WO2015161452A1 - 光通信的装置和方法 - Google Patents
光通信的装置和方法 Download PDFInfo
- Publication number
- WO2015161452A1 WO2015161452A1 PCT/CN2014/075969 CN2014075969W WO2015161452A1 WO 2015161452 A1 WO2015161452 A1 WO 2015161452A1 CN 2014075969 W CN2014075969 W CN 2014075969W WO 2015161452 A1 WO2015161452 A1 WO 2015161452A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- target signal
- sub
- signal light
- plane
- optical
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 504
- 238000004891 communication Methods 0.000 title claims abstract description 98
- 238000000034 method Methods 0.000 title claims description 115
- 230000008569 process Effects 0.000 claims description 71
- 230000005540 biological transmission Effects 0.000 claims description 35
- 238000012545 processing Methods 0.000 claims description 15
- 230000008859 change Effects 0.000 claims description 11
- 239000000835 fiber Substances 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 13
- 230000006870 function Effects 0.000 description 13
- 239000004973 liquid crystal related substance Substances 0.000 description 12
- 230000001902 propagating effect Effects 0.000 description 8
- 210000001747 pupil Anatomy 0.000 description 7
- 239000013078 crystal Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 210000002858 crystal cell Anatomy 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/264—Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
- G02B6/266—Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting the optical element being an attenuator
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/27—Optical coupling means with polarisation selective and adjusting means
- G02B6/2706—Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
- G02B6/2713—Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29304—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
- G02B6/29305—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
- G02B6/2931—Diffractive element operating in reflection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0007—Construction
- H04Q2011/0016—Construction using wavelength multiplexing or demultiplexing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0007—Construction
- H04Q2011/0026—Construction using free space propagation (e.g. lenses, mirrors)
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0037—Operation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0005—Switch and router aspects
- H04Q2011/0052—Interconnection of switches
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/009—Topology aspects
Definitions
- the present invention relates to the field of communications and, more particularly, to an apparatus and method for optical communications. Background technique
- Network nodes need more and more direction dimensions (or transmission paths) for cross-connections, and operators can remotely and automatically perform dimensions by using reconfigurable optical add/drop multiplexers (ROADMs, Reconfigurable Optical Add/Drop Multiplexers). Switching, etc., to replace the previous manual site to replace the fiber connection, so as to meet the needs of network dynamic connection.
- ROADMs reconfigurable optical add/drop multiplexers
- Switching, etc. to replace the previous manual site to replace the fiber connection, so as to meet the needs of network dynamic connection.
- a ROADM which has N input ports arranged in one dimension, M output ports arranged in one dimension, and a two-stage optical switch array capable of wavelength division multiplexing (DMM) from each input port through a grating.
- Wavelength Division Multiplex Wavelength Division Multiplex
- K sub-signals each sub-signal is switched to the second-level optical switch array by a first-stage optical switch array (with two-dimensionally arranged ⁇ X ⁇ optical switch units) (having a two-dimensionally arranged optical switch unit corresponding to the M x optical switch unit, and synthesizing the WDM signal from the second sub-optical switch array with different wavelengths and corresponding output ports by grating And transmitted to the corresponding output port, thus completing the network cross-connection.
- a first-stage optical switch array with two-dimensionally arranged ⁇ X ⁇ optical switch units
- ROADMs which are cores of network cross-connects
- the crossover capability for example, the rotation range
- K the number of sub-signals included in the WDM signal
- K the number of wavelengths of the included sub-signals
- the ability of the ROADM to cross the input depends mainly on the number of optical switching units corresponding to the output ports in the second-stage optical switch array, that is, M. Due to the limitation of the configuration space and the cross-ability of a single optical switch unit, the infinite increase of M cannot be realized, and it cannot meet the current increasing network requirements and user requirements.
- Embodiments of the present invention provide an apparatus and method for optical communication, which can improve network cross-connect capability for an output terminal within a given limited configuration space, thereby satisfying network requirements and user requirements.
- an apparatus for optical communication comprising: an input system, a first optical switch array, and an output system, the input system including N input ports arranged in a first plane, the first expansion a beam splitter, a splitter and a first optical path changer, the first optical switch array comprising NXK first optical switch units arranged two-dimensionally on a second plane, K being the number of sub-signal lights included in the signal light, each The center wavelengths of the sub-signal lights are different from each other, the second plane is perpendicular to the main axis direction, and the main axis direction is a transmission direction of signal light outputted from the input port, the first plane being perpendicular to the second plane, each of the first An optical switch unit is rotatable about a first axis direction that is a line of intersection of the first plane and the second axis, and a second axis direction that is a third plane and the second a plane of intersection of the plane, the third plane being perpendicular
- the output system further includes: a combiner between the second optical path changer and the second expander for use in an output a port, when there are at least two sub-target signal lights to be received, the at least two sub-target signals that need to be received are combined into one beam of signal light, and transmitted to the second optical switch array via the second beam expander Or used to adjust the optical power distribution within the bandwidth of the sub-target signal light when there is only one sub-target signal light to be received for one output port.
- the splitter and the combiner are at least one grating.
- the combiner and the splitter share the at least one raster.
- the first beam expander is further configured to perform a first beam expanding process on the target signal light to The beam waist position on the third plane between the first beam expander and the first optical path changer is located at the splitter.
- the second beam expander is further configured to perform a second beam expansion process on each of the sub-target signal lights,
- the beam waist of the sub-target signal light output by the second beam expander is located at the output port on the third plane
- the first optical path changer and the second optical path changer are at least one lens.
- the first optical path changer and the second optical path changer share the at least one lens.
- a ninth implementation manner of the first aspect when the first optical path changer and the second optical path changer share a lens, the target is in the third plane
- the point of incidence of the signal light on the splitter is on the axis of the first optical path changer in the direction of the main axis.
- the target when the first optical path changer and the second optical path changer share a single lens, the target is in the third plane The point of incidence of the signal light on the splitter is outside the axis of the first optical path changer in the direction of the main axis.
- the eleventh implementation manner of the first aspect when the first optical path changer and the second optical path changer share a lens, in the first plane, the The incident point of the target signal light on the splitter is located on the axis of the first optical path changer in the direction of the main axis.
- the first optical path changer and the second optical path changer share a single lens
- the The incident point of the target signal light on the splitter is located outside the axis of the first optical path changer in the direction of the main axis.
- the first optical path changer and the second optical path changer are at least one concave mirror.
- the first optical path changer and the second optical path changer share the at least one concave mirror.
- the first optical path changer includes: at least one first cylindrical lens, configured to change each of the sub-target signal lights in the first a direction of propagation in the three planes; and the second optical path changer includes: at least one second cylindrical lens for changing a direction of propagation of each of the sub-target signal lights in the first plane; at least one third cylindrical lens, Adjusting a beam waist position of the target signal light output from the first cylindrical lens module on the first plane to the first optical switch array; at least one fourth cylindrical lens for using the first optical switch array
- the output of each sub-target signal light is adjusted to the beam waist position on the first plane, and
- the target signal light output by the input port corresponds to a waist position between the output port and the splitter on the first plane.
- a method of optical communication is provided, the method being performed in an apparatus comprising an input system, a first optical switch array, and an output system, the input system comprising N input ports arranged one-dimensionally on a first plane And a splitter, the first optical switch array comprising ⁇ K first optical switch units arranged two-dimensionally on the second plane, K being the number of sub-signal lights included in the signal light, the center of each of the sub-signal lights
- the wavelengths are different from each other, the second plane is perpendicular to the main axis direction, and the main axis direction is a transmission direction of the signal light outputted from the input port, the first plane is perpendicular to the second plane, and each of the first optical switch units can be wound
- the first axis direction is a direction of intersection of the first plane and the second plane, and the second axis direction is a line of intersection of the third plane and the second plane,
- the third plane is perpendicular to the second plane, and the third plane is perpendicular
- the method further includes: when there are at least two sub-target signal lights to be received for one output port, the at least two beams that need to be received are The target signal light is synthesized into a bundle of signal light and transmitted to the second optical switch array; or when there is only one sub-target signal light to be received for one output port, adjusting the bandwidth of the sub-target signal light Optical power distribution.
- the performing the first beam expanding process on the target signal light comprises: performing a first beam expanding process on the target signal light, to The beam of the target signal light on the third plane is located at the beam waist position before the first optical path changing process.
- the performing the second beam expanding process on each of the sub-target signal lights comprises: performing second expansion on each of the sub-target signal lights Processing, wherein the beam waist position of the sub-target signal light after the second beam expanding process on the third plane is located at the output port.
- the apparatus and method for realizing optical communication by providing a first beam expander and performing beam expansion processing on the signal light by the first beam expander, the signal light incident on the second optical switch array can be
- the spot on the arrangement plane of the two-optical switch array is changed from a circular shape to an elliptical shape, wherein the long-axis length of the elliptical spot generated by the beam expanding process can satisfy the requirement of the demultiplexing process, due to the short ellipse
- the length of the shaft is smaller than the length of the long axis, so that in the short axis direction of the ellipse, more second optical switch units can be configured for the second optical switch array, thereby providing more output ports; and, by making each An optical switch unit rotates two-dimensionally, and a second optical switch unit is only used to receive sub-signal light from the same input port at the same time, so that the second optical switch units of the M are not required to be one-dimensionally arranged
- FIG. 1 is a schematic block diagram showing the structure of an apparatus for optical communication according to an embodiment of the present invention.
- FIG. 2A is a top plan view showing a configuration of an apparatus for optical communication according to an embodiment of the present invention.
- Fig. 2B is a side elevational view showing the configuration of the apparatus for optical communication shown in Fig. 2A.
- FIG. 3A is a top plan view showing a configuration of an apparatus for optical communication according to another embodiment of the present invention.
- Fig. 3B is a side elevational view showing the configuration of the apparatus for optical communication shown in Fig. 3A.
- FIG. 4A is a top plan view showing a configuration of an apparatus for optical communication according to still another embodiment of the present invention.
- Fig. 4B is a side elevational view showing the configuration of the apparatus for optical communication shown in Fig. 4A.
- FIG. 5A is a top plan view showing a configuration of an apparatus for optical communication according to still another embodiment of the present invention.
- Figure 5B is a side elevational view showing the configuration of the apparatus for optical communication shown in Figure 5A.
- FIG. 6A is a top plan view showing a configuration of an apparatus for optical communication according to still another embodiment of the present invention.
- Figure 6B is a side elevational view showing the configuration of the apparatus for optical communication shown in Figure 6A.
- FIG. 7A is a top plan view showing a configuration of an apparatus for optical communication according to still another embodiment of the present invention.
- Figure 7B is a side elevational view showing the configuration of the apparatus for optical communication shown in Figure 7A.
- FIG. 8A is a top plan view showing a configuration of an apparatus for optical communication according to still another embodiment of the present invention.
- Figure 8B is a side elevational view showing the configuration of the apparatus for optical communication shown in Figure 8A.
- FIG. 9 is a top plan view showing a configuration of an apparatus for optical communication according to still another embodiment of the present invention.
- FIG. 10 is a schematic flow chart of a method of optical communication according to an embodiment of the present invention. detailed description
- the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without departing from the inventive scope are the scope of the present invention.
- the technical solution of the present invention can be applied to various communication systems capable of transmitting data by using signal light, for example, Global System of Mobile Communication (GSM), Code Division Multiple Access (CDMA) System, Wideband Code Division Multiple Access (WCDMA), General Packet Radio Service (GPRS), Long Term Evolution (LTE), etc.
- GSM Global System of Mobile Communication
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GPRS General Packet Radio Service
- LTE Long Term Evolution
- the apparatus 100 includes:
- Input system 110 first optical switch array 120, and output system 130,
- the input system 110 includes:
- N input ports 112 a first beam expander 114, a splitter 116, and a first optical path changer 118 arranged on the first plane,
- the first optical switch array 120 includes NXK first optical switch units two-dimensionally arranged on a second plane, where K is the number of sub-signal lights included in the signal light, and the wavelengths of the sub-signal lights are different from each other.
- the two planes are perpendicular to the direction of the main axis, the main shaft direction is a transmission direction of the signal light outputted from the input port, the first plane is perpendicular to the second plane, and each of the first optical switch units is capable of being wound around the first axis direction and the second Rotating in the axial direction, the first axis direction is a line of intersection of the first plane and the second plane, and the second axis direction is a line of intersection of the third plane and the second plane, the third plane and the third The two planes are perpendicular, and the third plane is perpendicular to the first plane, and a first optical switch unit is only used to receive a bundle of sub-signal light from an input port, and the input port or sub-port of each
- the output system 130 includes a second optical path changer 132, a second beam expander 134, a second optical switch array 136, and two output ports 138 arranged in two dimensions.
- the second switch array 136 includes two M-dimensional arrays. a second optical switch unit, each of the second optical switch units corresponding to each of the output ports, wherein
- a target input port of the N input ports 112 configured to transmit the target signal light to the first beam expander when receiving the target signal light, wherein the spot of the target signal light output by the target input port Circular, the target signal light includes at least two sub-target signal lights;
- the first beam expander 114 is configured to perform a first beam expanding process on the target signal light, to convert the spot of the target signal light in the second plane direction from a circle to an ellipse, and pass the The target signal light after the first beam expanding process is transmitted to the branching filter 116, wherein the long axis direction of the ellipse For the second axis direction, the minor axis direction of the ellipse is the first axis direction, and the major axis length of the ellipse is determined based on the following parameters:
- the demultiplexer 116 configured to perform a demultiplexing process on the target signal light, and decompose the at least two sub-target signal lights from the target signal light, so that the sub-target signal lights are dispersed on the third plane, and each of the sub-targets
- the target signal light is transmitted to the corresponding first optical switch unit via the first optical path changer 118;
- the first optical path changer 118 is configured to perform a first optical path changing process on each of the sub-target signal lights such that each of the sub-target signal lights enters the corresponding first optical switch unit in parallel with each other;
- the first optical switch array 120 is configured to control, according to an output port corresponding to each of the sub-target signal lights, rotation of the first optical switch unit corresponding to each of the sub-target signal lights to transmit each of the sub-target signal lights Transmitting to the corresponding second optical switch unit via the second optical path changer 132 and the second expander 134;
- the second optical path changer 132 is configured to perform a second optical path changing process on each of the sub-target signal lights, wherein the sub-target signal light processed by the second optical path changing process is projected on the third plane and corresponds to The projection of the sub-target signal light before the first optical path changing process on the third plane is parallel;
- the second beam expander 134 is configured to perform a second beam expanding process on each of the sub-target signal lights to convert the spot of each of the sub-target signal lights in the second plane direction from an ellipse to a circle.
- the diameter of the circle is determined based on the transmission requirements of the output port 138.
- the second optical switch array 136 is configured to control rotation of the second optical switch unit corresponding to each of the sub-target signal lights to respectively transmit the sub-target signal lights to the corresponding output port 138.
- the one-dimensionally arranged N input ports 112 are used to acquire signal lights of N dimensions, which may be from a foreign communication node (for example, a previous hop communication node in a communication link). It may also be from a local node, that is, to implement a local uplink function, and the present invention is not particularly limited.
- the so-called “upper wave” refers to the acquisition from the local node (through the input port).
- the signal light is transmitted and transmitted.
- the uplink signal light may be signal light sent to the foreign communication node or signal light sent to the local communication node, and the present invention is not particularly limited. It should be noted that, in the embodiment of the present invention, the input port used for the uplink signal light may be arbitrarily set.
- the input port used by the uplink signal light may be the same as the wavelength of the uplink signal light, that is, one input port is only used for The uplink signal light of one wavelength is obtained; the time division multiplexing mode may also be adopted, and one input port is used to transmit the uplink signal light of one wavelength in one time period, and the uplink signal light of the other wavelength is transmitted in another time period.
- the dimension of the signal light may refer to a number of categories whose source is under a preset rule (or the number of fibers connected to the ROADM), and the preset rule may be divided by a region, for example, at a city level. , national level or national level division; can also be divided by entities, for example, a communication node is a dimension, or a group of communication nodes is a dimension.
- the N input ports 112 may include an input fiber array and an input collimator array.
- the input fiber array may include N input fibers arranged in one dimension, and one input fiber is used to obtain signal light of one dimension.
- the input collimator array may include N collimators arranged in one dimension, wherein the N collimators are in one-to-one correspondence with the N input fibers, and a collimator is used to output signal light from the corresponding input optical fibers. Collimate.
- the above-mentioned "one-dimensionally arranged N input ports” means that the N input ports are arranged in the same plane, for example, the first plane (the YOZ plane of FIGS. 2 to 8), wherein the first a plane and a dispersion plane of each sub-signal light generated by demultiplexing the signal light by a demultiplexer described later, that is, a third plane (XOZ plane of FIGS. 2 to 8) is perpendicular, and the first plane and the rear are The arrangement plane of the N x K first optical switch units, that is, the second plane (the XOY plane of FIGS. 2 to 8) is vertical.
- one input fiber arranged in one dimension means that N input fibers are arranged on the first plane;
- N collimators arranged in one dimension means that N collimators are arranged in the first on flat surface.
- the above N input ports 112 (specifically, the above collimator) are input.
- the projection of the outgoing signal light is circular in the direction of the second plane (XOY plane of FIGS. 2 to 8), and for the sake of easy understanding and description, here, without loss of generality, the diameter of the circle is set. For d.
- the signal light input from each input port 112 is wavelength division multiplexing (WDM) signal light
- WDM wavelength division multiplexing
- one bundle of WDM signal light includes multiple (at least two) sub-signal lights, each sub-light
- the center wavelength of the signal light (or the center frequency of each sub-signal light) is different from each other, and each sub-signal light also has a certain bandwidth.
- Each of the input ports can simultaneously receive signal light and output signal light.
- the optical communication device 100 can receive signal light from a target output port of each input port of the N.
- target signal light The processing of (hereinafter, referred to as target signal light) will be described as an example, and each sub-signal light included in the target signal light is referred to as sub-target signal light.
- the first beam expander 114 is disposed in the transmission direction of the target signal light after being disposed in the input collimator array, and it only expands the target signal light in the third plane (the XOZ plane of FIGS. 2 to 9).
- the spot on the second plane (XOY plane of FIGS. 2 to 8) of the target signal light is adjusted from a circle to an ellipse.
- the spot light output from the collimator array is circular in the XOZ plane direction, the XOY plane direction, and the YOZ plane direction.
- the first beam expander 114 pulls the spot in a direction perpendicular to the propagation direction of the target signal light (the x-axis direction of FIGS. 2 to 8) in the pupil plane direction (the x-axis direction of FIGS. 2 to 8).
- the spot of the target signal light changes from a circle to an ellipse.
- the length of the elliptical spot in the direction of the minor axis may be increased or may be changed in comparison with the diameter d of the original circular spot.
- the invention is not particularly limited.
- the ellipse in order to enable the output optical signal to meet the preset bandwidth characteristics (for example, bandwidth spectrum) requirements (for example, according to user requirements and hardware conditions of the transmission network), the ellipse needs to be made.
- the length in the OX axis direction of 2 to 8 satisfies a preset condition, wherein the preset condition may be determined by the diffraction ability of the splitter 116 and the attribute of the target signal light.
- the splitter is a grating
- the diffraction parameters of the splitter include the grating constant of the splitter and the exit angle of the splitter.
- the above-described major axis length a can be determined by the following formula 1:
- the parameters ⁇ , ⁇ and the attributes of the target signal light are determined according to the bandwidth (or bandwidth requirement) of the target signal light, where, for example, the bandwidth spectrum is required to be a third-order Gaussian distribution. When, you can set it to 5.
- A denotes a center wavelength of each sub-target signal light included in the target signal light, and indicates an interval between adjacent two sub-target signal lights.
- parameters ⁇ / and S correspond to the diffraction power of the demultiplexer 116
- ⁇ / represents the grating constant of the demultiplexer described later (an example of the diffraction parameter)
- the exit angle of the demultiplexer 116 (the diffraction parameter is described later) Another example).
- the anamorphic prism or cylindrical lens pair may be selected as the first beam expander 114.
- the first beam expander is further configured to perform a first beam expanding process on the target signal light to transmit the target signal light on the third plane at the first beam expander and the first The beam waist position between the optical path changers is located at the splitter.
- the first beam expander 114 can also adjust the beam waist position of the target light signal on the third plane when viewed from a direction perpendicular to the third plane (for example, as shown in FIG. 3A). And the beam position of the target optical signal between the first beam expander 114 and the first optical path changer 118 to be described later is located in the branching filter 116 to be described later, and the sub-transformers 118 are processed by the first optical path changer 118. The beam waist position of the signal light is located in the first optical switch unit array.
- the size requirement of the optical switch unit in the first optical switch unit array can be reduced to ensure the device output characteristics and bandwidth characteristics.
- the splitter 116 can use the diffraction method to decompose the target signal light into the sub-target signal light having different wavelengths (or center frequency points) in the third plane (XOZ plane of FIGS. 2 to 8), thereby Each of the sub-target signal lights output by the demultiplexer 116 is radially dispersed in the third plane direction.
- the splitter is at least one grating.
- the beam splitter can be a reflective grating, a transmissive grating, a dispersive prism or a planar waveguide grating.
- a plurality of grating combinations may be used, or the adjustment light path may be used to repeatedly pass the same signal through the target signal light.
- First optical path changer 118 may perform a first optical path changing process on each of the input sub-target signal lights so that the sub-target signal lights are incident on the first optical switch unit array 120, which will be described later, in parallel with each other.
- the first optical path changer 118 can include a lens, a concave mirror, or a cylindrical lens. Further, depending on the difference in the selected device as the first optical path changer 118, the arrangement positions of the devices in the optical communication device 100 are different, or the transmission path of the signal light in the optical communication device 100 Differentiated, then, each configuration position mode that can be selected and the transmission path in each mode are described in detail.
- one or more glued lenses, an optimum shape lens or the like may be used as the first optical path changer 118.
- the N beam signal light output from the N input ports 112 is processed by the first beam expander 114, the demultiplexer 116, and the first optical path changer 118, and each of the signal lights includes a K beam wavelength phase.
- the N-beam signal light is spatially decomposed into N x K beam sub-signal lights parallel to each other, wherein the N x K sub-signal lights are two-dimensionally spotted in the second planar direction Arranging, that is, N rows of spots are arranged on the intersection direction of the first plane and the second plane (OY axis of FIGS.
- the K-column spot is arranged on the OX axis of FIG. 2 to FIG. 8 , wherein the sub-signal light corresponding to the same row of spots is derived from the signal light of the same input port, and the sub-signal light corresponding to the spot of the same column
- the wavelengths are the same. In other words, the wavelengths of the sub-signal lights corresponding to the same row of spots are different, and the input ports of the sub-signal lights corresponding to the same column of spots are different.
- the first optical switch array 120 is composed of N x K first optical switch units, that is, N x K first optical switch units along the second plane (XOY planes of FIG. 2 to FIG. 8 )
- the direction is two-dimensionally arranged in N rows and K columns.
- N rows of first optical switch units are arranged on the intersection direction of the first plane and the second plane (the OY axis of FIGS. 2 to 8).
- a K-column first optical switch unit is arranged on the intersection direction of the third plane and the second plane (the OX axis of FIGS. 2 to 8).
- the first optical switch units in the same row correspond to the same input port, and the first optical switch units in the same row have the same wavelength, in other words, the waves corresponding to the first optical switch unit in the same row Different lengths, the input ports corresponding to the first optical switch unit in the same column are different.
- the NXK first optical switch unit is formed with the NXK sub-signal light- It should be said that a first optical switch unit is only used to transmit a bundle of sub-signal light to an output port (or a second optical switch unit, which will be described later) corresponding to the sub-signal light.
- each of the first optical switch units is capable of two-dimensional rotation. Specifically, each of the first optical switch units is capable of intersecting the intersection of the first plane and the second plane (FIGS. 2-8). The OY axis is rotated in the direction, and each of the first optical switch units is rotatable about the intersection of the third plane and the second plane (the OX axis of FIGS. 2 to 8). Therefore, each of the first optical switch units can transmit the corresponding sub-signal light to any of the second optical switch units of the second optical switch array to be described later.
- the first optical switch unit of the embodiments of the present invention may be implemented by any of the following techniques.
- the first optical switch unit can pass through the microelectromechanical system.
- MEMS Micro-Electro-Mechanical System
- MEMS technology is the integration of micro-electromechanical devices and control circuits with geometric or operating dimensions only in the micron, sub-micron or even nano-scale on silicon-based or non-silicon-based materials. In a very small space, it constitutes a mechatronic device or system.
- the first optical switch unit realized by MEMS technology mechanically moves the micromirror by electrostatic force or other control force, thereby deflecting the light beam hitting the micromirror in either direction.
- the controller can control the micromechanical structure by controlling the command to drive the optical modulator (microlens) to rotate, thereby realizing the deflection of the optical path, thereby realizing the signal light.
- Dimensions (or, transport paths) switch.
- the first optical switch unit can be implemented by a liquid crystal on silicon (LC) technology
- the LCoS technology utilizes the principle of the liquid crystal grating to adjust the light reflection angle of different wavelengths to achieve the separated light.
- the goal of. LCoS technology is quite reliable due to the lack of moving parts.
- the LCoS technology uses liquid crystal cell refractive index change control to achieve reflection angle variation, which can be easily extended and upgraded. Different channels correspond to different areas of the spatial light modulator (liquid crystal) array. By adjusting the phase of the light spot, the light transmission direction is changed, and the purpose of switching different ports and adjusting the attenuation is achieved.
- the first optical switch unit can be implemented by a liquid crystal (LC) technology.
- the first optical switch unit implemented by the LC technology, after the incident signal light passes through the birefringent crystal, Divided into two polarization states, one of which passes through the half-wave plate, the polarization of the two channels of light is the same, and then hits the first optical switch unit (liquid crystal module), and changes the arrangement of the liquid crystal by adjusting the voltage of the birefringent crystal ( The angle of the molecules inside the crystal is changed, so that the refractive index of the crystal changes, and the light source outputs light at different angles. Light passes through each layer of liquid crystal and has two directions. By choice, after multiple layers of liquid crystal layers, there are multiple optical paths to choose from.
- LC liquid crystal
- the first optical switch unit can be processed by digital light
- DLP Digital Light Processing
- the second optical path changer 132 may perform a second optical path changing process on each of the input sub-target signal lights to transmit the respective sub-target signal lights to the corresponding second optical switch list, wherein the second optical path is changed by the second optical path
- the projection of the processed sub-target signal light on the third plane (XOZ plane of FIGS. 2 to 8) and the corresponding sub-target signal light before the first optical path changing process are in the third plane (FIG. 2 to FIG.
- the projections on the XOZ plane of 8 are parallel, so that each of the sub-target signal lights emitted from the second optical path changer 132 can be returned to the second optical switch array 136 described later at an angle when the splitter 116 is emitted (or The multiplexer 135), which is described later, can further ensure that each sub-signal light from the same input port 112 (the wavelengths are different from each other) incident on the second optical switch array 136 (or multiplexer 135 to be described later) Can synthesize a bundle of WDM signal light.
- the second optical path changer 132 can include a lens, a concave mirror. Further, depending on the difference in the selected device as the second optical path changer 132, the arrangement positions of the devices in the optical communication device 100 are different, or the transmission path of the signal light in the optical communication device 100 Differently, in the embodiment of the present invention, the second optical path changer 132 and the first optical path changer 118 can share one or more lenses, etc., and then, for each configuration position mode that can be selected, and each mode The transmission path is described in detail.
- the output system further includes:
- a combiner 133 located between the second optical path changer 132 and the second beam expander 134, for when there are at least two sub-target signal lights to be received for one output port 138, the at least two The sub-target signal light that needs to be received is combined into a bundle of signal light and transmitted to the second optical switch array via the second beam expander;
- the optical power distribution of the sub-target signal light when there is only one sub-target signal light to be received for one output port 138 there may be a case where at least two sub-target signal lights from the same output port 112 need to be transmitted to the same output port of the M output ports 138 to be described later (ie, case 1). There may be a case where at least two sub-target signal lights from the same output port 112 need to be transmitted to different ones of the M output ports 138 described later (ie, Case 2), and in the following, respectively, in the above two cases, The function of the device 133 will be described.
- the combiner 133 When viewed from a direction perpendicular to the third plane (for example, as shown in FIG. 3A), when at least two sub-target signal lights from the same input port are input to the same position of the combiner 133, from perpendicular to the first plane Looking at the direction (for example, as shown in FIG. 3B), since at least two sub-target signal lights from the same input port are in the same plane in the transmission direction (in this case, the second optical path changer 132 is combined in FIG. 3B). A line between the wavers 133), therefore, the combiner 133 can collectively refer to the two sub-target signal lights as one beam of light.
- the combiner 133 does not combine the two sub-target signal lights into one beam of light.
- the combiner 133 When viewed from a direction perpendicular to the third plane (for example, as shown in FIG. 3A), when at least two sub-target signal lights from the same input port are input to different positions of the combiner 133, the combiner 133 does not need to The two sub-target signal lights are combined. At this time, the combiner 133 can adjust the optical power distribution within the bandwidth of each sub-target signal light.
- the sub-target signal consists of a series of wavelengths in the frequency bands on both sides of the center wavelength, which are combined by the combiner, so that the maximum power of each wavelength is located at the center of the output port, thereby improving
- the bandwidth characteristics of the target output port enable the output signal optical bandwidth characteristics to meet the signal bandwidth characteristics of the communication domain.
- the configuration of the combiner 133 may be optional, for example, when an output port 138 does not need to output a plurality of sub-target signal lights, and the bandwidth line characteristics are not strictly required.
- the combiner 133 may be omitted and the second switch array 136 may be used directly.
- the respective signal lights output from the combiner 133 are parallel to each other as viewed from a direction perpendicular to the third plane (for example, as shown in Fig. 3A).
- the combiner is at least one grating.
- the combiner can be a reflective grating, a transmissive grating or a dispersive prism.
- the combiner and the splitter share the at least one grating.
- the combiner 133 and the splitter 116 may share one or more gratings and the like, and then, the selectable position modes and the transmission paths in each mode may be performed.
- the second beam expander 134 is for adjusting the spot of each sub-target signal light on the second plane (XOY plane of Figs. 2 to 8) from an ellipse to a circle.
- the diameter of the circular spot can be determined according to the specification of the output port, for example, the specification of the output fiber described later, so that the sub-target signal light output from the second beam expander 134 satisfies the transmission of the output terminal described later. Claim.
- the anamorphic prism or cylindrical lens pair may be selected as the second beam expander 134.
- the second beam expander is further configured to perform a second beam expanding process on each of the sub-target signal lights, so that each of the sub-target signal lights output from the second beam expander is in the third plane
- the upper waist position is located at the output port.
- the second beam expander 134 can also adjust the beam waist position of the target optical signal on the third plane such that the beam waist position of the target optical signal is located at the output port 138 described later.
- the second optical switch unit is rotatable at least about the intersection of the third plane and the second plane (the OX axis of Figs. 2 to 8).
- each of the second optical switch units since the respective signal lights output from the combiner 133 are parallel to each other, the signal light transmitted to each of the second optical switch units is parallel to each other, and each of the second optical switch units does not need to rotate around the intersection of the first plane and the second plane (the OY axis of FIGS. 2 to 8), so that Each of the signal lights is transmitted in parallel to an output port 138 which will be described later.
- each second optical switch unit can wrap around the intersection of the first plane and the second plane (FIG. 2).
- the direction is rotated to the OY axis of Fig. 8 to transmit the respective signal lights in parallel to the output port 138, which will be described later.
- each of the second optical switch units can surround the third plane. Rotation with the intersection of the second plane (the OX axis of FIGS. 2 to 8) to transmit the respective signal lights in parallel to the output port 138 to be described later.
- the implementation method of the second optical switch unit in the embodiment of the present invention may be similar to the first optical switch unit.
- detailed description thereof is omitted.
- the foregoing P and Q may be arbitrarily set according to requirements (for example, the provided configuration space and the number of foreign communication nodes, etc.), and are not limited by the number of sub-signal lights included in the signal light. .
- the M output ports 138 are configured to transmit signal lights of M dimensions, which may be sent to a foreign communication node (for example, a next hop communication node in a communication link), or may be sent to The local node, that is, the local down wave function is implemented, and the present invention is not particularly limited.
- the "lower wave” refers to the downlink signal light that needs to be transmitted to the local node (through the output port), and the downlink signal light may be signal light from a foreign communication node or a signal from a local communication node.
- the present invention is not particularly limited. It should be noted that, in the embodiment of the present invention, the output port used by the downlink signal light may be arbitrarily set.
- the input port used by the downlink signal light may be the same as the wavelength of the downlink signal light, that is, one output port is only used for Obtain a downlink signal light of one wavelength; also enable the same output port to output a combination of multiple sub-signal lights from the same port; also use time division multiplexing mode, and one output port is used to receive one wavelength in one time period
- the downlink signal light receives the downlink signal light of another wavelength in another period.
- the dimension of the signal light may refer to a number of categories whose source is under a preset rule (or the number of fibers connected to the ROADM), and the preset rule may be divided by a region, for example, at a city level. , at the provincial level or at the national level; or by entity, for example, A communication node is a dimension, or a group of communication nodes is a dimension.
- the M output ports 138 may include an array of output fibers and an array of output collimators.
- the output fiber array may include M output fibers arranged in two dimensions, and one output fiber is used to transmit signal light of one dimension.
- the output collimator array may include M collimators arranged in two dimensions, wherein the M collimators are in one-to-one correspondence with the M output fibers, and one collimator is used to output signal light from the corresponding output fiber. Collimate.
- the signal light output from each output port 138 may be WDM signal light or single-wavelength signal light, which is not particularly limited in the present invention.
- Fig. 2A is a schematic plan view showing an example of the configuration of an apparatus 100 for optical communication according to an embodiment of the present invention.
- Figure 2B is a side elevational view showing the configuration of the apparatus 100 for optical communication shown in Figure 2A.
- the first optical path changer and the second optical path changer are at least one lens.
- the first optical path changer and the second optical path changer share the at least one lens.
- the incident point of the target signal light on the splitter is located in the first optical path changer in the third plane. Outside the axis in the direction of the main axis.
- the incident point of the target signal light on the splitter is located in the first optical path changer in the first plane. Outside the axis in the direction of the main axis.
- the multiplexer 133 is not disposed, and the second optical switch array 136 is two-dimensionally rotatable to realize the above-described multiplex function of the combiner 133.
- the first optical path changer 118 and the second optical path changer 132 share the same lens 2, wherein the splitter 116, the lens 2, the first optical switch array 120 and the second optical switch array 136 form 4f.
- the system that is, the distance from the splitter 116 to the lens 2 in the direction of signal light transmission, the distance from the first optical switch array 120 to the lens 2 in the direction of signal light transmission, and the second light on The off-array 136 in the direction of signal light transmission to the lens 2 is the focal length f of the lens 2, thereby ensuring that any second light in the second optical switch array 136 is deflected regardless of the first optical switching unit.
- the incident angle of the sub-signal light on the second optical switch unit is the same as the angle of the exit from the splitter 116.
- the incident point on the signal optical demultiplexer 116 is on one side of the main axis of the lens 2, and the incident point of each sub-signal light on the second optical path changer 132 is on the other side of the main axis of the lens 2. side.
- the first optical path changer 118 and the second optical path changer 132 share the same lens 2, wherein the splitter 116, the lens 2, the first optical switch array 120 and the second optical switch array 136 form 4f.
- the system that is, the distance from the splitter 116 to the lens 2 in the signal light transmission direction, the distance from the first optical switch array 120 to the lens 2 in the signal light transmission direction, and the second optical switch array 136 at the signal light
- the lens 2 in the transmission direction is the focal length f of the lens 2, thereby ensuring that when the first optical switching unit deflects the sub-signal light to any of the second optical switch arrays 136,
- the incident angle of the sub-signal light on the second optical switch unit is the same as the exit angle from the splitter 116.
- the first optical path changer 118 further includes a cylindrical lens 1 for use in the first plane (YOZ) ), the target signal lights parallel to each other are concentrated, and the convergence point is located at the splitter 116.
- the incident point of the signal light on the demultiplexer 116 is on the side of the main axis of the lens 2
- the incident point of each sub-signal light on the second optical path changer 132 is on the other side of the main axis of the lens 2.
- the lens 1 is shown by a broken line, indicating that the lens 1 does not function in the plane shown in Fig. 2A (i.e., the pupil plane).
- the first beam expander 114 is shown by a broken line, indicating that the first beam expander 114 does not function in the plane shown in Fig. 2A (i.e., the plane of the pupil);
- the demultiplexer 116 is shown by a broken line. It is shown that the splitter 116 does not function in the plane shown in FIG.
- the second beam expander 134 is shown by a broken line, indicating that the second beam expander 134 is in the plane shown in FIG. , ⁇ plane) does not work.
- the components indicated by broken lines in the drawings indicate that the device does not function in the plane shown in the drawing unless otherwise specified.
- FIG. 3A is a top plan view showing another example of the configuration of the apparatus 100 for optical communication according to an embodiment of the present invention.
- FIG. 3B is a side elevational view showing the configuration of the apparatus 100 for optical communication shown in FIG. 3A.
- the configuration of the multiplexer 133 is different from that of the configuration 1, so that the second optical switch array 136 does not need to be rotated two-dimensionally.
- the combiner 133 is located at the second optical switch array 136 in mode 1, and the second optical switch array 136 is disposed after the second expander 134.
- Fig. 4A is a top plan view showing another example of the configuration of the apparatus 100 for optical communication according to an embodiment of the present invention.
- Figure 4B is a side elevational view showing the configuration of the apparatus 100 for optical communication shown in Figure 4A.
- the second beam expander 134 is provided with a cylindrical lens 3 and a lens 4 in addition to the prism 2.
- the cylindrical lens 3 is used for adjusting the beam waist position of the signal light emitted from the second optical switch array 136 in the YOZ plane, and the beam waist position and the signal light emitted from the input port 112 in the beam waist position in the YOZ plane. Corresponding.
- the lens 4 is for adjusting the beam waist position of the signal light emitted from the second optical switch array 136 in the XOZ plane such that the beam waist position corresponds to the beam waist position of the signal light emitted from the input port 112 in the XOZ plane.
- FIG. 5A is a top plan view showing another example of the configuration of the apparatus 100 for optical communication according to an embodiment of the present invention.
- Figure 5B is a side elevational view showing the configuration of the apparatus 100 for optical communication shown in Figure 5A.
- the first optical path changer and the second optical path changer are at least one lens.
- the first optical path changer and the second optical path changer share the at least one lens.
- the incident point of the target signal light on the splitter is located in the first optical path changer in the third plane. On the axis in the direction of the main axis.
- the incident point of the target signal light on the splitter is located in the first optical path changer in the first plane.
- the incident point of the target signal light on the splitter is located in the first optical path changer in the first plane.
- the mirror 1 and the mirror 2 are provided.
- the mirror 2 is used to be emitted from the first beam expander 114 and transmitted to the column lens 1 to The signal light is reflected to the branching filter 116 through a transmission hole located at the center of the mirror 1.
- the mirror 1 is for reflecting the signal light incident from the combiner 133 (the same grating as the splitter 116) through the region other than the transmission hole to the second beam expander 134.
- the incident point of the signal light on the combiner 133 is located on the major axis of the lens 2.
- FIG. 5B shows a state in which the optical path of the actual optical switch array is folded at the center (reflexed surface), wherein the lens 2 on the right side of the first optical switch array is illustrated.
- the lens 2 on the right side of the right side of the first optical switch array is the same component, and is shown by a broken line in order to embody the optical path.
- Figs. 5A and 5B the input signal light propagating in the input system is shown by a solid line, and the output signal light propagating in the output system is shown by a broken line.
- Fig. 6A is a top plan view showing another example of the configuration of the apparatus 100 for optical communication according to an embodiment of the present invention.
- Figure 6B is a side elevational view showing the configuration of the apparatus 100 for optical communication shown in Figure 6A.
- the first optical path changer includes:
- At least one first cylindrical lens for changing a propagation direction of each of the sub-target signal lights in the third plane
- the second optical path changer includes:
- At least one second cylindrical lens for changing a propagation direction of each of the sub-target signal lights in the first plane
- At least one third cylindrical lens for adjusting a beam waist position of the target signal light output from the first cylindrical lens module on the first plane to the first optical switch array
- At least one fourth cylindrical lens for adjusting a beam waist position of each sub-target signal light outputted from the first optical switch array on the first plane to and from a target signal light output from the input port On a plane, the waist position corresponds between the output port and the splitter.
- the action of the cylindrical lens 2 (first column lens) is similar to that of the lens 2 in the configuration mode 1.
- the cylindrical lens 3 (second cylindrical lens) acts similarly to the lens 2 in configuration 1.
- the cylindrical lens array 1 (third cylindrical lens) is used to adjust the beam waist position of the signal light emitted from the cylindrical lens 2 to the first optical switch array 120, specifically, the face 5 in FIG. 6A. position.
- the cylindrical lens 4 (fourth cylindrical lens) is used to adjust the beam waist position of the signal light emitted from the second optical switch array 136 in the pupil plane, and to make the beam waist position and the signal light emitted from the input port 112.
- the cylindrical lens 4 is used to adjust the beam waist position of the signal light emitted from the second optical switch array 136 in the pupil plane, and to make the beam waist position and the signal light emitted from the input port 112.
- the cylindrical lens 4 (fourth cylindrical lens) is used to adjust the beam waist position of the signal light emitted from the second optical switch array 136 in the pupil plane, and to make the beam waist position and the signal light emitted from the input port 112.
- the position of the waist in the pupil plane specifically, the position of the face 3 in Figs. 6A and 6B.
- FIGs. 6A and 6B the input signal light propagating in the input system is shown by a solid line, and the output signal light propagating in the output system is shown by a broken line.
- the incident point of the signal light on the combiner 133 is located on the major axis of the cylindrical lens 2, and, as shown in FIG. 6A, in the first plane ( ⁇ plane)
- the incident point of the signal light input to the cylindrical lens 3 from the input port on the cylindrical lens 3 is located on one side of the main axis of the cylindrical lens 2, and the signal light input from the first optical switch array 120 to the cylindrical lens 3
- the incident point on the cylindrical lens 3 is located on the other side of the main axis of the cylindrical lens 2.
- the cylindrical lens 2 and the cylindrical lens 3 may be disposed coaxially, that is, the major axis of the cylindrical lens 2 coincides with the major axis of the cylindrical lens 3.
- Fig. 7 is a top plan view showing another example of the configuration of the apparatus 100 for optical communication according to an embodiment of the present invention.
- Figure 7 is a side elevational view showing the configuration of the apparatus 100 for optical communication shown in Figure 7A.
- the first optical path changer and the second optical path changer are at least one lens.
- the first optical path changer and the second optical path changer share the at least one lens.
- the incident point of the target signal light on the splitter is located in the first optical path changer in the third plane. On the axis in the direction of the main axis.
- the incident point of the target signal light on the splitter is located in the first optical path changer in the first plane. Outside the axis in the direction of the main axis.
- the incident point of the signal light on the combiner 133 is located on the major axis of the lens 2 on the pupil plane.
- FIGs. 7A and 7B the input signal light propagating in the input system is shown by a solid line, and the output signal light propagating in the output system is shown by a broken line.
- FIG. 8A is a top plan view showing another example of the configuration of the apparatus 100 for optical communication according to an embodiment of the present invention.
- Figure 8B is a side elevational view showing the configuration of the apparatus 100 for optical communication shown in Figure 8A.
- the first optical path changer and the second optical path changer are at least one lens.
- the first optical path changer and the second optical path changer share the at least one lens.
- the incident point of the target signal light on the splitter is located in the first optical path changer in the third plane. Outside the axis in the direction of the main axis.
- the incident point of the target signal light on the splitter is located in the first optical path changer in the first plane.
- the incident point of the target signal light on the splitter is located in the first optical path changer in the first plane.
- the incident point of the signal light on the combiner 133 is located on the major axis of the lens 2.
- FIGs. 8A and 8B the input signal light propagating in the input system is shown by a solid line, and the output signal light propagating in the output system is shown by a broken line.
- Fig. 9 is a top plan view showing another example of the configuration of the apparatus 100 for optical communication according to an embodiment of the present invention.
- the first optical path changer and the second optical path changer comprise at least one concave mirror.
- the first optical path changer and the second optical path changer share the at least one concave mirror.
- the first optical path changer 118 and the second optical path changer 132 share the same concave mirror, wherein the splitter 116, the concave mirror, the first optical switch array 120, and the combiner 133
- the 4f system is constructed, that is, the distance from the concave mirror to the concave mirror in the signal light transmission direction, the distance from the first optical switch array 120 to the concave mirror in the signal light transmission direction, and the multiplexer 133 at the signal light
- the concave mirror in the transport direction is the focal length f of the concave mirror, thereby ensuring that the sub-signal light is in the combiner regardless of whether the first optical switch unit deflects the sub-signal light to any position in the combiner 133
- the angle of incidence on 133 is the same as the angle of exit from splitter 116.
- the incident point on the signal optical demultiplexer 116 is on the side of the main axis of the lens 2, and the incident point of each sub-signal light on the combiner 133 is on the other side of the main axis of the lens 2.
- the first optical path changer 118 is constituted by the lens 1 and the above concave mirror. The action of the lens 1 in Fig. 9 is similar to that of the lens 1 in Fig. 2A, for example, in order to avoid redundancy, The description is omitted.
- the optical communication device of the present invention by providing a first beam expander and performing beam expansion processing on the signal light by using the first beam expander, signal light incident on the second optical switch array can be in the second light.
- the spot on the arrangement plane of the switch array is changed from a circular shape to an elliptical shape, wherein the long axis length of the elliptical spot generated by the beam expanding process can satisfy the requirement of the demultiplexing process, due to the short axis length of the ellipse Less than the length of the long axis, so that in the short axis direction of the ellipse, more second optical switch units can be configured for the second optical switch array, thereby providing more output ports; and, by making each first light
- the switch unit rotates two-dimensionally, and a second optical switch unit is only used to receive sub-signal light from the same input port at the same time, thereby eliminating the need for M second optical switch units to be arranged one-dimensionally, thereby enabling M outputs.
- optical communication method of the embodiment of the present invention is described in detail above with reference to FIG. 1 to FIG. 9.
- the method of optical communication according to the embodiment of the present invention will be described in detail with reference to FIG.
- FIG. 10 is a schematic flow diagram of a method 200 of optical communication in accordance with an embodiment of the present invention.
- the method 200 is performed in an apparatus including an input system, a first optical switch array, and an output system, the input system including N input ports and a splitter arranged in a first plane, the first optical switch array including NXK first optical switch units arranged two-dimensionally on the second plane, K is the number of sub-signal lights included in the signal light, and the center wavelengths of the sub-signal lights are different from each other, and the second plane is perpendicular to the main axis direction,
- the main shaft direction is a transmission direction of signal light outputted from the input port, the first plane is perpendicular to the second plane, and each of the first optical switch units is rotatable about a first axis direction and a second axis direction, the first The axis direction is a line of intersection of the first plane and the second plane, the second axis direction is a line of intersection of the third plane and the
- S220 performing a first beam expanding process on the target signal light, to convert the spot of the target signal light in the second plane direction from a circle to an ellipse, wherein a long axis direction of the ellipse is the In the second axis direction, the minor axis direction of the ellipse is the first axis direction, and the long axis length of the ellipse is determined based on the following parameters:
- a bandwidth of the target signal light an interval between adjacent sub-target signal lights of the at least two sub-sub-target signal lights, a center wavelength of the at least two sub-sub-target signal lights, and a 4-spray parameter of the demultiplexer;
- the target signal light is demultiplexed by the demultiplexer to decompose the at least two sub-target signal lights from the target signal light, so that the sub-target signal lights are dispersed on the third plane;
- S250 Control, according to an output port corresponding to each of the sub-target signal lights, rotation of the first optical switch unit corresponding to each of the sub-target signal lights in the first optical switch array, to transmit each of the sub-target signals To the corresponding second optical switch unit;
- the method 200 further includes:
- the at least two sub-target signals that need to be received are combined into one beam of signal light by the combiner, and transmitted to the second optical switch array. ;
- the optical power distribution in the bandwidth range of the sub-target signal light is adjusted by the combiner.
- the performing the first beam expanding process on the target signal light comprises: The target signal light is subjected to a first beam expanding process to position the target signal light on the third plane at a beam position before the first optical path changing process.
- performing the second beam expanding process on each of the sub-target signal lights includes:
- a second beam expanding process is performed on each of the sub-target signal lights to position the beam waist position of the sub-target signal light after the second beam expanding process on the third plane at the output port.
- the implementation body of the method 200 for optical communication according to the embodiment of the present invention may correspond to the apparatus 100 for optical communication according to the embodiment of the present invention, and the respective processes in the method 200 of the optical communication and the action bodies of the other operations described above respectively correspond to the diagram. 1 to the modules and units of the device 100 in FIG. 9, for brevity, no further details are provided herein.
- the method of optical communication of the present invention by providing a first beam expander and performing beam expansion processing on the signal light by the first beam expander, signal light incident on the second optical switch array can be used in the second light
- the spot on the arrangement plane of the switch array is changed from a circular shape to an elliptical shape, wherein the long axis length of the elliptical spot generated by the beam expanding process can satisfy the requirement of the demultiplexing process, due to the short axis length of the ellipse Less than the length of the long axis, so that in the short axis direction of the ellipse, more second optical switch units can be configured for the second optical switch array, thereby providing more output ports; and, by making each first light
- the switch unit rotates two-dimensionally, and a second optical switch unit is only used to receive sub-signal light from the same input port at the same time, thereby eliminating the need for M second optical switch units to be arranged one-dimensionally, thereby enabling M outputs.
- the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
- the implementation process constitutes any limitation.
- the disclosed systems, devices, and methods may be implemented in other ways.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
- the mutual coupling or direct connection or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
- the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the functions, if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium.
- the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
- the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Optical Communication System (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
本发明实施例提供了一种光通信的装置,装置包括:输入系统、第一光开关阵列和输出系统,输入系统包括一维排列在第一平面上的N个输入端口、第一扩束器、分波器和第一光路变更器,第一光开关阵列包括二维排列在第二平面上的N×K个第一光开关单元,各第一光开关单元能够绕第一轴线方向和第二轴线方向旋转,输出系统包括第二光路变更器、第二扩束器、第二光开关阵列和二维排列的M个输出端口,第二开关阵列包括二维排列的M个第二光开关单元,一个第二光开关单元在同一时段仅用于接收来自同一输入端口的子信号光,各第二光开关单元至少能够绕第二轴线方向旋转,各第二光开关单元与各输出端口一一对应。
Description
光通信的装置和方法 技术领域
本发明涉及通信领域, 并且更具体地, 涉及光通信的装置和方法。 背景技术
随着视频和云端业务的迅速增长, 运营商对光网络构建的灵活性、 光网 络的建设和运行维护费用的降低尤为关注。 网络节点需要交叉连接的方向维 度(或者说, 传输路径)越来越多, 运营商可通过使用可重构的光分插复用 器( ROADM, Reconfigurable Optical Add/Drop Multiplexer )远程自动地进行 维度切换等, 来取代之前人工下站点的方式去更换光纤的连接, 从而满足网 络动态连接的需求。
目前, 已知一种 ROADM, 具有一维排列的 N个输入端口、 一维排列的 M个输出端口和两级光开关阵列,能够通过光栅将来自于每个输入端口的波 分复用 ( WDM, Wavelength Division Multiplex )信号的分解为 K个子信号, 并通过第一级光开关阵列 (具有二维排列的 Ν X Κ个光开关单元)将各子信 号分别换到第二级光开关阵列(具有二维排列的 M x Κ个光开关单元)中所 对应的光开关单元上, 并通过光栅将来自于第二级光开关阵列的波长相异且 所对应的输出端口相同的子信号合成 WDM信号,并传输至所对应的输出端 口, 从而完成了网络交叉连接。
为了适应高速光通信网络高效性、 灵活性的需求, 作为网络交叉连接核 心的 ROADM需要不断的发展, 希望能够使 ROADM具有更多的输出端口, 以实现对更多的输出维度的信号进行交叉。 如上所述, 在单个光开关的交叉 能力 (例如, 旋转范围)能够得到满足的情况下, 由于 WDM信号包括的子 信号的数量(具体地说,是所包括的子信号的波长数量) K较大且相对固定, 因此, ROADM对输入端的交叉能力主要取决于第二级光开关阵列中与输出 端口对应的光开关单元的数量, 即, M。 受配置空间和单个光开关单元的交 叉能力等的限制, 无法实现 M 的无限增大, 无法满足当前日益增长的网络 需求以及用户的要求。
因此,希望提供一种技术,在给定的有限配置空间内,能够提高 ROADM 针对输出端的网络交叉连接能力。
发明内容
本发明实施例提供一种光通信的装置和方法, 能够在给定的有限配置空 间内, 提高针对输出端的网络交叉连接能力, 进而满足网络需求以及用户的 要求。
第一方面, 提供了一种光通信的装置, 该装置包括: 输入系统、 第一光 开关阵列和输出系统,该输入系统包括一维排列在第一平面上的 N个输入端 口、 第一扩束器、 分波器和第一光路变更器, 该第一光开关阵列包括二维排 列在第二平面上的 N X K个第一光开关单元, K为信号光包括的子信号光的 数量, 各该子信号光的中心波长彼此相异, 该第二平面与主轴方向垂直, 该 主轴方向是从该输入端口输出的信号光的传输方向, 该第一平面与该第二平 面垂直, 各该第一光开关单元能够绕第一轴线方向和第二轴线方向旋转, 该 第一轴线方向是该第一平面与该第二平面的交线方向,该第二轴线方向是第 三平面与该第二平面的交线方向, 该第三平面与该第二平面垂直, 且该第三 平面与该第一平面垂直, 一个第一光开关单元仅用于接收来自一个输入端口 的一束子信号光, 各该第一光开关单元所对应的输入端口或子信号光相异, 该输出系统包括第二光路变更器、 第二扩束器、 第二光开关阵列和二维排列 的 M个输出端口, 该第二开关阵列包括二维排列的 M个第二光开关单元, 一个第二光开关单元在同一时段仅用于接收来自同一输入端口的子信号光, 各该第二光开关单元至少能够绕第二轴线方向旋转,各该第二光开关单元与 各该输出端口——对应, 其中, 该 N个输入端口中的目标输入端口, 用于在 接收到目标信号光时, 将该目标信号光传输至该第一扩束器, 其中, 该目标 输入端口输出的该目标信号光的光斑为圓形, 该目标信号光包括至少两束子 目标信号光; 该第一扩束器, 用于对该目标信号光进行第一扩束处理, 以将 该目标信号光在该第二平面方向上的光斑由圓形变换为椭圓形, 并将经过该 第一扩束处理后的目标信号光传输至该分波器, 其中, 该椭圓形的长轴方向 为该第二轴线方向, 该椭圓形的短轴方向为该第一轴线方向, 该椭圓形的长 轴长度是基于以下参数确定的: 该目标信号光的带宽、 该至少两束子目标信 号光中相邻子目标信号光之间的间隔、 该至少两束子目标信号光的中心波 长、 该分波器的衍射常数; 该分波器, 用于对该目标信号光进行分波处理, 从该目标信号光中分解出该至少两束子目标信号光,使各该子目标信号光在 该第三平面上分散, 并将各该子目标信号光经由该第一光路变更器而传输至
对应的第一光开关单元; 该第一光路变更器, 用于对各该子目标信号光进行 第一光路变更处理, 以使各该子目标信号光彼此平行地射入所对应的第一光 开关单元; 该第一光开关阵列, 用于基于各该子目标信号光所对应的输出端 口, 控制与各该子目标信号光相对应的第一光开关单元的旋转, 以将各该子 目标信号光经由该第二光路变更器和该第二扩束器而传输至所对应的第二 光开关单元; 该第二光路变更器, 用于对各该子目标信号光进行第二光路变 更处理, 其中, 经该第二光路变更处理的子目标信号光在该第三平面上的投 影与所对应的经该第一光路变更处理之前的子目标信号光在该第三平面上 的投影相平行;该第二扩束器,用于对各该子目标信号光进行第二扩束处理, 以将各该子目标信号光在该第二平面方向上的光斑由椭圓形变换为圓形, 该 圓形的直径是基于该输出端口的传输要求确定的; 该第二光开关阵列, 用于 控制各该子目标信号光所对应的第二光开关单元的旋转, 以将各该子目标信 号光分别传输至所对应的输出端口。
结合第一方面, 在第一方面的第一种实现方式中, 该输出系统还包括: 合波器, 位于该第二光路变更器和该第二扩束器之间, 用于当对于一个输出 端口, 存在至少两束需要接收的子目标信号光时, 将该至少两束需要接收的 子目标信号光合成为一束信号光, 并经由该第二扩束器而传输至该第二光开 关阵列; 或用于当对于一个输出端口, 仅存在一束需要接收的子目标信号光 时, 调整该子目标信号光的带宽范围内的光功率分布。
结合第一方面及其上述实现方式, 在第一方面的第三种实现方式中, 该 分波器和该合波器为至少一个光栅。
结合第一方面及其上述实现方式, 在第一方面的第四种实现方式中, 该 合波器和该分波器共用该至少一个光栅。
结合第一方面及其上述实现方式, 在第一方面的第五种实现方式中, 该 第一扩束器, 还用于对该目标信号光进行第一扩束处理, 以将该目标信号光 在该第三平面上的、在该第一扩束器与该第一光路变更器之间的束腰位置位 于该分波器。
结合第一方面及其上述实现方式, 在第一方面的第六种实现方式中, 该 第二扩束器, 还用于对各该子目标信号光进行第二扩束处理, 以将从该第二 扩束器输出的各该子目标信号光在该第三平面上的束腰位置位于该输出端 口„
结合第一方面及其上述实现方式, 在第一方面的第七种实现方式中, 该 第一光路变更器和该第二光路变更器为至少一个透镜。
结合第一方面及其上述实现方式, 在第一方面的第八种实现方式中, 该 第一光路变更器和该第二光路变更器共用该至少一个透镜。
结合第一方面及其上述实现方式, 在第一方面的第九种实现方式中, 当 该第一光路变更器和该第二光路变更器共用一个透镜时, 在该第三平面内, 该目标信号光在该分波器上的入射点位于该第一光路变更器在该主轴方向 上的轴线上。
结合第一方面及其上述实现方式, 在第一方面的第十种实现方式中, 当 该第一光路变更器和该第二光路变更器共用一个透镜时, 在该第三平面内, 该目标信号光在该分波器上的入射点位于该第一光路变更器在该主轴方向 上的轴线外。
结合第一方面及其上述实现方式, 在第一方面的第十一种实现方式中, 当该第一光路变更器和该第二光路变更器共用一个透镜时, 在该第一平面 内, 该目标信号光在该分波器上的入射点位于该第一光路变更器在该主轴方 向上的轴线上。
结合第一方面及其上述实现方式, 在第一方面的第十二种实现方式中, 当该第一光路变更器和该第二光路变更器共用一个透镜时, 在该第一平面 内, 该目标信号光在该分波器上的入射点位于该第一光路变更器在该主轴方 向上的轴线外。
结合第一方面及其上述实现方式, 在第一方面的第十三种实现方式中, 该第一光路变更器和该第二光路变更器为至少一个凹面镜。
结合第一方面及其上述实现方式, 在第一方面的第十四种实现方式中, 该第一光路变更器和该第二光路变更器共用该至少一个凹面镜。
结合第一方面及其上述实现方式, 在第一方面的第十五种实现方式中, 该第一光路变更器包括: 至少一个第一柱透镜, 用于改变各该子目标信号光 在该第三平面内的传播方向; 以及该第二光路变更器包括: 至少一个第二柱 透镜, 用于改变各该子目标信号光在该第一平面内的传播方向; 至少一个第 三柱透镜, 用于将从该第一柱透镜模块输出的目标信号光在该第一平面上的 束腰位置调整至该第一光开关阵列; 至少一个第四柱透镜, 用于将从该第一 光开关阵列输出的各子目标信号光在该第一平面上的束腰位置调整为, 与从
该输入端口输出的目标信号光在该第一平面上的、在该输出端口和该分波器 之间束腰位置相对应。
第二方面, 提供了一种光通信的方法, 该方法在包括输入系统、 第一光 开关阵列和输出系统的装置中执行, 该输入系统包括一维排列在第一平面上 的 N个输入端口和分波器,该第一光开关阵列包括二维排列在第二平面上的 Ν χ K个第一光开关单元, K为信号光包括的子信号光的数量, 各该子信号 光的中心波长彼此相异, 该第二平面与主轴方向垂直, 该主轴方向是从该输 入端口输出的信号光的传输方向, 该第一平面与该第二平面垂直, 各该第一 光开关单元能够绕第一轴线方向和第二轴线方向旋转,该第一轴线方向是该 第一平面与该第二平面的交线方向, 该第二轴线方向是第三平面与该第二平 面的交线方向, 该第三平面与该第二平面垂直, 且该第三平面与该第一平面 垂直, 一个第一光开关单元仅用于接收来自一个输入端口的一束子信号光, 各该第一光开关单元所对应的输入端口或子信号光相异, 该输出系统包括第 二光开关阵列和二维排列的 M个输出端口, 该第二开关阵列包括二维排列 的 M个第二光开关单元, 一个第二光开关单元在同一时段仅用于接收来自 同一输入端口的子信号光,各该第二光开关单元至少能够绕第二轴线方向旋 转, 各该第二光开关单元与各该输出端口——对应, 该方法包括: 通过目标 输入端口, 接收目标信号光, 其中, 该目标信号光的光斑为圓形, 该目标信 号光包括至少两束子目标信号光; 对该目标信号光进行第一扩束处理, 以将 该目标信号光在该第二平面上的光斑由圓形变换为椭圓形, 其中, 该椭圓形 的长轴方向为该第二轴线方向, 该椭圓形的短轴方向为该第一轴线方向, 该 椭圓形的长轴长度是基于以下参数确定的: 该目标信号光的带宽、 该至少两 束子目标信号光中相邻子目标信号光之间的间隔、该至少两束子目标信号光 的中心波长、 该分波器的衍射参数; 通过该分波器, 对该目标信号光进行分 波处理, 以从该目标信号光中分解出该至少两束子目标信号光, 使各该子目 标信号光在该第三平面上分散; 对各该子目标信号光进行第一光路变更处 理, 以使各该子目标信号光彼此平行地射入所对应的第一光开关单元; 基于 各该子目标信号光所对应的输出端口,控制该第一光开关阵列中与各该子目 标信号光相对应的第一光开关单元的旋转, 以将各该子目标信号光传输至所 对应的第二光开关单元; 对各该子目标信号光进行第二光路变更处理, 以使 经该第二光路变更处理的子目标信号光在该第三平面上的投影与所对应的
经该第一光路变更处理之前的子目标信号光在该第三平面上的投影相平行; 对各该子目标信号光进行第二扩束处理, 以将各该子目标信号光在该第二平 面方向上的光斑由椭圓形变换为圓形, 该圓形的直径是基于该输出端口的传 输要求确定的; 控制该第二光开关阵列中各该子目标信号光所对应的第二光 开关单元的旋转, 以将各该子目标信号光分别传输至所对应的输出端口。
结合第二方面, 在第二方面的第一种实现方式中, 该方法还包括: 当对 于一个输出端口, 存在至少两束需要接收的子目标信号光时, 将该至少两束 需要接收的子目标信号光合成为一束信号光, 并传输至该第二光开关阵列; 或当对于一个输出端口, 仅存在一束需要接收的子目标信号光时, 调整该子 目标信号光的带宽范围内的光功率分布。
结合第二方面及其上述实现方式, 在第二方面的第二种实现方式中, 该 对该目标信号光进行第一扩束处理包括: 对该目标信号光进行第一扩束处 理, 以将该目标信号光在该第三平面上的、 在经该第一光路变更处理之前的 束腰位置位于该分波器。
结合第二方面及其上述实现方式, 在第二方面的第三种实现方式中, 该 对各该子目标信号光进行第二扩束处理包括: 对各该子目标信号光进行第二 扩束处理, 以将经该第二扩束处理后的各该子目标信号光在该第三平面上的 束腰位置位于该输出端口。
本发明实的光通信的装置和方法, 通过设置第一扩束器, 并利用该第一 扩束器对信号光进行扩束处理, 能够将射入第二光开关阵列的信号光在该第 二光开关阵列的配置平面上的光斑由圓形变换为椭圓形, 其中, 经该扩束处 理而生成的椭圓形光斑的长轴长度能够满足分波处理的要求, 由于椭圓的短 轴长度小于长轴长度, 从而, 在椭圓的短轴方向上, 能够为第二光开关阵列 配置更多的第二光开关单元, 进而能够提供更多的输出端口; 并且, 通过使 各第一光开关单元二维旋转, 并使一个第二光开关单元在同一时段仅用于接 收来自同一输入端口的子信号光, 从而无需 M各第二光开关单元一维地排 歹 |J, 进而能够实现 M个输出端口的二维排列。 因此, 能够在给定的有限配 置空间内, 提高针对输出端的网络交叉连接能力, 满足网络需求以及用户的 要求。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例或现有技 术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图 仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造 性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是根据本发明一实施例的光通信的装置结构的示意性框图。
图 2A是根据本发明一实施例的光通信的装置配置的俯视示意图。
图 2B是图 2A所示光通信的装置配置的侧视示意图。
图 3A是根据本发明另一实施例的光通信的装置配置的俯视示意图。 图 3B是图 3A所示光通信的装置配置的侧视示意图。
图 4A是根据本发明再一实施例的光通信的装置配置的俯视示意图。 图 4B是图 4A所示光通信的装置配置的侧视示意图。
图 5A是根据本发明再一实施例的光通信的装置配置的俯视示意图。 图 5B是图 5A所示光通信的装置配置的侧视示意图。
图 6A是根据本发明再一实施例的光通信的装置配置的俯视示意图。 图 6B是图 6A所示光通信的装置配置的侧视示意图。
图 7A是根据本发明再一实施例的光通信的装置配置的俯视示意图。 图 7B是图 7A所示光通信的装置配置的侧视示意图。
图 8A是根据本发明再一实施例的光通信的装置配置的俯视示意图。 图 8B是图 8A所示光通信的装置配置的侧视示意图。
图 9是根据本发明再一实施例的光通信的装置配置的俯视示意图。 图 10是根据本发明一实施例的光通信的方法的示意性流程。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明的技术方案,可以应用于各种能够使用信号光来传输数据的通信 系统, 例如: 全球移动通讯系统 ( GSM, Global System of Mobile communication ), 码分多址 ( CDMA, Code Division Multiple Access ) 系统, 宽带码分多址( WCDMA, Wideband Code Division Multiple Access Wireless ), 通用分组无线业务( GPRS, General Packet Radio Service ), 长期演进( LTE, Long Term Evolution )等。
图 1示出了本发明的光通信的装置 100的示意性结构, 如图 1所示, 该 装置 100包括:
输入系统 110、 第一光开关阵列 120和输出系统 130,
该输入系统 110包括:
排列在第一平面上的 N个输入端口 112、 第一扩束器 114、 分波器 116 和第一光路变更器 118,
该第一光开关阵列 120包括二维排列在第二平面上的 N X K个第一光开 关单元, K为信号光包括的子信号光的数量,各该子信号光的波长彼此相异, 该第二平面与主轴方向垂直, 该主轴方向是从该输入端口输出的信号光的传 输方向, 该第一平面与该第二平面垂直, 各该第一光开关单元能够绕第一轴 线方向和第二轴线方向旋转, 该第一轴线方向是该第一平面与该第二平面的 交线方向, 该第二轴线方向是第三平面与该第二平面的交线方向, 该第三平 面与该第二平面垂直, 且该第三平面与该第一平面垂直, 一个第一光开关单 元仅用于接收来自一个输入端口的一束子信号光,各该第一光开关单元所对 应的输入端口或子信号光相异,
该输出系统 130包括第二光路变更器 132、 第二扩束器 134、 第二光开 关阵列 136和二维排列的 M个输出端口 138,该第二开关阵列 136包括二维 排列的 M个第二光开关单元, 各该第二光开关单元与各该输出端口——对 应, 其中,
该 N个输入端口 112中的目标输入端口, 用于在接收到目标信号光时, 将该目标信号光传输至该第一扩束器, 其中, 该目标输入端口输出的该目标 信号光的光斑为圓形, 该目标信号光包括至少两束子目标信号光;
该第一扩束器 114, 用于对该目标信号光进行第一扩束处理, 以将该目 标信号光在该第二平面方向上的光斑由圓形变换为椭圓形, 并将经过该第一 扩束处理后的目标信号光传输至该分波器 116, 其中, 该椭圓形的长轴方向
为该第二轴线方向, 该椭圓形的短轴方向为该第一轴线方向, 该椭圓形的长 轴长度是基于以下参数确定的:
该目标信号光的带宽、该至少两束子目标信号光中相邻子目标信号光之 间的间隔、该至少两束子目标信号光的中心波长、该分波器 116的衍射参数; 该分波器 116, 用于对该目标信号光进行分波处理, 从该目标信号光中 分解出该至少两束子目标信号光, 使各该子目标信号光在该第三平面上分 散, 并将各该子目标信号光经由该第一光路变更器 118而传输至对应的第一 光开关单元;
该第一光路变更器 118, 用于对各该子目标信号光进行第一光路变更处 理, 以使各该子目标信号光彼此平行地射入所对应的第一光开关单元;
该第一光开关阵列 120,用于基于各该子目标信号光所对应的输出端口, 控制与各该子目标信号光相对应的第一光开关单元的旋转, 以将各该子目标 信号光经由该第二光路变更器 132和该第二扩束器 134而传输至所对应的第 二光开关单元;
该第二光路变更器 132, 用于对各该子目标信号光进行第二光路变更处 理, 其中, 经该第二光路变更处理的子目标信号光在该第三平面上的投影与 所对应的经该第一光路变更处理之前的子目标信号光在该第三平面上的投 影相平行;
该第二扩束器 134, 用于对各该子目标信号光进行第二扩束处理, 以将 各该子目标信号光在该第二平面方向上的光斑由椭圓形变换为圓形,该圓形 的直径是基于该输出端口 138的传输要求确定的,
该第二光开关阵列 136, 用于控制各该子目标信号光所对应的第二光开 关单元的旋转, 以将各该子目标信号光分别传输至所对应的输出端口 138。
首先, 对光通信的装置 100中各器件的功能和结构进行说明。
A. 输入系统 110
A1. 输入端口 112
在本发明实施例中, 一维排列的 N个输入端口 112用于获取 N个维度 的信号光, 该信号光可以是来自外地通信节点(例如, 通信链路中的上一跳 通信节点), 也可以是来自本地节点, 即, 实现本地上波功能, 本发明并未 特别限定。
这里, 所谓 "上波", 是指 (通过输入端口)获取的来自本地节点的上
行信号光并进行发送, 该上行信号光可以是发给外地通信节点的信号光, 也 可以是发给本地通信节点的信号光, 本发明并未特别限定。 需要说明的是, 在本发明实施例中, 上行信号光使用的输入端口可以任意设置, 例如, 上行 信号光使用的输入端口可以与上行信号光的波长数量相同, 即, 一个输入端 口仅用于获取一个波长的上行信号光; 也可以釆用时分复用方式, 而使一个 输入端口在一个时段用于发送一个波长的上行信号光,在另一个时段发送另 一个波长的上行信号光。
另外,作为信号光的维度可以是指,其来源在预设规则下的类别数量(或 者说, 该 ROADM所连接的光纤的数量), 该预设规则可以是以区域划分, 例如, 以城市级别、省份级别或国家级别划分; 也可以是以实体划分, 例如, 一个通信节点即为一个维度, 或者, 一组通信节点即为一个维度。
应理解, 以上列举的维度划分方式仅为示例性说明, 本发明并未特别限 定于此, 其他能够区分各通信节点的划分方法均落入本发明的保护范围内。
在本发明实施例中, N个输入端口 112可以包括输入光纤阵列和输入准 直器阵列。
输入光纤阵列可以包括一维排列的 N个输入光纤,一个输入光纤用于获 取一个维度的信号光。
输入准直器阵列可以包括一维排列的 N个准直器, 其中, 该 N个准直 器与 N个输入光纤一一对应,一个准直器用于对从所对应的输入光纤输出的 信号光进行准直。
需要说明的是, 上述 "一维排列的 N个输入端口"是指, N个输入端口 排列在同一平面内, 例如, 第一平面 (图 2至图 8的 YOZ平面)上, 其中, 该第一平面与后述分波器对信号光进行分波处理而生成的各子信号光的分 散平面, 即第三平面 (图 2至图 8的 XOZ平面)垂直, 并且, 该第一平面 与后述 N x K个第一光开关单元的排列平面, 即第二平面 (图 2至图 8的 XOY平面)垂直。 即, 如果将从输入端口输出的信号光的传输方向作为主 轴方向, 则该第二平面与该主轴方向垂直, 第一平面和第三平面与该主轴方 向平行。 同样的, "一维排列的 N个输入光纤" 是指, N个输入光纤排列在 第一平面上; "一维排列的 N个准直器" 是指, N个准直器排列在第一平面 上。 以下, 为了避免赘述, 省略对相同或相似情况的说明。
经上述处理, 从上述 N个输入端口 112 (具体地说, 是上述准直器)输
出的信号光的投射在上述第二平面 (图 2至图 8的 XOY平面) 方向上的光 斑为圓形, 为了便于理解和后述说明, 这里, 不失一般性, 设该圓形的直径 为 d。
在本发明实施例中,从各输入端口 112输入的信号光为波分复用( WDM, Wavelength Division Multiplexing )信号光, 一束 WDM信号光包括多束(至 少两束)子信号光, 各子信号光的中心波长(或者说, 各子信号光的中心频 点)彼此相异, 并且, 各子信号光也具有一定的带宽。
上述各输入端口可以同时接收信号光, 并输出信号光, 以下, 为了便于 理解和说明, 不失一般性, 以该光通信装置 100对 N各输入端口中的目标输 出端口所接收到的信号光(以下, 称为目标信号光)的处理为例, 进行说明, 并且, 将该目标信号光包括的各子信号光, 称为子目标信号光。
A2. 第一扩束器 114
第一扩束器 114在目标信号光的传输方向上, 配置在输入准直器阵列之 后, 其只在第三平面 (图 2至图 9的 XOZ平面) 内对于目标信号光起扩束 作用, 以将目标信号光在第二平面 (图 2至图 8的 XOY平面)上的光斑由 圓形调整为椭圓形。 具体地说, 从准直器阵列输出的目标信号光在 XOZ平 面方向、XOY平面方向和 YOZ平面方向上的光斑均为圓形。第一扩束器 114, 在 ΧΟΖ平面方向上, 沿与目标信号光的传播方向 (图 2至图 8的 ΟΖ轴方 向)垂直的方向 (图 2至图 8的 ΟΧ轴方向)对光斑进行拉伸, 从而, 在 ΧΟΖ和 ΧΟΥ平面方向上, 该目标信号光的光斑由圓形变为椭圓形。
需要说明的是, 在本发明实施例中, ΧΟΥ 平面方向上, 该椭圓形光斑 在短轴方向上的长度与原始的圓形光斑的直径 d相比, 可以增长, 也可以为 发生变化, 本发明并未特别限定。
在本发明实施例中,为了能够使输出光信号满足预设的带宽特性(例如, 带宽谱线) 需求(例如, 可以根据用户需求和传输网络的硬件情况设定), 需要使该椭圓形光斑的长轴长度, 或者说, 在波长交换平面 (即, 图 2至图 8的 XOZ平面)上的与目标信号光的传播方向 (图 2至图 8的 OZ轴方向) 垂直的方向 (图 2至图 8的 OX轴方向)上的长度满足预设条件, 其中, 该 预设条件可以由分波器 116的衍射能力和目标信号光的属性决定。
可选地, 在本发明实施例中, 该分波器为光栅, 以及
该分波器的衍射参数包括该分波器的光栅常数和该分波器的出射角。
具体地说, 作为示例而非限定, 上述长轴长度 a可以通过以下公式 1确 定:
a = Od cosl 公式 1
2πΑλ
其中, 参数 ζ、 Α和 与上述目标信号光的属性相对应, 是根据该目 标信号光的带宽(或者说, 带宽要求)确定的, 这里, 例如, 在需要是带宽 谱线为三阶高斯分布时, 可以将 设为 5。 A表示该目标信号光包括的各子 目标信号光的中心波长, 表示相邻的两个子目标信号光彼此之间的间隔。
并且, 参数 ^ /和 S与分波器 116 的衍射能力相对应, ^ /表示后述分波器 的光栅常数 (衍射参数的一例 ), S后述分波器 116的出射角 (衍射参数的另 一例)。
另外, 作为示例而非限定, 可以选用该变形棱镜或柱透镜对等作为该第 一扩束器 114。
可选地, 该第一扩束器, 还用于对该目标信号光进行第一扩束处理, 以 将该目标信号光在该第三平面上的、在该第一扩束器与该第一光路变更器之 间的束腰位置位于该分波器。
具体地说, 在本发明实施例中, 从垂直于第三平面的方向看(例如, 图 3A所示),第一扩束器 114还可以调节目标光信号在第三平面上的束腰位置, 以使该目标光信号在该第一扩束器 114与后述第一光路变更器 118之间的束 腰位置位于后述分波器 116, 使经第一光路变更器 118处理的各子信号光的 束腰位置位于第一光开关单元阵列。
由于位于束腰位置光斑尺寸最小, 能够降低对第一光开关单元阵列中光 开关单元尺寸需求保证器件输出特性和带宽特性。
A3. 分波器 116
分波器 116可以利用衍射方式, 在第三平面(图 2至图 8的 XOZ平面) 将目标信号光分解成波长(或者说, 中心频点)相异的各子目标信号光, 从 而, 从该分波器 116输出的各子目标信号光在第三平面方向上辐射式分散。
可选地, 该分波器为至少一个光栅。
作为示例而非限定, 该分波器可以为反射光栅、 透射光栅、 色散棱镜或 平面波导光栅。 并且, 为增加色散效应, 可釆用多片光栅组合, 或者, 可以 釆用调整光路是目标信号光多次经过同一光栅。
A3. 第一光路变更器 118
第一光路变更器 118, 可以对所输入的各子目标信号光进行第一光路变 更处理, 以使各子目标信号光彼此平行地射入后述第一光开关单元阵列 120 中所对应的第一光开关单元。
作为示例而非限定, 第一光路变更器 118可以包括透镜、 凹面镜或者柱 透镜。 并且, 根据所选择的作为第一光路变更器 118的器件的差异, 该光通 信的装置 100内的各器件的配置位置相异, 或者说, 信号光在该光通信的装 置 100中的传输路径相异, 随后, 对可以选择的各配置位置方式以及各方式 下的传输路径进行详细说明。
另外, 在本发明实施例中, 为了减小相差, 可以使用一个或多个胶合透 镜、 最佳外形透镜等作为第一光路变更器 118。
从而, 经上述第一扩束器 114、 分波器 116、 第一光路变更器 118的处 理, 在从上述 N个输入端口 112输出的 N束信号光, 且每个信号光包括 K 束波长相异的子信号光的情况下,该 N束信号光在空间内被分解为彼此平行 的 N x K束子信号光, 其中, 该 N x K个子信号光在上述第二平面方向上的 光斑二维排列, 即, 在该第一平面与该第二平面的交线方向 (图 2至图 8的 OY轴)上排列有 N排光斑, 在在该第三平面与该第二平面的交线方向 (图 2至图 8的 OX轴)上排列有 K列光斑, 其中, 同一排光斑所对应的子信号 光来自于是由同一输入端口的信号光分解而成, 同一列光斑所对应的子信号 光的波长(或者说, 中心频点)相同, 换而言之, 同一排光斑所对应的子信 号光的波长相异, 同一列光斑所对应的子信号光的输入端口相异。
B. 第一光开关阵列 120
在本发明实施例中, 第一光开关阵列 120由 N x K个第一光开关单元构 成, 即, N x K个第一光开关单元沿上述第二平面 (图 2至图 8的 XOY平 面)方向二维排列为 N排 K列, 具体地说, 在该第一平面与该第二平面的 交线方向(图 2至图 8的 OY轴)上排列有 N排第一光开关单元, 在在该第 三平面与该第二平面的交线方向(图 2至图 8的 OX轴)上排列有 K列第一 光开关单元。 其中, 处于同一排的第一光开关单元对应于同一输入端口, 处 于同一列的第一光开关单元所对应的波长相同, 换而言之, 处于同一排的第 一光开关单元所对应的波长相异,处于同一列的第一光开关单元所对应的输 入端口相异。
由此, 该 N X K个第一光开关单元与上述 N X K个子信号光形成——对
应关系, 即, 一个第一光开关单元仅用于将一束子信号光传输至该子信号光 所对应的后述输出端口 (或者说, 后述第二光开关单元)。
并且,在本发明实施例中,各第一光开关单元能够二维旋转,具体地说, 各第一光开关单元能够绕该第一平面与该第二平面的交线(图 2至图 8 的 OY轴)方向旋转, 并且, 各第一光开关单元能够绕该第三平面与该第二平 面的交线(图 2至图 8的 OX轴)方向旋转。 从而, 各第一光开关单元能够 将所对应的子信号光传输至后述第二光开关阵列中的任意第二光开关单元。
作为示例而非限定,本发明实施例的第一光开关单元可以通过以下任意 技术实现。
例如, 在本发明实施例中, 第一光开关单元可以通过微电子机械系统
( MEMS , Micro-Electro-Mechanical System )技术实现, MEMS技术是将几 何尺寸或操作尺寸仅在微米、亚微米甚至纳米量级的微机电装置与控制电路 高度集成在硅基或非硅基材料上的一个非常小的空间里,构成一个机电一体 化的器件或系统。 通过 MEMS技术实现的第一光开关单元是通过静电力或 其他控制力使微反射镜产生机械运动,从而使打在微反射镜上的光束偏转至 任意一个方向。 在通过 MEMS技术实现本发明的第一光开关单元的情况下, 控制器可以通过控制指令控制微机械结构, 以驱动光调制器 (微透镜 )转动, 从而实现光路的偏转, 从而实现信号光的维度(或者说, 传输路径)切换。
再例如,在本发明实施例中,第一光开关单元可以通过硅基液晶( LCoS, Liquid Crystal On Silicon )技术实现, LCoS技术是利用液晶光栅原理, 调整 不同波长的光反射角度来达到分离光的目的。 由于没有活动部件, LCoS技 术具有相当的可靠性。 LCoS技术釆用液晶单元折射率变化控制实现反射角 变化, 可以方便的实现扩展和升级。 不同通道对应空间光调制器(液晶)阵 列的不同区域, 通过调节光斑的相位, 来改变光的传输方向, 达到切换不同 端口及调节衰减的目的。
再例如,在本发明实施例中, 第一光开关单元可以通过液晶(LC, liquid crystal )技术实现, 在通过 LC技术实现的第一光开关单元中, 入射的信号 光经过双折射晶体后, 分成两个偏振态, 其中一路经过半波片后, 两路光的 偏振态相同, 然后打在第一光开关单元(液晶模组)上, 通过调节双折射晶 体的电压改变液晶的排列结构 (改变晶体内部分子的角度), 从而使晶体折 射率发生变化, 光源以不同角度的光输出。 光经过每层液晶都有两个方向可
以选择, 经过多层液晶层后可以有多个光路可供选择。
再例如, 在本发明实施例中, 第一光开关单元可以通过数字光处理
( DLP, Digital Light Processing )技术实现, 通过 DLP技术实现的第一光开 关单元的内部结构与通过 MEMS技术实现的光调制器的内部结构相似, 通 过微透镜的偏转实现光能量的切换。 区别在于, DLP微镜转动角度只有几个 状态限制输出端口数量。
C. 输出系统 130
C1. 第二光路变更器 132
第二光路变更器 132, 可以对所输入的各子目标信号光进行第二光路变 更处理, 以将各子目标信号光传输至所对应的第二光开关单, 其中, 经该第 二光路变更处理的子目标信号光在第三平面 (图 2至图 8的 XOZ平面)上 的投影与所对应的经该第一光路变更处理之前的子目标信号光在该第三平 面 (图 2至图 8的 XOZ平面)上的投影相平行, 从而, 从第二光路变更器 132射出的各子目标信号光都能够以从分波器 116出射时的角度返回后述第 二光开关阵列 136 (或者, 后述合波器 135 ), 进而, 能够确保入射到第二光 开关阵列 136 (或者, 后述合波器 135 ) 的来自于同一个输入端口 112的各 子信号光(波长彼此相异) 能够合成一束 WDM信号光。
作为示例而非限定,第二光路变更器 132可以包括透镜、 凹面镜。并且, 根据所选择的作为第二光路变更器 132的器件的差异, 该光通信的装置 100 内的各器件的配置位置相异, 或者说, 信号光在该光通信的装置 100中的传 输路径相异, 并且, 在本发明实施例中, 该第二光路变更器 132与第一光路 变更器 118可以公用一个或多个透镜等, 随后, 对可以选择的各配置位置方 式以及各方式下的传输路径进行详细说明。
C2. 合波器 133
可选地, 该输出系统还包括:
合波器 133, 位于该第二光路变更器 132和该第二扩束器 134之间, 用于当对于一个输出端口 138, 存在至少两束需要接收的子目标信号光 时, 将该至少两束需要接收的子目标信号光合成为一束信号光, 并经由该第 二扩束器而传输至该第二光开关阵列; 或
用于当对于一个输出端口 138,仅存在一束需要接收的子目标信号光时, 调整该子目标信号光的光功率分布。
具体地说, 在本发明实施例中, 可能存在来自同一输出端口 112的至少 两束子目标信号光需要发送至后述 M个输出端口 138中的同一输出端口的 情况(即, 情况 1 ), 也可能存在来自同一输出端口 112的至少两束子目标信 号光需要发送至后述 M个输出端口 138中的不同输出端口的情况(即, 情 况 2 ), 下面, 分别对上述两种情况下, 合波器 133的功能进行说明。
情况 1
从垂直于第三平面的方向看(例如, 图 3A所示), 当来自于同一输入端 口的至少两束子目标信号光输入至该合波器 133的同一位置时,从垂直于第 一平面的方向看(例如, 图 3B所示), 由于该自于同一输入端口的至少两束 子目标信号光在传输方向上位于同一平面 (此情况下, 呈现为图 3B中第二 光路变更器 132与合波器 133之间的一条线), 因此, 合波器 133能够将该 少两束子目标信号光合称为一束信号光。 同样, 由于该自于不同输入端口的 子目标信号光在传输方向上位于不同平面 (此情况下, 呈现为图 3B中第二 光路变更器 132与合波器 133之间的多条线), 因此, 合波器 133不会将该 少两束子目标信号光合成为一束信号光。
情况 2
从垂直于第三平面的方向看(例如, 图 3A所示), 当来自于同一输入端 口的至少两束子目标信号光输入至该合波器 133的不同位置时, 合波器 133 无需对该两束子目标信号光进行合成, 此时, 合波器 133可以调整各子目标 信号光的带宽范围内的光功率分布。
与多个子目标信号相类似,子目标信号包含位于中心波长两侧频带内的 一系列波长通过合波器进行合波作用,使每个波长的功率极大值都位于输出 端口中心位置, 从而改善目标输出端口的带宽特性, 使输出信号光带宽特性 满足通讯领域信号带宽特性的需求。
另外, 在本发明实施例中, 可以该合波器 133的配置是可选地, 例如, 当一个输出端口 138不需要输出多个子目标信号光,且对带宽谱线特性要求 不严格的情况下, 也可以不配置合波器 133, 而直接使用第二开关阵列 136。
并且, 在本发明实施例中, 从垂直于第三平面的方向看 (例如, 图 3A 所示 ), 从合波器 133输出的各信号光彼此平行。
可选地, 该合波器为至少一个光栅。
作为示例而非限定, 该合波器可以为反射光栅、 透射光栅或色散棱镜。
可选地, 该合波器和该分波器共用该至少一个光栅。
作为示例而非限定, 在本发明实施例中, 该合波器 133与分波器 116可 以共用一个或多个光栅等, 随后, 对可以选择的各配置位置方式以及各方式 下的传输路径进行详细说明
C3. 第二扩束器 134
第二扩束器 134用于将各子目标信号光在第二平面(图 2至图 8的 XOY 平面)上的光斑由椭圓形调整为圓形。 其中, 该圓形光斑的直径可以才艮据输 出端口的规格, 例如, 后述输出光纤的规格确定, 使从第二扩束器 134输出 的各子目标信号光满足后述输出端都的传输要求。
另外, 作为示例而非限定, 可以选用该变形棱镜或柱透镜对等作为该第 二扩束器 134。
可选地,该第二扩束器,还用于对各该子目标信号光进行第二扩束处理, 以将从该第二扩束器输出的各该子目标信号光在该第三平面上的束腰位置 位于该输出端口。
具体地说, 在本发明实施例中, 从垂直于第三平面的方向看(例如, 图
3A所示), 该第二扩束器 134还可以调节目标光信号在第三平面上的束腰位 置, 以使该目标光信号的束腰位置位于后述输出端口 138。
C4. 第二光开关阵列 136
在本发明实施例中, 第二光开关阵列 136由 M = P x Q个第二光开关单 元构成, 即, P x Q个第二光开关单元二维排列为 P排 Q列。
并且, 该 P x Q个第二光开关单元与后述 M = P x Q个输出端口 138形 成——对应关系, 即, 一个第二光开关单元仅用于传输需要传输至同一输出 端口的信号光。
另外, 在本发明实施例中, 第二光开关单元能够至少绕该第三平面与该 第二平面的交线 (图 2至图 8的 OX轴)方向旋转。
具体地说, 在配置有上述合波器 133的情况下, 从垂直于第三平面的方 向看(例如, 图 3A所示), 由于从合波器 133输出的各信号光彼此平行, 因 此, 传输至各第二光开关单元的信号光彼此平行, 各第二光开关单元无需绕 该第一平面与该第二平面的交线(图 2至图 8的 OY轴)方向旋转, 便能够 将各信号光平行地传输至后述输出端口 138。
类似地, 在未配置有上述合波器 133的情况下, 从垂直于第三平面的方
向看(例如, 图 3A所示), 由于传输至各第二光开关单元的信号不平行, 因 此需要各第二光开关单元能够绕该第一平面与该第二平面的交线(图 2至图 8的 OY轴) 方向旋转, 以将各信号光平行地传输至后述输出端口 138。
并且, 从垂直于第一平面的方向看(例如, 图 3B所示), 由于传输至各 第二光开关单元的信号光不平行, 因此, 需要各第二光开关单元能够绕该第 三平面与该第二平面的交线(图 2至图 8的 OX轴)方向旋转, 以将各信号 光平行地传输至后述输出端口 138。
作为示例而非限定,本发明实施例的第二光开关单元的实现方法可以与 第一光开关单元相似, 这里, 为了避免赘述, 省略其详细说明。
需要说明的是, 在本发明实施例中, 上述 P和 Q可以根据需要(例如, 提供的配置空间和外地通信节点的数量等)任意设置, 不受信号光包括的子 信号光的数量的限制。
C5. 输出端口 138
在本发明实施例中, M = P X Q个输出端口 138二维排列为 P排 Q列, 从而, 该 M = P x Q个输出端口 138与上述 P x Q个第二光开关单元与后述 形成——对应关系。
并且, 该 M个输出端口 138用于发送 M个维度的信号光, 该信号光可 以是需要发送至外地通信节点 (例如, 通信链路中的下一跳通信节点), 也 可以是需要发送至本地节点, 即, 实现本地下波功能,本发明并未特别限定。
这里, 所谓 "下波", 是指 (通过输出端口 )获取的需要发送至本地节 点的下行信号光, 该下行信号光可以是来自外地通信节点的信号光, 也可以 是来自本地通信节点的信号光, 本发明并未特别限定。 需要说明的是, 在本 发明实施例中, 下行信号光使用的输出端口可以任意设置, 例如, 下行信号 光使用的输入端口可以与下行信号光的波长数量相同, 即, 一个输出端口仅 用于获取一个波长的下行信号光; 也可以使同一个输出端口输出来自于同一 端口的多个子信号光的组合; 还可以釆用时分复用方式, 而使一个输出端口 在一个时段用于接收一个波长的下行信号光,在另一个时段接收另一个波长 的下行信号光。
另外,作为信号光的维度可以是指,其来源在预设规则下的类别数量(或 者说, 该 ROADM所连接的光纤的数量), 该预设规则可以是以区域划分, 例如, 以城市级别、省份级别或国家级别划分; 也可以是以实体划分, 例如,
一个通信节点即为一个维度, 或者, 一组通信节点即为一个维度。
应理解, 以上列举的维度划分方式仅为示例性说明, 本发明并未特别限 定于此, 其他能够区分各通信节点的划分方法均落入本发明的保护范围内。
在本发明实施例中, M个输出端口 138可以包括输出光纤阵列和输出准 直器阵列。
输出光纤阵列可以包括二维排列的 M个输出光纤, 一个输出光纤用于 发送一个维度的信号光。
输出准直器阵列可以包括二维排列的 M个准直器, 其中, 该 M个准直 器与 M个输出光纤一一对应, 一个准直器用于对从所对应的输出光纤输出 的信号光进行准直。
在本发明实施例中,从各输出端口 138输出的信号光可以为 WDM信号 光, 也可以为单一波长的信号光, 本发明并未特别限定。
下面, 对本发明实施例的光通信的装置 100中各器件的配置, 或者说, 光路设计, 进行示例性说明。
配置方式 1
图 2A示出了才艮据本发明一实施例的光通信的装置 100配置的一例的俯 视示意图。 图 2B是图 2A所示光通信的装置 100配置的侧视示意图。
可选地, 该第一光路变更器和该第二光路变更器为至少一个透镜。
可选地, 该第一光路变更器和该第二光路变更器共用该至少一个透镜。 可选地, 当该第一光路变更器和该第二光路变更器共用一个透镜时, 在该第三平面内,该目标信号光在该分波器上的入射点位于该第一光路 变更器在该主轴方向上的轴线外。
可选地, 当该第一光路变更器和该第二光路变更器共用一个透镜时, 在该第一平面内,该目标信号光在该分波器上的入射点位于该第一光路 变更器在该主轴方向上的轴线外。
具体地说,在图 2A和图 2B所示的配置方式中,未配置上述合波器 133, 而由第二光开关阵列 136能够二维旋转,以实现合波器 133的上述合波功能。
如图 2A所示, 第一光路变更器 118与第二光路变更器 132共用同一透 镜 2, 其中, 分波器 116、 上述透镜 2、 第一光开关阵列 120与第二光开关阵 列 136构成 4f 系统,即,分波器 116在信号光传输方向上的至透镜 2的距离、 第一光开关阵列 120在信号光传输方向上的至透镜 2的距离、 以及第二光开
关阵列 136在信号光传输方向上的至透镜 2, 均为该透镜 2的焦距 f, 从而 能够确保无论第一光开关单元将子信号光偏转到第二光开关阵列 136中的任 意第二光开关单元的时, 该子信号光在该第二光开关单元上的入射角度均与 其从分波器 116射出的出射角度相同。
并且, 如图 2A所示, 信号光分波器 116上的入射点在透镜 2的主轴的 一侧,各子信号光在第二光路变更器 132上的入射点在透镜 2的主轴的另一 侧。
如图 2B所示, 第一光路变更器 118与第二光路变更器 132共用同一透 镜 2, 其中, 分波器 116、 上述透镜 2、 第一光开关阵列 120与第二光开关阵 列 136构成 4f 系统,即,分波器 116在信号光传输方向上的至透镜 2的距离、 第一光开关阵列 120在信号光传输方向上的至透镜 2的距离、 以及第二光开 关阵列 136在信号光传输方向上的至透镜 2, 均为该透镜 2的焦距 f, 从而 能够确保无论第一光开关单元将子信号光偏转到第二光开关阵列 136中的任 意第二光开关单元的时, 该子信号光在该第二光开关单元上的入射角度均与 其从分波器 116射出的出射角度相同。
另外, 由于在图 2B中, 从输入端口 112输入的信号光呈现为彼此平行 的多束, 因此, 第一光路变更器 118还包括柱透镜 1, 该柱透镜 1用于在第 一平面 (YOZ ), 将彼此平行的目标信号光进行汇聚, 并使汇聚点位于分波 器 116。
并且, 如图 2Α所示, 信号光在分波器 116上的入射点在透镜 2的主轴 的一侧,各子信号光在第二光路变更器 132上的入射点在透镜 2的主轴的另 一侧。
另外, 需要说明的是, 在图 2Α中, 透镜 1用虚线示出, 表示透镜 1在 图 2Α所示平面 (即, ΧΟΖ平面) 内不起作用。 同样的, 在图 2Β中, 第一 扩束器 114用虚线示出, 表示第一扩束器 114在图 2Β所示平面 (即, ΥΟΖ 平面) 内不起作用; 分波器 116用虚线示出, 表示分波器 116在图 2Β所示 平面 (即, ΥΟΖ平面) 内不起作用; 第二扩束器 134用虚线示出, 表示第 二扩束器 134在图 2Β所示平面 (即, ΥΟΖ平面) 内不起作用。 以下, 为了 避免赘述, 在未特别说明的情况下, 对于附图中虚线表示的器件均表示该器 件在该附图所示平面内不起作用。
配置方式 2
图 3A示出了才艮据本发明一实施例的光通信的装置 100配置的另一例的 俯视示意图。 图 3B是图 3A所示光通信的装置 100配置的侧视示意图。
在图 3A和图 3B所示的配置方式中, 与配置方式 1相异的是, 配置了 上述合波器 133, 从而第二光开关阵列 136无需二维旋转。
相应地, 在方式 2中, 合波器 133位于方式 1中第二光开关阵列 136的 位置, 第二光开关阵列 136配置在第二扩束器 134之后。
配置方式 3
图 4A示出了才艮据本发明一实施例的光通信的装置 100配置的另一例的 俯视示意图。 图 4B是图 4A所示光通信的装置 100配置的侧视示意图。
在图 4A和图 4B所示的配置方式中, 与配置方式 2相异的是, 第二扩 束器 134除了棱镜 2以外, 还配置柱透镜 3和透镜 4。
其中, 柱透镜 3用于调节从第二光开关阵列 136射出的信号光在 YOZ 平面内的束腰位置, 使该束腰位置与从输入端口 112射出的信号光在 YOZ 平面内的束腰位置相对应。
透镜 4用于调节从第二光开关阵列 136射出的信号光在 XOZ平面内的 束腰位置, 使该束腰位置与从输入端口 112射出的信号光在 XOZ平面内的 束腰位置相对应。
配置方式 4
图 5A示出了根据本发明一实施例的光通信的装置 100配置的另一例的 俯视示意图。 图 5B是图 5A所示光通信的装置 100配置的侧视示意图。
可选地, 该第一光路变更器和该第二光路变更器为至少一个透镜。
可选地, 该第一光路变更器和该第二光路变更器共用该至少一个透镜。 可选地, 当该第一光路变更器和该第二光路变更器共用一个透镜时, 在该第三平面内, 该目标信号光在该分波器上的入射点位于该第一光路 变更器在该主轴方向上的轴线上。
可选地, 当该第一光路变更器和该第二光路变更器共用一个透镜时, 在该第一平面内, 该目标信号光在该分波器上的入射点位于该第一光路 变更器在该主轴方向上的轴线上。
具体地说, 在图 5A图 5B示的配置方式中, 与配置方式 2相异的是, 设置了反射镜 1和反射镜 2。
其中,反射镜 2用于将从第一扩束器 114射出并经由柱透镜 1而传输至
的信号光通过位于反射镜 1中心的透射孔, 反射至分波器 116。
反射镜 1用于将从合波器 133 (与分波器 116公用同一光栅)射入的信 号光, 通过除透射孔以外的区域, 反射至第二扩束器 134。
从而, 在 XOZ平面和 YOZ平面上, 信号光在上述合波器 133上的入射 点均位于透镜 2的主轴上。
需要说明的是, 为了便于理解, 图 5B示出了将实际配置的光路以第一 光开关阵列为中心(反折面)反折后的状态, 其中, 第一光开关阵列右侧的 透镜 2与第一光开关阵列右侧左侧的透镜 2为同一部件, 为了体现光路, 这 里用虚线示出。
另外, 图 5A和图 5B中, 在输入系统中传播的输入信号光用实线示出, 在输出系统中传播的输出信号光用虚线示出。
配置方式 5
图 6A示出了才艮据本发明一实施例的光通信的装置 100配置的另一例的 俯视示意图。 图 6B是图 6A所示光通信的装置 100配置的侧视示意图。
可选地, 该第一光路变更器包括:
至少一个第一柱透镜, 用于改变各该子目标信号光在该第三平面内的传 播方向; 以及
该第二光路变更器包括:
至少一个第二柱透镜, 用于改变各该子目标信号光在该第一平面内的传 播方向;
至少一个第三柱透镜, 用于将从该第一柱透镜模块输出的目标信号光在 该第一平面上的束腰位置调整至该第一光开关阵列;
至少一个第四柱透镜,用于将从该第一光开关阵列输出的各子目标信号 光在该第一平面上的束腰位置调整为, 与从该输入端口输出的目标信号光在 该第一平面上的、 在该输出端口和该分波器之间束腰位置相对应。
具体地说, 如图 6A和图 6B所示, 在 XOZ平面, 柱透镜 2 (第一柱透 镜) 的作用与配置方式 1中透镜 2的作用相似。
在 YOZ平面, 柱透镜 3 (第二柱透镜) 的作用与配置方式 1 中透镜 2 的作用相似。
在 YOZ平面, 柱透镜阵列 1 (第三柱透镜 )用于将从柱透镜 2射出的 信号光的束腰位置调节至第一光开关阵列 120,具体地说,是图 6A中的面 5
位置。
在 YOZ平面, 柱透镜 4 (第四柱透镜)用于调节从第二光开关阵列 136 射出的信号光在 ΥΟΖ平面内的束腰位置, 使该束腰位置与从输入端口 112 射出的信号光在 ΥΟΖ平面内的束腰位置相对应, 具体地说, 是图 6Α和图 6Β中的面 3位置。
另外, 图 6Α和图 6Β中, 在输入系统中传播的输入信号光用实线示出, 在输出系统中传播的输出信号光用虚线示出。
如图 6Α所示, 在第三平面(ΧΟΖ平面) 内, 信号光在合波器 133上的 入射点位于柱透镜 2的主轴上, 并且, 如图 6Β所示, 在第一平面 (ΥΟΖ平 面)内, 来自输入端口的输入至柱透镜 3的信号光在该柱透镜 3上的入射点 位于柱透镜 2的主轴的一侧, 来自第一光开关阵列 120的输入至柱透镜 3的 信号光在该柱透镜 3上的入射点位于柱透镜 2的主轴的另一侧。
在本发明实施例中, 柱透镜 2与柱透镜 3可以同轴配置, 即, 柱透镜 2 的主轴与柱透镜 3的主轴重合。
配置方式 6
图 7Α示出了才艮据本发明一实施例的光通信的装置 100配置的另一例的 俯视示意图。 图 7Β是图 7Α所示光通信的装置 100配置的侧视示意图。
可选地, 该第一光路变更器和该第二光路变更器为至少一个透镜。
可选地, 该第一光路变更器和该第二光路变更器共用该至少一个透镜。 可选地, 当该第一光路变更器和该第二光路变更器共用一个透镜时, 在该第三平面内, 该目标信号光在该分波器上的入射点位于该第一光路 变更器在该主轴方向上的轴线上。
可选地, 当该第一光路变更器和该第二光路变更器共用一个透镜时, 在该第一平面内,该目标信号光在该分波器上的入射点位于该第一光路 变更器在该主轴方向上的轴线外。
具体地说, 在图 7Α和图 7Β所示的配置方式中, 与配置方式 2相异的 是, 在 ΧΟΖ平面, 信号光在上述合波器 133上的入射点位于透镜 2的主轴 上。
另外, 图 7Α和图 7Β中, 在输入系统中传播的输入信号光用实线示出, 在输出系统中传播的输出信号光用虚线示出。
配置方式 7
图 8A示出了才艮据本发明一实施例的光通信的装置 100配置的另一例的 俯视示意图。 图 8B是图 8A所示光通信的装置 100配置的侧视示意图。
可选地, 该第一光路变更器和该第二光路变更器为至少一个透镜。
可选地, 该第一光路变更器和该第二光路变更器共用该至少一个透镜。 可选地, 当该第一光路变更器和该第二光路变更器共用一个透镜时, 在该第三平面内, 该目标信号光在该分波器上的入射点位于该第一光路 变更器在该主轴方向上的轴线外。
可选地, 当该第一光路变更器和该第二光路变更器共用一个透镜时, 在该第一平面内, 该目标信号光在该分波器上的入射点位于该第一光路 变更器在该主轴方向上的轴线上。
具体地说, 在图 8A和图 8B所示的配置方式中, 与配置方式 2相异的 是, 在 YOZ平面, 信号光在上述合波器 133上的入射点位于透镜 2的主轴 上。
另外, 图 8A和图 8B中, 在输入系统中传播的输入信号光用实线示出, 在输出系统中传播的输出信号光用虚线示出。
配置方式 7
图 9示出了根据本发明一实施例的光通信的装置 100配置的另一例的俯 视示意图。
可选地, 该第一光路变更器和该第二光路变更器包括至少一个凹面镜。 可选地, 该第一光路变更器和该第二光路变更器共用该至少一个凹面 镜。
具体地说, 如图 9所示, 第一光路变更器 118与第二光路变更器 132共 用同一凹面镜, 其中, 分波器 116、 上述凹面镜、 第一光开关阵列 120与合 波器 133构成 4f系统, 即,分波器 116在信号光传输方向上的至凹面镜的距 离、 第一光开关阵列 120在信号光传输方向上的至凹面镜的距离、 以及合波 器 133在信号光传输方向上的至凹面镜, 均为该凹面镜的焦距 f, 从而能够 确保无论第一光开关单元将子信号光偏转到合波器 133中的任意位置时, 该 子信号光在合波器 133上的入射角度均与其从分波器 116射出的出射角度相 同。
并且, 如图 9所示, 信号光分波器 116上的入射点在透镜 2的主轴的一 侧, 各子信号光在合波器 133上的入射点在透镜 2的主轴的另一侧。
需要说明的是,如图 9所示第一光路变更器 118由透镜 1和上述凹面镜 构成, 图 9中透镜 1的作用与例如, 图 2A中透镜 1的作用相似, 这里, 为 了避免赘述, 省略其说明。
本发明实的光通信的装置, 通过设置第一扩束器, 并利用该第一扩束器 对信号光进行扩束处理, 能够将射入第二光开关阵列的信号光在该第二光开 关阵列的配置平面上的光斑由圓形变换为椭圓形, 其中, 经该扩束处理而生 成的椭圓形光斑的长轴长度能够满足分波处理的要求, 由于椭圓的短轴长度 小于长轴长度, 从而, 在椭圓的短轴方向上, 能够为第二光开关阵列配置更 多的第二光开关单元, 进而能够提供更多的输出端口; 并且, 通过使各第一 光开关单元二维旋转, 并使一个第二光开关单元在同一时段仅用于接收来自 同一输入端口的子信号光, 从而无需 M各第二光开关单元一维地排列, 进 而能够实现 M个输出端口的二维排列。 因此, 能够在给定的有限配置空间 内, 提高针对输出端的网络交叉连接能力, 满足网络需求以及用户的要求。
以上,结合图 1至图 9详细说明了本发明实施例的光通信的方法,下面, 结合图 10, 详细说明本发明实施例的光通信的方法。
图 10是根据本发明一实施例的光通信的方法 200的示意性流程图。 该 方法 200在包括输入系统、 第一光开关阵列和输出系统的装置中执行, 该输 入系统包括一维排列在第一平面上的 N个输入端口和分波器,该第一光开关 阵列包括二维排列在第二平面上的 N X K个第一光开关单元, K为信号光包 括的子信号光的数量, 各该子信号光的中心波长彼此相异, 该第二平面与主 轴方向垂直, 该主轴方向是从该输入端口输出的信号光的传输方向, 该第一 平面与该第二平面垂直,各该第一光开关单元能够绕第一轴线方向和第二轴 线方向旋转, 该第一轴线方向是该第一平面与该第二平面的交线方向, 该第 二轴线方向是第三平面与该第二平面的交线方向, 该第三平面与该第二平面 垂直, 且该第三平面与该第一平面垂直, 一个第一光开关单元仅用于接收来 自一个输入端口的一束子信号光,各该第一光开关单元所对应的输入端口或 子信号光相异, 该输出系统包括第二光开关阵列和二维排列的 M个输出端 口, 该第二开关阵列包括二维排列的 M个第二光开关单元, 一个第二光开 关单元在同一时段仅用于接收来自同一输入端口的子信号光,各该第二光开 关单元至少能够绕第二轴线方向旋转,各该第二光开关单元与各该输出端口 ——对应, 该方法 200包括:
S210, 通过目标输入端口, 接收目标信号光, 其中, 该目标信号光的光 斑为圓形, 该目标信号光包括至少两束子目标信号光;
S220, 对该目标信号光进行第一扩束处理, 以将该目标信号光在该第二 平面方向上的光斑由圓形变换为椭圓形, 其中, 该椭圓形的长轴方向为该第 二轴线方向, 该椭圓形的短轴方向为该第一轴线方向, 该椭圓形的长轴长度 是基于以下参数确定的:
该目标信号光的带宽、该至少两束子目标信号光中相邻子目标信号光之 间的间隔、 该至少两束子目标信号光的中心波长、 该分波器的 4汙射参数;
S230, 通过该分波器, 对该目标信号光进行分波处理, 以从该目标信号 光中分解出该至少两束子目标信号光,使各该子目标信号光在该第三平面上 分散;
S240, 对各该子目标信号光进行第一光路变更处理, 以使各该子目标信 号光彼此平行地射入所对应的第一光开关单元;
S250, 基于各该子目标信号光所对应的输出端口, 控制该第一光开关阵 列中与各该子目标信号光相对应的第一光开关单元的旋转, 以将各该子目标 信号光传输至所对应的第二光开关单元;
S260, 对各该子目标信号光进行第二光路变更处理, 以使经该第二光路 变更处理的子目标信号光在该第三平面上的投影与所对应的经该第一光路 变更处理之前的子目标信号光在该第三平面上的投影相平行;
S270, 对各该子目标信号光进行第二扩束处理, 以将各该子目标信号光 在该第二平面方向上的光斑由椭圓形变换为圓形, 该圓形的直径是基于该输 出端口的传输要求确定的;
S280,控制该第二光开关阵列中各该子目标信号光所对应的第二光开关 单元的旋转, 以将各该子目标信号光分别传输至所对应的输出端口。
可选地, 该方法 200还包括:
当对于一个输出端口, 存在至少两束需要接收的子目标信号光时, 通过 合波器将该至少两束需要接收的子目标信号光合成为一束信号光, 并传输至 该第二光开关阵列; 或
当对于一个输出端口, 仅存在一束需要接收的子目标信号光时, 通过该 合波器调整该子目标信号光的带宽范围内的光功率分布。
可选地, 该对该目标信号光进行第一扩束处理包括:
对该目标信号光进行第一扩束处理, 以将该目标信号光在该第三平面上 的、 在经该第一光路变更处理之前的束腰位置位于该分波器。
可选地, 该对各该子目标信号光进行第二扩束处理包括:
对各该子目标信号光进行第二扩束处理, 以将经该第二扩束处理后的各 该子目标信号光在该第三平面上的束腰位置位于该输出端口。
根据本发明实施例的光通信的方法 200的实施主体可对应于本发明实施 例的光通信的装置 100, 并且, 该光通信的方法 200中的各流程和上述其他 操作的动作主体分别对应图 1至图 9中的装置 100的各模块和单元, 为了简 洁, 在此不再赘述。
本发明实的光通信的方法, 通过设置第一扩束器, 并利用该第一扩束器 对信号光进行扩束处理, 能够将射入第二光开关阵列的信号光在该第二光开 关阵列的配置平面上的光斑由圓形变换为椭圓形, 其中, 经该扩束处理而生 成的椭圓形光斑的长轴长度能够满足分波处理的要求, 由于椭圓的短轴长度 小于长轴长度, 从而, 在椭圓的短轴方向上, 能够为第二光开关阵列配置更 多的第二光开关单元, 进而能够提供更多的输出端口; 并且, 通过使各第一 光开关单元二维旋转, 并使一个第二光开关单元在同一时段仅用于接收来自 同一输入端口的子信号光, 从而无需 M各第二光开关单元一维地排列, 进 而能够实现 M个输出端口的二维排列。 因此, 能够在给定的有限配置空间 内, 提高针对输出端的网络交叉连接能力, 满足网络需求以及用户的要求。
应理解, 本文中术语 "和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存在三种关系, 例如, A和 /或 可以表示: 单独存在 , 同时存 在八和^ 单独存在 B这三种情况。 另外, 本文中字符 "/", 一般表示前后 关联对象是一种 "或" 的关系。
应理解, 在本发明的各种实施例中, 上述各过程的序号的大小并不意味 着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应 对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结 合来实现。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特 定应用和设计约束条件。 专业技术人员可以对每个特定的应用来使用不同方 法来实现所描述的功能, 但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描 述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应 过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间 的耦合或直接辆合或通信连接可以是通过一些接口, 装置或单元的间接耦合 或通信连接, 可以是电性, 机械或其它的形式。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一 个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使 用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部 分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。 而前 述的存储介质包括: U盘、移动硬盘、只读存储器( ROM, Read-Only Memory )、 随机存取存储器(RAM, Random Access Memory ), 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。
Claims
1、 一种光通信的装置, 其特征在于, 所述装置包括: 输入系统、 第一 光开关阵列和输出系统,所述输入系统包括一维排列在第一平面上的 N个输 入端口、 第一扩束器、 分波器和第一光路变更器, 所述第一光开关阵列包括 二维排列在第二平面上的 N X K个第一光开关单元, K为信号光包括的子信 号光的数量, 各所述子信号光的中心波长彼此相异, 所述第二平面与主轴方 向垂直, 所述主轴方向是从所述输入端口输出的信号光的传输方向, 所述第 一平面与所述第二平面垂直,各所述第一光开关单元能够绕第一轴线方向和 第二轴线方向旋转, 所述第一轴线方向是所述第一平面与所述第二平面的交 线方向, 所述第二轴线方向是第三平面与所述第二平面的交线方向, 所述第 三平面与所述第二平面垂直, 且所述第三平面与所述第一平面垂直, 一个第 一光开关单元仅用于接收来自一个输入端口的一束子信号光,各所述第一光 开关单元所对应的输入端口或子信号光相异, 所述输出系统包括第二光路变 更器、 第二扩束器、 第二光开关阵列和二维排列的 M个输出端口, 所述第 二开关阵列包括二维排列的 M个第二光开关单元, 一个第二光开关单元在 同一时段仅用于接收来自同一输入端口的子信号光,各所述第二光开关单元 至少能够绕第二轴线方向旋转,各所述第二光开关单元与各所述输出端口一 一对应, 其中,
所述 N个输入端口中的目标输入端口,用于在接收到目标信号光时,将 所述目标信号光传输至所述第一扩束器, 其中, 所述目标输入端口输出的所 述目标信号光的光斑为圓形, 所述目标信号光包括至少两束子目标信号光; 所述第一扩束器, 用于对所述目标信号光进行第一扩束处理, 以将所述 目标信号光在所述第二平面方向上的光斑由圓形变换为椭圓形, 并将经过所 述第一扩束处理后的目标信号光传输至所述分波器, 其中, 所述椭圓形的长 轴方向为所述第二轴线方向, 所述椭圓形的短轴方向为所述第一轴线方向, 所述椭圓形的长轴长度是基于以下参数确定的:
所述目标信号光的带宽、所述至少两束子目标信号光中相邻子目标信号 光之间的间隔、 所述至少两束子目标信号光的中心波长、 所述分波器的衍射 参数;
所述分波器, 用于对所述目标信号光进行分波处理, 从所述目标信号光 中分解出所述至少两束子目标信号光,使各所述子目标信号光在所述第三平
面上分散, 并将各所述子目标信号光经由所述第一光路变更器而传输至对应 的第一光开关单元;
所述第一光路变更器, 用于对各所述子目标信号光进行第一光路变更处 理, 以使各所述子目标信号光彼此平行地射入所对应的第一光开关单元; 所述第一光开关阵列, 用于基于各所述子目标信号光所对应的输出端 口, 控制与各所述子目标信号光相对应的第一光开关单元的旋转, 以将各所 述子目标信号光经由所述第二光路变更器和所述第二扩束器而传输至所对 应的第二光开关单元;
所述第二光路变更器, 用于对各所述子目标信号光进行第二光路变更处 理, 其中, 经所述第二光路变更处理的子目标信号光在所述第三平面上的投 影与所对应的经所述第一光路变更处理之前的子目标信号光在所述第三平 面上的投影相平行;
所述第二扩束器, 用于对各所述子目标信号光进行第二扩束处理, 以将 各所述子目标信号光在所述第二平面方向上的光斑由椭圓形变换为圓形, 所 述圓形的直径是基于所述输出端口的传输要求确定的;
所述第二光开关阵列, 用于控制各所述子目标信号光所对应的第二光开 关单元的旋转, 以将各所述子目标信号光分别传输至所对应的输出端口。
2、 根据权利要求 1 所述的光通信的装置, 其特征在于, 所述输出系统 还包括:
合波器, 位于所述第二光路变更器和所述第二扩束器之间,
用于当对于一个输出端口, 存在至少两束需要接收的子目标信号光时, 将所述至少两束需要接收的子目标信号光合成为一束信号光, 并经由所述第 二扩束器而传输至所述第二光开关阵列; 或
用于当对于一个输出端口, 仅存在一束需要接收的子目标信号光时, 调 整所述子目标信号光的带宽范围内的光功率分布。
3、 根据权利要求 2所述的光通信的装置, 其特征在于, 所述分波器和 所述合波器为至少一个光栅。
4、 根据权利要求 3所述的光通信的装置, 其特征在于, 所述合波器和 所述分波器共用所述至少一个光栅。
5、 根据权利要求 1至 4中任一项所述的光通信的装置, 其特征在于, 所述第一扩束器, 还用于对所述目标信号光进行第一扩束处理, 以将所述目
标信号光在所述第三平面上的、在所述第一扩束器与所述第一光路变更器之 间的束腰位置位于所述分波器。
6、 根据权利要求 1至 5中任一项所述的光通信的装置, 其特征在于, 所述第二扩束器, 还用于对各所述子目标信号光进行第二扩束处理, 以将从 所述第二扩束器输出的各所述子目标信号光在所述第三平面上的束腰位置 位于所述输出端口。
7、 根据权利要求 1至 6中任一项所述的光通信的装置, 其特征在于, 所述第一光路变更器和所述第二光路变更器为至少一个透镜。
8、 根据权利要求 7所述的光通信的装置, 其特征在于, 所述第一光路 变更器和所述第二光路变更器共用所述至少一个透镜。
9、 根据权利要求 8所述的光通信的装置, 其特征在于, 当所述第一光 路变更器和所述第二光路变更器共用一个透镜时,
在所述第三平面内, 所述目标信号光在所述分波器上的入射点位于所述 第一光路变更器在所述主轴方向上的轴线上。
10、 根据权利要求 8所述的光通信的装置, 其特征在于, 当所述第一光 路变更器和所述第二光路变更器共用一个透镜时,
在所述第三平面内, 所述目标信号光在所述分波器上的入射点位于所述 第一光路变更器在所述主轴方向上的轴线外。
11、 根据权利要求 8至 10中任一项所述的光通信的装置, 其特征在于, 当所述第一光路变更器和所述第二光路变更器共用一个透镜时,
在所述第一平面内, 所述目标信号光在所述分波器上的入射点位于所述 第一光路变更器在所述主轴方向上的轴线上。
12、 根据权利要求 8至 10中任一项所述的光通信的装置, 其特征在于, 当所述第一光路变更器和所述第二光路变更器共用一个透镜时,
在所述第一平面内, 所述目标信号光在所述分波器上的入射点位于所述 第一光路变更器在所述主轴方向上的轴线外。
13、 根据权利要求 1至 6中任一项所述的光通信的装置, 其特征在于, 所述第一光路变更器和所述第二光路变更器包括至少一个凹面镜。
14、 根据权利要求 13所述的光通信的装置, 其特征在于, 所述第一光 路变更器和所述第二光路变更器共用所述至少一个凹面镜。
15、 根据权利要求 1至 4中任一项所述的光通信的装置, 其特征在于,
所述第一光路变更器包括:
至少一个第一柱透镜, 用于改变各所述子目标信号光在所述第三平面内 的传播方向; 以及
所述第二光路变更器包括:
至少一个第二柱透镜, 用于改变各所述子目标信号光在所述第一平面内 的传播方向;
至少一个第三柱透镜, 用于将从所述第一柱透镜模块输出的目标信号光 在所述第一平面上的束腰位置调整至所述第一光开关阵列;
至少一个第四柱透镜, 用于将从所述第一光开关阵列输出的各子目标信 号光在所述第一平面上的束腰位置调整为, 与从所述输入端口输出的目标信 号光在所述第一平面上的、在所述输出端口和所述分波器之间束腰位置相对 应。
16、 一种光通信的方法, 其特征在于, 所述方法在包括输入系统、 第一 光开关阵列和输出系统的装置中执行, 所述输入系统包括一维排列在第一平 面上的 N个输入端口和分波器,所述第一光开关阵列包括二维排列在第二平 面上的 N x K个第一光开关单元, K为信号光包括的子信号光的数量, 各所 述子信号光的中心波长彼此相异, 所述第二平面与主轴方向垂直, 所述主轴 方向是从所述输入端口输出的信号光的传输方向, 所述第一平面与所述第二 平面垂直, 各所述第一光开关单元能够绕第一轴线方向和第二轴线方向旋 转, 所述第一轴线方向是所述第一平面与所述第二平面的交线方向, 所述第 二轴线方向是第三平面与所述第二平面的交线方向, 所述第三平面与所述第 二平面垂直, 且所述第三平面与所述第一平面垂直, 一个第一光开关单元仅 用于接收来自一个输入端口的一束子信号光,各所述第一光开关单元所对应 的输入端口或子信号光相异, 所述输出系统包括第二光开关阵列和二维排列 的 M个输出端口,所述第二开关阵列包括二维排列的 M个第二光开关单元, 一个第二光开关单元在同一时段仅用于接收来自同一输入端口的子信号光, 各所述第二光开关单元至少能够绕第二轴线方向旋转,各所述第二光开关单 元与各所述输出端口——对应, 所述方法包括:
通过目标输入端口, 接收目标信号光, 其中, 所述目标信号光的光斑为 圓形, 所述目标信号光包括至少两束子目标信号光;
对所述目标信号光进行第一扩束处理, 以将所述目标信号光在所述第二
平面方向上的光斑由圓形变换为椭圓形, 其中, 所述椭圓形的长轴方向为所 述第二轴线方向, 所述椭圓形的短轴方向为所述第一轴线方向, 所述椭圓形 的长轴长度是基于以下参数确定的:
所述目标信号光的带宽、所述至少两束子目标信号光中相邻子目标信号 光之间的间隔、 所述至少两束子目标信号光的中心波长、 所述分波器的衍射 参数;
通过所述分波器, 对所述目标信号光进行分波处理, 以从所述目标信号 光中分解出所述至少两束子目标信号光,使各所述子目标信号光在所述第三 平面上分散;
对各所述子目标信号光进行第一光路变更处理, 以使各所述子目标信号 光彼此平行地射入所对应的第一光开关单元;
基于各所述子目标信号光所对应的输出端口,控制所述第一光开关阵列 中与各所述子目标信号光相对应的第一光开关单元的旋转, 以将各所述子目 标信号光传输至所对应的第二光开关单元;
对各所述子目标信号光进行第二光路变更处理, 以使经所述第二光路变 更处理的子目标信号光在所述第三平面上的投影与所对应的经所述第一光 路变更处理之前的子目标信号光在所述第三平面上的投影相平行;
对各所述子目标信号光进行第二扩束处理, 以将各所述子目标信号光在 所述第二平面方向上的光斑由椭圓形变换为圓形, 所述圓形的直径是基于所 述输出端口的传输要求确定的;
控制所述第二光开关阵列中各所述子目标信号光所对应的第二光开关 单元的旋转, 以将各所述子目标信号光分别传输至所对应的输出端口。
17、 根据权利要求 16所述的光通信的方法, 其特征在于, 所述方法还 包括:
当对于一个输出端口, 存在至少两束需要接收的子目标信号光时, 将所 述至少两束需要接收的子目标信号光合成为一束信号光, 并传输至所述第二 光开关阵列; 或
当对于一个输出端口, 仅存在一束需要接收的子目标信号光时, 调整所 述子目标信号光的带宽范围内的光功率分布。
18、 根据权利要求 16或 17所述的光通信的方法, 其特征在于, 所述对 所述目标信号光进行第一扩束处理包括:
对所述目标信号光进行第一扩束处理, 以将所述目标信号光在所述第三 平面上的、 在经所述第一光路变更处理之前的束腰位置位于所述分波器。
19、根据权利要求 16至 18中任一项所述的光通信的方法,其特征在于, 所述对各所述子目标信号光进行第二扩束处理包括:
对各所述子目标信号光进行第二扩束处理, 以将经所述第二扩束处理后 的各所述子目标信号光在所述第三平面上的束腰位置位于所述输出端口。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/075969 WO2015161452A1 (zh) | 2014-04-22 | 2014-04-22 | 光通信的装置和方法 |
CN201480000551.6A CN105409140B (zh) | 2014-04-22 | 2014-04-22 | 光通信的装置和方法 |
EP14890386.7A EP3128682B1 (en) | 2014-04-22 | 2014-04-22 | Optical communication apparatus and method |
ES14890386.7T ES2688210T3 (es) | 2014-04-22 | 2014-04-22 | Aparato y procedimiento de comunicaciones ópticas |
US15/331,268 US9641917B2 (en) | 2014-04-22 | 2016-10-21 | Optical communications apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/075969 WO2015161452A1 (zh) | 2014-04-22 | 2014-04-22 | 光通信的装置和方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/331,268 Continuation US9641917B2 (en) | 2014-04-22 | 2016-10-21 | Optical communications apparatus and method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015161452A1 true WO2015161452A1 (zh) | 2015-10-29 |
Family
ID=54331592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/075969 WO2015161452A1 (zh) | 2014-04-22 | 2014-04-22 | 光通信的装置和方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9641917B2 (zh) |
EP (1) | EP3128682B1 (zh) |
CN (1) | CN105409140B (zh) |
ES (1) | ES2688210T3 (zh) |
WO (1) | WO2015161452A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017223873A (ja) * | 2016-06-16 | 2017-12-21 | 住友電気工業株式会社 | 紫外線照射装置および光ファイバの製造方法 |
WO2018035865A1 (zh) * | 2016-08-26 | 2018-03-01 | 华为技术有限公司 | 一种用于波长选择开关wss的信号监控方法及装置 |
CN108352921A (zh) * | 2015-11-25 | 2018-07-31 | 华为技术有限公司 | 可重构光分插复用器 |
CN113655500A (zh) * | 2021-08-09 | 2021-11-16 | 成都凯天电子股份有限公司 | 一种基于激光雷达测量大气数据的光学检测方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107801108B (zh) | 2016-08-30 | 2020-04-03 | 华为技术有限公司 | 控制光开关矩阵的方法和装置 |
JP6884391B2 (ja) * | 2017-12-01 | 2021-06-09 | 湖北工業株式会社 | 干渉フィルタモジュール |
CN111835416B (zh) * | 2019-04-15 | 2022-07-12 | Oppo广东移动通信有限公司 | 电子设备之间的通信系统、方法以及电子设备 |
CN111856658B (zh) * | 2019-04-30 | 2022-03-25 | 华为技术有限公司 | 一种光通信的装置和波长选择方法 |
CN110187453A (zh) * | 2019-05-13 | 2019-08-30 | 深圳市鍂鑫科技有限公司 | 一种wdm双向四纤透射半自动对光系统 |
CN110426789B (zh) * | 2019-07-29 | 2021-01-08 | 武汉光迅科技股份有限公司 | 一种波长选择开关 |
CN113438766B (zh) * | 2021-07-12 | 2023-08-25 | 西安电子科技大学芜湖研究院 | 一种基于可见光通讯技术的汽车大灯 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100712896B1 (ko) * | 2006-02-10 | 2007-05-02 | 도시바삼성스토리지테크놀러지코리아 주식회사 | 구면수차 보상을 위한 광픽업 장치 및 상기 광픽업 장치를이용한 광기록/재생 장치 |
KR20070066375A (ko) * | 2005-12-22 | 2007-06-27 | 주식회사 대우일렉트로닉스 | 광정보 기록장치 및 기록방법 |
CN103401609A (zh) * | 2013-07-31 | 2013-11-20 | 中国科学院空间科学与应用研究中心 | 基于压缩感知与稀疏孔径的自由空间光通信系统及方法 |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6097859A (en) | 1998-02-12 | 2000-08-01 | The Regents Of The University Of California | Multi-wavelength cross-connect optical switch |
JP2001326608A (ja) * | 2000-05-15 | 2001-11-22 | Canon Inc | 光空間通信装置 |
JP2004533004A (ja) * | 2000-11-01 | 2004-10-28 | インテル・コーポレーション | ビームの平行化及び転送の装置及びその方法 |
US7039267B2 (en) * | 2000-11-20 | 2006-05-02 | Jds Uniphase Inc. | Optical switch |
US6760511B2 (en) * | 2001-03-19 | 2004-07-06 | Capella Photonics, Inc. | Reconfigurable optical add-drop multiplexers employing polarization diversity |
US6625346B2 (en) * | 2001-03-19 | 2003-09-23 | Capella Photonics, Inc. | Reconfigurable optical add-drop multiplexers with servo control and dynamic spectral power management capabilities |
US6549699B2 (en) * | 2001-03-19 | 2003-04-15 | Capella Photonics, Inc. | Reconfigurable all-optical multiplexers with simultaneous add-drop capability |
EP1386192A2 (en) * | 2001-04-03 | 2004-02-04 | CiDra Corporation | Dynamic optical filter having a spatial light modulator |
US6694073B2 (en) * | 2001-04-13 | 2004-02-17 | Movaz Networks, Inc. | Reconfigurable free space wavelength cross connect |
US6795182B2 (en) * | 2001-07-06 | 2004-09-21 | Arroyo Optics, Inc. | Diffractive fourier optics for optical communications |
US6922500B2 (en) * | 2001-10-24 | 2005-07-26 | Intel Corporation | Optical configuration for optical fiber switch |
US6898341B2 (en) * | 2001-10-24 | 2005-05-24 | Intel Corporation | Optical system for calibration and control of an optical fiber switch |
US6798951B2 (en) * | 2001-11-12 | 2004-09-28 | Pts Corporation | Wavelength router with a transmissive dispersive element |
EP1506633A2 (en) * | 2002-05-20 | 2005-02-16 | Metconnex Canada Inc. | Reconfigurable optical add-drop module, system and method |
WO2003098962A2 (en) * | 2002-05-20 | 2003-11-27 | Metconnex Canada Inc. | Wavelength cross-connect |
EP1506689B1 (en) * | 2002-05-20 | 2006-09-27 | Metconnex Canada Inc. | Wavelength selective switch |
US7058251B2 (en) * | 2002-06-12 | 2006-06-06 | Optical Research Associates | Wavelength selective optical switch |
WO2004010175A2 (en) * | 2002-07-23 | 2004-01-29 | Optical Research Associates | East-west separable, reconfigurable optical add/drop multiplexer |
JP2005321480A (ja) * | 2004-05-06 | 2005-11-17 | Fujitsu Ltd | 波長選択デバイス |
US7787720B2 (en) * | 2004-09-27 | 2010-08-31 | Optium Australia Pty Limited | Wavelength selective reconfigurable optical cross-connect |
JP4530805B2 (ja) * | 2004-11-02 | 2010-08-25 | 富士通株式会社 | 光スイッチおよび光伝送装置 |
US7756368B2 (en) * | 2005-04-11 | 2010-07-13 | Capella Photonics, Inc. | Flex spectrum WSS |
US7263253B2 (en) * | 2005-04-11 | 2007-08-28 | Capella Photonics, Inc. | Optimized reconfigurable optical add-drop multiplexer architecture with MEMS-based attenuation or power management |
CA2564658A1 (en) * | 2005-10-19 | 2007-04-19 | Mcgill University | Integrated etched multilayer grating based wavelength demultiplexer |
US20070160321A1 (en) * | 2005-12-01 | 2007-07-12 | The Regents Of The University Of California | Monolithic mems-based wavelength-selective switches and cross connects |
US20080031627A1 (en) * | 2006-08-04 | 2008-02-07 | Smith Irl W | Optical communication system |
US7720329B2 (en) * | 2006-11-07 | 2010-05-18 | Olympus Corporation | Segmented prism element and associated methods for manifold fiberoptic switches |
US8000568B2 (en) * | 2006-11-07 | 2011-08-16 | Olympus Corporation | Beam steering element and associated methods for mixed manifold fiberoptic switches |
US7873246B2 (en) * | 2006-11-07 | 2011-01-18 | Olympus Corporation | Beam steering element and associated methods for manifold fiberoptic switches and monitoring |
US7702194B2 (en) * | 2006-11-07 | 2010-04-20 | Olympus Corporation | Beam steering element and associated methods for manifold fiberoptic switches |
US8131123B2 (en) * | 2006-11-07 | 2012-03-06 | Olympus Corporation | Beam steering element and associated methods for manifold fiberoptic switches and monitoring |
US7769255B2 (en) * | 2006-11-07 | 2010-08-03 | Olympus Corporation | High port count instantiated wavelength selective switch |
US8705960B2 (en) | 2007-02-08 | 2014-04-22 | Jds Uniphase Corporation | M×N wavelength selective switch (WSS) |
US8346084B2 (en) * | 2007-03-08 | 2013-01-01 | Oclaro (North America), Inc. | Optical device with stable optical configuration |
US8121482B2 (en) * | 2008-09-15 | 2012-02-21 | Texas Instruments Incorporated | Spatial light modulator-based reconfigurable optical add-drop multiplexer and method of adding an optical channel using the same |
US8111995B2 (en) | 2009-02-11 | 2012-02-07 | At&T Intellectual Property I, L.P. | Shared, colorless add/drop configuration for a ROADM network using M×N wavelength switches |
US8300995B2 (en) | 2010-06-30 | 2012-10-30 | Jds Uniphase Corporation | M X N WSS with reduced optics size |
JP2012181498A (ja) * | 2011-02-10 | 2012-09-20 | Olympus Corp | 波長選択スイッチ |
-
2014
- 2014-04-22 ES ES14890386.7T patent/ES2688210T3/es active Active
- 2014-04-22 CN CN201480000551.6A patent/CN105409140B/zh active Active
- 2014-04-22 WO PCT/CN2014/075969 patent/WO2015161452A1/zh active Application Filing
- 2014-04-22 EP EP14890386.7A patent/EP3128682B1/en active Active
-
2016
- 2016-10-21 US US15/331,268 patent/US9641917B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070066375A (ko) * | 2005-12-22 | 2007-06-27 | 주식회사 대우일렉트로닉스 | 광정보 기록장치 및 기록방법 |
KR100712896B1 (ko) * | 2006-02-10 | 2007-05-02 | 도시바삼성스토리지테크놀러지코리아 주식회사 | 구면수차 보상을 위한 광픽업 장치 및 상기 광픽업 장치를이용한 광기록/재생 장치 |
CN103401609A (zh) * | 2013-07-31 | 2013-11-20 | 中国科学院空间科学与应用研究中心 | 基于压缩感知与稀疏孔径的自由空间光通信系统及方法 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108352921A (zh) * | 2015-11-25 | 2018-07-31 | 华为技术有限公司 | 可重构光分插复用器 |
EP3364575A4 (en) * | 2015-11-25 | 2018-11-07 | Huawei Technologies Co., Ltd. | Reconfigurable optical add-drop multiplexer |
CN108352921B (zh) * | 2015-11-25 | 2019-12-17 | 华为技术有限公司 | 可重构光分插复用器 |
US10620376B2 (en) | 2015-11-25 | 2020-04-14 | Huawei Technologies Co., Ltd. | Reconfigurable optical add/drop multiplexer |
US11067752B2 (en) | 2015-11-25 | 2021-07-20 | Huawei Technologies Co., Ltd. | Reconfigurable optical add/drop multiplexer |
JP2017223873A (ja) * | 2016-06-16 | 2017-12-21 | 住友電気工業株式会社 | 紫外線照射装置および光ファイバの製造方法 |
WO2018035865A1 (zh) * | 2016-08-26 | 2018-03-01 | 华为技术有限公司 | 一种用于波长选择开关wss的信号监控方法及装置 |
CN108700735A (zh) * | 2016-08-26 | 2018-10-23 | 华为技术有限公司 | 一种用于波长选择开关wss的信号监控方法及装置 |
CN108700735B (zh) * | 2016-08-26 | 2020-04-28 | 华为技术有限公司 | 一种用于波长选择开关wss的信号监控方法及装置 |
US10666375B2 (en) | 2016-08-26 | 2020-05-26 | Huawei Technologies Co., Ltd. | Signal monitoring method and apparatus for wavelength selective switch WSS |
CN113655500A (zh) * | 2021-08-09 | 2021-11-16 | 成都凯天电子股份有限公司 | 一种基于激光雷达测量大气数据的光学检测方法 |
CN113655500B (zh) * | 2021-08-09 | 2023-12-05 | 成都凯天电子股份有限公司 | 一种基于激光雷达测量大气数据的光学检测方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3128682B1 (en) | 2018-08-08 |
US20170041689A1 (en) | 2017-02-09 |
CN105409140A (zh) | 2016-03-16 |
EP3128682A1 (en) | 2017-02-08 |
CN105409140B (zh) | 2017-12-08 |
US9641917B2 (en) | 2017-05-02 |
ES2688210T3 (es) | 2018-10-31 |
EP3128682A4 (en) | 2017-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015161452A1 (zh) | 光通信的装置和方法 | |
US11067752B2 (en) | Reconfigurable optical add/drop multiplexer | |
JP6609789B2 (ja) | 波長選択スイッチアレイ | |
US9158072B2 (en) | Multicast optical switch | |
JP5567212B2 (ja) | 多ポート波長選択スイッチ用ポートアレイトポロジ | |
US11728919B2 (en) | Optical communications apparatus and wavelength selection method | |
JP2012028929A (ja) | 波長選択光クロスコネクト装置 | |
CN107003480B (zh) | 波长选择开关装置、通信设备和波长切换方法 | |
CN114063215B (zh) | 一种波长选择开关和光交换设备、系统 | |
US7529441B2 (en) | Wavelength routing optical switch | |
CN108169858A (zh) | 一种多波长选择开关 | |
CN108702234B (zh) | 可重构光分插复用器 | |
US11899244B2 (en) | Wavelength selective switch | |
JP7381753B2 (ja) | 光スイッチング方法および装置、シリコン上の液晶、および波長選択スイッチ | |
CN117031636B (zh) | 一种Twin结构的波长选择开关及智能光网络器件 | |
Tsai et al. | 1× N2 wavelength-selective switches with high fill-factor two-axis analog micromirror arrays |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480000551.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14890386 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014890386 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014890386 Country of ref document: EP |