WO2016039052A1 - 燃料電池セパレータ - Google Patents
燃料電池セパレータ Download PDFInfo
- Publication number
- WO2016039052A1 WO2016039052A1 PCT/JP2015/072369 JP2015072369W WO2016039052A1 WO 2016039052 A1 WO2016039052 A1 WO 2016039052A1 JP 2015072369 W JP2015072369 W JP 2015072369W WO 2016039052 A1 WO2016039052 A1 WO 2016039052A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- epoxy resin
- cell separator
- substituent
- contain
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 79
- 239000003822 epoxy resin Substances 0.000 claims abstract description 80
- 229920000647 polyepoxide Polymers 0.000 claims abstract description 80
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims abstract description 52
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 33
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000004305 biphenyl Substances 0.000 claims abstract description 26
- 235000010290 biphenyl Nutrition 0.000 claims abstract description 26
- 238000000465 moulding Methods 0.000 claims abstract description 25
- 239000000203 mixture Substances 0.000 claims abstract description 23
- 239000005011 phenolic resin Substances 0.000 claims abstract description 23
- 229920003986 novolac Polymers 0.000 claims description 43
- 125000001424 substituent group Chemical group 0.000 claims description 24
- 125000004432 carbon atom Chemical group C* 0.000 claims description 20
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 14
- 229910021383 artificial graphite Inorganic materials 0.000 claims description 10
- -1 imidazole compound Chemical class 0.000 claims description 9
- 125000000217 alkyl group Chemical group 0.000 claims description 8
- 125000003545 alkoxy group Chemical group 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 6
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 229920005989 resin Polymers 0.000 abstract description 13
- 239000011347 resin Substances 0.000 abstract description 13
- 239000006185 dispersion Substances 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 47
- 238000007654 immersion Methods 0.000 description 28
- 239000002245 particle Substances 0.000 description 17
- 238000010521 absorption reaction Methods 0.000 description 15
- 238000012360 testing method Methods 0.000 description 15
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 14
- 238000005452 bending Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 238000002156 mixing Methods 0.000 description 11
- 239000006082 mold release agent Substances 0.000 description 8
- 238000010248 power generation Methods 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000009477 glass transition Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 6
- 239000010439 graphite Substances 0.000 description 6
- 239000007770 graphite material Substances 0.000 description 6
- 239000005518 polymer electrolyte Substances 0.000 description 6
- 239000011342 resin composition Substances 0.000 description 5
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 4
- ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 2-phenyl-1h-imidazole Chemical compound C1=CNC(C=2C=CC=CC=2)=N1 ZCUJYXPAKHMBAZ-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 229920001568 phenolic resin Polymers 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 3
- 239000004203 carnauba wax Substances 0.000 description 3
- 235000013869 carnauba wax Nutrition 0.000 description 3
- 238000000748 compression moulding Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000012778 molding material Substances 0.000 description 3
- FBHPRUXJQNWTEW-UHFFFAOYSA-N 1-benzyl-2-methylimidazole Chemical compound CC1=NC=CN1CC1=CC=CC=C1 FBHPRUXJQNWTEW-UHFFFAOYSA-N 0.000 description 2
- TYOXIFXYEIILLY-UHFFFAOYSA-N 5-methyl-2-phenyl-1h-imidazole Chemical compound N1C(C)=CN=C1C1=CC=CC=C1 TYOXIFXYEIILLY-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 2
- 239000004312 hexamethylene tetramine Substances 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000001993 wax Substances 0.000 description 2
- RUEBPOOTFCZRBC-UHFFFAOYSA-N (5-methyl-2-phenyl-1h-imidazol-4-yl)methanol Chemical compound OCC1=C(C)NC(C=2C=CC=CC=2)=N1 RUEBPOOTFCZRBC-UHFFFAOYSA-N 0.000 description 1
- XZKLXPPYISZJCV-UHFFFAOYSA-N 1-benzyl-2-phenylimidazole Chemical compound C1=CN=C(C=2C=CC=CC=2)N1CC1=CC=CC=C1 XZKLXPPYISZJCV-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical compound C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- RUFZNDNBXKOZQV-UHFFFAOYSA-N 2,3-dihydro-1h-pyrrolo[1,2-a]benzimidazole Chemical compound C1=CC=C2N(CCC3)C3=NC2=C1 RUFZNDNBXKOZQV-UHFFFAOYSA-N 0.000 description 1
- YTWBFUCJVWKCCK-UHFFFAOYSA-N 2-heptadecyl-1h-imidazole Chemical compound CCCCCCCCCCCCCCCCCC1=NC=CN1 YTWBFUCJVWKCCK-UHFFFAOYSA-N 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- LLEASVZEQBICSN-UHFFFAOYSA-N 2-undecyl-1h-imidazole Chemical compound CCCCCCCCCCCC1=NC=CN1 LLEASVZEQBICSN-UHFFFAOYSA-N 0.000 description 1
- UIDDPPKZYZTEGS-UHFFFAOYSA-N 3-(2-ethyl-4-methylimidazol-1-yl)propanenitrile Chemical compound CCC1=NC(C)=CN1CCC#N UIDDPPKZYZTEGS-UHFFFAOYSA-N 0.000 description 1
- SESYNEDUKZDRJL-UHFFFAOYSA-N 3-(2-methylimidazol-1-yl)propanenitrile Chemical compound CC1=NC=CN1CCC#N SESYNEDUKZDRJL-UHFFFAOYSA-N 0.000 description 1
- BVYPJEBKDLFIDL-UHFFFAOYSA-N 3-(2-phenylimidazol-1-yl)propanenitrile Chemical compound N#CCCN1C=CN=C1C1=CC=CC=C1 BVYPJEBKDLFIDL-UHFFFAOYSA-N 0.000 description 1
- SZUPZARBRLCVCB-UHFFFAOYSA-N 3-(2-undecylimidazol-1-yl)propanenitrile Chemical compound CCCCCCCCCCCC1=NC=CN1CCC#N SZUPZARBRLCVCB-UHFFFAOYSA-N 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 238000012812 general test Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- XLSZMDLNRCVEIJ-UHFFFAOYSA-N methylimidazole Natural products CC1=CNC=N1 XLSZMDLNRCVEIJ-UHFFFAOYSA-N 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 239000010680 novolac-type phenolic resin Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000036647 reaction Effects 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0226—Composites in the form of mixtures
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/50—Amines
- C08G59/5046—Amines heterocyclic
- C08G59/5053—Amines heterocyclic containing only nitrogen as a heteroatom
- C08G59/5073—Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/40—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
- C08G59/62—Alcohols or phenols
- C08G59/621—Phenols
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/042—Graphene or derivatives, e.g. graphene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3442—Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
- C08K5/3462—Six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
- C08L63/04—Epoxynovolacs
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0221—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0234—Carbonaceous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0239—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0243—Composites in the form of mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a fuel cell separator.
- the fuel cell separator plays a role of separating each of the unit cells, as well as ensuring the passage of fuel and air (oxygen) supplied to the unit cells, as well as a separation boundary wall between them. For this reason, the separator is required to have various properties such as high conductivity, high gas impermeability, chemical stability, heat resistance, and hydrophilicity. As methods for enhancing these various characteristics, methods disclosed in Patent Documents 1 to 5 are known.
- Patent Document 1 discloses a phenol resin solution having a saturated water absorption of 3% or less for the purpose of providing a method for producing a polymer electrolyte fuel cell separator that can be used stably over a long period of time. Discloses a method for producing a polymer electrolyte fuel cell separator obtained by hot pressing a composition comprising graphite powder.
- Patent Document 2 provides an excellent fuel cell separator capable of forming a thin-walled fuel cell separator, having sufficient strength and flexibility, and having little thickness unevenness even when thinned.
- the purpose is to mold a composition containing a porous artificial graphite material, an epoxy resin containing a main agent and a curing agent, and an internal mold release agent, and the average thickness of the thin part is 0.12 to 0.20 mm.
- a fuel cell separator is disclosed.
- Patent Document 3 for the purpose of providing a resin composition for a fuel cell separator capable of reducing the thickness of the fuel cell separator, improving the thickness accuracy, making the conductivity uniform, and improving the mechanical strength, ( A) graphite particles, (B) an ortho-cresol novolac type epoxy resin or an ortho-cresol novolac type epoxy resin, and a bisphenol type epoxy resin, a biphenyl type epoxy resin and a biphenylene skeleton as at least a part of the epoxy resin in the thermosetting resin
- An epoxy resin component comprising at least one selected from the phenol aralkyl type epoxy resins having (C) a phenol resin as at least a part of the curing agent, and (D) a hydrocarbon group at the second position as at least a part of the curing accelerator.
- Liquid fuel cell separator containing substituted imidazole having Resin compositions are disclosed for data.
- Patent Document 4 for the purpose of providing a polymer electrolyte fuel cell separator material excellent in characteristics such as gas impermeability, strength characteristics, electrical physical properties, releasability during molding, and a method for producing the same, A fuel cell separator using a phenolic resin containing 50% or more of a high paranovolak type phenolic resin as an epoxy resin curing agent is disclosed.
- Patent Document 5 2,3-dihydro-1H-pyrrolo (1, 2,3) is used as a curing accelerator for the purpose of exhibiting high moisture resistance while maintaining a high glass transition temperature and good continuous formability.
- the separator of Patent Document 1 has a low water absorption (saturated water absorption) of 0.4 to 0.6% when immersed in hot water at 80 ° C. for 10 days, but normally operates at 60 to 80 ° C.
- the long-term power generation of the fuel cell is not sufficient, and there has been a problem that the performance is reduced due to the water absorption of the separator, and cracks and breakage due to non-uniform elongation occur.
- hexamine is used as a phenolic resin curing agent, ammonium ions generated by the decomposition of hexamine are eluted during the operation of the fuel cell, leading to a decrease in the output of the fuel cell and a decrease in the stability of long-term power generation. There was a problem.
- Patent Document 2 a separator having a thickness of 0.2 mm or less and excellent mechanical strength is obtained.
- the thickness is 0.2 to 0.6 mm, and the thickness unevenness is as thin as ⁇ 15 ⁇ m.
- a separator with good accuracy is obtained.
- all separators use ortho-cresol novolac type epoxy resin having high water absorption as a binder resin as a main component, there is a problem that performance is deteriorated and damaged due to water absorption of the separator during long-term power generation of the fuel cell. there were.
- Patent Document 4 and Patent Document 5 use biphenyl novolac type epoxy resin (phenol aralkyl type epoxy resin having a biphenylene skeleton) having low water absorption as an example of the epoxy resin to be used.
- Biphenyl novolac type epoxy resin is low in hygroscopicity due to the low concentration of polar groups generated during the curing reaction, but on the other hand, it has a problem of poor heat resistance due to its low crosslink density. I had to. Since the high molecular weight resin has a high melt viscosity, the fluidity of the composition is deteriorated at the time of molding, so that the thickness unevenness is increased and the initial contact resistance is increased.
- Patent Document 4 a high paranovolak type phenol resin is used as a curing agent. Since the high paranovolak type phenolic resin has low crystallinity, the melt viscosity becomes high, and the fluidity of the composition deteriorates at the time of molding, so that there is a problem that thickness unevenness becomes large and initial contact resistance becomes high. . In Patent Document 5, since 2,3-dihydro-1H-pyrrolo (1,2a) benzimidazole, which has a slow reaction, is used as a curing accelerator, molding takes 2 minutes, and there is a problem in productivity. there were.
- JP 2004-127646 A International Publication No. 2009/034870 JP 2011-113810 A JP 2009-158118 A JP 2011-204650 A
- the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a fuel cell separator that is excellent in moisture and heat resistance, has little change in contact resistance even after being exposed to a moist heat environment, and has excellent thickness accuracy.
- the present inventor includes a biphenyl novolac type epoxy resin having a predetermined ICI viscosity as a main agent, an epoxy resin containing a predetermined phenol resin as a curing agent, and graphite powder.
- the present inventors have found that the above object can be achieved by a fuel cell separator formed by molding a composition.
- the present invention provides the following fuel cell separator.
- a fuel cell separator formed by molding a composition containing an epoxy resin and graphite powder,
- the epoxy resin contains a main agent, a curing agent and a curing accelerator,
- the main agent contains a biphenyl novolac type epoxy resin having an ICI viscosity at 150 ° C. of 0.03 to 0.12 Pa ⁇ s,
- a fuel cell separator, wherein the curing agent is a novolac type phenol resin having a weight average molecular weight of 420 to 1,500 and a dispersity of 2.0 or less.
- R 1 to R 3 may include a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may contain a substituent, an aromatic group having 6 to 20 carbon atoms which may contain a substituent, or a substituent.
- R 4 is an alkyl group having 1 to 20 carbon atoms which may contain a substituent, and 6 carbon atoms which may contain a substituent.
- the fuel cell separator of the present invention is excellent in moisture and heat resistance, and the moisture and heat resistance lasts for a long time. That is, since the change in contact resistance is small even after being exposed to a moist heat environment for a long period of time, the fuel cell including the fuel cell separator of the present invention can maintain stable power generation efficiency over a long period of time.
- the fuel cell separator of the present invention is obtained by molding a composition containing graphite powder and an epoxy resin (hereinafter referred to as a fuel cell separator composition).
- the graphite powder contained in the composition for a fuel cell separator may be natural graphite or artificial graphite, but is particularly preferably massive graphite or artificial graphite powder obtained by spheroidizing massive graphite.
- the average particle diameter d 50 of the graphite powder is preferably 20 to 100 ⁇ m, more preferably 30 to 80 ⁇ m. When the average particle diameter d 50 is less than 20 ⁇ m, the thermosetting resin easily covers the surface of the graphite material, and the contact area between the particles becomes small, so that the conductivity of the separator itself may be deteriorated.
- the average particle diameter d 50 in the present invention is expressed as the median diameter in the particle size distribution measurement by the laser diffraction method.
- a porous artificial structure in which graphite particles having a particle size of 1 ⁇ m or less are 1% by mass or less and graphite particles having a particle size of 300 ⁇ m or more are 1% by mass or less.
- a graphite material is more preferable, and an artificial graphite material having a particle size of 3 ⁇ m or less is 1% by mass or less and 250 ⁇ m or more is 1% by mass or less is optimal.
- the specific surface area of the graphite powder is preferably 1 to 5 m 2 / g. If the specific surface area of the graphite powder is less than 1 m 2 / g, the familiarity between the graphite material and the resin is deteriorated, and sufficient strength may not be obtained. On the other hand, if the specific surface area of the graphite powder exceeds 5 m 2 / g, the graphite material absorbs the resin and the fluidity of the molding material is deteriorated. As a result, the thickness accuracy may be deteriorated and the contact resistance may be increased. is there. Moreover, the water and cooling water which are generated with the cell reaction of the fuel cell are absorbed, and the separator is warped, resulting in a high contact resistance.
- the epoxy resin contained in the fuel cell separator composition contains a main agent, a curing agent and a curing accelerator.
- the main agent contains a biphenyl novolac type epoxy resin.
- a biphenyl novolac type epoxy resin what is represented by following formula (1) is preferable.
- each R is independently a halogen atom or an alkyl group having 1 to 4 carbon atoms.
- M is each independently an integer of 0 to 4.
- n is an integer of 0 or more.
- halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
- the alkyl group having 1 to 4 carbon atoms may be linear, branched or cyclic, and is a methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, sec -Butyl group, tert-butyl group and cyclobutyl group.
- n is not particularly limited as long as it is a number such that the biphenyl novolac type epoxy resin satisfies the ICI viscosity described later. Since the ICI viscosity varies depending on the structure of R and the value of m, the value of n cannot be defined unconditionally, but usually n is about 0 to 3.
- the ICI viscosity at 150 ° C. of the biphenyl novolak type epoxy resin is preferably 0.03 to 0.12 Pa ⁇ s in view of further improving the heat resistance of the obtained fuel cell separator and improving the moldability. 0.05 to 0.11 Pa ⁇ s is more preferable.
- an epoxy resin having an ICI viscosity in this range the molecular weight of the resin becomes appropriate, so that the resulting fuel cell separator has good heat resistance, and the fluidity of the resin is good. Molding processability also becomes good, for example, it can be lowered. If the ICI viscosity at 150 ° C. is larger than 0.12 Pa ⁇ s, the fluidity of the composition at the time of molding deteriorates, resulting in an increase in thickness unevenness and an increase in initial contact resistance. In addition, productivity may be reduced.
- the epoxy equivalent of the biphenyl novolac type epoxy resin is preferably 260 to 290 g / eq in consideration of further improving the heat resistance of the obtained fuel cell separator.
- an epoxy resin having an epoxy equivalent in this range the molecular weight of the resin is moderate and the crosslink density of the cured product is increased. As a result, the heat resistance of the obtained fuel cell separator can be further improved.
- the main component of the epoxy resin may further contain an epoxy resin other than the biphenyl novolac type epoxy resin (hereinafter referred to as other epoxy resin).
- Other epoxy resins are not particularly limited, and various types of epoxy resins conventionally used for molding a separator can be used. Specific examples include o-cresol novolac type epoxy resin, phenol novolac type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin and the like. It is done. These can be used alone or in combination of two or more.
- the ICI viscosity of the other epoxy resin is preferably 0.01 to 0.3 Pa ⁇ s.
- the proportion of the biphenyl novolac type epoxy resin in the main agent is preferably 50% by mass or more, more preferably 70% by mass or more from the viewpoint of lowering the melt viscosity of the obtained separator resin composition and reducing the water absorption of the separator. Preferably, 100 mass% is still more preferable.
- the hot water resistance of the obtained fuel cell separator is increased, and it is possible to prevent a decrease in conductivity and strength in the operation of the fuel cell over a long period.
- the ratio of the biphenyl novolac type epoxy resin in the main component in the epoxy resin is less than 50% by mass, the hot water resistance may be lowered.
- the curing agent contained in the epoxy resin is a phenol resin, and specific examples include novolak type phenol resin, cresol novolac type phenol resin, resol type phenol resin, aralkyl modified phenol resin, biphenyl novolac type phenol resin, trisphenol.
- a methane type phenol resin etc. are mentioned. Of these, novolac type phenol resins are preferred. These can be used alone or in combination of two or more.
- the novolak type phenol resin has a weight average molecular weight (Mw) of 420 to 1,500 and a dispersity (Mw / Mn, Mn is a number average molecular weight) of 2.0 or less. preferable. If the Mw is 420 or less, the glass transition point may be lowered and the heat resistance may be poor. On the other hand, when Mw exceeds 1,500, the ICI viscosity at 150 ° C. increases, and as a result, the fluidity of the composition during molding may be poor. For this reason, problems such as inability to form a thin separator, increased thickness unevenness, and increased initial contact resistance may occur. Moreover, since a monomer and a dimer component will increase when dispersion degree exceeds 2.0, there exists a possibility that heat resistance may become scarce.
- Mw weight average molecular weight
- Mn dispersity
- the blending amount of the curing agent is preferably 0.98 to 1.02 equivalents with respect to the main agent from the viewpoint of preventing unreacted components from remaining.
- the hardening accelerator contained in the said epoxy resin consists only of an imidazole compound represented by following formula (2).
- R 1 to R 3 may include a hydrogen atom, an alkyl group having 1 to 20 carbon atoms which may contain a substituent, an aromatic group having 6 to 20 carbon atoms which may contain a substituent, or a substituent.
- R 4 is an alkyl group having 1 to 20 carbon atoms which may contain a substituent, and 6 carbon atoms which may contain a substituent.
- the molecular weight of the imidazole compound is preferably from 100 to 350, more preferably from 140 to 180, taking into consideration the thermal stability of the resin composition for a fuel cell separator and appropriate activity during curing.
- the molecular weight is less than 100, the thermal stability of the resin composition is deteriorated, and curing may become too fast, so that the predetermined shape of the mold may not be obtained.
- the molecular weight is higher than 350, the activity as a curing accelerator is low, and it may be necessary for curing for a long time when curing.
- Such an imidazole compound is not particularly limited, but 2-undecylimidazole (molecular weight 224), 2-heptadecylimidazole (molecular weight 307), 2-ethyl-4-methylimidazole (molecular weight 110), 2-phenylimidazole.
- 2-phenylimidazole 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole and the like are preferable.
- an imidazole compound can be used individually by 1 type or in combination of 2 or more types.
- the amount of the curing accelerator is 0.65 to 1.02 parts by mass with respect to a total of 100 parts by mass of the main component and curing agent of the epoxy resin. preferable.
- the blending amount of the curing accelerator is less than 0.65 parts by mass, the curing reaction of the epoxy resin may not sufficiently proceed.
- the blending amount exceeds 1.02 parts by mass the curing reaction may proceed rapidly in the mold during molding, and the melt viscosity may increase. Further, the curing reaction may proceed during storage.
- the blending amount of the epoxy resin in the fuel cell separator composition is preferably 22 to 43 parts by mass, more preferably 28 to 38 parts by mass, and still more preferably 31 to 35 parts by mass with respect to 100 parts by mass of the graphite powder.
- the blending amount of the epoxy resin is less than 22 parts by mass, the fluidity of the molding material becomes too small and the moldability is lowered, and the conductivity of the obtained fuel cell separator may be lowered.
- the blending amount exceeds 43 parts by mass, the fluidity of the molding material becomes too large and the moldability also decreases, and the excessive binder component covers the graphite powder, resulting in an increase in contact resistance. The conductivity of the resulting fuel cell separator may be reduced.
- An internal mold release agent may be blended with the fuel cell separator composition for the purpose of improving mold releasability.
- the internal mold release agent is not particularly limited, and various internal mold release agents conventionally used for molding of fuel cell separators can be used.
- Examples of the internal release agent include metal soaps such as calcium stearate and zinc stearate, hydrocarbon synthetic waxes such as polyethylene wax, and other long chain fatty acids such as carnauba wax. These can be used alone or in combination of two or more.
- the amount of the internal mold release agent is not particularly limited, but is preferably 0.05 to 1 part by weight, more preferably 0.1 to 0.8 part by weight, and 0.3 to 0 part per 100 parts by weight of the graphite powder. 0.7 parts by mass is even more preferable.
- the fuel cell separator composition may be prepared, for example, by mixing the above-described graphite powder, epoxy resin, and, if necessary, a curing accelerator or an internal mold release agent in a predetermined ratio in any order.
- a planetary mixer for example, a planetary mixer, a ribbon blender, a Redige mixer, a Henschel mixer, a rocking mixer, a nauter mixer, or the like can be used.
- the fuel cell separator of the present invention is obtained by molding the above-described composition for a fuel cell separator into a desired separator shape.
- the method for molding the separator is not particularly limited, and injection molding, transfer molding, compression molding, extrusion molding, sheet molding, and the like can be employed.
- a mold at the time of molding it is preferable to use a mold for manufacturing a fuel cell separator capable of forming a groove serving as a gas supply / discharge channel on one or both surfaces of the surface of the molded body.
- the compression molding conditions are preferably that the mold temperature is 150 to 200 ° C., the molding pressure is 10 to 50 MPa, and the molding time is 15 to 60 seconds.
- the fuel cell separator thus obtained may be subjected to existing hydrophilization treatment such as blast treatment, plasma treatment, corona discharge, flame treatment, and UV treatment on the surface thereof. Furthermore, it is also possible to perform surface treatment by irradiating the separator with a laser to remove the resin component on the surface layer of the separator and reduce the surface resistance of the separator.
- the fuel cell separator of the present invention usually has a glass transition point of 100 ° C. or higher, and has a low water absorption rate of 0.7% or less after hot water immersion treatment (90 ° C., 1,000 hours immersion). In addition, the moisture resistance is high.
- the fuel cell separator of the present invention usually has an initial contact resistance of 12 m ⁇ ⁇ cm 2 or less and a contact resistance change rate after hot water immersion treatment (90 ° C., 1,000 hours immersion) of 20% or less. Therefore, the power generation performance is good, and it is possible to maintain good power generation performance over a long period of time.
- the thickness unevenness of the fuel cell separator is usually 10% or less, and the initial bending strength is 40 MPa or more. Therefore, the contact resistance with the electrode portion is small, and the fuel cell can be assembled without causing cracks.
- the fuel cell separator of the present invention has high heat resistance and hydrophilicity, and the hydrophilicity lasts for a long time. Therefore, the fuel cell provided with this separator can maintain stable power generation efficiency over a long period of time.
- the fuel cell separator of the present invention having such characteristics can be suitably used particularly as a separator for a polymer electrolyte fuel cell.
- a polymer electrolyte fuel cell generally includes a large number of unit cells each having a pair of electrodes sandwiching a polymer electrolyte membrane and a pair of separators forming a gas supply / discharge channel sandwiching these electrodes.
- the fuel cell separator of the present invention can be used for some or all of the plurality of separators.
- ICI viscosity It was measured at a plate temperature of 150 ° C. using an ICI corn plate viscometer manufactured by Codex Corporation.
- Average particle size d 50 The particle size distribution was measured using a particle size distribution measuring device (Microtrack MT3000 manufactured by Nikkiso Co., Ltd.).
- Thickness unevenness Using a micrometer (Digimatic PMU150-25DM manufactured by Mitsuyoto Corporation), the thickness of the separator was measured 20 points at a time, the average thickness was calculated, and the thickness unevenness was calculated according to the following formula.
- Thickness variation (%) (maximum thickness-minimum thickness) / average thickness x 100 [Glass transition point]
- TMA6100 thermal analyzer manufactured by Seiko Instruments Inc.
- measurement was performed under the conditions of a heating rate of 1 ° C./min and a load of 5 g, and the inflection point of the obtained thermal expansion coefficient was taken as the glass transition point.
- Hot water immersion treatment In hot water immersion treatment, a test piece and 500 mL of ion-exchanged water are placed in a 500 mL fluororesin container, heated at an internal temperature of 90 ° C. for 1,000 hours, then taken out of the test piece, and the surface adhering water is removed by air blowing.
- Table 1 shows artificial graphite powder as graphite powder, biphenyl novolac type epoxy resin as the main component of epoxy resin, novolak type phenol resin as curing agent for epoxy resin, 2-phenylimidazole as curing accelerator, and carnauba wax as internal mold release agent.
- a composition for a fuel cell separator was prepared by charging into a Henschel mixer with the blending amount as shown and mixing at 500 rpm for 3 minutes.
- the obtained composition was put into a mold for producing a fuel cell separator having a size of 200 ⁇ 200 ⁇ 2 mm, and compression molded under the conditions of a mold temperature of 185 ° C., a molding pressure of 30 MPa, and a molding time of 30 seconds to obtain a fuel cell separator. It was.
- the obtained composition was put into a mold for producing a fuel cell separator having a size of 200 ⁇ 200 ⁇ 2 mm, and compression molded under the conditions of a mold temperature of 185 ° C., a molding pressure of 30 MPa, and a molding time of 30 seconds to obtain a fuel cell separator. It was.
- the artificial graphite powder, biphenyl novolac type epoxy resin, orthocresol novolac type epoxy resin, phenol novolac type epoxy resin, and novolac type phenol resin used in each example and comparative example are as follows.
- Artificial graphite powder average particle size d 50 50 ⁇ m, specific surface area 2.3 m 2 / g
- Biphenyl novolac type epoxy resin Nippon Kayaku Co., Ltd. NC-3000 (Examples 1-8 and Comparative Examples 3-5), Nippon Kayaku Co., Ltd. NC-3000l (Comparative Example 1), Nippon Kayaku NC-3000H (Comparative Example 2)
- Orthocresol novolac type epoxy resin Nippon Kayaku Co., Ltd.
- EOCN-1020-65 (Examples 6 to 8), DIC Corporation N-655-EXP-S (Comparative Example 6) ⁇ Phenol novolac type epoxy resin: Nippon Kayaku Co., Ltd. EPPN-201 (Comparative Example 7) Novolac type phenolic resin: Showa Denko Co., Ltd. (Examples 1, 2, 4, 5-8, Comparative Examples 1, 2, 6, 7), Meiwa Kasei Co., Ltd. (Example 3, Comparative Example 4) )
- the thickness unevenness, the glass transition point, the water absorption after immersion in hot water, the initial contact resistance and the rate of change thereof, and the initial bending strength were determined by the above-described methods. The thickness and its rate of change were measured. The results are shown in Tables 1 and 2.
- the biphenyl novolac type epoxy resin has an ICI viscosity at 150 ° C. in the range of 0.03 to 0.12 Pa ⁇ s, the Mw of the curing agent is 450 to 1,500, and the dispersity is 2.0 or less.
- a separator having good moldability, small thickness unevenness, and sufficiently high glass transition point of the molded article was obtained compared to those outside the above range (Examples 1 to 4).
