WO2015141121A1 - 貼り合わせウェーハの製造方法 - Google Patents
貼り合わせウェーハの製造方法 Download PDFInfo
- Publication number
- WO2015141121A1 WO2015141121A1 PCT/JP2015/000635 JP2015000635W WO2015141121A1 WO 2015141121 A1 WO2015141121 A1 WO 2015141121A1 JP 2015000635 W JP2015000635 W JP 2015000635W WO 2015141121 A1 WO2015141121 A1 WO 2015141121A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wafer
- film
- heat treatment
- thin film
- rta
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 71
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 30
- 239000010408 film Substances 0.000 claims abstract description 145
- 238000010438 heat treatment Methods 0.000 claims abstract description 53
- 238000004140 cleaning Methods 0.000 claims abstract description 46
- 239000010409 thin film Substances 0.000 claims abstract description 46
- 230000001681 protective effect Effects 0.000 claims abstract description 42
- 239000007789 gas Substances 0.000 claims abstract description 17
- 238000005530 etching Methods 0.000 claims abstract description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 230000001590 oxidative effect Effects 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 7
- 238000005121 nitriding Methods 0.000 claims description 7
- 239000007864 aqueous solution Substances 0.000 claims description 5
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 claims description 4
- 150000004767 nitrides Chemical class 0.000 claims description 4
- 239000000243 solution Substances 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 abstract description 12
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 7
- 239000001257 hydrogen Substances 0.000 abstract description 6
- -1 hydrogen ions Chemical class 0.000 abstract description 5
- 238000002347 injection Methods 0.000 abstract description 3
- 239000007924 injection Substances 0.000 abstract description 3
- 238000004151 rapid thermal annealing Methods 0.000 abstract 4
- 239000010410 layer Substances 0.000 abstract 2
- 239000011241 protective layer Substances 0.000 abstract 2
- 239000012530 fluid Substances 0.000 abstract 1
- 238000010030 laminating Methods 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 136
- 206010040844 Skin exfoliation Diseases 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 10
- 238000005468 ion implantation Methods 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 238000005498 polishing Methods 0.000 description 7
- 238000000137 annealing Methods 0.000 description 6
- 238000000926 separation method Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/185—Joining of semiconductor bodies for junction formation
- H01L21/187—Joining of semiconductor bodies for junction formation by direct bonding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76254—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02043—Cleaning before device manufacture, i.e. Begin-Of-Line process
- H01L21/02052—Wet cleaning only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
- H01L21/26533—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically inactive species in silicon to make buried insulating layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
- H01L21/3247—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering for altering the shape, e.g. smoothing the surface
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
- H01L21/0223—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
- H01L21/02233—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
- H01L21/02236—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
- H01L21/02238—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
- H01L21/02255—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/30604—Chemical etching
Definitions
- the present invention relates to a method for manufacturing a bonded wafer using an ion implantation separation method, and in particular, after a silicon single crystal wafer implanted with hydrogen ions or the like is bonded to a base wafer serving as a support substrate via an oxide film, the separation is performed.
- the present invention relates to a method for manufacturing an SOI wafer.
- a method for manufacturing an SOI wafer is a method of manufacturing an SOI wafer by peeling an ion-implanted wafer after bonding (ion implantation separation method: smart cut). Law (registered trademark)).
- an oxide film is formed on at least one of two silicon wafers, and gas ions such as hydrogen ions or rare gas ions are implanted from the upper surface of one silicon wafer (bond wafer), After a microbubble layer (encapsulation layer) is formed inside the bond wafer, the surface into which ions are implanted is brought into close contact with the other silicon wafer (base wafer) through an oxide film, and then heat treatment (peeling heat treatment) is performed.
- Patent Document 1 This is a technique (Patent Document 1) in which a bonded wafer is peeled into a thin film using a microbubble layer as a cleavage plane (peeling surface), and further heat-treated (bonding heat treatment) to be firmly bonded to form an SOI wafer.
- the cleaved surface becomes the surface of the SOI layer, and an SOI wafer having a thin SOI film thickness and high film thickness uniformity can be obtained relatively easily.
- both the bond wafer and the base wafer are bonded together without forming an oxide film on the surface.
- Patent Document 2 a method of performing heat treatment (rapid heating / rapid cooling heat treatment (RTA treatment)) in a reducing atmosphere containing hydrogen without polishing the surface of the SOI layer after the peeling heat treatment (or after the bonding heat treatment).
- RTA treatment rapid cooling heat treatment
- Patent Document 3 after the peeling heat treatment (or after the bonding heat treatment), an oxide film is formed on the SOI layer by heat treatment in an oxidizing atmosphere, and then the oxide film is removed (sacrificial oxidation treatment), and then reduced.
- Patent Documents 4 to 6 propose a method of performing a sacrificial oxidation process after performing an RTA process, and a method of performing the RTA process and the sacrificial oxidation process a plurality of times.
- an SOI wafer is manufactured by an ion implantation delamination method
- the thickness of the SOI layer such as sacrificial oxidation treatment or polishing is increased.
- a process of adjusting to the target film thickness is performed (Patent Documents 4 to 6).
- a process of cleaning the SOI wafer is performed.
- an SOI layer such as SC1 (mixed aqueous solution of NH 4 OH and H 2 O 2 ) is used.
- cleaning is performed by immersing the surface in a cleaning liquid having a function of etching a small amount.
- the film thickness distribution of the SOI layer influences the threshold voltage of the device in addition to the very thin film thickness of the SOI layer of about 10 nm.
- the uniformity of the film thickness range of 1 nm or less (Range (Max-Min) ⁇ 1 nm) is required.
- the film thickness uniformity of the SOI layer is good at the stage of peeling the bond wafer as described above, it is performed after the planarization heat treatment performed to improve the surface roughness of the SOI layer surface after peeling. This is because the film thickness uniformity of the SOI layer is deteriorated in the cleaning process.
- the SOI layer is surely reduced in thickness by etching, and the in-plane film thickness uniformity of the SOI layer tends to deteriorate depending on the cleaning conditions.
- a planarization heat treatment such as an RTA treatment that is taken out of the heat treatment furnace while the surface of the SOI layer is activated by the heat treatment, there is a problem that the in-plane film thickness uniformity of the SOI layer is likely to deteriorate.
- Such deterioration of the in-plane film thickness uniformity of the SOI layer is a particularly serious problem when manufacturing an SOI wafer having a film thickness range of 1 nm or less as described above.
- the present invention has been made to solve the above problems, and provides a method for manufacturing a bonded wafer that can maintain the in-plane film thickness uniformity of a thin film even after RTA treatment and subsequent cleaning. For the purpose.
- At least one kind of gas ion of hydrogen ion or rare gas ion is ion-implanted from the surface of the bond wafer to form an ion-implanted layer inside the wafer.
- the protective film is formed on the surface of the thin film in the heat treatment furnace after the temperature is lowered from the maximum temperature of the RTA treatment and the bonded wafer is taken out from the heat treatment furnace, and then the bonding in which the protective film is formed.
- a method for producing a bonded wafer in which a wafer is taken out from the heat treatment furnace and then cleaned using a cleaning solution capable of etching the protective film and the thin film.
- the surface of the thin film can be obtained even after RTA treatment and subsequent cleaning by forming a protective film uniformly on the surface of the thin film flattened by RTA treatment.
- a bonded wafer in which the inner film thickness uniformity is well maintained can be manufactured.
- the protective film is formed by changing the hydrogen gas-containing atmosphere in the heat treatment furnace to one of an oxidizing atmosphere, a nitriding atmosphere, and an oxynitriding atmosphere during the temperature drop from the maximum temperature of the RTA treatment.
- an oxide film, a nitride film, or an oxynitride film is formed on the surface of the thin film It is preferable. In this way, a protective film can be easily formed on the surface of the thin film.
- a mixed aqueous solution (SC1) of NH 4 OH and H 2 O 2 may be used as the cleaning liquid. If it is this invention, even when it wash
- the thickness of the protective film is preferably 0.7 to 3 nm. With such a thickness, the effect of the protective film can be sufficiently obtained, and the productivity of the RTA process is not significantly reduced.
- the protective film can be easily formed on the surface of the thin film flattened by the RTA process, and the film is uniformly formed on the surface of the thin film.
- this protective film it is possible to manufacture a bonded wafer in which the in-plane film thickness uniformity of the thin film after the cleaning is well maintained even when cleaning using SC1 having etching properties is performed after the RTA treatment.
- the in-plane film thickness of the SOI layer in the cleaning process including SC1 cleaning performed thereafter.
- the high-temperature RTA treatment is performed in an atmosphere containing H 2 having a high leveling effect
- the in-plane film thickness of the SOI layer is obtained in the subsequent cleaning process including SC1 cleaning.
- the film thickness of the SOI layer immediately after the RTA treatment was measured, the in-plane film thickness distribution of the SOI layer showed a more uniform distribution than after the cleaning including the SC1 cleaning. From this, it is considered that the cause of the deterioration in the uniformity of the SOI layer thickness is the RTA process, and the cleaning including SC1 is expanding the factor.
- the film thickness of the SOI layer decreases after the RTA process and cleaning, while the film thickness of the SOI layer decreases between apparatuses. It has been found that there are devices with different areas, such as a device in which the SOI layer is thinned at the center of the wafer and a device in which the SOI layer is thinned at the periphery of the wafer.
- the SOI layer becomes thin at the wafer center, and if the wafer contact part is at the wafer periphery, the SOI at the wafer periphery. Since the layer was thin, it was found that the SOI layer was thin at the position of the wafer contact portion of the wafer handling robot.
- the present inventors have improved the in-plane film thickness uniformity of the thin film (SOI layer) after cleaning by suppressing the formation of a natural oxide film having a non-uniform film thickness formed after the RTA process.
- a protective film oxide film, nitride film, oxynitride film, etc.
- the present invention has been completed by finding that the properties can be maintained well.
- At least one kind of gas ion of hydrogen ion and rare gas ion is ion-implanted from the surface of the bond wafer to form an ion-implanted layer inside the wafer, and the ion-implanted surface of the bond wafer and the base wafer Then, the bonded wafer having a thin film on the base wafer is manufactured by peeling off the bond wafer with the ion-implanted layer.
- the protective film is formed on the surface of the thin film in the heat treatment furnace after the temperature is lowered from the maximum temperature of the RTA treatment and the bonded wafer is taken out from the heat treatment furnace, and then the bonding in which the protective film is formed.
- This is a method for manufacturing a bonded wafer, in which a wafer is taken out from the heat treatment furnace and then cleaned using a cleaning solution capable of etching the protective film and the thin film.
- FIG. 1 is a flowchart showing an example of a method for producing a bonded wafer according to the present invention.
- the manufacturing method of the bonded wafer of this invention is demonstrated along the flowchart of FIG.
- a bond wafer and a base wafer are prepared, and an ion implantation layer is formed on the bond wafer (FIG. 1A).
- the silicon single crystal wafer by which mirror polishing was carried out can be used conveniently.
- the bond wafer and the base wafer those having an oxide film (insulating film) formed on the wafer surface by thermal oxidation may be used.
- the ion-implanted layer in the bond wafer can be formed by injecting at least one kind of gas ion of hydrogen ion or rare gas ion from the surface of the bond wafer to form an ion-implanted layer inside the wafer. Just do it.
- the bond wafer on which the ion-implanted layer is formed and the base wafer are bonded together (FIG. 1B).
- the bond wafer ion-implanted surface and the base wafer surface are bonded directly, or when an insulating film is formed on the bond wafer or base wafer as described above, the bonding is performed via the insulating film. .
- the bond wafer is peeled off by the ion implantation layer (FIG. 1C).
- the peeling of the bond wafer is not particularly limited, but can be performed by a heat treatment (peeling heat treatment) in an inert gas atmosphere such as Ar.
- peeling heat treatment in an inert gas atmosphere such as Ar.
- the plasma treatment to the surfaces to be bonded in advance, the bonding strength of the wafers adhered at room temperature is increased, and without performing the peeling process (or only performing the low temperature heat treatment that does not cause peeling).
- the bonded wafer which has a thin film on a base wafer is obtained by peeling a bond wafer with an ion implantation layer.
- an RTA process is performed on the obtained bonded wafer (FIG. 1D).
- the surface of the thin film is planarized by performing an RTA process in an atmosphere containing hydrogen gas.
- a bonding heat treatment for example, 900 to 1,000 ° C., 30 minutes to 2 hours, oxidizing atmosphere
- a treatment for removing the film can also be performed.
- the hydrogen gas-containing atmosphere may be, for example, a 100% H 2 gas atmosphere or a mixed gas atmosphere of H 2 and Ar.
- the maximum temperature of the RTA treatment is preferably 1,100 ° C. or more, and the treatment time (the maximum temperature holding time) is preferably about 1 to 30 seconds.
- a protective film is formed on the surface of the thin film in the heat treatment furnace until the temperature is lowered from the maximum temperature of the RTA process and the bonded wafer is taken out from the heat treatment furnace ( FIG. 1 (e)).
- the protective film is formed by switching the hydrogen gas-containing atmosphere in the heat treatment furnace to one of an oxidizing atmosphere, a nitriding atmosphere, and an oxynitriding atmosphere while the temperature is lowered from the maximum temperature of the RTA process. It is preferable to form one of an oxide film, a nitride film, and an oxynitride film on the surface of the thin film by exposing the wafer to any of an oxidizing atmosphere, a nitriding atmosphere, and an oxynitriding atmosphere. In this way, a protective film can be easily formed on the surface of the thin film.
- the protective film may be formed at a temperature lower than the maximum temperature of the RTA treatment, and is not particularly limited.
- the above-described oxidizing atmosphere, nitriding atmosphere, and oxynitriding property are performed at 300 to 900 ° C. for about 5 to 30 seconds. This can be done by exposing the bonded wafer to an atmosphere or the like, and it may be adjusted to a desired film thickness.
- the thickness of the protective film to be formed is not particularly limited, but is preferably in the range of 0.7 to 3 nm. By setting the thickness to 0.7 nm or more, the effect of the protective film can be sufficiently obtained. Further, if the thickness is 3 nm or less, the time required for forming the protective film does not become too long, so that the productivity is not significantly reduced even in the RTA process which is a single wafer process.
- the bonded wafer is cleaned using a cleaning solution capable of etching the protective film and the thin film (FIG. 1G).
- a mixed aqueous solution (SC1) of NH 4 OH and H 2 O 2 may be used as the cleaning liquid.
- SC1 mixed aqueous solution
- the cleaning liquid is not limited to this, and it is also possible to use NaOH, KOH, etc., or to perform cleaning in combination with cleaning using a non-etching cleaning liquid (for example, SC2 (mixed aqueous solution of HCl and H 2 O 2 )). It is.
- sacrificial oxidation treatment using a batch furnace resistance heating type heat treatment furnace
- heat treatment in a non-oxidizing atmosphere for example, high-temperature Ar annealing treatment
- the film thickness may be adjusted by sacrificial oxidation treatment or the like, which is not particularly limited, and may be performed by a known method.
- the protective film can be easily formed on the surface of the thin film flattened by the RTA process, and the film is uniformly formed on the surface of the thin film.
- this protective film even when cleaning using SC1 is performed after the RTA treatment, a bonded wafer in which the in-plane film thickness uniformity of the thin film after cleaning is well maintained can be manufactured.
- Example 2 A bond wafer cut out from a silicon single crystal having a diameter of 300 mm was prepared, and an oxide film was grown on the bond wafer so as to have a film thickness of 150 nm at 950 ° C. Then, hydrogen ions were increased to 40 keV, 6.0 ⁇ 10 16 / cm. Injection was performed under the conditions of 2 . Next, a base wafer cut out from a silicon single crystal having a diameter of 300 mm was prepared and bonded to a bond wafer.
- the bonded wafer was subjected to peeling heat treatment at 500 ° C./30 minutes to produce a bonded SOI wafer, and the average film thickness and film thickness range of the SOI layer of the SOI wafer immediately after peeling were measured.
- RTA processing first planarization heat treatment
- an annealing treatment of 1,100 ° C./30 seconds was performed in an H 2 atmosphere.
- an annealing treatment of 1,100 ° C./30 seconds was performed in an H 2 atmosphere.
- to drive off the H 2 gas from the chamber performs cooling while purging with Ar gas, further switches the O 2 gas (an oxidizing atmosphere) at 600 °C 600 °C / 10 seconds
- an oxide film was formed as a protective film on the surface of the SOI layer.
- the SOI wafer was taken out from the heat treatment furnace with a wafer handling robot, and the thickness of the oxide film on the SOI layer was measured on the SOI wafer immediately after the RTA treatment.
- the SOI wafer taken out from the heat treatment furnace is cleaned using SC1, then sacrificial oxidation treatment, high-temperature Ar annealing treatment at 1200 ° C./60 minutes (second planarization heat treatment), SOI layer A sacrificial oxidation process for adjusting the film thickness was performed to obtain an SOI wafer after planarization and film thickness adjustment.
- the average film thickness and film thickness range of the SOI layer of the obtained SOI wafer after planarization and film thickness adjustment were measured.
- Table 1 shows the conditions of the above-described processes in the examples.
- An RTA process (first planarization heat treatment) was performed on the SOI wafer manufactured by performing the operations up to the peeling heat treatment in the same manner as in the example, based on the RTA temperature profile of FIG.
- this RTA process after annealing and purging with Ar gas, the atmosphere was not switched to an oxidizing atmosphere, and an oxide film as a protective film was not formed.
- the SOI wafer was taken out from the heat treatment furnace with a wafer handling robot, and the thickness of the oxide film on the SOI layer was measured on the SOI wafer immediately after the RTA treatment in the same manner as in the example.
- the wafer handling robot used in the examples and comparative examples was a system that chucks the wafer center, but as shown in FIG. 5, in the example in which an oxide film was formed as a protective film, the SOI layer immediately after the RTA treatment The upper oxide film thickness was uniform in the plane. On the other hand, in the comparative example in which the protective film was not formed, the oxide film (natural oxide film) on the SOI layer immediately after the RTA treatment tended to be thin at the center of the wafer.
- Table 2 shows the results of measuring the average film thickness and film thickness range of the SOI layer of the SOI wafer immediately after peeling and the SOI wafer after flattening and film thickness adjustment in the examples and comparative examples.
- the film thickness range of the SOI layer maintained the same good value as that immediately after peeling even after the planarization and film thickness adjustment.
- the film thickness range of the SOI layer was thin at the wafer center, and the in-plane film thickness uniformity was deteriorated.
- a protective film can be easily formed on the surface of the thin film flattened by the RTA process, and the film is uniformly formed on the surface of the thin film. It has been clarified that this protective film can maintain the in-plane thickness uniformity of the thin film after the cleaning well even when the cleaning using SC1 is performed after the RTA treatment.
- the present invention is not limited to the above embodiment.
- the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- High Energy & Nuclear Physics (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Element Separation (AREA)
Abstract
Description
従来、このダメージ層等を除去するために、結合熱処理後の最終工程において、タッチポリッシュと呼ばれる研磨しろの極めて少ない鏡面研磨(取りしろ:100nm程度)が行われていた。ところが、SOI層に機械加工的要素を含む研磨をしてしまうと、研磨の取りしろが均一でないために、水素イオンなどの注入と剥離によって達成されたSOI層の膜厚均一性が悪化してしまうという問題が生じる。
例えば特許文献2では、剥離熱処理後(又は結合熱処理後)に、SOI層の表面を研磨することなく水素を含む還元性雰囲気下の熱処理(急速加熱・急速冷却熱処理(RTA処理))を行う方法が提案されている。さらに、特許文献3では、剥離熱処理後(又は結合熱処理後)に、酸化性雰囲気下の熱処理によりSOI層に酸化膜を形成した後に該酸化膜を除去し(犠牲酸化処理)、次に還元性雰囲気下のRTA処理を行う方法が提案されている。また、特許文献4~6では、RTA処理を行った後に犠牲酸化処理を行う方法や、RTA処理と犠牲酸化処理を複数回行う方法が提案されている。
そのような膜厚調整処理に投入する前には、SOIウェーハを洗浄する工程が行われ、洗浄工程では、例えばSC1(NH4OHとH2O2の混合水溶液)のような、SOI層の表面を微量にエッチングする作用を有する洗浄液に浸漬する洗浄が行われることが一般的である。
このようなSOI層の面内膜厚均一性の悪化は、上述のような膜厚レンジが1nm以下のSOIウェーハを製造する場合においては、特に大きな問題となる。
前記RTA処理の最高温度から降温して熱処理炉から前記貼り合わせウェーハを取り出すまでの間に、前記熱処理炉内で前記薄膜の表面に保護膜を形成し、その後該保護膜が形成された貼り合わせウェーハを前記熱処理炉から取り出して、その後前記保護膜及び前記薄膜のエッチングが可能な洗浄液を用いて洗浄する貼り合わせウェーハの製造方法を提供する。
このようにすれば、薄膜の表面に容易に保護膜を形成することができる。
本発明であれば、洗浄に一般的に用いられるエッチング性のあるSC1を用いて洗浄を行った場合も、洗浄後の薄膜の面内膜厚均一性を良好に維持することができる。
このような厚さであれば、保護膜の効果が充分に得られ、またRTA処理の生産性が大幅に低下することがない。
さらに検討を行ったところ、RTA処理後にウェーハを取り出すウェーハハンドリングロボットのウェーハ接触部がウェーハ中央であればウェーハ中央でSOI層が薄くなり、ウェーハ接触部がウェーハ周辺部であればウェーハ周辺部でSOI層が薄くなっていることから、ウェーハハンドリングロボットのウェーハ接触部の位置でSOI層が薄くなることが分かった。
前記RTA処理の最高温度から降温して熱処理炉から前記貼り合わせウェーハを取り出すまでの間に、前記熱処理炉内で前記薄膜の表面に保護膜を形成し、その後該保護膜が形成された貼り合わせウェーハを前記熱処理炉から取り出して、その後前記保護膜及び前記薄膜のエッチングが可能な洗浄液を用いて洗浄する貼り合わせウェーハの製造方法である。
本発明の貼り合わせウェーハの製造方法では、まずボンドウェーハ及びベースウェーハを用意し、ボンドウェーハにイオン注入層を形成する(図1(a))。
また、ボンドウェーハ及びベースウェーハとしては、熱酸化によりウェーハ表面に酸化膜(絶縁膜)が形成されたものを用いてもよい。
このようにしてイオン注入層でボンドウェーハを剥離させることで、ベースウェーハ上に薄膜を有する貼り合わせウェーハが得られる。
水素ガス含有雰囲気は、例えば100%H2ガス雰囲気や、H2とArの混合ガス雰囲気とすればよい。
また、RTA処理の最高温度は1,100℃以上、処理時間(最高温度の保持時間)は1~30秒程度とすることが好ましい。
このとき、洗浄液として、NH4OHとH2O2の混合水溶液(SC1)を用いてもよい。本発明であれば、SC1を用いて洗浄を行った場合も、洗浄後の薄膜の面内膜厚均一性を良好に維持することができる。もちろん、洗浄液としてはこれに限定されず、NaOH、KOH等を用いたり、非エッチング性の洗浄液(例えばSC2(HClとH2O2の混合水溶液))による洗浄と組み合わせて洗浄を行うことも可能である。
また、その後、犠牲酸化処理等による膜厚の調整を行ってもよく、これも特に限定されず、公知の方法で行えばよい。
直径300mmのシリコン単結晶から切り出したボンドウェーハを用意し、このボンドウェーハに950℃で膜厚150nmとなるように酸化膜の成長を行い、その後水素イオンを40keV、6.0×1016/cm2の条件で注入した。次に、直径300mmのシリコン単結晶から切り出したベースウェーハを用意し、ボンドウェーハとの貼り合わせを行った。その後、貼り合わせたウェーハに500℃/30分の剥離熱処理を行い、貼り合わせSOIウェーハを作製し、剥離直後のSOIウェーハの、SOI層の平均膜厚と膜厚レンジを測定した。
その後、ウェーハハンドリングロボットで熱処理炉からSOIウェーハを取り出し、RTA処理直後のSOIウェーハに対して、SOI層上の酸化膜の膜厚を測定した。
実施例と同様に剥離熱処理までの操作を行って作製したSOIウェーハに対し、図3のRTA温度プロファイルに基づいて、RTA処理(1回目の平坦化熱処理)を行った。なお、このRTA処理では、アニール後Arガスでパージした後、酸化性雰囲気に切り替えず、保護膜としての酸化膜の形成を行わなかった。RTA処理後、ウェーハハンドリングロボットで熱処理炉からSOIウェーハを取り出し、実施例と同様にRTA処理直後のSOIウェーハに対して、SOI層上の酸化膜の膜厚を測定した。
その後のSC1での洗浄、平坦化・膜厚調整処理も実施例と同様に行って、平坦化・膜厚調整後のSOIウェーハを得た。得られた平坦化・膜厚調整後のSOIウェーハの、SOI層の平均膜厚と膜厚レンジを測定した。
一方、保護膜を形成しなかった比較例では、RTA処理直後のSOI層上の酸化膜(自然酸化膜)はウェーハ中心部で薄くなる傾向を示した。
一方、保護膜を形成しなかった比較例では、SOI層の膜厚レンジはウェーハ中心部で薄くなり、面内膜厚均一性が悪化していた。
Claims (4)
- ボンドウェーハの表面から水素イオン、希ガスイオンの少なくとも一種類のガスイオンをイオン注入してウェーハ内部にイオン注入層を形成し、前記ボンドウェーハのイオン注入した表面とベースウェーハの表面とを直接あるいは絶縁膜を介して貼り合わせた後、前記イオン注入層でボンドウェーハを剥離させることにより、前記ベースウェーハ上に薄膜を有する貼り合わせウェーハを作製し、該貼り合わせウェーハに対し、水素ガス含有雰囲気下でRTA処理を行うことによって前記薄膜の表面を平坦化する貼り合わせウェーハの製造方法において、
前記RTA処理の最高温度から降温して熱処理炉から前記貼り合わせウェーハを取り出すまでの間に、前記熱処理炉内で前記薄膜の表面に保護膜を形成し、その後該保護膜が形成された貼り合わせウェーハを前記熱処理炉から取り出して、その後前記保護膜及び前記薄膜のエッチングが可能な洗浄液を用いて洗浄することを特徴とする貼り合わせウェーハの製造方法。 - 前記保護膜の形成は、前記RTA処理の最高温度からの降温中に、前記熱処理炉内の水素ガス含有雰囲気を酸化性雰囲気、窒化性雰囲気、及び酸窒化性雰囲気のいずれかに切替え、前記貼り合わせウェーハを前記酸化性雰囲気、窒化性雰囲気、及び酸窒化性雰囲気のいずれかに晒すことにより、前記薄膜の表面に酸化膜、窒化膜、及び酸窒化膜のいずれかを形成することを特徴とする請求項1に記載の貼り合わせウェーハの製造方法。
- 前記洗浄液として、NH4OHとH2O2の混合水溶液を用いることを特徴とする請求項1又は請求項2に記載の貼り合わせウェーハの製造方法。
- 前記保護膜の厚さを0.7~3nmとすることを特徴とする請求項1から請求項3のいずれか一項に記載の貼り合わせウェーハの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580011892.8A CN106062924B (zh) | 2014-03-18 | 2015-02-12 | 贴合式晶圆的制造方法 |
US15/120,905 US9773694B2 (en) | 2014-03-18 | 2015-02-12 | Method for manufacturing bonded wafer |
KR1020167024282A KR102361311B1 (ko) | 2014-03-18 | 2015-02-12 | 접합웨이퍼의 제조방법 |
SG11201607286TA SG11201607286TA (en) | 2014-03-18 | 2015-02-12 | Method for manufacturing bonded wafer |
EP15764527.6A EP3104395B1 (en) | 2014-03-18 | 2015-02-12 | Method for manufacturing laminated wafer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014054427A JP6036732B2 (ja) | 2014-03-18 | 2014-03-18 | 貼り合わせウェーハの製造方法 |
JP2014-054427 | 2014-03-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015141121A1 true WO2015141121A1 (ja) | 2015-09-24 |
Family
ID=54144113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/000635 WO2015141121A1 (ja) | 2014-03-18 | 2015-02-12 | 貼り合わせウェーハの製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US9773694B2 (ja) |
EP (1) | EP3104395B1 (ja) |
JP (1) | JP6036732B2 (ja) |
KR (1) | KR102361311B1 (ja) |
CN (1) | CN106062924B (ja) |
SG (1) | SG11201607286TA (ja) |
TW (1) | TWI604502B (ja) |
WO (1) | WO2015141121A1 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3051968B1 (fr) | 2016-05-25 | 2018-06-01 | Soitec | Procede de fabrication d'un substrat semi-conducteur a haute resistivite |
US20180019169A1 (en) * | 2016-07-12 | 2018-01-18 | QMAT, Inc. | Backing substrate stabilizing donor substrate for implant or reclamation |
JP6531743B2 (ja) * | 2016-09-27 | 2019-06-19 | 信越半導体株式会社 | 貼り合わせsoiウェーハの製造方法 |
JP6686962B2 (ja) * | 2017-04-25 | 2020-04-22 | 信越半導体株式会社 | 貼り合わせウェーハの製造方法 |
JP6760245B2 (ja) * | 2017-11-06 | 2020-09-23 | 信越半導体株式会社 | 薄膜soi層を有するsoiウェーハの製造方法 |
JP7088125B2 (ja) * | 2019-05-14 | 2022-06-21 | 信越半導体株式会社 | 被覆物の厚さ測定方法及び研削方法 |
JP7251419B2 (ja) * | 2019-09-11 | 2023-04-04 | 信越半導体株式会社 | 貼り合わせsoiウェーハの製造方法 |
US11282739B2 (en) * | 2019-12-13 | 2022-03-22 | Globalwafers Co., Ltd. | Methods for removing an oxide film from a SOI structure and methods for preparing a SOI structure |
FR3106236B1 (fr) * | 2020-01-15 | 2021-12-10 | Soitec Silicon On Insulator | Procédé de fabrication d’un capteur d’image |
JP2021166267A (ja) * | 2020-04-08 | 2021-10-14 | 信越半導体株式会社 | 貼り合わせsoiウェーハの製造方法 |
JP7711625B2 (ja) * | 2022-05-17 | 2025-07-23 | 信越半導体株式会社 | シリコンウェーハの熱処理方法 |
JP2024168899A (ja) * | 2023-05-25 | 2024-12-05 | 信越半導体株式会社 | δドープ層を有する高移動度基板及び高移動度基板の製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11307472A (ja) * | 1998-04-23 | 1999-11-05 | Shin Etsu Handotai Co Ltd | 水素イオン剥離法によってsoiウエーハを製造する方法およびこの方法で製造されたsoiウエーハ |
JP2000124092A (ja) * | 1998-10-16 | 2000-04-28 | Shin Etsu Handotai Co Ltd | 水素イオン注入剥離法によってsoiウエーハを製造する方法およびこの方法で製造されたsoiウエーハ |
JP2009027124A (ja) * | 2007-06-21 | 2009-02-05 | Shin Etsu Handotai Co Ltd | Soiウェーハの製造方法 |
WO2010122023A2 (en) * | 2009-04-21 | 2010-10-28 | S.O.I.Tec Silicon On Insulator Technologies | Method to thin a silicon-on-insulator substrate |
WO2011113775A1 (en) * | 2010-03-18 | 2011-09-22 | S.O.I.Tec Silicon On Insulator Technologies | Method for finishing a substrate of the semiconductor-on-insulator type |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2681472B1 (fr) | 1991-09-18 | 1993-10-29 | Commissariat Energie Atomique | Procede de fabrication de films minces de materiau semiconducteur. |
CN100454552C (zh) * | 2001-07-17 | 2009-01-21 | 信越半导体株式会社 | 贴合晶片的制造方法及贴合晶片、以及贴合soi晶片 |
JP4509488B2 (ja) * | 2003-04-02 | 2010-07-21 | 株式会社Sumco | 貼り合わせ基板の製造方法 |
CN100437912C (zh) * | 2003-08-25 | 2008-11-26 | 松下电器产业株式会社 | 杂质导入层的形成方法和器件的制造方法 |
US7563697B2 (en) * | 2003-09-05 | 2009-07-21 | Sumco Corporation | Method for producing SOI wafer |
EP1710836A4 (en) * | 2004-01-30 | 2010-08-18 | Sumco Corp | METHOD FOR PRODUCING AN SOI WATER |
KR101440930B1 (ko) * | 2007-04-20 | 2014-09-15 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Soi 기판의 제작방법 |
JP5135935B2 (ja) | 2007-07-27 | 2013-02-06 | 信越半導体株式会社 | 貼り合わせウエーハの製造方法 |
JP5703920B2 (ja) | 2011-04-13 | 2015-04-22 | 信越半導体株式会社 | 貼り合わせウェーハの製造方法 |
JP5927894B2 (ja) * | 2011-12-15 | 2016-06-01 | 信越半導体株式会社 | Soiウェーハの製造方法 |
JP2013143407A (ja) | 2012-01-06 | 2013-07-22 | Shin Etsu Handotai Co Ltd | 貼り合わせsoiウェーハの製造方法 |
JP5991284B2 (ja) * | 2013-08-23 | 2016-09-14 | 信越半導体株式会社 | シリコンウェーハの熱処理方法 |
-
2014
- 2014-03-18 JP JP2014054427A patent/JP6036732B2/ja active Active
-
2015
- 2015-02-12 KR KR1020167024282A patent/KR102361311B1/ko active Active
- 2015-02-12 SG SG11201607286TA patent/SG11201607286TA/en unknown
- 2015-02-12 CN CN201580011892.8A patent/CN106062924B/zh active Active
- 2015-02-12 WO PCT/JP2015/000635 patent/WO2015141121A1/ja active Application Filing
- 2015-02-12 EP EP15764527.6A patent/EP3104395B1/en active Active
- 2015-02-12 US US15/120,905 patent/US9773694B2/en active Active
- 2015-02-25 TW TW104105976A patent/TWI604502B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11307472A (ja) * | 1998-04-23 | 1999-11-05 | Shin Etsu Handotai Co Ltd | 水素イオン剥離法によってsoiウエーハを製造する方法およびこの方法で製造されたsoiウエーハ |
JP2000124092A (ja) * | 1998-10-16 | 2000-04-28 | Shin Etsu Handotai Co Ltd | 水素イオン注入剥離法によってsoiウエーハを製造する方法およびこの方法で製造されたsoiウエーハ |
JP2009027124A (ja) * | 2007-06-21 | 2009-02-05 | Shin Etsu Handotai Co Ltd | Soiウェーハの製造方法 |
WO2010122023A2 (en) * | 2009-04-21 | 2010-10-28 | S.O.I.Tec Silicon On Insulator Technologies | Method to thin a silicon-on-insulator substrate |
WO2011113775A1 (en) * | 2010-03-18 | 2011-09-22 | S.O.I.Tec Silicon On Insulator Technologies | Method for finishing a substrate of the semiconductor-on-insulator type |
Also Published As
Publication number | Publication date |
---|---|
KR20160134661A (ko) | 2016-11-23 |
JP2015177150A (ja) | 2015-10-05 |
KR102361311B1 (ko) | 2022-02-10 |
EP3104395A1 (en) | 2016-12-14 |
TW201546875A (zh) | 2015-12-16 |
SG11201607286TA (en) | 2016-10-28 |
US9773694B2 (en) | 2017-09-26 |
EP3104395B1 (en) | 2020-09-09 |
CN106062924A (zh) | 2016-10-26 |
CN106062924B (zh) | 2019-02-15 |
US20160365273A1 (en) | 2016-12-15 |
JP6036732B2 (ja) | 2016-11-30 |
EP3104395A4 (en) | 2017-10-04 |
TWI604502B (zh) | 2017-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6036732B2 (ja) | 貼り合わせウェーハの製造方法 | |
JP4828230B2 (ja) | Soiウェーハの製造方法 | |
TWI357101B (en) | Method for producing bonded wafer | |
KR101229760B1 (ko) | Soi 웨이퍼의 제조방법 및 이 방법에 의해 제조된soi 웨이퍼 | |
WO2013102968A1 (ja) | 貼り合わせsoiウェーハの製造方法 | |
WO2015136834A1 (ja) | 貼り合わせsoiウェーハの製造方法 | |
CN107615445B (zh) | 绝缘体上硅晶圆的制造方法 | |
US10600677B2 (en) | Method for manufacturing bonded SOI wafer | |
JP2016201454A (ja) | Soiウェーハの製造方法 | |
WO2016059748A1 (ja) | 貼り合わせウェーハの製造方法 | |
JP4624812B2 (ja) | Soiウエーハの製造方法 | |
JP5766901B2 (ja) | 貼り合わせウェーハの製造方法 | |
EP3029730B1 (en) | Bonded wafer manufacturing method | |
JP6152829B2 (ja) | Soiウェーハの製造方法 | |
JP7251419B2 (ja) | 貼り合わせsoiウェーハの製造方法 | |
JP2006013179A (ja) | Soiウェーハの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15764527 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15120905 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20167024282 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015764527 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015764527 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |