⁇ 2 or less, 10 cm ⁇ 2 or less, or 1 cm ⁇ 2 or less.
- the main surface of the epitaxial layer may have pits derived from threading edge dislocations and having a maximum depth of less than 8 nm.
- the surface density of pits derived from threading screw dislocations and having a maximum depth of 20 nm or more may be 1000 cm ⁇ 2 or less.
- a pit having a maximum depth of 20 nm or more can also be detected by the shape definition in the defect inspection apparatus described above.
- the surface density of pits caused by threading screw dislocations and having a maximum depth of 20 nm or more may be 100 cm ⁇ 2 or less, 10 cm ⁇ 2 or less, or 1 cm ⁇ 2 or less.
- planar shape of the pits of the present disclosure may be circular like the circular pit 30 shown in FIG. 3, may be triangular like the triangular pit 40 shown in FIG. It may be rod-shaped like a rod-shaped pit 50 shown in FIG.
- the rod-like pit 50 may include a first width 51 extending in the first direction and a second width 52 extending in a second direction perpendicular to the first direction.
- the first direction is the X-axis direction
- the second direction is the Y-axis direction.
- the first width 51 is at least twice the second width 52.
- the first width 51 may be five times as large as the second width 52.
- the first width may be, for example, 5 ⁇ m or more, or 25 ⁇ m or more.
- the first width may be, for example, 50 ⁇ m or less, or 35 ⁇ m or less.
- the second width may be, for example, 1 ⁇ m or more, or 2 ⁇ m or more.
- the second width may be, for example, 5 ⁇ m or less, or 4 ⁇ m or less.
- the first direction may be, for example, the ⁇ 11-20> direction or the ⁇ 01-10> direction. According to the manufacturing method of the present disclosure, reduction of such rod-like pits is also expected.
- the silicon carbide epitaxial substrate of the present disclosure can be manufactured by the following manufacturing method.
- the manufacturing method can be expected to have an effect of reducing the depth of pits derived from threading screw dislocations.
- the in-plane uniformity of the carrier concentration can be improved by using the configuration of the CVD apparatus shown in the second embodiment described later.
- FIG. 6 is a flowchart showing an outline of a method for manufacturing a silicon carbide epitaxial substrate of the present disclosure.
- the manufacturing method of the present disclosure includes a step of preparing a silicon carbide single crystal substrate (S01), a step of forming a first layer on the silicon carbide single crystal substrate (S02), and a surface of the first layer. (S03), and a step of forming a second layer (S04).
- Step of preparing a silicon carbide single crystal substrate In this step (S01), a 4H-type silicon carbide ingot (not shown) crystal-grown using, for example, a sublimation recrystallization method is sliced to a predetermined thickness. Thereby, a silicon carbide single crystal substrate is prepared.
- FIG. 7 is a schematic side perspective view of the CVD apparatus.
- 8 is a schematic cross-sectional view taken along line VIII-VIII in FIG.
- the CVD apparatus 200 includes a heating element 220, a heat insulating material 205, a quartz tube 204, and an induction heating coil 203.
- the heating element 220 is made of, for example, graphite.
- the heating element 220 has a semicylindrical hollow structure including a curved surface portion 207 and a flat portion 208. Two heating elements 220 are provided, and are arranged so that the flat portions 208 face each other.
- a space surrounded by the flat portion 208 is the channel 202.
- a susceptor 210 that can hold a silicon carbide single crystal substrate is disposed in channel 202. The susceptor can rotate. The structure of the CVD apparatus will be described in detail in the second embodiment.
- Silicon carbide single crystal substrate 10 is placed on susceptor 210 with first main surface 11 facing up.
- the first layer 101 (see FIG. 2) is epitaxially grown on the first major surface 11 using a source gas having a C / Si ratio of less than 1.
- the carrier gas may be, for example, hydrogen (H 2 ) gas, argon (Ar) gas, helium (He) gas, or the like.
- the carrier gas flow rate may be about 50 slm to 200 slm, for example.
- the unit of flow rate “slm (Standard Liter Per Minute)” indicates “L / min” in the standard state (0 ° C., 101.3 kPa).
- the heating element 220 is induction-heated by supplying a predetermined alternating current to the induction heating coil 203. Thereby, the channel 202 and the susceptor 210 are heated to a predetermined reaction temperature. At this time, the susceptor is heated to about 1500 ° C. to 1750 ° C., for example.
- the source gas includes Si source gas and C source gas.
- the Si source gas include silane (SiH 4 ) gas, disilane (Si 2 H 6 ) gas, dichlorosilane (SiH 2 Cl 2 ) gas, trichlorosilane (SiHCl 3 ) gas, silicon tetrachloride (SiCl 4 ) gas, and the like. Is mentioned. That is, the Si source gas may be at least one selected from the group consisting of silane gas, disilane gas, dichlorosilane gas, trichlorosilane gas, and silicon tetrachloride gas.
- the C source gas examples include methane (CH 4 ) gas, ethane (C 2 H 6 ) gas, propane (C 3 H 8 ) gas, acetylene (C 2 H 2 ) gas, and the like. That is, the C source gas may be at least one selected from the group consisting of methane gas, ethane gas, propane gas, and acetylene gas.
- the source gas may contain a dopant gas.
- the dopant gas include nitrogen gas and ammonia gas.
- the source gas in the step of forming the first layer may be, for example, a mixed gas of silane gas and propane gas.
- the C / Si ratio of the source gas is adjusted to less than 1.
- the C / Si ratio may be, for example, 0.5 or more, 0.6 or more, or 0.7 or more.
- the C / Si ratio may be, for example, 0.95 or less, 0.9 or less, or 0.8 or less.
- the silane gas flow rate and the propane gas flow rate may be appropriately adjusted in a range of about 10 to 100 sccm, for example, so that a desired C / Si ratio is obtained.
- the unit of flow rate “sccm (Standard Cubic Centimeter per Minute)” indicates “mL / min” in the standard state (0 ° C., 101.3 kPa).
- the film formation rate in the step of forming the first layer may be, for example, about 3 ⁇ m / h or more and 30 ⁇ m / h or less.
- the thickness of the first layer is, for example, not less than 0.1 ⁇ m and not more than 150 ⁇ m.
- the thickness of the first layer may be 0.2 ⁇ m or more, 1 ⁇ m or more, 10 ⁇ m or more, or 15 ⁇ m or more.
- the thickness of the first layer may be 100 ⁇ m or less, 75 ⁇ m or less, or 50 ⁇ m or less.
- Step of reconfiguring the surface of the first layer (S03) Next, a step of reconfiguring the surface of the first layer is performed.
- the step of reconfiguring the surface may be performed continuously with the step of forming the first layer.
- a predetermined pause time may be interposed between the step of forming the first layer and the step of reconfiguring the surface.
- the susceptor temperature may be increased by about 10 to 30 ° C.
- a mixed gas containing a source gas having a C / Si ratio of less than 1 and hydrogen gas is used.
- the C / Si ratio of the source gas may be lower than the C / Si ratio in the step of forming the first layer. As long as the C / Si ratio is less than 1, it may be 0.5 or more, 0.6 or more, or 0.7 or more.
- the C / Si ratio may be, for example, 0.95 or less, 0.9 or less, or 0.8 or less.
- a source gas different from the source gas in the step of forming the first layer and the step of forming the second layer described later may be used.
- Such an aspect is expected to increase the effect of suppressing deep pit formation.
- silane gas and propane gas are used, and in the step of restructuring the surface, dichlorosilane and acetylene are used.
- the ratio of the raw material gas flow rate to the hydrogen gas flow rate may be reduced as compared with the step of forming the first layer and the step of forming the second layer described later. This is expected to increase the effect of suppressing deep pit formation.
- the hydrogen gas flow rate in the mixed gas may be, for example, about 100 slm to 150 slm.
- the hydrogen gas flow rate may be about 120 slm, for example.
- the Si source gas flow rate in the mixed gas may be, for example, 1 sccm or more and 5 sccm or less.
- the lower limit of the Si source gas flow rate may be 2 sccm.
- the upper limit of the Si source gas flow rate may be 4 sccm.
- the C source gas flow rate in the mixed gas may be, for example, 0.3 sccm or more and 1.6 sccm or less.
- the lower limit of the C source gas flow rate may be 0.5 sccm or 0.7 sccm.
- the upper limit of the C source gas flow rate may be 1.4 sccm or 1.2 sccm.
- the etching with hydrogen gas and the epitaxial growth with the source gas are in an antagonistic state.
- the hydrogen gas flow rate and the raw material gas flow rate so that the film formation rate is about 0 ⁇ 0.5 ⁇ m / h.
- the film formation rate may be adjusted to about 0 ⁇ 0.4 ⁇ m / h, may be adjusted to about 0 ⁇ 0.3 ⁇ m / h, or may be adjusted to about 0 ⁇ 0.2 ⁇ m / h. It may be adjusted to about 0 ⁇ 0.1 ⁇ m / h. This is expected to increase the effect of suppressing deep pit formation.
- the processing time in the process of restructuring the surface is, for example, about 30 minutes to 10 hours.
- the treatment time may be 8 hours or less, 6 hours or less, 4 hours or less, or 2 hours or less.
- Step of forming the second layer After reconstructing the surface of the first layer, a step of forming a second layer on the surface is performed.
- the second layer 102 (see FIG. 2) is formed using a source gas having a C / Si ratio of 1 or more.
- the C / Si ratio is 1 or more, for example, it may be 1.05 or more, 1.1 or more, 1.2 or more, 1.3 or more, or 1.4 or more. Good. Further, the C / Si ratio may be 2.0 or less, 1.8 or less, or 1.6 or less.
- the source gas in the step of forming the second layer may be the same as or different from the source gas used in the step of forming the first layer.
- the source gas may be, for example, silane gas and propane gas.
- the silane gas flow rate and the propane gas flow rate may be appropriately adjusted in a range of about 10 to 100 sccm, for example, so that a desired C / Si ratio is obtained.
- the carrier gas flow rate may be about 50 slm to 200 slm, for example.
- the film forming speed in the step of forming the second layer may be, for example, about 5 ⁇ m / h or more and 100 ⁇ m / h or less.
- the thickness of the second layer is, for example, not less than 1 ⁇ m and not more than 150 ⁇ m.
- the thickness of the second layer may be 5 ⁇ m or more, 10 ⁇ m or more, or 15 ⁇ m or more. Further, the thickness of the second layer may be 100 ⁇ m or less, 75 ⁇ m or less, or 50 ⁇ m or less.
- the thickness of the second layer 102 may be the same as or different from the thickness of the first layer 101.
- the second layer 102 may be thinner than the first layer 101.
- the ratio of the thickness of the second layer 102 to the thickness of the first layer 101 may be about 0.01 or more and 0.9 or less.
- the ratio of the same thickness indicates a value obtained by dividing the thickness of the second layer by the thickness of the first layer that has undergone the process of reconstructing the surface.
- the ratio of the same thickness may be 0.8 or less, 0.7 or less, 0.6 or less, 0.5 or less, 0.4 or less, 0.3 Or less, 0.2 or less, or 0.1 or less. This is expected to increase the effect of suppressing deep pit formation.
- the epitaxial layer 20 including the first layer 101 and the second layer 102 is formed as shown in FIG.
- the first layer and the second layer may be integrated and cannot be distinguished.
- the formation of deep pits due to threading screw dislocations is suppressed, and the arithmetic average roughness Sa is low.
- a silicon carbide epitaxial substrate includes a silicon carbide single crystal substrate and an epitaxial layer formed on the silicon carbide single crystal substrate and having a main surface. On the main surface, pits having a maximum depth of 8 nm or more from the main surface are formed, and the surface density of the pits on the main surface is 8 cm ⁇ 2 or less. The ratio of the standard deviation of the nitrogen concentration in the plane to the average value of the nitrogen concentration in the plane of the epitaxial layer is 8% or less.
- the standard deviation of the nitrogen concentration in the same plane with respect to the average value (ave) of the nitrogen concentration in the plane of the epitaxial layer as an index of the in-plane uniformity of the nitrogen concentration (carrier concentration) The ratio of ( ⁇ ), that is, the percentage of the value ( ⁇ / ave) obtained by dividing the standard deviation ( ⁇ ) by the average value (ave) is adopted. It can be said that the smaller the value of “ ⁇ / ave”, the higher the in-plane uniformity of the nitrogen concentration. According to the research of the present inventors, when the percentage of “ ⁇ / ave” is 8% or less, the performance variation of the semiconductor device can be sufficiently reduced.
- the epitaxial layer having a high in-plane uniformity of nitrogen concentration has a ratio of the number of atoms of carbon (C) to the number of atoms of silicon (Si) in the source gas (hereinafter referred to as “epitaxial layer”), for example, when grown by CVD. It can be formed by adjusting the “C / Si ratio”) to be high and keeping the nitrogen uptake low.
- the surface density of pits tends to increase. According to the study of the present inventor, among these pits, especially the pit having a maximum depth of 8 nm or more from the main surface of the epitaxial layer affects the long-term reliability of the semiconductor device. That is, when an oxide film is formed on the epitaxial layer, the thickness of the oxide film fluctuates around deep pits. It is conceivable that electric field concentration is likely to occur in a portion where the oxide film is thin, and the life of the oxide film is reduced.
- the surface density of pits having a maximum depth of 8 nm or more from the main surface is limited to 8 cm ⁇ 2 or less. Therefore, the long-term reliability of the semiconductor device can be improved.
- the arithmetic average roughness Sa in the three-dimensional surface roughness measurement of the main surface is preferably 0.5 nm or less. Thereby, the long-term reliability of the semiconductor device can be improved.
- the nitrogen concentration may be 2 ⁇ 10 16 cm ⁇ 3 or less. Thereby, the breakdown voltage performance of the semiconductor device can be enhanced.
- the nitrogen concentration is a low concentration of 2 ⁇ 10 16 cm ⁇ 3 or less, the influence of the background on the in-plane uniformity may be increased.
- the background is nitrogen derived from other than intentionally introduced nitrogen.
- the diameter of the silicon carbide single crystal substrate is preferably 100 mm or more. This may contribute to a reduction in the manufacturing cost of the semiconductor device.
- ammonia NH 3
- a silicon carbide epitaxial substrate includes a silicon carbide single crystal substrate having a diameter of 100 mm or more, and an epitaxial layer formed on the silicon carbide single crystal substrate and having a main surface.
- the thickness of the epitaxial layer is not less than 5 ⁇ m and not more than 50 ⁇ m.
- On the main surface pits having a maximum depth of 8 nm or more from the main surface are formed, and the surface density of the pits on the main surface is 8 cm ⁇ 2 or less.
- the arithmetic average roughness Sa in the three-dimensional surface roughness measurement of the main surface is 0.5 nm or less.
- the ratio of the standard deviation of the nitrogen concentration in the plane to the average value of the nitrogen concentration in the plane of the epitaxial layer is 8% or less.
- the nitrogen concentration is 2 ⁇ 10 16 cm ⁇ 3 or less.
- This provides a silicon carbide epitaxial substrate that has high in-plane nitrogen concentration uniformity and can improve the long-term reliability of the semiconductor device.
- silicon carbide epitaxial substrate The structure of the silicon carbide epitaxial substrate of 2nd Embodiment is demonstrated. As shown in FIG. 2, silicon carbide epitaxial substrate 100 includes a silicon carbide single crystal substrate 10 and an epitaxial layer 20 formed on silicon carbide single crystal substrate 10.
- Silicon carbide single crystal substrate 10 The silicon carbide polytype in the silicon carbide single crystal substrate 10 is preferably 4H—SiC. This is because it is superior to other polytypes in electron mobility, dielectric breakdown field strength, and the like. Silicon carbide single crystal substrate 10 has a diameter of preferably 100 mm or more, and more preferably 150 mm or more. As the diameter of the silicon carbide single crystal substrate 10 is larger, there is a possibility that the manufacturing cost of the semiconductor device is reduced.
- the silicon carbide single crystal substrate 10 has a first main surface 11, and an epitaxial layer 20 is formed on the first main surface 11.
- the first main surface as the growth surface is preferably a surface inclined at an angle of 1 ° to 8 ° from the (0001) plane or the (000-1) plane. That is, silicon carbide single crystal substrate 10 preferably has an off angle of 1 ° to 8 °.
- the direction in which the off angle is provided is preferably the ⁇ 11-20> direction.
- the off angle is more preferably 2 ° to 7 °, particularly preferably 3 ° to 6 °, and most preferably 3 ° to 5 °.
- Epitaxial layer 20 is a silicon carbide single crystal layer epitaxially grown on first main surface 11 as a growth surface.
- the thickness of the epitaxial layer 20 is not less than 5 ⁇ m and not more than 50 ⁇ m.
- the lower limit of the thickness of the epitaxial layer may be 10 ⁇ m or 15 ⁇ m.
- the upper limit of the thickness of the epitaxial layer may be 40 ⁇ m or 30 ⁇ m.
- Epitaxial layer 20 contains nitrogen as a dopant and has an n-type conductivity type.
- the surface density of deep pits 2 (maximum depth of 8 nm or more) on the main surface 21 is 8 cm ⁇ 2 or less.
- the surface density of deep pits is preferably as low as possible, ideally 0 (zero).
- the surface density of the deep pits is more preferably 5 cm ⁇ 2 or less, particularly preferably 1 cm ⁇ 2 or less, and most preferably 0.5 cm ⁇ 2 or less.
- the arithmetic average roughness Sa in the three-dimensional surface roughness measurement of the main surface is preferably 0.5 nm or less. This is to improve the long-term reliability of the semiconductor device.
- the arithmetic average roughness Sa is preferably as small as possible, and ideally zero.
- the arithmetic average roughness Sa is more preferably 0.3 nm or less, and particularly preferably 0.15 nm or less.
- the in-plane uniformity of nitrogen concentration (percentage of “ ⁇ / ave”) in the epitaxial layer is 8% or less. Thereby, the performance variation of the semiconductor device manufactured using silicon carbide epitaxial substrate 100 can be reduced.
- the percentage of “ ⁇ / ave” is preferably as small as possible, and ideally zero.
- the percentage of “ ⁇ / ave” is more preferably 6% or less, and particularly preferably 4% or less.
- the nitrogen concentration (carrier concentration) of the epitaxial layer is preferably 2 ⁇ 10 16 cm ⁇ 3 or less. This is to increase the breakdown voltage performance of the semiconductor device. Conventionally, when the nitrogen concentration is lowered to about 2 ⁇ 10 16 cm ⁇ 3 or less, it is difficult to suppress the in-plane uniformity of the nitrogen concentration to 8% or less. However, in this embodiment, in-plane uniformity of 8% or less can be realized by reducing the nitrogen background as described later.
- the nitrogen concentration is more preferably 1.8 ⁇ 10 16 cm ⁇ 3 or less, and particularly preferably 1.5 ⁇ 10 16 cm ⁇ 3 or less. Further, considering the on-resistance of the semiconductor device, the nitrogen concentration is preferably 1 ⁇ 10 15 cm ⁇ 3 or more.
- the “background concentration of nitrogen” can be measured by growing an epitaxial layer without flowing a dopant gas, and analyzing the nitrogen concentration in the epitaxial layer by SIMS (Secondary Ion Mass Spectrometry).
- the background concentration of nitrogen is preferably 1 ⁇ 10 15 cm ⁇ 3 or less. This is because the in-plane uniformity of the nitrogen concentration can be improved.
- the background concentration of nitrogen is preferably as low as possible, more preferably 8 ⁇ 10 14 cm ⁇ 3 or less, and particularly preferably 5 ⁇ 10 14 cm ⁇ 3 or less.
- the CVD apparatus 200 includes a heating element 220, a heat insulating material 205, a quartz tube 204, and an induction heating coil 203.
- each heating element 220 has a semi-cylindrical hollow structure including a curved surface portion 207 and a flat portion 208.
- the two flat portions 208 are arranged to face each other.
- a space surrounded by the two flat portions 208 is a reaction chamber (channel 202).
- the channel 202 is provided with a recess, and a substrate holder (susceptor 210) is provided in the recess.
- Susceptor 210 can hold silicon carbide single crystal substrate 10 and can rotate.
- the heat insulating material 205 is disposed so as to surround the outer periphery of the heating element 220.
- the channel 202 is thermally insulated from the outside of the CVD apparatus 200 by a heat insulating material 205.
- the quartz tube 204 is disposed so as to surround the outer periphery of the heat insulating material 205.
- the induction heating coil 203 is wound along the outer periphery of the quartz tube 204.
- the heating element 220 is induction-heated by supplying an alternating current to the induction heating coil 203. As a result, the temperature in the channel can be controlled.
- FIG. 9 is a schematic plan view showing the configuration around the susceptor 210.
- a second arrow 92 in FIG. 9 indicates the rotation direction of the susceptor 210.
- the 1st arrow 91 has shown the distribution direction of source gas.
- the source gas includes a dopant gas. As indicated by the first arrow 91, the source gas flows along one direction. However, since susceptor 210 rotates, the supply of the source gas to silicon carbide single crystal substrate 10 becomes substantially uniform in the direction of rotation of susceptor 210. Thereby, the in-plane uniformity of the nitrogen concentration in the epitaxial layer 20 can be enhanced.
- the susceptor 210 and the heating element 220 are preferably made of a material having a low nitrogen concentration. This is for reducing the background concentration of nitrogen in the epitaxial layer.
- a third arrow 93 in FIG. 9 indicates nitrogen released from the susceptor 210, and a fourth arrow 94 indicates nitrogen released from the heating element 220.
- the nitrogen is supplied to the silicon carbide single crystal substrate 10 and the epitaxial layer together with the source gas, It becomes the background.
- FIG. 10 is a graph showing a first example of the nitrogen concentration distribution in the diameter direction of the epitaxial layer.
- a chain line 301 indicates the distribution of nitrogen derived from the dopant gas
- a dotted line 302 indicates the distribution of nitrogen derived from nitrogen released from the susceptor 210 or the like. That is, the dotted line 302 is the background.
- the actual nitrogen distribution is a solid line 303 in which the chain line 301 and the dotted line 302 are added.
- the in-plane uniformity is lowered due to the influence of the background.
- Such a tendency becomes prominent when the nitrogen concentration of the epitaxial layer is set low.
- the case where the nitrogen concentration is set low is, for example, a case where the nitrogen concentration is 2 ⁇ 10 16 cm ⁇ 3 or less.
- FIG. 11 is a schematic cross-sectional view showing the configuration around the susceptor.
- the susceptor 210 includes a first base material 211 and a first coat part 212 that covers the first base material 211.
- the heating element 220 includes a second base material 221 and a second coat part 222 that covers the second base material 221.
- the first base material 211 and the second base material 221 are made of, for example, a carbon material.
- the nitrogen concentration of the first base material 211 and the second base material 221 is preferably 10 ppm or less, more preferably 5 ppm or less.
- First coat portion 212 and second coat portion 222 are made of, for example, silicon carbide (SiC) or tantalum carbide (TaC).
- the nitrogen concentration of the first coat part 212 and the second coat part 222 is preferably 10 ppm or less, more preferably 5 ppm or less.
- the fifth arrow 95 indicates nitrogen released from the first base material 211
- the sixth arrow 96 indicates nitrogen released from the first coat portion 212
- the seventh arrow 97 indicates nitrogen released from the second base material 221
- the eighth arrow 98 indicates nitrogen released from the second coat portion 222.
- FIG. 12 is a graph showing a second example of the nitrogen concentration distribution in the diameter direction of the epitaxial layer.
- a member having a low nitrogen concentration is employed for the susceptor or the like.
- the solid line 303 which is the distribution of the nitrogen concentration in the epitaxial layer 20 can be brought close to the chain line 301 which is an ideal distribution by making the dotted line 302 which is the background sufficiently small.
- the source gas is supplied to the reaction chamber (channel 202) via the pipe 256.
- the source gas includes silane (SiH 4 ) gas, propane (C 3 H 8 ) gas, ammonia (NH 3 ) gas, and the like.
- silane (SiH 4 ) gas propane (C 3 H 8 ) gas, ammonia (NH 3 ) gas, and the like.
- hydrogen (H 2 ) gas is used as the carrier gas.
- the carrier gas may contain a rare gas such as argon gas.
- the environment of channel 202 is adjusted so that each source gas is thermally decomposed before reaching silicon carbide single crystal substrate 10.
- ammonia gas which is a dopant gas
- ammonia gas is preferably sufficiently heated and thermally decomposed before being supplied to the channel 202. This is because in-plane uniformity of nitrogen concentration (carrier concentration) is improved in the epitaxial layer.
- ammonia gas can be heated in advance in the preheating mechanism 257 shown in FIG.
- the preheating mechanism 257 includes a room heated to 1300 ° C. or higher.
- the ammonia gas passes through the inside of the preheating mechanism 257, the ammonia gas is sufficiently thermally decomposed and then supplied to the channel 202. With such a configuration, ammonia gas can be thermally decomposed without causing a large disturbance in the gas flow.
- the “room” included in the preheating mechanism 257 indicates a space for heating the gas.
- the “room” included in the preheating mechanism 257 widely includes, for example, an elongated tube heated from the outside, a room provided with an electric heating coil inside, a large room where fins are formed on the inner wall surface, and the like.
- the temperature of the inner wall surface of the preheating mechanism 257 is more preferably 1350 ° C. or higher. This is to promote thermal decomposition of ammonia gas. In consideration of thermal efficiency, the temperature of the inner wall surface of the preheating mechanism 257 is preferably 1600 ° C. or lower.
- the preheating mechanism 257 may be integrated with the channel 202 or may be a separate body.
- the gas that passes through the inside of the preheating mechanism 257 may be ammonia gas alone or may contain other gases. For example, the entire source gas may be passed through the inside of the preheating mechanism 257.
- An epitaxial wafer (silicon carbide epitaxial substrate) includes a silicon carbide layer (epitaxial layer) having a main surface. On the main surface of the epitaxial layer, pits having a maximum depth of 8 nm or more from the main surface are formed. The surface density of pits on the main surface of the epitaxial layer is 1000 cm ⁇ 2 or less.
- minute pits may be formed on the main surface of the epitaxial layer.
- This pit is a depression having a depth ranging from about several nm to several tens of nm, and includes ⁇ 0001 ⁇ planes on the side surfaces thereof.
- the present inventor has found that the pits contribute to an increase in film thickness variation for an oxide film that becomes a gate insulating film of a silicon carbide semiconductor device.
- silicon carbide having a 4H-type hexagonal crystal structure has an oxidation rate dependency on the plane orientation in which the oxidation rate varies depending on the plane orientation.
- the (000-1) plane (C plane) has the fastest oxidation rate
- the (0001) plane (Si plane) has the slowest oxidation rate. Therefore, when forming the gate insulating film (oxide film) of the silicon carbide semiconductor device on the main surface of the epitaxial layer, the thickness of the oxide film varies due to the plane orientation dependence of the oxidation rate. In particular, since the oxidation rate of the side surface of the pit including the (0001) plane is the slowest, the thickness of the oxide film formed near the side surface of the pit is locally reduced.
- a current leakage path is locally formed in the vicinity of the side surface of the pit, which may degrade the insulating property of the oxide film.
- the insulating property of the gate insulating film deteriorates with the lapse of time when a high electric field is applied. Deterioration of the insulating properties of the gate insulating film may cause an increase in leakage current, so that the breakdown voltage of the silicon carbide semiconductor device deteriorates with time. In other words, the long-term reliability of the silicon carbide semiconductor device is impaired.
- the variation in the thickness of the oxide film increases as the pit depth increases.
- the maximum depth from the main surface of the epitaxial layer corresponding to the maximum depth in the entire pit
- the variation in the thickness of the oxide film is remarkably increased, and the long-term reliability of the silicon carbide semiconductor device is improved. May have an impact.
- the maximum depth from the main surface of the pit is less than 8 nm, the variation in the thickness of the oxide film hardly affects the long-term reliability of the silicon carbide semiconductor device.
- the inventor has further studied diligently to what extent the surface density of pits on the main surface should be reduced to reduce the effect on long-term reliability due to variations in the thickness of the oxide film. As a result, it was found that the influence on the long-term reliability of the silicon carbide semiconductor device can be reduced by reducing the surface density of pits on the main surface to at least 1000 cm ⁇ 2 or less.
- the surface density of pits on the main surface of the epitaxial layer is 1000 cm ⁇ 2 or less, more preferably 100 cm ⁇ 2 or less, and even more preferably 10 cm ⁇ 2 or less.
- the threading screw dislocation density in the epitaxial layer is preferably lower than the threading edge dislocation density in the epitaxial layer.
- the pits on the main surface of the epitaxial layer are formed mainly due to threading dislocations existing in the epitaxial layer. Specifically, pits having a maximum depth from the main surface of 8 nm or more are derived from threading screw dislocations, and pits having a maximum depth from the main surface of less than 8 nm are derived from threading edge dislocations. Formed. Therefore, in order to reduce the surface density of the pits, it is effective to reduce the threading screw dislocation density in the epitaxial layer. On the other hand, it is not necessary to reduce the threading edge dislocation density in the epitaxial layer.
- the silicon carbide epitaxial substrate in which the threading screw dislocation density in the epitaxial layer as described above is lower than the threading edge dislocation density, the surface density of deep pits is reduced. Therefore, variation in the thickness of the oxide film can be reduced.
- the threading edge dislocation density in the epitaxial layer is 1000 cm ⁇ 2 or more. According to this, since the existence ratio of threading screw dislocations in the epitaxial layer is smaller than the existence ratio of threading edge dislocations, the surface density of deep pits is reduced to 1000 cm ⁇ 2 or less as a result. Therefore, variations in the thickness of the oxide film can be reduced.
- the threading screw dislocation density and the threading edge dislocation density can be measured by forming an etch pit by selective etching and observing the etch pit using, for example, an optical microscope.
- Examples of the selective etching method include immersion in heated potassium hydroxide molten salt (molten KOH).
- molten KOH heated potassium hydroxide molten salt
- a silicon carbide single crystal substrate having an epitaxial layer formed on the first main surface is further provided.
- the first principal surface is a surface having an off angle of 10 ° or less with respect to the ⁇ 0001 ⁇ plane.
- silicon carbide epitaxial substrate 100 mainly includes a silicon carbide single crystal substrate 10 and an epitaxial layer 20.
- Silicon carbide single crystal substrate 10 is made of, for example, a silicon carbide single crystal. Silicon carbide constituting the silicon carbide single crystal substrate has a hexagonal crystal structure, and the polytype is, for example, 4H type.
- the silicon carbide single crystal substrate contains an n-type impurity such as nitrogen (N).
- the impurity concentration in the silicon carbide single crystal substrate is, for example, not less than 5.0 ⁇ 10 18 cm ⁇ 3 and not more than 2.0 ⁇ 10 19 cm ⁇ 3 .
- the diameter of the silicon carbide single crystal substrate is, for example, 100 mm or more (4 inches or more), and preferably 150 mm or more (6 inches or more).
- the silicon carbide single crystal substrate 10 has a first main surface 11 and a second main surface 12 opposite to the first main surface 11.
- the first main surface 11 and the second main surface 12 may be ⁇ 0001 ⁇ planes or surfaces having a predetermined off angle (for example, an off angle of 10 ° or less) with respect to the ⁇ 0001 ⁇ plane.
- the first main surface 11 is a (0001) plane (Si plane) or a plane having the above-mentioned off angle with respect to the (0001) plane (Si plane)
- the second main plane 12 is a (000-1) plane ( It may be a plane having the above-mentioned off angle with respect to the (C plane) or (000-1) plane (C plane).
- Epitaxial layer 20 is formed on first main surface 11 of silicon carbide single crystal substrate 10.
- the epitaxial layer is made of, for example, silicon carbide single crystal.
- the epitaxial layer contains an n-type impurity such as nitrogen as in the silicon carbide single crystal substrate.
- the impurity concentration of the epitaxial layer is, for example, not less than 1.0 ⁇ 10 15 cm ⁇ 3 and not more than 1.0 ⁇ 10 16 cm ⁇ 3 .
- the impurity concentration in the epitaxial layer is preferably lower than the impurity concentration in the silicon carbide single crystal substrate.
- the boundary between the silicon carbide single crystal substrate and the epitaxial layer in the silicon carbide epitaxial substrate can be confirmed by measuring the impurity concentration using, for example, secondary ion mass spectrometry (SIMS) in the thickness direction of the substrate. it can.
- SIMS secondary ion mass spectrometry
- the epitaxial layer is an epitaxial growth layer formed on first main surface 11 of the silicon carbide single crystal substrate by a vapor phase growth method such as a CVD method. More specifically, the epitaxial layer is formed by a CVD method using silane (SiH 4 ) and propane (C 3 H 8 ) as a source gas and nitrogen (N 2 ) or ammonia (NH 3 ) as a dopant gas.
- the epitaxial layer incorporates nitrogen (N) atoms generated by thermally decomposing nitrogen or ammonia, and the conductivity type of the epitaxial layer is n-type.
- the epitaxial layer is formed by step flow growth. Therefore, the epitaxial layer is made of 4H-type silicon carbide like the silicon carbide single crystal substrate, and mixing of different polytypes is suppressed.
- the thickness of the epitaxial layer is, for example, about 10 ⁇ m or more and 50 ⁇ m or less.
- a plurality of pits are formed on the main surface 21 of the epitaxial layer 20.
- the plurality of pits include a pit having a relatively deep depth from the main surface and a pit having a relatively shallow depth from the main surface.
- Deep pits have a maximum depth of 8 nm or more from the main surface. This maximum depth is the maximum depth in the entire pit. On the other hand, the shallow pit has a maximum depth from the main surface of less than 8 nm.
- Each pit formed on the main surface has a side surface.
- the side surface is inclined with respect to the main surface, whereby the pits are tapered toward the opening.
- the side surface of the pit includes a ⁇ 0001 ⁇ plane.
- the pits formed on the main surface of the epitaxial layer are mainly derived from threading dislocations existing in the epitaxial layer.
- Typical dislocations present in the 4H-type silicon carbide single crystal include threading screw dislocation (TSD), threading edge dislocation (TED), and basal plane dislocation (BPD). These dislocations are included in the 4H-type silicon carbide single crystal substrate, and are propagated into the epitaxial layer and taken over. Various structural transformations may be performed during the propagation process.
- the threading screw dislocation propagates in the c-axis direction in the 4H type silicon carbide single crystal.
- Many of threading screw dislocations existing in the 4H type silicon carbide single crystal substrate are inherited in the epitaxial layer as they are during the epitaxial growth, as shown in FIG. Due to threading screw dislocations propagated in the epitaxial layer, relatively deep pits are formed on the main surface of the epitaxial layer.
- Through-edge dislocation propagates in the 4H-type silicon carbide single crystal approximately in the c-axis direction.
- basal plane dislocation (BPD) propagates in the basal plane ((0001) plane) in the 4H-type silicon carbide single crystal. Since the Burgers vector is the same between the threading edge dislocation and the basal plane dislocation, it is possible to change the structure between the threading edge dislocation and the basal plane dislocation.
- the epitaxial growth using the off substrate in which the first main surface is inclined with respect to the basal plane as shown in FIG. 2, most of the basal plane dislocations in the substrate are converted into threading edge dislocations.
- the surface density of deep pits on the main surface is preferably 1000 cm ⁇ 2 or less, more preferably 100 cm ⁇ 2 or less, and even more preferably 10 cm ⁇ 2 or less.
- deep pits are formed mainly from threading screw dislocations existing in the epitaxial layer
- shallow pits are formed mainly from threading edge dislocations existing in the epitaxial layer. Therefore, in order to reduce the surface density of the deep pits on the main surface to the above range, it is effective to reduce the threading screw dislocation density existing in the epitaxial layer to the above range.
- the threading edge dislocation density in the epitaxial layer is preferably higher than the threading screw dislocation density in the epitaxial layer.
- the threading edge dislocation density in the epitaxial layer is 1000 cm ⁇ 2 or more, more preferably 3000 cm ⁇ 2 or more.
- the threading screw dislocation density and the threading edge dislocation density existing in the epitaxial layer are determined by, for example, immersing the silicon carbide epitaxial substrate in molten KOH heated to 520 ° C. for 5 minutes, and the number of etch pits generated. Can be measured by counting.
- a silicon carbide epitaxial substrate is formed on a silicon carbide single crystal substrate having a first main surface and the silicon carbide single crystal substrate, and has a main surface on the side opposite to the side where the silicon carbide single crystal substrate is located. Having an epitaxial layer.
- the thickness of the epitaxial layer is 10 ⁇ m or more.
- Pits having a maximum depth of 8 nm or more from the main surface are formed on the main surface.
- the surface density of pits on the main surface is 1000 cm ⁇ 2 or less.
- the ratio of the standard deviation of the carrier concentration in the plane to the average value of the carrier concentration in the plane of the epitaxial layer is 10% or less.
- both suppression of deep pits and in-plane uniformity of carrier concentration can be achieved.
- the reliability of the semiconductor device can be improved while maintaining the yield of the semiconductor device.
- the breakdown voltage of the semiconductor device depends on the carrier concentration of the epitaxial layer. If the in-plane uniformity of the carrier concentration in the epitaxial layer becomes low, the breakdown voltage of the semiconductor device varies, which affects the yield. Therefore, when growing the epitaxial layer, it is necessary to select a condition in which the in-plane uniformity of the carrier concentration is as high as possible.
- the inventor's research has found that the in-plane uniformity of the carrier concentration and the reliability of the semiconductor device are in a trade-off relationship. That is, if the epitaxial layer is grown under the condition that the in-plane uniformity of the carrier concentration is high, minute groove defects (pits) are likely to be generated on the surface of the epitaxial layer. When an oxide film is formed on such an epitaxial layer, the film thickness of the oxide film fluctuates around deep pits. Electric field concentration is likely to occur in the thin portion of the oxide film. Therefore, when deep pits increase, the life of the oxide film may be reduced.
- the depth of the pit depends on the growth condition of the epitaxial layer. Pits are formed only on the surface of the epitaxial layer. When the maximum depth from the surface of the epitaxial layer is 8 nm or more, the pits cause fluctuations in the thickness of the oxide film.
- the in-plane uniformity of the carrier concentration can be evaluated by the ratio of the standard deviation ( ⁇ ) of the carrier concentration in the same plane to the average value (ave) of the carrier concentration in the plane of the epitaxial layer. That is, it can be evaluated that the lower the percentage of the value ( ⁇ / ave) obtained by dividing the standard deviation ( ⁇ ) by the average value (ave), the higher the in-plane uniformity of the carrier concentration. According to the research of the present inventor, the yield of the semiconductor device can be maintained when the percentage of “ ⁇ / ave” is 10% or less.
- the diameter of the silicon carbide single crystal substrate may be not less than 100 mm and not more than 200 mm.
- the thickness of the epitaxial layer may be 200 ⁇ m or less.
- the carrier concentration may be 1 ⁇ 10 14 cm ⁇ 3 or more and 1 ⁇ 10 16 cm ⁇ 3 or less.
- the first main surface may be a (000-1) plane or a surface inclined by 1 ° or more and 8 ° or less from the (000-1) plane.
- a silicon carbide epitaxial substrate has a first main surface and has a diameter of 100 mm or more and 200 mm or less, a silicon carbide single crystal substrate formed on the silicon carbide single crystal substrate, and the silicon carbide single crystal substrate And an epitaxial layer having a main surface on the side opposite to the side where is located.
- the thickness of the epitaxial layer is 10 ⁇ m or more and 200 ⁇ m or less.
- Pits having a maximum depth of 8 nm or more from the main surface are formed on the main surface.
- the surface density of pits on the main surface is 1000 cm ⁇ 2 or less.
- the ratio of the standard deviation of the carrier concentration in the plane to the average value of the carrier concentration in the plane of the epitaxial layer is 10% or less.
- silicon carbide epitaxial substrate 100 includes a silicon carbide single crystal substrate 10 and an epitaxial layer 20 formed on silicon carbide single crystal substrate 10.
- the silicon carbide polytype in the silicon carbide single crystal substrate 10 is preferably 4H—SiC. This is because it is superior to other polytypes in electron mobility, dielectric breakdown field strength, and the like.
- the diameter of silicon carbide single crystal substrate 10 may be 100 mm or more. When the diameter is 100 mm or more, there is a possibility that the manufacturing cost of the semiconductor device can be reduced. From the same viewpoint, the diameter of silicon carbide single crystal substrate 10 may be 150 mm or more. The diameter of silicon carbide single crystal substrate 10 may be 200 mm or less. When the diameter is 200 mm or less, the yield of the semiconductor device may be improved.
- the silicon carbide single crystal substrate 10 has a first main surface 11.
- An epitaxial layer 20 is formed on the first major surface 11.
- the first main surface 11 may be a (0001) plane, or a surface inclined by 1 ° or more and 8 ° or less from the (0001) plane.
- the (0001) plane is also called a “silicon plane”.
- the first main surface 11 is preferably a surface inclined by 1 ° or more and 8 ° or less from the (0001) plane. That is, silicon carbide single crystal substrate 10 preferably has an off angle of 1 ° to 8 °. By introducing an off-angle into silicon carbide single crystal substrate 10, step flow growth is induced in first main surface 11. Thereby, mixing of different polytypes can be suppressed.
- the direction in which the off-angle is provided is preferably the ⁇ 11-20> direction.
- the upper limit of the off angle is more preferably 7 °, particularly preferably 6 °, and most preferably 5 °.
- the lower limit of the off angle is more preferably 2 °, and particularly preferably 3 °.
- Epitaxial layer 20 is a silicon carbide single crystal layer epitaxially grown on first main surface 11.
- the epitaxial layer contains, for example, nitrogen (N) as a dopant.
- the thickness of the epitaxial layer is 10 ⁇ m or more. If it is less than 10 ⁇ m, it may be difficult to maintain high in-plane uniformity of the carrier concentration while suppressing generation of deep pits.
- the lower limit of the thickness of the epitaxial layer 20 may be 20 ⁇ m or 50 ⁇ m.
- the upper limit of the thickness of the epitaxial layer may be 200 ⁇ m, 150 ⁇ m, or 100 ⁇ m.
- Epitaxial layer 20 has a main surface 21 on the side opposite to the side on which silicon carbide single crystal substrate 10 is located. Pits are formed on the main surface. Pits are roughly classified into deep pits having a maximum depth of 8 nm or more from the main surface and shallow pits having a maximum depth from the main surface of less than 8 nm. According to the inventor's research, it is mainly deep pits that influence the lifetime of the oxide film.
- the surface density of deep pits on the main surface is 1000 cm ⁇ 2 or less.
- the surface density of deep pits is preferably as low as possible, ideally zero.
- the surface density of the deep pits is preferably 100 cm ⁇ 2 or less, more preferably 10 cm ⁇ 2 or less, particularly preferably 1 cm ⁇ 2 or less, and most preferably 0.1 cm 2. -2 or less.
- the in-plane uniformity of the carrier concentration in the epitaxial layer that is, the percentage of “ ⁇ / ave” is 10% or less. Thereby, the yield of the semiconductor device can be maintained.
- the percentage of “ ⁇ / ave” is preferably as small as possible, and ideally 0.
- the percentage of “ ⁇ / ave” is more preferably 8% or less, particularly preferably 6% or less, and most preferably 4% or less.
- the carrier concentration of the epitaxial layer may be 1 ⁇ 10 14 cm ⁇ 3 or more and 1 ⁇ 10 16 cm ⁇ 3 or less. By setting the carrier concentration to 1 ⁇ 10 16 cm ⁇ 3 or less, there is a possibility that a high breakdown voltage semiconductor device can be realized. From the viewpoint of on-resistance of the semiconductor device, the carrier concentration may be 1 ⁇ 10 14 cm ⁇ 3 or more.
- the upper limit of the carrier concentration may be 8 ⁇ 10 15 cm ⁇ 3 or 5 ⁇ 10 15 cm ⁇ 3 .
- the lower limit of the carrier concentration may be 5 ⁇ 10 14 cm ⁇ 3 or 1 ⁇ 10 15 cm ⁇ 3 .
- the background concentration of the dopant is preferably 1 ⁇ 10 14 cm ⁇ 3 or less.
- the dopant background is a dopant other than the dopant intentionally introduced into the epitaxial layer. For example, when nitrogen or the like released from a member in the CVD apparatus is taken into the epitaxial layer, it becomes the background.
- the background concentration can be measured by growing an epitaxial layer without flowing a dopant gas and analyzing the dopant concentration in the epitaxial layer by SIMS.
- the background concentration By setting the background concentration to 1 ⁇ 10 14 cm ⁇ 3 or less, the in-plane uniformity of the carrier concentration can be enhanced.
- the background concentration is more preferably 8 ⁇ 10 13 cm ⁇ 3 or less, and particularly preferably 5 ⁇ 10 13 cm ⁇ 3 or less.
- first main surface 11 of silicon carbide single crystal substrate 10 is a (000-1) plane, or is inclined by 1 ° or more and 8 ° or less from (000-1) plane.
- the (000-1) plane is also called “carbon plane”.
- nitrogen as an impurity is more easily taken from the outside than the epitaxial growth on the silicon surface side. Therefore, in the epitaxial layer grown on the carbon surface side, it is difficult to maintain high in-plane uniformity of the carrier concentration.
- the in-plane uniformity of the carrier concentration can be maintained high even in the epitaxial layer grown on the carbon surface side.
- the epitaxial layer grown on the carbon surface side can be expected to improve channel mobility and the like.
- the diameter of silicon carbide single crystal substrate 10 according to the modification may be 100 mm or more, or 200 mm or less.
- Epitaxial layer 20 has a main surface 21.
- the surface density of pits on the main surface is 1000 cm ⁇ 2 or less.
- the epitaxial layer 20 according to the modification is an epitaxial layer grown on the carbon surface side
- the percentage of the value ( ⁇ / ave) obtained by dividing the standard deviation of the carrier concentration by the average value is 10% or less.
- the percentage of ⁇ / ave when the carrier concentration is measured at 25 points in the plane can be suppressed to 3% or less.
- 25 measurement points in the plane are set as follows. First, the planar shape of the silicon carbide epitaxial substrate is regarded as a circle, and a first straight line passing through the center point of the circle and crossing the main surface is drawn. Next, a second straight line passing through the center point of the circle, perpendicular to the first straight line and crossing the main surface is drawn. On the first straight line, six measurement points are set at intervals of 10 mm from the center point of the circle toward one line end. Similarly, six measurement points are set at 10 mm intervals from the center point of the circle toward the other line end. As a result, a total of 12 measurement points are set on the first straight line. Similarly, a total of 12 measurement points are set on the second straight line. In this way, 25 measurement points in the plane consisting of the center point and 24 points of the circle are set.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
[第1実施形態]
最初に本開示の第1実施形態を列記して説明する。
〔3〕ピットの面密度は、10個cm-2以下でもよい。
〔5〕炭化珪素単結晶基板の直径は、150mm以上でもよい。
〔7〕エピタキシャル層の面内でのキャリア濃度の平均値に対する、同面内でのキャリア濃度の標準偏差の比率は、5%以下でもよい。
〔9〕ピットの平面形状は、第1方向に延びる第1幅と、前記第1方向と垂直な第2方向に延びる第2幅と、を含んでいてもよい。この場合、第1幅は、第2幅の2倍以上である。
すなわち炭化珪素エピタキシャル基板は、炭化珪素単結晶基板と、該炭化珪素単結晶基板上に、エピタキシャル層と、を備える。炭化珪素単結晶基板の直径は、100mm以上である。エピタキシャル層の厚さは、10μm以上である。エピタキシャル層のキャリア濃度は、1×1014cm-3以上1×1016cm-3以下である。エピタキシャル層の面内でのキャリア濃度の平均値に対する、同面内でのキャリア濃度の標準偏差の比率は、10%以下である。エピタキシャル層は、主表面を有する。主表面の三次元表面粗さ測定における算術平均粗さSaは、0.3nm以下である。主表面において、貫通らせん転位に起因するピットの面密度は、1000個cm-2以下である。ピットの平面形状は、第1方向に延びる第1幅と、該第1方向と垂直な第2方向に延びる第2幅と、を含む。第1幅は、第2幅の2倍以上である。ピット内において、主表面からの最大深さは、20nm以上である。
以下、本開示の実施形態の詳細について説明する。ただし、本開示の実施形態は以下の説明に限定されるものではない。以下の説明では、同一または対応する要素に同一の符号を付し、同じ説明は繰り返さない。結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示す。通常、結晶学上の指数が負であることは、数字の上に”-”(バー)を付すことによって表現される。しかし本明細書では、便宜上、数字の前に負の符号を付すことによって、結晶学上の負の指数を表現する。
図2は、本開示の炭化珪素エピタキシャル基板の構成の一例を示す概略断面図である。図2に示すように、炭化珪素エピタキシャル基板100は、炭化珪素単結晶基板10と、炭化珪素単結晶基板10上に、エピタキシャル層20と、を備える。
炭化珪素単結晶基板は、炭化珪素単結晶から構成される。炭化珪素単結晶のポリタイプは、たとえば4H-SiCでよい。4H-SiCは、電子移動度、絶縁破壊電界強度等において他のポリタイプより優れる傾向にある。炭化珪素単結晶基板の導電型は、たとえばn型でよい。
エピタキシャル層20は、第1主面11上に形成されたホモエピタキシャル層である。エピタキシャル層20は、第1主面11上にある。エピタキシャル層20は、炭化珪素単結晶基板10との界面の反対側に主表面21を有する。
エピタキシャル層は、ドーパントとして窒素を含有する。エピタキシャル層において、キャリア濃度の平均値は1×1014cm-3以上1×1016cm-3以下である。キャリア濃度の平均値は、5×1014cm-3以上であってもよいし、1×1015cm-3以上であってもよい。またキャリア濃度の平均値は、8×1015cm-3以下であってもよいし、5×1015cm-3以下であってもよい。
主表面の三次元表面粗さ測定における算術平均粗さSaは、0.3nm以下である。算術平均粗さSaが小さいほど、半導体装置の信頼性向上が期待できる。算術平均粗さSaは、0.2nm以下でもよいし、0.15nm以下でもよい。
エピタキシャル層の主表面21には、最大深さが8nm未満である「浅いピット1」、最大深さが8nm以上である「深いピット2」が存在する。これらのピットは、エピタキシャル層中の貫通らせん転位(Threading Screw Dislocation:TSD)、貫通刃状転位(Threading Edge Dislocation:TED)等に起因する場合がある。
本開示の炭化珪素エピタキシャル基板は、以下の製造方法によって製造できる。当該製造方法には、貫通らせん転位に由来するピットの深さを浅くする効果が期待できる。さらに後述の第2実施形態等で示されるCVD装置の構成を併用することにより、キャリア濃度の面内均一性を高めることができる。
この工程(S01)では、たとえば昇華再結晶法を用いて結晶成長させた4H型の炭化珪素インゴット(図示しない)を所定の厚みにスライスする。これにより、炭化珪素単結晶基板が準備される。
以降の工程は、図7および図8に示すCVD装置内で行われる。図7は、CVD装置の概略側面透視図である。図8は、図7のVIII-VIII線における概略断面図である。図8に示すように、CVD装置200は、発熱体220、断熱材205、石英管204、誘導加熱コイル203を備える。発熱体220は、たとえば黒鉛からなる。発熱体220は、図9に示すように、曲面部207および平坦部208を含む半円筒状の中空構造を有している。発熱体220は二つ設けられており、平坦部208同士が互いに対向するように配置されている。この平坦部208により囲まれた空間がチャネル202である。チャネル202には、炭化珪素単結晶基板を保持できるサセプタ210が配置されている。サセプタは自転可能である。CVD装置の構造については、第2実施形態で詳しく説明する。
次いで、第1層の表面を再構成する工程が実行される。表面を再構成する工程は、第1層を形成する工程と連続して実行されてもよい。あるいは、第1層を形成する工程と、表面を再構成する工程との間に、所定の休止時間を挟んでもよい。表面を再構成する工程では、サセプタ温度を10~30℃程度上昇させてもよい。
第1層の表面を再構成した後、該表面に第2層を形成する工程が実行される。第2層102(図2を参照)は、C/Si比が1以上の原料ガスを用いて形成される。C/Si比は、1以上である限り、たとえば1.05以上でもよいし、1.1以上でもよいし、1.2以上でもよいし、1.3以上でもよいし、1.4以上でもよい。またC/Si比は、2.0以下でもよいし、1.8以下でもよいし、1.6以下でもよい。
[第2実施形態の概要]
本開示の第2実施形態の概要を列記して説明する。
〔炭化珪素エピタキシャル基板〕
第2実施形態の炭化珪素エピタキシャル基板の構成を説明する。図2に示されるように、炭化珪素エピタキシャル基板100は、炭化珪素単結晶基板10と、炭化珪素単結晶基板10上に形成されたエピタキシャル層20とを備える。
炭化珪素単結晶基板10における炭化珪素のポリタイプは、4H-SiCが望ましい。電子移動度、絶縁破壊電界強度等において他のポリタイプよりも優れているからである。炭化珪素単結晶基板10の直径は、好ましくは100mm以上であり、より好ましくは150mm以上である。炭化珪素単結晶基板10の直径が大きい程、半導体装置の製造コスト削減に資する可能性がある。
エピタキシャル層20は、成長面である第1主面11上にエピタキシャル成長させた炭化珪素単結晶層である。エピタキシャル層20の厚さは、5μm以上50μm以下である。エピタキシャル層の厚さの下限は、10μmであってもよいし、15μmであってもよい。エピタキシャル層の厚さの上限は、40μmであってもよいし、30μmであってもよい。エピタキシャル層20は、ドーパントとして窒素を含有し、n型の導電型を有している。
CVD装置の構成を説明する。この構成によれば、キャリア濃度の面内均一性を高めることができる。図7および図8に示されるように、CVD装置200は、発熱体220、断熱材205、石英管204および誘導加熱コイル203を備える。
サセプタ210および発熱体220は、窒素濃度が低い材料から構成されることが望ましい。エピタキシャル層において、窒素のバックグラウンド濃度を低減するためである。図9中の第3矢印93は、サセプタ210から放出される窒素を示し、第4矢印94は発熱体220から放出される窒素を示している。第3矢印93および第4矢印94が示すように、サセプタ210および発熱体220が、窒素を含有していると、当該窒素が原料ガスとともに炭化珪素単結晶基板10およびエピタキシャル層に供給され、窒素のバックグラウンドとなる。
図7中の第1矢印91が示すように原料ガスは、配管256を経由して反応室(チャネル202)に供給される。原料ガスは、シラン(SiH4)ガス、プロパン(C3H8)ガスおよびアンモニア(NH3)ガス等を含む。キャリアガスには、たとえば水素(H2)ガスが使用される。キャリアガスは、たとえばアルゴンガス等の希ガスを含んでいてもよい。チャネル202の環境は、各原料ガスが炭化珪素単結晶基板10に到達する前に、熱分解されるように調整される。
[第3実施形態の概要]
本開示の第3実施形態を列記して説明する。
〔炭化珪素エピタキシャル基板の構成〕
図2に示されるように、炭化珪素エピタキシャル基板100は、炭化珪素単結晶基板10と、エピタキシャル層20とを主に備えている。炭化珪素単結晶基板10は、たとえば炭化珪素単結晶からなる。炭化珪素単結晶基板を構成する炭化珪素は六方晶の結晶構造を有しており、ポリタイプがたとえば4H型である。炭化珪素単結晶基板はたとえば窒素(N)等のn型不純物を含む。炭化珪素単結晶基板における不純物濃度はたとえば5.0×1018cm-3以上2.0×1019cm-3以下である。炭化珪素単結晶基板の直径は、たとえば100mm以上(4インチ以上)であり、好ましくは150mm以上(6インチ以上)である。
[第4実施形態の概要]
本開示の第4実施形態を列記して説明する。
〔3〕エピタキシャル層の厚さは、200μm以下であってもよい。
〔5〕第1の主面は、(000-1)面であるか、または(000-1)面から1°以上8°以下傾斜した面であってもよい。
〔炭化珪素エピタキシャル基板〕
図2に示されるように、炭化珪素エピタキシャル基板100は、炭化珪素単結晶基板10と、炭化珪素単結晶基板10上に形成されたエピタキシャル層20とを備える。
炭化珪素単結晶基板10における炭化珪素のポリタイプは、4H-SiCが望ましい。電子移動度、絶縁破壊電界強度等において他のポリタイプよりも優れているからである。炭化珪素単結晶基板10の直径は100mm以上であってもよい。直径が100mm以上の場合、半導体装置の製造コストを削減できる可能性がある。同じ観点から、炭化珪素単結晶基板10の直径は150mm以上であってもよい。炭化珪素単結晶基板10の直径は200mm以下であってもよい。直径が200mm以下の場合、半導体装置の歩留まりが向上する可能性がある。
エピタキシャル層20は、第1主面11上にエピタキシャル成長させた炭化珪素単結晶層である。エピタキシャル層は、ドーパントとして、たとえば窒素(N)を含有する。
次に第4実施形態の変形例について説明する。ここでは上記した説明と異なる点を中心に説明し、重複する内容の説明は省略する。
Claims (10)
- 炭化珪素単結晶基板と、
前記炭化珪素単結晶基板上に、エピタキシャル層と、を備え、
前記炭化珪素単結晶基板の直径は、100mm以上であり、
前記エピタキシャル層の厚さは、10μm以上であり、
前記エピタキシャル層のキャリア濃度は、1×1014cm-3以上1×1016cm-3以下であり、
前記エピタキシャル層の面内での前記キャリア濃度の平均値に対する、前記面内での前記キャリア濃度の標準偏差の比率は、10%以下であり、
前記エピタキシャル層は、主表面を有し、
前記主表面の三次元表面粗さ測定における算術平均粗さSaは、0.3nm以下であり、
前記主表面において、貫通らせん転位に起因するピットの面密度は、1000個cm-2以下であり、
前記ピット内において、前記主表面からの最大深さは、8nm以上である、炭化珪素エピタキシャル基板。 - 前記面密度は、100個cm-2以下である、請求項1に記載の炭化珪素エピタキシャル基板。
- 前記面密度は、10個cm-2以下である、請求項1に記載の炭化珪素エピタキシャル基板。
- 前記面密度は、1個cm-2以下である、請求項1に記載の炭化珪素エピタキシャル基板。
- 前記直径は、150mm以上である、請求項1に記載の炭化珪素エピタキシャル基板。
- 前記直径は、200mm以上である、請求項1に記載の炭化珪素エピタキシャル基板。
- 前記比率は、5%以下である、請求項1に記載の炭化珪素エピタキシャル基板。
- 前記最大深さは、20nm以上である、請求項1に記載の炭化珪素エピタキシャル基板。
- 前記ピットの平面形状は、第1方向に延びる第1幅と、前記第1方向と垂直な第2方向に延びる第2幅と、を含み、
前記第1幅は、前記第2幅の2倍以上である、請求項1に記載の炭化珪素エピタキシャル基板。 - 炭化珪素単結晶基板と、
前記炭化珪素単結晶基板上に、エピタキシャル層と、を備え、
前記炭化珪素単結晶基板の直径は、100mm以上であり、
前記エピタキシャル層の厚さは、10μm以上であり、
前記エピタキシャル層のキャリア濃度は、1×1014cm-3以上1×1016cm-3以下であり、
前記エピタキシャル層の面内での前記キャリア濃度の平均値に対する、前記面内での前記キャリア濃度の標準偏差の比率は、10%以下であり、
前記エピタキシャル層は、主表面を有し、
前記主表面の三次元表面粗さ測定における算術平均粗さSaは、0.3nm以下であり、
前記主表面において、貫通らせん転位に起因するピットの面密度は、1000個cm-2以下であり、
前記ピットの平面形状は、第1方向に延びる第1幅と、前記第1方向と垂直な第2方向に延びる第2幅と、を含み、
前記第1幅は、前記第2幅の2倍以上であり、
前記ピット内において、前記主表面からの最大深さは、20nm以上である、炭化珪素エピタキシャル基板。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/516,148 US20180233562A1 (en) | 2014-10-01 | 2015-08-18 | Silicon carbide epitaxial substrate |
DE112015004520.1T DE112015004520T5 (de) | 2014-10-01 | 2015-08-18 | Siliziumkarbid-Epitaxiesubstrat |
JP2015560471A JPWO2016051975A1 (ja) | 2014-10-01 | 2015-08-18 | 炭化珪素エピタキシャル基板 |
CN201580053722.6A CN106715767A (zh) | 2014-10-01 | 2015-08-18 | 碳化硅外延基板 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-203159 | 2014-10-01 | ||
JP2014203159 | 2014-10-01 | ||
JP2014-226077 | 2014-11-06 | ||
JP2014226077 | 2014-11-06 | ||
JP2014-262111 | 2014-12-25 | ||
JP2014262111 | 2014-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016051975A1 true WO2016051975A1 (ja) | 2016-04-07 |
Family
ID=55630021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/073134 WO2016051975A1 (ja) | 2014-10-01 | 2015-08-18 | 炭化珪素エピタキシャル基板 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20180233562A1 (ja) |
JP (2) | JPWO2016051975A1 (ja) |
CN (1) | CN106715767A (ja) |
DE (1) | DE112015004520T5 (ja) |
WO (1) | WO2016051975A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018078944A1 (ja) * | 2016-10-28 | 2018-05-03 | 住友電気工業株式会社 | 炭化珪素エピタキシャル基板の製造方法 |
WO2019022054A1 (ja) * | 2017-07-28 | 2019-01-31 | 東洋炭素株式会社 | 単結晶SiCの製造方法、SiCインゴットの製造方法、SiCウエハの製造方法、及び単結晶SiC |
JP2019121690A (ja) * | 2018-01-05 | 2019-07-22 | 国立研究開発法人産業技術総合研究所 | 炭化珪素半導体基板および炭化珪素半導体基板の製造方法 |
WO2019188248A1 (ja) * | 2018-03-26 | 2019-10-03 | 東京エレクトロン株式会社 | 成膜装置及び成膜方法 |
CN112514077A (zh) * | 2019-06-19 | 2021-03-16 | 住友电气工业株式会社 | 碳化硅外延衬底 |
CN114651091A (zh) * | 2019-12-02 | 2022-06-21 | 住友电气工业株式会社 | 碳化硅衬底和碳化硅衬底的制造方法 |
JP2023178236A (ja) * | 2023-03-09 | 2023-12-14 | 株式会社レゾナック | n型SiC単結晶基板及びSiCエピタキシャルウェハ |
US12084789B2 (en) | 2022-06-02 | 2024-09-10 | Resonac Corporation | 8-inch n-type SiC single crystal substrate |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112017005034T5 (de) * | 2016-10-04 | 2019-06-27 | Sumitomo Electric Industries, Ltd. | Siliziumkarbid-epitaxiesubstrat und verfahren zur herstellung einer siliziumkarbid-halbleitervorrichtung |
JP6233555B1 (ja) * | 2016-10-04 | 2017-11-22 | 住友電気工業株式会社 | 炭化珪素エピタキシャル基板及び炭化珪素半導体装置の製造方法 |
JP6865431B2 (ja) * | 2017-02-16 | 2021-04-28 | 国立大学法人埼玉大学 | エッチング方法 |
JP6590116B2 (ja) * | 2017-09-08 | 2019-10-16 | 住友電気工業株式会社 | 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 |
KR102068933B1 (ko) * | 2019-07-11 | 2020-01-21 | 에스케이씨 주식회사 | 탄화규소 잉곳 성장용 분말 및 이를 이용한 탄화규소 잉곳의 제조방법 |
CN114761628B (zh) * | 2019-12-02 | 2024-04-12 | 住友电气工业株式会社 | 碳化硅衬底和碳化硅衬底的制造方法 |
CN111636098B (zh) * | 2020-07-07 | 2024-12-06 | 深圳市纳设智能装备股份有限公司 | 一种碳化硅外延设备的cvd反应模块 |
FR3118284B1 (fr) * | 2020-12-17 | 2022-11-04 | Commissariat Energie Atomique | Dispositif électronique en siliciure de carbone et son procédé de fabrication |
JP2024042428A (ja) * | 2022-09-15 | 2024-03-28 | 株式会社レゾナック | SiCエピタキシャルウェハ及びSiCエピタキシャルウェハの製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001018872A1 (en) * | 1999-09-07 | 2001-03-15 | Sixon Inc. | SiC WAFER, SiC SEMICONDUCTOR DEVICE, AND PRODUCTION METHOD OF SiC WAFER |
JP2003086518A (ja) * | 2001-09-10 | 2003-03-20 | Toshiba Corp | 炭化珪素膜のcvd方法、cvd装置及びcvd装置用サセプター |
JP2006066722A (ja) * | 2004-08-27 | 2006-03-09 | Shikusuon:Kk | エピタキシャルSiC膜とその製造方法およびSiC半導体デバイス |
WO2011074453A1 (ja) * | 2009-12-14 | 2011-06-23 | 昭和電工株式会社 | SiCエピタキシャルウェハ及びその製造方法 |
JP2014093526A (ja) * | 2012-10-31 | 2014-05-19 | Lg Innotek Co Ltd | エピタキシャルウエハ |
WO2014125550A1 (ja) * | 2013-02-13 | 2014-08-21 | 三菱電機株式会社 | SiCエピタキシャルウエハの製造方法 |
JP2014166957A (ja) * | 2014-04-24 | 2014-09-11 | Sumitomo Electric Ind Ltd | 炭化珪素半導体およびその製造方法と製造装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7230274B2 (en) * | 2004-03-01 | 2007-06-12 | Cree, Inc | Reduction of carrot defects in silicon carbide epitaxy |
JP4954654B2 (ja) * | 2006-09-21 | 2012-06-20 | 新日本製鐵株式会社 | エピタキシャル炭化珪素単結晶基板及びその製造方法 |
JP4987792B2 (ja) * | 2008-04-17 | 2012-07-25 | 新日本製鐵株式会社 | エピタキシャル炭化珪素単結晶基板の製造方法 |
JP4959763B2 (ja) * | 2009-08-28 | 2012-06-27 | 昭和電工株式会社 | SiCエピタキシャルウェハ及びその製造方法 |
JP5961357B2 (ja) * | 2011-09-09 | 2016-08-02 | 昭和電工株式会社 | SiCエピタキシャルウェハ及びその製造方法 |
JP6123408B2 (ja) * | 2013-03-26 | 2017-05-10 | 三菱電機株式会社 | 単結晶4H−SiC基板及びその製造方法 |
-
2015
- 2015-08-18 DE DE112015004520.1T patent/DE112015004520T5/de not_active Withdrawn
- 2015-08-18 US US15/516,148 patent/US20180233562A1/en not_active Abandoned
- 2015-08-18 CN CN201580053722.6A patent/CN106715767A/zh active Pending
- 2015-08-18 WO PCT/JP2015/073134 patent/WO2016051975A1/ja active Application Filing
- 2015-08-18 JP JP2015560471A patent/JPWO2016051975A1/ja active Pending
-
2016
- 2016-04-18 JP JP2016082880A patent/JP2016165004A/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001018872A1 (en) * | 1999-09-07 | 2001-03-15 | Sixon Inc. | SiC WAFER, SiC SEMICONDUCTOR DEVICE, AND PRODUCTION METHOD OF SiC WAFER |
JP2003086518A (ja) * | 2001-09-10 | 2003-03-20 | Toshiba Corp | 炭化珪素膜のcvd方法、cvd装置及びcvd装置用サセプター |
JP2006066722A (ja) * | 2004-08-27 | 2006-03-09 | Shikusuon:Kk | エピタキシャルSiC膜とその製造方法およびSiC半導体デバイス |
WO2011074453A1 (ja) * | 2009-12-14 | 2011-06-23 | 昭和電工株式会社 | SiCエピタキシャルウェハ及びその製造方法 |
JP2014093526A (ja) * | 2012-10-31 | 2014-05-19 | Lg Innotek Co Ltd | エピタキシャルウエハ |
WO2014125550A1 (ja) * | 2013-02-13 | 2014-08-21 | 三菱電機株式会社 | SiCエピタキシャルウエハの製造方法 |
JP2014166957A (ja) * | 2014-04-24 | 2014-09-11 | Sumitomo Electric Ind Ltd | 炭化珪素半導体およびその製造方法と製造装置 |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018078944A1 (ja) * | 2016-10-28 | 2019-09-12 | 住友電気工業株式会社 | 炭化珪素エピタキシャル基板の製造方法 |
WO2018078944A1 (ja) * | 2016-10-28 | 2018-05-03 | 住友電気工業株式会社 | 炭化珪素エピタキシャル基板の製造方法 |
WO2019022054A1 (ja) * | 2017-07-28 | 2019-01-31 | 東洋炭素株式会社 | 単結晶SiCの製造方法、SiCインゴットの製造方法、SiCウエハの製造方法、及び単結晶SiC |
JP2019026500A (ja) * | 2017-07-28 | 2019-02-21 | 東洋炭素株式会社 | 単結晶SiCの製造方法、SiCインゴットの製造方法、SiCウエハの製造方法、及び単結晶SiC |
JP7127283B2 (ja) | 2018-01-05 | 2022-08-30 | 富士電機株式会社 | 炭化珪素半導体基板および炭化珪素半導体基板の製造方法 |
JP2019121690A (ja) * | 2018-01-05 | 2019-07-22 | 国立研究開発法人産業技術総合研究所 | 炭化珪素半導体基板および炭化珪素半導体基板の製造方法 |
KR102492343B1 (ko) | 2018-03-26 | 2023-01-27 | 도쿄엘렉트론가부시키가이샤 | 성막 장치 및 성막 방법 |
KR20200128566A (ko) * | 2018-03-26 | 2020-11-13 | 도쿄엘렉트론가부시키가이샤 | 성막 장치 및 성막 방법 |
JP7001517B2 (ja) | 2018-03-26 | 2022-01-19 | 東京エレクトロン株式会社 | 成膜装置及び成膜方法 |
JP2019169689A (ja) * | 2018-03-26 | 2019-10-03 | 東京エレクトロン株式会社 | 成膜装置及び成膜方法 |
WO2019188248A1 (ja) * | 2018-03-26 | 2019-10-03 | 東京エレクトロン株式会社 | 成膜装置及び成膜方法 |
CN112514077A (zh) * | 2019-06-19 | 2021-03-16 | 住友电气工业株式会社 | 碳化硅外延衬底 |
CN114651091A (zh) * | 2019-12-02 | 2022-06-21 | 住友电气工业株式会社 | 碳化硅衬底和碳化硅衬底的制造方法 |
CN114651091B (zh) * | 2019-12-02 | 2024-04-19 | 住友电气工业株式会社 | 碳化硅衬底和碳化硅衬底的制造方法 |
US12084789B2 (en) | 2022-06-02 | 2024-09-10 | Resonac Corporation | 8-inch n-type SiC single crystal substrate |
JP2023178236A (ja) * | 2023-03-09 | 2023-12-14 | 株式会社レゾナック | n型SiC単結晶基板及びSiCエピタキシャルウェハ |
JP7435880B2 (ja) | 2023-03-09 | 2024-02-21 | 株式会社レゾナック | n型SiC単結晶基板及びSiCエピタキシャルウェハ |
Also Published As
Publication number | Publication date |
---|---|
CN106715767A (zh) | 2017-05-24 |
JPWO2016051975A1 (ja) | 2017-04-27 |
DE112015004520T5 (de) | 2017-06-14 |
JP2016165004A (ja) | 2016-09-08 |
US20180233562A1 (en) | 2018-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016051975A1 (ja) | 炭化珪素エピタキシャル基板 | |
JP6677328B2 (ja) | エピタキシャルウエハ | |
CN108028185B (zh) | 碳化硅外延基板及制造碳化硅半导体装置的方法 | |
Zhao | Surface defects in 4H-SiC homoepitaxial layers | |
JP2007525402A (ja) | 炭化珪素エピキタシーにおけるニンジン状欠陥の低減 | |
WO2015114961A1 (ja) | 炭化珪素エピタキシャル基板および炭化珪素エピタキシャル基板の製造方法 | |
JP6183010B2 (ja) | 炭化珪素単結晶基板およびその製造方法 | |
JP2018041942A (ja) | SiCエピタキシャルウェハ及びその製造方法、並びに、欠陥識別方法 | |
JP7647791B2 (ja) | SiCエピタキシャルウェハ | |
JP2017019679A (ja) | 炭化珪素エピタキシャル基板 | |
JP4408247B2 (ja) | 炭化珪素単結晶育成用種結晶と、それを用いた炭化珪素単結晶の製造方法 | |
JP2018108916A (ja) | 炭化珪素エピタキシャル基板の製造方法 | |
JP7415558B2 (ja) | 炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法 | |
JP2015042602A (ja) | 炭化珪素半導体基板の製造方法および炭化珪素半導体装置の製造方法 | |
WO2018078944A1 (ja) | 炭化珪素エピタキシャル基板の製造方法 | |
JP6635579B2 (ja) | SiCエピタキシャルウェハ | |
JP6468112B2 (ja) | 炭化珪素半導体装置 | |
JP5370025B2 (ja) | 炭化珪素単結晶インゴット | |
JP2017069239A (ja) | 炭化珪素のエピタキシャル成長方法 | |
Zhang et al. | High Growth Rate (up to 20 µm/h) SiC epitaxy in a horizontal hot-wall reactor | |
JP2017019691A (ja) | 炭化珪素エピタキシャル基板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015560471 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15845678 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15516148 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112015004520 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15845678 Country of ref document: EP Kind code of ref document: A1 |