- biphenyl novolac type epoxy resin When biphenyl novolac type epoxy resin is included as the main component of epoxy resin, the water absorption rate when immersed in hot water is low compared with those not containing biphenyl novolac type epoxy resin, so the change in contact resistance and bending strength is small and good The conductivity and strength were maintained for a long time (Examples 5 to 8).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- Engineering & Computer Science (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Abstract
Description
1.エポキシ樹脂及び黒鉛粉末を含む組成物を成形してなる燃料電池セパレータであって、
エポキシ樹脂が主剤、硬化剤及び硬化促進剤を含み、
上記主剤が、150℃におけるICI粘度が0.03~0.12Pa・sのビフェニルノボラック型エポキシ樹脂を含み、
上記硬化剤の重量平均分子量が420~1,500であって、かつ分散度が2.0以下であるノボラック型フェノール樹脂である
ことを特徴とする燃料電池セパレータ。
2.エポキシ樹脂の主剤中の、ビフェニルノボラック型エポキシ樹脂の割合が50質量%以上である1の燃料電池セパレータ。
3.上記硬化促進剤が、下記式(2)で表されるイミダゾール化合物のみからなる1又は2の燃料電池セパレータ。
4.黒鉛粉末が、人造黒鉛粉末である1~3のいずれかの燃料電池セパレータ。
燃料電池セパレータ用組成物に含まれる黒鉛粉末としては、天然黒鉛でも人造黒鉛でもよいが、特に塊状黒鉛あるいは塊状黒鉛を球形化した人造黒鉛粉末が好ましい。黒鉛粉末の平均粒径d50は、20~100μmが好ましく、より好ましくは30~80μmである。平均粒径d50が20μm未満であると、熱硬化性樹脂が黒鉛材料の表面を覆いやすくなり、粒子同士の接触面積が小さくなるため、セパレータ自体の導電性が悪化するおそれがある。また、平均粒径が100μmを超えると、黒鉛粒子と熱硬化性樹脂との接触面積が小さくなり、十分な機械的強度が得られないおそれがある。なお、本発明における平均粒径d50は、レーザ回折法による粒度分布測定におけるメジアン径として表される。
本発明の燃料電池セパレータは、上記燃料電池セパレータ用組成物を所望のセパレータの形状に成形してなるものである。セパレータの成形方法は特に限定されず、射出成形、トランスファー成形、圧縮成形、押出成形、シート成形等を採用することができる。成形時に金型を使用する際は、成形体の表面の一方の面又は両面にガス供給排出用流路となる溝を形成できる燃料電池セパレータ作製用の金型を使用するとよい。
[ICI粘度]
(株)コーデックス社製ICIコーンプレート粘度計を用いてプレート温度150℃で測定した。
[平均粒径d50]
粒度分布測定装置(日機装(株)製マイクロトラックMT3000)を用いて測定した。
[厚さムラ]
マイクロメータ((株)ミツヨト製デジマチックPMU150-25DM)により、セパレータの厚さを20点ずつ測定して、平均厚さを算出し、更に下記式により厚さムラを算出した。
厚さムラ(%)=(最大厚さ-最小厚さ)/平均厚さ×100
[ガラス転移点]
熱分析装置(セイコーインスツルメンツ社製TMA6100)を使用し、昇温速度1℃/min、荷重5gの条件で測定を行い、得られた熱膨張係数の変曲点をガラス転移点とした。
[熱水浸漬処理]
熱水浸漬処理は、500mLフッ素樹脂製容器に、試験片とイオン交換水500mLを入れ、内温90℃で1,000時間加熱した後、試験片を取り出し、表面付着水をエアブローで除去し、次いで23℃で1時間風乾することで行った。
[熱水浸漬後の吸水率]
セパレータから切り出した100×20×2mmの試験片の重量を測定し、初期重量とした。この試験片に上記熱水浸漬処理を行い、その試験片の重量を測定して熱水浸漬後の重量とし、下記式より熱水浸漬後の吸水率を算出した。
熱水浸漬後の吸水率(%)=|熱水浸漬後の重量-初期重量|/初期重量×100
試験は、同じセパレータから切り出した5本の試験片で行い、熱水浸漬後の吸水率の平均値を求めた。
[熱水浸漬後の接触抵抗変化率]
セパレータから切り出した30mm×30mm×2mmの試験片を2枚重ね合わせ、その上下に銅電極を配置して上下方向に1MPaの面圧をかけ、4端子法により電圧を測定し、下記式により接触抵抗を算出して、初期接触抵抗とした。
接触抵抗(mΩ・cm2)=(電圧×接触面積)/電流
上記接触抵抗測定用の試験片をイオン交換水500mL中に入れ、上記熱水浸漬処理を行い、その後接触抵抗を測定して熱水浸漬後の接触抵抗とし、初期接触抵抗に対する下記式により熱水浸漬後の接触抵抗変化率を算出した。
熱水浸漬後の接触抵抗変化率(%)=|熱水浸漬後の接触抵抗-初期接触抵抗|/初期接触抵抗×100
試験は、同じセパレータから切り出した5組の試験片で行い、熱水浸漬後の接触抵抗変化率の平均を求めた。
[熱水浸漬後の曲げ強度変化率]
セパレータから切り出した100×20×2mmの試験片を用い、JIS K 6911「熱硬化性プラスチックの一般試験方法」に準じて、支点間距離40mmで3点曲げ試験を行い、初期曲げ強度とした。上記試験片をイオン交換水500mL中に入れ、上記熱水浸漬処理を行い、その後曲げ強度を測定して熱水浸漬後の曲げ強度とし、初期曲げ強度に対する下記式により熱水浸漬後の曲げ変化率を算出した。
熱水浸漬後の曲げ強度変化率(%)=|熱水浸漬後の曲げ強度-初期曲げ強度|/初期曲げ強度×100
試験は、初期及び熱水浸漬後それぞれ5本ずつ行い、熱水浸漬後の曲げ強度変化率の平均値を求めた。
黒鉛粉末として人造黒鉛粉末、エポキシ樹脂の主剤としてビフェニルノボラック型エポキシ樹脂、エポキシ樹脂の硬化剤としてノボラック型フェノール樹脂、硬化促進剤として2-フェニルイミダゾール、及び内部離型剤としてカルナバワックスを表1に示すとおりの配合量でヘンシェルミキサに投入し、500rpmで3分間混合して燃料電池セパレータ用組成物を調製した。
得られた組成物を200×200×2mmの燃料電池セパレータ作製用の金型に投入し、金型温度185℃、成形圧力30MPa、成形時間30秒間の条件により圧縮成形し、燃料電池セパレータを得た。
黒鉛粉末として人造黒鉛粉末、エポキシ樹脂の主剤としてビフェニルノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂及び/又はフェノールノボラック型エポキシ樹脂、エポキシ樹脂の硬化剤としてノボラック型フェノール樹脂、硬化促進剤として2-フェニルイミダゾール、並びに内部離型剤としてカルナバワックスを表2に示すとおりの配合量でヘンシェルミキサに投入し、500rpmで3分間混合して燃料電池セパレータ用組成物を調製した。
得られた組成物を200×200×2mmの燃料電池セパレータ作製用の金型に投入し、金型温度185℃、成形圧力30MPa、成形時間30秒間の条件により圧縮成形し、燃料電池セパレータを得た。
・人造黒鉛粉末:平均粒径d50 50μm、比表面積2.3m2/g
・ビフェニルノボラック型エポキシ樹脂:日本化薬(株)製NC-3000(実施例1~8及び比較例3~5)、日本化薬(株)製NC-3000l(比較例1)、日本化薬(株)製NC-3000H(比較例2)
・オルトクレゾールノボラック型エポキシ樹脂:日本化薬(株)製EOCN-1020-65(実施例6~8)、DIC(株)製N-655-EXP-S(比較例6)
・フェノールノボラック型エポキシ樹脂:日本化薬(株)製EPPN-201(比較例7)
・ノボラック型フェノール樹脂:昭和電工(株)製(実施例1、2、4、5~8、比較例1、2、6、7)、明和化成(株)製(実施例3、比較例4)
Claims (4)
- エポキシ樹脂及び黒鉛粉末を含む組成物を成形してなる燃料電池セパレータであって、
エポキシ樹脂が主剤、硬化剤及び硬化促進剤を含み、
上記主剤が、150℃におけるICI粘度が0.03~0.12Pa・sのビフェニルノボラック型エポキシ樹脂を含み、
上記硬化剤の重量平均分子量が420~1,500であって、かつ分散度が2.0以下であるノボラック型フェノール樹脂である
ことを特徴とする燃料電池セパレータ。 - エポキシ樹脂の主剤中の、ビフェニルノボラック型エポキシ樹脂の割合が50質量%以上である請求項1記載の燃料電池セパレータ。
- 黒鉛粉末が、人造黒鉛粉末である請求項1~3のいずれか1項記載の燃料電池セパレータ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2960454A CA2960454C (en) | 2014-09-08 | 2015-08-06 | Fuel cell separator |
EP15840022.6A EP3193400B1 (en) | 2014-09-08 | 2015-08-06 | Fuel cell separator |
US15/505,291 US10396367B2 (en) | 2014-09-08 | 2015-08-06 | Fuel cell separator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-182279 | 2014-09-08 | ||
JP2014182279A JP5880649B1 (ja) | 2014-09-08 | 2014-09-08 | 燃料電池セパレータ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016039052A1 true WO2016039052A1 (ja) | 2016-03-17 |
Family
ID=55453335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/072369 WO2016039052A1 (ja) | 2014-09-08 | 2015-08-06 | 燃料電池セパレータ |
Country Status (5)
Country | Link |
---|---|
US (1) | US10396367B2 (ja) |
EP (1) | EP3193400B1 (ja) |
JP (1) | JP5880649B1 (ja) |
CA (1) | CA2960454C (ja) |
WO (1) | WO2016039052A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109804492A (zh) * | 2016-10-14 | 2019-05-24 | 日清纺化学株式会社 | 燃料电池的致密性隔离物所用的树脂组合物 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6237805B2 (ja) * | 2016-03-15 | 2017-11-29 | 日清紡ケミカル株式会社 | 燃料電池用多孔質セパレータ |
US11811102B2 (en) * | 2018-09-01 | 2023-11-07 | Clarkson University | Material compositions and methods for porous graphite-polymer composite bipolar plates |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004075954A (ja) * | 2002-08-22 | 2004-03-11 | Sumitomo Bakelite Co Ltd | 燃料電池セパレーター用エポキシ樹脂組成物 |
JP2011113810A (ja) * | 2009-11-26 | 2011-06-09 | Panasonic Electric Works Co Ltd | 燃料電池セパレータ用樹脂組成物、燃料電池セパレータ成形用シート及び燃料電池セパレータ |
JP2013069605A (ja) * | 2011-09-26 | 2013-04-18 | Nisshinbo Chemical Inc | 燃料電池用多孔質セパレータ |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0955675B1 (en) * | 1998-05-07 | 2004-12-15 | Shin-Etsu Chemical Co., Ltd. | Epoxy resin compositions and semiconductor devices encapsulated therewith |
CA2413146C (en) * | 2000-06-29 | 2007-08-21 | Osaka Gas Company Limited | Conductive composition for solid polymer type fuel cell separator, solid polymer type fuel cell separator, solid polymer type fuel cell and solid polymer type fuel cell system using the separator |
JP2003268249A (ja) * | 2002-03-20 | 2003-09-25 | Showa Denko Kk | 導電性硬化性樹脂組成物、その硬化体およびその製造方法 |
JP4455810B2 (ja) | 2002-10-01 | 2010-04-21 | 東海カーボン株式会社 | 固体高分子型燃料電池用セパレータの製造方法 |
EP1602674B1 (en) * | 2003-03-10 | 2006-08-23 | Dainippon Ink and Chemicals, Incorporated | Conductive resin composition, process for production thereof, and fuel cell separators |
US20060006082A1 (en) * | 2004-07-07 | 2006-01-12 | Paul Fair | Golf bag with self actuating stand |
TWI396714B (zh) | 2004-09-01 | 2013-05-21 | Dainippon Ink & Chemicals | 環氧樹脂組成物、其硬化物品、半導體密封材料、新穎環氧樹脂、及製造新穎環氧樹脂之方法 |
JP5041309B2 (ja) * | 2005-09-26 | 2012-10-03 | 東海カーボン株式会社 | 燃料電池用セパレータ材とその製造方法 |
US7928735B2 (en) * | 2007-07-23 | 2011-04-19 | Yung-Sheng Huang | Battery performance monitor |
CA2698940C (en) * | 2007-09-12 | 2015-02-03 | Fumio Tanno | Bipolar plate for fuel cell |
JP2009158118A (ja) | 2007-12-25 | 2009-07-16 | Tokai Carbon Co Ltd | 固体高分子形燃料電池用セパレータ材およびその製造方法 |
JP5502552B2 (ja) | 2010-03-26 | 2014-05-28 | パナソニック株式会社 | 燃料電池セパレータ用組成物、燃料電池セパレータ、及び燃料電池の製造方法 |
JP5842142B2 (ja) | 2014-02-20 | 2016-01-13 | パナソニックIpマネジメント株式会社 | 燃料電池セパレータ用樹脂組成物、燃料電池セパレータ成形用シート及び燃料電池セパレータ |
-
2014
- 2014-09-08 JP JP2014182279A patent/JP5880649B1/ja active Active
-
2015
- 2015-08-06 WO PCT/JP2015/072369 patent/WO2016039052A1/ja active Application Filing
- 2015-08-06 EP EP15840022.6A patent/EP3193400B1/en active Active
- 2015-08-06 US US15/505,291 patent/US10396367B2/en active Active
- 2015-08-06 CA CA2960454A patent/CA2960454C/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004075954A (ja) * | 2002-08-22 | 2004-03-11 | Sumitomo Bakelite Co Ltd | 燃料電池セパレーター用エポキシ樹脂組成物 |
JP2011113810A (ja) * | 2009-11-26 | 2011-06-09 | Panasonic Electric Works Co Ltd | 燃料電池セパレータ用樹脂組成物、燃料電池セパレータ成形用シート及び燃料電池セパレータ |
JP2013069605A (ja) * | 2011-09-26 | 2013-04-18 | Nisshinbo Chemical Inc | 燃料電池用多孔質セパレータ |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109804492A (zh) * | 2016-10-14 | 2019-05-24 | 日清纺化学株式会社 | 燃料电池的致密性隔离物所用的树脂组合物 |
EP3528326A4 (en) * | 2016-10-14 | 2020-03-04 | Nisshinbo Chemical Inc. | RESIN COMPOSITION FOR DENSE FUEL CELL SEPARATORS |
CN109804492B (zh) * | 2016-10-14 | 2022-04-05 | 日清纺化学株式会社 | 燃料电池的致密性隔离物所用的树脂组合物 |
Also Published As
Publication number | Publication date |
---|---|
EP3193400A4 (en) | 2018-04-11 |
US10396367B2 (en) | 2019-08-27 |
US20180219231A1 (en) | 2018-08-02 |
JP5880649B1 (ja) | 2016-03-09 |
CA2960454A1 (en) | 2016-03-17 |
CA2960454C (en) | 2022-07-12 |
EP3193400B1 (en) | 2020-09-30 |
JP2016058186A (ja) | 2016-04-21 |
EP3193400A1 (en) | 2017-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5257497B2 (ja) | 燃料電池用多孔質セパレータ | |
JP5880649B1 (ja) | 燃料電池セパレータ | |
EP2458667B1 (en) | Fuel cell separator | |
JP5391005B2 (ja) | 燃料電池セパレータの製造方法及び燃料電池セパレータ | |
JP6332579B1 (ja) | 燃料電池緻密質セパレータ用樹脂組成物 | |
JP5879553B2 (ja) | 燃料電池セパレータの製造方法、ガスケット付き燃料電池セパレータの製造方法、及び燃料電池の製造方法 | |
JP5842142B2 (ja) | 燃料電池セパレータ用樹脂組成物、燃料電池セパレータ成形用シート及び燃料電池セパレータ | |
JP5486276B2 (ja) | 燃料電池セパレータ用樹脂組成物、燃料電池セパレータ成形用シート及び燃料電池セパレータ | |
JP2003213137A (ja) | 熱硬化性樹脂成形材料およびこれを成形してなる成形品 | |
JP4965832B2 (ja) | 燃料電池セパレータの製造方法及び燃料電池セパレータ | |
JP5624298B2 (ja) | 燃料電池セパレータの製造方法及び燃料電池セパレータ | |
JP2005339953A (ja) | 燃料電池用プリプレグ及びこの燃料電池用プリプレグから成る燃料電池用セパレータ、並びにその製造方法 | |
JP6132247B2 (ja) | ガスケット付き燃料電池セパレータの製造方法 | |
JP6145781B2 (ja) | 燃料電池セパレータ | |
JP5845458B2 (ja) | 燃料電池セパレータの製造方法 | |
JP2007269884A (ja) | 樹脂成形材料、薄肉成形品および燃料電池用シールド部品 | |
HK40008592A (en) | Resin composition for dense fuel cell separators | |
HK40008769A (en) | Resin composition for dense fuel cell separators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15840022 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15505291 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2960454 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015840022 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015840022 Country of ref document: EP |