[go: up one dir, main page]

WO2015162967A1 - 電池残量推定装置および電池残量推定方法 - Google Patents

電池残量推定装置および電池残量推定方法 Download PDF

Info

Publication number
WO2015162967A1
WO2015162967A1 PCT/JP2015/053221 JP2015053221W WO2015162967A1 WO 2015162967 A1 WO2015162967 A1 WO 2015162967A1 JP 2015053221 W JP2015053221 W JP 2015053221W WO 2015162967 A1 WO2015162967 A1 WO 2015162967A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
remaining amount
remaining
current
value
Prior art date
Application number
PCT/JP2015/053221
Other languages
English (en)
French (fr)
Inventor
敏裕 和田
福本 久敏
博人 西口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016514745A priority Critical patent/JP6129411B2/ja
Priority to US15/305,284 priority patent/US9977087B2/en
Publication of WO2015162967A1 publication Critical patent/WO2015162967A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a remaining battery level estimation device and a remaining battery level estimation method for estimating the remaining battery level from the current flowing through the battery and the voltage between the battery terminals, and in particular, to improve the remaining battery level estimation accuracy. It is.
  • the battery remaining amount estimation device As a conventional battery remaining amount estimation device, the current flowing through the battery and the voltage between the terminals of the battery are measured, the open circuit voltage of the battery is estimated using the battery parameters, and the obtained open circuit voltage is subjected to predetermined conversion. In some cases, the remaining battery level is estimated (see, for example, Patent Document 1). However, it is known that the relationship between the battery remaining amount and the open circuit voltage varies depending on the battery usage history, that is, has hysteresis. Therefore, the battery remaining amount estimation device according to Patent Document 1 has a problem that the remaining battery amount cannot be accurately estimated.
  • the remaining amount for switching from charging to discharging is used as the remaining amount at switching, and the relationship between the remaining battery remaining amount and the open circuit voltage is stored for each switching remaining amount.
  • There is a conventional technique for estimating the remaining amount see, for example, Patent Document 2).
  • the battery usage pattern is: (1) Start charging from a fully discharged state, switch to discharging at a certain remaining amount, and then completely discharge again, or (2) Start discharging from a fully charged state, and charge at a certain remaining amount
  • the present invention has been made in order to solve the above-described problems, and a battery remaining amount estimation device capable of accurately estimating the remaining battery amount regardless of the battery usage history even in a battery having hysteresis, and An object is to obtain a battery remaining capacity estimation method.
  • a battery remaining amount estimating device is a battery remaining amount estimating device that estimates a remaining battery amount from a voltage between terminals of a battery and a current flowing through the battery, and a current measuring unit that measures current and a voltage between terminals.
  • a first remaining amount storage unit that stores an estimated value of a first remaining battery level defined as a remaining battery level that has a corresponding relationship with an open circuit voltage of the battery, and an open circuit voltage
  • a second remaining capacity storage unit that stores a calculated value of the second battery remaining amount that has no relationship and is defined as an increase / decrease in the total amount with the first battery remaining amount corresponding to a current flowing through the battery
  • a current calculation unit for calculating a current between the first battery remaining amount and the second battery remaining amount based on the first battery remaining amount and the second battery remaining amount; and current measurement The value obtained by subtracting the remaining current from the current measured by the unit and the inter-terminal power measured by the voltage measurement unit
  • the first battery remaining amount is estimated based on the first remaining amount estimating unit to be stored in the first remaining amount storing unit, and the second remaining battery amount is calculated by integrating the current between the remaining amounts.
  • the second remaining amount calculation unit to be stored in the second remaining amount storage unit, the estimated value of the first battery remaining amount stored in the first remaining amount storage unit, and the second remaining amount storage unit An adder that adds the stored calculated value of the second battery remaining amount to obtain the battery remaining amount of the battery, and the current calculation unit increases the first battery remaining amount during battery charging.
  • the second battery remaining amount is changed from the first battery remaining amount to the second battery remaining amount so as to keep the remaining battery amount smaller than the first battery remaining amount by the first potential difference.
  • the amount of current to be passed is calculated as the current between the remaining amounts.
  • the first battery remaining amount is decreasing at the time of battery discharge, the first remaining battery amount is the second relative to the second remaining battery amount. It is to compute the amount of current flowing from the second battery remaining amount to the first battery remaining amount to maintain the amount corresponding battery is low potential difference as the remaining amount between a current.
  • the battery remaining capacity estimating method is a battery remaining capacity estimating method for estimating the remaining battery capacity from the voltage between the terminals of the battery and the current flowing through the battery, and has a corresponding relationship with the open circuit voltage of the battery. It was specified that the first battery remaining amount specified as the remaining amount and the open circuit voltage did not have a corresponding relationship, and that the increase / decrease in the total with the first battery remaining amount corresponds to the current flowing through the battery Measured by a current calculation step for calculating a current between the first battery remaining amount and the second battery remaining amount based on the second battery remaining amount, and a current measuring unit for measuring the current The first battery remaining amount is estimated based on the value obtained by removing the remaining amount current from the current flowing through the battery and the terminal voltage measured by the voltage measuring unit that measures the voltage, and the first remaining amount storing unit The first remaining amount estimation step to be memorized and the current between the remaining amount are integrated And calculating a second remaining battery level and storing the second remaining battery level in the second remaining capacity storage unit,
  • an addition step of adding the calculated value of the second battery remaining amount stored in the second remaining amount storage unit to obtain the battery remaining amount of the battery, and the current calculating step is performed when the battery is charged.
  • the first battery level increases, the first battery level is such that the second battery level is less than the first battery level by the first potential difference.
  • the amount of current that flows from the remaining battery level to the second remaining battery level is calculated as the remaining battery level current, and when the first remaining battery level decreases during battery discharge, Flow from the second battery level to the first battery level so that the remaining battery level is less than the second battery level by the second potential difference. It is to compute the amount of current as the residual current between.
  • the first battery remaining amount defined as the battery remaining amount having a correspondence relationship with the open circuit voltage of the battery has no correspondence relationship with the open circuit voltage of the battery
  • the first battery A function for estimating the first remaining battery level and a second remaining battery level are calculated in consideration of the second remaining battery level, which is defined as an increase or decrease in the total amount with the remaining battery level corresponding to the current flowing through the battery.
  • Embodiment 1 of the present invention It is an equivalent circuit diagram of the battery in Embodiment 1 of the present invention. It is the flowchart which showed the series of processes by the battery remaining charge estimation apparatus which does not depend on this invention. It is a whole block diagram of the battery remaining charge estimation apparatus in Embodiment 1 of this invention. It is a block diagram of the electric current calculation part between residual amounts in Embodiment 1 of this invention. It is the flowchart which showed the serial process by the battery residual amount estimation apparatus by Embodiment 1 of this invention. It is the flowchart which showed the series of processes by the remaining amount electric current calculation part by Embodiment 1 of this invention. It is a whole block diagram of the battery remaining charge estimation apparatus in Embodiment 2 of this invention.
  • Embodiment 2 of this invention It is a block diagram of the potential comparison part in Embodiment 2 of this invention. It is a block diagram of the electric current calculation part between residual amount in Embodiment 2 of this invention. It is the flowchart which showed the series of processes by the battery remaining charge estimation apparatus by Embodiment 2 of this invention. It is the flowchart which showed the serial process by the potential comparison part by Embodiment 2 of this invention. It is the flowchart which showed the series of processes by the remaining amount electric current calculation part by Embodiment 2 of this invention. It is a block diagram of the potential comparison part in Embodiment 3 of this invention. It is the flowchart which showed the serial process by the potential comparison part by Embodiment 3 of this invention.
  • FIG. 1 is a diagram showing a model of a remaining battery level in the prior art and a relationship between the remaining battery level and an open circuit voltage.
  • the water stored in the water tank represents the remaining battery capacity 101, and the increase or decrease in the remaining capacity can be represented by the current 102 flowing through the battery.
  • a curve 103 represents the correspondence between the remaining battery level and the open circuit voltage.
  • FIG. 2 is a diagram showing the relationship between the actual remaining battery level and the open circuit voltage.
  • FIG. 2 when an actual battery is charged / discharged and the relationship between the remaining amount and the open circuit voltage is measured, it has hysteresis characteristics. That is, when the battery is charged from the fully discharged state, a high open circuit voltage is measured for the same remaining amount, and when the battery is discharged from the fully charged state, a low open circuit voltage is measured for the same remaining amount. .
  • Patent Document 1 includes a step of estimating the remaining battery level from the open circuit voltage using the relationship between the remaining battery level and the open circuit voltage. Therefore, if the relationship between the remaining battery level and the open circuit voltage is not 1: 1, the remaining battery level cannot be estimated correctly.
  • FIG. 3 is a diagram showing a model of the remaining battery level in Embodiment 1 of the present invention and the relationship between the remaining battery level and the open circuit voltage.
  • the first remaining battery level 301 reflected in the open circuit voltage of the battery means that the first remaining battery level 301 corresponds to the remaining battery level indicated by the vertical axis in FIG. This means that the relationship between the remaining battery level 301 and the open circuit voltage is reflected as one-to-one. That is, the first remaining battery level 301 is defined as the remaining battery level having a corresponding relationship with the open circuit voltage of the battery.
  • second battery remaining amount 302 not reflected in the open circuit voltage of the battery is directly related to the battery remaining amount 302 indicated by the vertical axis in FIG. 3.
  • the relationship between the second battery remaining amount 302 and the open circuit voltage is not reflected as a one-to-one relationship. That is, the second remaining battery level 302 is defined as a remaining battery level that does not have a corresponding relationship with the open circuit voltage of the battery, unlike the first remaining battery level. Is defined as corresponding to the current 102 flowing through the battery.
  • the exchange of the amount of electricity between the first battery remaining amount 301 and the second battery remaining amount 302 is controlled to open and close according to the difference between the first battery remaining amount 301 and the second battery remaining amount 302. Controlled by valve 303.
  • FIG. 4 is an explanatory diagram regarding the behavior during battery charging of the battery remaining amount estimating apparatus according to the first embodiment of the present invention. Changes in the first remaining battery charge 301 and the second remaining battery charge 302 are shown in FIG. This is shown over four stages (a) to (d).
  • the total remaining battery level increases with the charging, and a predetermined potential difference 402 during charging between the first remaining battery level 301 and the second remaining battery level 302 as shown in FIG. If a difference in water pressure (ie, a difference in water surface height is expressed in FIG. 4), the control valve 303 is opened.
  • control valve 303 is maintained in the open state, and the first battery remaining amount 301 to the second battery remaining amount 302 are maintained so as to maintain the potential difference 402. Current to
  • FIG. 4 (d) is a diagram illustrating a state where the battery is in a fully charged state.
  • the second battery remaining amount 302 is an amount obtained by adding a predetermined potential difference 402 during charging to the fully charged first battery remaining amount 301.
  • the state having such a predetermined potential difference is unique regardless of the charge / discharge process.
  • FIG. 5 is explanatory drawing regarding the behavior at the time of battery discharge of the battery remaining charge estimation apparatus which concerns on Embodiment 1 of this invention, and the change of the 1st battery remaining charge 301 and the 2nd battery remaining charge 302 is shown. Is shown over four stages (a) to (d).
  • the potential difference between the first battery remaining amount 301 and the second battery remaining amount 302 is as follows. Is a predetermined potential difference of 502 or less. (The predetermined potential difference 502 during discharging may be different from the predetermined potential difference 402 during charging).
  • control valve 303 When the discharge is further continued, as shown in FIG. 5C, the control valve 303 is maintained in the open state, and the second battery remaining amount 302 to the first battery remaining amount 301 are maintained so as to maintain the potential difference 502. Current to
  • FIG. 5 (d) is a diagram illustrating the battery in a fully discharged state.
  • the second battery remaining amount 302 is an amount having a predetermined potential difference 502 at the time of discharging with respect to the first battery remaining amount 301 in a fully discharged state.
  • the state having such a predetermined potential difference is unique regardless of the charge / discharge process.
  • the control valve 303 performs the opening / closing control described with reference to FIGS. 4 and 5 not only when the battery is charged / discharged between the fully discharged state and the fully charged state but also when switching between charging and discharging in the intermediate charged state. Done. That is, the potential difference between the first battery remaining amount 301 and the second battery remaining amount 302 is kept to be a predetermined potential difference 402 or less during charging and to a predetermined potential difference 502 or less during discharging.
  • the control valve 303 is controlled to open and close. Thereby, in any charge / discharge process, the relationship between the total remaining battery level and the open circuit voltage can be accurately expressed in consideration of hysteresis.
  • FIG. 6 is an overall configuration diagram of a remaining battery level estimation apparatus 601 that does not depend on the present invention.
  • the voltage measuring unit 602 measures the voltage between the terminals of the battery 603 every predetermined sampling time.
  • the current measuring unit 604 measures the current 102 flowing through the battery 603 every predetermined sampling time.
  • the overvoltage prediction unit 605 predicts the current overvoltage from the estimated value of the overvoltage one sample before stored in the overvoltage storage unit 606 and the current 102 flowing through the battery 603 measured by the current measurement unit 604.
  • the remaining amount predicting unit 607 calculates the current battery from the estimated value of the remaining battery amount 101 one sample before stored in the remaining amount storage unit 608 and the current 102 flowing through the battery 603 measured by the current measuring unit 604.
  • the remaining amount 101 is predicted.
  • the open circuit voltage calculation unit 609 calculates the current open circuit voltage based on the curve 103 from the predicted value of the current battery remaining amount 101 predicted by the remaining amount prediction unit 607.
  • the adder 610 adds the predicted value of the overvoltage predicted by the overvoltage prediction unit 605 and the open circuit voltage calculated by the open circuit voltage calculation unit 609, and calculates the predicted value of the terminal voltage of the battery 603.
  • the subtractor 611 takes the difference between the measured value of the terminal voltage of the battery 603 measured by the voltage measuring unit 602 and the predicted value of the terminal voltage of the battery 603 obtained by the adder 610.
  • the correction amount calculation unit 612 calculates a correction amount related to the overvoltage and the remaining battery level 101 from the differential voltage calculated by the differentiator 611.
  • the overvoltage estimation unit 613 estimates the overvoltage of the battery 603 from the overvoltage predicted value predicted by the overvoltage prediction unit 605 and the correction amount related to the overvoltage calculated by the correction amount calculation unit 612 and stores the overvoltage in the overvoltage storage unit 606. .
  • the remaining amount estimation unit 614 estimates the remaining battery level 101 from the predicted value of the remaining battery level 101 predicted by the remaining amount prediction unit 607 and the correction amount related to the remaining battery level calculated by the correction amount calculation unit 612. The amount is stored in the amount storage unit 608.
  • the battery remaining amount output unit 615 outputs the estimated value of the current battery remaining amount 101 stored in the remaining amount storage unit 608.
  • FIG. 7 is an equivalent circuit diagram of the battery according to Embodiment 1 of the present invention.
  • the overvoltage prediction unit 605 for example, based on the current 102 flowing through the battery 603 and the estimated value of the overvoltage one sample before stored in the overvoltage storage unit 606, based on the equivalent circuit of the battery 603 as shown in FIG. Predict overvoltage.
  • Cd is the capacitance [C] of the capacitor in FIG. 7
  • Rd is the resistance [ ⁇ ] in FIG.
  • the overvoltage v [V] is expressed as the following expression (2) using the charge qd.
  • R 0 is the resistance [ ⁇ ] in FIG.
  • the overvoltage prediction unit 605 numerically calculates the integral of the above equation (4), thereby calculating the current overvoltage predicted value vp from the current 102 flowing through the battery 603 and the overvoltage estimated value ve one sample time ago. calculate.
  • the remaining amount predicting unit 607 integrates the current 102 flowing through the battery 603 measured by the current measuring unit 604 into the estimated value of the battery remaining amount 101 one sample before stored in the remaining amount storing unit 608. , Predict the current battery level. That is, assuming that the estimated value of the battery remaining amount 101 one sample before is Qe [C] and the predicted value of the battery remaining amount 101 is Qp [C], the remaining amount predicting unit 607 uses the following equation (5): The predicted value Qp of the remaining battery level 101 is calculated numerically.
  • the correction amount calculation unit 612 calculates a correction amount related to the overvoltage and the battery remaining amount 101 by multiplying the differential voltage obtained by the differentiator 611 by a predetermined coefficient, for example.
  • the overvoltage estimation unit 613 estimates the current overvoltage by subtracting the correction amount related to the overvoltage calculated by the correction amount calculation unit 612 from the predicted value of the current overvoltage predicted by the overvoltage prediction unit 605, It memorize
  • the remaining amount estimation unit 614 subtracts the correction amount of the remaining battery level 101 calculated by the correction amount calculation unit 612 from the predicted value of the current remaining battery level 101 predicted by the remaining amount prediction unit 607, for example.
  • the current battery remaining amount 101 is estimated and stored in the remaining amount storage unit 608.
  • FIG. 8 is a flowchart showing a series of processes by the battery remaining amount estimating apparatus 601 that does not depend on the present invention, and is a flowchart when the battery remaining amount estimating apparatus 601 shown in FIG. 6 is realized as software. Each process corresponds to each part of FIG. 6 described above.
  • FIG. 9 is an overall configuration diagram of the remaining battery level estimation apparatus 901 according to Embodiment 1 of the present invention. Hereinafter, it demonstrates in detail centering on difference with the conventional battery remaining charge estimation apparatus 601 which does not depend on this invention shown in FIG.
  • the differencer 902 calculates the difference between the current 102 of the battery 603 measured by the current measuring unit 604 and the current between remaining amounts calculated by the remaining amount current calculating unit (current calculating unit) 903.
  • the first remaining amount predicting unit 904 is based on the difference current calculated by the differentiator 902 and the estimated value of the first battery remaining amount 301 one sample before stored in the first remaining amount storage unit 905. A predicted value of the first remaining battery charge 301 is calculated.
  • the first remaining amount estimating unit 906 includes a first battery remaining amount 301 predicted by the first remaining amount predicting unit 904 and a correction amount related to the first battery remaining amount 301 calculated by the correction amount calculating unit 612. From this, the first remaining battery charge 301 is estimated and stored in the first remaining battery storage 905.
  • the first remaining amount prediction unit 904, the first remaining amount storage unit 905, and the first remaining amount estimation unit 906 predict, store, and estimate the first remaining battery amount 301 instead of the remaining battery amount 101, respectively. Except for this, they are the same as the remaining amount predicting unit 607, remaining amount storing unit 608, and remaining amount estimating unit 614 shown in FIG.
  • the remaining battery current calculation unit 903 includes an estimated value of the first remaining battery level 301 stored in the first remaining battery level storage unit 905 and a second remaining battery level stored in the second remaining battery level storage unit 907. Based on the estimated value of the quantity 302, the current between the remaining amounts, that is, the current flowing through the control valve 303 is calculated.
  • the second remaining amount calculation unit 908 includes the remaining amount current calculated by the remaining amount current calculation unit 903, and the second battery remaining amount one sample before stored in the second remaining amount storage unit 907.
  • a calculated value of the current second battery remaining amount 302 is calculated from the estimated value 302 and stored in the second remaining amount storage unit 907.
  • the adder 909 calculates the estimated value of the first battery remaining amount 301 stored in the first remaining amount storage unit 905 and the second battery remaining amount 302 stored in the second remaining amount storage unit 907. The value is added and output to the remaining battery power output unit 615.
  • the first remaining amount prediction unit 904 uses the estimated value of the first battery remaining amount 301 one sample before stored in the first remaining amount storage unit 905 as Q1e [C], and the current remaining amount calculation unit 903. Assuming that the inter-remaining current calculated by (1) is Ii [A], the predicted value Q1p [C] of the first remaining battery charge 301 is obtained by numerical calculation using the following equation (6).
  • the second remaining amount calculating unit 908 is calculated by the estimated value of the second battery remaining amount 302 one sample before stored in the second remaining amount storing unit 907 and the current remaining amount calculating unit 903.
  • the current estimated value of the second battery remaining amount 302 is obtained from the inter-remaining current I_i by calculating numerically using the following equation (7).
  • the first battery remaining amount 301 is, for example, the amount of lithium intercalated between graphite layers in the lithium ion secondary battery carbon negative electrode
  • the second battery remaining amount 302 is, for example, a lithium graphite end.
  • E1 and E2 are functions of the first remaining amount Q1 [C] and the second remaining amount Q2, respectively. is there.
  • the potential difference ⁇ E [J / mol] is expressed by the following formula (8).
  • the remaining current between the first battery remaining amount 301 and the second battery remaining amount 302 is, for example, a predetermined potential difference 402 when charging ⁇ 1 and a predetermined potential difference 502, ⁇ 1, when ⁇ 2 is discharging.
  • ⁇ 2 as a predetermined parameter, it can be expressed by a function such as the following equation (9).
  • the first term on the right side represents the reaction rate of the normal reaction
  • the second term on the right side represents the reaction rate of the reverse reaction
  • the remaining amount current calculation unit 903 calculates the remaining amount current according to the above equation (9).
  • the first exponential function of the above equation (9) increases rapidly when the potential difference ⁇ E exceeds ⁇ 1, and current flows from the first battery remaining amount 301 to the second battery remaining amount 302. This reduces the potential difference ⁇ E, and as a result, the potential difference ⁇ E is kept below ⁇ 1.
  • FIG. 10 is a configuration diagram of the remaining amount current calculation unit 903 according to the first embodiment of the present invention.
  • the first potential function calculation unit (first function calculation unit) 1001 uses a first predetermined value Q1 of the first battery remaining amount 301 stored in the first remaining amount storage unit 905 to determine a first predetermined value.
  • the value of the potential function E1 (Q1) is calculated.
  • the second potential function calculation unit (second function calculation unit) 1002 is a second predetermined value determined from the estimated value Q2 of the second battery remaining amount 302 stored in the second remaining amount storage unit 907.
  • the value of the potential function E2 (Q2) is calculated.
  • the differentiator 1003 calculates the difference between the value of the first potential function calculated by the first potential function calculation unit 1001 and the value of the second potential function calculated by the second potential function calculation unit 1002. .
  • the positive reaction rate calculation unit 1004 calculates the reaction rate of the positive reaction from the potential difference calculated by the differentiator 1003.
  • the reverse reaction rate calculation unit 1005 calculates the reaction rate of the reverse reaction from the potential difference calculated by the differentiator 1003.
  • the difference unit 1006 calculates the difference between the reaction rate of the normal reaction calculated by the normal reaction rate calculation unit 1004 and the reaction rate of the reverse reaction calculated by the reverse reaction rate calculation unit 1005, and calculates the difference between the remaining amount currents. Output as.
  • FIG. 11 is a flowchart showing a series of processes performed by battery remaining amount estimating apparatus 901 according to the first embodiment of the present invention.
  • Battery remaining amount estimating apparatus 901 according to the first embodiment shown in FIG. 9 is used as software. It is a flowchart in the case of implement
  • FIG. 12 is a flowchart showing a series of processing by the remaining amount current calculation unit 903 according to the first embodiment of the present invention, and the remaining amount current calculation unit according to the first embodiment shown in FIG. 10 is a flowchart when 903 is realized as software. Each process corresponds to each part of FIG. 10 described above.
  • the procedure is not limited to those shown in the flowcharts of FIGS. 11 and 12. In each calculation process, as long as the precondition process has already been performed, the replacement of the procedure is allowed.
  • the elements included in the remaining battery level estimation apparatus 601 not according to the present invention shown in FIG. 6 are limited to the configuration shown in FIG. It is not done.
  • the overvoltage estimator 613, the remaining amount estimator 614, and the like are configured other than the method shown in the first embodiment, or the overvoltage predictor 605 and the overvoltage estimator 613 are not clearly separated.
  • the present invention can be implemented as long as it has a function that enables estimation of the remaining amount based on the current and the voltage between the terminals.
  • the first remaining battery level reflected in the open circuit voltage of the battery and the second remaining battery level that is not reflected in the open circuit voltage of the battery is estimated.
  • a phenomenon in which the remaining amount of the battery with the same open circuit voltage is different is expressed by considering that the second remaining battery level that is not reflected in the open circuit voltage is different.
  • the remaining battery level can be accurately estimated even when the battery has hysteresis. That is, by combining the present invention with a known battery remaining amount estimating device, it is possible to accurately estimate the remaining amount of the battery from the battery current and the voltage between the terminals.
  • Embodiment 2 a battery remaining amount estimating apparatus having a configuration different from that of the first embodiment will be described.
  • the first exponential function of the above equation (9) increases rapidly when the potential difference ⁇ E exceeds ⁇ 1.
  • FIG. 13 is an overall configuration diagram of a remaining battery level estimation device 1301 according to Embodiment 2 of the present invention.
  • a detailed description will be given focusing on the difference from the remaining battery level estimation apparatus 901 in the first embodiment shown in FIG.
  • the potential comparison unit 1302 calculates the estimated value of the first battery remaining amount 301 stored in the first remaining amount storage unit 905 and the second battery remaining amount 302 stored in the second remaining amount storage unit 907. The potential difference is calculated from the estimated value. The potential comparison unit 1302 compares the calculated potential difference with the predetermined potential difference 402 during charging or the predetermined potential difference 502 during discharging.
  • the remaining battery current calculation unit 1303 includes a comparison result of the potential comparison unit 1302, an estimated value of the first remaining battery charge 301 stored in the first remaining battery storage unit 905, and a second remaining battery storage unit 907.
  • the remaining current is calculated based on the estimated value of the second remaining battery level 302 stored in step S3 and the current 102 measured by the current measuring unit 604.
  • FIG. 14 is a configuration diagram of the potential comparison unit 1302 according to Embodiment 2 of the present invention.
  • the first potential function calculation unit 1001 calculates a predetermined first remaining potential function E1 from the estimated value of the first battery remaining amount 301 stored in the first remaining amount storage unit 905. .
  • the second potential function calculation unit 1002 calculates a predetermined second remaining potential function E2 from the estimated value of the second battery remaining amount 302 stored in the second remaining amount storage unit 907. .
  • the differentiator 1003 is a difference between the first remaining potential E1 calculated by the first potential function calculator 1001 and the second remaining potential E2 calculated by the second potential function calculator 1002. That is, the potential difference ⁇ E is calculated.
  • the comparator 1401 compares the potential difference ⁇ E with a predetermined potential difference ⁇ 2. If ⁇ E is ⁇ 2 or less, the comparator 1401 outputs T to the remaining amount current calculation unit 1303. Otherwise, the comparator 1402 compares ⁇ E with a predetermined remaining amount difference ⁇ 1, and if ⁇ E is equal to or greater than ⁇ 1, outputs T to the remaining amount current calculation unit 1303, otherwise outputs F. .
  • FIG. 15 is a configuration diagram of the remaining amount current calculation unit 1303 according to the second embodiment of the present invention.
  • the first partial differential calculation unit 1501 calculates a partial differential coefficient related to the first remaining amount Q1 of the potential function E1 from the estimated value of the first remaining battery amount 301 stored in the first remaining amount storage unit 905. calculate.
  • the second partial differential calculation unit 1502 calculates a partial differential coefficient related to the second remaining amount Q2 of the potential function E2 from the estimated value of the second battery remaining amount 302 stored in the second remaining amount storage unit 907. calculate.
  • the adder 1503 adds the partial differential coefficient calculated by the first partial differential calculation unit 1501 and the partial differential coefficient calculated by the second partial differential calculation unit 1502.
  • the divider 1504 divides the partial differential coefficient calculated by the first partial differential calculation unit 1501 by the partial differential coefficient added by the adder 1503.
  • Multiplier 1505 calculates the product of the partial differential coefficient ratio calculated by divider 1504 and the battery current measured by current measuring unit 604.
  • the switcher 1506 outputs the value calculated by the multiplier 1505 if the potential comparator 1302 outputs T, and outputs zero as the remaining amount current if F is output.
  • FIG. 16 is a flowchart showing a series of processes performed by the remaining battery level estimation device 1301 according to the second embodiment of the present invention.
  • the remaining battery level estimation device 1301 according to the second embodiment shown in FIG. 13 is used as software. It is a flowchart in the case of implement
  • FIG. 17 is a flowchart showing a series of processing performed by the potential comparison unit 1302 according to the second embodiment of the present invention.
  • the potential comparison unit 1302 according to the second embodiment shown in FIG. 14 is realized as software. It is a flowchart in the case. Each process corresponds to each part of FIG. 14 described above.
  • FIG. 18 is a flowchart showing a series of processes by the remaining amount current calculation unit 1303 according to the second embodiment of the present invention, and the remaining amount current calculation unit according to the second embodiment shown in FIG. It is a flowchart in the case of realizing 1303 as software. Each process corresponds to each part of FIG. 15 described above.
  • the procedure is not limited to those shown in the flowcharts of FIGS. 16, 17, and 18. As long as the preconditions in each calculation process have already been performed, the exchange of procedures is allowed. However, in FIG. 18, when the comparison process by the potential comparison unit 1302 outputs F according to the procedure shown in the second embodiment, unnecessary processing is omitted, and the amount of calculation can be reduced. .
  • the normal reaction rate calculation unit 1004 calculates the reaction rate of the normal reaction
  • the reverse reaction rate calculation unit 1005 calculates the reaction rate of the reverse reaction.
  • the reaction rate of the forward reaction and the reverse reaction is an exponential function of the potential difference ⁇ E, and when the potential difference takes a large value, the reaction rate becomes a very large value.
  • the remaining battery level can be accurately estimated even when the battery has hysteresis, and the above-described first embodiment. Can solve the problem.
  • the potential comparison unit 1302 and the remaining amount current calculation unit 1303 are shown as separate components, but the function of the potential comparison unit 1302 is incorporated in the remaining amount current calculation unit 1303. Is also possible.
  • the first potential function and the second potential function generally include ⁇ p1, ⁇ p2, ⁇ n1, ⁇ n2, ⁇ p1, ⁇ p2, ⁇ n1, ⁇ n2, ⁇ 1, ⁇ 2, ⁇ 1, and ⁇ 2 as predetermined parameters. It is known that it is expressed by a function such as the following formula (12).
  • the logarithmic function can be approximated with a linear function with high accuracy.
  • ⁇ p1 and ⁇ p2 are reactions of the same graphite and lithium ions, it can be expected to take close values. Further, depending on the type of the battery 603, the terms of ⁇ 1 and ⁇ 2 including approximation of the logarithmic function may be almost zero.
  • the potentials of the first battery remaining amount 301 and the second battery remaining amount 302 can be expressed by the following equation (13) with ⁇ , ⁇ p1, ⁇ p2, ⁇ 1, and ⁇ 2 as parameters.
  • FIG. 19 is a configuration diagram of the potential comparison unit 1302 according to the third embodiment of the present invention.
  • the multiplier 1901 multiplies the estimated value of the second battery remaining amount 302 stored in the second remaining amount storage unit 907 by a predetermined coefficient.
  • Adder 1902 adds a predetermined coefficient to the value calculated by multiplier 1901.
  • Multiplier 1903 multiplies the estimated value of second battery remaining amount 302 stored in second remaining amount storage unit 907 by a predetermined coefficient.
  • An adder 1904 adds a predetermined coefficient to the value calculated by the multiplier 1903.
  • the subtractor 1905 subtracts the value added by the adder 1902 from the estimated value of the first battery remaining amount 301 stored in the first remaining amount storage unit 905.
  • the differentiator 1906 subtracts the value added by the adder 1904 from the estimated value of the first battery remaining amount 301 stored in the first remaining amount storage unit 905.
  • the comparator 1907 determines whether or not the value calculated by the differentiator 1905 is zero or more.
  • the comparator 1907 outputs T if the value calculated by the differentiator 1905 is greater than or equal to zero, and if not, the comparator 1908 determines whether the value calculated by the differentiator 1906 is less than or equal to zero. It is determined whether or not, F is output if zero or less, and T is output otherwise.
  • FIG. 20 is a flowchart showing a series of processes performed by the potential comparison unit 1302 according to the third embodiment of the present invention.
  • the potential comparison unit 1302 according to the third embodiment shown in FIG. 19 is realized as software. It is a flowchart. Each process corresponds to each part of FIG. 19 described above.
  • the potential comparison unit can be configured only by comparing the product and sum related to the first remaining amount and the second remaining amount, and zero. As a result, the same effects as those of the second embodiment can be obtained, and the amount of calculation for estimating the remaining battery level can be reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

 電池の開回路電圧に反映される第1の電池残量および開回路電圧に反映されない第2の電池残量に基づいて残量間電流を計算する電流計算部と、電池の電流値から残量間電流を除いた値と、電池の端子間電圧に基づいて第1の電池残量を推定する第1の残量推定部と、残量間電流を積算することにより第2の電池残量を計算する第2の残量計算部と、第1の電池残量の推定値と第2の電池残量の計算値を加算して電池の電池残量とする加算器とを備え、電流計算部は、第1の電池残量と第2の電池残量が所定のポテンシャル差を保つように、残量間電流を計算する。

Description

電池残量推定装置および電池残量推定方法
 本発明は、電池を流れる電流および電池端子間の電圧から、電池の残量を推定する電池残量推定装置および電池残量推定方法に関するものであり、特に、残量推定精度の向上を図るものである。
 従来の電池残量推定装置として、電池を流れる電流および電池の端子間電圧を測定し、電池パラメータを利用して電池の開回路電圧を推定し、得られた開回路電圧に所定の変換を施すことで電池残量を推定するものがある(例えば、特許文献1参照)。しかしながら、開回路電圧に対する電池残量の関係は、電池の使用履歴によって変化し、すなわち、ヒステリシスを持つことが知られている。従って、特許文献1による電池残量推定装置は、電池残量を正確に推定することができないという問題がある。
 このような問題に対して、充電から放電に切り替える残量を切替時残量とし、各切替時残量に対し異なる電池残量と開回路電圧の関係を記憶することで、より高精度に電池の残量を推定する従来技術がある(例えば、特許文献2参照)。
国際公開第2013-111231号 国際公開第2013-069459号
 しかしながら、従来技術には、以下のような課題がある。
 電池の使用パターンは、(1)完全放電状態から充電を開始し、ある残量において放電に切り替え、再度完全放電させる、あるいは、(2)満充電状態から放電を開始し、ある残量で充電に切り替え、再度満充電するといったものに限定されることはない。例えば、通常は、残量50%付近で細かく充放電を繰り返し、稀に深い充放電が行われるといった使われ方をする場合もある。
 例えば、完全放電状態(残量0%)から残量60%付近まで充電され、残量40%付近まで放電され、再度電池が充電に切り替えられた場合を考える。このような使用パターンにおいては、その後の充電時における電池残量と開回路電圧の関係は、満充電状態(残量100%)から残量40%付近まで放電し、そこから充電に切り替えた場合の電池残量と開回路電圧との関係とは異なるものになる。従って、このような使用パターンにおいては、従来の電池残量推定装置では、電池残量を正確に推定することができないといった問題がある。
 本発明は、前記のような課題を解決するためになされたものであり、ヒステリシスを持つ電池においても電池の使用履歴に関わらず電池残量を正確に推定することのできる電池残量推定装置および電池残量推定方法を得ることを目的とする。
 本発明に係る電池残量推定装置は、電池の端子間電圧および電池を流れる電流から電池残量を推定する電池残量推定装置であって、電流を計測する電流計測部と、端子間電圧を計測する電圧計測部と、電池の開回路電圧と対応関係を有する電池残量として規定された第1の電池残量の推定値を記憶する第1の残量記憶部と、開回路電圧と対応関係を有さず、かつ、第1の電池残量との総和の増減が電池を流れる電流に相当するとして規定された第2の電池残量の計算値を記憶する第2の残量記憶部と、第1の電池残量および第2の電池残量に基づいて、第1の電池残量と第2の電池残量との間の残量間電流を計算する電流計算部と、電流計測部によって計測された電流から残量間電流を除いた値と、電圧計測部によって計測された端子間電圧に基づいて第1の電池残量を推定し、第1の残量記憶部に記憶させる第1の残量推定部と、残量間電流を積算することにより第2の電池残量を計算し、第2の残量記憶部に記憶させる第2の残量計算部と、第1の残量記憶部に記憶された第1の電池残量の推定値と、第2の残量記憶部に記憶された第2の電池残量の計算値を加算し、電池の電池残量とする加算器とを備え、電流計算部は、電池充電時においては、第1の電池残量が増大していく際に、第2の電池残量が第1の電池残量に対して第1のポテンシャル差の分だけ少ない電池残量を保つように第1の電池残量から第2の電池残量に流す電流量を残量間電流として計算し、電池放電時においては、第1の電池残量が減少していく際に、第1の電池残量が第2の電池残量に対して第2のポテンシャル差の分だけ少ない電池残量を保つように第2の電池残量から第1の電池残量に流す電流量を残量間電流として計算するものである。
 また、本発明に係る電池残量推定方法は、電池の端子間電圧および電池を流れる電流から電池残量を推定する電池残量推定方法であって、電池の開回路電圧と対応関係を有する電池残量として規定された第1の電池残量、および開回路電圧と対応関係を有さず、かつ、第1の電池残量との総和の増減が電池を流れる電流に相当するとして規定された第2の電池残量に基づいて、第1の電池残量と第2の電池残量との間の残量間電流を計算する電流計算ステップと、電流を計測する電流計測部によって計測された電池を流れる電流から残量間電流を除いた値と、電圧を計測する電圧計測部によって計測された端子間電圧に基づいて第1の電池残量を推定し、第1の残量記憶部に記憶させる第1の残量推定ステップと、 残量間電流を積算することにより第2の電池残量を計算し、第2の残量記憶部に記憶させる第2の残量計算ステップと、第1の残量記憶部に記憶された第1の電池残量の推定値と、第2の残量記憶部に記憶された第2の電池残量の計算値を加算し、電池の電池残量とする加算ステップとを備え、電流計算ステップは、電池充電時においては、第1の電池残量が増大していく際に、第2の電池残量が第1の電池残量に対して第1のポテンシャル差の分だけ少ない電池残量を保つように第1の電池残量から第2の電池残量に流す電流量を残量間電流として計算し、電池放電時においては、第1の電池残量が減少していく際に、第1の電池残量が第2の電池残量に対して第2のポテンシャル差の分だけ少ない電池残量を保つように第2の電池残量から第1の電池残量に流す電流量を残量間電流として計算するものである。
 本発明によれば、電池の開回路電圧と対応関係を有する電池残量として規定された第1の電池残量とともに、電池の開回路電圧と対応関係を有さず、かつ、第1の電池残量との総和の増減が電池を流れる電流に相当するとして規定された第2の電池残量を考慮し、第1の電池残量を推定する機能と、第2の電池残量を計算する機能と、第1の電池残量および第2の電池残量に応じて残量間の電流を計算する機能とを有することにより、ヒステリシスを持つ電池においても電池の使用履歴に関わらず電池残量を正確に推定することのできる電池残量推定装置および電池残量推定方法を得ることができる。
従来技術における電池残量のモデル、および電池残量と開回路電圧との関係を示す図である。 現実の電池残量と開回路電圧との関係を示す図である。 本発明の実施の形態1における電池残量のモデル、および電池残量と開回路電圧との関係を示す図である。 本発明の実施の形態1に係る電池残量推定装置の、電池充電時における挙動に関する説明図である。 本発明の実施の形態1に係る電池残量推定装置の、電池放電時における挙動に関する説明図である。 本発明に依らない電池残量推定装置の全体構成図である。 本発明の実施の形態1における電池の等価回路図である。 本発明に依らない電池残量推定装置による一連処理を示したフローチャートである。 本発明の実施の形態1における電池残量推定装置の全体構成図である。 本発明の実施の形態1における残量間電流計算部の構成図である。 本発明の実施の形態1による電池残量推定装置による一連処理を示したフローチャートである。 本発明の実施の形態1による残量間電流計算部による一連処理を示したフローチャートである。 本発明の実施の形態2における電池残量推定装置の全体構成図である。 本発明の実施の形態2におけるポテンシャル比較部の構成図である。 本発明の実施の形態2における残量間電流計算部の構成図である。 本発明の実施の形態2による電池残量推定装置による一連処理を示したフローチャートである。 本発明の実施の形態2によるポテンシャル比較部による一連処理を示したフローチャートである。 本発明の実施の形態2による残量間電流計算部による一連処理を示したフローチャートである。 本発明の実施の形態3におけるポテンシャル比較部の構成図である。 本発明の実施の形態3によるポテンシャル比較部による一連処理を示したフローチャートである。
 以下、本発明の電池残量推定装置および電池残量推定方法の好適な実施の形態につき図面を用いて説明する。
 実施の形態1.
 まず始めに、現状の電池残量推定における問題点を、図面を用いて説明する。
 図1は、従来技術における電池残量のモデル、および電池残量と開回路電圧との関係を示す図である。水槽に貯まっている水が電池残量101を表し、残量の増減は、電池を流れる電流102によって表すことができる。曲線103が、電池残量と開回路電圧との対応関係を表している。
 一方、図2は、現実の電池残量と開回路電圧との関係を示す図である。図2に示すように、実際の電池を充放電させて、残量と開回路電圧との関係を計測すると、ヒステリシス特性を有している。すなわち、電池を完全放電状態から充電していくと、同じ残量に対し高い開回路電圧が計測され、満充電状態から放電していくと、同じ残量に対し低い開回路電圧が計測される。
 特許文献1においては、開回路電圧から、電池残量と開回路電圧との関係を用いて、電池の残量を推定するステップを含んでいる。従って、電池残量と開回路電圧との関係が1対1でなければ、正しく電池残量を推定できないこととなる。
 そこで、本実施の形態1では、ヒステリシスを持つ電池においても、電池の使用履歴に関わらず電池残量を正確に推定することのできる手法について説明する。図3は、本発明の実施の形態1における電池残量のモデル、および電池残量と開回路電圧との関係を示す図である。
 本実施の形態1における図3に示したモデルでは、電池の開回路電圧に反映される第1の電池残量301と、電池の開回路電圧に反映されない第2の電池残量302を考え、第1の電池残量301および第2の電池残量302の総和の増減を電流102としている。
 ここで、「電池の開回路電圧に反映される第1の電池残量301」とは、第1の電池残量301が、図3の縦軸で示した電池残量に相当し、第1の電池残量301と開回路電圧との関係が、1対1として反映されることを意味している。すなわち、第1の電池残量301は、電池の開回路電圧と対応関係を有する電池残量として規定されたものである。
 また、「電池の開回路電圧に反映されない第2の電池残量302」とは、前記第2の電池残量302が、図3の縦軸で示した電池残量とは直接には関係がなく、第2の電池残量302と開回路電圧との関係が、1対1としては反映されないことを意味している。すなわち、第2の電池残量302は、第1の電池残量とは異なり、電池の開回路電圧と対応関係を有していない電池残量として規定され、かつ、第1の電池残量301と第2の電池残量302との総和の増減が、電池を流れる電流102に相当するとして規定されたものである。
 そして、第1の電池残量301と第2の電池残量302との間の電気量のやりとりは、第1の電池残量301および第2の電池残量302の差分に応じて開閉する制御弁303によって制御される。
 次に、この図3のモデルによる電池充電時および電池放電時の挙動を、図面を用いて説明する。図4は、本発明の実施の形態1に係る電池残量推定装置の、電池充電時における挙動に関する説明図であり、第1の電池残量301および第2の電池残量302の変化を、(a)~(d)の4段階にわたって示している。
 電池が完全放電状態から充電されたとき、図4(a)に示すように、制御弁303は、閉じている。すなわち、電池に流入する電流102は、第1の電池残量301のみを増加させる。このとき、全体の電池残量と開回路電圧との関係は、図4(a)の点線401に従う。
 充電に伴い全体の電池残量が増加し、図4(b)に示すように、第1の電池残量301と第2の電池残量302との間に、充電時における所定のポテンシャル差402(図4においては、水圧差、すなわち、水面高の差で表現されている)がついたならば、制御弁303が開く。
 さらに充電を続けると、図4(c)に示すように、制御弁303は、開状態が維持され、ポテンシャル差402を保つように、第1の電池残量301から第2の電池残量302へ電流を流す。
 このとき、もしも制御弁303が開いていなかったとすれば、図4(c)の点線403に従って電池残量が増加する。しかしながら、制御弁303が開いたために、電流102に対する第1の電池残量301の変化は、制御弁303が開いていなかった場合と比較して減少する。この結果、全体の残量と開回路電圧との関係は、図4(c)の点線403が残量方向に拡大された曲線(すなわち、図4(c)の実線404)に従うこととなる。
 図4(d)は、電池が満充電状態にあるときを表す図である。第2の電池残量302は、満充電状態の第1の電池残量301に対して、充電時における所定のポテンシャル差402がついた量となる。このような所定のポテンシャル差がついた状態は、充放電過程によらず一意である。
 一方、図5は、本発明の実施の形態1に係る電池残量推定装置の、電池放電時における挙動に関する説明図であり、第1の電池残量301および第2の電池残量302の変化を、(a)~(d)の4段階にわたって示している。
 先の図4(d)の状態から放電をはじめ、図5(a)の状態にあるとき、第1の電池残量301と第2の電池残量302との間のポテンシャル差は、放電時における所定のポテンシャル差502以下である。(放電時における所定のポテンシャル差502は、前述した充電時における所定のポテンシャル差402と異なっていてもよい)
 このとき、制御弁303は、閉じており、電池を流れる電流102は、第1の電池残量301のみを減少させる。そして、このときの全体の電池残量と開回路電圧との関係は、図5(a)の点線501に従う。これは、先の図4(c)の点線403を平行移動したものに相当する。
 放電を続け、図5(b)のように、第1の電池残量301と第2の電池残量302の間に放電時における所定のポテンシャル差502がついたならば、制御弁303は、再び開き、所定のポテンシャル差502を保つように、第2の電池残量302から第1の電池残量301へ電流を流す。
 さらに放電を続けると、図5(c)に示すように、制御弁303は、開状態が維持され、ポテンシャル差502を保つように、第2の電池残量302から第1の電池残量301へ電流を流す。
 図5(d)は、電池が完全放電状態にあるときを表す図である。第2の電池残量302は、完全放電状態の第1の電池残量301に対して、放電時における所定のポテンシャル差502がついた量となる。このような所定のポテンシャル差がついた状態は、充放電過程によらず一意である。
 電池を完全放電状態と満充電の間で充放電する場合のみならず、中間的な充電状態において充電や放電を切り替える場合においても、制御弁303は、図4および図5で説明した開閉制御が行われる。すなわち、第1の電池残量301と第2の電池残量302との間のポテンシャル差を、充電時においては所定のポテンシャル差402以下に、放電時においては所定のポテンシャル差502以下に保つように制御弁303が開閉制御される。これにより、いかなる充放電過程においても、全体の電池残量と開回路電圧との関係を、ヒステリシスを考慮して正確に表現することができる。
 次に、装置構成に関して、従来装置と本実施の形態1における電池残量推定装置とを比較する。図6は、本発明に依らない電池残量推定装置601の全体構成図である。電圧計測部602は、電池603の端子間電圧を所定のサンプリング時間ごとに計測する。また、電流計測部604は、電池603を流れる電流102を所定のサンプリング時間ごとに計測する。
 過電圧予測部605は、過電圧記憶部606に記憶された1サンプル前の過電圧の推定値と、電流計測部604によって計測された電池603を流れる電流102から、現在の過電圧を予測する。
 一方、残量予測部607は、残量記憶部608によって記憶された1サンプル前の電池残量101の推定値と、電流計測部604によって計測された電池603を流れる電流102から、現在の電池残量101を予測する。開回路電圧計算部609は、残量予測部607によって予測された現在の電池残量101の予測値から、曲線103に基づいて現在の開回路電圧を計算する。
 加算器610は、過電圧予測部605によって予測された過電圧の予測値と、開回路電圧計算部609によって計算された開回路電圧を加算し、電池603の端子間電圧の予測値を計算する。
 差分器611は、電圧計測部602によって計測された電池603の端子間電圧の計測値と、加算器610によって求められた電池603の端子間電圧の予測値との差分をとる。補正量計算部612は、差分器611によって計算された差分電圧から、過電圧と電池残量101に関する補正量をそれぞれ計算する。
 過電圧推定部613は、過電圧予測部605によって予測された過電圧の予測値と、補正量計算部612によって計算された過電圧に関する補正量から、電池603の過電圧を推定し、過電圧記憶部606に記憶させる。残量推定部614は、残量予測部607によって予測された電池残量101の予測値と補正量計算部612によって計算された電池残量に関する補正量から、電池残量101を推定し、残量記憶部608に記憶させる。
 そして、電池残量出力部615は、残量記憶部608に記憶された現在の電池残量101の推定値を出力する。
 次に、数式を用いて、各構成要件の動作を、より具体的に説明する。図7は、本発明の実施の形態1における電池の等価回路図である。過電圧予測部605は、例えば、電池603を流れる電流102と過電圧記憶部606によって記憶された1サンプル前の過電圧の推定値から、この図7に示すような電池603の等価回路に基づいて、現在の過電圧を予測する。
 電池603を流れる電流102をI[A]とし、等価回路中のキャパシタに蓄えられた電荷をqd[C]とすると、qdは、下式(1)の微分方程式に従う。
Figure JPOXMLDOC01-appb-M000001
 ただし、Cdは、図7中のキャパシタの容量[C]、Rdは、図7中の抵抗[Ω]である。また、過電圧v[V]は、電荷qdを用いて、下式(2)として表される。
Figure JPOXMLDOC01-appb-M000002
 ただし、R0は、図7中の抵抗[Ω]である。上式(1)および(2)を解くと、一般解として、下式(3)を得る。
Figure JPOXMLDOC01-appb-M000003
 ここから、サンプリング間隔をh[s]、1サンプル前の過電圧の推定値をve[V]、過電圧の予測値をvp[V]、現在の時刻をt[s]とすると、過電圧の予測値vpは、下式(4)となる。
Figure JPOXMLDOC01-appb-M000004
 過電圧予測部605は、上式(4)の積分を数値的に計算することにより、電池603を流れる電流102と、1サンプル時刻前の過電圧の推定値veから、現在の過電圧の予測値vpを計算する。
 残量予測部607は、例えば、残量記憶部608に記憶された1サンプル前の電池残量101の推定値に、電流計測部604で計測された電池603を流れる電流102を積分することで、現在の電池残量を予測する。すなわち、1サンプル前の電池残量101の推定値をQe[C]、電池残量101の予測値をQp[C]とすると、残量予測部607は、下式(5)を用いて、電池残量101の予測値Qpを数値的に計算する。
Figure JPOXMLDOC01-appb-M000005
 補正量計算部612は、例えば、差分器611によって求められた差分電圧に、所定の係数を掛け合わせることで、過電圧および電池残量101に関する補正量を計算する。過電圧推定部613は、例えば、過電圧予測部605によって予測された現在の過電圧の予測値から、補正量計算部612によって計算された過電圧に関する補正量を減算することで、現在の過電圧を推定し、過電圧記憶部に記憶させる。
 残量推定部614は、例えば、残量予測部607によって予測された現在の電池残量101の予測値から、補正量計算部612によって計算された電池残量101の補正量を減算することで、現在の電池残量101を推定し、残量記憶部608に記憶させる。
 図8は、本発明に依らない電池残量推定装置601による一連処理を示したフローチャートであり、先の図6に示す電池残量推定装置601をソフトウェアとして実現する場合のフローチャートである。それぞれの処理は、上述した図6の各部に対応している。
 次に、本実施の形態1における電池残量推定装置について、図面を用いて詳細に説明する。図9は、本発明の実施の形態1における電池残量推定装置901の全体構成図である。以下、図6に示した本発明に依らない従来の電池残量推定装置601との差異を中心に、詳細に説明する。
 差分器902は、電流計測部604によって計測された電池603の電流102と、残量間電流計算部(電流計算部)903によって計算される残量間電流との差分を計算する。第1の残量予測部904は、差分器902によって計算された差分電流と、第1の残量記憶部905に記憶されている1サンプル前の第1の電池残量301の推定値から、第1の電池残量301の予測値を計算する。
 第1の残量推定部906は、第1の残量予測部904によって予測された第1の電池残量301と、補正量計算部612によって計算された第1の電池残量301に関する補正量から、第1の電池残量301を推定し、第1の残量記憶部905に記憶させる。
 第1の残量予測部904、第1の残量記憶部905、第1の残量推定部906は、それぞれ電池残量101の代わりに、第1の電池残量301を予測、記憶、推定することを除いて、それぞれ、先の図6に示した残量予測部607、残量記憶部608、残量推定部614と同様である。
 残量間電流計算部903は、第1の残量記憶部905に記憶された第1の電池残量301の推定値と、第2の残量記憶部907に記憶された第2の電池残量302の推定値に基づいて、残量間電流、すなわち、制御弁303を流れる電流を計算する。
 第2の残量計算部908は、残量間電流計算部903によって計算された残量間電流と、第2の残量記憶部907に記憶されている1サンプル前の第2の電池残量302の推定値から、現在の第2の電池残量302の計算値を計算し、第2の残量記憶部907に記憶させる。
 加算器909は、第1の残量記憶部905に記憶された第1の電池残量301の推定値と、第2の残量記憶部907に記憶された第2の電池残量302の計算値を加算し、電池残量出力部615に出力する。
 次に、数式を用いて、各構成要件の動作を、より具体的に説明する。第1の残量予測部904は、第1の残量記憶部905に記憶されている1サンプル前の第1の電池残量301の推定値をQ1e[C]、残量間電流計算部903によって計算された残量間電流をIi[A]として、第1の電池残量301の予測値Q1p[C]を、下式(6)を用いて、数値的に計算することによって求める。
Figure JPOXMLDOC01-appb-M000006
 第2の残量計算部908は、第2の残量記憶部907に記憶されている1サンプル前の第2の電池残量302の推定値と、残量間電流計算部903によって計算された残量間電流I_iから、現在の第2の電池残量302の推定値を、下式(7)を用いて、数値的に計算することによって求める。
Figure JPOXMLDOC01-appb-M000007
 現実の電池において、第1の電池残量301は、例えば、リチウムイオン二次電池炭素負極におけるリチウムのグラファイト層間への吸蔵量であり、第2の電池残量302は、例えば、リチウムのグラファイト端への付加反応量である。
 それぞれの反応における電気化学ポテンシャルをE1[J/mol]、E2[J/mol]とおけば、E1、E2は、それぞれ第1の残量Q1[C]、第2の残量Q2の関数である。ここで、ポテンシャル差ΔE[J/mol]は、下式(8)である。
Figure JPOXMLDOC01-appb-M000008
 第1の電池残量301と第2の電池残量302の間の残量間電流は、例えば、λ1を充電時における所定のポテンシャル差402、λ2を放電時における所定のポテンシャル差502、κ1、κ2を所定のパラメータとして、下式(9)のような関数によって表現できる。
Figure JPOXMLDOC01-appb-M000009
 ここで、右辺第1項は、正反応の反応速度、右辺第2項は、逆反応の反応速度を表す。
 残量間電流計算部903は、上式(9)に従って残量間電流を計算する。上式(9)の第1の指数関数は、ポテンシャル差ΔEがλ1を超えると急激に増加し、第1の電池残量301から第2の電池残量302へ電流が流れる。これは、ポテンシャル差ΔEを減少させることから、結果として、ポテンシャル差ΔEは、λ1以下に保たれる。
 逆に、ポテンシャル差ΔEが-λ2以下になると、上式(9)の第2の指数関数が急激に増加し、第2の電池残量302から第1の電池残量301へ電流が流れる。これは、ポテンシャル差ΔEを増加させることから、結果として、ポテンシャル差ΔEは、-λ2以上に保たれる。
 図10は、本発明の実施の形態1における残量間電流計算部903の構成図である。第1のポテンシャル関数計算部(第1の関数計算部)1001は、第1の残量記憶部905に記憶されている第1の電池残量301の推定値Q1から、あらかじめ定められた第1のポテンシャル関数E1(Q1)の値を計算する。
 第2のポテンシャル関数計算部(第2の関数計算部)1002は、第2の残量記憶部907に記憶されている第2の電池残量302の推定値Q2から、あらかじめ定められた第2のポテンシャル関数E2(Q2)の値を計算する。
 差分器1003は、第1のポテンシャル関数計算部1001によって計算された第1のポテンシャル関数の値と、第2のポテンシャル関数計算部1002によって計算された第2のポテンシャル関数の値の差分を計算する。
 正反応速度計算部1004は、差分器1003によって計算されたポテンシャル差から、正反応の反応速度を計算する。逆反応速度計算部1005は、差分器1003によって計算されたポテンシャル差から、逆反応の反応速度を計算する。
 差分器1006は、正反応速度計算部1004によって計算された正反応の反応速度と、逆反応速度計算部1005によって計算された逆反応の反応速度の差分を計算し、その差分を残量間電流として出力する。
 図11は、本発明の実施の形態1による電池残量推定装置901による一連処理を示したフローチャートであり、先の図9に示す本実施の形態1に係る電池残量推定装置901をソフトウェアとして実現する場合のフローチャートである。それぞれの処理は、上述した図9の各部に対応している。
 また、図12は、本発明の実施の形態1による残量間電流計算部903による一連処理を示したフローチャートであり、先の図10に示す本実施の形態1に係る残量間電流計算部903をソフトウェアとして実現する場合のフローチャートである。それぞれの処理は、上述した図10の各部に対応している。
 なお、本発明における電池残量推定装置901をソフトウェアとして実現する場合には、これら図11、図12のフローチャートに示した手順に限られるわけではない。各計算処理において、前提となる処理が既に行われている限りにおいて、手順の入れ替えが許容される。
 また、本発明における電池残量推定装置901の各要素のうち、図6に示す本発明によらない電池残量推定装置601にも含まれている要素に関しては、図6に示した構成に限られるわけではない。例えば、過電圧推定部613、残量推定部614等は、本実施の形態1に示した手法以外であっても、あるいは、過電圧予測部605と過電圧推定部613が明確に分離されない構成であっても、電流と端子間電圧に基づく残量の推定を可能とする機能を有するものであれば、本発明の実施が可能である。
 以上のように、実施の形態1によれば、電池残量の推定に当たって、電池の開回路電圧に反映される第1の電池残量とともに、電池の開回路電圧に反映されない第2の電池残量を考慮している。そして、同じ開回路電圧の電池でも残量が異なる現象を、開回路電圧に反映されない第2の電池残量が異なることを考慮することで、表現している。この結果、第1の電池残量および第2の電池残量に応じて残量間の電流を計算することで、電池がヒステリシスをもつ場合であっても、電池残量を正確に推定できる。すなわち、本発明を公知の電池残量推定装置と組み合わせることにより、電池の電流および端子間電圧から、電池の残量を正確に推定することが可能になる。
 実施の形態2.
 本実施の形態2では、先の実施の形態1とは異なる構成を備えた電池残量推定装置について説明する。先の実施の形態1における電池残量推定装置901において、上式(9)の第1の指数関数は、ポテンシャル差ΔEがλ1を超えると急激に増加し、第1の電池残量301から第2の電池残量302へ電流が流れる。これは、ポテンシャル差ΔEを減少させることから、結果として、ポテンシャル差ΔEは、λ1以下に保たれる。
 逆に、ポテンシャル差ΔEが-λ2以下になると、上式(9)の第2の指数関数が急激に増加し、第2の電池残量302から第1の電池残量301へ電流が流れる。これは、ポテンシャル差ΔEを増加させることから、結果として、ポテンシャル差ΔEは、-λ2以上に保たれる。
 ゆえに、ポテンシャル差ΔEがλ1、あるいは-λ2であるならば、このときには、下式(10)の関係が成立している。
Figure JPOXMLDOC01-appb-M000010
 そこで、上式(10)を解くと、残量間電流I_iは、下式(11)となる。
Figure JPOXMLDOC01-appb-M000011
 ポテンシャル差ΔEが-λ2より大きく、かつλ1より小さいならば、上式(9)の指数関数は、いずれも微小な値を取る。従って、このとき、残量間電流は、ゼロとみなしてよい。
 そこで、本実施の形態2における電池残量推定装置は、以上の事実に基づいて構成されている。図13は、本発明の実施の形態2における電池残量推定装置1301の全体構成図である。以下、図9に示した先の実施の形態1における電池残量推定装置901との差異を中心に、詳細に説明する。
 ポテンシャル比較部1302は、第1の残量記憶部905に記憶された第1の電池残量301の推定値と、第2の残量記憶部907に記憶された第2の電池残量302の推定値から、ポテンシャル差を計算する。そして、ポテンシャル比較部1302は、計算で求めたポテンシャル差と、充電時における所定のポテンシャル差402、あるいは放電時における所定のポテンシャル差502とを比較する。
 残量間電流計算部1303は、ポテンシャル比較部1302の比較結果と、第1の残量記憶部905によって記憶されている第1の電池残量301の推定値、第2の残量記憶部907によって記憶されている第2の電池残量302の推定値、および電流計測部604によって計測された電流102に基づいて、残量間電流を計算する。
 図14は、本発明の実施の形態2におけるポテンシャル比較部1302の構成図である。第1のポテンシャル関数計算部1001は、第1の残量記憶部905に記憶されている第1の電池残量301の推定値から、あらかじめ定めた第1の残量のポテンシャル関数E1を計算する。第2のポテンシャル関数計算部1002は、第2の残量記憶部907に記憶されている第2の電池残量302の推定値から、あらかじめ定めた第2の残量のポテンシャル関数E2を計算する。
 差分器1003は、第1のポテンシャル関数計算部1001によって計算された第1の残量のポテンシャルE1と、第2のポテンシャル関数計算部1002によって計算された第2の残量のポテンシャルE2との差分、すなわち、ポテンシャル差ΔEを計算する。
 比較器1401は、ポテンシャル差ΔEと、所定のポテンシャル差-λ2を比較し、もしもΔEが-λ2以下であれば、残量間電流計算部1303にTを出力する。そうでなければ、比較器1402が、ΔEと所定の残量差λ1を比較し、もしもΔEがλ1以上であれば、残量間電流計算部1303にTを、そうでなければFを出力する。
 図15は、本発明の実施の形態2における残量間電流計算部1303の構成図である。第1の偏微分計算部1501は、第1の残量記憶部905によって記憶されている第1の電池残量301の推定値から、ポテンシャル関数E1の第1の残量Q1に関する偏微分係数を計算する。第2の偏微分計算部1502は、第2の残量記憶部907によって記憶されている第2の電池残量302の推定値から、ポテンシャル関数E2の第2の残量Q2に関する偏微分係数を計算する。
 加算器1503は、第1の偏微分計算部1501によって計算された偏微分係数と、第2の偏微分計算部1502によって計算された偏微分係数を加算する。除算器1504は、第1の偏微分計算部1501によって計算された偏微分係数を、加算器1503によって加算された偏微分係数で除す。
 乗算器1505は、除算器1504によって計算された偏微分係数比と、電流計測部604で計測された電池電流との積を計算する。切替器1506は、もしもポテンシャル比較部1302がTを出力していれば、乗算器1505によって計算された値を、Fを出力していればゼロを、残量間電流として出力する。
 図16は、本発明の実施の形態2による電池残量推定装置1301による一連処理を示したフローチャートであり、先の図13に示す本実施の形態2に係る電池残量推定装置1301をソフトウェアとして実現する場合のフローチャートである。それぞれの処理は、上述した図13の各部に対応している。
 また、図17は、本発明の実施の形態2によるポテンシャル比較部1302による一連処理を示したフローチャートであり、先の図14に示す本実施の形態2に係るポテンシャル比較部1302をソフトウェアとして実現する場合のフローチャートである。それぞれの処理は、上述した図14の各部に対応している。
 さらに、図18は、本発明の実施の形態2による残量間電流計算部1303による一連処理を示したフローチャートであり、先の図15に示す本実施の形態2に係る残量間電流計算部1303をソフトウェアとして実現する場合のフローチャートである。それぞれの処理は、上述した図15の各部に対応している。
 なお、本実施の形態2における電池残量推定装置1301をソフトウェアとして実現する場合には、これら図16、図17、図18のフローチャートに示した手順に限られるわけではない。各計算処理において前提となる処理が既に行われている限りにおいて、手順の入れ替えが許容される。ただし、図18においては、本実施の形態2に示した手順により、ポテンシャル比較部1302による比較処理がFを出力した場合には、不要な処理が省かれるため、計算量が削減できる効果がある。
 先の実施の形態1による電池残量推定装置901は、正反応速度計算部1004において正反応の反応速度を計算し、逆反応速度計算部1005において逆反応の反応速度を計算していた。しかしながら、正反応および逆反応の反応速度は、ポテンシャル差ΔEの指数関数であり、ポテンシャル差が大きな値をとる場合、反応速度は、非常に大きな値となる。
 これは、機器組み込みの計算機におけるソフトウェアとして、本発明による電池残量推定装置901を実施する場合に制約となるだけでなく、計算の時間的な分解能によっては、残量間電流が発散してしまう可能性がある。これらの問題は、本実施の形態2において解決されることとなる。
 以上のように、実施の形態2によれば、左記の実施の形態1と同様に、電池がヒステリシスをもつ場合であっても、電池残量を正確に推定できるとともに、上述した実施の形態1における問題を解消することができる。
 なお、上述した図13では、ポテンシャル比較部1302と残量間電流計算部1303とを別々の構成要素として示したが、ポテンシャル比較部1302の機能を残量間電流計算部1303の中に組み込むことも可能である。
 実施の形態3.
 先の実施の形態2における、第1のポテンシャル関数および第2のポテンシャル関数は、一般に、αp1、αp2、αn1、αn2、βp1、βp2、βn1、βn2、γ1、γ2、δ1、δ2を所定のパラメータとして、下式(12)のような関数で表現されることが知られている。
Figure JPOXMLDOC01-appb-M000012
 ここで、βn1、βn2がQ1、Q2と比較して十分に大きいならば、対数関数は、線形関数で精度よく近似できる。また、αp1とαp2は、同じグラファイトとリチウムイオンの反応であるから、近い値をとることが期待できる。さらに、電池603の種類によっては、対数関数の近似を含めたγ1、γ2の項が、ほぼ0である場合がある。
 このような場合、第1の電池残量301および第2の電池残量302のポテンシャルは、α、βp1、βp2、δ1、δ2をパラメータとして、下式(13)の形の式で表現できる。
Figure JPOXMLDOC01-appb-M000013
 これを、上式(8)へ代入すると、δをδ1-δ2として、ΔEは、下式(14)で与えられる。
Figure JPOXMLDOC01-appb-M000014
 ここで、ΔEが所定のポテンシャル差λ1より小さいか否かは、下式(15)の不等式が成立するか否かと等価である。
Figure JPOXMLDOC01-appb-M000015
 よって、このとき、ポテンシャル比較部1302を、ポテンシャル関数E1、E2を計算することなく、上式(14)の成立を判定することで代用することが可能である。
 本実施の形態3における電池残量推定装置は、以上の事実に基づいて構成されている。図19は、本発明の実施の形態3におけるポテンシャル比較部1302の構成図である。乗算器1901は、第2の残量記憶部907に記憶されている第2の電池残量302の推定値に、所定の係数を掛け合わせる。
 加算器1902は、乗算器1901によって計算された値に、所定の係数を足し合わせる。乗算器1903は、第2の残量記憶部907に記憶されている第2の電池残量302の推定値に、所定の係数を掛け合わせる。加算器1904は、乗算器1903によって計算された値に、所定の係数を足し合わせる。
 差分器1905は、第1の残量記憶部905によって記憶されている第1の電池残量301の推定値から、加算器1902によって足し合わされた値を減算する。差分器1906は、第1の残量記憶部905によって記憶されている第1の電池残量301の推定値から、加算器1904によって足し合わされた値を減算する。
 比較器1907は、差分器1905によって計算された値がゼロ以上であるか否かを判定する。そして、比較器1907は、差分器1905によって計算された値がゼロ以上であればTを出力し、そうでなければ、比較器1908が、差分器1906によって計算された値がゼロ以下であるか否かを判定し、ゼロ以下であればFを、そうでなければTを出力する。
 図20は、本発明の実施の形態3によるポテンシャル比較部1302による一連処理を示したフローチャートであり、先の図19に示す本実施の形態3に係るポテンシャル比較部1302をソフトウェアとして実現する場合のフローチャートである。それぞれの処理は、上述した図19の各部に対応している。
 なお、本実施の形態3における電池残量推定装置をソフトウェアとして実現する場合には、この図20のフローチャートに示した手順に限られるわけではない。各計算処理において前提となる処理が既に行われている限りにおいて、手順の入れ替えが許容される。ただし、本実施の形態3に示した手順により、ポテンシャル比較部1302による比較処理がFを出力した場合には、不要な計算が省かれ、計算量が削減できるという効果がある。
 以上のように、実施の形態3によれば、第1の残量と第2の残量に関する積と和、およびゼロとの比較のみで、ポテンシャル比較部を構成できる。この結果、先の実施の形態2と同様の効果を得ることができるとともに、電池残量を推定するための計算量を削減することが可能となる。

Claims (6)

  1.  電池の端子間電圧および前記電池を流れる電流から電池残量を推定する電池残量推定装置であって、
     前記電流を計測する電流計測部と、
     前記端子間電圧を計測する電圧計測部と、
     前記電池の開回路電圧と対応関係を有する電池残量として規定された第1の電池残量の推定値を記憶する第1の残量記憶部と、
     前記開回路電圧と対応関係を有さず、かつ、前記第1の電池残量との総和の増減が前記電池を流れる電流に相当するとして規定された第2の電池残量の計算値を記憶する第2の残量記憶部と、
     前記第1の電池残量および前記第2の電池残量に基づいて、前記第1の電池残量と前記第2の電池残量との間の残量間電流を計算する電流計算部と、
     前記電流計測部によって計測された前記電流から前記残量間電流を除いた値と、前記電圧計測部によって計測された前記端子間電圧に基づいて前記第1の電池残量を推定し、前記第1の残量記憶部に記憶させる第1の残量推定部と、
     前記残量間電流を積算することにより前記第2の電池残量を計算し、前記第2の残量記憶部に記憶させる第2の残量計算部と、
     前記第1の残量記憶部に記憶された前記第1の電池残量の推定値と、前記第2の残量記憶部に記憶された前記第2の電池残量の計算値を加算し、前記電池の電池残量とする加算器と
     を備え、
     前記電流計算部は、
      電池充電時においては、前記第1の電池残量が増大していく際に、前記第2の電池残量が前記第1の電池残量に対して第1のポテンシャル差の分だけ少ない電池残量を保つように前記第1の電池残量から前記第2の電池残量に流す電流量を前記残量間電流として計算し、
      電池放電時においては、前記第1の電池残量が減少していく際に、前記第1の電池残量が前記第2の電池残量に対して第2のポテンシャル差の分だけ少ない電池残量を保つように前記第2の電池残量から前記第1の電池残量に流す電流量を前記残量間電流として計算する
     電池残量推定装置。
  2.  請求項1に記載の電池残量推定装置において、
     前記電流計算部は、
      前記第1の残量記憶部に記憶された前記第1の電池残量の推定値から、第1の残量に対応する第1のポテンシャル値を計算する第1の関数計算部と、
      前記第2の残量記憶部に記憶された前記第2の電池残量の計算値から、第2の残量に対応する第2のポテンシャル値を計算する第2の関数計算部と、
      前記第1の関数計算部によって計算された前記第1のポテンシャル値と、
    前記第2の関数計算部によって計算された前記第2のポテンシャル値との差分を差分値として計算する差分器と、
      前記差分器によって計算された前記差分値に基づいて、前記第1のポテンシャル差で規定される第1の指数関数によって前記第1の電池残量から前記第2の電池残量への正反応速度を計算する正反応速度計算部と、
      前記ポテンシャル差分値に基づいて、前記第2のポテンシャル差で規定される第2の指数関数によって前記第2の電池残量から前記第1の電池残量への逆反応速度を計算する逆反応速度計算部と、
      前記正反応速度計算部によって計算された前記正反応速度と、前記逆反応速度計算部によって計算された前記逆反応速度との差分を反応速度差として算出し、算出した前記反応速度差を前記残量間電流とする差分器と
     を備える電池残量推定装置。
  3.  前記請求項1に記載の電池残量推定装置において、
     前記電流計算部は、
      前記第1の残量記憶部に記憶された前記第1の電池残量の推定値から、第1の残量に対応する第1のポテンシャル値を計算する第1の関数計算部と、
      前記第2の残量記憶部に記憶された前記第2の電池残量の計算値から、第2の残量に対応する第2のポテンシャル値を計算する第2の関数計算部と、
      前記第1の関数計算部によって計算された前記第1のポテンシャル値と、
    前記第2の関数計算部によって計算された前記第2のポテンシャル値との差分をポテンシャル差分値として計算する差分器と、
      前記差分器によって計算された前記ポテンシャル差分値が、所定の値区間に含まれているか否かを判定する比較部と、
      前記第1の残量記憶部に記憶された前記第1の電池残量の推定値から、前記第1のポテンシャル値の前記第1の電池残量に関する第1の偏微分係数を計算する第1の偏微分計算部と、
      前記第2の残量記憶部に記憶された前記第2の電池残量の計算値から、前記第2のポテンシャル値の前記第2の電池残量に関する第2の偏微分係数を計算する第2の偏微分計算部と、
      前記第1の偏微分計算部によって計算された前記第1の偏微分係数と前記第2の偏微分計算部によって計算された前記第2の偏微分係数を加算する加算器と、
      前記第1の偏微分係数を、前記加算器によって計算された和によって除算する除算器と、
      前記除算器によって計算された除算値を、前記電流計測部によって計測された前記電流に掛け合わせる乗算器と、
      前記比較部により前記ポテンシャル差分値が所定の値区間に含まれていると判定された場合には、前記残量間電流をゼロとし、前記比較部により前記ポテンシャル差分値が所定の値区間に含まれていないと判定された場合には、前記乗算器によって計算された乗算値を前記残量間電流とする切替器と
     を備える電池残量推定装置。
  4.  請求項1に記載の電池残量推定装置において、
     前記電流計算部は、
      前記第2の残量記憶部に記憶された前記第2の電池残量の推定値に所定の第1の係数を掛け合わせ、さらに所定の第2の係数を足し合わせ、結果を前記第1の残量記憶部に記憶された前記第1の電池残量の推定値から減算することで第1の比較値を算出する第1の減算器と,
      前記第2の残量記憶部に記憶された前記第2の電池残量の推定値に所定の第3係数を掛け合わせ、さらに所定の第4係数を足し合わせ、結果を前記第1の残量記憶部に記憶された前記第1の電池残量の推定値から減算することで第2の比較値を算出する第2の減算器と,
      前記第1の比較値がゼロ未満であるか否かを比較する第1の比較部と、
      前記第2の比較値がゼロを超えるか否かを比較する第2の比較部と、
      前記第1の残量記憶部に記憶された前記第1の電池残量の推定値から、前記第1のポテンシャル値の前記第1の電池残量に関する第1の偏微分係数を計算する第1の偏微分計算部と、
      前記第2の残量記憶部に記憶された前記第2の電池残量の計算値から、前記第2のポテンシャル値の前記第2の電池残量に関する第2の偏微分係数を計算する第2の偏微分計算部と、
      前記第1の偏微分計算部によって計算された前記第1の偏微分係数と前記第2の偏微分計算部によって計算された前記第2の偏微分係数を加算する加算器と、
      前記第1の偏微分係数を、前記加算器によって計算された和によって除算する除算器と、
      前記除算器によって計算された除算値を、前記電流計測部によって計測された前記電流に掛け合わせる乗算器と、
      前記第1の比較部により前記第1の比較値がゼロ未満であると判定され、かつ、前記第2の比較部により前記第2の比較値がゼロを超えると判定された場合には、前記残量間電流をゼロとし、前記第1の比較部により前記第1の比較値がゼロ未満でないと判定されるか、または、前記第2の比較部により前記第2の比較値がゼロを超えないと判定された場合には、前記除算器によって計算された前記除算値を前記残量間電流とする切替器と
     を備える電池残量推定装置。
  5.  請求項1から4のいずれか1項に記載の電池残量推定装置において、
     前記電池の過電圧を記憶する過電圧記憶部と、
     前記第1の残量記憶部に記憶された前回サンプル時刻における前記第1の電池残量の推定値に、前記電流計測部によって計測された前記電流から前記残量間電流を除いた値を積分することで今回サンプル時刻における第1の電池残量を予測する第1の残量予測部と、
     前記電流計測部によって計測された前記電流から電池過電圧を予測する過電圧予測部と、
     前記第1の残量予測部によって予測された前記第1の電池残量の予測値から、電池の開回路電圧を計算する開回路電圧計算部と、
     前記過電圧予測部によって予測された前記電池過電圧と前記開回路電圧計算部によって計算された前記電池開回路電圧とを足し合わせる加算器と、
     前記加算器によって足し合わされた電圧値と前記電圧計測部によって計測された前記端子間電圧との差分を計算する差分器と、
     前記差分器によって計算された電圧の差分値から、前記過電圧および前記第1の電池残量の補正量を計算する補正量計算部と、
     前記過電圧予測部によって予測された今回サンプル時刻における過電圧の予測値を、前記補正量計算部によって計算された過電圧に関する補正量によって補正することにより、今回サンプル時刻における過電圧の推定値を計算し、前記過電圧記憶部に記憶させる過電圧推定部と
     をさらに備え、
     前記第1の残量推定部は、前記第1の残量予測部によって予測された今回サンプル時刻における第1の電池残量の予測値を、前記補正量計算部によって計算された第1の電池残量に関する補正量によって補正することにより、今回サンプル時刻における第1の電池残量の推定値を計算し、前記第1の残量記憶部に記憶させる
     電池残量推定装置。
  6.  電池の端子間電圧および前記電池を流れる電流から電池残量を推定する電池残量推定方法であって、
     前記電池の開回路電圧と対応関係を有する電池残量として規定された第1の電池残量、および前記開回路電圧と対応関係を有さず、かつ、前記第1の電池残量との総和の増減が前記電池を流れる電流に相当するとして規定された第2の電池残量に基づいて、前記第1の電池残量と前記第2の電池残量との間の残量間電流を計算する電流計算ステップと、
     電流を計測する電流計測部によって計測された前記電池を流れる電流から前記残量間電流を除いた値と、電圧を計測する電圧計測部によって計測された前記端子間電圧に基づいて前記第1の電池残量を推定し、第1の残量記憶部に記憶させる第1の残量推定ステップと、 前記残量間電流を積算することにより前記第2の電池残量を計算し、第2の残量記憶部に記憶させる第2の残量計算ステップと、
     前記第1の残量記憶部に記憶された前記第1の電池残量の推定値と、前記第2の残量記憶部に記憶された前記第2の電池残量の計算値を加算し、前記電池の電池残量とする加算ステップと
     を備え、
     前記電流計算ステップは、
      電池充電時においては、前記第1の電池残量が増大していく際に、前記第2の電池残量が前記第1の電池残量に対して第1のポテンシャル差の分だけ少ない電池残量を保つように前記第1の電池残量から前記第2の電池残量に流す電流量を前記残量間電流として計算し、
      電池放電時においては、前記第1の電池残量が減少していく際に、前記第1の電池残量が前記第2の電池残量に対して第2のポテンシャル差の分だけ少ない電池残量を保つように前記第2の電池残量から前記第1の電池残量に流す電流量を前記残量間電流として計算する
     電池残量推定方法。
PCT/JP2015/053221 2014-04-23 2015-02-05 電池残量推定装置および電池残量推定方法 WO2015162967A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016514745A JP6129411B2 (ja) 2014-04-23 2015-02-05 電池残量推定装置および電池残量推定方法
US15/305,284 US9977087B2 (en) 2014-04-23 2015-02-05 Device and method for estimating remaining battery capacity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-089005 2014-04-23
JP2014089005 2014-04-23

Publications (1)

Publication Number Publication Date
WO2015162967A1 true WO2015162967A1 (ja) 2015-10-29

Family

ID=54332141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053221 WO2015162967A1 (ja) 2014-04-23 2015-02-05 電池残量推定装置および電池残量推定方法

Country Status (3)

Country Link
US (1) US9977087B2 (ja)
JP (1) JP6129411B2 (ja)
WO (1) WO2015162967A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181624A1 (ja) * 2017-03-29 2018-10-04 株式会社Gsユアサ 蓄電量推定装置、蓄電モジュール、蓄電量推定方法、及びコンピュータプログラム
WO2018181620A1 (ja) * 2017-03-29 2018-10-04 株式会社Gsユアサ 蓄電量推定装置、蓄電モジュール、蓄電量推定方法、及びコンピュータプログラム
JP2018169397A (ja) * 2017-03-29 2018-11-01 株式会社Gsユアサ 蓄電量推定装置、蓄電モジュール、蓄電量推定方法、及びコンピュータプログラム
JP2018169398A (ja) * 2017-03-29 2018-11-01 株式会社Gsユアサ 蓄電量推定装置、蓄電モジュール、蓄電量推定方法、及びコンピュータプログラム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6383704B2 (ja) * 2015-07-02 2018-08-29 日立オートモティブシステムズ株式会社 電池制御装置
JP6965827B2 (ja) * 2018-05-11 2021-11-10 トヨタ自動車株式会社 リチウムイオン電池の診断方法およびリチウムイオン電池の診断装置
CN109557474B (zh) * 2018-11-22 2021-04-23 北京新能源汽车股份有限公司 一种动力电池的荷电状态的修正方法、装置及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045404A1 (en) * 1998-03-05 1999-09-10 Lucas Industries Plc Method of and apparatus for estimating the charge in a battery
WO1999061929A1 (fr) * 1998-05-28 1999-12-02 Toyota Jidosha Kabushiki Kaisha Moyen permettant d'evaluer l'etat de charge d'une batterie et procede permettant d'evaluer l'etat de decharge d'une batterie
JP2009519469A (ja) * 2005-12-13 2009-05-14 コバシス, エルエルシー バッテリ充電状態の電圧ヒステリシス推定器
JP2013158087A (ja) * 2012-01-27 2013-08-15 Toyota Motor Corp 蓄電システム及び充電状態推定方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2864055A (en) * 1954-05-05 1958-12-09 Kordesch Karl Apparatus for and method of battery capacity measurement
JP3375511B2 (ja) * 1997-04-14 2003-02-10 本田技研工業株式会社 バッテリ残容量検出装置
JP2003168489A (ja) 2001-11-30 2003-06-13 Yuasa Corp アルカリ蓄電池の充放電状態の検知方法
US7554295B2 (en) 2004-04-06 2009-06-30 Cobasys, Llc Determination of IR-free voltage in hybrid vehicle applications
US8427109B2 (en) 2004-04-06 2013-04-23 Chevron Technology Ventures Llc Battery state of charge reset
US7375497B2 (en) 2004-04-06 2008-05-20 Cobasys, Llc State of charge tracking system for battery systems
US8878539B2 (en) 2004-04-06 2014-11-04 Robert Bosch Gmbh State of charge tracking system for battery systems based on relaxation voltage
US7453238B2 (en) 2004-04-06 2008-11-18 Cobasys, Llc State of charge tracking system for battery systems based on relaxation voltage
JP4638194B2 (ja) 2004-09-28 2011-02-23 富士重工業株式会社 蓄電デバイスの残存容量演算装置
JP5394162B2 (ja) * 2009-07-31 2014-01-22 本田技研工業株式会社 蓄電装置の内部抵抗検出装置および開路電圧検出装置および残容量検出装置
JP5866987B2 (ja) 2011-11-10 2016-02-24 日産自動車株式会社 二次電池の制御装置およびsoc検出方法
JP6065561B2 (ja) 2012-03-08 2017-01-25 日産自動車株式会社 二次電池の制御装置およびsoc検出方法
JP5798067B2 (ja) * 2012-03-13 2015-10-21 プライムアースEvエナジー株式会社 二次電池の状態推定装置
JP5886225B2 (ja) * 2013-03-08 2016-03-16 プライムアースEvエナジー株式会社 電池制御装置及び電池制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999045404A1 (en) * 1998-03-05 1999-09-10 Lucas Industries Plc Method of and apparatus for estimating the charge in a battery
WO1999061929A1 (fr) * 1998-05-28 1999-12-02 Toyota Jidosha Kabushiki Kaisha Moyen permettant d'evaluer l'etat de charge d'une batterie et procede permettant d'evaluer l'etat de decharge d'une batterie
JP2009519469A (ja) * 2005-12-13 2009-05-14 コバシス, エルエルシー バッテリ充電状態の電圧ヒステリシス推定器
JP2013158087A (ja) * 2012-01-27 2013-08-15 Toyota Motor Corp 蓄電システム及び充電状態推定方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181624A1 (ja) * 2017-03-29 2018-10-04 株式会社Gsユアサ 蓄電量推定装置、蓄電モジュール、蓄電量推定方法、及びコンピュータプログラム
WO2018181620A1 (ja) * 2017-03-29 2018-10-04 株式会社Gsユアサ 蓄電量推定装置、蓄電モジュール、蓄電量推定方法、及びコンピュータプログラム
JP2018169397A (ja) * 2017-03-29 2018-11-01 株式会社Gsユアサ 蓄電量推定装置、蓄電モジュール、蓄電量推定方法、及びコンピュータプログラム
JP2018169398A (ja) * 2017-03-29 2018-11-01 株式会社Gsユアサ 蓄電量推定装置、蓄電モジュール、蓄電量推定方法、及びコンピュータプログラム

Also Published As

Publication number Publication date
JPWO2015162967A1 (ja) 2017-04-13
US20170038431A1 (en) 2017-02-09
US9977087B2 (en) 2018-05-22
JP6129411B2 (ja) 2017-05-17

Similar Documents

Publication Publication Date Title
WO2015162967A1 (ja) 電池残量推定装置および電池残量推定方法
JP6403746B2 (ja) 電池状態推定装置
JP5798067B2 (ja) 二次電池の状態推定装置
JP5605717B2 (ja) バッテリーセルの電圧変化挙動を用いたセルバランス装置及び方法
JP5595361B2 (ja) 二次電池の充電状態推定装置
JP6324248B2 (ja) 電池状態検知装置、二次電池システム、電池状態検知プログラム、電池状態検知方法
CN108028439B (zh) 用于估计电池组的当前的空载电压变化过程的方法和设备
JP2012057998A (ja) 二次電池の充電率算出装置および充電率算出方法
JP5393619B2 (ja) バッテリの充電率推定装置
US20140257726A1 (en) Apparatus and method for battery state of charge estimation
JP2020519858A (ja) 二次電池の充電状態を推定するための装置及びその方法
CN106772101A (zh) 电池soc的修正方法、修正装置及电池soh估算方法
JP5389136B2 (ja) 充電率推定装置およびその方法
JP7115035B2 (ja) 電池寿命推定装置
KR20180043048A (ko) 배터리 soh 추정 방법
KR102101912B1 (ko) 에너지 저장장치 충전상태 추정방법
US20140084939A1 (en) Condition estimation device and method of generating open circuit voltage characteristic
JP2013213691A (ja) 推定装置および推定方法
CN114330149B (zh) 电池寿命预测方法、装置、云端服务器及存储介质
JP2022167921A (ja) 蓄電池制御装置および制御方法
JP2018151176A (ja) 推定装置、推定方法、および推定プログラム
KR20200040576A (ko) 차량용 배터리 열화도 추정 방법
JP2015094710A (ja) バッテリの健全度推定装置及び健全度推定方法
JP2014176196A (ja) 電池制御装置及び電池制御方法
CN109444750A (zh) 一种铅酸蓄电池容量预估方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15782997

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016514745

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15305284

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15782997

Country of ref document: EP

Kind code of ref document: A1