WO2015122502A1 - 光学活性化合物の製造方法、及び新規な金属-ジアミン錯体 - Google Patents
光学活性化合物の製造方法、及び新規な金属-ジアミン錯体 Download PDFInfo
- Publication number
- WO2015122502A1 WO2015122502A1 PCT/JP2015/054017 JP2015054017W WO2015122502A1 WO 2015122502 A1 WO2015122502 A1 WO 2015122502A1 JP 2015054017 W JP2015054017 W JP 2015054017W WO 2015122502 A1 WO2015122502 A1 WO 2015122502A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- carbon atoms
- atom
- complex
- tsdpen
- Prior art date
Links
- 150000001875 compounds Chemical class 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 63
- 150000002391 heterocyclic compounds Chemical class 0.000 claims abstract description 12
- 150000002466 imines Chemical class 0.000 claims abstract description 10
- 239000000852 hydrogen donor Substances 0.000 claims abstract description 7
- 125000001841 imino group Chemical group [H]N=* 0.000 claims abstract description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims description 155
- 125000000217 alkyl group Chemical group 0.000 claims description 105
- 239000012327 Ruthenium complex Substances 0.000 claims description 66
- 239000003054 catalyst Substances 0.000 claims description 65
- -1 p-toluenesulfonyloxy group Chemical group 0.000 claims description 50
- 229910052741 iridium Inorganic materials 0.000 claims description 37
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical group [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 37
- 125000003118 aryl group Chemical group 0.000 claims description 36
- 229910052799 carbon Inorganic materials 0.000 claims description 33
- 125000005843 halogen group Chemical group 0.000 claims description 30
- 125000001424 substituent group Chemical group 0.000 claims description 28
- 229910052703 rhodium Chemical group 0.000 claims description 27
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical group [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 27
- 239000010948 rhodium Chemical group 0.000 claims description 25
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 23
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 23
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 22
- 125000003545 alkoxy group Chemical group 0.000 claims description 20
- 125000005948 methanesulfonyloxy group Chemical group 0.000 claims description 11
- 125000005951 trifluoromethanesulfonyloxy group Chemical group 0.000 claims description 11
- 150000001975 deuterium Chemical group 0.000 claims description 10
- 229910052805 deuterium Inorganic materials 0.000 claims description 10
- 125000001072 heteroaryl group Chemical group 0.000 claims description 9
- 150000001450 anions Chemical class 0.000 claims description 8
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 claims description 8
- 239000003446 ligand Substances 0.000 claims description 7
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 claims description 5
- ZSWFCLXCOIISFI-UHFFFAOYSA-N endo-cyclopentadiene Natural products C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 claims description 5
- 125000002097 pentamethylcyclopentadienyl group Chemical group 0.000 claims description 5
- HFPZCAJZSCWRBC-UHFFFAOYSA-N p-cymene Chemical compound CC(C)C1=CC=C(C)C=C1 HFPZCAJZSCWRBC-UHFFFAOYSA-N 0.000 description 247
- 238000006243 chemical reaction Methods 0.000 description 166
- 230000015572 biosynthetic process Effects 0.000 description 98
- 238000003786 synthesis reaction Methods 0.000 description 98
- 230000003287 optical effect Effects 0.000 description 97
- 229910052717 sulfur Inorganic materials 0.000 description 72
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 63
- 229910052739 hydrogen Inorganic materials 0.000 description 52
- 239000001257 hydrogen Substances 0.000 description 52
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 51
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 45
- 238000006722 reduction reaction Methods 0.000 description 44
- 238000005984 hydrogenation reaction Methods 0.000 description 43
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 41
- 238000004817 gas chromatography Methods 0.000 description 41
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 38
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 37
- 239000002904 solvent Substances 0.000 description 32
- 230000000052 comparative effect Effects 0.000 description 29
- BHNHHSOHWZKFOX-UHFFFAOYSA-N 2-methyl-1H-indole Chemical compound C1=CC=C2NC(C)=CC2=C1 BHNHHSOHWZKFOX-UHFFFAOYSA-N 0.000 description 27
- SMUQFGGVLNAIOZ-UHFFFAOYSA-N quinaldine Chemical compound C1=CC=CC2=NC(C)=CC=C21 SMUQFGGVLNAIOZ-UHFFFAOYSA-N 0.000 description 24
- 238000005160 1H NMR spectroscopy Methods 0.000 description 22
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 150000001721 carbon Chemical group 0.000 description 20
- 150000003839 salts Chemical class 0.000 description 20
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 18
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 17
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 17
- ALHUXMDEZNLFTA-UHFFFAOYSA-N 2-methylquinoxaline Chemical compound C1=CC=CC2=NC(C)=CN=C21 ALHUXMDEZNLFTA-UHFFFAOYSA-N 0.000 description 16
- 239000000203 mixture Substances 0.000 description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 15
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical group ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 125000001309 chloro group Chemical group Cl* 0.000 description 15
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- FLHJIAFUWHPJRT-UHFFFAOYSA-N 2,3,3-trimethylindole Chemical compound C1=CC=C2C(C)(C)C(C)=NC2=C1 FLHJIAFUWHPJRT-UHFFFAOYSA-N 0.000 description 11
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 11
- 239000000460 chlorine Substances 0.000 description 11
- 235000019253 formic acid Nutrition 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000000706 filtrate Substances 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- YUWFEBAXEOLKSG-UHFFFAOYSA-N hexamethylbenzene Chemical compound CC1=C(C)C(C)=C(C)C(C)=C1C YUWFEBAXEOLKSG-UHFFFAOYSA-N 0.000 description 9
- 150000002431 hydrogen Chemical class 0.000 description 9
- 238000006276 transfer reaction Methods 0.000 description 9
- 239000002253 acid Substances 0.000 description 8
- 150000001412 amines Chemical class 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- 125000002950 monocyclic group Chemical group 0.000 description 8
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 7
- 229960001701 chloroform Drugs 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 229910052707 ruthenium Inorganic materials 0.000 description 7
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 6
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 6
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 6
- 229910052801 chlorine Inorganic materials 0.000 description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 6
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 6
- 239000012044 organic layer Substances 0.000 description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 6
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 6
- 239000008096 xylene Substances 0.000 description 6
- 0 CCC(C*(CC)C(CC1=*C*C1C)C(C*)C1[C@]2C1CCC2)C(C)C Chemical compound CCC(C*(CC)C(CC1=*C*C1C)C(C*)C1[C@]2C1CCC2)C(C)C 0.000 description 5
- 229940126214 compound 3 Drugs 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 125000005842 heteroatom Chemical group 0.000 description 5
- XMJHPCRAQCTCFT-UHFFFAOYSA-N methyl chloroformate Chemical compound COC(Cl)=O XMJHPCRAQCTCFT-UHFFFAOYSA-N 0.000 description 5
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 5
- 125000003367 polycyclic group Chemical group 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 5
- LAXRNWSASWOFOT-UHFFFAOYSA-J (cymene)ruthenium dichloride dimer Chemical compound [Cl-].[Cl-].[Cl-].[Cl-].[Ru+2].[Ru+2].CC(C)C1=CC=C(C)C=C1.CC(C)C1=CC=C(C)C=C1 LAXRNWSASWOFOT-UHFFFAOYSA-J 0.000 description 4
- VSWGLJOQFUMFOQ-UHFFFAOYSA-N 5-methoxy-2-methyl-1h-indole Chemical compound COC1=CC=C2NC(C)=CC2=C1 VSWGLJOQFUMFOQ-UHFFFAOYSA-N 0.000 description 4
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine (DIPEA) Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 4
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 4
- 229940125898 compound 5 Drugs 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000010898 silica gel chromatography Methods 0.000 description 4
- PTMFUWGXPRYYMC-UHFFFAOYSA-N triethylazanium;formate Chemical compound OC=O.CCN(CC)CC PTMFUWGXPRYYMC-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- 229910052727 yttrium Inorganic materials 0.000 description 4
- BXVSAYBZSGIURM-UHFFFAOYSA-N 2-phenoxy-4h-1,3,2$l^{5}-benzodioxaphosphinine 2-oxide Chemical compound O1CC2=CC=CC=C2OP1(=O)OC1=CC=CC=C1 BXVSAYBZSGIURM-UHFFFAOYSA-N 0.000 description 3
- GMSWGAOENMAHID-UHFFFAOYSA-N 3-methyl-2h-1,4-benzoxazine Chemical compound C1=CC=C2OCC(C)=NC2=C1 GMSWGAOENMAHID-UHFFFAOYSA-N 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- 150000004703 alkoxides Chemical class 0.000 description 3
- YGXMUPKIEHNBNQ-UHFFFAOYSA-J benzene;ruthenium(2+);tetrachloride Chemical compound Cl[Ru]Cl.Cl[Ru]Cl.C1=CC=CC=C1.C1=CC=CC=C1 YGXMUPKIEHNBNQ-UHFFFAOYSA-J 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 229940125904 compound 1 Drugs 0.000 description 3
- 150000004696 coordination complex Chemical class 0.000 description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 125000001153 fluoro group Chemical group F* 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 150000004678 hydrides Chemical class 0.000 description 3
- 150000007529 inorganic bases Chemical class 0.000 description 3
- 229910052740 iodine Inorganic materials 0.000 description 3
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 3
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 3
- 239000002798 polar solvent Substances 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- BDAWXSQJJCIFIK-UHFFFAOYSA-N potassium methoxide Chemical compound [K+].[O-]C BDAWXSQJJCIFIK-UHFFFAOYSA-N 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 150000003304 ruthenium compounds Chemical class 0.000 description 3
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- RKBCYCFRFCNLTO-UHFFFAOYSA-N triisopropylamine Chemical compound CC(C)N(C(C)C)C(C)C RKBCYCFRFCNLTO-UHFFFAOYSA-N 0.000 description 3
- DYLIWHYUXAJDOJ-OWOJBTEDSA-N (e)-4-(6-aminopurin-9-yl)but-2-en-1-ol Chemical compound NC1=NC=NC2=C1N=CN2C\C=C\CO DYLIWHYUXAJDOJ-OWOJBTEDSA-N 0.000 description 2
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 2
- DINGXIQQGFKQTI-UHFFFAOYSA-N 1,2,3,4-tetrahydrocyclopenta[g]indole Chemical compound N1CCC=2CC=C3C(C12)=CC=C3 DINGXIQQGFKQTI-UHFFFAOYSA-N 0.000 description 2
- PYFVEIDRTLBMHG-UHFFFAOYSA-N 2,3-dimethyl-1h-indole Chemical compound C1=CC=C2C(C)=C(C)NC2=C1 PYFVEIDRTLBMHG-UHFFFAOYSA-N 0.000 description 2
- ZFLFWZRPMDXJCW-UHFFFAOYSA-N 2,5-dimethyl-1h-indole Chemical compound CC1=CC=C2NC(C)=CC2=C1 ZFLFWZRPMDXJCW-UHFFFAOYSA-N 0.000 description 2
- XBVSGEGNQZAQPM-UHFFFAOYSA-N 2-methyl-1h-indol-4-ol Chemical compound C1=CC=C2NC(C)=CC2=C1O XBVSGEGNQZAQPM-UHFFFAOYSA-N 0.000 description 2
- WUVWAXJXPRYUME-UHFFFAOYSA-N 5-chloro-2-methyl-1h-indole Chemical compound ClC1=CC=C2NC(C)=CC2=C1 WUVWAXJXPRYUME-UHFFFAOYSA-N 0.000 description 2
- JJIUISYYTFDATN-UHFFFAOYSA-N 5-fluoro-2-methyl-1h-indole Chemical compound FC1=CC=C2NC(C)=CC2=C1 JJIUISYYTFDATN-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910020366 ClO 4 Inorganic materials 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 229910018286 SbF 6 Inorganic materials 0.000 description 2
- 238000011914 asymmetric synthesis Methods 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 229940125782 compound 2 Drugs 0.000 description 2
- 150000001924 cycloalkanes Chemical class 0.000 description 2
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 2
- 150000002504 iridium compounds Chemical class 0.000 description 2
- 125000002510 isobutoxy group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])O* 0.000 description 2
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 2
- 239000008204 material by function Substances 0.000 description 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 2
- 230000001035 methylating effect Effects 0.000 description 2
- QZOASXZQRFMMBJ-UHFFFAOYSA-N n-(4-methoxyphenyl)-4-methylpentan-2-imine Chemical compound COC1=CC=C(N=C(C)CC(C)C)C=C1 QZOASXZQRFMMBJ-UHFFFAOYSA-N 0.000 description 2
- 125000003136 n-heptyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000003935 n-pentoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 2
- 125000003506 n-propoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 150000003284 rhodium compounds Chemical class 0.000 description 2
- QRUBYZBWAOOHSV-UHFFFAOYSA-M silver trifluoromethanesulfonate Chemical compound [Ag+].[O-]S(=O)(=O)C(F)(F)F QRUBYZBWAOOHSV-UHFFFAOYSA-M 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- PONXTPCRRASWKW-UHFFFAOYSA-N 1,2-diphenylethane-1,2-diamine Chemical compound C=1C=CC=CC=1C(N)C(N)C1=CC=CC=C1 PONXTPCRRASWKW-UHFFFAOYSA-N 0.000 description 1
- XKLNOVWDVMWTOB-UHFFFAOYSA-N 2,3,4,9-tetrahydro-1h-carbazole Chemical compound N1C2=CC=CC=C2C2=C1CCCC2 XKLNOVWDVMWTOB-UHFFFAOYSA-N 0.000 description 1
- AADQFNAACHHRLT-UHFFFAOYSA-N 2,4-Dimethyl-1-(1-methylethyl)-benzene Chemical compound CC(C)C1=CC=C(C)C=C1C AADQFNAACHHRLT-UHFFFAOYSA-N 0.000 description 1
- 125000004201 2,4-dichlorophenyl group Chemical group [H]C1=C([H])C(*)=C(Cl)C([H])=C1Cl 0.000 description 1
- 125000004182 2-chlorophenyl group Chemical group [H]C1=C([H])C(Cl)=C(*)C([H])=C1[H] 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- 125000001255 4-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1F 0.000 description 1
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 description 1
- ZSFSOTDMFIGFAA-UHFFFAOYSA-N 4-methyl-n-phenylpentan-2-imine Chemical compound CC(C)CC(C)=NC1=CC=CC=C1 ZSFSOTDMFIGFAA-UHFFFAOYSA-N 0.000 description 1
- 125000004199 4-trifluoromethylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C(F)(F)F 0.000 description 1
- 101710134784 Agnoprotein Proteins 0.000 description 1
- QZOASXZQRFMMBJ-SDNWHVSQSA-N CC(C)C/C(/C)=N/c(cc1)ccc1OC Chemical compound CC(C)C/C(/C)=N/c(cc1)ccc1OC QZOASXZQRFMMBJ-SDNWHVSQSA-N 0.000 description 1
- UMBCQRNNFKGVAG-UHFFFAOYSA-N CC(C)CC(C)Nc(cc1)ccc1OC Chemical compound CC(C)CC(C)Nc(cc1)ccc1OC UMBCQRNNFKGVAG-UHFFFAOYSA-N 0.000 description 1
- SICHRQYMUIGTCF-XIJSCUBXSA-N CC(C)c(cc1C(C)C)cc(C(C)C)c1S(N[C@H](C(c1ccccc1)NC)c1ccccc1)(=O)=O Chemical compound CC(C)c(cc1C(C)C)cc(C(C)C)c1S(N[C@H](C(c1ccccc1)NC)c1ccccc1)(=O)=O SICHRQYMUIGTCF-XIJSCUBXSA-N 0.000 description 1
- NHHMJERCMRLCKY-VMPREFPWSA-N CC(C)c(cc1C(C)C)cc(C(C)C)c1S(N[C@H]([C@H](c1ccccc1)NC(OC)=O)c1ccccc1)(=O)=O Chemical compound CC(C)c(cc1C(C)C)cc(C(C)C)c1S(N[C@H]([C@H](c1ccccc1)NC(OC)=O)c1ccccc1)(=O)=O NHHMJERCMRLCKY-VMPREFPWSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical group FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013553 LiNO Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- IEAGFIIKNJQQLL-IRXDYDNUSA-N N-[(1S,2S)-2-(methanesulfonamido)-1,2-diphenylethyl]acetamide Chemical compound CC(=O)N[C@H]([C@@H](NS(C)(=O)=O)C1=CC=CC=C1)C1=CC=CC=C1 IEAGFIIKNJQQLL-IRXDYDNUSA-N 0.000 description 1
- 229910020808 NaBF Inorganic materials 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- DYAHQFWOVKZOOW-UHFFFAOYSA-N Sarin Chemical compound CC(C)OP(C)(F)=O DYAHQFWOVKZOOW-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 125000005103 alkyl silyl group Chemical group 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- 239000000010 aprotic solvent Substances 0.000 description 1
- 238000009876 asymmetric hydrogenation reaction Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 125000004427 diamine group Chemical group 0.000 description 1
- CWHBCTLVWOCMPQ-UHFFFAOYSA-L disodium;2-[(3,5-diiodo-4-oxidophenyl)-(3,5-diiodo-4-oxocyclohexa-2,5-dien-1-ylidene)methyl]benzoate Chemical compound [Na+].[Na+].[O-]C(=O)C1=CC=CC=C1C(C=1C=C(I)C([O-])=C(I)C=1)=C1C=C(I)C(=O)C(I)=C1 CWHBCTLVWOCMPQ-UHFFFAOYSA-L 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- BWEDPXKFWJUQAD-UHFFFAOYSA-N formic acid 2-methyl-1H-indole Chemical compound C(=O)O.CC=1NC2=CC=CC=C2C1 BWEDPXKFWJUQAD-UHFFFAOYSA-N 0.000 description 1
- 229940052308 general anesthetics halogenated hydrocarbons Drugs 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 239000012433 hydrogen halide Substances 0.000 description 1
- 229910000039 hydrogen halide Inorganic materials 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 150000002475 indoles Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 1
- UOPFIWYXBIHPIP-UHFFFAOYSA-N n-(2-amino-1,2-diphenylethyl)-4-methylbenzenesulfonamide Chemical compound C1=CC(C)=CC=C1S(=O)(=O)NC(C=1C=CC=CC=1)C(N)C1=CC=CC=C1 UOPFIWYXBIHPIP-UHFFFAOYSA-N 0.000 description 1
- 125000006606 n-butoxy group Chemical group 0.000 description 1
- 125000006610 n-decyloxy group Chemical group 0.000 description 1
- 125000006609 n-nonyloxy group Chemical group 0.000 description 1
- 125000006608 n-octyloxy group Chemical group 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 description 1
- 125000000352 p-cymenyl group Chemical class C1(=C(C=C(C=C1)C)*)C(C)C 0.000 description 1
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- 125000000538 pentafluorophenyl group Chemical group FC1=C(F)C(F)=C(*)C(F)=C1F 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- ZNNZYHKDIALBAK-UHFFFAOYSA-M potassium thiocyanate Chemical compound [K+].[S-]C#N ZNNZYHKDIALBAK-UHFFFAOYSA-M 0.000 description 1
- 150000003248 quinolines Chemical class 0.000 description 1
- 150000003252 quinoxalines Chemical class 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 150000003283 rhodium Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- RHUVFRWZKMEWNS-UHFFFAOYSA-M silver thiocyanate Chemical compound [Ag+].[S-]C#N RHUVFRWZKMEWNS-UHFFFAOYSA-M 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- VGTPCRGMBIAPIM-UHFFFAOYSA-M sodium thiocyanate Chemical compound [Na+].[S-]C#N VGTPCRGMBIAPIM-UHFFFAOYSA-M 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 125000002088 tosyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C([H])([H])[H])S(*)(=O)=O 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- DIKBFYAXUHHXCS-OUBTZVSYSA-N tribromomethane Chemical group Br[13CH](Br)Br DIKBFYAXUHHXCS-OUBTZVSYSA-N 0.000 description 1
- 125000000025 triisopropylsilyl group Chemical group C(C)(C)[Si](C(C)C)(C(C)C)* 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B53/00—Asymmetric syntheses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/18—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
- B01J31/1805—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B31/00—Reduction in general
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C213/00—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
- C07C213/02—Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C217/00—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
- C07C217/78—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
- C07C217/80—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
- C07C217/82—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
- C07C217/84—Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C303/00—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
- C07C303/36—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids
- C07C303/40—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids by reactions not involving the formation of sulfonamide groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/15—Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings
- C07C311/16—Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the sulfonamide groups bound to hydrogen atoms or to an acyclic carbon atom
- C07C311/18—Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the sulfonamide groups bound to hydrogen atoms or to an acyclic carbon atom to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms, not being part of nitro or nitroso groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/04—Indoles; Hydrogenated indoles
- C07D209/08—Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/56—Ring systems containing three or more rings
- C07D209/80—[b, c]- or [b, d]-condensed
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/56—Ring systems containing three or more rings
- C07D209/80—[b, c]- or [b, d]-condensed
- C07D209/82—Carbazoles; Hydrogenated carbazoles
- C07D209/86—Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/56—Ring systems containing three or more rings
- C07D209/80—[b, c]- or [b, d]-condensed
- C07D209/94—[b, c]- or [b, d]-condensed containing carbocyclic rings other than six-membered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D215/00—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
- C07D215/02—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
- C07D215/04—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms
- C07D215/06—Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D241/00—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
- C07D241/36—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
- C07D241/38—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with only hydrogen or carbon atoms directly attached to the ring nitrogen atoms
- C07D241/40—Benzopyrazines
- C07D241/42—Benzopyrazines with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D265/00—Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
- C07D265/28—1,4-Oxazines; Hydrogenated 1,4-oxazines
- C07D265/34—1,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
- C07D265/36—1,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings condensed with one six-membered ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/0033—Iridium compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/0046—Ruthenium compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/60—Reduction reactions, e.g. hydrogenation
- B01J2231/64—Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
- B01J2231/641—Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/821—Ruthenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/827—Iridium
Definitions
- the present invention relates to a method for selectively producing an optically active compound important as a precursor for the synthesis of pharmaceuticals and functional materials using a ruthenium-diamine complex, an iridium-diamine complex, and a rhodium-diamine complex as a catalyst.
- An object of the present invention is to provide a method for producing an optically active compound using a catalyst for asymmetric reduction containing a metal complex having excellent catalytic activity and asymmetric yield in a hydrogenation reaction.
- the present inventors have found that specific ruthenium, iridium, and rhodium complexes have high catalytic activity in a reduction reaction using hydrogen gas as a hydrogen source, The present inventors have found that the asymmetric yield is excellent and have completed the present invention. That is, the present invention includes the following contents.
- a method for producing an optically active compound comprising a step of reducing an imino group of an imine compound or a step of reducing an unsaturated bond of a heterocyclic compound.
- R 1 represents an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 30 carbon atoms (the aryl group is an alkyl group having 1 to 10 carbon atoms, 1 carbon atom) -10 halogenated alkyl groups, and a group selected from (which may have one or more substituents selected from halogen atoms),
- R 2 and R 3 are each independently an alkyl group having 1 to 10 carbon atoms, a phenyl group (the phenyl group is an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a halogen atom).
- Y represents a hydrogen atom or a deuterium atom
- R 11 , R 12 , R 13 , R 14 , R 15 and R 16 each independently have 1 to 3 hydrogen atoms, alkyl groups having 1 to 10 carbon atoms and alkyl groups having 1 to 10 carbon atoms.
- R 22 is an alkyl group having 1 to 10 carbon atoms, a heteroaryl group having 4 to 10 carbon atoms, or 6 carbon atoms. It represents a group selected from the] an aryl group of ⁇ 10, Q - represents a counter anion.
- R 1 , R 2 , R 3 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 and Y are as defined above;
- A represents a group selected from a trifluoromethanesulfonyloxy group, a p-toluenesulfonyloxy group, a methanesulfonyloxy group, a benzenesulfonyloxy group, a hydrogen atom, a deuterium atom, and a halogen atom;
- j and k each represent 0 or 1, but j + k never becomes 1.
- a ruthenium complex represented by the general formula (1) (Where * Indicates an asymmetric carbon atom, R 1 represents an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 30 carbon atoms (the aryl group is an alkyl group having 1 to 10 carbon atoms, 1 carbon atom) -10 halogenated alkyl groups, and a group selected from (which may have one or more substituents selected from halogen atoms), R 2 and R 3 are each independently an alkyl group having 1 to 10 carbon atoms, a phenyl group (the phenyl group is an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a halogen atom).
- Y represents a hydrogen atom or a deuterium atom
- R 11 , R 12 , R 13 , R 14 , R 15 and R 16 each independently have 1 to 3 hydrogen atoms, alkyl groups having 1 to 10 carbon atoms and alkyl groups having 1 to 10 carbon atoms.
- R 22 is an alkyl group having 1 to 10 carbon atoms, a heteroaryl group having 4 to 10 carbon atoms, or 6 carbon atoms. Represents a group selected from Q ⁇ represents a counter anion.
- R 1 represents an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 30 carbon atoms (the aryl group is an alkyl group having 1 to 10 carbon atoms, 1 carbon atom) -10 halogenated alkyl groups, and a group selected from (which may have one or more substituents selected from halogen atoms)
- R 2 and R 3 are each independently an alkyl group having 1 to 10 carbon atoms, a phenyl group (the phenyl group is an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a halogen atom).
- Y represents a hydrogen atom or a deuterium atom
- M represents iridium or rhodium
- L represents a cyclopentadienyl or pentamethylcyclopentadienyl ligand
- Q ⁇ represents a counter anion.
- this invention relates also to the catalyst for asymmetric reduction containing the complex represented by General formula (1) or (4).
- an asymmetric reduction reaction (hydrogenation reaction) of an imine compound or a heterocyclic compound using hydrogen gas as a hydrogen source is performed by using a metal complex having a specific diamine compound as a ligand as a catalyst.
- the ruthenium complex, iridium complex, and rhodium complex of the present invention are described, for example, in J. Org. Am. Chem. Soc. RuOTf (Tsdpen) (p-cymene) and RuBF 4 (Tsdpen), which have been widely used in the reduction of unsaturated bonds of various C ⁇ N bonds or heterocyclic compounds.
- Tsdpen represents N- (p-toluenesulfonyl) -1,2-diphenylethylenediamine.
- R 1 represents an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 30 carbon atoms (the aryl group is an alkyl group having 1 to 10 carbon atoms).
- R 1 in the formula (1) is preferably an aryl group having 6 to 15 carbon atoms which is mono-substituted to tri-substituted with an alkyl group having 1 to 10 carbon atoms, and mono-substituted with an alkyl group having 1 to 3 carbon atoms. More preferred is a tri-substituted phenyl group.
- the alkyl group having 1 to 10 carbon atoms represented by R 1 in the formula (1) is preferably a linear or branched alkyl group having 1 to 5 carbon atoms.
- alkyl group having 1 to 10 carbon atoms include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, and n-pentyl.
- alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group.
- the halogenated alkyl group having 1 to 10 carbon atoms represented by R 1 in the formula (1) is a group in which one or a plurality of hydrogen atoms are substituted with a halogen atom in the above-described alkyl group having 1 to 10 carbon atoms. It is.
- the halogenated alkyl group having 1 to 10 carbon atoms is preferably a linear or branched halogenated alkyl group having 1 to 5 carbon atoms.
- Examples of the halogen atom include a chlorine atom, a bromine atom, and a fluorine atom.
- Specific examples of the halogenated alkyl group having 1 to 10 carbon atoms include a trifluoromethane group, a trichloromethane group, and a tribromomethane group.
- Examples of the aryl group having 6 to 30 carbon atoms represented by R 1 in formula (1) include an aromatic monocyclic group, aromatic polycyclic group or aromatic condensed cyclic group having 6 to 30 carbon atoms.
- An aromatic monocyclic group having 6 to 15 carbon atoms, an aromatic polycyclic group or an aromatic condensed cyclic group is preferable, and an aromatic monocyclic group having 6 to 12 carbon atoms is particularly preferable.
- Specific examples of the aryl group having 6 to 30 carbon atoms include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, an indenyl group, and the like, and a phenyl group is most preferable.
- the aryl group represented by R 1 in the formula (1) includes an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms, and one or more substituents selected from halogen atoms. You may have.
- the alkyl group and the halogenated alkyl group as a substituent can be selected from the groups defined as the alkyl group and the halogenated alkyl group represented by R 1 in the above formula (1). Particularly preferred is a 1-5 linear or branched alkyl group.
- the halogen atom include a chlorine atom, a bromine atom, and a fluorine atom.
- aryl group substituted with the substituent represented by R 1 in the formula (1) include a p-tolyl group, a 2,4,6-trimethylphenyl group, and 2,4,6-triisopropyl.
- a phenyl group, a 4-trifluoromethylphenyl group, a pentafluorophenyl group and the like can be mentioned.
- R 2 and R 3 are each independently an alkyl group having 1 to 10 carbon atoms, a phenyl group (the phenyl group is an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms) And optionally having one or more substituents selected from a halogen atom) and a cycloalkyl group having 3 to 8 carbon atoms (the cycloalkyl group is selected from alkyl groups having 1 to 10 carbon atoms) And a group selected from (which may have one or more substituents).
- R 2 and R 3 may be combined with the carbon atom to which they are bonded to form a ring, and preferably together with the carbon atom to which they are bonded.
- R 2 and R 3 in formula (1) are each independently selected from a phenyl group (however, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and a halogen atom) It may preferably have one or more substituents.
- the alkyl group having 1 to 10 carbon atoms represented by R 2 and R 3 in formula (1) can be selected from the groups defined as the alkyl group having 1 to 10 carbon atoms represented by R 1 .
- the phenyl group represented by R 2 and R 3 in the formula (1) is an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and one or more substituents selected from a halogen atom You may have.
- the said alkyl group as a substituent can be selected from the group defined as the alkyl group shown by R ⁇ 1 > of Formula (1) mentioned above.
- the alkoxy group having 1 to 10 carbon atoms as a substituent is preferably a linear or branched alkoxy group having 1 to 5 carbon atoms.
- alkoxy group examples include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, s-butoxy group, t-butoxy group, n-pentyloxy group, n- Examples include a hexyloxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, and n-decyloxy group.
- alkoxy group examples include a methoxy group, an ethoxy group, an n-propoxy group, and an isopropoxy group.
- N-butoxy group, isobutoxy group, s-butoxy group, t-butoxy group and n-pentyloxy group are preferable.
- the halogen atom as a substituent include a chlorine atom, a bromine atom, and a fluorine atom.
- Specific examples of the phenyl group substituted by the substituent represented by R 2 and R 3 in the formula (1) include 2,4,6-trimethylphenyl group, 4-methoxyphenyl group, 2,4, Examples include 6-trimethoxyphenyl group, 4-fluorophenyl group, 2-chlorophenyl group, 4-chlorophenyl group, 2,4-dichlorophenyl group, and the like.
- the cycloalkyl group having 3 to 8 carbon atoms represented by R 2 and R 3 in the formula (1) is preferably a monocyclic, polycyclic or bridged cycloalkyl group having 5 to 8 carbon atoms.
- a monocyclic cycloalkyl group having 5 to 7 carbon atoms is particularly preferable.
- Specific examples of the cycloalkyl group having 3 to 8 carbon atoms include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
- the cycloalkyl group represented by R 2 and R 3 in formula (1) may have a substituent selected from alkyl groups having 1 to 10 carbon atoms.
- substituents include a methyl group, an isopropyl group, and a t-butyl group.
- R 2 and R 3 in formula (1) together with the carbon atom to which they are attached form a cycloalkane R 2 and R 3 are taken together with the adjacent carbon atom , Preferably 4-8 membered, more preferably 5-8 membered cycloalkane ring.
- Preferred examples of the cycloalkane ring include a cyclopentane ring, a cyclohexane ring, and a cycloheptane ring.
- a hydrogen atom therein may be substituted with an alkyl group having 1 to 10 carbon atoms.
- Specific examples of the alkyl group as a substituent include a methyl group, an isopropyl group, and a t-butyl group.
- Y represents a hydrogen atom or a deuterium atom.
- R 11 , R 12 , R 13 , R 14 , R 15 , and R 16 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkyl group having 1 to 10 carbon atoms.
- a silyl group having 1 to 3 groups, an alkoxy group having 1 to 10 carbon atoms, and —C ( ⁇ O) —OR 22 [R 22 is an alkyl group having 1 to 10 carbon atoms, or 4 to 10 carbon atoms] Represents a heteroaryl group or an aryl group having 6 to 10 carbon atoms].
- R 11 , R 12 , R 13 , R 14 , R 15 , and R 16 are each independently selected from a hydrogen atom and an alkyl group having 1 to 10 carbon atoms. It is preferably selected from a hydrogen atom and an alkyl group having 1 to 5 carbon atoms, and particularly preferably selected from a hydrogen atom and an alkyl group having 1 to 3 carbon atoms.
- the alkyl group having 1 to 10 carbon atoms represented by R 11 , R 12 , R 13 , R 14 , R 15 and R 16 in the formula (1) is an alkyl group having 1 to 10 carbon atoms represented by R 1. But is preferably selected from methyl, ethyl, n-propyl and isopropyl groups.
- the silyl group having 1 to 3 alkyl groups having 1 to 10 carbon atoms represented by R 11 , R 12 , R 13 , R 14 , R 15 and R 16 in the formula (1) is an alkyl group having 1, 2 Alternatively, it is preferably a trisubstituted alkylsilyl group including a trisubstituted silyl group.
- the alkyl group can be selected from the groups defined as the alkyl group having 1 to 10 carbon atoms represented by R 1 , specifically, methyl group, ethyl group, n-propyl group, isopropyl group, Examples include n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group and n-decyl group. It is done.
- silyl group examples include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, and a triisopropylsilyl group.
- alkoxy group having 1 to 10 carbon atoms represented by R 11 , R 12 , R 13 , R 14 , R 15 , and R 16 in the formula (1) include the phenyl groups represented by R 2 and R 3 described above. It can be selected from alkoxy groups defined as substituents.
- the heteroaryl group having 4 to 10 carbon atoms is a monoaryl, polycyclic or condensed ring heteroaryl group containing at least one heteroatom and containing 4 to 3 heteroatoms.
- the aryl group having 6 to 10 carbon atoms may be in any form of an aromatic monocyclic group, an aromatic polycyclic group or an aromatic condensed cyclic group, and an aromatic monocyclic group having 6 to 8 carbon atoms. It is preferably a group.
- Examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, a t-butyl group, an n-pentyl group, an n-hexyl group, and a cyclohexyl group.
- Examples of the aryl group having 6 to 10 carbon atoms include a phenyl group.
- Q ⁇ represents a counter anion.
- Specific counter anions include BF 4 ⁇ , SbF 6 ⁇ , CF 3 COO ⁇ , CH 3 COO ⁇ , PF 6 ⁇ , NO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , OCN ⁇ , ReO 4 ⁇ and MoO 4.
- BF 4 ⁇ is preferable.
- ⁇ Ruthenium complex (complex represented by formula (2))> (In the formula, * represents an asymmetric carbon atom.)
- R 1 , R 2 , R 3 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 and Y are as defined above.
- A represents a group selected from a trifluoromethanesulfonyloxy group, a p-toluenesulfonyloxy group, a methanesulfonyloxy group, a benzenesulfonyloxy group, a hydrogen atom, a deuterium atom, and a halogen atom.
- the halogen atom include a chlorine atom, a bromine atom and an iodine atom.
- j and k each represent 0 or 1, but j + k never becomes 1.
- ⁇ Iridium or rhodium complex (complex represented by the general formula (3))> (In the formula, * represents an asymmetric carbon atom.)
- R 1 , R 2 , R 3 , A and Y are as defined above.
- M represents iridium or rhodium.
- L represents a Cp (cyclopentadienyl) or Cp * (pentamethylcyclopentadienyl) ligand.
- j and k each represent 0 or 1, but j + k never becomes 1.
- Examples of the ruthenium compound ([RuW 2 (arene)] 2 in Scheme 1) used as a starting material for the complex represented by the general formula (6) include [RuCl 2 (p-cymene)] 2 , [RuI 2 ( p-cymene)] 2 , [RuBr 2 (p-cymene)] 2 , [RuBr 2 (benzene)] 2 , [RuI 2 (benzene)] 2 , [RuCl 2 (benzene)] 2 , [RuBr 2 (mesitylene) )] 2 , [RuI 2 (mesitylene)] 2 , [RuCl 2 (mesitylene)] 2 , [RuCl 2 (mesitylene)] 2 , [RuCl 2 (hexamethylbenzene)] 2 , [RuI 2 (hexamethylbenzene)] 2 , [RuBr 2 (hexamethyl) Benzene)] 2 , [RuBr 2 (toluen
- TMS represents trimethylsilyl.
- the reaction between the diamine compound represented by the general formula (5) and the ruthenium compound in Scheme 1 is theoretically an equimolar amount reaction, but the diamine compound is compared with the ruthenium compound in terms of catalyst preparation speed. It is preferable to use a molar amount or more.
- tertiary organic amines such as trimethylamine, triethylamine, triisopropylamine, diisopropylethylamine are preferable, and triethylamine is particularly preferable. Is preferred.
- an inorganic base such as LiOH, NaOH, KOH, K 2 CO 3 ; or sodium methoxide, potassium methoxide, etc. It is preferable to use a metal alkoxide, and among these, it is particularly preferable to use strong bases such as NaOH and KOH. The amount of these bases added is preferably equimolar or more with respect to the ruthenium atom.
- the solvent used in Scheme 1 is not particularly limited, but ethers such as diethyl ether and tetrahydrofuran; alcohols such as methanol, ethanol and isopropanol; aromatic hydrocarbons such as toluene and xylene; acetonitrile, N, N-dimethyl
- ethers such as diethyl ether and tetrahydrofuran
- alcohols such as methanol, ethanol and isopropanol
- aromatic hydrocarbons such as toluene and xylene
- aprotic polar solvents such as formamide
- halogen solvents such as dichloromethane and chloroform.
- isopropanol and dichloromethane are preferable.
- the complex of the general formula (6) obtained in the scheme 1 is a ruthenium complex represented by the general formula (2) of the present invention, wherein j and k are 0, or j and k are 1, and A Corresponds to a complex in which is a halogen atom, and is a ruthenium complex of the present invention.
- the complex represented by the general formula (6) includes a ruthenium complex represented by the general formula (1) and a ruthenium complex represented by the general formula (2) in which j and k are 1 and A is other than a halogen atom. It becomes a precursor.
- the cationic ruthenium complex represented by the general formula (1) includes a ruthenium complex represented by the general formula (6) in which j and k are 1, and G It can be obtained by reacting with a metal salt represented by -Q.
- Examples of the metal G in GQ in Scheme 2 include silver (Ag), sodium (Na), potassium (K), lithium (Li), and the like.
- Examples of Q include alkanesulfonyloxy or arenesulfonyloxy such as trifluoromethanesulfonyloxy (TfO), p-toluenesulfonyloxy (TsO), methanesulfonyloxy (MsO), benzenesulfonyloxy (BsO), and BF 4 , SbF 6 , CF 3 COO, CH 3 COO, PF 6 , NO 3 , ClO 4 , SCN, OCN, ReO 4 , MoO 4 , BPh 4 , B (C 6 F 5 ) 4 , B ( 3 , 5- ( CF 3 ) 2 C 6 F 3 ) 4 and the like.
- Examples of metal salts represented by the G-Q is, AgOTf, AgOTs, AgOMs, AgOBs , AgBF 4, AgSbF 6, CF 3 COOAg, CH 3 COOAg, AgPF 6, AgNO 3, AgClO 4, AgSCN, AgOCN, AgReO 4, AgMoO 4, NaOTf, NaBF 4, NaSbF 6, CF 3 COONa, CH 3 COONa, NaPF 6, NaNO 3, NaClO 4, NaSCN, KOTf, KBF 4, KSbF 6, CF 3 COOK, CH 3 COOK, KPF 6 , KNO 3 , KClO 4 , KSCN, KBPh 4 , KB (C 6 F 5 ) 4 , KB (3,5- (CF 3 ) 2 C 6 F 3 ) 4 , LiOTf, LiBF 4 , LiSbF 6 , CF 3 COOLi, CH 3 COOLi, LiPF 6 , LiNO 3, LiClO 4, LiSCN, iBPh 4, Li
- the amount of the metal salt GQ used is equimolar or more with respect to the ruthenium atom.
- the solvent used is not particularly limited, but alcohols such as methanol, ethanol and isopropanol, aromatic hydrocarbons such as toluene and xylene, halogenated hydrocarbons such as dichloromethane and 1,2-dichloroethane, acetonitrile And aprotic polar solvents such as N, N-dimethylformamide and ethers such as diethyl ether and tetrahydrofuran. Among these, methanol and dichloromethane are preferred.
- One type of solvent may be used, or a plurality of solvents may be used in combination.
- Scheme 3 In the ruthenium complex represented by the general formula (2), j and k are 1, and A is a trifluoromethanesulfonyloxy group, a p-toluenesulfonyloxy group, a methanesulfonyloxy group, or a benzenesulfonyloxy group.
- the complex can be produced by the method represented by Scheme 3. *, R 1 , R 2 , R 3 , Y, W, R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , j and k in Scheme 3 are as defined above.
- a complex of general formula (2) can be prepared by adding an appropriate acid salt (GA) to a complex of general formula (6) wherein j and k are 1.
- the complex of the general formula (2) can be produced by adding an appropriate acid (AH) to the complex of the general formula (6) in which j and k are 0.
- G in the acid salt (GA) has the same meaning as the metal G described in Scheme 2.
- a in GA is a trifluoromethanesulfonyloxy (TfO) group, a p-toluenesulfonyloxy (TsO) group, a methanesulfonyloxy (MsO) group, or a benzenesulfonyloxy (BsO) group.
- a in the acid (AH) is a trifluoromethanesulfonyloxy (TfO) group, a p-toluenesulfonyloxy (TsO) group, a methanesulfonyloxy (MsO) group, or a benzenesulfonyloxy (BsO) group.
- TfO trifluoromethanesulfonyloxy
- TsO p-toluenesulfonyloxy
- MsO methanesulfonyloxy
- BsO benzenesulfonyloxy
- Examples of the iridium compound or rhodium compound ([MW 2 Cp * ] 2 or [MW 2 Cp] 2 in Scheme 4), which are starting materials for the complex represented by the general formula (7), include [IrCp * Cl 2 ] 2.
- the reaction of the diamine compound represented by the general formula (5) with the iridium compound or rhodium compound in Scheme 4 is theoretically an equimolar amount reaction, but the diamine compound is converted into iridium or rhodium from the viewpoint of catalyst preparation speed. It is preferable to use an equimolar amount or more with respect to the compound.
- a metal alkoxide it is particularly preferable to use strong bases such as NaOH and KOH.
- the amount of these bases added is preferably equimolar or more with respect to the ruthenium atom, iridium atom, or rhodium atom.
- the solvent used in Scheme 4 is not particularly limited, but ethers such as diethyl ether and tetrahydrofuran; alcohols such as methanol, ethanol and isopropanol; aromatic hydrocarbons such as toluene and xylene; acetonitrile, N, N-dimethyl
- ethers such as diethyl ether and tetrahydrofuran
- alcohols such as methanol, ethanol and isopropanol
- aromatic hydrocarbons such as toluene and xylene
- aprotic polar solvents such as formamide
- halogen solvents such as dichloromethane and chloroform.
- isopropanol and dichloromethane are preferable.
- the complex of the general formula (7) obtained in the scheme 4 is a rhodium or iridium complex represented by the general formula (3) of the present invention, wherein j and k are 0, or j and k are 1, And it corresponds to the complex in which A is a halogen atom, and is the rhodium or iridium complex of the present invention.
- the complex of the general formula (7) is represented by the rhodium or iridium complex represented by the general formula (4), and the general formula (3) except that j and k are 1 and A is other than a halogen atom. It becomes a precursor of rhodium or iridium complex.
- the cationic iridium complex or rhodium complex represented by the general formula (4) includes an iridium complex or rhodium complex represented by the general formula (7) in which j and k are 1, and a metal represented by GQ. It can be obtained by reacting with a salt.
- GQ in Scheme 5 is as defined in Scheme 2.
- the amount of the metal salt GQ used is equimolar or more with respect to the iridium atom or rhodium atom.
- the same solvent as in scheme 2 can be used.
- Scheme 6 In the iridium complex or rhodium complex represented by the general formula (3), j and k are 1, and A is a trifluoromethanesulfonyloxy group, a p-toluenesulfonyloxy group, a methanesulfonyloxy group, or a benzenesulfonyloxy group.
- A is a trifluoromethanesulfonyloxy group, a p-toluenesulfonyloxy group, a methanesulfonyloxy group, or a benzenesulfonyloxy group.
- a complex of general formula (3) can be prepared by adding an appropriate acid salt (GA) to a complex of general formula (7) wherein j and k are
- the complex of the general formula (3) can be produced by adding an appropriate acid (AH) to the complex of the general formula (7) in which j and k are 0.
- G in the acid salt (GA) has the same meaning as the metal G described in Scheme 2.
- a in GA and A in acid (AH) are as defined in Scheme 3.
- the same solvent as in Scheme 5 can be used as the solvent in Scheme 6.
- the target ruthenium complex, iridium complex, or rhodium complex can be separated by a general crystallization method such as concentration of the reaction solution or addition of a poor solvent.
- a general crystallization method such as concentration of the reaction solution or addition of a poor solvent.
- an operation of washing with water may be performed as necessary.
- the complex represented by the general formula (1), (2), (3) or (4) of the present invention thus obtained can be used as a catalyst in the asymmetric reduction reaction of the present invention.
- the ruthenium complex represented by the general formula (1) or (2) of the present invention, or the iridium complex or rhodium complex represented by the general formula (3) or (4) was isolated.
- the reaction may be carried out using the product as a catalyst, or the reaction may be carried out without isolating the complex by using the reaction solution for preparing the complex as it is (in situ method).
- the ruthenium complex represented by the general formula (2) and the iridium complex or rhodium complex represented by the general formula (3), wherein A is other than a hydrogen atom by contacting with hydrogen gas, It can be easily converted into a complex in which A in the general formula is a hydrogen atom.
- the amount used may be an equimolar amount or more with respect to the complex of the general formula (2) or the general formula (3) in terms of hydride.
- the conversion of A in the complex of the present invention to a hydrogen atom may be performed in advance before being subjected to an asymmetric reduction reaction, or may be performed in an asymmetric reduction reaction system.
- the reduction reaction of the imine compound or heterocyclic compound in the production method of the present invention is an asymmetric reduction reaction, specifically, an asymmetric hydrogenation reaction using hydrogen gas as a hydrogen donor. And by using hydrogen gas as a hydrogen donor, the reduction efficiency and optical purity of imine compound or heterocyclic compound which cannot be predicted can be achieved.
- the imine compound is not particularly limited as long as it is a compound having an imino group.
- the heterocyclic compound include heterocyclic compounds containing one or more nitrogen, oxygen, sulfur and the like as a hetero atom. Among these, it is preferable to produce an optically active amine by reducing an unsaturated bond of a ring of a heterocyclic compound containing at least one nitrogen as a hetero atom.
- Specific examples of the optically active compound in the present invention include an optically active amine obtained by reducing an imino group of an imine compound, an optically active amine obtained by reducing a quinoline derivative, a quinoxaline derivative, an indole derivative, or the like.
- a base may be further used.
- the base include tertiary organic amines such as trimethylamine, triethylamine, and triisopropylamine; inorganic bases such as LiOH, NaOH, KOH, and K 2 CO 3 ; or metal alkoxides such as sodium methoxide and potassium methoxide. It is done.
- alcohols such as methanol, ethanol, 2-propanol, tert-butyl alcohol, trifluoroethanol, hexafluoroisopropanol, toluene, tetrahydrofuran, 2-methyltetrahydrofuran
- aprotic solvent such as acetonitrile or acetone, or a halogen solvent such as dichloromethane or chloroform is used.
- the amount of the complex represented by the general formulas (1) to (4) used as a catalyst is determined by the molar ratio of the substrate (ie, imine compound or heterocyclic compound) (S) to the ruthenium, iridium, or rhodium metal atom (C).
- S / C is selected from the range of 10 to 1000000, preferably 50 to 15000.
- the reaction temperature is selected from the range of ⁇ 20 to 100 ° C., preferably 0 to 70 ° C.
- the reaction pressure with hydrogen gas is usually 10 MPa or less, preferably 0.1 to 5 MPa. While the reaction time varies depending on the catalyst ratio, it is 1 to 100 hours, usually 2 to 50 hours.
- the produced optically active substance can be separated and purified by general operations such as distillation, extraction, chromatography, and recrystallization.
- NMR spectra used for complex identification and purity determination in the following examples and the like were measured with a Mercury Plus 300 4N type apparatus manufactured by Varian Technology Japan Limited or a Bruker BioSpin Avance III 500 System.
- Chirasil-DEX CB (0.25 mm ⁇ 25 m, 0.25 ⁇ m) (Varian) or HP-1 (0.32 mm ⁇ 30 m, 0.25 ⁇ m) (Agilent Technology) was used. .
- YMC-Pack Pro C18 250 ⁇ 4.6 mm, 5 ⁇ m, 12 nm
- CHIRALCEL OD-H 250 ⁇ 4.6 mm
- MS measurement JMS-T100GCV manufactured by JEOL Ltd. or LCMS-IT-TOF manufactured by Shimadzu Corporation was used.
- HFIP hexafluoroisopropanol
- Ts tosyl Ph: phenyl Me: methyl
- p-cymene p-isopropyltoluene
- DPEN 1,2-diphenylethylenediamine
- Ms mesyl RuBF 4 ((R , R) -Tsdpen) (p-cymene): RuOTf ((R, R) -Tsdpen) (p-cymene):
- RuBF 4 is a ruthenium complex of the present invention by concentrating the filtrate by an evaporator dried under reduced pressure ((R, R) 1.05 g (99% yield) of -N-Me-Tsdpen) (p-cymene) was obtained.
- Example 1 The results of Example 1 and Comparative Example 1 are summarized as follows.
- the RuBF 4 ((R, R) -N-Me-Tsdpen) (p-cymene) complex of the present invention is different from the RuBF 4 (Tsdpen) (p-cymene) complex used conventionally.
- the same amount of catalyst is compared, it can be seen that both the optical purity and the conversion rate are improved, and the activity and selectivity are high.
- Example 2 The results of Example 2 and Comparative Example 2 are summarized as follows.
- the RuOTf ((R, R) -N-Me-Tsdpen) (p-cymene) complex of the present invention is different from the RuOTf (Tsdpen) (p-cymene) complex used in the past in the same catalyst.
- the amount is compared, it can be seen that both the optical purity and the conversion rate are improved, and the activity and selectivity are high.
- Example 3 The results of Example 3 and Comparative Example 3 are summarized as follows.
- the RuOTf ((R, R) -N-Me-Tsdpen) (p-cymene) complex of the present invention is different from the RuOTf (Tsdpen) (p-cymene) complex used in the past in the same catalyst.
- the amount is compared, it can be seen that both the optical purity and the conversion rate are improved, and the activity and selectivity are high.
- Example 4 The results of Example 4 and Comparative Example 4 are summarized as follows.
- the RuBF 4 ((R, R) -N-Me-Tsdpen) (p-cymene) complex of the present invention is different from the RuBF 4 (Tsdpen) (p-cymene) complex used conventionally.
- the same amount of catalyst is compared, it can be seen that both the optical purity and the conversion rate are improved, and the activity and selectivity are high.
- Example 5 The results of Example 5 and Comparative Example 5 are summarized as follows.
- the RuOTf ((R, R) -N-Me-Tsdpen) (p-cymene) complex of the present invention is different from the RuOTf (Tsdpen) (p-cymene) complex used in the past in the same catalyst.
- the amount is compared, it can be seen that both the optical purity and the conversion rate are improved, and the activity and selectivity are high.
- Example 6 The results of Example 6 and Comparative Example 6 are summarized as follows.
- the RuOTf ((R, R) -N-Me-Tsdpen) (p-cymene) complex of the present invention is different from the RuOTf (Tsdpen) (p-cymene) complex used in the past in the same catalyst.
- the amount is compared, it can be seen that both the optical purity and the conversion rate are improved, and the activity and selectivity are high.
- Example 7 The results of Example 7 and Comparative Example 7 are summarized as follows.
- the RuBF 4 ((R, R) -N-Me-Tsdpen) (p-cymene) complex of the present invention is different from the RuBF 4 (Tsdpen) (p-cymene) complex used conventionally.
- the same amount of catalyst is compared, it can be seen that both the optical purity and the conversion rate are improved, and the activity and selectivity are high.
- Example 8 The results of Example 8 and Comparative Example 8 are summarized as follows.
- the RuBF 4 ((R, R) -N-Me-Tsdpen) (p-cymene) complex of the present invention is different from the RuBF 4 (Tsdpen) (p-cymene) complex used conventionally.
- the same amount of catalyst is compared, it can be seen that both the optical purity and the conversion rate are improved, and the activity and selectivity are high.
- Example 9 Comparative Example 9
- the RuBF 4 ((R, R) -N-Me-Tsdpen) (p-cymene) complex of the present invention is different from the RuBF 4 (Tsdpen) (p-cymene) complex used conventionally.
- the same amount of catalyst is compared, it can be seen that both the optical purity and the conversion rate are improved, and the activity and selectivity are high.
- Example 10 Comparative Example 10
- RuBF 4 ((R, R) -N-Me-Tsdpen) (p-cymene) complex of the present invention is different from the RuBF 4 (Tsdpen) (p-cymene) complex used conventionally.
- the same amount of catalyst is compared, it can be seen that both the optical purity and the conversion rate are improved, and the activity and selectivity are high.
- Example 11 The results of Example 11 and Comparative Example 11 are summarized as follows.
- the RuBF 4 ((R, R) -N-Me-Tsdpen) (p-cymene) complex of the present invention is different from the RuBF 4 (Tsdpen) (p-cymene) complex used conventionally.
- the same amount of catalyst is compared, it can be seen that both the optical purity and the conversion rate are improved, and the activity and selectivity are high.
- Example 12 The results of Example 12 and Comparative Example 12 are summarized as follows.
- the RuBF 4 ((R, R) -N-Me-Tsdpen) (p-cymene) complex of the present invention is different from the RuBF 4 (Tsdpen) (p-cymene) complex used conventionally.
- a comparison with the same amount of catalyst shows that the optical purity is improved and the selectivity is high.
- the RuBF 4 ((R, R) -N-Me-Tsdpen) (p-cymene) of the present invention is used to represent a typical hydrogen transfer reaction using formic acid as a hydrogen source, which has been widely used. It can be seen that even when 2-methylquinoline is reduced under typical reaction conditions, both the conversion and the optical purity are significantly reduced as compared with the hydrogenation reaction using hydrogen gas as a hydrogen source as in Example 1. This shows that a reduction method using hydrogen gas as a hydrogen source using the catalyst of the present invention is very effective.
- the reaction did not proceed at all.
- the RuBF 4 ((R, R) -N-Me-Tsdpen) (p-cymene) of the present invention is used to represent a typical hydrogen transfer reaction using formic acid as a hydrogen source, which has been widely used. Under normal reaction conditions, the reaction did not proceed even when 2-methylindole was reduced.
- a hydrogenation reaction using hydrogen gas as a hydrogen source as in Example 4 a high conversion and optical purity can be obtained, so a reduction method using hydrogen gas as a hydrogen source using the catalyst of the present invention is very much. It turns out that it is effective.
- the RuBF 4 ((R, R) -N-Me-Tsdpen) (p-cymene) of the present invention is used to represent a typical hydrogen transfer reaction using formic acid as a hydrogen source, which has been widely used. It can be seen that even when 2-methylquinoxaline is reduced under typical reaction conditions, the conversion rate is significantly reduced as compared to the hydrogenation reaction using hydrogen gas as a hydrogen source as in Example 7. This shows that a reduction method using hydrogen gas as a hydrogen source using the catalyst of the present invention is very effective.
- the RuBF 4 ((R, R) -N-Me-Tsdpen) (p-cymene) of the present invention is used to represent a typical hydrogen transfer reaction using formic acid as a hydrogen source, which has been widely used. Even if 2,3,3-trimethylindolenine is reduced under typical reaction conditions, excellent conversion and optical purity cannot be obtained, and hydrogen gas as in Examples 8, 9, and 10 is used as the hydrogen source. It can be seen that both the conversion rate and the optical purity are significantly reduced as compared with the hydrogenation reaction. This shows that a reduction method using hydrogen gas as a hydrogen source using the catalyst of the present invention is very effective.
- Example 23 Hydrogenation reaction of 2-methylindole by iridium complex (Cp * IrBF 4 ((R, R) -N-Me-Tsdpen)) (asymmetric reduction reaction of the present invention)
- conversion and optical purity were confirmed by GC analysis, 99.3% conv. (Conversion rate), which was 94.4% ee (optical purity).
- the Cp * IrBF 4 ((R, R) -Tsdpen) complex of the present invention is When the same amount of catalyst is compared, it can be seen that both the optical purity and the conversion rate are improved, and the activity and selectivity are high.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
- Indole Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
しかし、これらの錯体を用いる従来の不斉合成方法においては、対象とする反応基質によって触媒活性または不斉収率が不十分な場合があり、さらなる錯体の開発が望まれている。ジアミン部位の一方の窒素原子をメチル化された錯体はWills等により報告されているが、反応は水素移動反応に限定しており、しかもルテニウムに配位している元素はハロゲンである(Organic Letters (2009) vol.11, No.4, p 847を参照のこと)。
すなわち、本発明は以下の内容を含むものである。
イミン化合物のイミノ基を還元する工程、または、複素環化合物の不飽和結合を還元する工程を含む、光学活性化合物の製造方法。
*は、不斉炭素原子を示し、
R1は、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、および、炭素数6~30のアリール基(アリール基は炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、および、ハロゲン原子から選択される1以上の置換基を有していてもよい)から選択される基を示し、
R2およびR3は、それぞれ独立して、炭素数1~10のアルキル基、フェニル基(フェニル基は炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、および、ハロゲン原子から選択される1以上の置換基を有していてもよい)、および、炭素数3~8のシクロアルキル基(シクロアルキル基は炭素数1~10のアルキル基から選択される1以上の置換基を有していてもよい)から選択される基を示すか、または、これらが結合している炭素原子と一緒になって環を形成し、
Yは、水素原子または重水素原子を示し、
R11、R12、R13、R14、R15およびR16は、それぞれ独立して、水素原子、炭素数1~10のアルキル基、炭素数1~10のアルキル基を1~3個有するシリル基、炭素数1~10のアルコキシ基、および、-C(=O)-OR22[R22は、炭素数1~10のアルキル基、炭素数4~10のヘテロアリール基または炭素数6~10のアリール基を示す]から選択される基を示し、Q-は、カウンターアニオンを示す。)
*は、不斉炭素原子を示し、
R1、R2、R3、R11、R12、R13、R14、R15、R16およびYは上記で定義した通りであり、
Aは、トリフルオロメタンスルホニルオキシ基、p-トルエンスルホニルオキシ基、メタンスルホニルオキシ基、ベンゼンスルホニルオキシ基、水素原子、重水素原子、および、ハロゲン原子から選択される基を示し、
jおよびkは、それぞれ0または1を示すが、j+kが1になることはない。)
*は、不斉炭素原子を示し、
R1、R2、R3、AおよびYは、上記で定義した通りであり、
Mは、イリジウムまたはロジウムを示し、
Lは、シクロペンタジエニルまたはペンタメチルシクロペンタジエニル配位子を示し、
jおよびkは、それぞれ0または1を示すが、j+kが1になることはない。)
*は、不斉炭素原子を示し、
R1、R2、R3、Y、M、LおよびQ-は、上記で定義した通りである。)
*は、不斉炭素原子を示し、
R1は、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、および、炭素数6~30のアリール基(アリール基は炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、および、ハロゲン原子から選択される1以上の置換基を有していてもよい)から選択される基を示し、
R2およびR3は、それぞれ独立して、炭素数1~10のアルキル基、フェニル基(フェニル基は炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、および、ハロゲン原子から選択される1以上の置換基を有していてもよい)、および、炭素数3~8のシクロアルキル基(シクロアルキル基は炭素数1~10のアルキル基から選択される1以上の置換基を有していてもよい)から選択される基を示すか、または、これらが結合している炭素原子と一緒になって環を形成し、
Yは、水素原子または重水素原子を示し、
R11、R12、R13、R14、R15およびR16は、それぞれ独立して、水素原子、炭素数1~10のアルキル基、炭素数1~10のアルキル基を1~3個有するシリル基、炭素数1~10のアルコキシ基、および、-C(=O)-OR22[R22は、炭素数1~10のアルキル基、炭素数4~10のヘテロアリール基または炭素数6~10のアリール基を示す]から選択される基を示し、
Q-は、カウンターアニオンを示す。)
*は、不斉炭素原子を示し、
R1は、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、および、炭素数6~30のアリール基(アリール基は炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、および、ハロゲン原子から選択される1以上の置換基を有していてもよい)から選択される基を示し、
R2およびR3は、それぞれ独立して、炭素数1~10のアルキル基、フェニル基(フェニル基は炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、および、ハロゲン原子から選択される1以上の置換基を有していてもよい)、および、炭素数3~8のシクロアルキル基(シクロアルキル基は炭素数1~10のアルキル基から選択される1以上の置換基を有していてもよい)から選択される基を示すか、または、これらが結合している炭素原子と一緒になって環を形成し、
Yは、水素原子または重水素原子を示し、
Mは、イリジウムまたはロジウムを示し、
Lは、シクロペンタジエニルまたはペンタメチルシクロペンタジエニル配位子を示し、
Q-は、カウンターアニオンを示す。)
また、本発明は、一般式(1)又は(4)で表される錯体を含む不斉還元用触媒にも関する。
本発明のルテニウム錯体、イリジウム錯体、およびロジウム錯体は、例えばJ.Am.Chem.Soc.,2006,128,p8724などで報告され、現在まで様々なC=N結合または複素環化合物の不飽和結合の還元において広く用いられているRuOTf(Tsdpen)(p-シメン)やRuBF4(Tsdpen)(p-シメン)錯体などの従来型の錯体に比べ、同様の基質を用いた水素ガスを水素源とする還元反応において、高い活性・選択性を示し、不斉還元用触媒として有用である。なお、TsdpenはN-(p-トルエンスルホニル)-1,2-ジフェニルエチレンジアミンを表す。
本発明のルテニウム錯体、イリジウム錯体、またはロジウム錯体を用いて還元反応を行うことにより、医薬品および機能性材料の製造原料などとして有用な光学活性化合物を選択的に製造することができる。
式(1)中、R1は、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、および炭素数6~30のアリール基(アリール基は炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、および、ハロゲン原子から選択される1以上の置換基を有していてもよい)から選択される基を示す。式(1)中のR1としては、炭素数1~10のアルキル基で一置換~三置換されている炭素数6~15のアリール基が好ましく、炭素数1~3のアルキル基で一置換~三置換されているフェニル基がより好ましい。
式(1)のR1で示される炭素数1~10のアルキル基としては、炭素数1~5の直鎖または分岐のアルキル基であることが好ましい。具体的な炭素数1~10のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基およびn-デシル基等が挙げられ、当該アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基およびn-ペンチル基であることが好ましい。
式(1)のR1で示される炭素数1~10のハロゲン化アルキル基としては、上記説明した炭素数1~10のアルキル基において、1または複数の水素原子がハロゲン原子で置換された基である。当該炭素数1~10のハロゲン化アルキル基としては、炭素数1~5の直鎖または分岐のハロゲン化アルキル基が好ましい。ハロゲン原子としては、例えば塩素原子、臭素原子、フッ素原子等が挙げられる。具体的な炭素数1~10のハロゲン化アルキル基としては、例えばトリフルオロメタン基、トリクロロメタン基、トリブロモメタン基等が挙げられる。
また、式(1)のR1で示されるアリール基は、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、および、ハロゲン原子から選択される1以上の置換基を有していてもよい。
置換基としての当該アルキル基およびハロゲン化アルキル基は、上述した式(1)のR1で示されるアルキル基およびハロゲン化アルキル基として定義された基から選択することができるが、その中でも炭素数1~5の直鎖または分岐のアルキル基であることが特に好ましい。当該ハロゲン原子としては、例えば塩素原子、臭素原子、フッ素原子等が挙げられる。
式(1)のR1で示される、具体的な当該置換基で置換されたアリール基としては、例えばp-トリル基、2,4,6-トリメチルフェニル基、2,4,6-トリイソプロピルフェニル基、4-トリフルオロメチルフェニル基、ペンタフルオロフェニル基等が挙げられる。
式(1)のR2およびR3で示される炭素数1~10のアルキル基としては、R1で表される炭素数1~10のアルキル基として定義された基から選択することができる。
置換基としての当該アルキル基は、上述した式(1)のR1で示されるアルキル基として定義された基から選択することができる。
置換基としての炭素数1~10のアルコキシ基としては、炭素数1~5の直鎖または分岐のアルコキシ基であることが好ましい。具体的なアルコキシ基としては、例えばメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基およびn-デシルオキシ基等が挙げられ、当該アルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基、n-ペンチルオキシ基であることが好ましい。
置換基としてのハロゲン原子としては、例えば塩素原子、臭素原子、フッ素原子等が挙げられる。
式(1)のR2およびR3で示される、具体的な当該置換基で置換されたフェニル基としては、例えば2,4,6-トリメチルフェニル基、4-メトキシフェニル基、2,4,6-トリメトキシフェニル基、4-フルオロフェニル基、2-クロロフェニル基、4-クロロフェニル基、2,4-ジクロロフェニル基等が挙げられる。
式(1)のR2およびR3で示される当該シクロアルキル基は、炭素数1~10のアルキル基から選択される置換基を有していてもよい。置換基としての具体的な当該アルキル基としては、例えばメチル基、イソプロピル基、t-ブチル基等が挙げられる。
式(1)のR11、R12、R13、R14、R15、およびR16で示される炭素数1~10のアルキル基を1~3個有するシリル基は、アルキル基で1、2または3置換されたシリル基を含み、3置換アルキルシリル基であることが好ましい。当該アルキル基は、R1で示される炭素数1~10のアルキル基として定義された基から選択でき、具体的には、具体的にはメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基およびn-デシル基等が挙げられる。当該シリル基の具体的な例としては、例えば、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基などが挙げられる。
式(1)のR11、R12、R13、R14、R15、およびR16で示される炭素数1~10のアルコキシ基としては、上述したR2およびR3で示されるフェニル基の置換基として定義されたアルコキシ基から選択することができる。
式(1)のR11、R12、R13、R14、R15、およびR16で示される-C(=O)-OR22におけるR22は、炭素数1~10のアルキル基、炭素数4~10のヘテロアリール基または炭素数6~10のアリール基を示し、炭素数1~10のアルキル基は直鎖、分岐、および環状のいずれの形態であってもよく、炭素数1~6の直鎖のアルキル基であることが好ましい。炭素数4~10のヘテロアリール基は、ヘテロ原子を少なくとも1個含んでいる、単環、多環または縮合環式等のヘテロアリール基であり、ヘテロ原子を1~3個含んでいる4~8員環の単環のヘテロアリール基であることが好ましく、ヘテロ原子としては窒素原子、酸素原子、硫黄原子等が挙げられる。炭素数6~10のアリール基は芳香族単環式基、芳香族多環式基および芳香族縮合環式基のいずれの形態であってもよく、炭素数6~8の芳香族単環式基であることが好ましい。当該炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基等が挙げられ、炭素数6~10のアリール基としては、フェニル基等が挙げられる。
式(2)中、R1、R2、R3、R11、R12、R13、R14、R15、R16およびYは、上記で定義した通りである。
式(2)中、Aは、トリフルオロメタンスルホニルオキシ基、p-トルエンスルホニルオキシ基、メタンスルホニルオキシ基、ベンゼンスルホニルオキシ基、水素原子、重水素原子、および、ハロゲン原子から選択される基を示す。
ハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
式(2)中、jおよびkは、それぞれ0または1を示すが、j+kが1になることはない。
式(3)中、R1、R2、R3、AおよびYは、上記で定義した通りである。
式(3)中、Mは、イリジウムまたはロジウムを表す。
式(3)中、LはCp(シクロペンタジエニル)またはCp*(ペンタメチルシクロペンタジエニル)配位子を表す。
式(3)中、jおよびkはそれぞれ0または1を示すが、j+kが1になることはない。
式(4)中、R1、R2、R3、Y、M、LおよびQ-は、上記で定義した通りである。
また、一般式(1)~(4)の錯体は、例えば、以下のスキーム1~6に表される方法によって製造することができる。
まず、スキーム1~3に基づいて、一般式(1)および(2)で表されるルテニウム錯体の製造方法について説明する。
なお、TMSはトリメチルシリルを表す。
スキーム1における、一般式(5)で表されるジアミン化合物とルテニウム化合物との反応は、理論的には等モル量反応であるが、触媒調製速度の点からジアミン化合物をルテニウム化合物に対して等モル量以上用いるのが好ましい。
一般式(6)の錯体の錯体において、jおよびkが1である錯体を調製する場合には、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、ジイソプロピルエチルアミンなどの第3級有機アミン類が好ましく、特にトリエチルアミンが好適である。
一般式(6)の錯体において、jおよびkが0である錯体を合成する場合には、LiOH、NaOH、KOH、K2CO3などの無機塩基;または、ナトリウムメトキシド、カリウムメトキシド等の金属アルコキシドを用いることが好ましく、これらのうち、強塩基であるNaOH、KOHなどを用いることが特に好適である。
これらの塩基の添加量は、ルテニウム原子に対して等モル以上が好ましい。
当該G-Qで表される金属塩の例としては、AgOTf、AgOTs、AgOMs、AgOBs、AgBF4、AgSbF6、CF3COOAg、CH3COOAg、AgPF6、AgNO3、AgClO4、AgSCN、AgOCN、AgReO4、AgMoO4、NaOTf、NaBF4、NaSbF6、CF3COONa、CH3COONa、NaPF6、NaNO3、NaClO4、NaSCN、KOTf、KBF4、KSbF6、CF3COOK、CH3COOK、KPF6、KNO3、KClO4、KSCN、KBPh4、KB(C6F5)4、KB(3,5-(CF3)2C6F3)4、LiOTf、LiBF4、LiSbF6、CF3COOLi、CH3COOLi、LiPF6、LiNO3、LiClO4、LiSCN、LiBPh4、LiB(C6F5)4、LiB(3,5-(CF3)2C6F3)4などが挙げられる。
また、スキーム2において、用いられる溶媒としては特に限定されないが、メタノール、エタノール、イソプロパノール等のアルコール、トルエン、キシレン等の芳香族炭化水素、ジクロロメタン、1,2-ジクロロエタンなどのハロゲン化炭化水素、アセトニトリル、N,N-ジメチルホルムアミド等の非プロトン性極性溶媒、ジエチルエーテル、テトラヒドロフラン等のエーテル等が挙げられ、これらの中でもメタノールやジクロロメタンが好ましい。溶媒は、1種類を使用してもよいし、複数を混合して使用してもよい。
一般式(2)で表されるルテニウム錯体において、jおよびkが1であり、かつ、Aがトリフルオロメタンスルホニルオキシ基、p-トルエンスルホニルオキシ基、メタンスルホニルオキシ基、またはベンゼンスルホニルオキシ基である錯体は、スキーム3で表される方法により製造することができる。
スキーム3に示されるように、jおよびkが1である一般式(6)の錯体に、適切な酸の塩(GA)を加えることにより一般式(2)の錯体を製造することができる。または、jおよびkが0である一般式(6)の錯体に、適切な酸(AH)を加えることにより一般式(2)の錯体を製造することができる。
GAにおけるAは、トリフルオロメタンスルホニルオキシ(TfO)基、p-トルエンスルホニルオキシ(TsO)基、メタンスルホニルオキシ(MsO)基、またはベンゼンスルホニルオキシ(BsO)基である。
酸(AH)のAは、トリフルオロメタンスルホニルオキシ(TfO)基、p-トルエンスルホニルオキシ(TsO)基、メタンスルホニルオキシ(MsO)基、またはベンゼンスルホニルオキシ(BsO)基である。
スキーム3における溶媒は、スキーム2と同じものを使用できる。
次に、スキーム4~6に基づいて、一般式(3)および(4)で表される錯体の製造方法について説明する。
スキーム4における、一般式(5)で表されるジアミン化合物とイリジウム化合物またはロジウム化合物との反応は、理論的には等モル量反応であるが、触媒調製速度の点からジアミン化合物をイリジウムまたはロジウム化合物に対して等モル量以上用いるのが好ましい。
一般式(7)の錯体において、jおよびkが1である錯体を調製する場合には、トリメチルアミン、トリエチルアミン、トリイソプロピルアミン、ジイソプロピルエチルアミンなどの第3級有機アミン類が好ましく、特にトリエチルアミンが好適である。
一般式(7)の錯体において、jおよびkが0である錯体を合成する場合には、LiOH、NaOH、KOH、K2CO3などの無機塩基;または、ナトリウムメトキシド、カリウムメトキシド等の金属アルコキシドを用いることが好ましく、これらのうち、強塩基であるNaOH、KOHなどを用いることが特に好適である。
これらの塩基の添加量は、ルテニウム原子、イリジウム原子、またはロジウム原子に対して等モル以上が好ましい。
スキーム4で得られた一般式(7)の錯体は、本発明の一般式(3)で表されるロジウムまたはイリジウム錯体において、jおよびkが0の錯体、または、jおよびkが1で、かつAがハロゲン原子である錯体に相当し、本発明のロジウムまたはイリジウム錯体である。また、一般式(7)の錯体は、一般式(4)で表されるロジウムまたはイリジウム錯体、および、jおよびkが1で、かつAがハロゲン原子以外の一般式(3)で表されるロジウムまたはイリジウム錯体の前駆体となる。
スキーム5における、G-Qは、スキーム2において定義した通りである。
スキーム5において、用いられる金属塩G-Qの量はイリジウム原子またはロジウム原子に対して等モル以上である。
また、スキーム5において、溶媒はスキーム2と同じものを使用できる。
一般式(3)で表されるイリジウム錯体またはロジウム錯体において、jおよびkが1であり、かつAがトリフルオロメタンスルホニルオキシ基、p-トルエンスルホニルオキシ基、メタンスルホニルオキシ基、またはベンゼンスルホニルオキシ基である錯体は、スキーム6で表される方法により製造することができる。
スキーム6に示されるように、jおよびkが1である一般式(7)の錯体に、適切な酸の塩(GA)を加えることにより一般式(3)の錯体を製造することができる。または、jおよびkが0である一般式(7)の錯体に、適切な酸(AH)を加えることにより一般式(3)の錯体を製造することができる。
酸の塩(GA)におけるGは、スキーム2で説明した金属Gと同義である。
GAにおけるAおよび酸(AH)のAは、スキーム3で定義した通りである。
スキーム6における溶媒は、スキーム5と同じものを使用できる。
また、上記の錯体の調製において、ハロゲン化水素塩が副生する場合には、必要に応じて水洗の操作を行ってもよい。
なお、不斉還元反応は、本発明の一般式(1)または(2)で表されるルテニウム錯体、または一般式(3)または(4)で表されるイリジウム錯体またはロジウム錯体を単離したものを触媒として用いて反応を行ってもよいし、錯体調製の反応液をそのまま用いることで錯体を単離せずに反応を行ってもよい(in situ法)。
その使用量としては、ヒドリド換算で一般式(2)または一般式(3)の錯体に対して等モル量以上であればよい。
また、本発明の錯体中のAの水素原子への変換は、不斉還元反応に供する前に予め行っておいてもよいし、不斉還元反応系中で行ってもよい。
本発明の光学活性化合物の製造方法においては、上述したルテニウム錯体、イリジウム錯体またはロジウム錯体を触媒として用い、かつ、水素供与体としての水素ガスの存在下で、イミン化合物のイミノ基を還元する工程、または、複素環化合物の環の不飽和結合を還元する工程を含む。
本発明の製造方法におけるイミン化合物又は複素環化合物の還元反応は、不斉還元反応であり、具体的には水素供与体として水素ガスを用いた不斉水素化反応である。そして、水素供与体として水素ガスを用いることで、予測し得ないほどのイミン化合物又は複素環化合物の高い還元効率および光学純度を達成することができる。
当該イミン化合物は、イミノ基を有する化合物であれば特に限定されない。
当該複素環化合物としては、例えば、ヘテロ原子として、窒素、酸素、硫黄等を1以上含有する複素環化合物が挙げられる。これらの中でも、ヘテロ原子として少なくとも窒素を1つ含有する複素環化合物の環の不飽和結合を還元して、光学活性アミンを製造することが好ましい。
本発明における光学活性化合物としては、具体的には、イミン化合物のイミノ基を還元した光学活性アミンや、キノリン誘導体やキノキサリン誘導体またはインドール誘導体などを還元して得られる光学活性アミンなどが挙げられる。
水素ガスを水素供与体として用いる当該反応は、反応溶媒として、メタノール、エタノール、2-プロパノール、tert-ブチルアルコール、トリフルオロエタノール、ヘキサフルオロイソプロパノールなどのアルコール類や、トルエン、テトラヒドロフラン、2-メチルテトラヒドロフラン、アセトニトリル、アセトンなどの非プロトン性溶媒、ジクロロメタン、クロロホルムなどのハロゲン性溶媒などが用いられる。
反応温度は-20~100℃、好ましくは0~70℃の範囲から選ばれる。
水素ガスによる反応圧力は通常10MPa以下であり、好ましくは0.1~5MPaで行われる。
反応時間は触媒比によって異なるが、1~100時間、通常は2~50時間である。
反応後は、蒸留、抽出、クロマトグラフィー、再結晶などの一般的操作により、生成した光学活性体を分離、精製することができる。
以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
HFIP:ヘキサフルオロイソプロパノール
Ts:トシル
Ph:フェニル
Me:メチル
p-シメン:p-イソプロピルトルエン
Tipps:2,4,6-トリイソプロピルベンゼンスルホニル
DPEN:1,2-ジフェニルエチレンジアミン
Ms:メシル
RuBF4((R,R)-Tsdpen)(p-シメン):
1H-NMR (CDCl3, 300MHz): δ 7.41-7.37 (d, 2H), 7.20-7.15 (m, 3H), 7.15-7.00 (m, 5H), 7.00-6.92 (m, 4H), 4.30 (d, 1H), 3.57 (d, 1H), 2.33 (s, 3H), 2.21 (s, 3H);
HRMS (ESI) calcd for C22H25N2O2S [M+H]+ 381.1637, found 381.1627
1H-NMR (CD2Cl2, 300MHz): δ 7.15-7.05 (m, 6H), 6.82-6.75 (m, 4H), 6.70-6.62 (m, 2H), 6.60-6.55 (m, 2H), 5.75 (d, 1H), 5.50 (d, 1H), 5.43-5.40 (m, 2H), 4.02 (d, 1H) , 4.00 (brs, 1H) , 3.45 (t, 1H) , 3.25-3.15 (m, 1H) , 2.80 (d, 1H) , 2.42 (s, 3H) , 2.22 (s, 3H) , 1.40 (d, 6H) ;
HRMS (ESI) calcd for C32H37N2O2RuS [M-Cl]+ 615.1619, found 615.1613
1H-NMR (CD3OD, 300MHz): δ 7.22-6.58 (m, 14H), 6.13 (d, 1H), 6.00-5.92 (m, 2H), 5.82 (d, 1H), 4.15 (d, 1H) , 4.00-3.85 (brs, 1H) , 3.70 (t, 1H) , 3.02 (d, 1H) , 2.18 (s, 3H) , 2.20 (s, 3H) , 1.48-1.38 (m, 6H);
HRMS (ESI) calcd for C32H37N2O2RuS [M-BF4]+ 615.1619, found 615.1607
1H-NMR (CD3OD, 300MHz): δ 7.22-6.58 (m, 14H), 6.13 (d, 1H), 6.00-5.92 (m, 2H), 5.82 (d, 1H), 4.15 (d, 1H) , 4.00-3.85 (brs, 1H) , 3.70 (t, 1H) , 3.02 (d, 1H) , 2.18 (s, 3H) , 2.20 (s, 3H) , 1.48-1.38 (m, 6H);
HRMS (ESI) calcd for C32H37N2O2RuS [M-OTf]+ 615.1619, found 615.1611
1H-NMR (CDCl3, 300MHz): δ 7.20-7.15 (m, 3H), 7.00-6.85 (m, 7H), 6.78-6.75 (m, 2H), 4.43 (d, 1H), 4.05-3.95 (m, 2H), 3.50 (d, 1H), 2.85-2.80 (m, 1H), 2.27 (s, 3H) , 1.25-1.10 (m, 12H) , 1.12-1.08 (s, 6H);
HRMS (ESI) calcd for C30H41N2O2S [M+H]+ 493.2889, found 493.2876
1H-NMR (CD2Cl2, 300MHz): δ 7.20-6.50 (m, 12H), 5.90-5.80 (m, 6H), 4.35-4.20 (m, 2H), 4.15 (d, 1H), 3.60 (t, 1H), 2.90 (d, 3H), 2.70-2.60 (m, 1H), 1.30-1.02 (m, 18H);
HRMS (ESI) calcd for C36H45N2O2RuS [M-Cl]+ 671.2245, found 671.2239
1H-NMR (CD2Cl2, 300MHz): δ 7.22-6.55 (m, 12H), 6.10-6.05 (s, 6H), 4.48 (d, 1H), 4.25-4.15 (m, 2H), 4.00 (t, 1H), 3.10 (d, 3H), 2.70-2.60 (m, 1H), 1.25-1.05 (m, 18H);
HRMS (ESI) calcd for C36H45N2O2RuS [M-BF4]+ 671.2245, found 671.2238
1H-NMR (CD3OD, 300MHz): δ 7.10-6.40 (m, 12H), 5.85-5.65 (m, 4H), 4.25 (d, 1H), 4.18-4.00 (m, 2H), 3.80 (t, 1H), 3.18-3.02 (m, 1H), 2.75 (s, 3H), 2.68-2.60(m, 1H), 2.42 (s, 3H), 1.50-0.95 (m, 24H);
HRMS (ESI) calcd for C40H53N2O2RuS [M-Cl]+ 727.2871, found 659.1672
1H-NMR (CD3OD, 300MHz): δ 7.30-6.82 (m, 12H), 6.00-5.20 (m, 4H), 4.58 (d, 1H), 4.30-4.18 (m, 2H), 4.10 (t, 1H), 3.10 (s, 3H), 3.00-2.80 (m, 2H), 2.25(s, 3H), 1.48-0.85 (m, 24H);
HRMS (ESI) calcd for C40H53N2O2RuS [M-BF4]+ 727.2871, found 727.2859
触媒として合成例3で得られたRuBF4((R,R)-N-Me-Tsdpen)(p-シメン) 3.5mg(0.005mmol、S/C=500)、2-メチルキノリン 0.358g(0.34mL、2.5mmol)、およびHFIP 2mLを100mLオートクレーブに仕込み、水素圧5MPaの下、40℃にて20時間反応させた。GC分析により転化率と光学純度を確認したところ、99.5%conv.(転化率)、98.6%ee(光学純度)であった。
触媒としてRuBF4((R,R)-Tsdpen)(p-シメン) 3.4mg(0.005mmol、 S/C=500)を使用した以外は、実施例1と同様に反応させた。GC分析により転化率と光学純度を確認したところ、46.0%conv.(転化率)、96.9%ee(光学純度)であった。
触媒として合成例4で得られたRuOTf((R,R)-N-Me-Tsdpen)(p-シメン) 3.8mg(0.005mmol、S/C=500)、2-メチルキノリン 0.358g(0.34mL、2.5mmol)、およびHFIP 2mLを100mLオートクレーブに仕込み、水素圧5MPaの下、40℃にて6時間反応させた。GC分析により転化率と光学純度を確認したところ、91.0%conv.(転化率)、97.4%ee(光学純度)であった。
触媒としてRuOTf((R,R)-Tsdpen)(p-シメン) 3.4mg(0.005mmol、 S/C=500)を使用した以外は、実施例2と同様に反応させた。GC分析により転化率と光学純度を確認したところ、51.4%conv.(転化率)、95.0%ee(光学純度)であった。
触媒として合成例4で得られたRuOTf((R,R)-N-Me-Tsdpen)(p-シメン) 7.6mg(0.01mmol、S/C=100)、2-メチルキノリン 0.143g(0.14mL、1.0mmol)、およびメタノール 2mLを100mLオートクレーブに仕込み、水素圧5MPaの下、40℃にて6時間反応させた。GC分析により転化率と光学純度を確認したところ、99.2%conv.(転化率)、94.9%ee(光学純度)であった。
触媒としてRuOTf((R,R)-Tsdpen)(p-シメン) 6.8mg(0.01mmol、 S/C=100)を使用した以外は、実施例3と同様に反応させた。GC分析により転化率と光学純度を確認したところ、53.7%conv.(転化率)、91.6%ee(光学純度)であった。
触媒として合成例3で得られたRuBF4((R,R)-N-Me-Tsdpen)(p-シメン) 3.5mg(0.005mmol、S/C=1000)、2-メチルインドール 0.656g(5mmol)、およびHFIP 2mLを100mLオートクレーブに仕込み、水素圧5MPaの下、10℃にて18時間反応させた。GC分析により転化率と光学純度を確認したところ、100%conv.(転化率)、97.4%ee(光学純度)であった。
触媒としてRuBF4((R,R)-Tsdpen)(p-シメン) 3.4mg(0.005mmol、 S/C=1000)を使用した以外は、実施例4と同様に反応させた。GC分析により転化率と光学純度を確認したところ、85.2%conv.(転化率)、94.5%ee(光学純度)であった。
触媒として合成例4で得られたRuOTf((R,R)-N-Me-Tsdpen)(p-シメン) 3.8mg(0.005mmol、S/C=1000)、2-メチルインドール 0.656g(5mmol)、およびHFIP 2mLを100mLオートクレーブに仕込み、水素圧5MPaの下、10℃にて6時間反応させた。GC分析により転化率と光学純度を確認したところ、92.3%conv.(転化率)、97.2%ee(光学純度)であった。
触媒としてRuOTf((R,R)-Tsdpen)(p-シメン) 3.4mg(0.005mmol、 S/C=1000)を使用した以外は、実施例5と同様に反応させた。GC分析により転化率と光学純度を確認したところ、69.2%conv.(転化率)、95.1%ee(光学純度)であった。
触媒として合成例4で得られたRuOTf((R,R)-N-Me-Tsdpen)(p-シメン)を7.6mg(0.01mmol、 S/C=100)、2-メチルキノキサリン 0.144g(0.13mL、1.0mmol)、およびHFIP 1mLを100mLオートクレーブに仕込み、水素圧5MPaの下、40℃にて6時間反応させた。GC分析により転化率と光学純度を確認したところ、76.7%conv.(転化率)、88.3%ee(光学純度)であった。
触媒としてRuOTf((R,R)-Tsdpen)(p-シメン) 6.8mg(0.01mmol、 S/C=100)を使用した以外は、実施例6と同様に反応させた。GC分析により転化率と光学純度を確認したところ、41.8%conv.(転化率)、86.9%ee(光学純度)であった。
触媒として合成例3で得られた(RuBF4((R,R)-N-Me-Tsdpen)(p-シメン)を3.8mg(0.005mmol、 S/C=200)、2-メチルキノキサリン 0.144g(0.13mL、1.0mmol)、およびジクロロメタン 2mLを100mLオートクレーブに仕込み、水素圧5MPaの下、40℃にて6時間反応させた。GC分析により転化率と光学純度を確認したところ、71.2%conv.(転化率)、86.5%ee(光学純度)であった。
触媒としてRuBF4((R,R)-Tsdpen)(p-シメン) 3.5mg(0.005mmol、 S/C=200)を使用した以外は、実施例7と同様に反応させた。GC分析により転化率と光学純度を確認したところ、11.8%conv.(転化率)、74.9%ee(光学純度)であった。
触媒として合成例3で得られたRuBF4((R,R)-N-Me-Tsdpen)(p-シメン) 3.8mg(0.005mmol、 S/C=300)、2,3,3-トリメチルインドレニン 0.239g(0.24mL、1.5mmol)、およびHFIP 1mLを100mLオートクレーブに仕込み、水素圧5MPaの下、50℃にて6時間反応させた。GC分析により転化率と光学純度を確認したところ、99.2%conv.(転化率)、95.8%ee(光学純度)であった。
触媒としてRuBF4((R,R)-Tsdpen)(p-シメン)を3.4mg(0.005mmol、 S/C=300)を使用した以外は、実施例8と同様に反応させた。GC分析により転化率と光学純度を確認したところ、1.7%conv.(転化率)、48.5%ee(光学純度)であった。
触媒として合成例3で得られたRuBF4((R,R)-N-Me-Tsdpen)(p-シメン) 3.8mg(0.005mmol、 S/C=200)、2,3,3-トリメチルインドレニン 0.159g(0.16mL、1.0mmol)、およびジクロロメタン 2mLを100mLオートクレーブに仕込み、水素圧5MPaの下、50℃にて6時間反応させた。GC分析により転化率と光学純度を確認したところ、99.7%conv.(転化率)、94.6%ee(光学純度)であった。
触媒としてRuBF4((R,R)-Tsdpen)(p-シメン)を3.4mg(0.005mmol、 S/C=200)を使用した以外は、実施例9と同様に反応させた。GC分析により転化率と光学純度を確認したところ、21.2%conv.(転化率)、84.4%ee(光学純度)であった。
触媒として合成例3で得られたRuBF4((R,R)-N-Me-Tsdpen)(p-シメン) 3.8mg(0.005mmol、 S/C=200)、2,3,3-トリメチルインドレニン 0.159g(0.16mL、1.0mmol)、およびTHF 2mLを100mLオートクレーブに仕込み、水素圧5MPaの下、50℃にて6時間反応させた。GC分析により転化率と光学純度を確認したところ、76.4%conv.(転化率)、87.4%ee(光学純度)であった。
触媒としてRuBF4((R,R)-Tsdpen)(p-シメン)を3.4mg(0.005mmol、 S/C=200)を使用した以外は、実施例10と同様に反応させた。GC分析により転化率と光学純度を確認したところ、41.9%conv.(転化率)、85.9%ee(光学純度)であった。
触媒として合成例3で得られたRuBF4((R,R)-N-Me-Tsdpen)(p-シメン) 7.6mg(0.01mmol、 S/C=100)、4-メトキシ-N-(4-メチルペンタン-2-イリデン)アニリン 0.205g(1.0mmol)、およびジクロロメタン 2mLを100mLオートクレーブに仕込み、水素圧5MPaの下、40℃にて6時間反応させた。GC分析により転化率、HPLC分析により光学純度を確認したところ、50.4%conv.(転化率)、47%ee(光学純度)であった。
触媒としてRuBF4((R,R)-Tsdpen)(p-シメン)を6.8mg(0.01mmol、 S/C=100)を使用した以外は、実施例11と同様に反応させた。GC分析により転化率と光学純度を確認したところ、36.7%conv.(転化率)、21%ee(光学純度)であった。
触媒として合成例3で得られたRuBF4((R,R)-N-Me-Tsdpen)(p-シメン) 7.6mg(0.01mmol、 S/C=100)、3-メチル-2H-ベンゾ[1,4]オキサジン 0.147g(1.0mmol)、およびHFIP 2mLを100mLオートクレーブに仕込み、水素圧5MPaの下、40℃にて6時間反応させた。GC分析により転化率、HPLC分析により光学純度を確認したところ、>99%conv.(転化率)、78%ee(光学純度)であった。
触媒としてRuBF4((R,R)-Tsdpen)(p-シメン)を6.8mg(0.01mmol、 S/C=100)を使用した以外は、実施例12と同様に反応させた。GC分析により転化率と光学純度を確認したところ、>99%conv.(転化率)、72%ee(光学純度)であった。
触媒として合成例3で得られたRuBF4((R,R)-N-Me-Tsdpen)(p-シメン) 3.5mg(0.005mmol、S/C=500)、2-メチルキノリン 0.358g(0.34mL、2.5mmol)、およびギ酸トリエチルアミン(ギ酸:トリエチルアミン=5:2共沸物) 1.25mLを、15mLシュレンク管に仕込み、40℃にて20時間反応させた。GC分析により転化率と光学純度を確認したところ、17.5%conv.(転化率)、69.1%ee(光学純度)であった。
触媒として合成例3で得られたRuBF4((R,R)-N-Me-Tsdpen)(p-シメン) 3.5mg(0.005mmol、S/C=1000)、2-メチルインドール 0.656g(5.0mmol)、ギ酸トリエチルアミン(ギ酸:トリエチルアミン=5:2共沸物) 2.5mLを15mLシュレンク管に仕込み、10℃にて18時間反応させた。GC分析により転化率と光学純度を確認したところ、反応は全く進行していなかった。
触媒として合成例3で得られたRuBF4((R,R)-N-Me-Tsdpen)(p-シメン) 3.5mg(0.005mmol、S/C=200)、2-メチルキノキサリン 0.144g(0.128mL、1.0mmol)、ギ酸トリエチルアミン(ギ酸:トリエチルアミン=5:2共沸物) 0.5mLを15mLシュレンク管に仕込み、40℃にて6時間反応させた。GC分析により転化率と光学純度を確認したところ、31.9%conv.(転化率)、85.7%ee(光学純度)であった。
触媒として合成例3で得られたRuBF4((R,R)-N-Me-Tsdpen)(p-シメン) 7.0mg(0.01mmol、S/C=200)、2,3,3-トリメチルインドレニン 0.318g(0.32mL、2.0mmol)、ギ酸トリエチルアミン(ギ酸:トリエチルアミン=5:2共沸物) 1.0mLを15mLシュレンク管に仕込み、50℃にて6時間反応させた。GC分析により転化率と光学純度を確認したところ、20.4%conv.(転化率)、14.9%ee(光学純度)であった。
1H-NMR (CDCl3, 300MHz): δ 7.62-7.58 (d, 2H), 7.20-6.63 (m, 12H), 4.50-4.40 (brs, 1H), 4.40 (d, 1H), 3.60 (t, 1H), 2.62 (d, 3H), 2.24 (s, 3H), 1.80(s, 15H);
HRMS (ESI) calcd for C32H38IrN2O2S [M-Cl]+ 707.2283, found 707.2280
1H-NMR (CD3OD, 300MHz): δ 7.30-6.95 (m, 14H), 4.75 (d, 0.67H), 4.70 (m, 0.33H), 4.25 (m, 0.33H), 4.00 (d, 0.66H) , 2.85 (s, 1H) , 2.69 (s, 2H) , 2.29 (s, 2H) , 2.26 (s, 1H) , 1.90 (s, 5H) , 1.88 (s, 10H);
HRMS (ESI) calcd for C32H38IrN2O2S [M-BF4]+ 707.2283, found 707.2273
1H-NMR (CD2Cl2, 400MHz): δ 7.25-7.10 (m, 6H), 6.90-6.62 (m, 8H), 5.43 (s, 3H), 3.93 (d, 1H), 3.85 (brs, 1H), 3.60 (t, 1H), 2.72 (d, 3H) , 2.35 (s, 9H) , 2.25 (s, 3H);
HRMS (ESI) calcd for C31H35N2O2RuS [M-Cl]+ 601.1463, found 601.1454
1H-NMR (CD3OD, 400MHz): δ 7.50-6.65 (m, 14H), 5.82 (s, 3H), 4.19 (d, 1H), 3.84 (d, 1H) , 2.97 (s, 3H) , 2.34 (s, 9H) , 2.20 (s, 3H);
HRMS (ESI) calcd for C31H35N2O2RuS [M-BF4]+ 601.1463, found 601.1475
1H-NMR (CD2Cl2, 400MHz): δ 7.20-7.10 (m, 5H), 6.88-6.60 (m, 9H), 5.81 (s, 6H), 4.05 (d, 1H), 3.95 (brs, 1H), 3.70 (t, 1H), 2.89 (d, 3H) , 2.27 (s, 3H);
HRMS (ESI) calcd for C28H29N2O2RuS [M-Cl]+ 559.0993, found 559.0090
1H-NMR (CD3OD, 400MHz): δ 7.21-6.57 (m, 14H), 6.07 (s, 6H), 4.21 (d, 1H), 3.79 (d, 1H) , 2.99 (s, 3H) , 2.23 (s, 3H);
HRMS (ESI) calcd for C28H29N2O2RuS [M-BF4]+ 559.0993, found 559.0983
1H-NMR (CDCl3, 400MHz): δ 7.40-7.18 (m, 10H), 5.34 (brs, 1H), 4.68 (d, 1H), 4.02 (d, 1H), 2.39 (s, 3H) , 2.35 (s, 3H);
HRMS (ESI) calcd for C16H21N2O2S [M+H]+ 305.1324, found 305.1322
1H-NMR (CD2Cl2, 400MHz): δ 7.40-7.23 (m, 3H), 7.15-6.96 (m, 7H), 5.58 (d, 1H), 5.42-5.40 (m, 2H), 5.30 (d, 1H), 3.95 (d, 1H), 3.93 (brs, 1H), 3.58 (t, 1H) , 3.10 (m, 1H) , 2.80 (d, 3H) , 2.35 (s, 3H) , 2.33 (s, 3H) , 1.38-1.35 (m, 6H);
HRMS (ESI) calcd for C26H33N2O2RuS [M-Cl]+ 539.1306, found 539.1299
1H-NMR (CD3OD, 400MHz): δ 7.40-7.02 (m, 10H), 5.99-5.97 (m, 1H), 5.90-5.86 (m, 2H), 5.77-5.76 (m, 1H), 4.13 (d, 1H) , 3.92 (d, 1H) , 3.07 (d, 3H) , 3.00-2.96 (m, 1H) , 2.38 (s, 3H) , 2.22 (s, 3H) , 1.44-1.29 (m, 6H);
HRMS (ESI) calcd for C26H33N2O2RuS [M-BF4]+ 539.1306, found 539.1334
1H-NMR (CD2Cl2, 400MHz): δ 7.37-7.25 (m, 3H), 7.19-7.00 (m, 7H), 5.27 (s, 3H), 4.00 (d, 1H), 3.90 (brs, 1H), 3.72 (t, 1H), 2.72 (d, 3H) , 2.37 (s, 3H) , 2.28 (s, 9H);
HRMS (ESI) calcd for C25H31N2O2RuS [M-Cl]+ 525.1150, found 525.1145
1H-NMR (CD3OD, 400MHz): δ 7.38-7.10 (m, 10H), 5.70 (s, 3H), 4.52 (d, 1H), 4.20 (d, 1H), 2.99 (d, 3H) , 2.35 (s, 3H) , 2.17 (s, 9H);
HRMS (ESI) calcd for C25H31N2O2RuS [M-BF4]+ 525.1150, found 525.1140
1H-NMR (CD2Cl2, 400MHz): δ 7.40-7.10 (m, 10H), 4.08 (d, 1H), 3.72 (t, 1H), 3.70 (brs, 1H), 2.51 (d, 3H) , 2.19 (s, 18H);
HRMS (ESI) calcd for C28H37N2O2RuS [M-Cl]+ 567.1619, found 567.1622
1H-NMR (CD3OD, 400MHz): δ 7.40-7.20 (m, 10H), 4.52 (d, 1H), 4.20 (d, 1H), 2.59 (s, 3H), 2.53 (d, 3H) , 2.25-2.05 (m, 18H);
HRMS (ESI) calcd for C28H37N2O2RuS [M-BF4]+ 567.1619, found 567.1609
Claims (4)
- 次の一般式(1)で表される錯体、一般式(2)で表される錯体、一般式(3)で表される錯体、および、一般式(4)で表される錯体から選択される少なくとも1種の錯体、および、水素供与体としての水素ガスの存在下で、
イミン化合物のイミノ基を還元する工程、または、複素環化合物の不飽和結合を還元する工程を含む、光学活性化合物の製造方法。
*は、不斉炭素原子を示し、
R1は、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、および、炭素数6~30のアリール基(アリール基は炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、および、ハロゲン原子から選択される1以上の置換基を有していてもよい)から選択される基を示し、
R2およびR3は、それぞれ独立して、炭素数1~10のアルキル基、フェニル基(フェニル基は炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、および、ハロゲン原子から選択される1以上の置換基を有していてもよい)、および、炭素数3~8のシクロアルキル基(シクロアルキル基は炭素数1~10のアルキル基から選択される1以上の置換基を有していてもよい)から選択される基を示すか、または、これらが結合している炭素原子と一緒になって環を形成し、
Yは、水素原子または重水素原子を示し、
R11、R12、R13、R14、R15およびR16は、それぞれ独立して、水素原子、炭素数1~10のアルキル基、炭素数1~10のアルキル基を1~3個有するシリル基、炭素数1~10のアルコキシ基、および、-C(=O)-OR22[R22は、炭素数1~10のアルキル基、炭素数4~10のヘテロアリール基または炭素数6~10のアリール基を示す]から選択される基を示し、Q-は、カウンターアニオンを示す。)
*は、不斉炭素原子を示し、
R1、R2、R3、R11、R12、R13、R14、R15、R16およびYは上記で定義した通りであり、
Aは、トリフルオロメタンスルホニルオキシ基、p-トルエンスルホニルオキシ基、メタンスルホニルオキシ基、ベンゼンスルホニルオキシ基、水素原子、重水素原子、および、ハロゲン原子から選択される基を示し、
jおよびkは、それぞれ0または1を示すが、j+kが1になることはない。)
*は、不斉炭素原子を示し、
R1、R2、R3、AおよびYは、上記で定義した通りであり、
Mは、イリジウムまたはロジウムを示し、
Lは、シクロペンタジエニルまたはペンタメチルシクロペンタジエニル配位子を示し、
jおよびkは、それぞれ0または1を示すが、j+kが1になることはない。)
*は、不斉炭素原子を示し、
R1、R2、R3、Y、M、LおよびQ-は、上記で定義した通りである。) - 一般式(1)で表されるルテニウム錯体。
*は、不斉炭素原子を示し、
R1は、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、および、炭素数6~30のアリール基(アリール基は炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、および、ハロゲン原子から選択される1以上の置換基を有していてもよい)から選択される基を示し、
R2およびR3は、それぞれ独立して、炭素数1~10のアルキル基、フェニル基(フェニル基は炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、および、ハロゲン原子から選択される1以上の置換基を有していてもよい)、および、炭素数3~8のシクロアルキル基(シクロアルキル基は炭素数1~10のアルキル基から選択される1以上の置換基を有していてもよい)から選択される基を示すか、または、これらが結合している炭素原子と一緒になって環を形成し、
Yは、水素原子または重水素原子を示し、
R11、R12、R13、R14、R15およびR16は、それぞれ独立して、水素原子、炭素数1~10のアルキル基、炭素数1~10のアルキル基を1~3個有するシリル基、炭素数1~10のアルコキシ基、および、-C(=O)-OR22[R22は、炭素数1~10のアルキル基、炭素数4~10のヘテロアリール基または炭素数6~10のアリール基を示す]から選択される基を示し、
Q-は、カウンターアニオンを示す。) - 一般式(4)で表されるイリジウム錯体またはロジウム錯体。
*は、不斉炭素原子を示し、
R1は、炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、および、炭素数6~30のアリール基(アリール基は炭素数1~10のアルキル基、炭素数1~10のハロゲン化アルキル基、および、ハロゲン原子から選択される1以上の置換基を有していてもよい)から選択される基を示し、
R2およびR3は、それぞれ独立して、炭素数1~10のアルキル基、フェニル基(フェニル基は炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、および、ハロゲン原子から選択される1以上の置換基を有していてもよい)、および、炭素数3~8のシクロアルキル基(シクロアルキル基は炭素数1~10のアルキル基から選択される1以上の置換基を有していてもよい)から選択される基を示すか、または、これらが結合している炭素原子と一緒になって環を形成し、
Yは、水素原子または重水素原子を示し、
Mは、イリジウムまたはロジウムを示し、
Lは、シクロペンタジエニルまたはペンタメチルシクロペンタジエニル配位子を示し、
Q-は、カウンターアニオンを示す。) - 請求項2または3に記載の錯体を含む不斉還元用触媒。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15748864.4A EP3106453B1 (en) | 2014-02-14 | 2015-02-13 | Method for producing optically active compound, and novel metal-diamine complex |
JP2015562881A JP6476497B2 (ja) | 2014-02-14 | 2015-02-13 | 光学活性化合物の製造方法、及び新規な金属−ジアミン錯体 |
US15/117,333 US9745229B2 (en) | 2014-02-14 | 2015-02-13 | Method for producing optically active compound, and novel metal-diamine complex |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-026161 | 2014-02-14 | ||
JP2014026161 | 2014-02-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015122502A1 true WO2015122502A1 (ja) | 2015-08-20 |
Family
ID=53800241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/054017 WO2015122502A1 (ja) | 2014-02-14 | 2015-02-13 | 光学活性化合物の製造方法、及び新規な金属-ジアミン錯体 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9745229B2 (ja) |
EP (1) | EP3106453B1 (ja) |
JP (1) | JP6476497B2 (ja) |
WO (1) | WO2015122502A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024048615A1 (ja) * | 2022-08-30 | 2024-03-07 | 協和キリン株式会社 | キノキサリン誘導体の製造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105753752B (zh) * | 2016-04-15 | 2018-02-27 | 安徽师范大学 | 一种手性邻二胺类化合物的制备方法 |
GB201907506D0 (en) * | 2019-05-28 | 2019-07-10 | Goldenkeys High Tech Mat Co Ltd | Catalysts |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001104795A (ja) * | 1999-10-13 | 2001-04-17 | Mitsubishi Chemicals Corp | ルテニウム触媒組成物 |
WO2002010101A1 (fr) * | 2000-08-01 | 2002-02-07 | Shionogi & Co., Ltd. | Procede de production d'un alcool en presence d'un complexe de metaux de transition contenant un compose amide en tant que liant |
WO2006137195A1 (ja) * | 2005-06-20 | 2006-12-28 | Kanto Kagaku Kabushiki Kaisha | スルホナート触媒及びそれを利用したアルコール化合物の製法 |
JP2009023941A (ja) * | 2007-07-19 | 2009-02-05 | Kanto Chem Co Inc | 有機金属化合物及びそれを用いた光学活性アルコール類の製造方法 |
JP2010248091A (ja) * | 2009-04-10 | 2010-11-04 | Kanto Chem Co Inc | 不斉触媒およびこれを用いた光学活性アルコール類の製造方法 |
JP2010285443A (ja) * | 2010-07-26 | 2010-12-24 | Kanto Chem Co Inc | 光学活性アルコールの製法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5536541B2 (ja) * | 2009-07-13 | 2014-07-02 | 高砂香料工業株式会社 | ルテニウム−ジアミン錯体および光学活性化合物の製造方法 |
-
2015
- 2015-02-13 US US15/117,333 patent/US9745229B2/en active Active
- 2015-02-13 WO PCT/JP2015/054017 patent/WO2015122502A1/ja active Application Filing
- 2015-02-13 EP EP15748864.4A patent/EP3106453B1/en active Active
- 2015-02-13 JP JP2015562881A patent/JP6476497B2/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001104795A (ja) * | 1999-10-13 | 2001-04-17 | Mitsubishi Chemicals Corp | ルテニウム触媒組成物 |
WO2002010101A1 (fr) * | 2000-08-01 | 2002-02-07 | Shionogi & Co., Ltd. | Procede de production d'un alcool en presence d'un complexe de metaux de transition contenant un compose amide en tant que liant |
WO2006137195A1 (ja) * | 2005-06-20 | 2006-12-28 | Kanto Kagaku Kabushiki Kaisha | スルホナート触媒及びそれを利用したアルコール化合物の製法 |
JP2009023941A (ja) * | 2007-07-19 | 2009-02-05 | Kanto Chem Co Inc | 有機金属化合物及びそれを用いた光学活性アルコール類の製造方法 |
JP2010248091A (ja) * | 2009-04-10 | 2010-11-04 | Kanto Chem Co Inc | 不斉触媒およびこれを用いた光学活性アルコール類の製造方法 |
JP2010285443A (ja) * | 2010-07-26 | 2010-12-24 | Kanto Chem Co Inc | 光学活性アルコールの製法 |
Non-Patent Citations (7)
Title |
---|
JOSE E. D. MARTINS ET AL.: "Applications of N'- alkylated derivatives of TsDPEN in the asymmetric transfer hydrogenation of C=O and C=N bonds", TETRAHEDRON : ASYMMETRY, vol. 21, no. 18, 2010, pages 2258 - 2264, XP027307544, ISSN: 0957-4166 * |
JOSE E. D. MARTINS ET AL.: "Ru(II) Complexes of N-Alkylated TsDPEN Ligands in Asymmetric Transfer Hydrogenation of Ketones and Imines", ORGANIC LETTERS, vol. 11, 2009, pages 8 47 - 850, XP055171318 * |
See also references of EP3106453A4 * |
TAKASHI KOIKE ET AL.: "Mechanistic aspects of formation of chiral ruthenium hydride complexes from 16-electron ruthenium amide complexes and formic acid: Facile reversible decarboxylation and carboxylation", ADVANCED SYNTHESIS & CATALYSIS, vol. 346, no. 1, 2004, pages 37 - 41, XP055219552, ISSN: 1615-4150 * |
TAKASHI KOIKE ET AL.: "Synthesis and properties of alkylruthenium complexes bearing primary and secondary amine ligands", JOURNAL OF ORGANOMETALLIC CHEMISTRY, vol. 692, no. 1-3, 2007, pages 408 - 419, XP005814165, ISSN: 0022-328x * |
WEIJUN TANG ET AL.: "Cooperative Catalysis: Combining an Achiral Metal Catalyst with a Chiral Bronsted Acid Enables Highly Enantioselective Hydrogenation of Imines, Chemistry", A EUROPEAN JOURNAL, vol. 19, no. 42, 2013, pages 14187 - 14193, XP055219548, ISSN: 0947-6539 * |
ZACHARIAH M. HEIDEN ET AL.: "Proton-Assisted Activation of Dihydrogen: Mechanistic Aspects of Proton-Catalyzed Addition of H2 to Ru and Ir Amido Complexes", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 131, no. 10, 2009, pages 3593 - 3600, XP055219550, ISSN: 0002-7863 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024048615A1 (ja) * | 2022-08-30 | 2024-03-07 | 協和キリン株式会社 | キノキサリン誘導体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6476497B2 (ja) | 2019-03-06 |
EP3106453B1 (en) | 2020-04-08 |
US9745229B2 (en) | 2017-08-29 |
JPWO2015122502A1 (ja) | 2017-03-30 |
EP3106453A1 (en) | 2016-12-21 |
EP3106453A4 (en) | 2017-10-11 |
US20160347678A1 (en) | 2016-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5718178B2 (ja) | ルテニウム−ジアミン錯体及び光学活性化合物の製造方法 | |
CN103087105B (zh) | 手性膦配体以及包含该配体的金属催化剂和它们的应用 | |
US9079931B2 (en) | Ruthenium complex and method for preparing optically active alcohol compound | |
US9255049B2 (en) | Ruthenium complex and method for preparing optically active alcohol compounds using the same as a catalyst | |
CN105111208A (zh) | 一种四氢化1,8-萘啶类化合物的制备方法及其制得的手性产品 | |
JP6476497B2 (ja) | 光学活性化合物の製造方法、及び新規な金属−ジアミン錯体 | |
JP5466152B2 (ja) | アミノホスフィンリガンドを調製するための方法およびその金属触媒における使用 | |
EP2773611B1 (en) | Method for producing optically active -hydroxy- -aminocarboxylic acid ester | |
US8987492B2 (en) | Ruthenium-diamine complex and method for producing optically active compound | |
JP6065259B2 (ja) | 光学活性アミン類の製造方法 | |
JP5536541B2 (ja) | ルテニウム−ジアミン錯体および光学活性化合物の製造方法 | |
JP4474861B2 (ja) | 光学活性四級アンモニウム塩、その製造法、並びにそれを用いた光学活性α−アミノ酸誘導体の製造法 | |
JP6286755B2 (ja) | 新規なジアミン化合物および金属錯体、並びに光学活性化合物の製造方法 | |
JP6950918B2 (ja) | 面性不斉メタロセン縮環カルベン及びその製造方法、並びに該誘導体を配位子とする金属錯体 | |
JP6689750B2 (ja) | 固相担持ルテニウム−ジアミン錯体及び光学活性化合物の製造方法 | |
US12110302B2 (en) | Metal complex, intermediate, and preparation method and application thereof | |
JP2017014109A (ja) | 光学活性2,6−ジメチルチロシン誘導体の製造法 | |
CN101279986A (zh) | 一种非对称轴手性双膦配体合成方法 | |
US8222433B2 (en) | Axially asymmetric phosphorus compound and production method thereof | |
JP2020526523A (ja) | 方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15748864 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015562881 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15117333 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015748864 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015748864 Country of ref document: EP |