WO2016039574A1 - 리튬 이차전지용 양극재 제조 방법과, 리튬 이차전지용 양극재 및 이를 포함하는 리튬 이차전지 - Google Patents
리튬 이차전지용 양극재 제조 방법과, 리튬 이차전지용 양극재 및 이를 포함하는 리튬 이차전지 Download PDFInfo
- Publication number
- WO2016039574A1 WO2016039574A1 PCT/KR2015/009540 KR2015009540W WO2016039574A1 WO 2016039574 A1 WO2016039574 A1 WO 2016039574A1 KR 2015009540 W KR2015009540 W KR 2015009540W WO 2016039574 A1 WO2016039574 A1 WO 2016039574A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- alumina
- secondary battery
- cathode material
- transition metal
- metal oxide
- Prior art date
Links
- 239000010406 cathode material Substances 0.000 title claims abstract description 102
- 238000000034 method Methods 0.000 title claims abstract description 64
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 56
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 56
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 136
- 239000011247 coating layer Substances 0.000 claims abstract description 68
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 claims abstract description 62
- 239000000843 powder Substances 0.000 claims abstract description 33
- 238000002156 mixing Methods 0.000 claims abstract description 19
- 238000001035 drying Methods 0.000 claims abstract description 18
- 230000002194 synthesizing effect Effects 0.000 claims abstract description 5
- 238000004519 manufacturing process Methods 0.000 claims description 33
- 239000002245 particle Substances 0.000 claims description 33
- 239000003792 electrolyte Substances 0.000 claims description 21
- 239000007774 positive electrode material Substances 0.000 claims description 18
- 239000002904 solvent Substances 0.000 claims description 18
- 238000010304 firing Methods 0.000 claims description 16
- 229910052782 aluminium Inorganic materials 0.000 claims description 15
- 239000011858 nanopowder Substances 0.000 claims description 14
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 13
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 12
- 239000011324 bead Substances 0.000 claims description 12
- 239000004020 conductor Substances 0.000 claims description 12
- 230000003746 surface roughness Effects 0.000 claims description 11
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical group COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 claims description 10
- 239000003960 organic solvent Substances 0.000 claims description 10
- 239000011230 binding agent Substances 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 8
- 239000000725 suspension Substances 0.000 claims description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 6
- 229910012851 LiCoO 2 Inorganic materials 0.000 claims description 5
- 239000000945 filler Substances 0.000 claims description 5
- 235000019441 ethanol Nutrition 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 4
- 238000001994 activation Methods 0.000 claims description 3
- 229910004539 Li(Ni1/3Mn1/3Co1/3O2) Inorganic materials 0.000 claims description 2
- 229910013210 LiNiMnCoO Inorganic materials 0.000 claims description 2
- 239000000126 substance Substances 0.000 abstract description 10
- 229910007119 Li(1+a)(Ni(1−a−b−c)MnbCoc)On Inorganic materials 0.000 abstract 1
- 238000010298 pulverizing process Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 22
- 238000000576 coating method Methods 0.000 description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 19
- -1 polyphenylene Polymers 0.000 description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 16
- 239000011248 coating agent Substances 0.000 description 16
- 230000008569 process Effects 0.000 description 16
- 239000008151 electrolyte solution Substances 0.000 description 10
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 9
- 229910001416 lithium ion Inorganic materials 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 239000002516 radical scavenger Substances 0.000 description 6
- 239000007784 solid electrolyte Substances 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 5
- 229910013870 LiPF 6 Inorganic materials 0.000 description 5
- 238000005096 rolling process Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910001593 boehmite Inorganic materials 0.000 description 4
- 238000007580 dry-mixing Methods 0.000 description 4
- 239000011267 electrode slurry Substances 0.000 description 4
- 238000000635 electron micrograph Methods 0.000 description 4
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 4
- 239000007773 negative electrode material Substances 0.000 description 4
- 239000011255 nonaqueous electrolyte Substances 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 150000004703 alkoxides Chemical class 0.000 description 3
- 239000006183 anode active material Substances 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 229910014689 LiMnO Inorganic materials 0.000 description 2
- 229910005800 NiMnCo Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000002388 carbon-based active material Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000007770 graphite material Substances 0.000 description 2
- 229910003480 inorganic solid Inorganic materials 0.000 description 2
- 229960004592 isopropanol Drugs 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000011356 non-aqueous organic solvent Substances 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical compound FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 description 1
- 229910016569 AlF 3 Inorganic materials 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229910012722 Li3N-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012716 Li3N-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012734 Li3N—LiI—LiOH Inorganic materials 0.000 description 1
- 229910013043 Li3PO4-Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910013035 Li3PO4-Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012810 Li3PO4—Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910012797 Li3PO4—Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012047 Li4SiO4-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012075 Li4SiO4-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012057 Li4SiO4—LiI—LiOH Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910015044 LiB Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013716 LiNi Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229910012573 LiSiO Inorganic materials 0.000 description 1
- 229910012346 LiSiO4-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012345 LiSiO4-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012348 LiSiO4—LiI—LiOH Inorganic materials 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 229910016777 Ni0.5Mn0.3Co0.2O2 Inorganic materials 0.000 description 1
- 229910017093 Ni0.6Mn0.2Co0.2O2 Inorganic materials 0.000 description 1
- 229910017285 Ni0.8Mn0.1Co0.1O2 Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical class C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- BEKPOUATRPPTLV-UHFFFAOYSA-N [Li].BCl Chemical compound [Li].BCl BEKPOUATRPPTLV-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 150000005181 nitrobenzenes Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003233 pyrroles Chemical class 0.000 description 1
- 239000001008 quinone-imine dye Substances 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000002409 silicon-based active material Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229920005608 sulfonated EPDM Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- BDZBKCUKTQZUTL-UHFFFAOYSA-N triethyl phosphite Chemical compound CCOP(OCC)OCC BDZBKCUKTQZUTL-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/0004—Preparation of sols
- B01J13/0047—Preparation of sols containing a metal oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0419—Methods of deposition of the material involving spraying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0471—Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
- H01M2300/0028—Organic electrolyte characterised by the solvent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0402—Methods of deposition of the material
- H01M4/0404—Methods of deposition of the material by coating on electrode collectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a method for manufacturing a cathode material for a lithium secondary battery including a gamma alumina coating layer, a cathode material for a lithium secondary battery including a gamma alumina coating layer, and a lithium secondary battery including the same.
- lithium secondary batteries having high energy density and voltage, long cycle life, and low self discharge rate have been commercialized and widely used.
- the positive electrode and the negative electrode use a material capable of reversible intercalation / deintercalation of lithium ions.
- Lithium transition metal oxides such as LiCoO 2 , LiMn 2 O 4 , LiNiO 2 , LiMnO 2 , etc. are widely used as cathode materials for lithium secondary batteries. Research is emerging.
- the cathode material made of such a lithium transition metal oxide may have more improved properties through surface modification.
- the surface of the cathode material is coated with metal oxides such as Al, Mg, Zr, Co, K, Na, Ca, and Ti, fluorine, or phosphate, to modify the surface of the cathode material, thereby preventing deterioration.
- metal oxides such as Al, Mg, Zr, Co, K, Na, Ca, and Ti, fluorine, or phosphate
- Patent Document 1 discloses a method for producing alumina-coated lithium transition metal oxide using an aqueous process
- Patent Document 2 discloses a method for coating alumina on the surface of a cathode material using a dry coating method.
- the conventional methods have a problem that the process is complicated, the manufacturing cost increases, and it is difficult to obtain a uniform coating effect and low surface roughness due to damage to the surface of the cathode material during the dry mixing process. Therefore, the effective surface modification is not achieved, there is a demand for the development of a method that can effectively modify the surface of the cathode material.
- the present invention provides a method for producing a cathode material for a lithium secondary battery comprising a gamma-alumina coating layer excellent in coating performance.
- the present invention provides a cathode material for a lithium secondary battery comprising the gamma-alumina coating layer.
- the present invention provides a lithium secondary battery positive electrode including the positive electrode material and a lithium secondary battery having the same.
- a third step of preparing a cathode material including an alumina coating layer by mixing the lithium transition metal oxide powder while dispersing it in an alumina nanosol;
- It provides a method for manufacturing a cathode material for a lithium secondary battery comprising; a fourth step of drying the cathode material.
- n is an integer of 2 or 4.
- lithium transition metal oxide particles represented by the formula (1) lithium transition metal oxide particles represented by the formula (1); And an alumina coating layer formed on a surface of the lithium transition metal oxide particle and having a gamma alumina phase of 95% or more.
- Coverage of the alumina coating layer provides a cathode material for a secondary battery that is 30 to 50% of the total surface area of the lithium transition metal oxide particles.
- a lithium secondary battery comprising a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte solution
- the positive electrode provides a lithium secondary battery including a positive electrode material represented by the following Chemical Formula 2.
- n is an integer of 2 or 4
- M ' is Al 2 O 3 having a gamma phase.
- the lithium secondary battery preferably has an HF content of 900 ppm or less relative to the total weight of the electrolyte after the activation process and initial charge and discharge.
- alumina nanosols provide a method for producing alumina nanosols having a gamma alumina phase of 99% or more.
- alumina nanosol to form a gamma-alumina coating layer having a low surface roughness and excellent coating performance on a part of the cathode material, high temperature, high voltage stability, cycle characteristics, and electrical life are improved.
- a cathode material for a lithium secondary battery including an alumina coating layer and a lithium secondary battery having the same may be manufactured.
- FIG. 1 is XRD data for gamma-alumina nanosol of Preparation Example 1.
- Figure 2 is a SEM photograph of the surface of the cathode material prepared according to Example 1 of the present invention.
- Figure 3 is a SEM photograph of the surface of the cathode material prepared according to Example 2 of the present invention.
- Figure 4 is a SEM photograph of the surface of the cathode material prepared according to Comparative Example 1.
- Example 6 is a comparison graph showing cycle life characteristics of the secondary battery of Example 3 and Comparative Example 3 according to Experimental Example 3 of the present invention.
- Example 7 is a comparison graph showing cycle life characteristics of the secondary battery of Example 4 and Comparative Example 4 according to Experimental Example 3 of the present invention.
- a third step of preparing a cathode material including an alumina coating layer by mixing the lithium transition metal oxide powder while dispersing it in an alumina nanosol;
- It provides a method for manufacturing a cathode material for a lithium secondary battery comprising; a fourth step of drying the cathode material.
- n is an integer of 2 or 4.
- the alumina coating layer may include a gamma alumina phase of at least 95wt%, preferably at least 99wt%, more preferably 100wt% based on the total weight of the alumina coating layer.
- the lithium transition metal oxide is a representative example of Li [Ni 0 . 5 Mn 1 . 5-x Co x] O 4 (0 ⁇ x ⁇ 0.1), more specifically, Li (Ni 0. 6 Mn 0 . 2 Co 0. 2 O 2), Li (Ni 0.8 Mn 0.1 Co 0.1 O 2), Li (Ni 0. 5 Mn 0. 3 Co 0. 2 O 2), Li (Ni 1/3 Mn 1/3 Co 1/3 O 2), LiNiMnCoO 2, LiCoO 2 or 4 LiCoMnO Etc. can be mentioned.
- the lithium electrometal oxide is, in addition to the lithium transition metal oxide represented by Formula 1, a lithium transition metal oxide for a cathode material commonly used in the art, specifically LiNi 1 -xy- z Co x M1 y M2 z O 2 (M1 and M2 are each independently selected from the group consisting of Al, Ni, Co, Fe, Mn, V, Cr, Ti, W, Ta, Mg and Mo, x, y and z are oxides independently of each other Atom fractions of the compositional elements, such as ternary lithium transition metal oxides such as 0 ⁇ x ⁇ 0.5, 0 ⁇ y ⁇ 0.5, 0 ⁇ z ⁇ 0.5, and x + y + z ⁇ 1, LNO (LiNiO 2 ), LMO ( LiMnO 2 ), and LiMn 2 O 4 may be a single or a mixture of two or more selected from the group consisting of.
- the first step of synthesizing such a lithium transition metal oxide may be carried out by mixing the lithium precursor and other transition metal precursors in a mixer and then firing.
- the mixing and firing conditions may be performed for about 6 hours to 12 hours, specifically 10 hours under 1000 to 1100 °C temperature conditions.
- the second step may be prepared by grinding the lithium transition metal oxide obtained in the first step to prepare a lithium transition metal oxide powder of about 10 ⁇ m to 30 ⁇ m, specifically 18 ⁇ m particle size.
- a lithium transition metal oxide powder of about 10 ⁇ m to 30 ⁇ m, specifically 18 ⁇ m particle size.
- the particle size of the lithium transition metal oxide powder obtained in the second step exceeds 30 ⁇ m may increase the surface resistance, if less than 10 ⁇ m the specific surface area is increased, which eventually leads to initial capacity and cycle reduction in subsequent processes May cause problems.
- the dispersion process of the lithium transition metal oxide powder of the third step may be carried out under a 300 rpm condition using a stirring mixer apparatus.
- the lithium transition metal oxide powder and the alumina nanosol may be mixed in a weight ratio of 1:80 to 100. If the mixing ratio of the alumina nanosol is less than 80 weight, it is difficult to perform a semi-dry mixing process has a disadvantage that the surface roughness of the alumina coating layer is increased, the coating performance is reduced. On the other hand, when the mixing ratio of the alumina nanosol exceeds 100 weight ratio, there is a disadvantage in that the drying time is long and the coating process is long.
- the lithium transition metal oxide powder is prepared by directly dispersing the lithium transition metal oxide powder in the alumina nanosol, or by spraying the lithium transition metal oxide powder in an organic solvent to prepare a lithium transition metal oxide powder solution It can also be distributed.
- a solvent having a low boiling point is preferable so that the organic solvent can be easily volatilized at a low temperature
- an organic solvent such as 1-methoxy-2-propanol, ethyl alcohol, methyl alcohol, or iso Propyl alcohol, and the like.
- the organic solvent may be used in 70 to 99% by weight based on the total content of the cathode material. If the content of the organic solvent is more than 99% by weight, or less than 70% by weight, the coating uniformity may be lowered.
- the drying step of the fourth step may be carried out under low temperature firing process conditions of 130 to 350 °C, specifically 150 to 300 °C.
- the method of the present invention may further include a fifth step of firing the dried cathode material after the fourth step.
- the firing process of the fifth step may be carried out under high temperature firing process conditions of 400 to 800 °C.
- the method of the present invention even by performing the drying step of the fourth step, it is possible to form a gamma-alumina coating layer having low surface roughness and excellent coating performance on the surface of the cathode material. Furthermore, by performing a further high temperature firing process after the drying step, a better coating effect on the gamma-alumina coating layer can be obtained.
- the alumina nanosol used in the cathode material manufacturing method of the present invention can be prepared by the following method.
- the alumina nanosol is a method of producing an alumina nanosol is 99% or more gamma alumina phase.
- the dispersion may be performed by dispersing the solvent and the alumina nanopowder in the bead mill using a nozzle rotating at a high speed in a spray method.
- the dispersion of the suspension in the bead mill device is preferably at least the center rotational speed 3000 rpm (linear speed 10m / S).
- the slurry injection rate at the time of the dispersion is 600cc / min, it can be carried out in the composition of the dispersion 10L. If the rotation speed is less than the speed, the dispersibility is lowered, there is a disadvantage that the beads are discharged when the slurry feed rate increases the amount. It is preferable that the particle diameter of the bead mill of the said bead mill apparatus is 0.05-0.1 mm.
- the solvent is preferably used a solvent having a low boiling point (bp) in order to satisfy the fast drying conditions in the production of alumina nanosol.
- the representative solvents include organic solvents such as 1-methoxy-2-propanol, ethyl alcohol, methyl alcohol, isopropyl alcohol and the like.
- the solvent may include 70% by weight to 99% by weight based on the total content of the alumina nanosol. If the content of the solvent exceeds 99% by weight, the process time is long, and when the content of the solvent is less than 70% by weight, the Al concentration is too high, thereby forming an unstable coating layer.
- the alumina nanopowder is a gamma alumina nanopowder having a particle diameter of 1 nm to 50 nm, and the surface charge has a positive charge and preferably has a low crystallinity.
- the prepared alumina nanosol preferably contains alumina nanopowder having a particle size of 1nm to 20nm.
- a gamma-alumina coating layer having a low surface roughness, excellent coating performance, and excellent lithium ion mobility can be formed on a part of the cathode material.
- the cathode material manufacturing method including the alumina coating layer using the conventional dry mixing method not only dust blowing during the mixing process occurs, but also the surface of the cathode material is damaged by the dry mixing process accompanied by high-speed rotation and is uniform.
- the coating layer cannot be formed.
- the method of forming an alumina coating layer using a conventional wet mixing method prepared by oxidizing aluminum using a solvent such as alkoxide the alumina coating layer is partially present as boehmite in inferior crystallinity, so that the coating performance is deteriorated.
- the coating layer is improved by improving the adsorption performance of the coating layer. You can. Therefore, unlike the prior art, even if the high temperature firing is not carried out, it has physical properties that are well adhered to a part of the surface of the cathode material particles.
- the coverage of the gamma-alumina coating layer coated on a part of the cathode material of the present invention is formed on a part of the surface of the cathode material without covering the entire surface of the cathode material, and thus does not affect the redox reaction of lithium ions, thereby providing excellent lithium ion mobility. Do. Therefore, it is possible to secure a lithium secondary battery capacity increase and cycle life characteristics at high temperature and high voltage.
- the scavenger reacts selectively with HF generated by moisture contained in the non-aqueous electrolyte as shown in the following scheme. (scavenger) Can play a role. Therefore, compared with the existing alumina coating layer including the boehmite phase, it is possible to prevent the surface damage of the cathode material and to significantly improve the deterioration of battery characteristics due to the residual moisture contained in the electrolyte solution, and to improve the life characteristics, cycles, and output at room temperature and high temperature. It is possible to exhibit excellent battery performance in terms of characteristics (see Scheme below).
- Lithium transition metal oxide particles represented by Formula 1 Lithium transition metal oxide particles represented by Formula 1;
- an alumina coating layer formed on the surface of the lithium transition metal oxide particle and having a gamma alumina phase of 95% or more.
- the coverage of the alumina coating layer provides a cathode material for a secondary battery, characterized in that 30 to 50% of the total surface area of the lithium transition metal oxide particles.
- n is an integer of 2 or 4.
- the alumina coating layer does not cover the entire surface of the cathode material, and is coated on a part of 30-50% of the total surface area of the lithium transition metal oxide particles, thereby not affecting the occlusion and release of lithium ions. Ion mobility becomes excellent. If the coverage is more than 50%, it is affected by the occlusion and release of lithium ions, and less than 30% has a disadvantage in that the cycle is reduced by side reaction with the electrolyte due to a small coating area.
- the alumina coating layer is not concentrated and coated on one side of the surface of the cathode material, and may be uniformly distributed (coated) on the surface of the cathode material in the form of particles.
- the alumina coating layer coated on the surface of the cathode material may have a single layer or a multilayer structure.
- the thickness of the alumina coating layer can be adjusted appropriately within the range for increasing the life characteristics and high temperature storage characteristics of the battery, there is no particular limitation, if too thick may affect the capacity and output characteristics, the total 30nm Below, it is specifically preferable that it is 20 nm or less in thickness.
- the surface roughness of the alumina coating layer coated on the surface of the positive electrode material preferably has a surface roughness Ra of 10 nm or less over the entire surface.
- the content of aluminum in the alumina coating layer may be included in 5 to 100 ppm based on the total weight of the cathode material. If the aluminum content is less than 5 ppm, the amount of aluminum used for the surface coating may be low, so that it may be difficult to form a coating layer on the surface of the cathode material sufficiently. On the other hand, when the aluminum content is more than 100ppm, a thick coating layer is formed may be impeded to the mobility of lithium ions may affect the resistance increase and output characteristics.
- cathode for a secondary battery comprising a cathode material and optionally at least one additive of a conductive material, a binder and a filler,
- the cathode material is lithium transition metal oxide particles represented by the formula (1);
- alumina coating layer formed on the surface of the lithium transition metal oxide particle and having a gamma alumina phase of 95% or more, wherein the coverage of the alumina coating layer provides 30 to 50% of the total surface area of the lithium transition metal oxide particle.
- the conductive material is typically added in an amount of 1 to 30% by weight based on the total weight of the mixture including the cathode material.
- Such a conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
- graphite, carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black Or conductive fibers such as carbon fiber or metal fiber; Metal powders such as carbon fluoride powder, aluminum powder and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
- Specific examples of commercially available conductive materials include Chevron Chemical Company, Denka Singapore Private Limited, Gulf Oil Company, Ketjenblack and EC, which are acetylene black series. Family (Armak Company), Vulcan XC-72 (manufactured by Cabot Company) and Super P (manufactured by Timcal).
- the binder is a component that assists in bonding the active material and the conductive material to the current collector, and is generally added in an amount of 1 to 30 wt% based on the total weight of the mixture including the cathode material.
- binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.
- the filler is optionally used as a component for inhibiting the expansion of the electrode, and is not particularly limited as long as it is a fibrous material without causing chemical change in the battery.
- the filler include olefinic polymers such as polyethylene and polypropylene; Fibrous materials, such as glass fiber and carbon fiber, are used.
- the present invention provides a secondary battery positive electrode prepared by applying a slurry prepared by mixing the positive electrode mixture in a solvent such as NMP on a positive electrode current collector, followed by drying and rolling.
- the positive electrode current collector is generally made to a thickness of 3 to 500 ⁇ m. Such a positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery.
- the positive electrode current collector may be formed on a surface of stainless steel, aluminum, nickel, titanium, calcined carbon, or aluminum or stainless steel. Surface-treated with carbon, nickel, titanium, silver, and the like can be used.
- the current collector may form fine irregularities on its surface to increase the adhesion of the cathode material, and may be in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
- a lithium secondary battery comprising a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte solution
- the positive electrode provides a lithium secondary battery including a positive electrode material represented by the following Chemical Formula 2.
- n is an integer of 2 or 4
- M ' is Al 2 O 3 having a gamma phase.
- the lithium secondary battery preferably has an HF content of 900 ppm or less relative to the total weight of the electrolyte after the activation process and initial charge and discharge.
- the lithium secondary battery preferably has an HF content of 100 ppm or less relative to the total weight of the electrolyte after 10 cycles of charge and discharge.
- the gamma alumina coating layer coated on the surface of the cathode material may perform a scavenger role by selectively reacting with HF generated due to moisture included in the nonaqueous electrolyte.
- a certain amount (5000 ppm) of water is added to an electrolyte of a lithium secondary battery, and positive electrode powders are coated before and after Al 2 O 3 coating, and then, after one week, the HF content is measured.
- the HF content is 5000 ppm
- the content of H F is less than 1000 ppm, specifically, 900 ppm or less. Able to know.
- the negative electrode is manufactured by applying a negative electrode mixture containing a negative electrode active material on a negative electrode current collector and then drying, and the negative electrode mixture, if necessary, components such as a conductive material, a binder, a filler May be included.
- the negative electrode active material examples include carbon and graphite materials such as natural graphite, artificial graphite, expanded graphite, carbon fiber, non-graphitizable carbon, carbon black, carbon nanotube, fullerene, and activated carbon; Metals such as Al, Si, Sn, Ag, Bi, Mg, Zn, In, Ge, Pb, Pd, Pt, Ti which can be alloyed with lithium, and compounds containing these elements; Complexes of metals and compounds thereof with carbon and graphite materials; Lithium-containing nitrides; and the like.
- carbon-based active materials, silicon-based active materials, tin-based active materials, or silicon-carbon-based active materials are more preferable, and these may be used alone or in combination of two or more.
- the negative electrode current collector is generally made to a thickness of 3 to 500 ⁇ m.
- a negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
- copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver and the like on the surface, aluminum-cadmium alloy and the like can be used.
- fine concavities and convexities may be formed on the surface to enhance the bonding strength of the negative electrode active material, and may be used in various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric.
- the separator is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used.
- the pore diameter of the separator is generally from 0.01 to 10 ⁇ m, and the thickness is generally from 5 to 300 ⁇ m.
- a separator for example, olefin polymers such as chemical resistance and hydrophobic polypropylene; Sheets or non-woven fabrics made of glass fibers or polyethylene are used.
- a solid electrolyte such as a polymer
- the solid electrolyte may also serve as a separator.
- the lithium salt-containing non-aqueous electrolyte solution consists of an electrolyte solution and a lithium salt, and in addition to the non-aqueous organic solvent, an organic solid electrolyte, an inorganic solid electrolyte, and the like may be used as the electrolyte solution.
- non-aqueous organic solvent examples include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma Butyl lactone, 1,2-dimethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorone, formamide, dimethylformamide, dioxolon , Acetonitrile, nitromethane, methyl formate, methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbo Aprotic organic solvents such as nate derivatives, tetrahydrofuran derivatives, ethers, methyl pyroionate and ethyl propionate can be
- organic solid electrolytes examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, polyagitation lysine, polyester sulfides, polyvinyl alcohol, polyvinylidene fluoride, Polymerizers containing ionic dissociating groups and the like can be used.
- Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
- the lithium salt is a good material to dissolve in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, lithium tetraphenyl borate and imide have.
- pyridine triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitro Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. .
- a halogen-containing solvent such as carbon tetrachloride or ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-Ethylene) may be further included. Carbonate), PRS (Propene sultone) may be further included.
- the secondary battery as described above may not only be used in a battery cell used as a power source for a small device, but also includes a plurality of battery cells used as a power source for medium and large devices requiring high temperature stability, cycle life characteristics, and high rate characteristics. It can be preferably used as a unit cell in the medium-large battery module.
- the medium-to-large device include a power tool driven by an electric motor; Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like; Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage devices, etc., but is not limited thereto.
- Electric vehicles including electric vehicles (EVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and the like
- Electric motorcycles including electric bicycles (E-bikes) and electric scooters (E-scooters); Electric golf carts; Power storage devices, etc., but is not limited thereto.
- gamma alumina powder product name: Alu-C, size D50
- 9000 g of 1-methoxy-2-propanol were mixed, and then dispersed in a vertical bead mill (product name: Apex mill) apparatus to gamma alumina nano with a 10 nm particle size.
- a gamma alumina nanosol was prepared comprising the powder.
- the alumina nanosol was dried and subjected to XRD measurement (see FIG. 1).
- Example 1 gamma Contains alumina coating layer Cathode material Manufacture (low temperature drying)
- Li 2 Co 3 and 101.75 g of Co 3 O 4 were added to a powder mixer, mixed for 5 minutes, and calcined at a firing furnace at 1000 ° C. for 10 hours.
- the cake after firing was put into a grinder and ground to a size of 18 ⁇ m to prepare a lithium transition metal oxide (LiCoO 2 ).
- alumina nanosol of Preparation Example 1 and the lithium transition metal oxide were added to MP5 (multi-purpose equipment) and mixed to prepare a cathode material including a gamma-alumina coating layer, which was then heated to 200 ° C. Dried at 10 h. 2 is an electron micrograph (SEM) of the prepared cathode material surface.
- Example 2 containing gamma-alumina coating Cathode material Manufacturing (high temperature firing process)
- a positive electrode material was prepared in the same manner as described in Example 1, except that the cathode material prepared in Example 1 was further calcined at a high temperature of about 500 ° C. for 10 hours.
- 3 is an electron micrograph (SEM) of the prepared cathode material surface.
- the positive electrode slurry After preparing the positive electrode slurry by mixing the positive electrode material, the conductive material and the binder formed in the alumina coating layer prepared in Example 1 in a weight ratio of 96: 2: 2: 2, the slurry is coated on Al foil, followed by rolling and drying A positive electrode was prepared. After the cathode was punched out in the form of a coin type, a coin type secondary battery was manufactured.
- Li-metal was used as an anode active material of the secondary battery, and an electrolyte in which 1M LiPF 6 was dissolved in a carbonate electrolyte was used as an electrolyte.
- the positive electrode slurry After preparing the positive electrode slurry by mixing the positive electrode material, the conductive material and the binder formed in the alumina coating layer prepared in Example 2 in a weight ratio of 96: 2: 2: 2, the slurry is coated on Al foil, followed by rolling and drying A positive electrode was prepared. After the cathode was punched out in the form of a coin type, a coin type secondary battery was manufactured.
- Li-metal was used as a negative electrode active material of the secondary battery, and an electrolyte in which 1M LiPF 6 was dissolved in a carbonate electrolyte was used.
- Comparative Example 1 Cathode Material with Alumina Coating Layer Containing Bohemite Phase (Low Temperature Firing)
- Aluminum (Al) was oxidized using a solvent such as alkoxide to prepare an alumina solution, and then a predetermined amount of cathode material powder (LiCoO 2 ) was dispersed and mixed in the alumina solution to prepare a cathode material having an alumina coating layer.
- a solvent such as alkoxide
- cathode material powder LiCoO 2
- a positive electrode material was manufactured in the same manner as described in Comparative Example 1, except that the cathode material prepared in Comparative Example 1 was further heated at a temperature of about 500 ° C. for 10 hours.
- 5 is an electron micrograph (SEM) of the prepared cathode material surface.
- a positive electrode slurry by mixing the positive electrode material, the conductive material, and the binder formed in the alumina coating layer prepared in Comparative Example 1 in a 96: 2: 2 weight ratio, the slurry was applied to Al foil, followed by rolling and drying for secondary batteries. A positive electrode was prepared. After the anode was punched out in the form of a coin type, a coin type battery was constructed. Li-metal was used as an anode active material, and an electrolyte solution in which 1M LiPF 6 was dissolved in a carbonate electrolyte was used.
- a positive electrode slurry by mixing the positive electrode material, the conductive material, and the binder formed in the alumina coating layer prepared in Comparative Example 2 in a 96: 2: 2 weight ratio, the slurry was applied to Al foil, followed by rolling and drying A positive electrode was prepared. After the anode was punched out in the form of a coin type, a coin type battery was constructed. Li-metal was used as an anode active material, and an electrolyte solution in which 1M LiPF 6 was dissolved in a carbonate electrolyte was used.
- each cathode material prepared in Examples 1 and 2 and Comparative Examples 1 and 2 was measured by electron microscopy to measure the coverage of the alumina coating layer.
- the alumina coating layer having the coverage of about 30 to 50% was formed on the surfaces of the cathode materials of Examples 1 and 2, while the cathode materials of Comparative Examples 1 and 2 were formed on the entire surface of the alumina coating layer. .
- the surface roughness (Ra) of the surface of the cathode material of Examples 1 and 2 is 10 nm (see FIGS. 2 and 3), whereas the cathode material that has undergone low-temperature firing of Comparative Examples 1 and 2 does not have good dispersibility and thus has large particles.
- the surface roughness (Ra) of the surface was confirmed that the coating performance is low at 100nm (see Figs. 4 and 5).
- the secondary batteries of Examples 3 and 4 and Comparative Examples 3 and 4 were exposed to external air to generate HF in the electrolyte, thereby producing a secondary battery having a HF content of 10,500 ppm (water content of 10,000 ppm) relative to the total weight of the electrolyte.
- the cathode materials prepared in Examples 1 and 2 were added to 100 g of the electrolyte solution having a moisture content of 10,000 ppm, and the HF content (concentration) remaining in the electrolyte after a predetermined time was measured. Table 1 shows.
- the HF content was measured using a Metrohm 848/801 measuring equipment, by determining the degree of pH titration by titrating the acid concentration (HF) as a base solution in the electrolyte solution to evaluate the HF concentration.
- HF content HF content in the initial electrolyte HF content after 1 week storage HF content after 2 weeks storage HF content after 3 weeks storage
- Example 3 10,500 ppm 890 ppm 770 ppm 650 ppm
- Example 4 10,500 ppm 850 ppm 760 ppm 666 ppm Comparative Example 3 10,500 ppm 8010 ppm 7500 ppm 7000 ppm Comparative Example 4 10,500 ppm 5100 ppm 4510 ppm 4320 ppm
- a cycle life test was performed on the secondary batteries prepared in Example 4 and Comparative Example 4, and the results are shown in FIGS. 6 and 7. Specifically, a capacity change test was conducted by turning 50 cycles at 0.5C / 1C 4.45V at 45 ° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Dispersion Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
HF 함량 | 초기 전해액 속의 HF 함량 | 1 주 보관 후 HF 함량 | 2 주 보관 후 HF 함량 | 3 주 보관 후 HF 함량 |
실시예 3 | 10,500 ppm | 890 ppm | 770 ppm | 650 ppm |
실시예 4 | 10,500 ppm | 850 ppm | 760 ppm | 666 ppm |
비교예 3 | 10,500 ppm | 8010 ppm | 7500 ppm | 7000 ppm |
비교예 4 | 10,500 ppm | 5100 ppm | 4510 ppm | 4320 ppm |
Claims (28)
- 하기 화학식 1로 표시되는 리튬 전이금속 산화물을 합성하는 제1 단계;상기 리튬 전이금속 산화물을 분쇄하여 리튬 전이금속 산화물 분말을 제조하는 제2 단계;상기 리튬 전이금속 산화물 분말을 알루미나 나노졸에 분산하면서 혼합하여 알루미나 코팅층을 포함하는 양극재를 제조하는 제3 단계; 및상기 양극재를 건조하는 제4 단계;를 포함하는 리튬 이차전지용 양극재 제조 방법.[화학식 1]Li(1+a)(Ni(1-a-b-c)MnbCoc)On상기 식에서, 0≤a≤0.1, 0≤b≤1, 0<c≤1, n은 2 또는 4의 정수이다.
- 청구항 1에 있어서,상기 알루미나 코팅층은 알루미나 코팅층 전체 중량을 기준으로 감마 알루미나상을 95 중량% 이상 포함하는 것인 리튬 이차전지용 양극재의 제조 방법.
- 청구항 1에 있어서,상기 리튬 전이금속 산화물은 Li(Ni1 / 3Mn1 / 3Co1 / 3O2), LiNiMnCoO2, LiCoO2 또는 LiCoMnO4 인 것을 특징으로 하는 리튬 이차전지용 양극재의 제조 방법.
- 청구항 1에 있어서,상기 제2 단계에서 분쇄된 리튬 전이금속 산화물 분말의 입경은 10㎛ 내지 30㎛인 것을 특징으로 하는 리튬 이차전지용 양극재의 제조 방법.
- 청구항 1에 있어서,상기 제3 단계에서 상기 리튬 전이금속 산화물 분말과 알루미나 나노졸은 1 : 80 내지 100 중량비로 혼합하는 것을 특징으로 하는 리튬 이차전지용 양극재의 제조 방법.
- 청구항 1에 있어서,상기 제3 단계에서, 리튬 전이금속 산화물 분말은 알루미나 나노졸 내에 리튬 전이금속 산화물 분말을 직접 분산하거나, 또는유기 용매에 리튬 전이금속 산화물 분말을 분사시켜 리튬 전이금속 산화물 분말 용액을 제조한 다음 분산하는 것을 특징으로 하는 리튬 이차전지용 양극재의 제조 방법.
- 청구항 6에 있어서,상기 유기 용매는 1-메톡시-2-프로판올, 에틸알코올, 메틸알코올, 또는 이소프로필알코올 인 것을 특징으로 하는 리튬 이차전지용 양극재의 제조 방법.
- 청구항 6에 있어서,상기 유기 용매는 양극재 전체 함량을 기준으로 70 내지 99 중량%로 사용되는 것을 특징으로 하는 리튬 이차전지용 양극재의 제조 방법.
- 청구항 1에 있어서,상기 제4 단계의 건조는 100 내지 350℃ 조건하에서 수행되는 것을 특징으로 하는 리튬 이차전지용 양극재의 제조 방법.
- 청구항 1에 있어서,상기 방법은 상기 제4 단계 후에 건조된 양극재를 소성하는 제5 단계를 더 포함하는 것을 특징으로 하는 리튬 이차전지용 양극재의 제조 방법.
- 청구항 10에 있어서,상기 제5 단계의 소성은 400 내지 1200℃ 조건하에서 수행되는 것을 특징으로 하는 리튬 이차전지용 양극재의 제조 방법.
- 하기 화학식 1로 표시되는 리튬 전이금속 산화물 입자; 및상기 리튬 전이금속 산화물 입자 표면에 형성되고, 감마 알루미나상이 95% 이상인 알루미나 코팅층;을 포함하며,상기 알루미나 코팅층의 커버리지는 상기 리튬 전이금속 산화물 입자 전체 표면적 대비 30 내지 50%인 것을 특징으로 하는 이차전지용 양극재.[화학식 1]Li(1+a)(Ni(1-a-b-c)MnbCoc)On상기 식에서, 0≤a≤0.1, 0≤b≤1, 0<c≤1, n은 2 또는 4의 정수이다..
- 청구항 12에 있어서,상기 알루미나 코팅층의 두께는 30nm 이하인 것을 특징으로 하는 이차전지용 양극재.
- 청구항 12에 있어서,상기 알루미나 코팅층의 표면 거칠기는 표면 전반에 걸쳐 10nm 크기의 표면 거칠기(Ra)를 가지는 것을 특징으로 하는 이차전지용 양극재.
- 청구항 12에 있어서,상기 알루미나 코팅층 내의 알루미늄의 함량은 양극재 전체 중량을 기준으로 5ppm 내지 100 ppm인 것을 특징으로 하는 이차전지용 양극재.
- 양극재와,상기 양극재 외에 선택적으로 도전재, 바인더, 충진제 등을 포함하며,상기 양극재로서, 하기 화학식 1로 표시되는 리튬 전이금속 산화물 입자; 및상기 리튬 전이금속 산화물 입자 표면에 형성되고, 감마 알루미나상이 95% 이상인 알루미나 코팅층;을 포함하며,상기 알루미나 코팅층의 커버리지는 상기 리튬 전이금속 산화물 입자 전체 표면적 대비 30 내지 50%인 것을 특징으로 하는 이차전지용 양극;[화학식 1]Li(1+a)(Ni(1-a-b-c)MnbCoc)On상기 식에서, 0≤a≤0.1, 0≤b≤1, 0<c≤1, n은 2 또는 4의 정수이다.
- 양극, 음극, 상기 양극과 음극 사이에 개재된 분리막, 및 전해질을 포함하는 리튬 이차전지로서,상기 양극은 하기 화학식 2로 표시되는 양극재를 포함하는 리튬 이차전지.[화학식 2]Li(1+a)(Ni(1-a-b-c)MnbCocM'x)On상기 식에서, 0≤a≤0.1, 0≤b≤1, 0<c≤1, 0<x≤1, n은 2 또는 4의 정수이고, M'는 감마상을 갖는 Al2O3이다
- 청구항 17에 있어서,상기 리튬 이차전지는 활성화 공정 및 초기 충 방전 후 전해액 전체 중량 대비 HF 함량이 900 ppm 이하인 것을 특징으로 하는 이차전지.
- 청구항 17에 있어서,상기 리튬 이차전지는 50 사이클 충전 후 전해액 전체 중량 대비 HF 함량이 100 ppm 이하인 것을 특징으로 하는 이차전지.
- 청구항 17에 있어서,상기 양극은 하기 화학식 1로 표시되는 리튬 전이금속 산화물 입자; 및상기 리튬 전이금속 산화물 입자 표면에 형성되고, 감마 알루미나상이 95% 이상인 알루미나 코팅층;을 포함하며,상기 알루미나 코팅층의 커버리지는 상기 리튬 전이금속 산화물 입자 전체 표면적 대비 30 내지 50%인 것을 특징으로 하는 리튬 이차전지.[화학식 1]Li(1+a)(Ni(1-a-b-c)MnbCoc)On상기 식에서, 0≤a≤0.1, 0≤b≤1, 0<c≤1, n은 2 또는 4의 정수이다.
- 알루미나 나노분말 및 용매를 혼합하여 알루미나 나노분말 현탁액을 제조하는 단계; 및상기 현탁액을 비드 밀 장치에 분산시켜 알루미나 나노졸을 제조하는 단계;를 포함하고,상기 알루미나 나노졸은 감마 알루미나상이 99% 이상인 것을 특징으로 하는 알루미나 나노졸의 제조 방법.
- 청구항 21에 있어서,상기 현탁액의 비드 밀 장치로의 분산은 중심부 회전속도 3000 rpm 이상인 것을 특징으로 하는 알루미나 나노졸의 제조방법.
- 청구항 21에 있어서,상기 비드 밀 장치의 비드 밀의 입경은 0.05 내지 0.1 mm인 것을 특징으로 하는 알루미나 나노졸의 제조 방법.
- 청구항 21에 있어서,상기 용매는 1-메톡시-2-프로판올, 에틸알코올, 메틸알코올, 또는 이소프로필알코올 인 것을 특징으로 하는 알루미나 나노졸의 제조 방법.
- 청구항 21에 있어서,상기 용매는 알루미나 나노졸의 전체 함량을 기준으로 70중량% 내지 99중량%로 사용되는 것을 특징으로 하는 알루미나 나노졸의 제조 방법.
- 청구항 21에 있어서,상기 알루미나 나노분말의 입경은 1nm 내지 50nm 인 것을 특징으로 하는 알루미나 나노졸의 제조 방법.
- 청구항 21에 있어서,상기 알루미나 나노분말은 감마 알루미나의 나노분말인 것을 특징으로 하는 알루미나 나노졸의 제조 방법.
- 청구항 21에 있어서,상기 알루미나 나노졸은 1nm 내지 20nm 입경의 알루미나 나노분말을 함유하는 것을 특징으로 하는 알루미나 나노졸의 제조 방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/907,990 US10938036B2 (en) | 2014-09-12 | 2015-09-10 | Method of preparing positive electrode material for lithium secondary battery, positive electrode material for lithium secondary battery, and lithium secondary battery including the positive electrode material |
EP15826011.7A EP3024071B1 (en) | 2014-09-12 | 2015-09-10 | Method for preparing cathode material for lithium secondary battery, cathode material for lithium secondary battery, and lithium secondary battery containing same |
CN201580001598.9A CN105612634B (zh) | 2014-09-12 | 2015-09-10 | 制备锂二次电池用正极材料的方法、锂二次电池用正极材料和包含该正极材料的锂二次电池 |
JP2016532046A JP6395064B2 (ja) | 2014-09-12 | 2015-09-10 | リチウム二次電池用正極材の製造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0121355 | 2014-09-12 | ||
KR20140121355 | 2014-09-12 | ||
KR10-2015-0128135 | 2015-09-10 | ||
KR1020150128135A KR101923942B1 (ko) | 2014-09-12 | 2015-09-10 | 리튬 이차전지용 양극재 제조 방법과, 리튬 이차전지용 양극재 및 이를 포함하는 리튬 이차전지 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016039574A1 true WO2016039574A1 (ko) | 2016-03-17 |
Family
ID=55644856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/009540 WO2016039574A1 (ko) | 2014-09-12 | 2015-09-10 | 리튬 이차전지용 양극재 제조 방법과, 리튬 이차전지용 양극재 및 이를 포함하는 리튬 이차전지 |
Country Status (7)
Country | Link |
---|---|
US (1) | US10938036B2 (ko) |
EP (1) | EP3024071B1 (ko) |
JP (1) | JP6395064B2 (ko) |
KR (1) | KR101923942B1 (ko) |
CN (1) | CN105612634B (ko) |
TW (1) | TWI570994B (ko) |
WO (1) | WO2016039574A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109904414A (zh) * | 2019-01-23 | 2019-06-18 | 深圳新恒业电池科技有限公司 | 一种组合物、制备方法及其在离子电池正极材料中的应用 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201826607A (zh) * | 2016-09-08 | 2018-07-16 | 日商麥克賽爾控股股份有限公司 | 鋰離子二次電池及其製造方法 |
US10707531B1 (en) | 2016-09-27 | 2020-07-07 | New Dominion Enterprises Inc. | All-inorganic solvents for electrolytes |
DE102017217250A1 (de) * | 2017-09-27 | 2019-03-28 | Volkswagen Aktiengesellschaft | Stabilisierte Ni-reiche Schichtoxide als Aktivmaterial für positive Elektroden von Lithium-Ionen-Batterien |
US11081731B2 (en) * | 2017-10-18 | 2021-08-03 | International Business Machines Corporation | High-capacity rechargeable batteries |
PL3696894T3 (pl) * | 2017-11-21 | 2024-03-04 | Lg Energy Solution, Ltd. | Materiał katody dla litowej baterii akumulatorowej oraz katoda i litowa bateria akumulatorowa, która ją zawiera |
JP7062067B2 (ja) * | 2018-07-10 | 2022-05-02 | エルジー エナジー ソリューション リミテッド | オキシ水酸化硝酸鉄の製造方法、これによって製造されたオキシ水酸化硝酸鉄を含むリチウム二次電池用正極及びこれを備えたリチウム二次電池 |
CN109546111B (zh) * | 2018-11-13 | 2021-07-20 | 武汉科技大学 | 一种多重改性镍钴锰正极材料及其制备方法 |
CN110504407A (zh) * | 2019-08-14 | 2019-11-26 | 美科新能源(苏州)有限公司 | 一种锂离子电池正极电极、制备方法 |
KR20220141610A (ko) | 2021-04-13 | 2022-10-20 | 에스케이온 주식회사 | 이차 전지용 양극 활물질, 이를 포함하는 양극 및 이를 포함하는 리튬 이차 전지 |
DE102022002314A1 (de) | 2021-07-21 | 2023-01-26 | Nichia Corporation | Kathodenaktivmaterial für Sekundärzellbatterien mit nichtwässrigem Elektrolyten und sein Herstellungsverfahren |
US12119484B2 (en) * | 2021-12-10 | 2024-10-15 | GM Global Technology Operations LLC | Lithium-containing coatings for cathode materials |
CN115458719B (zh) * | 2022-09-16 | 2025-02-25 | 巴斯夫杉杉电池材料有限公司 | 一种复合包覆的三元正极材料及其制备方法 |
CN116605926B (zh) * | 2023-07-20 | 2023-10-20 | 新乡天力锂能股份有限公司 | 一种γ纯相氧化铝包覆的高镍单晶型正极材料的制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005276454A (ja) * | 2004-03-23 | 2005-10-06 | Sumitomo Metal Mining Co Ltd | リチウムイオン二次電池用正極活物質及びその製造方法 |
KR20060051055A (ko) | 2004-09-24 | 2006-05-19 | 주식회사 엘지화학 | 알루미늄-함유 리튬 전이금속 산화물 복합 전구체 및 이의제조방법 |
KR100813014B1 (ko) * | 2006-10-12 | 2008-03-13 | 한국과학기술연구원 | 수계 알루미나 졸로 표면 개질된 리튬 이차전지용양극활물질 및 그의 제조 방법 |
US20110217574A1 (en) * | 2010-03-05 | 2011-09-08 | Hitachi, Ltd. | Cathode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the battery |
KR20120099375A (ko) * | 2009-08-27 | 2012-09-10 | 엔비아 시스템즈 인코포레이티드 | 금속 산화물이 코팅된 리튬 기반 배터리용 양극 물질 |
KR20130055654A (ko) | 2010-08-17 | 2013-05-28 | 유미코르 | 알루미늄으로 건식 코팅되고 열처리된 캐소드 물질 전구체 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10014884A1 (de) * | 2000-03-24 | 2001-09-27 | Merck Patent Gmbh | Beschichtete Lithium-Mischoxid-Partikel und ein Verfahren zu deren Herstellung |
US20030138697A1 (en) * | 2002-01-24 | 2003-07-24 | Randolph Leising | Cathode active material coated with a metal oxide for incorporation into a lithium electrochemical cell |
DE10234916A1 (de) * | 2002-07-31 | 2004-02-19 | Gesellschaft zur Förderung von Medizin-, Bio- und Umwelttechnologien e.V. | Kompositmaterial mit antimikrobieller Wirkung in der umgebenden Gasphase |
JP2005078800A (ja) | 2003-08-29 | 2005-03-24 | Mitsubishi Materials Corp | 非水二次電池の正極活物質粉末及びその製造方法並びにこれを用いた非水二次電池 |
KR100659854B1 (ko) * | 2005-04-28 | 2006-12-19 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
KR100838987B1 (ko) | 2006-02-17 | 2008-06-17 | 주식회사 엘지화학 | 리튬-금속 복합산화물 및 이를 이용한 전기 화학 소자 |
TWI352066B (en) | 2006-02-17 | 2011-11-11 | Lg Chemical Ltd | Preparation method of lithium-metal composite oxid |
KR100814880B1 (ko) | 2006-11-22 | 2008-03-18 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를포함하는 리튬 이차 전지 |
CN101359733A (zh) * | 2007-07-31 | 2009-02-04 | 比亚迪股份有限公司 | 一种包覆锂离子二次电池正极活性物质的方法 |
EP2228856A4 (en) * | 2007-12-25 | 2012-01-25 | Kao Corp | COMPOSITE MATERIAL FOR POSITIVE LITHIUM BATTERY ELECTRODE |
DE102009008999A1 (de) | 2009-02-14 | 2010-08-19 | Gesellschaft zur Förderung von Medizin-, Bio- und Umwelttechnologien e.V., Fachsektion Dresden | Farbstoff-Komposite |
US8586247B2 (en) * | 2009-12-11 | 2013-11-19 | Samsung Sdi Co., Ltd. | Positive electrode active material comprising an agglomeration of at least two primary particles for lithium battery and lithium battery using the same |
JP4807467B1 (ja) * | 2010-07-23 | 2011-11-02 | 住友金属鉱山株式会社 | 非水系電解質二次電池用正極活物質とその製造方法および非水系電解質二次電池 |
JP5858325B2 (ja) * | 2010-09-03 | 2016-02-10 | 株式会社Gsユアサ | 電池 |
JP2012193052A (ja) * | 2011-03-15 | 2012-10-11 | Nissan Chem Ind Ltd | 有機溶媒分散アルミナゾル及びその製造方法 |
WO2012151297A1 (en) * | 2011-05-02 | 2012-11-08 | Washington University | Spray pyrolysis synthesis of mesoporous positive electrode materials for high energy lithium-ion batteries |
WO2012176901A1 (ja) * | 2011-06-24 | 2012-12-27 | 旭硝子株式会社 | リチウムイオン二次電池用活物質粒子の製造方法、電極およびリチウムイオン二次電池 |
CN103797624A (zh) * | 2011-09-16 | 2014-05-14 | 日本碍子株式会社 | 正极活性物质前驱体粒子及其制造方法、以及锂二次电池的正极活性物质的制造方法 |
JP5761098B2 (ja) * | 2012-03-27 | 2015-08-12 | Tdk株式会社 | 活物質及びこれを用いたリチウムイオン二次電池 |
KR101540673B1 (ko) | 2012-08-03 | 2015-07-30 | 주식회사 엘지화학 | 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지 |
JP6108520B2 (ja) * | 2012-11-09 | 2017-04-05 | 国立研究開発法人産業技術総合研究所 | リチウムイオン二次電池正極およびこれを用いたリチウムイオン二次電池 |
JP6303260B2 (ja) * | 2012-12-06 | 2018-04-04 | 株式会社村田製作所 | 正極活物質およびその製造方法、正極、電池、電池パック、電子機器、電動車両、蓄電装置ならびに電力システム |
KR101475922B1 (ko) * | 2012-12-27 | 2014-12-23 | 전자부품연구원 | 망간 인산화물이 코팅된 리튬 이차전지용 양극 활물질 및 그의 제조 방법 |
CN103496724B (zh) * | 2013-08-30 | 2016-03-30 | 航天特种材料及工艺技术研究所 | 一种纳米氧化铝溶胶和凝胶的制备方法 |
-
2015
- 2015-09-10 KR KR1020150128135A patent/KR101923942B1/ko active Active
- 2015-09-10 EP EP15826011.7A patent/EP3024071B1/en active Active
- 2015-09-10 US US14/907,990 patent/US10938036B2/en active Active
- 2015-09-10 CN CN201580001598.9A patent/CN105612634B/zh active Active
- 2015-09-10 WO PCT/KR2015/009540 patent/WO2016039574A1/ko active Application Filing
- 2015-09-10 JP JP2016532046A patent/JP6395064B2/ja active Active
- 2015-09-11 TW TW104130136A patent/TWI570994B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005276454A (ja) * | 2004-03-23 | 2005-10-06 | Sumitomo Metal Mining Co Ltd | リチウムイオン二次電池用正極活物質及びその製造方法 |
KR20060051055A (ko) | 2004-09-24 | 2006-05-19 | 주식회사 엘지화학 | 알루미늄-함유 리튬 전이금속 산화물 복합 전구체 및 이의제조방법 |
KR100813014B1 (ko) * | 2006-10-12 | 2008-03-13 | 한국과학기술연구원 | 수계 알루미나 졸로 표면 개질된 리튬 이차전지용양극활물질 및 그의 제조 방법 |
KR20120099375A (ko) * | 2009-08-27 | 2012-09-10 | 엔비아 시스템즈 인코포레이티드 | 금속 산화물이 코팅된 리튬 기반 배터리용 양극 물질 |
US20110217574A1 (en) * | 2010-03-05 | 2011-09-08 | Hitachi, Ltd. | Cathode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the battery |
KR20130055654A (ko) | 2010-08-17 | 2013-05-28 | 유미코르 | 알루미늄으로 건식 코팅되고 열처리된 캐소드 물질 전구체 |
Non-Patent Citations (1)
Title |
---|
KIM, YOUNG SIK ET AL.: "Synthesis and electrochemical characteristics of Al2O3-coated LiNil/3Co1/3Mn1/3O2 cathode materials for lithium ion batteries", ELECTROCHIMICA ACTA, vol. 52, no. 3, 2006, pages 1316 - 1322, XP028027984 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109904414A (zh) * | 2019-01-23 | 2019-06-18 | 深圳新恒业电池科技有限公司 | 一种组合物、制备方法及其在离子电池正极材料中的应用 |
Also Published As
Publication number | Publication date |
---|---|
JP6395064B2 (ja) | 2018-09-26 |
KR101923942B1 (ko) | 2018-12-03 |
KR20160031427A (ko) | 2016-03-22 |
CN105612634B (zh) | 2018-09-28 |
US20160254546A1 (en) | 2016-09-01 |
CN105612634A (zh) | 2016-05-25 |
EP3024071B1 (en) | 2018-04-25 |
US10938036B2 (en) | 2021-03-02 |
EP3024071A4 (en) | 2016-08-31 |
TW201626626A (zh) | 2016-07-16 |
JP2016538694A (ja) | 2016-12-08 |
TWI570994B (zh) | 2017-02-11 |
EP3024071A1 (en) | 2016-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016039574A1 (ko) | 리튬 이차전지용 양극재 제조 방법과, 리튬 이차전지용 양극재 및 이를 포함하는 리튬 이차전지 | |
WO2015020486A1 (ko) | 리튬 이차전지용 양극 재료 및 이를 포함하는 리튬 이차전지 | |
WO2010101395A2 (ko) | 고에너지 밀도의 양극 재료와 유/무기 복합 다공성 분리막을 포함하는 리튬 이차전지 | |
WO2018101806A1 (ko) | 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지 | |
WO2018101808A1 (ko) | 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지 | |
WO2016032240A1 (ko) | 이중 코팅층을 갖는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2018101809A1 (ko) | 리튬이차전지용 니켈계 활물질 전구체, 그 제조방법, 이로부터 형성된 리튬이차전지용 니켈계 활물질 및 이를 포함하는 양극을 함유한 리튬이차전지 | |
WO2017069405A1 (ko) | 다층 구조의 금속 산화물들을 포함하는 양극 활물질 제조용 전구체 및 이를 사용하여 제조된 리튬 이차전지용 양극 활물질 | |
WO2017095068A1 (ko) | 이차전지용 양극활물질, 이를 포함하는 이차전지용 양극 및 이차전지 | |
WO2018038501A1 (ko) | 리튬이온전지용 복합양극활물질, 그 제조방법 및 이를 포함한 양극을 함유한 리튬이온전지 | |
WO2018143733A1 (ko) | 고온 저장 특성이 향상된 리튬 이차전지의 제조 방법 | |
WO2016148441A1 (ko) | 리튬 금속 산화물 및 이를 포함하는 리튬 이차전지용 음극 활물질, 및 이의 제조방법 | |
WO2017095074A1 (ko) | 티타늄계 복합체를 포함하는 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2022182019A1 (ko) | 가스 발생량이 저감된 희생 양극재 및 이의 제조방법 | |
WO2021154035A1 (ko) | 리튬 이차전지용 양극 활물질 및 이의 제조 방법 | |
WO2020111545A1 (ko) | 양극 활물질, 상기 양극 활물질을 포함하는 양극 및 리튬 이차전지 | |
WO2020263023A1 (ko) | 특정한 조성 조건을 가지는 리튬 이차전지용 전극 및 이를 포함하는 리튬 이차전지 | |
WO2022255665A1 (ko) | 양극활물질과 비가역 첨가제를 포함하는 마스터 배치 및 이를 함유하는 리튬 이차전지용 양극 슬러리 | |
WO2022092906A1 (ko) | 양극 활물질 및 이의 제조방법 | |
WO2018084652A2 (ko) | 리튬이온이차 전지 | |
WO2021125825A1 (ko) | 음극 및 상기 음극을 포함하는 이차 전지 | |
WO2018147558A1 (ko) | 장수명에 적합한 이차전지용 전극의 제조방법 | |
WO2017074109A1 (ko) | 이차전지용 양극, 이의 제조 방법 및 이를 포함하는 리튬 이차전지 | |
WO2022060181A1 (ko) | 음극 및 이를 포함하는 리튬 이차전지 | |
WO2022250324A1 (ko) | 양극 첨가제 및 이를 함유하는 리튬 이차전지용 양극 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 14907990 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015826011 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15826011 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016532046 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |