[go: up one dir, main page]

WO2015131359A1 - 一种磁芯、集成磁元件、有源钳位正反激电路及开关电源 - Google Patents

一种磁芯、集成磁元件、有源钳位正反激电路及开关电源 Download PDF

Info

Publication number
WO2015131359A1
WO2015131359A1 PCT/CN2014/072933 CN2014072933W WO2015131359A1 WO 2015131359 A1 WO2015131359 A1 WO 2015131359A1 CN 2014072933 W CN2014072933 W CN 2014072933W WO 2015131359 A1 WO2015131359 A1 WO 2015131359A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
column
magnetic core
core
circuit
Prior art date
Application number
PCT/CN2014/072933
Other languages
English (en)
French (fr)
Inventor
赵德琦
刘鹏飞
陈丽君
莫光铖
Original Assignee
深圳市欣锐特科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市欣锐特科技有限公司 filed Critical 深圳市欣锐特科技有限公司
Priority to PCT/CN2014/072933 priority Critical patent/WO2015131359A1/zh
Priority to CN201480000048.0A priority patent/CN104025217B/zh
Publication of WO2015131359A1 publication Critical patent/WO2015131359A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/22Conversion of DC power input into DC power output with intermediate conversion into AC
    • H02M3/24Conversion of DC power input into DC power output with intermediate conversion into AC by static converters
    • H02M3/28Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC
    • H02M3/325Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of DC power input into DC power output with intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate AC using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33571Half-bridge at primary side of an isolation transformer

Definitions

  • the present invention relates to the field of electronics, and more particularly to a magnetic core, an integrated magnetic component, an active clamp positive flyback circuit, and a switching power supply. Background technique
  • the active clamp positive-reverse circuit is a commonly used power supply circuit. It has excellent features such as simple circuit block, small voltage spike, and zero voltage switching. It has been widely used in medium and small power DC conversion applications.
  • the magnetic integrated circuit used in the active clamp forward-reverse circuit integrates two common transformers on one magnetic component, and the circuit structure is reduced to a certain extent, and the volume of the magnetic component is reduced.
  • the circuit only performs the two transformers of the forward circuit and the flyback circuit on one magnetic component.
  • the volume and weight of the magnetic component are relatively large, the utilization rate of the magnetic core is not high, and the volume of the magnetic component is There is still room for further reduction in weight.
  • Embodiments of the present invention disclose a magnetic core, an integrated magnetic component, an active clamp positive flyback circuit, and a switching power supply, which can reduce the volume of the magnetic core and the integrated magnetic component, and increase the active clamp positive and negative thrust.
  • a first aspect of the embodiments of the present invention discloses a magnetic core, which specifically includes:
  • first magnetic column a first magnetic column, a second magnetic column, a third magnetic column, and a horizontal column
  • the horizontal column connects the same end of the first magnetic column, the second magnetic column, and the third magnetic column
  • the Two magnetic columns are located between the first magnetic column and the third magnetic column
  • a cross-sectional area of the first magnetic column perpendicular to the magnetic induction line is perpendicular to the third magnetic column
  • the cross-sectional areas of the magnetic lines of interest are not equal.
  • the second aspect of the embodiment of the present invention discloses an integrated magnetic component, which specifically includes:
  • a closed magnetic core composed of a first magnetic core and a second magnetic core, and a coil wound on the closed magnetic core; characterized by:
  • the first magnetic core and the second magnetic core are the magnetic cores disclosed in the first aspect of the embodiment of the present invention, and the first magnetic core and the second magnetic core have the same size;
  • a second magnetic column of the first magnetic core and a second magnetic column of the second magnetic core are opposite to each other and in contact with each other to form a center pillar of the closed magnetic core;
  • the first magnetic column of the first magnetic core and the first magnetic column of the second magnetic core are not in contact with each other, and constitute a first side pillar of the closed magnetic core; the first of the first magnetic core Forming a first air gap between the magnetic column and the first magnetic column of the second magnetic core;
  • the third magnetic column of the first magnetic core and the third magnetic column of the second magnetic core are not in contact with each other, and constitute a second side pillar of the closed magnetic core; a third of the first magnetic core Forming a second air gap between the magnetic column and the third magnetic column of the second magnetic core;
  • the coil is wound around the closed core to form two sets of transformers.
  • the third aspect of the embodiments of the present invention discloses an active clamp positive flyback circuit, which specifically includes: a primary side circuit, an integrated magnetic element, a secondary side rectification and a capacitor filter circuit, and the secondary side rectification and capacitance filter circuit includes rectification a circuit and a filter circuit; wherein: the primary side circuit connects the secondary side rectification and capacitance filter circuit through the integrated magnetic element, and the primary side circuit connects the first primary side winding and the second original a side winding, the first secondary winding and the second secondary winding are connected to the rectifier circuit, and the rectifier circuit is connected to the filter circuit, wherein the integrated magnetic component is disclosed in the second aspect of the embodiment of the present invention. Integrated magnetic components.
  • a fourth aspect of the embodiments of the present invention discloses a switching power supply comprising the active clamp positive flyback circuit disclosed in the third aspect of the embodiments of the present invention.
  • the embodiment of the present invention sets the cross-sectional areas of the first magnetic column and the third magnetic column of the magnetic core to be unequal;
  • the magnetic core is used in the integrated magnetic element, and the first magnetic column and the second magnetic core are The distance between the first magnetic columns of the magnetic core, that is, the width of the first air gap and the distance between the third magnetic column of the first magnetic core and the third magnetic column of the second magnetic core, that is, the second air gap
  • the ratio of the width is set to the ratio of the cross-sectional area of the first magnetic column and the third magnetic column of the magnetic core so as not to affect the normal passage of the magnetic circuit; in the active clamp positive and negative excitation circuit, the first magnetic column participates Forming a forward transformer, the third magnetic column participates in forming a flyback transformer, which will be magnetic
  • the cross-sectional areas of the first magnetic column and the third magnetic column of the core are set to be unequal, and the normal function of the forward flyback circuit is realized, the volume and weight of the magnetic core are reduced, thereby reducing
  • FIG. 1 is a front elevational view of a magnetic core in accordance with an embodiment of the present invention.
  • FIG. 2 is a bottom view of a magnetic core according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a first integrated magnetic component according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a second integrated magnetic component according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an active clamp positive flyback circuit according to an embodiment of the present invention.
  • FIG. 6 is a circuit diagram of an active clamp positive flyback circuit according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a switching power supply according to an embodiment of the present invention. detailed description
  • FIG. 1 is a front elevational view of a magnetic core according to an embodiment of the present invention.
  • the magnetic core shown in Fig. 1 can be applied to coils and transformers of various electronic devices.
  • the magnetic core 10 includes: The magnetic column 11, the second magnetic column 12, the third magnetic column 13, and the horizontal column 14, the horizontal column 14 is connected to the same end of the first magnetic column 11, the second magnetic column 12 and the third magnetic column 13, the second magnetic column 12 Located between the first magnetic column 11 and the third magnetic column 13.
  • FIG. 2 is a bottom view of a magnetic core according to an embodiment of the present invention.
  • the cross-sectional area S1 of the first magnetic column 11 is not equal to the cross-sectional area S3 of the third magnetic column 13.
  • the cross-sectional area refers to the area of the magnetic column perpendicular to the magnetic induction line.
  • the cross-sectional area of the first magnetic column perpendicular to the magnetic induction line is 0.3 - 0.8 times the cross-sectional area of the third magnetic column perpendicular to the magnetic induction line.
  • the magnetic core shown in Fig. 1 and Fig. 2 is composed of a core of a PQ type structure, and may be composed of an iron core having an E shape, an EC type, an EP type or the like.
  • the present invention does not limit the structure of the iron core. .
  • FIG. 3 is a schematic structural diagram of a first integrated magnetic component according to an embodiment of the present invention.
  • the integrated magnetic component shown in FIG. 3 can be used for transmitting, storing, and storing magnetic energy in a switching power supply and a power electronic device.
  • the integrated magnetic component 300 includes: a closed magnetic core composed of a first magnetic core 310 and a second magnetic core 320, and a coil wound on the closed magnetic core, wherein the first magnetic core 310 and the second The magnetic core 320 is the magnetic core shown in FIGS. 1 and 2.
  • the second magnetic column 312 of the first magnetic core 310 and the second magnetic column 322 of the second magnetic core 320 are opposite to each other and contact to form a center pillar of the closed magnetic core 330;
  • the first magnetic column 311 of the first magnetic core 310 and the first magnetic column 321 of the second magnetic core 320 are not in contact with each other, and constitute a first side pillar of the closed magnetic core; the first magnetic column 311 of the first magnetic core 310 Forming a first air gap with the first magnetic pillar 321 of the second magnetic core 320;
  • the third magnetic column 313 of the first magnetic core 310 and the third magnetic column 323 of the second magnetic core 320 are not in contact with each other, and constitute a second side pillar of the closed magnetic core; the third magnetic column 313 of the first magnetic core 310 Forming a second air gap with the third magnetic column 323 of the second magnetic core 320;
  • the coil wound on the center pillar forms a common primary winding
  • the coil wound on the first side pillar forms a first secondary winding Ns301
  • the coil wound on the second side pillar forms a second secondary winding Ns302
  • the common primary winding constitutes a first transformer as the first primary winding Np301 and the first secondary winding Ns301
  • the common primary winding constitutes a second transformer as the second primary winding Np302 and the second secondary winding Ns302.
  • the distance between the first magnetic column 311 of the first magnetic core 310 and the first magnetic column 321 of the second magnetic core 320 forms a width of the first air gap;
  • the third magnetic column 313 of the first magnetic core 310 and The distance between the third magnetic columns 323 of the second magnetic core 320 forms a width of the second air gap;
  • the width of the first air gap is not equal to the second The width of the air gap.
  • the ratio of the width of the first air gap to the width of the second air gap and the cross-sectional area of the first magnetic column 311 of the first magnetic core 310 and the cross-sectional area of the third magnetic column 313 of the first magnetic core 310 is equal.
  • FIG. 4 is a schematic structural view of a second integrated magnetic component according to an embodiment of the present invention.
  • the integrated magnetic component shown in FIG. 4 is the same as the integrated magnetic component structure shown in FIG. 3, and the difference lies in the winding manner of the coil. Different, as shown in Figure 4:
  • the coil wound on the first magnetic pole 411 of the first magnetic core 410 forms a first primary winding Np401, and the coil wound on the first magnetic pole 421 of the second magnetic core 420 forms a first secondary winding Ns301,
  • the first primary winding Np401 and the first secondary winding Ns401 constitute a first transformer;
  • the coil wound on the third magnetic pole 413 of the first magnetic core 410 forms a second primary winding Np402, which is wound on the second core
  • the coil on the third magnetic column 423 of 420 forms a second secondary winding Ns402, and the second primary winding Np402 and the second secondary winding Ns402 constitute a second transformer;
  • the first primary winding Np401 and the second primary winding Np402 are connected in series connection.
  • a distance between the first magnetic pole 411 of the first magnetic core 410 and the first magnetic pole 421 of the second magnetic core 420 forms a width of the first air gap; the third magnetic pole 413 of the first magnetic core 410 and The distance between the third magnetic columns 423 of the second core 420 forms the width of the second air gap; the width of the first air gap is not equal to the width of the second air gap.
  • the ratio of the width of the first air gap to the width of the second air gap and the cross-sectional area of the first magnetic column 411 of the first magnetic core 410 and the cross-sectional area of the third magnetic column 413 of the first magnetic core 410 is equal.
  • the coil is wound around the closed core to form two sets of transformers.
  • FIG. 5 is a schematic structural diagram of an active clamp positive flyback circuit according to an embodiment of the present invention; the active clamp positive flyback circuit shown in FIG. 5 is widely applied to a transformer, a switching power supply, and a power supply.
  • the active clamp forward flyback circuit 500 includes: a primary side circuit 501, an integrated magnetic element 504, a secondary side rectification and a capacitance filter circuit, and a secondary side rectification and capacitance filter circuit including a rectifier circuit 502 and a filter circuit.
  • the main circuit 501 is connected to the secondary side rectification and capacitance filter circuit through the integrated magnetic component 504, and the primary side circuit 501 connected to the input end is connected to the first primary winding Np501 of the integrated magnetic component and the second original of the integrated magnetic component.
  • the side winding Np502, the first secondary winding Ns501 of the integrated magnetic component and the second secondary winding Ns502 of the integrated magnetic component are connected to the rectifier circuit 502, and the rectifier circuit 502 is connected to the filter circuit 503; wherein the integrated magnetic component is as shown in any one of FIG.
  • the first transformer formed by the first primary winding Np501 and the first secondary winding Ns501 is a forward transformer
  • the second transformer composed of the second primary winding Np502 and the second secondary winding Ns502 is a flyback transformer.
  • the forward transformer is a transformer that forms a forward-excited circuit in the active clamp forward-reverse circuit.
  • the main function is energy transfer.
  • the transformer itself does not need to store energy.
  • the ideal forward-transformer energy transfer ratio is 1:1, the transformer itself.
  • the loss is small, so a smaller transformer can achieve a larger transmission power;
  • a flyback transformer is a transformer that forms a flyback circuit in an active clamp positive and negative feedback circuit, and its main function is to store energy in the magnetic field of the transformer. In the core, and then transferring energy from the core to the secondary circuit, a larger transformer is required to achieve energy transfer. According to the working principle of the above forward converter and flyback transformer, the size of the transformer required for the forward circuit and the flyback circuit is different.
  • the forward transformer is composed of a first primary winding Np501 and a first secondary winding Ns501 of the first side pillar and the middle pillar of the closed magnetic core wound around the integrated magnetic component 504, and the flyback transformer is wound by
  • the second side leg Np502 and the second side winding Ns502 of the second side leg and the center post of the closed magnetic core of the integrated magnetic element 504 are formed; therefore, the volume of the forward transformer and the closed magnetic of the integrated magnetic element 504
  • the volume of the first side leg of the core is related to the volume of the flyback transformer and the volume of the second side leg of the closed magnetic core of the integrated magnetic component 504.
  • the first side pillar is composed of a first magnetic column of the first magnetic core and a first magnetic column of the second magnetic core
  • the second side pillar is composed of the third magnetic column and the second magnetic core of the first magnetic core
  • the third magnetic column is formed, therefore, the volume of the forward transformer is related to the volume of the first magnetic core and the first magnetic cylinder of the second magnetic core, and the volume of the flyback transformer is the same as the first magnetic core and the second magnetic core
  • the volume of the third magnetic cylinder is related, and the first core and the second core are the same size.
  • the cross-sectional area of the first magnetic pole of the first magnetic core of the integrated magnetic component is set to be different from the cross-sectional area of the third magnetic pole of the first magnetic core of the integrated magnetic component, so that The volume of one magnetic column is different from the volume of the third magnetic column.
  • the ratio of the cross-sectional area of the first magnetic column of the first magnetic core of the integrated magnetic element to the cross-sectional area of the third magnetic column of the first magnetic core of the integrated magnetic element is set to 0.3- 0.8, so that the volume of the forward transformer is smaller than the volume of the flyback transformer, and does not affect the normal operation of the forward circuit and the flyback circuit.
  • the flyback transformer operates in the circuit in the form of an energy storage component. Therefore, the core of the flyback transformer generally needs to be provided with a certain amount of air gap to prevent the magnetic core of the transformer from being saturated. At the same time, in order to avoid the deviation of the magnetic flux, It is also necessary to set a certain size of air gap in the transformer to make the magnetic in the forward transformer.
  • the reluctance of the loop is equal to the reluctance of the magnetic loop in the flyback transformer.
  • the magnitude of the reluctance is proportional to the cross-sectional area of the transformer's magnetic column and inversely proportional to the width of the air gap.
  • a first air gap of the first magnetic core and a first magnetic column of the second magnetic core form an air gap of the forward transformer, and the third magnetic column of the first magnetic core Forming a second air gap between the third magnetic poles of the second magnetic core, that is, an air gap of the flyback transformer; a distance between the first magnetic pole of the first magnetic core and the first magnetic pole of the second magnetic core forms a first The width of the air gap, the distance between the third magnetic column of the first magnetic core and the third magnetic column of the second magnetic core forms a width of the second air gap; the width of the first air gap and the width of the second air gap
  • the ratio is set to be equal to the ratio of the cross-sectional area of the first magnetic column to the cross-sectional area of the third magnetic column.
  • the cross-sectional area of the first magnetic column of the first magnetic core is 0.5 times the cross-sectional area of the third magnetic column of the first magnetic core, and the width of the first air gap and the second air gap The ratio of the width is also 0.5.
  • the first core and the second core of the integrated magnetic component 504 are composed of a core of a PQ type structure.
  • FIG. 6 is a circuit diagram of an active clamp positive flyback circuit according to an embodiment of the present invention.
  • FIG. 6 is a circuit diagram showing a specific embodiment of the structural diagram shown in FIG. As shown in Figure 6, the active clamp positive flyback circuit includes:
  • a primary side circuit composed of an input terminal and a MOS transistor Q6011, Q6012 and a diode D6011; a secondary side rectifier circuit composed of rectifier diodes D6021 and D6022;
  • a capacitor filter circuit composed of a filter diode D6031;
  • the primary side circuit is connected to the secondary side rectifier circuit and the capacitor filter circuit through the integrated magnetic element as shown in FIG. 3, and the primary side circuit is connected to the first primary side winding of the integrated magnetic element and the second primary side winding of the integrated magnetic element, at this time
  • the first primary winding and the second primary winding are both common primary windings in FIG. 3; the first secondary winding of the integrated magnetic component and the second secondary winding of the integrated magnetic component are connected to the secondary rectifier circuit, and the secondary rectifier
  • the circuit is connected to the capacitor filter circuit, and the capacitor filter circuit is connected to the output terminal.
  • the active clamp positive and negative feedback circuit can also adopt other circuit configurations in the prior art, except that the circuit shown in FIG. 6 is used to form a circuit.
  • the present invention is not limited.
  • the first transformer formed by the common primary winding and the first secondary winding is a forward transformer
  • the second transformer composed of the common primary winding and the second secondary winding is a flyback transformer
  • the ratio of the cross-sectional area of the first magnetic post 60411 of the first magnetic core 6041 of the integrated magnetic component to the cross-sectional area of the third magnetic post 60413 of the first magnetic core 6041 of the integrated magnetic component 604 is set to 0.3-0.8, so that the volume of the forward transformer is smaller than the volume of the flyback transformer without affecting the forward circuit And the flyback circuit works properly.
  • the distance between the first magnetic post 60411 of the first magnetic core 6041 and the first magnetic post 60421 of the second magnetic core 6042 forms a width of the first air gap
  • the third magnetic core of the first magnetic core 6041 The distance between the post 60413 and the third magnetic post 60423 of the second magnetic core 6042 forms a width of the second air gap; the ratio of the width of the first air gap to the width of the second air gap is set to be the same with the first magnetic post 60411
  • the ratio of the cross-sectional area to the cross-sectional area of the third magnetic column is equal.
  • the cross-sectional area of the first magnetic column of the first magnetic core is 0.5 times the cross-sectional area of the third magnetic column of the first magnetic core, and the width of the first air gap and the second air gap The ratio of the width is also 0.5.
  • the first core and the second core of the integrated magnetic element are composed of a core of a PQ type structure.
  • FIG. 7 is a schematic structural diagram of a switching power supply according to an embodiment of the present invention.
  • the switching power supply 700 shown in FIG. 7 includes an active clamp positive flyback circuit 701 and other components as shown in FIG. 5 or 6.
  • Circuit 702. The circuits in the embodiments of the present invention may be combined, divided, and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Dc-Dc Converters (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

本发明实施例公开了一种磁芯、包含上述磁芯的集成磁元件、包含上述集成磁元件的有源钳位正反激电路以及开关电源。磁芯包括第一磁柱、第二磁柱、第三磁柱以及横柱,所述横柱连接所述第一磁柱、所述第二磁柱和所述第三磁柱的同一端,所述第二磁柱位于所述第一磁柱和所述第三磁柱之间,其中第一磁柱垂直于磁感线的横截面积与第三磁柱垂直于磁感线的横截面积不相等。采用上述磁芯的集成磁元件中,绕制在磁芯上的线圈形成两组变压器。有源钳位正反激电路包含上述集成磁元件,使得正激变压器的磁柱横截面积比反激变压器的磁柱横截面积小,保证了正反激电路正常工作的同时,减小了电路的体积和重量。

Description

一种磁芯、 集成磁元件、 有源钳位正反激电路及开关电源
技术领域 本发明涉及电子领域, 尤其涉及一种磁芯、 集成磁元件、 有源钳位正反激电路 及开关电源。 背景技术
电力电子技术的飞速发展 , 尤其是微处理器的飞速发展对为其供电的电源 模块提出了极大的挑战。 人们在应用多种技术手段来提高模块电源性能的同时, 越来越发现磁性元件 (筒称磁元件, 包括磁芯和绕在磁芯上的线圈 )是限制电源体 积、 重量、 效率的一个重要因素。 据美国电源制造者协会 (PSMA)统计, 磁元件 体积在 DC-DC (直流转换直流 )模块中占到总体积的 20%以上、 重量占总重量 的 30%以上。
有源钳位正反激电路是目前常用的一种电源电路, 具有电路拓朴筒单、 电 压尖峰小、 可以实现零电压开关等优良特性, 在中小功率的直流变换场合得到 了广泛的应用。 现有技术中有源钳位正反激电路采用的磁集成电路, 将两个普 通的变压器集成在一个磁元件上, 在一定程度上筒化了电路结构, 减小了磁元 件的体积。 但是该电路只是将实现正激电路和反激电路的两个变压器筒单地做 在一块磁元件上, 磁元件的体积和重量还是比较大, 磁芯的利用率不高, 磁元 件的体积和重量还有进一步减小的空间。 发明内容 本发明实施例公开了一种磁芯、 集成磁元件、 有源钳位正反激电路及开关 电源, 可以实现减小磁芯以及集成磁元件的体积, 增加有源钳位正反激电路及 开关电源中集成磁元件磁芯的利用率的技术效果。
本发明实施例第一方面公开了一种磁芯, 具体包括:
第一磁柱、 第二磁柱、 第三磁柱以及横柱, 所述横柱连接所述第一磁柱、 所述第二磁柱和所述第三磁柱的同一端, 所述第二磁柱位于所述第一磁柱和所 述第三磁柱之间, 所述第一磁柱垂直于磁感线的横截面积与所述第三磁柱垂直 于磁感线的横截面积不相等。
本发明实施例第二方面公开了一种集成磁元件, 具体包括:
由第一磁芯和第二磁芯构成的闭合磁芯, 以及绕制在所述闭合磁芯上的线 圈; 其特征在于:
所述第一磁芯和所述第二磁芯为如本发明实施例第一方面公开的磁芯, 所 述第一磁芯与所述第二磁芯尺寸一致; 其中,
所述第一磁芯的第二磁柱与所述第二磁芯的第二磁柱两两相对并接触, 构 成所述闭合磁芯的中柱;
所述第一磁芯的第一磁柱与所述第二磁芯的第一磁柱两两相对不接触, 构 成所述闭合磁芯的第一侧柱; 所述第一磁芯的第一磁柱与所述第二磁芯的第一 磁柱之间形成第一气隙;
所述第一磁芯的第三磁柱与所述第二磁芯的第三磁柱两两相对不接触, 构 成所述闭合磁芯的第二侧柱; 所述第一磁芯的第三磁柱与所述第二磁芯的第三 磁柱之间形成第二气隙;
所述线圈绕在所述闭合磁芯上, 形成两组变压器。
本发明实施例第三方面公开了一种有源钳位正反激电路, 具体包括: 原边电路、 集成磁元件、 副边整流及电容滤波电路, 所述副边整流及电容 滤电路包括整流电路和滤波电路; 其特征在于: 所述原边电路通过所述集成磁 元件连接所述副边整流及电容滤电路, 所述原边电路连接所述第一原边绕组和 所述第二原边绕组, 所述第一副边绕组和所述第二副边绕组连接所述整流电路, 所述整流电路连接所述滤波电路, 其中所述集成磁元件是本发明实施例第二方 面公开的集成磁元件。
本发明实施例第四方面公开了一种开关电源, 包括本发明实施例第三方面 公开的有源钳位正反激电路。
本发明实施例将磁芯的第一磁柱和第三磁柱的横截面积设置为不相等; 在 集成磁元件中采用上述磁芯, 并且将第一磁芯的第一磁柱与第二磁芯的第一磁 柱之间的距离也即第一气隙的宽度和第一磁芯的第三磁柱与第二磁芯的第三磁 柱之间的距离也即第二气隙的宽度的比例, 设置为和磁芯的第一磁柱与第三磁 柱的横截面积的比例, 以不影响磁回路的正常通行; 有源钳位正反激电路中, 第一磁柱参与形成的是正激变压器, 第三磁柱参与形成的是反激变压器, 将磁 芯的第一磁柱与第三磁柱的横截面积设为不相等, 在实现正反激电路正常功能 的同时, 降低了磁芯的体积和重量, 进而降低了有源正反激电路及开关电源的 体积和重量, 提高了电路中磁芯的利用率。 附图说明 例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例的一种磁芯的正视图;
图 2是本发明实施例的一种磁芯的仰视图;
图 3是本发明实施例的第一种集成磁元件的结构示意图;
图 4是本发明实施例的第二种集成磁元件的结构示意图;
图 5是本发明实施例的一种有源钳位正反激电路的结构示意图;
图 6是本发明实施例的一种有源钳位正反激电路的电路图;
图 7是本发明实施例的一种开关电源的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例公开的磁芯、 包含上述磁芯的集成磁元件、 包含上述集成磁 元件的有源钳位正反激电路, 其中磁芯的第一磁柱和第三磁柱的横截面积不相 等; 包含上述磁芯的集成磁元件中, 绕制在磁芯的线圈形成两组变压器; 包含 上述集成磁元件的有源钳位正反激电路中, 正激变压器的磁柱横截面积比反激 变压器的磁柱横截面积小, 保证了正反激电路正常工作的同时, 减小了电路体 积和重量。
请参阅图 1 , 图 1是本发明实施例的一种磁芯的正视图。 图 1所示的磁芯可 以应用在各种电子设备的线圈和变压器中。 如图 1所示, 该磁芯 10包括: 第一 磁柱 11、 第二磁柱 12、 第三磁柱 13以及横柱 14, 横柱 14连接第一磁柱 11、 第二磁柱 12和第三磁柱 13的同一端, 第二磁柱 12位于第一磁柱 11和第三磁 柱 13之间。
请参阅图 2, 图 2是本发明实施例的一种磁芯的仰视图。 如图 2所示, 第一 磁柱 11的横截面积 S1与第三磁柱 13的横截面积 S3不相等。 其中, 横截面积 是指垂直于磁感线的磁柱的面积。
进一步地, 第一磁柱垂直于磁感线的横截面积是第三磁柱垂直于磁感线的 横截面积的 0.3— 0.8倍。
图 1和图 2所示的磁芯是由 PQ型结构的铁芯构成, 此外, 还可以是由 E 型, EC型、 EP型等形状的铁芯构成, 本发明对铁芯的结构不作限制。
请参阅图 3 , 图 3是本发明实施例的第一种集成磁元件的结构示意图, 图 3 所示的集成磁元件可用于在开关电源、 电力电子装置中, 担负着磁能的传递、 储存以及滤波和电气隔离的作用。 如图 3所示, 该集成磁元件 300包括: 第一 磁芯 310和第二磁芯 320构成的闭合磁芯, 以及绕制在闭合磁芯上的线圈, 其 中第一磁芯 310和第二磁芯 320是图 1和图 2所示的磁芯。
具体地, 第一磁芯 310的第二磁柱 312与第二磁芯 320的第二磁柱 322两 两相对并接触, 构成闭合磁芯 330的中柱;
第一磁芯 310的第一磁柱 311与第二磁芯 320的第一磁柱 321两两相对不 接触, 构成闭合磁芯的第一侧柱; 第一磁芯 310的第一磁柱 311与第二磁芯 320 的第一磁柱 321之间形成第一气隙;
第一磁芯 310的第三磁柱 313与第二磁芯 320的第三磁柱 323两两相对不 接触, 构成闭合磁芯的第二侧柱; 第一磁芯 310的第三磁柱 313与第二磁芯 320 的第三磁柱 323之间形成第二气隙;
绕制在中柱上的线圈形成共同原边绕组, 绕制在第一侧柱上的线圈形成第 一副边绕组 Ns301 , 绕制在第二侧柱上的线圈形成第二副边绕组 Ns302, 共同原 边绕组作为第一原边绕组 Np301和第一副边绕组 Ns301构成第一变压器, 同时 共同原边绕组作为第二原边绕组 Np302和第二副边绕组 Ns302构成第二变压器。
进一步地, 第一磁芯 310的第一磁柱 311与第二磁芯 320的第一磁柱 321 之间的距离形成第一气隙的宽度;第一磁芯 310的第三磁柱 313与第二磁芯 320 的第三磁柱 323之间的距离形成第二气隙的宽度; 第一气隙的宽度不等于第二 气隙的宽度。
进一步地, 第一气隙的宽度与第二气隙的宽度的比例和第一磁芯 310 的第 一磁柱 311的横截面积与第一磁芯 310的第三磁柱 313的横截面积的比例相等。
请参阅图 4, 图 4是本发明实施例的第二种集成磁元件的结构示意图, 图 4 所示的集成磁元件与图 3 所示的集成磁元件结构一样, 区别在于线圈的绕制方 式不同, 如图 4所示:
绕制在第一磁芯 410的第一磁柱 411上的线圈形成第一原边绕组 Np401 , 绕制在第二磁芯 420的第一磁柱 421上的线圈形成第一副边绕组 Ns301 ,第一原 边绕组 Np401和第一副边绕组 Ns401构成第一变压器; 绕制在第一磁芯 410的 第三磁柱 413上的线圈形成第二原边绕组 Np402, 绕制在第二磁芯 420的第三 磁柱 423上的线圈形成第二副边绕组 Ns402, 第二原边绕组 Np402和第二副边 绕组 Ns402构成第二变压器; 第一原边绕组 Np401和第二原边绕组 Np402串联 连接。
进一步地, 第一磁芯 410的第一磁柱 411与第二磁芯 420的第一磁柱 421 之间的距离形成第一气隙的宽度;第一磁芯 410的第三磁柱 413与第二磁芯 420 的第三磁柱 423之间的距离形成第二气隙的宽度; 第一气隙的宽度不等于第二 气隙的宽度。
进一步地, 第一气隙的宽度与第二气隙的宽度的比例和第一磁芯 410 的第 一磁柱 411的横截面积与第一磁芯 410的第三磁柱 413的横截面积的比例相等。
以上所示的只是集成磁元件的两种线圈绕制的方式, 但本发明对线圈绕制 的方式不作限制, 线圈绕在闭合磁芯上, 形成两组变压器即可。
请参阅图 5 ,图 5是本发明实施例的一种有源钳位正反激电路的结构示意图; 图 5 所示的有源钳位正反激电路广泛应用于在变压器、 开关电源、 电力电子装 置中。 如图 5所示, 该有源钳位正反激电路 500包括: 原边电路 501、 集成磁元 件 504、 副边整流及电容滤波电路, 副边整流及电容滤电路包括整流电路 502和 滤波电路 503; 其特征在于: 原边电路 501通过集成磁元件 504连接副边整流及 电容滤波电路, 连接输入端的原边电路 501 连接集成磁元件的第一原边绕组 Np501和集成磁元件的第二原边绕组 Np502,集成磁元件的第一副边绕组 Ns501 和集成磁元件的第二副边绕组 Ns502连接整流电路 502,整流电路 502连接滤波 电路 503; 其中集成磁元件为如图 3-4任一图所示的集成磁元件。 具体地, 第一原边绕组 Np501和第一副边绕组 Ns501构成的第一变压器为 正激变压器, 第二原边绕组 Np502和第二副边绕组 Ns502构成的第二变压器为 反激变压器。
正激变压器是有源钳位正反激电路中形成正激式电路的变压器, 主要作用 是能量传递,变压器自身并不需要储存能量,理想的正激变压器能量传输比是 1: 1 , 变压器自身的损耗很小, 所以较小的变压器就可以实现较大的传输功率; 反 激变压器是有源钳位正反激电路中形成反激式电路的变压器, 主要作用是将能 量储存在变压器的磁芯中, 然后再从磁芯中将能量传送到副边电路, 需要较大 的变压器实现能量的传送。 由以上正激变压器和反激变压器的工作原理可知, 正激电路和反激电路所需要的变压器的大小是不一样的。
本发明实施例中, 正激变压器由绕制在集成磁元件 504的闭合磁芯的第一 侧柱和中柱的第一原边绕组 Np501和第一副边绕组 Ns501组成, 反激变压器由 绕制在集成磁元件 504的闭合磁芯的第二侧柱和中柱的第二原边绕组 Np502和 第二副边绕组 Ns502组成; 因此, 正激变压器的体积大小与集成磁元件 504的 闭合磁芯的第一侧柱的体积大小有关,反激变压器的体积大小与集成磁元件 504 的闭合磁芯的第二侧柱的体积大小有关。 而第一侧柱是由第一磁芯的第一磁柱 和第二磁芯的第一磁柱构成的, 第二侧柱是由第一磁芯的第三磁柱和第二磁芯 的第三磁柱构成的, 因此, 正激变压器的体积大小与第一磁芯和第二磁芯的第 一磁柱的体积有关, 反激变压器的体积大小与第一磁芯和第二磁芯的第三磁柱 的体积有关, 第一磁芯和第二磁芯尺寸大小一致。
本发明实施例中, 集成磁元件的第一磁芯的第一磁柱的横截面积与集成磁 元件的第一磁芯的第三磁柱的横截面积设置为不一样大小, 以使第一磁柱的体 积和第三磁柱的体积不一样。
进一步地, 本发明实施例中, 集成磁元件的第一磁芯的第一磁柱的横截面 积与集成磁元件的第一磁芯的第三磁柱的横截面积的比例设为 0.3-0.8 , 以使正 激变压器的体积小于反激变压器的体积, 同时又不影响正激电路和反激电路的 正常工作。
反激变压器是以一个储能元件的形式在电路中工作, 因此反激变压器的磁 芯一般需要设置一定大小的气隙, 以防止变压器磁芯饱和, 同时, 为避免磁通 量的偏移, 在正激变压器中也需要设置一定大小的气隙, 以使正激变压器中磁 回路的磁阻与反激变压器中磁回路的磁阻大小相等。 磁阻的大小与变压器磁柱 的横截面积的大小成正比, 与气隙的宽度成反比。
本发明实施例中, 第一磁芯的第一磁柱与第二磁芯的第一磁柱之间形成第 一气隙即正激变压器的气隙, 第一磁芯的第三磁柱与第二磁芯的第三磁柱之间 形成第二气隙即反激变压器的气隙; 第一磁芯的第一磁柱与第二磁芯的第一磁 柱之间的距离形成第一气隙的宽度, 第一磁芯的第三磁柱与第二磁芯的第三磁 柱之间的距离形成第二气隙的宽度; 第一气隙的宽度与第二气隙的宽度的比例 设置为与第一磁柱的横截面积和第三磁柱的横截面积的比例相等。
作为一种优选地方式, 第一磁芯的第一磁柱的横截面积是第一磁芯的第三 磁柱的横截面积的 0.5倍, 第一气隙的宽度与第二气隙的宽度的比例也为 0.5。
作为一种优选的方式,集成磁元件 504的第一磁芯和第二磁芯由 PQ型结构 的铁芯构成。
请参阅图 6, 图 6是本发明实施例的一种有源钳位正反激电路的电路图; 图 6所示的电路图是图 5所示的结构示意图的一个具体实施例。 如图 6所示, 该有 源钳位正反激电路包括:
由输入端和 MOS管 Q6011、 Q6012以及二极管 D6011组成的原边电路; 由整流二极管 D6021、 D6022组成的副边整流电路;
由滤波二极管 D6031组成的电容滤波电路;
原边电路通过如图 3所示的集成磁元件连接副边整流电路及电容滤波电路, 原边电路连接集成磁元件的第一原边绕组和集成磁元件的第二原边绕组, 此时 该第一原边绕组和该第二原边绕组都为图 3 中共同原边绕组; 集成磁元件的第 一副边绕组和集成磁元件的第二副边绕组连接副边整流电路, 副边整流电路连 接电容滤波电路, 电容滤波电路连接输出端。
除了采用图 6所示的元器件及元器件之间的连接方式构成电路以外, 有源 钳位正反激电路还可以采用现有技术中其他的电路结构, 本发明不作限制。
具体地, 共同原边绕组和第一副边绕组构成的第一变压器为正激变压器, 共同原边绕组和第二副边绕组构成的第二变压器为反激变压器。
本发明实施例中, 集成磁元件的第一磁芯 6041的第一磁柱 60411的横截面 积与集成磁元件 604的第一磁芯 6041的第三磁柱 60413的横截面积的比例设为 0.3-0.8, 以使正激变压器的体积小于反激变压器的体积, 同时又不影响正激电路 和反激电路的正常工作。
本发明实施例中, 第一磁芯 6041的第一磁柱 60411与第二磁芯 6042的第 一磁柱 60421之间的距离形成第一气隙的宽度,第一磁芯 6041的第三磁柱 60413 与第二磁芯 6042的第三磁柱 60423之间的距离形成第二气隙的宽度; 第一气隙 的宽度与第二气隙的宽度的比例设置为与第一磁柱 60411 的横截面积和第三磁 柱的横截面积的比例相等。
作为一种优选地方式, 第一磁芯的第一磁柱的横截面积是第一磁芯的第三 磁柱的横截面积的 0.5倍, 第一气隙的宽度与第二气隙的宽度的比例也为 0.5。
作为一种优选的方式,集成磁元件的第一磁芯和第二磁芯由 PQ型结构的铁 芯构成。
请参阅图 7, 图 7是本发明实施例的一种开关电源的结构示意图, 如图 7所 示的开关电源 700包括如图 5或 6所示的有源钳位正反激电路 701和其他电路 702。 本发明实施例中的电路可以根据实际需要进行合并、 划分和删减。
根据上述说明书的揭示和教导, 本发明所属领域的技术人员还可以对上述 实施方式进行变更和修改。 本发明并不局限于上面揭示和描述的具体实施方式, 对发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。 尽管本 说明书中使用了一些特定的术语, 但这些术语只是为了方便说明, 并不对本发 明构成任何限制。

Claims

权 利 要 求
1、 一种磁芯, 包括第一磁柱、 第二磁柱、 第三磁柱以及横柱, 所述横柱连 接所述第一磁柱、 所述第二磁柱和所述第三磁柱的同一端, 所述第二磁柱位于 所述第一磁柱和所述第三磁柱之间, 其特征在于: 所述第一磁柱垂直于磁感线 的横截面积与所述第三磁柱垂直于磁感线的横截面积不相等。
2、 如权利要求 1所述的磁芯, 其特征在于: 所述第一磁柱垂直于磁感线的 横截面积是所述第三磁柱垂直于磁感线的横截面积的 0.3— 0.8倍。
3、 一种集成磁元件, 包括由第一磁芯和第二磁芯构成的闭合磁芯, 以及绕 制在所述闭合磁芯上的线圈; 其特征在于:
所述第一磁芯和所述第二磁芯为如权利要求 1或 2所述的磁芯, 所述第一 磁芯与所述第二磁芯尺寸一致; 其中,
所述第一磁芯的第二磁柱与所述第二磁芯的第二磁柱两两相对并接触, 构 成所述闭合磁芯的中柱;
所述第一磁芯的第一磁柱与所述第二磁芯的第一磁柱两两相对不接触, 构 成所述闭合磁芯的第一侧柱; 所述第一磁芯的第一磁柱与所述第二磁芯的第一 磁柱之间形成第一气隙;
所述第一磁芯的第三磁柱与所述第二磁芯的第三磁柱两两相对不接触, 构 成所述闭合磁芯的第二侧柱; 所述第一磁芯的第三磁柱与所述第二磁芯的第三 磁柱之间形成第二气隙;
所述线圈绕在所述闭合磁芯上, 形成两组变压器。
4、 如权利要求 3所述的磁元件, 其特征在于: 绕制在所述中柱上的线圈形 成共同原边绕组, 绕制在所述第一侧柱上的线圈形成第一副边绕组, 绕制在所 述第二侧柱上的线圈形成第二副边绕组, 所述共同原边绕组作为第一原边绕组 和所述第一副边绕组构成第一变压器, 同时所述共同原边绕组作为第二原边绕 组和所述第二副边绕组构成第二变压器。
5、 如权利要求 3所述的磁元件, 其特征在于: 绕制在所述第一磁芯的第一 磁柱上的线圈形成第一原边绕组, 绕制在所述第二磁芯的第一磁柱上的线圈形 成第一副边绕组, 所述第一原边绕组和所述第一副边绕组构成第一变压器; 绕 制在所述第一磁芯的第三磁柱上的线圈形成第二原边绕组, 绕制在所述第二磁 芯的第三磁柱上的线圈形成第二副边绕组, 所述第二原边绕组和所述第二副边 绕组构成第二变压器; 所述第一原边绕组和所述第二原边绕组串联连接。
6、 如权利要求 3所述的磁元件, 其特征在于: 所述第一磁芯的第一磁柱与 所述第二磁芯的第一磁柱之间的距离形成所述第一气隙的宽度; 所述第一磁芯 的第三磁柱与所述第二磁芯的第三磁柱之间的距离形成所述第二气隙的宽度; 所述第一气隙的宽度不等于所述第二气隙的宽度。
7、 如权利要求 6所述的磁元件, 其特征在于: 所述第一气隙的宽度与所述 第二气隙的宽度的比例等于所述第一磁芯的第一磁柱的横截面积与所述第一磁 芯的第三磁柱的横截面积的比例。
8、 一种有源钳位正反激电路, 包括原边电路、 集成磁元件、 副边整流及电 容滤波电路, 所述副边整流及电容滤电路包括整流电路和滤波电路; 其特征在 于:
所述集成磁元件为如权利要求 4-7任一项所述的集成磁元件;
所述原边电路通过所述集成磁元件连接所述副边整流及电容滤波电路, 所 述原边电路连接所述集成磁元件的第一原边绕组和所述集成磁元件的第二原边 绕组, 所述集成磁元件的第一副边绕组和所述集成磁元件的第二副边绕组连接 所述整流电路, 所述整流电路连接所述滤波电路。
9、 如权利要求 8所述的电路, 其特征在于: 所述第一原边绕组和所述第一 副边绕组构成的第一变压器为正激变压器, 所述第二原边绕组和所述第二副边 绕组构成的第二变压器为反激变压器。
10、 如权利要求 9所述的电路, 其特征在于:
所述集成磁元件的第一磁芯的第一磁柱的横截面积与所述集成磁元件的第 一磁芯的第三磁柱的横截面积的比例为 0.3-0.8;
所述第一磁芯的第一磁柱与所述第二磁芯的第一磁柱之间的距离形成所述 第一气隙的宽度; 所述第一磁芯的第三磁柱与所述第二磁芯的第三磁柱之间的 距离形成所述第二气隙的宽度;
所述第一气隙的宽度与所述第二气隙的宽度的比例设置为与所述第一磁柱 的横截面积和所述第三磁柱的横截面积的比例相等。
11、 如权利要求 10所述的电路, 其特征在于: 所述第一磁芯的第一磁柱的 横截面积是所述第一磁芯的第三磁柱的横截面积的 0.5倍,所述第一气隙的宽度 与所述第二气隙的宽度的比例也为 0.5。
12、 如权利要求 8-11所述的电路, 其特征在于: 所述集成磁元件的第一磁 芯和第二磁芯的形状为 PQ型。
13、 一种开关电源, 其特征在于, 所述开关电源如权利要求 8-12任一项所 述的有源钳位正反激电路。
PCT/CN2014/072933 2014-03-05 2014-03-05 一种磁芯、集成磁元件、有源钳位正反激电路及开关电源 WO2015131359A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2014/072933 WO2015131359A1 (zh) 2014-03-05 2014-03-05 一种磁芯、集成磁元件、有源钳位正反激电路及开关电源
CN201480000048.0A CN104025217B (zh) 2014-03-05 2014-03-05 一种磁芯、集成磁元件、有源钳位正反激电路及开关电源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/072933 WO2015131359A1 (zh) 2014-03-05 2014-03-05 一种磁芯、集成磁元件、有源钳位正反激电路及开关电源

Publications (1)

Publication Number Publication Date
WO2015131359A1 true WO2015131359A1 (zh) 2015-09-11

Family

ID=51440030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072933 WO2015131359A1 (zh) 2014-03-05 2014-03-05 一种磁芯、集成磁元件、有源钳位正反激电路及开关电源

Country Status (2)

Country Link
CN (1) CN104025217B (zh)
WO (1) WO2015131359A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI646777B (zh) * 2016-11-07 2019-01-01 北京北方華創微電子裝備有限公司 Filter circuit, heating circuit and semiconductor processing device
CN110164648A (zh) * 2019-07-10 2019-08-23 王球林 一种基于电子线路板pcb的推挽式变压器及其加工工艺
CN111223646A (zh) * 2018-11-23 2020-06-02 杨玉岗 一种磁轭闭合型多相对称集成磁件
CN111800899A (zh) * 2020-07-30 2020-10-20 张祥林 一种电磁加热单元、组件
CN114552948A (zh) * 2022-04-26 2022-05-27 锦浪科技股份有限公司 一种基于磁集成的光伏设备及工作方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107302298B (zh) * 2016-03-31 2023-08-29 台达电子企业管理(上海)有限公司 具有两路或多路输出电压的电源模块
CN107731481A (zh) * 2017-08-23 2018-02-23 广路智能科技有限公司 一种磁路拓扑集成磁体
WO2020034183A1 (zh) * 2018-08-17 2020-02-20 深圳欣锐科技股份有限公司 集成变压器及应用该集成变压器的集成开关电源应用电路
CN109686538B (zh) * 2018-12-11 2020-07-28 华为技术有限公司 一种变压器以及电源
WO2021035574A1 (zh) * 2019-08-28 2021-03-04 新誉庞巴迪牵引系统有限公司 变压器结构及机车牵引变压器
CN112928927A (zh) * 2021-02-17 2021-06-08 青岛大学 一种复合有源箝位推挽反激式dc-dc变换器
CN115691972A (zh) * 2021-07-29 2023-02-03 中兴通讯股份有限公司 电感器、电压控制电路、电压控制电路的检测及控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316173A (zh) * 1999-06-15 2001-10-03 松下电器产业株式会社 磁控管驱动升压变压器和磁控管驱动电源的变压器
CN101404454A (zh) * 2008-11-24 2009-04-08 北京新雷能有限责任公司 集成磁元件的有源钳位正反激变换器
JP2010193536A (ja) * 2009-02-16 2010-09-02 Nagano Japan Radio Co スイッチング電源装置
CN102739101A (zh) * 2012-06-20 2012-10-17 东南大学 正反激逆变器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2103195U (zh) * 1991-09-24 1992-04-29 廖正明 微型交流电焊机
CN201008125Y (zh) * 2007-01-09 2008-01-16 南京航空航天大学 有源钳位磁集成变换器
CN101860235B (zh) * 2010-05-04 2013-01-09 华为技术有限公司 磁集成变换电路系统
CN203351343U (zh) * 2013-06-20 2013-12-18 成都金之川电子有限公司 非对称集成变压器磁芯
CN203931733U (zh) * 2014-03-05 2014-11-05 深圳市欣锐特科技有限公司 一种磁芯、集成磁元件、有源钳位正反激电路及开关电源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316173A (zh) * 1999-06-15 2001-10-03 松下电器产业株式会社 磁控管驱动升压变压器和磁控管驱动电源的变压器
CN101404454A (zh) * 2008-11-24 2009-04-08 北京新雷能有限责任公司 集成磁元件的有源钳位正反激变换器
JP2010193536A (ja) * 2009-02-16 2010-09-02 Nagano Japan Radio Co スイッチング電源装置
CN102739101A (zh) * 2012-06-20 2012-10-17 东南大学 正反激逆变器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI646777B (zh) * 2016-11-07 2019-01-01 北京北方華創微電子裝備有限公司 Filter circuit, heating circuit and semiconductor processing device
US10879866B2 (en) 2016-11-07 2020-12-29 Beijing Naura Microelectronics Equipment Co., Ltd. Filter circuit, heating circuit, and semiconductor processing apparatus
CN111223646A (zh) * 2018-11-23 2020-06-02 杨玉岗 一种磁轭闭合型多相对称集成磁件
CN110164648A (zh) * 2019-07-10 2019-08-23 王球林 一种基于电子线路板pcb的推挽式变压器及其加工工艺
CN110164648B (zh) * 2019-07-10 2023-07-04 广东安充重工科技有限公司 一种基于电子线路板pcb的推挽式变压器及其加工工艺
CN111800899A (zh) * 2020-07-30 2020-10-20 张祥林 一种电磁加热单元、组件
CN114552948A (zh) * 2022-04-26 2022-05-27 锦浪科技股份有限公司 一种基于磁集成的光伏设备及工作方法
CN114552948B (zh) * 2022-04-26 2022-08-16 锦浪科技股份有限公司 一种基于磁集成的光伏设备及工作方法

Also Published As

Publication number Publication date
CN104025217B (zh) 2017-05-10
CN104025217A (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
WO2015131359A1 (zh) 一种磁芯、集成磁元件、有源钳位正反激电路及开关电源
TWI669898B (zh) 具有整合型變壓器的交錯式llc半橋串聯諧振轉換器
US9735685B2 (en) Interleaved LLC current equalizing converter
EP2600512A2 (en) Resonant conversion circuit
CN203931733U (zh) 一种磁芯、集成磁元件、有源钳位正反激电路及开关电源
CN105322798B (zh) 多路输出反激变换器
CN100502213C (zh) 谐振转换器及实现其轻载以及空载稳压的方法
WO2011088777A1 (zh) 一种磁集成双端变换器
CN201008125Y (zh) 有源钳位磁集成变换器
WO2018161748A1 (zh) 一种反激式开关电源
CN102594107A (zh) 一种采用集成电感的lcl滤波器
WO2016078350A1 (zh) 一种磁集成与零端口电流纹波的三端口变换器
CN111010044B (zh) 一种磁集成双有源桥变换器
CN101860235B (zh) 磁集成变换电路系统
TW202121813A (zh) 雙模式主動箝制返馳式轉換器
JP2009059995A (ja) 複合磁気部品
WO2019001216A1 (zh) 一种有源钳位正激式开关电源电路
CN104300802A (zh) 一种采用磁集成变压器的单级升压逆变器
CN103795261B (zh) 反激变换器及供电系统
WO2015180577A1 (zh) 耦合电感和功率变换器
CN101697456A (zh) 以双功率变压器实现整流管电压箝位的整流电路
CN204271918U (zh) 一种llc电路
CN103683945B (zh) 以顺向式架构为基础的电源转换装置
WO2019001305A1 (zh) 一种正激开关电源
CN101860219B (zh) 一种dc-dc变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14885051

Country of ref document: EP

Kind code of ref document: A1