WO2015115126A1 - 窒化物半導体積層体およびその製造方法並びに窒化物半導体装置 - Google Patents
窒化物半導体積層体およびその製造方法並びに窒化物半導体装置 Download PDFInfo
- Publication number
- WO2015115126A1 WO2015115126A1 PCT/JP2015/050129 JP2015050129W WO2015115126A1 WO 2015115126 A1 WO2015115126 A1 WO 2015115126A1 JP 2015050129 W JP2015050129 W JP 2015050129W WO 2015115126 A1 WO2015115126 A1 WO 2015115126A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nitride semiconductor
- layer
- substrate
- degrees
- angle
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 233
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 224
- 238000004519 manufacturing process Methods 0.000 title claims description 36
- 239000000758 substrate Substances 0.000 claims abstract description 166
- 229910002704 AlGaN Inorganic materials 0.000 claims description 83
- 238000002441 X-ray diffraction Methods 0.000 claims description 20
- 230000005484 gravity Effects 0.000 claims description 8
- 239000010410 layer Substances 0.000 description 396
- 230000000052 comparative effect Effects 0.000 description 43
- 230000004888 barrier function Effects 0.000 description 31
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 22
- 239000013078 crystal Substances 0.000 description 19
- 238000000034 method Methods 0.000 description 16
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 13
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 11
- 230000007423 decrease Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 229910052733 gallium Inorganic materials 0.000 description 8
- 239000002243 precursor Substances 0.000 description 8
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 6
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 6
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 5
- IHCCLXNEEPMSIO-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 IHCCLXNEEPMSIO-UHFFFAOYSA-N 0.000 description 5
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 5
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 5
- 238000013508 migration Methods 0.000 description 5
- 230000005012 migration Effects 0.000 description 5
- 230000006911 nucleation Effects 0.000 description 5
- 238000010899 nucleation Methods 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 238000000206 photolithography Methods 0.000 description 5
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000005533 two-dimensional electron gas Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/183—Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/02433—Crystal orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02505—Layer structure consisting of more than two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/40—Crystalline structures
- H10D62/405—Orientations of crystalline planes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
- H10D62/824—Heterojunctions comprising only Group III-V materials heterojunctions, e.g. GaN/AlGaN heterojunctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/85—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group III-V materials, e.g. GaAs
- H10D62/8503—Nitride Group III-V materials, e.g. AlN or GaN
Definitions
- the present invention relates to a nitride semiconductor laminate, a method of manufacturing the same, and a nitride semiconductor device.
- Nitride semiconductor is represented by the general formula In x Al y Ga 1-x -y N (0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1,0 ⁇ x + y ⁇ 1).
- This nitride semiconductor can be changed in band gap in the range of 1.95 eV to 6 eV depending on its composition, and is researched and developed as a material for light emitting devices in a wide wavelength range ranging from the ultraviolet region to the infrared region, and put to practical use It is done.
- control devices using nitride semiconductors are used for power devices that operate at high frequency and high output, and, among them, as a control device suitable for amplification in a high frequency band, for example, high electron mobility field effect transistor FETs such as (HEMT) are known.
- HEMT high electron mobility field effect transistor
- Patent Document 1 As a conventional nitride semiconductor laminate, there is one described in Japanese Patent Application Laid-Open No. 2008-166349 (Patent Document 1).
- an AlN layer as a barrier layer As a buffer layer in which the Al composition is changed in the layer thickness direction, and a GaN layer are epitaxially grown on a Si substrate in this order.
- an Si layer and a Ga layer are easily reacted, and thus an AlN layer is provided as a barrier layer between the Si substrate and the GaN layer.
- an AlN layer is provided as a barrier layer between the Si substrate and the GaN layer.
- Warping and cracking are likely to occur, and a good GaN layer can not be obtained. Therefore, an AlGaN layer in which the Al composition is changed in the layer thickness direction is sandwiched between the AlN layer and the GaN layer.
- an object of the present invention is to provide a nitride semiconductor device capable of suppressing an increase in on-resistance by improving the mobility of electrons generated near the 2DEG layer.
- the nitride semiconductor laminate of the present invention is A Si substrate whose main surface is a surface inclined at an off angle of 0 degrees or more and 4.0 degrees or less from the (111) plane; And a nitride semiconductor layer formed on the Si substrate.
- a nitride semiconductor for example, GaN, AlN, AlGaN, refers to InGaN or the like, and more particularly, the general formula In x Al y Ga 1-x -y N (0 ⁇ x ⁇ It refers to a semiconductor represented by 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
- the mobility of electrons generated in the vicinity of the 2 DEG layer can be improved, so that the increase in the on-resistance of the nitride semiconductor device can be suppressed, and the current collapse can be reduced.
- FIG. 1 is a schematic cross-sectional view of a nitride semiconductor stack according to a first embodiment of the present invention.
- FIG. 2 is a schematic cross-sectional view of a nitride semiconductor stack according to a second embodiment of the present invention.
- FIG. 3 is a schematic cross-sectional view of a nitride semiconductor stack according to a third embodiment of the present invention.
- FIG. 4 is a schematic cross-sectional view of a nitride semiconductor stack according to a fourth embodiment of the present invention.
- FIG. 5 is a schematic cross-sectional view of a nitride semiconductor device according to a fifth embodiment of the present invention.
- FIG. 6 is a schematic top view of the nitride semiconductor device.
- 7 is an enlarged view of the top schematic view of FIG.
- FIG. 8 is a schematic view showing the Si atomic layer step of the nitride semiconductor device.
- FIG. 1 shows a schematic cross-sectional view of a nitride semiconductor stack according to a first embodiment of the present invention.
- the nitride semiconductor stack according to the first embodiment includes a Si substrate 101 and a nitride semiconductor layer 110 formed on the Si substrate 101.
- An AlN buffer layer 102 is formed on the main surface of the Si substrate 101.
- the main surface of the Si substrate 101 is a surface inclined at an off angle of 0.8 degrees or more and 2.7 degrees or less in the (011) direction from the (111) plane. Further, the surface of the Si substrate 101 is processed to be uneven so that the main surface is present in 30% of the area of the surface.
- the AlN buffer layer 102 is an AlN layer whose half width of a rocking curve in X-ray diffraction of the (0002) plane is 1900 arcsec.
- an AlGaN buffer layer 106 in which an AlGaN-1 layer 103, an AlGaN-2 layer 104, and an AlGaN-3 layer 105 are sequentially stacked is formed.
- a GaN layer 107 is formed on the AlGaN buffer layer 106, and an AlGaN barrier layer 108 is formed on the GaN layer 107.
- the AlN buffer layer 102, the AlGaN buffer layer 106, the GaN layer 107, and the AlGaN barrier layer 108 constitute the nitride semiconductor layer 110.
- the surface oxide film of the Si substrate 101 is removed with diluted hydrofluoric acid.
- the Si substrate 101 is introduced into a reactor of a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus. Then, after raising the temperature of the Si substrate 101 to 1100 ° C., NH 3 (ammonia) and TMA (trimethylaluminum) are supplied, and the main surface of the Si substrate 101 is epitaxially grown to a thickness of 400 nm / hr. A 180 nm thick AlN buffer layer 102 is formed.
- MOCVD Metal Organic Chemical Vapor Deposition
- NH 3 , TMA, and TMG trimethylgallium
- an AlGaN-1 layer 103 having a thickness of 200 nm is formed on the AlN buffer layer 102 by epitaxial growth.
- a 300 nm thick AlGaN-2 layer 104 and a 400 nm thick AlGaN-3 layer 105 are sequentially formed.
- the Al composition ratio of the AlGaN buffer layer 106 is 50%.
- NH 3 and TMG are supplied, and a GaN layer 107 with a thickness of 1000 nm is formed on the AlGaN buffer layer 106 by epitaxial growth.
- the temperature of the Si substrate 101 is set to 1050 ° C., NH 3 , TMA, and TMG are supplied, and an AlGaN barrier layer 108 having a thickness of 30 nm is formed on the GaN layer 107 by epitaxial growth.
- the nitride semiconductor stack of the first embodiment is manufactured.
- Comparative Example 1-- as a sample in Comparative Example 1 to Example 1-1 to Example 1-5 as samples in the nitride semiconductor laminated body according to the first embodiment of the present invention and the first embodiment. Eight samples of 1 to Comparative Example 1-3 were manufactured.
- Example 1-1 As the Si substrate 101, four Si substrates having a main surface that is inclined at an off angle of 0.8 degrees to 1.1 degrees in the (011) direction from the (111) plane are prepared. A nitride semiconductor layer is formed on each Si substrate 101 by the manufacturing method of the first embodiment to manufacture a sample of the nitride semiconductor laminate.
- Example 1-2 As the Si substrate 101, four Si substrates having a main surface that is inclined at an off angle of 1.2 degrees to 1.5 degrees in the (011) direction from the (111) plane are prepared. A nitride semiconductor layer is formed on each Si substrate 101 by the manufacturing method of the first embodiment to manufacture a sample of the nitride semiconductor laminate.
- Example 1-2 has the same structure as the nitride semiconductor stack of Example 1-1 except that the off angle of the Si substrate 101 is different from that of Example 1-1.
- Example 1-3 As the Si substrate 101, four Si substrates having a main surface that is inclined at an off angle of 1.6 degrees to 1.9 degrees in the (011) direction from the (111) plane are prepared. A nitride semiconductor layer is formed on each Si substrate 101 by the manufacturing method of the first embodiment to manufacture a sample of the nitride semiconductor laminate.
- Example 1-3 has the same structure as the nitride semiconductor laminate of Example 1-1 except that the off angle of the Si substrate 101 is different from that of Example 1-1.
- Example 1-4 As the Si substrate 101, four Si substrates each having a main surface that is inclined at an off angle of 2.0 degrees to 2.3 degrees in the (011) direction from the (111) plane are prepared. A nitride semiconductor layer is formed on each Si substrate 101 by the manufacturing method of the first embodiment to manufacture a sample of the nitride semiconductor laminate. Thus, Example 1-4 has the same structure as the nitride semiconductor stack of Example 1-1 except that the off angle of the Si substrate 101 is different from that of Example 1-1.
- Example 1-5 As the Si substrate 101, four Si substrates having a main surface that is inclined at an off angle of 2.4 degrees to 2.7 degrees in the (011) direction from the (111) plane are prepared. A nitride semiconductor layer is formed on each Si substrate 101 by the manufacturing method of the first embodiment to manufacture a sample of the nitride semiconductor laminate.
- Example 1-5 has the same structure as the nitride semiconductor stack of Example 1-1 except that the off angle of the Si substrate 101 is different from that of Example 1-1.
- Comparative Example 1-1 As the Si substrate 101, four Si substrates each having a main surface that is inclined at an off angle of 0.5 degrees to 0.7 degrees in the (011) direction from the (111) plane are prepared. A nitride semiconductor layer is formed on each Si substrate 101 by the manufacturing method of the first embodiment to manufacture a sample of the nitride semiconductor laminate. As described above, Comparative Example 1-1 has the same structure as the nitride semiconductor laminate of Example 1-1 except that the off angle of the Si substrate 101 is different from that of Example 1-1.
- Comparative Example 1-2 As the Si substrate 101, four Si substrates having a main surface that is inclined at an off angle of 2.8 degrees to 3.1 degrees in the (011) direction from the (111) plane are prepared. A nitride semiconductor layer is formed on each Si substrate 101 by the manufacturing method of the first embodiment to manufacture a sample of the nitride semiconductor laminate. As described above, Comparative Example 1-2 has the same structure as the nitride semiconductor laminate of Example 1-1 except that the off angle of the Si substrate 101 is different from that of Example 1-1.
- Comparative Example 1-3 As the Si substrate 101, four Si substrates having a main surface that is inclined at an off angle of 3.2 degrees to 3.5 degrees in the (011) direction from the (111) plane are prepared. A nitride semiconductor layer is formed on each Si substrate 101 by the manufacturing method of the first embodiment to manufacture a sample of the nitride semiconductor laminate. Thus, Comparative Example 1-3 has the same structure as the nitride semiconductor laminate of Example 1-1 except that the off angle of the Si substrate 101 is different from that of Example 1-1.
- Example 1-1 to Example 1-5 and Comparative Example 1-1 to Comparative Example 1-3 an area per 100 ⁇ m ⁇ 100 ⁇ m area was measured using AFM (Atomic Force Microscope).
- the surface flatness was calculated and is shown in Table 1.
- the surface flatness is a value obtained by averaging the difference between the maximum height of the projections on the surface of the area and the minimum height of the recesses.
- the surface flatness of the samples of Examples 1-1 to 1-5 is 25.2 nm or less.
- the planar flatness of the sample of Example 1-1 is about half that of the sample of Comparative Example 1-1.
- the reason for this is that the terrace width of the growth surface is shorter than when the main surface of the Si substrate is a surface inclined at an off angle smaller than 0.8 degrees in the (011) direction from the (111) plane.
- Precursors (precursors) that are atoms or molecules before growth have a short migration distance even when the growth temperature is relatively low, so step-flow growth becomes easy, stops along the terrace, and a crystal orientation different from that of step flow There is less tendency to initiate nucleation. As a result, the growth of hillock-like projections is suppressed, and the surface unevenness is reduced.
- the surface flatness of the sample of Comparative Example 1-2 is about three times the surface flatness of the sample of Example 1-5.
- the reason is that the terrace width of the growth surface becomes too short when the main surface of the Si substrate is inclined at an off angle greater than 2.7 degrees in the (011) direction from the (111) plane, and the step flow growth
- the step flow growth and the balance of atoms detached from the surface are broken, and abnormal growth proceeds such that the group III atoms enter the position where the group V site should originally enter. Then, this abnormal growth is a factor of surface roughness such as growth of hillock-like protrusions.
- the main surface of the Si substrate 101 preferably has an off angle of 0.8 degrees or more and 2.7 degrees or less from the (111) plane.
- the terrace width of the growth surface is shorter than when the off angle is smaller than 0.8 degrees from the (111) plane.
- Step flow growth becomes easy because the migration distance is short even if the precursor (precursor) which is an atom or molecule before growth has a relatively low growth temperature, and it stops in the middle of the terrace, and the crystal orientation differs from that of step flow. There is less tendency to initiate nucleation. As a result, the growth of hillock-like protrusions can be suppressed, and surface irregularities can be reduced.
- the terrace width is not too short compared to when the off angle is larger than 2.7 degrees from the (111) plane, step flow growth proceeds too much, and the balance between step flow growth and atoms detached from the surface is broken. It is possible to prevent abnormal growth such as a group III atom entering a position where a group V site should originally enter. As a result, the growth of hillock-like protrusions can be suppressed, and surface irregularities can be reduced.
- the surface flatness of the nitride semiconductor layer 110 can be improved, and a high performance nitride semiconductor stack can be manufactured.
- asperity processing is performed so that the main surface of the Si substrate 101 is present in the area of 30% of the area of the surface. Therefore, the terrace width of the growth surface becomes short in the above region, and warpage of the Si substrate 101 due to the lattice constant difference between Si and AlN can be more reliably suppressed, and the application of strain stress to the AlN buffer layer 102 can be suppressed. , The occurrence of pits can be reduced more reliably. Therefore, the growth of hillock-like projections can be suppressed, the surface flatness of nitride semiconductor layer 110 can be more reliably improved, and a high performance nitride semiconductor stack can be more reliably manufactured.
- FIG. 2 shows a schematic cross-sectional view of the nitride semiconductor stack of the second embodiment.
- the nitride semiconductor stack according to the second embodiment is formed by the same method as the manufacturing method according to the first embodiment. That is, the AlN buffer layer 202 is formed on the main surface of the Si substrate 201, and the AlN buffer layer 202 is an AlN layer whose half width of the rocking curve in X-ray diffraction of the (0002) plane is 1900 arcsec.
- An AlGaN buffer layer 206 in which an AlGaN-1 layer 203, an AlGaN-2 layer 204, and an AlGaN-3 layer 205 are sequentially stacked is formed on the AlN buffer layer 202.
- the Al composition ratio of the AlGaN buffer layer 206 is 50%.
- a GaN layer 207 having a thickness of 1000 nm is formed on the AlGaN buffer layer 206, and an AlGaN barrier layer 208 is formed on the GaN layer 207.
- the AlN buffer layer 202, the AlGaN buffer layer 206, the GaN layer 207, and the AlGaN barrier layer 208 constitute the nitride semiconductor layer 210.
- Example 2-1 As the Si substrate 201, four Si substrates each having a main surface that is inclined at an off angle of 2.0 degrees in the (011) direction from the (111) plane are prepared. A nitride semiconductor layer 210 is formed on each Si substrate 201 by the above-described manufacturing method to manufacture a sample of a nitride semiconductor laminate.
- the thickness of the AlN buffer layer 202 is 50 nm.
- Example 2-2 has the same structure as the nitride semiconductor stack of Example 2-1 except that the thickness of the AlN buffer layer 202 is 100 nm.
- Example 2-3 has the same structure as the nitride semiconductor laminate of Example 2-1 except that the thickness of the AlN buffer layer 202 is 180 nm.
- Example 2-4 has the same structure as the nitride semiconductor laminate of Example 2-1 except that the thickness of the AlN buffer layer 202 is 400 nm.
- the comparative example 2-1 has the same structure as the nitride semiconductor laminate of the example 2-1 except that the thickness of the AlN buffer layer 202 is 40 nm.
- the comparative example 2-2 has the same structure as the nitride semiconductor laminate of the example 2-1 except that the thickness of the AlN buffer layer 202 is 450 nm.
- the comparative example 2-3 has the same structure as the nitride semiconductor laminate of the example 2-1 except that the thickness of the AlN buffer layer 202 is 500 nm.
- the surface state of the AlGaN buffer layer 206 in each of the samples of Example 2-1 to Example 2-4 and Comparative Example 2-1 to Comparative Example 2-3 was observed by SEM (Scanning Electron Microscope: scanning electron microscope). Then, the average number of pits per 100 ⁇ m 2 area on the surface of the AlGaN buffer layer 206 was calculated. The average number is shown in Table 2. Here, the pits have a diameter of 10 nm or more and 50 nm or less in the area. The pits adversely affect the characteristics of the nitride semiconductor stack, such as leakage.
- the number of pits in the samples of Examples 2-1 to 2-4 is 1.4 or less.
- the number of pits in the sample of Comparative Example 2-1 is 25.6, which is about 20 times the number of pits in the sample of Example 2-1.
- the thickness of the AlN buffer layer 202 is less than 50 nm, the AlN buffer layer 202 does not function sufficiently as a cover layer. Therefore, it is considered that the TMG Ga used for epitaxial growth of the AlGaN buffer layer 206 reacts with the Si substrate 201 to roughen the surface of the Si substrate 201 and to easily generate threading dislocations that cause generation of pits and the like.
- the number of pits in the sample of Comparative Example 2-2 is 13.8, which is about 10 times the number of pits of the sample of Example 2-4.
- the reason for this is that when the thickness of the AlN buffer layer 202 is greater than 400 nm, the warpage of the Si substrate 201 is caused by the lattice constant difference between Si and AlN while the AlN buffer layer 202 and the AlGaN buffer layer 206 are grown. growing. Then, strain stress is applied to the AlN buffer layer 202 and the AlGaN buffer layer 206, and it is considered that pits are easily generated in the AlN buffer layer 202.
- the thickness of the AlN buffer layer 202 on the Si substrate 201 is preferably 50 nm or more and 400 nm or less.
- the AlN buffer layer 202 sufficiently functions as a cover layer. Therefore, when the GaN layer 207 is stacked on the AlN buffer layer 202, the reaction between Si and Ga can be suppressed, and the growth of hillock-like protrusions can be further suppressed, and the generation of threading dislocations causing the generation of pits It can be reduced.
- the thickness of the AlN buffer layer 202 is 400 nm or less, warpage of the Si substrate 201 due to the lattice constant difference between Si and AlN can be suppressed, and strain stress applied to the AlN buffer layer 202 can be reduced. Can reduce the occurrence of pits.
- FIG. 3 shows a schematic cross-sectional view of the nitride semiconductor stack of the third embodiment.
- the nitride semiconductor stack of the third embodiment is formed by the same method as the manufacturing method of the first embodiment. That is, the AlN buffer layer 302 having a thickness of 180 nm is formed on the main surface of the Si substrate 301, and the AlGaN-1 layer 303, the AlGaN-2 layer 304, and the AlGaN-3 layer 305 are sequentially formed on the AlN buffer layer 302. A stacked AlGaN buffer layer 306 is formed. The Al composition ratio of the AlGaN buffer layer 306 is 50%.
- a GaN layer 307 having a thickness of 1000 nm is formed on the AlGaN buffer layer 306, and an AlGaN barrier layer 308 is formed on the GaN layer 307.
- the AlN buffer layer 302, the AlGaN buffer layer 306, the GaN layer 307, and the AlGaN barrier layer 308 constitute the nitride semiconductor layer 310.
- Example 3-1 As the Si substrate 301, four Si substrates each having a main surface that is inclined at an off angle of 2.0 degrees in the (011) direction from the (111) plane are prepared. A nitride semiconductor layer 310 is formed on each Si substrate 301 by the above-described manufacturing method to manufacture a sample of a nitride semiconductor laminate.
- the growth speed of the AlN buffer layer 302 is changed, and the half width of the rocking curve in the X-ray diffraction of the (0002) plane of the AlN buffer layer 302 is 1900 arcsec.
- the FWHM of the rocking curve in the X-ray diffraction of the (0002) plane of the AlN buffer layer 302 changes the growth rate on the Si substrate as a preliminary experiment, and the AlN buffer layer has a layer thickness of 180 nm.
- the result of X-ray diffraction evaluation of the semiconductor laminate on which Y was grown is reflected.
- Example 3-2 has the same structure as the nitride semiconductor stack of Example 3-1 except that the half value width of the rocking curve in the X-ray diffraction of the (0002) plane of the AlN buffer layer 302 is 2200 arcsec.
- Example 3-3 has the same structure as the nitride semiconductor stack of Example 3-1 except that the half value width of the rocking curve in the X-ray diffraction of the (0002) plane of the AlN buffer layer 302 is 2500 arcsec.
- Comparative Example 3-1 has the same structure as the nitride semiconductor stack of Example 3-1 except that the half value width of the rocking curve in the X-ray diffraction of the (0002) plane of the AlN buffer layer 302 is 2650 arcsec.
- Example 3-1 to Example 3-3 and Comparative Example 3-1 The surface state of the AlGaN buffer layer 306 in each sample of Example 3-1 to Example 3-3 and Comparative Example 3-1 was observed by SEM. Then, the average number of the pits per 100 ⁇ m 2 area on the surface of the AlGaN buffer layer 306 was calculated. The average number is shown in Table 3.
- the number of pits in the samples of Examples 3-1 to 3-3 is 1.8 or less.
- the number of pits in the sample of Comparative Example 3-1 is 12.3 which is about seven times the number of pits of the sample in Example 3-3.
- the reason is that the half value width of the rocking curve in the X-ray diffraction of the (0002) plane of the AlN buffer layer 302 is larger than 2500 arcsec and the crystallinity of the AlN buffer layer 302 is poor. It is considered to be easier.
- the half value width of the rocking curve in the X-ray diffraction of the (0002) plane of the AlN buffer layer 302 is 2500 arcsec or less.
- the half width of the rocking curve is 2500 arcsec or less, occurrence of dislocation can be reduced, and when the GaN layer 307 is stacked on the AlN buffer layer 302, the reaction between Si and Ga can be suppressed.
- the half width of the rocking curve is equal to or less than 2500 arcsec, the crystallinity of the AlN buffer layer 302 is good, the occurrence of dislocation can be reduced, and the occurrence of pits can be reduced. Therefore, the surface flatness of nitride semiconductor layer 310 can be more reliably improved, and a high performance nitride semiconductor stack can be manufactured more reliably.
- FIG. 4 shows a schematic cross-sectional view of the nitride semiconductor stack of the fourth embodiment.
- the nitride semiconductor stack of the fourth embodiment is formed by the same method as the manufacturing method of the first embodiment. That is, the AlN buffer layer 402 is formed on the main surface of the Si substrate 401.
- the AlN buffer layer 102 is an AlN buffer layer whose half width of a rocking curve in X-ray diffraction of the (0002) plane is 1900 arcsec.
- an AlGaN buffer layer 406 in which an AlGaN-1 layer 403, an AlGaN-2 layer 404, and an AlGaN-3 layer 405 are sequentially stacked is formed.
- a GaN layer 407 is formed on the AlGaN buffer layer 406, and an AlGaN barrier layer 408 is formed on the GaN layer 407.
- the AlN buffer layer 402, the AlGaN buffer layer 406, the GaN layer 407, and the AlGaN barrier layer 408 constitute a nitride semiconductor layer 410.
- an AlN buffer layer 402 having a thickness of 180 nm is formed on the main surface of the Si substrate 401, and a thickness is formed on the AlN buffer layer 402.
- a 200 nm AlGaN-1 layer 403, a 300 nm thick AlGaN-2 layer 404, and a 400 nm thick AlGaN-3 layer 405 are sequentially formed.
- the Al composition ratio of the AlGaN buffer layer 406 is 20%.
- NH 3 and TMG are supplied, and a GaN layer 407 having a thickness of 200 nm is formed on the AlGaN buffer layer 406 by epitaxial growth.
- NH 3 , TMG and TMA are supplied while keeping the temperature of the Si substrate 401 at 1100 ° C., and an AlGaN barrier layer having a thickness of 25 nm on the GaN layer 407 and an Al composition ratio of 10% by epitaxial growth.
- Form 408 NH 3 , TMG and TMA are supplied while keeping the temperature of the Si substrate 401 at 1100 ° C., and an AlGaN barrier layer having a thickness of 25 nm on the GaN layer 407 and an Al composition ratio of 10% by epitaxial growth.
- the nitride semiconductor stack of the fourth embodiment is manufactured.
- Example 4-1 As the Si substrate 401, four Si substrates each having a main surface that is inclined at an off angle of 2.0 degrees in the (011) direction from the (111) plane are prepared. A nitride semiconductor layer 410 is formed on each Si substrate 401 by the manufacturing method of the fourth embodiment to manufacture a sample of a nitride semiconductor laminate.
- Example 4-2 has the same structure as the nitride semiconductor stack of Example 4-1 except that the Al composition ratio of the AlGaN buffer layer 406 is 20%.
- Example 4-3 has the same structure as the nitride semiconductor stack of Example 4-1 except that the Al composition ratio of the AlGaN buffer layer 406 is 30%.
- Example 4-4 has the same structure as the nitride semiconductor stack of Example 4-1 except that the Al composition ratio of the AlGaN buffer layer 406 is 50%.
- Example 4-5 has the same structure as the nitride semiconductor stack of Example 4-1 except that the Al composition ratio of the AlGaN buffer layer 406 is 80%.
- the comparative example 4-1 has the same structure as the nitride semiconductor stack of the example 4-1 except that the Al composition ratio of the AlGaN buffer layer 406 is 7.0%.
- Comparative Example 4-2 has the same structure as the nitride semiconductor stack of Example 4-1 except that the Al composition ratio of the AlGaN buffer layer 406 is 90%.
- the number of pits in the samples of Examples 4-1 to 4-5 is 2.1 or less.
- the number of pits in the sample of Comparative Example 4-1 is 8.1, which is about four times the number of pits in the sample of Example 4-1. The reason for this is considered that when the Al composition is low, the balance of strain stress with Si and other layers is lost, and pits are easily generated from dislocations.
- the number of pits in the sample of Comparative Example 4-2 is 12.3 which is about six times the number of pits of the sample of Example 4-5.
- the reason for this is considered that, as described above, even when the Al composition is too high, the balance of strain stress with Si and other layers is lost, and pits are easily generated from dislocations.
- the Al composition ratio of the AlGaN buffer layer 406 is preferably 10% or more and 80% or less.
- the reaction between Si and Ga can be suppressed to suppress the warpage of the entire substrate.
- the distortion which the said curvature gives to the nitride semiconductor layer 410 can be reduced, and generation
- the nitride semiconductor laminate according to the fifth embodiment of the present invention is the nitride according to the fourth embodiment except that an Si substrate having an off angle of 2.0 degrees from the (111) plane is used as the Si substrate 401. It has the same structure as the semiconductor laminate.
- the thickness of the GaN layer 407 was changed, and the surface flatness per area of 100 ⁇ 100 ⁇ m was calculated using AFM as in the first embodiment.
- the surface flatness is shown in Table 5.
- the surface flatness is a value obtained by averaging the difference between the maximum height of the projections on the surface of the area and the minimum height of the recesses.
- the surface flatness is greatly improved when the GaN thickness is 100 nm or more. As the reason for this, it is conceivable that the lateral growth during the growth of GaN is promoted and the unevenness such as hillock is suppressed by the increase of the GaN thickness.
- the AlN buffer layer 1102, the AlGaN buffer layer 1103, the super lattice layer 1104, the base GaN layer 1105, the channel GaN layer 1106 and the 2 DEG barrier layer 1107 are examples of nitride semiconductor layers.
- the channel GaN layer 1106 and the 2DEG barrier layer 1107 constitute a GaN-based laminate 1110 having a heterojunction, and a 2DEG layer (two-dimensional electron gas) is formed at the interface between the channel GaN layer 1106 and the 2DEG barrier layer 1107. Layer) 1111 is generated.
- a recess reaching the channel GaN layer 1106 is formed in the GaN-based laminate 1110, and a source electrode 1201 and a drain electrode 1203 are formed as an ohmic electrode in this recess.
- the source electrode 1201 and the drain electrode 1203 are, for example, a Ti / Al / TiN electrode in which, for example, a Ti layer, an Al layer, and a TiN layer are sequentially stacked.
- the gate electrode 1202 is formed on the 2DEG barrier layer 1107.
- the gate electrode 1202 is, for example, a Schottky electrode which forms a Schottky junction with the 2 DEG barrier layer 1107, and is made of, for example, TiN.
- the gate electrode 1202 may be formed on an insulating film to have an insulated gate electrode structure.
- An interlayer insulating film (not shown) is formed on the 2DEG barrier layer 1107, the source electrode 1201, the drain electrode 1203 and the gate electrode 1202, and a drain electrode pad, a source electrode pad and a gate electrode pad (not shown) are provided on the interlayer insulating film. ing.
- the source electrode 1201, the drain electrode 1203, and the gate electrode 1202 are electrically connected to the drain electrode pad, the source electrode pad, and the gate electrode pad, respectively, through via holes (not shown).
- the Si substrate 1101 has an off angle with respect to the (111) plane, and as shown in FIG. 6, an orientation flat portion 1121 (hereinafter referred to as an orientation flat portion) is provided on the (1-10) plane.
- the nitride semiconductor device passes through the center of gravity 1211 of the source electrode 1201 and the center of gravity 1213 of the drain electrode 1203 as shown in FIG. 7 and in the direction from the source electrode 1201 to the drain electrode 1203
- the straight line L0 of the direction) and the orientation flat portion 1121 are configured to be parallel to each other.
- the source electrode 1201, the drain electrode 1203, and the gate electrode 1202 are disposed in order in the direction ⁇ 1-12> parallel to the orientation flat portion 1121.
- the straight line L1 on the (111) plane of the Si substrate 1101 in the direction forming the angle ⁇ with respect to the straight line L0 is used as the rotation axis.
- Nitriding in which a periodic super lattice layer 1104, a base GaN layer 1105 having a layer thickness of 600 nm, a channel GaN layer 1106 having a layer thickness of 600 nm, and a 2DEG barrier layer 1107 having a layer thickness of 32 nm of Al 0.17 Ga 0.83 A multilayer semiconductor substrate (nitride semiconductor epitaxial substrate) was used.
- the same electrodes (the source electrode 1201, the drain electrode 1203, and the gate electrode 1202) were used, and they were arranged in the same manner. Further, as shown in FIG. 6, straight lines L0 in the electrode arrangement direction and straight lines L1 on the (111) plane of the Si substrate 1101 in the direction forming an angle ⁇ with respect to the straight lines L0 They were arranged to intersect on the outer periphery of the substrate 1101.
- the Hall (Hall) effect measurement was performed in the electrode 1201, 1202, 1203 vicinity.
- the median value of mobility is ⁇ Sample 1-1 is 1815 cm 2 / V ⁇ sec, ⁇ The sample 1-2 is 1783 cm2 / V ⁇ sec, ⁇ Sample 1-3 is 1762 cm 2 / V ⁇ sec, ⁇ The sample 1-4 is 1748cm2 / V ⁇ sec, ⁇ The sample 1-5 is 1726 cm 2 / V ⁇ sec, ⁇ The sample 1-6 is 1658 cm 2 / V ⁇ sec, ⁇ Sample 1-7 is 1580 cm 2 / V ⁇ sec, Met.
- the median value of the current collapse value which is the rate of change of on-resistance, is ⁇ Sample 1-1 is 1.05, ⁇ Sample 1-2 is 1.09, ⁇ The sample 1-3 is 1.11, ⁇ The sample 1-4 is 1.10. ⁇ The sample 1-5 is 1.14, ⁇ Samples 1-6 are 1.28, ⁇ Sample 1-7 is 1.32, Met.
- the boundary between the step 1301 and the terrace 1302 in the Si atomic layer extends in a direction substantially parallel to the straight line L1 which is the rotation axis of the off angle.
- the extension direction of the boundary between this step and the terrace hardly changes even in the vicinity of the 2DEG layer 1111 in which the nitride semiconductor is grown on the Si substrate 1101. Therefore, as the angle ⁇ is closer to 0 °, the straight line L0 in the electrode alignment direction and the straight line L2 indicating the extension direction of the boundary between the step and the terrace approach parallel, and there is a relation with the electrode alignment direction “The direction in which the carrier moves when voltage is applied” and the direction in which the boundary between the step and the terrace extends approaches parallel.
- the 2DEG layer is formed by setting the straight line L1 on the (111) plane of the Si substrate 1101 in the direction forming an angle ⁇ of 0 degrees or more and 30 degrees or less with respect to the straight line L0 in the electrode arrangement direction. Since the mobility of electrons generated in the vicinity of 1111 can be improved, an increase in the on resistance of the nitride semiconductor device can be suppressed, and current collapse can be reduced.
- the rotation angle of the Si substrate 1101 is the straight line L1 on the (111) plane of the Si substrate 1101 in the direction forming an angle ⁇ of 0 degree or more and 30 degrees or less with respect to the straight line L0 in the electrode alignment direction. There is.
- the straight line L1 may be a straight line that forms an angle ⁇ of 0 degrees or more and 30 degrees or less with respect to the straight line L0, and can be arbitrarily disposed on the Si substrate 1101.
- the off angle is provided at an angle of 0 degrees or more and 4.0 degrees or less from the (111) plane.
- the off angle is 4.0 degrees or less, the warpage of the Si substrate 1101 at room temperature is 100 ⁇ m or less, which enables process processing.
- the off angle is 2.7 degrees or less, the warpage of the Si substrate 1101 at room temperature becomes 70 ⁇ m or less, which facilitates the process processing. Therefore, the off angle is preferably equal to or less than 2.7 degrees, and more preferably equal to or less than 1.7 degrees.
- the off angle is preferably 0.1 degrees or more, and more preferably 0.3 degrees or more.
- the nitride semiconductor device of the seventh embodiment is not shown, the AlN buffer layer 1102 in the nitride semiconductor device of the sixth embodiment is configured to have a layer thickness of 30 nm or more and 400 nm or less.
- the same components as those in the sixth embodiment are denoted by the same reference numerals, and the description of the sixth embodiment is used.
- a nitride semiconductor epitaxial substrate in which a layer 1104, a base GaN layer 1105 having a layer thickness of 600 nm, a channel GaN layer 1106 having a layer thickness of 600 nm, and a 2DEG barrier layer 1107 having a layer thickness of 32 nm of Al 0.17 Ga 0.83 are sequentially stacked. was used.
- AFM atomic force microscope
- ⁇ Sample 2-1 is 113 nm
- ⁇ Sample 2-2 is 48 nm
- the sample 2-3 is 41 nm
- ⁇ Sample 2-4 is 31 nm
- ⁇ Samples 2-5 are 36 nm
- Sample 2-7 is 121 nm, Met.
- the layer thickness of the AlN buffer layer 1102 is less than 30 nm or exceeds 400 nm, the difference between the maximum height and the minimum height of the surface of the AlN buffer layer 1102 for growing the nitride semiconductor layer becomes large. I found it too.
- the Si substrate in the direction forming an angle ⁇ of 0 degrees or more and 30 degrees or less with respect to the straight line L0 in the electrode arrangement direction.
- the straight line L1 on the (111) plane of 1101 is taken as the rotation axis of the off angle, “direction of carrier movement at the time of voltage application” and extension of boundary between step and terrace which seems to be related It is assumed that the direction deviates from parallel and the mobility of the carrier at the time of voltage application decreases. Therefore, the layer thickness of the AlN buffer layer 1102 is set to 30 nm or more and 400 nm or less.
- the layer thickness of the AlN buffer layer 1102 By setting the layer thickness of the AlN buffer layer 1102 to 30 nm or more and 400 nm or less, it is possible to suppress a decrease in mobility of carriers at the time of voltage application due to the surface shape of the AlN buffer layer 1102. As a result, the increase in the on-resistance of the nitride semiconductor device can be suppressed, and the current collapse can be reduced.
- the half width of the rocking curve in the X-ray diffraction of the (0002) plane of the AlN buffer layer 1102 in the nitride semiconductor device of the sixth embodiment is 2500 arcsec or less It is configured as follows. The same components as those in the sixth embodiment are denoted by the same reference numerals, and the description of the sixth embodiment is used.
- the nitride semiconductor device of the ninth embodiment is not shown, but on the AlN buffer layer 1102 of the nitride semiconductor device of the sixth embodiment, an AlGaN buffer layer 1103 and an AlN / AlGaN having an Al composition of 10% to 80%.
- a superlattice layer 1104 is provided, and a base GaN layer 1105 having a thickness of 100 nm or more is stacked on the superlattice layer 1104.
- the same components as those in the sixth embodiment are denoted by the same reference numerals, and the description of the sixth embodiment is used.
- nitride semiconductor device of the ninth embodiment warpage of the entire nitride semiconductor multilayer substrate can be suppressed, and a nitride semiconductor layer, that is, an AlN buffer layer 1102, an AlGaN buffer layer 1103, a super lattice layer 1104,
- the generation of dislocation can be suppressed by reducing the strain stress applied to the base GaN layer 1105, the channel GaN layer 1106 and the 2 DEG barrier layer 1107.
- it is possible to suppress a decrease in carrier mobility due to dislocation it is possible to suppress an increase in the on-resistance of the nitride semiconductor device and to reduce current collapse.
- the nitride semiconductor device of the tenth embodiment is not shown, but an angle of 0 degrees or more and 30 degrees or less with respect to the straight line L0 in the electrode arrangement direction on the surface of the Si substrate 1101 in the nitride semiconductor device of the sixth embodiment.
- the straight line L1 in the direction that forms ⁇ as the rotation axis, the surface is inclined such that the surface inclined at an off angle of 0 ° or more and 4.0 ° or less from the (111) plane is 30% or more of the surface of the Si substrate 1101 It is a thing.
- the same components as those in the sixth embodiment are denoted by the same reference numerals, and the description of the sixth embodiment is used.
- the rotation axis is a straight line L1 forming an angle ⁇ of 0 ° to 30 ° with respect to the straight line L0 in the electrode alignment direction, and the rotation axis is 0 ° to 4.0 ° from the (111) plane.
- the main surfaces of the Si substrates 201, 301, and 401 are surfaces inclined at an off angle of 2.0 degrees from the (111) plane to the (011) direction, It is not restricted to this.
- the main surface of the Si substrate may be a surface inclined at an off angle of 0.8 degrees or more and 2.7 degrees or less in the (011) direction from the (111) plane.
- the thickness of the AlN buffer layers 102, 302, and 402 is 180 nm, but is not limited thereto.
- the thickness of the AlN buffer layer may be 50 nm or more and 400 nm or less.
- the AlN buffer layers 102, 202, and 402 are AlN buffer layers whose half width of the rocking curve in X-ray diffraction of the (0002) plane is 1900 arcsec. However, it is not limited to this.
- the half width of the rocking curve in the X-ray diffraction of the (0002) plane of the AlN buffer layer may be 2500 arcsec or less.
- the thickness of the GaN layers 107, 207, and 307 is 1000 nm, and in the fourth embodiment, the thickness of the GaN layer 407 is 200 nm.
- the present invention is not limited thereto.
- the thickness of the GaN layer may be 100 nm or more.
- the surface of the Si substrate 101, 201, 301, 401 is processed to be uneven so that the main surface is present in the area of 30% or more of the area of the surface.
- the present invention is not limited to this, as long as the main surface of the Si substrate is present in the area of 30% or more of the area of the surface of the Si substrate.
- the surface of the Si substrate 101, 201, 301, 401 may not be processed to be uneven.
- the respective layers are grown by MOCVD using MOCVD apparatus.
- MOCVD hydrogen vapor phase growth
- MBE molecular beam epitaxial
- the growth conditions of each layer may be appropriately set according to the configuration of a semiconductor device manufactured using this nitride semiconductor laminate.
- the GaN-based laminate 1110 includes the channel GaN layer 1106 and the 2DEG barrier layer 1107 of Al 0.17 Ga 0.83 stacked on the channel GaN layer 1106. Although it comprises, it is not restricted to this. GaN-based layered body, whether formed by laminating a GaN-based semiconductor layer represented by In x Al y Ga 1-x -y N (0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1,0 ⁇ x + y ⁇ 1) Just do it.
- the GaN-based laminate includes, in addition to GaN and AlGaN, for example, InGaN, which is a mixed crystal of GaN and indium nitride (InN), or AlInGaN, which is a mixed crystal of GaN, AlN and InN, or the like. It may be.
- InGaN which is a mixed crystal of GaN and indium nitride (InN)
- AlInGaN which is a mixed crystal of GaN, AlN and InN, or the like. It may be.
- the recess reaching the channel GaN layer 1106 is formed in the 2 DEG barrier layer 1107, and the source electrode 1201 and the drain electrode 1203 are formed as ohmic electrodes in this recess. Absent.
- the source electrode and the drain electrode are formed on the 2DEG barrier layer on the channel GaN layer without forming the recess, and the layer thickness of the 2DEG barrier layer is reduced to form the drain electrode and the source electrode as an ohmic electrode. It may be
- the nitride semiconductor device is, for example, a HEMT (high electron mobility transistor), a MISFET (metal-insulator-semiconductor field effect transistor: metal insulator semiconductor field effect transistor), a junction type FET, an LED (light emission) It may be a diode), a semiconductor laser or the like.
- the electrode is a drain electrode, a source electrode, a gate electrode, an emitter electrode, a collector electrode, a base electrode, an anode electrode, a cathode electrode or the like according to the type of the nitride semiconductor device.
- the orientation flat portion 1121 of the Si substrate 1101 is provided in parallel to ⁇ 11-2>, but the present invention is not limited to this.
- the orientation flat portion may be provided in parallel with ⁇ 1-10>, or may be provided in other directions.
- the AlN buffer layer 1102 is used as the barrier layer, but instead, for example, a layer made of p-GaN, p-AlGaN, or the like can be used. Further, in the AlGaN buffer layer 1103 as a buffer layer, the Al composition may be changed in the layer thickness direction as in Patent Document 1.
- the nitride semiconductor laminate of the present invention is Si substrates 101, 201, 301, 401, and 1101 whose main surfaces are surfaces inclined at an off angle of 0 degrees or more and 4.0 degrees or less from the (111) plane;
- the semiconductor device is characterized by including the nitride semiconductor layers 110, 210, 310, 410, 1102, 1103, 1104, 1105, 1106, and 1107 formed on the Si substrates 101, 201, 301, 401, and 1101, respectively.
- the Si substrates 101, 201, 301, 401, and 1101 have the main surface that is inclined at an off angle of 0 degrees or more and 4.0 degrees or less from the (111) plane. There is.
- nitride semiconductor stacked body and source and drain electrodes provided on the nitride semiconductor layers 1102, 1103, 1104, 1105, 1106, 1107 and spaced apart from each other by a predetermined distance, and And the straight line L1 on the Si substrate 101, 201, 301, 401, and 1101 in a direction forming an angle of 0 degrees to 30 degrees with respect to the straight line L0 in the direction from the center of gravity of the source electrode to the center of gravity of the drain electrode.
- the mobility of electrons generated in the vicinity of the 2DEG layer 1111 can be improved by setting the rotation axis at the above-mentioned off-angle. Therefore, the increase in the on resistance of the nitride semiconductor device can be suppressed, and the current collapse can be reduced.
- the conventional nitride semiconductor laminate includes an AlN layer formed on a Si substrate, an AlGaN layer having a composition ratio of Al of 30% to 60%, and an AlGaN layer formed on the AlN layer, and the AlGaN layer. And a GaN layer formed thereon.
- the present inventors faced the problem that when the AlN layer is grown on the Si substrate, irregularities derived from hillocks or step bunching are easily generated on the surface of the AlN layer or the surface of the AlGaN layer on the AlN layer.
- this inventor estimated as follows. That is, when the off-angle of the main surface of the Si substrate is small, the number of steps on the substrate surface at the atomic level decreases. On the terrace, atoms such as Al stop in the middle of surface migration, from which nucleation occurs, and crystal nuclei different from ordinary step flow growth grow. It is considered that this crystal nucleus is a generation factor of hillock-like protrusions.
- another object of the present invention is to provide a high performance nitride semiconductor laminate capable of improving the surface flatness of the nitride semiconductor layer and a method of manufacturing the same.
- the off-angle of the main surface of the Si substrate is 0.8 degrees or more and 2.7 degrees or less from the (111) plane.
- the main surfaces of the Si substrates 101, 201, 301, and 401 have off angles of 0.8 degrees or more and 2.7 degrees or less from the (111) plane. ing. Therefore, the terrace width of the growth surface is shorter than when the off angle is smaller than 0.8 degrees from the (111) plane.
- the precursor (precursor) which is an atom or molecule before growth has a relatively low growth temperature, step flow growth becomes easy, stops on the terrace, and is different from step flow There is less tendency to initiate nucleation of crystallographic orientation. As a result, the growth of hillock-like protrusions can be suppressed, and surface irregularities can be reduced.
- the terrace width is not too short compared to when the off angle is larger than 2.7 degrees from the (111) plane, step flow growth proceeds too much, and the balance between step flow growth and atoms detached from the surface is broken. It is possible to prevent abnormal growth such as a group III atom entering a position where a group V site should originally enter. As a result, the growth of hillock-like protrusions can be suppressed, and surface irregularities can be reduced.
- the surface flatness of the nitride semiconductor layers 110, 210, 310, and 410 can be improved, and a high performance nitride semiconductor stack can be manufactured.
- the nitride semiconductor layer includes AlN layers 102, 202, 302, 402 formed on the main surface of the Si substrates 101, 201, 301, 401, The thicknesses of the AlN layers 102, 202, 302, and 402 are 50 nm or more and 400 nm or less.
- the AlN layers 102, 202, 302, 402 since the thickness of the AlN layers 102, 202, 302, 402 is 50 nm or more, the AlN layers 102, 202, 302, 402 sufficiently function as a cover layer. Therefore, when the GaN layers 107, 207, 307, and 407 are stacked on the AlN layers 102, 202, 302, and 402, the reaction between Si and Ga can be suppressed, so that the growth of hillock-like protrusions can be suppressed and the pits are formed. It is possible to reduce the occurrence of threading dislocation which causes the occurrence.
- the thickness of the AlN layers 102, 202, 302, and 402 is 400 nm or less, the warpage of the Si substrates 101, 201, 301, and 401 due to the lattice constant difference between Si and AlN is suppressed. It is possible to suppress the application of strain stress to 202, 302, and 402, and to reduce the occurrence of pits.
- the half value width of the rocking curve in the X-ray diffraction of the (0002) plane of the AlN layers 102, 202, 302 and 402 is 2500 arcsec or less.
- the half value width of the rocking curve in the X-ray diffraction of the (0002) plane of the AlN layers 102, 202, 302, 402 is 2500 arcsec or less. Therefore, the occurrence of dislocation can be reduced, and when the GaN layers 107, 207, 307, and 407 are stacked on the AlN layers 102, 202, 302, and 402, the reaction between Si and Ga can be suppressed.
- the crystallinity of the AlN layers 102, 202, 302, and 402 is good, it is possible to reduce the occurrence of dislocations and to reduce the occurrence of pits. Therefore, the surface flatness of nitride semiconductor layers 110, 210, 310, and 410 can be more reliably improved, and a high performance nitride semiconductor stack can be manufactured more reliably.
- the Al composition ratio of the AlGaN layers 106, 206, 306, and 406 is 10% or more and 80% or less.
- the thickness of the GaN layers 107, 207, 307, and 407 is 100 nm or more.
- the Al composition ratio of the AlGaN layers 106, 206, 306, 406 is 10% or more and 80% or less, and the thickness of the GaN layers 107, 207, 307, 407 is 100 nm or more It is. Therefore, when the AlGaN layers 106, 206, 306, and 406 are stacked on the AlN layers 102, 202, 302, and 402, the reaction between Si and Ga can be suppressed to suppress warpage of the entire substrate. And the distortion which the said curvature gives to nitride semiconductor layer 110, 210, 310, 410 can be reduced, and generation
- nitride semiconductor layers 110, 210, 310, and 410 can be more reliably improved, and a high performance nitride semiconductor stack can be manufactured more reliably.
- the surface of the Si substrates 101, 201, 301, and 401 is processed to be uneven so that the main surface is present in 30% or more of the area of the surface.
- the concavo-convex process is performed so that the main surface of the Si substrate 101, 201, 301, 401 exists in the area of 30% or more of the area of the surface. For this reason, the terrace width of the growth surface becomes short in the above-mentioned region, and the warpage of the Si substrates 101, 201, 301, 401 due to the lattice constant difference between Si and AlN can be suppressed more reliably. , 402 can be suppressed, and generation of pits can be more reliably reduced.
- nitride semiconductor layers 110, 210, 310, and 410 can be more reliably improved, and a high performance nitride semiconductor stack can be manufactured more reliably.
- nitride semiconductor laminate of the present invention Including the step of forming nitride semiconductor layers 110, 210, 310, and 410 on silicon substrates 101, 201, 301, and 401 by epitaxial growth,
- the main surface of the Si substrate 101, 201, 301, 401 has an off angle of 0.8 degrees or more and 2.7 degrees or less from the (111) plane.
- the nitride semiconductor layers 110, 210, 310, 410 are formed by epitaxial growth on the Si substrates 101, 201, 301, 401, and the main surfaces of the Si substrates 101, 201, 301, 401 are It has an off angle of 0.8 degrees or more and 2.7 degrees or less from the (111) plane. Therefore, the terrace width of the growth surface is shorter than when the off angle is smaller than 0.8 degrees from the (111) plane.
- step flow growth becomes easy, stops on the terrace, and is different from step flow There is less tendency to initiate nucleation of crystallographic orientation. As a result, the growth of hillock-like protrusions can be suppressed, and surface irregularities can be reduced.
- the terrace width is not too short compared to when the off angle is larger than 2.7 degrees from the (111) plane, step flow growth proceeds too much, and the balance between step flow growth and atoms detached from the surface is broken. It is possible to prevent abnormal growth such as a group III atom entering a position where a group V site should originally enter. As a result, the growth of hillock-like protrusions can be suppressed, and surface irregularities can be reduced.
- the surface flatness of the nitride semiconductor layers 110, 210, 310, and 410 can be improved, and a high performance nitride semiconductor stack can be manufactured.
- the mobility of electrons generated in the vicinity of the 2DEG layer 1111 can be improved, so that the increase in the on resistance of the nitride semiconductor device can be suppressed, and the current collapse can be reduced.
- An AlN layer 1102 having a layer thickness of 30 nm or more and 400 nm or less as the nitride semiconductor layers 1102, 1103, 1104, 1105, 1106, and 1107 is stacked on the Si substrate 101.
- the above embodiment it is possible to suppress the decrease in the mobility of electrons at the time of voltage application due to the surface shape of the AlN layer 1102. As a result, the increase in the on-resistance of the nitride semiconductor device can be suppressed, and the current collapse can be reduced.
- the above-mentioned AlN layer 1102 has a half-width of 2500 arcsec or less of a rocking curve in X-ray diffraction of the (0002) plane.
- the crystal is good and the occurrence of dislocations is suppressed (dislocations are relatively small), it is possible to suppress the reaction between Si and Ga when laminating the AlGaN layer 1103. It is considered to be. As a result, the decrease in electron mobility due to dislocation can be suppressed, so that the increase in on-resistance of the nitride semiconductor device can be suppressed, and current collapse can be reduced.
- At least one AlGaN layer 1103 or 1104 having an Al composition of 10% or more and 80% or less as the nitride semiconductor layers 1102, 1103, 1104, 1105, 1106, and 1107 is stacked on the AlN layer 102,
- a GaN layer 1105 having a layer thickness of 100 nm or more as the nitride semiconductor layers 1102, 1103, 1104, 1105, 1106, and 1107 is stacked on the AlGaN layer 1104.
- warpage of the entire nitride semiconductor multilayer substrate can be suppressed, and strain stress applied to the nitride semiconductor layers 1102, 1103, 1104, 1105, 1106, and 1107 can be reduced to generate dislocations. It can be suppressed.
- the decrease in electron mobility due to dislocation can be suppressed, so that the increase in on-resistance of the nitride semiconductor device can be suppressed, and current collapse can be reduced.
- the surface of the Si substrate 1101 has irregularities so that the surface inclined at an off angle of 0 degrees or more and 4.0 degrees or less from the (111) plane is 30% or more of the surface of the Si substrate 1101 .
- the increase in the on-resistance of the nitride semiconductor device can be reliably suppressed, and the current collapse can be reduced.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Junction Field-Effect Transistors (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
(111)面から0度以上4.0度以下のオフ角で傾斜した面を主面とするSi基板と、
上記Si基板の上に形成した窒化物半導体層と
を備えることを特徴としている。
図1は、本発明の第1実施形態の窒化物半導体積層体の模式断面図を示している。図1に示すように、この第1実施形態の窒化物半導体積層体は、Si基板101と、このSi基板101上に形成された窒化物半導体層110とを備えている。Si基板101の主面上にAlNバッファ層102が形成されている。
Si基板101として、(111)面から(011)方向に、0.8度~1.1度のオフ角度で傾斜した面を主面とするSi基板を4枚準備する。各Si基板101上に上記第1実施形態の製造方法によって窒化物半導体層を形成して、窒化物半導体積層体のサンプルを製造する。
Si基板101として、(111)面から(011)方向に、1.2度~1.5度のオフ角度で傾斜した面を主面とするSi基板を4枚準備する。各Si基板101上に上記第1実施形態の製造方法によって窒化物半導体層を形成して、窒化物半導体積層体のサンプルを製造する。このように、実施例1-2では、Si基板101のオフ角度が実施例1-1と異なる以外は、実施例1-1の窒化物半導体積層体と同じ構造である。
Si基板101として、(111)面から(011)方向に、1.6度~1.9度のオフ角度で傾斜した面を主面とするSi基板を4枚準備する。各Si基板101上に上記第1実施形態の製造方法によって窒化物半導体層を形成して、窒化物半導体積層体のサンプルを製造する。このように、実施例1-3では、Si基板101のオフ角度が実施例1-1と異なる以外は、実施例1-1の窒化物半導体積層体と同じ構造である。
Si基板101として、(111)面から(011)方向に、2.0度~2.3度のオフ角度で傾斜した面を主面とするSi基板を4枚準備する。各Si基板101上に上記第1実施形態の製造方法によって窒化物半導体層を形成して、窒化物半導体積層体のサンプルを製造する。このように、実施例1-4では、Si基板101のオフ角度が実施例1-1と異なる以外は、実施例1-1の窒化物半導体積層体と同じ構造である。
Si基板101として、(111)面から(011)方向に、2.4度~2.7度のオフ角度で傾斜した面を主面とするSi基板を4枚準備する。各Si基板101上に上記第1実施形態の製造方法によって窒化物半導体層を形成して、窒化物半導体積層体のサンプルを製造する。このように、実施例1-5では、Si基板101のオフ角度が実施例1-1と異なる以外は、実施例1-1の窒化物半導体積層体と同じ構造である。
Si基板101として、(111)面から(011)方向に、0.5度~0.7度のオフ角度で傾斜した面を主面とするSi基板を4枚準備する。各Si基板101上に上記第1実施形態の製造方法によって窒化物半導体層を形成して、窒化物半導体積層体のサンプルを製造する。このように、比較例1-1では、Si基板101のオフ角度が実施例1-1と異なる以外は、実施例1-1の窒化物半導体積層体と同じ構造である。
Si基板101として、(111)面から(011)方向に、2.8度~3.1度のオフ角度で傾斜した面を主面とするSi基板を4枚準備する。各Si基板101上に上記第1実施形態の製造方法によって窒化物半導体層を形成して、窒化物半導体積層体のサンプルを製造する。このように、比較例1-2では、Si基板101のオフ角度が実施例1-1と異なる以外は、実施例1-1の窒化物半導体積層体と同じ構造である。
Si基板101として、(111)面から(011)方向に、3.2度~3.5度のオフ角度で傾斜した面を主面とするSi基板を4枚準備する。各Si基板101上に上記第1実施形態の製造方法によって窒化物半導体層を形成して、窒化物半導体積層体のサンプルを製造する。このように、比較例1-3では、Si基板101のオフ角度が実施例1-1と異なる以外は、実施例1-1の窒化物半導体積層体と同じ構造である。
次に、本発明の第2実施形態の窒化物半導体積層体を説明する。
Si基板201として、(111)面から(011)方向に、2.0度のオフ角度で傾斜した面を主面とするSi基板を4枚準備する。各Si基板201上に上記製造方法によって窒化物半導体層210を形成して、窒化物半導体積層体のサンプルを製造する。ここで、AlNバッファ層202の厚さは、50nmである。
実施例2-2では、AlNバッファ層202の厚さが100nmである以外は、実施例2-1の窒化物半導体積層体と同じ構造である。
実施例2-3では、AlNバッファ層202の厚さが180nmである以外は、実施例2-1の窒化物半導体積層体と同じ構造である。
実施例2-4では、AlNバッファ層202の厚さが400nmである以外は、実施例2-1の窒化物半導体積層体と同じ構造である。
比較例2-1では、AlNバッファ層202の厚さが40nmである以外は、実施例2-1の窒化物半導体積層体と同じ構造である。
比較例2-2では、AlNバッファ層202の厚さが450nmである以外は、実施例2-1の窒化物半導体積層体と同じ構造である。
比較例2-3では、AlNバッファ層202の厚さが500nmである以外は、実施例2-1の窒化物半導体積層体と同じ構造である。
次に、本発明の第3実施形態の窒化物半導体積層体を説明する。
Si基板301として、(111)面から(011)方向に、2.0度のオフ角度で傾斜した面を主面とするSi基板を4枚準備する。各Si基板301上に上記製造方法によって窒化物半導体層310を形成して、窒化物半導体積層体のサンプルを製造する。ここで、AlNバッファ層302の成長速度を変化させて、AlNバッファ層302の(0002)面のX線回折におけるロッキングカーブの半値幅が1900arcsecである。
実施例3-2では、AlNバッファ層302の(0002)面のX線回折におけるロッキングカーブの半値幅が2200arcsecである以外は、実施例3-1の窒化物半導体積層体と同じ構造である。
実施例3-3では、AlNバッファ層302の(0002)面のX線回折におけるロッキングカーブの半値幅が2500arcsecである以外は、実施例3-1の窒化物半導体積層体と同じ構造である。
比較例3-1では、AlNバッファ層302の(0002)面のX線回折におけるロッキングカーブの半値幅が2650arcsecである以外は、実施例3-1の窒化物半導体積層体と同じ構造である。
次に、本発明の第4実施形態の窒化物半導体積層体を説明する。
Si基板401として、(111)面から(011)方向に、2.0度のオフ角度で傾斜した面を主面とするSi基板を4枚準備する。各Si基板401上に上記第4実施形態の製造方法によって窒化物半導体層410を形成して、窒化物半導体積層体のサンプルを製造する。
実施例4-2では、AlGaNバッファ層406のAl組成比が20%である以外は、実施例4-1の窒化物半導体積層体と同じ構造である。
実施例4-3では、AlGaNバッファ層406のAl組成比が30%である以外は、実施例4-1の窒化物半導体積層体と同じ構造である。
実施例4-4では、AlGaNバッファ層406のAl組成比が50%である以外は、実施例4-1の窒化物半導体積層体と同じ構造である。
実施例4-5では、AlGaNバッファ層406のAl組成比が80%である以外は、実施例4-1の窒化物半導体積層体と同じ構造である。
比較例4-1では、AlGaNバッファ層406のAl組成比が7.0%である以外は、実施例4-1の窒化物半導体積層体と同じ構造である。
比較例4-2では、AlGaNバッファ層406のAl組成比が90%である以外は、実施例4-1の窒化物半導体積層体と同じ構造である。
本発明の第5実施形態の窒化物半導体積層体は、Si基板401として、(111)面から2.0度のオフ角のSi基板を用いたこと以外は、上記第4実施形態の窒化物半導体積層体と同じ構造である。この第5実施形態の窒化物半導体積層体において、GaN層407の厚さを変化させて、第1実施形態と同様にAFMを用いて、100×100μmのエリア当たりの表面平坦性を算出した。この表面平坦性を表5に示す。ここで、上記表面平坦性は、上記エリアの表面における凸部の最大の高さと凹部の最小の高さとの差分を平均した値である。
図5に示すように、第6実施形態の窒化物半導体装置は、Si基板1101と、このSi基板1101上に積層されたAlNバッファ層1102と、このAlNバッファ層1102上に積層されたAlGaNバッファ層1103と、このAlGaNバッファ層1103上に積層された60周期のAlN/AlGaN超格子層1104と、この超格子層1104上に積層された下地GaN層1105と、この下地GaN層1105上に積層されたチャネルGaN層1106と、このチャネルGaN層1106上に積層されたAl0.17Ga0.83の2DEGバリア層1107とで構成されている。AlNバッファ層1102,AlGaNバッファ層1103,超格子層1104、下地GaN層1105、チャネルGaN層1106および2DEGバリア層1107は、窒化物半導体層の一例である。
・電極の並び方向の直線L0に対して角度α=0度(L0と平行)を成す直線L1を回転軸としたオフ角の角度(オフ角度)2度のSi(111)を基板として使用したサンプル1-1の窒化物半導体装置(HEMT)と、
・電極の並び方向の直線L0に対して角度α=10度を成す直線L1を回転軸としたオフ角度2度のSi(111)をSi基板1101として使用したサンプル1-2のHEMTと、
・電極の並び方向の直線L0に対して角度α=20度を成す直線L1を回転軸としたオフ角度2度のSi(111)をSi基板1101として使用したサンプル1-3のHEMTと、
・電極の並び方向の直線L0に対して角度α=25度を成す直線L1を回転軸としたオフ角度2度のSi(111)をSi基板1101として使用したサンプル1-4のHEMTと、
・電極の並び方向の直線L0に対して角度α=30度を成す直線L1を回転軸としたオフ角度2度のSi(111)をSi基板1101として使用したサンプル1-5のHEMTと、
・電極の並び方向の直線L0に対して角度α=35度を成す直線L1を回転軸としたオフ角度2度のSi(111)をSi基板1101として使用したサンプル1-6のHEMTと、
・電極の並び方向の直線L0に対して角度α=40度を成す直線L1を回転軸としたオフ角度2度のSi(111)をSi基板1101として使用したサンプル1-7のHEMTと、
の7種類のサンプルを準備した。
・サンプル1-1は1815cm2/V・sec、
・サンプル1-2は1783cm2/V・sec、
・サンプル1-3は1762cm2/V・sec、
・サンプル1-4は1748cm2/V・sec、
・サンプル1-5は1726cm2/V・sec、
・サンプル1-6は1658cm2/V・sec、
・サンプル1-7は1580cm2/V・sec、
であった。
・サンプル1-1は1.05、
・サンプル1-2は1.09、
・サンプル1-3は1.11、
・サンプル1-4は1.10、
・サンプル1-5は1.14、
・サンプル1-6は1.28、
・サンプル1-7は1.32、
であった。
第7実施形態の窒化物半導体装置は、図示しないが、第6実施形態の窒化物半導体装置におけるAlNバッファ層1102が、30nm以上、400nm以下の層厚を有するように構成したものである。なお、上記第6実施形態と同一の構成部には同一番号を付しており、第6実施形態の説明を援用する。
・AlNバッファ層1102の層厚を20nmとした製造したサンプル2-1の窒化物半導体積層基板(窒化物半導体エピタキシャル基板)と、
・AlNバッファ層1102の層厚を30nmとした製造したサンプル2-2の窒化物半導体積層基板と、
・AlNバッファ層1102の層厚を50nmとした製造したサンプル2-3の窒化物半導体積層基板と、
・AlNバッファ層1102の層厚を180nmとした製造したサンプル2-4の窒化物半導体積層基板と、
・AlNバッファ層1102の層厚を400nmとした製造したサンプル2-5の窒化物半導体積層基板と、
・AlNバッファ層1102の層厚を450nmとした製造したサンプル2-6の窒化物半導体積層基板と、
・AlNバッファ層1102の層厚を500nmとした製造したサンプル2-7の窒化物半導体積層基板と、
の7種類のサンプルを用意した。
・サンプル2-1は、113nm、
・サンプル2-2は、48nm、
・サンプル2-3は、41nm、
・サンプル2-4は、31nm、
・サンプル2-5は、36nm、
・サンプル2-6は、83nm、
・サンプル2-7は、121nm、
であった。
第8実施形態の窒化物半導体装置は、図示しないが、第6実施形態の窒化物半導体装置におけるAlNバッファ層1102が、(0002)面のX線回折におけるロッキングカーブの半値幅が2500arcsec以下であるように構成したものである。なお、上記第6実施形態と同一の構成部には同一番号を付しており、第6実施形態の説明を援用する。
第9実施形態の窒化物半導体装置は、図示しないが、第6実施形態の窒化物半導体装置におけるAlNバッファ層1102上に、Al組成が10%以上80%以下のAlGaNバッファ層1103およびAlN/AlGaN超格子層1104を設け、この超格子層1104上に層厚が100nm以上の下地GaN層1105を積層させたものである。なお、上記第6実施形態と同一の構成部には同一番号を付しており、第6実施形態の説明を援用する。
第10施形態の窒化物半導体装置は、図示しないが、第6実施形態の窒化物半導体装置におけるSi基板1101の表面に、電極の並び方向の直線L0に対して0度以上30度以下の角度αを成す方向の直線L1を回転軸として、(111)面から0度以上4.0度以下のオフ角で傾斜した面がSi基板1101の表面の30%以上となるような凹凸を設けたものである。なお、上記第6実施形態と同一の構成部には同一番号を付しており、第6実施形態の説明を援用する。
(111)面から0度以上4.0度以下のオフ角で傾斜した面を主面とするSi基板101,201,301,401,1101と、
上記Si基板101,201,301,401,1101上に形成された窒化物半導体層110,210,310,410,1102,1103,1104,1105,1106,1107と
を備えることを特徴としている。
上記Si基板の主面のオフ角度は、(111)面から0.8度以上2.7度以下である。
上記窒化物半導体層は、上記Si基板101,201,301,401の上記主面上に形成されたAlN層102,202,302,402を含み、
上記AlN層102,202,302,402の厚さは、50nm以上かつ400nm以下である。
上記AlN層102,202,302,402の(0002)面のX線回折におけるロッキングカーブの半値幅が2500arcsec以下である。
上記AlN層102,202,302,402上に少なくとも1つ形成されたAlGaN層106,206,306,406と、
上記AlGaN層106,206,306,406上に形成されたGaN層107,207,307,407と
を備え、
上記AlGaN層106,206,306,406のAl組成比は、10%以上かつ80%以下であり、
上記GaN層107,207,307,407の厚さは、100nm以上である。
上記Si基板101,201,301,401の表面は、上記表面の領域のうち30%以上の領域に上記主面が存在するように凹凸加工されている。
Si基板101,201,301,401上に窒化物半導体層110,210,310,410をエピタキシャル成長により形成する工程を含み、
上記Si基板101,201,301,401の主面は、(111)面から0.8度以上かつ2.7度以下のオフ角度を有している。
上記窒化物半導体積層体と、
上記窒化物半導体層1102,1103,1104,1105,1106,1107上に設けられ、互いに所定の間隔を隔てて配置されたソース電極1201およびドレイン電極1203と、
を備え、
上記ソース電極1201の重心から上記ドレイン電極1203の重心に向かう方向の直線L0に対して0度以上30度以下の角度を成す方向の上記Si基板1101上の直線L1を、上記オフ角の回転軸としたことを特徴としている。
上記Si基板101上に、上記窒化物半導体層1102,1103,1104,1105,1106,1107としての層厚が30nm以上400nm以下のAlN層1102を積層している。
上記AlN層1102は、(0002)面のX線回折におけるロッキングカーブの半値幅が2500arcsec以下である。
上記AlN層102上に、上記窒化物半導体層1102,1103,1104,1105,1106,1107としてのAl組成10%以上80%以下のAlGaN層1103,1104を少なくとも1つ積層し、
上記AlGaN層1104上に、上記窒化物半導体層1102,1103,1104,1105,1106,1107としての層厚が100nm以上のGaN層1105を積層している。
(111)面から0度以上4.0度以下のオフ角で傾斜した面が、上記Si基板1101の表面の30%以上となるように、上記Si基板1101の表面に凹凸を有している。
102,202,302,402,1102 AlNバッファ層
103,203,303,403 AlGaN-1層
104,204,304,404 AlGaN-2層
105,205,305,405 AlGaN-3層
106,206,306,406,1103 AlGaNバッファ層
107,207,307,407 GaN層
108,208,308,408 AlGaNバリア層
1104 超格子層
1105 下地GaN層
1106 チャネルGaN層
1107 2DEGバリア層
1110 GaN系積層体
1111 2DEG層
1121 オリエンテーションフラット部
1201 ソース電極
1202 ゲート電極
1203 ドレイン電極
1301 ステップ
1302 テラス
Claims (11)
- (111)面から0度以上4.0度以下のオフ角で傾斜した面を主面とするSi基板と、
上記Si基板上に形成された窒化物半導体層と
を備えることを特徴とする窒化物半導体積層体。 - 請求項1に記載の窒化物半導体積層体において、
上記Si基板の上記主面のオフ角度は、(111)面から0.8度以上2.7度以下であることを特徴とする窒化物半導体積層体。 - 請求項2に記載の窒化物半導体積層体において、
上記窒化物半導体層は、上記Si基板の上記主面上に形成されたAlN層を含み、
上記AlN層の厚さは、50nm以上かつ400nm以下であることを特徴とする窒化物半導体積層体。 - 請求項3に記載の窒化物半導体積層体において、
上記AlN層の(0002)面のX線回折におけるロッキングカーブの半値幅が2500arcsec以下であることを特徴とする窒化物半導体積層体。 - 請求項3または4に記載の窒化物半導体積層体において、
上記AlN層上に少なくとも1つ形成されたAlGaN層と、
上記AlGaN層上に形成されたGaN層と
を備え、
上記AlGaN層のAl組成比は、10%以上かつ80%以下であり、
上記GaN層の厚さは、100nm以上であることを特徴とする窒化物半導体積層体。 - Si基板上に窒化物半導体層をエピタキシャル成長により形成する工程を含み、
上記Si基板の主面は、(111)面から0.8度以上かつ2.7度以下のオフ角度を有していることを特徴とする窒化物半導体積層体の製造方法。 - 請求項1に記載の窒化物半導体積層体と、
上記窒化物半導体層上に設けられ、互いに所定の間隔を隔てて配置されたソース電極およびドレイン電極と、
を備え、
上記ソース電極の重心から上記ドレイン電極の重心に向かう方向の直線に対して0度以上30度以下の角度を成す方向の上記Si基板の(111)面上の直線を、上記オフ角の回転軸としたことを特徴とする窒化物半導体装置。 - 請求項7に記載の窒化物半導体装置において、
上記Si基板上に、上記窒化物半導体層としての層厚が30nm以上400nm以下のAlN層を積層したことを特徴とする窒化物半導体装置。 - 請求項8に記載の窒化物半導体装置において、
上記AlN層は、(0002)面のX線回折におけるロッキングカーブの半値幅が2500arcsec以下であることを特徴とする窒化物半導体装置。 - 請求項8または9に記載の窒化物半導体装置において、
上記AlN層上に、上記窒化物半導体層としてのAl組成10%以上80%以下のAlGaN層を少なくとも1つ積層し、
上記AlGaN層上に、上記窒化物半導体層としての層厚が100nm以上のGaN層を積層したことを特徴とする窒化物半導体装置。 - 請求項7から10のいずれか1つに記載の窒化物半導体装置において、
(111)面から0度以上4.0度以下のオフ角で傾斜した面が、上記Si基板の表面の30%以上となるように、上記Si基板の表面に凹凸を有することを特徴とする、窒化物半導体装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015559839A JP6089122B2 (ja) | 2014-01-31 | 2015-01-06 | 窒化物半導体積層体およびその製造方法並びに窒化物半導体装置 |
US15/100,557 US20160329419A1 (en) | 2014-01-31 | 2015-01-06 | Nitride semiconductor layered body, method for manufacturing the same, and nitride semiconductor device |
CN201580003367.1A CN105849868B (zh) | 2014-01-31 | 2015-01-06 | 氮化物半导体层叠体及其制造方法以及氮化物半导体器件 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-016694 | 2014-01-31 | ||
JP2014016694 | 2014-01-31 | ||
JP2014090422 | 2014-04-24 | ||
JP2014-090422 | 2014-04-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015115126A1 true WO2015115126A1 (ja) | 2015-08-06 |
Family
ID=53756704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/050129 WO2015115126A1 (ja) | 2014-01-31 | 2015-01-06 | 窒化物半導体積層体およびその製造方法並びに窒化物半導体装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20160329419A1 (ja) |
JP (1) | JP6089122B2 (ja) |
CN (1) | CN105849868B (ja) |
WO (1) | WO2015115126A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024203114A1 (ja) * | 2023-03-30 | 2024-10-03 | ローム株式会社 | 窒化物半導体装置、および窒化物半導体装置の製造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11901186B2 (en) * | 2018-02-22 | 2024-02-13 | Massachusetts Institute Of Technology | Method of reducing semiconductor substrate surface unevenness |
CN110085658B (zh) * | 2019-04-24 | 2021-07-02 | 上海您惦半导体科技有限公司 | 氧化镓半导体及其制备方法 |
CN116034186A (zh) * | 2020-09-17 | 2023-04-28 | 日本碍子株式会社 | Iii族元素氮化物半导体基板 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003017419A (ja) * | 2001-07-04 | 2003-01-17 | Sharp Corp | 窒化物系iii−v族化合物半導体装置 |
JP2011016680A (ja) * | 2009-07-08 | 2011-01-27 | Hitachi Cable Ltd | Iii族窒化物半導体自立基板の製造方法、iii族窒化物半導体自立基板、iii族窒化物半導体デバイスの製造方法及びiii族窒化物半導体デバイス |
JP2012015303A (ja) * | 2010-06-30 | 2012-01-19 | Sumitomo Electric Ind Ltd | 半導体基板および半導体装置 |
JP2012015304A (ja) * | 2010-06-30 | 2012-01-19 | Sumitomo Electric Ind Ltd | 半導体装置 |
WO2014103125A1 (ja) * | 2012-12-26 | 2014-07-03 | パナソニック株式会社 | 窒化物半導体装置および窒化物半導体基板 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW564584B (en) * | 2001-06-25 | 2003-12-01 | Toshiba Corp | Semiconductor light emitting device |
JP2003174194A (ja) * | 2001-12-07 | 2003-06-20 | Sharp Corp | 窒化物系半導体発光素子とその製造方法 |
TWI230978B (en) * | 2003-01-17 | 2005-04-11 | Sanken Electric Co Ltd | Semiconductor device and the manufacturing method thereof |
JP2011124275A (ja) * | 2009-12-08 | 2011-06-23 | Toshiba Corp | 発光装置 |
US8507365B2 (en) * | 2009-12-21 | 2013-08-13 | Alliance For Sustainable Energy, Llc | Growth of coincident site lattice matched semiconductor layers and devices on crystalline substrates |
-
2015
- 2015-01-06 JP JP2015559839A patent/JP6089122B2/ja active Active
- 2015-01-06 WO PCT/JP2015/050129 patent/WO2015115126A1/ja active Application Filing
- 2015-01-06 CN CN201580003367.1A patent/CN105849868B/zh active Active
- 2015-01-06 US US15/100,557 patent/US20160329419A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003017419A (ja) * | 2001-07-04 | 2003-01-17 | Sharp Corp | 窒化物系iii−v族化合物半導体装置 |
JP2011016680A (ja) * | 2009-07-08 | 2011-01-27 | Hitachi Cable Ltd | Iii族窒化物半導体自立基板の製造方法、iii族窒化物半導体自立基板、iii族窒化物半導体デバイスの製造方法及びiii族窒化物半導体デバイス |
JP2012015303A (ja) * | 2010-06-30 | 2012-01-19 | Sumitomo Electric Ind Ltd | 半導体基板および半導体装置 |
JP2012015304A (ja) * | 2010-06-30 | 2012-01-19 | Sumitomo Electric Ind Ltd | 半導体装置 |
WO2014103125A1 (ja) * | 2012-12-26 | 2014-07-03 | パナソニック株式会社 | 窒化物半導体装置および窒化物半導体基板 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024203114A1 (ja) * | 2023-03-30 | 2024-10-03 | ローム株式会社 | 窒化物半導体装置、および窒化物半導体装置の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105849868B (zh) | 2018-05-25 |
CN105849868A (zh) | 2016-08-10 |
JP6089122B2 (ja) | 2017-03-01 |
US20160329419A1 (en) | 2016-11-10 |
JPWO2015115126A1 (ja) | 2017-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5804768B2 (ja) | 半導体素子及びその製造方法 | |
JP5634681B2 (ja) | 半導体素子 | |
CN107799583B (zh) | 在异质基底上的第III族氮化物缓冲层结构的p型掺杂 | |
JP5787417B2 (ja) | 窒化物半導体基板 | |
JP5495069B2 (ja) | 半導体素子及びその製造方法 | |
TWI596764B (zh) | 具有週期性摻雜碳之氮化鎵之高電子移動率電晶體 | |
WO2011055774A1 (ja) | 半導体素子用エピタキシャル基板、半導体素子、および半導体素子用エピタキシャル基板の製造方法 | |
CN108140561A (zh) | 半导体元件用外延基板、半导体元件和半导体元件用外延基板的制造方法 | |
JP6731584B2 (ja) | 窒化物半導体装置および窒化物半導体基板 | |
JP2012015304A (ja) | 半導体装置 | |
US8405067B2 (en) | Nitride semiconductor element | |
JP2013145782A (ja) | ヘテロ接合型電界効果トランジスタ用のエピタキシャルウエハ | |
JP5384450B2 (ja) | 化合物半導体基板 | |
JP6089122B2 (ja) | 窒化物半導体積層体およびその製造方法並びに窒化物半導体装置 | |
KR20140045303A (ko) | 반도체 기판, 반도체 장치, 및 반도체 기판의 제조 방법 | |
JP6173493B2 (ja) | 半導体素子用のエピタキシャル基板およびその製造方法 | |
JP2011049486A (ja) | Iii族窒化物半導体積層ウェハ及びiii族窒化物半導体デバイス | |
JP2012064977A (ja) | Iii族窒化物半導体積層ウェハ及びiii族窒化物半導体デバイス | |
US20170256635A1 (en) | Nitride semiconductor and nitride semiconductor manufacturing method | |
JP2014192246A (ja) | 半導体基板およびそれを用いた半導体素子 | |
CN118511253A (zh) | 氮化物半导体基板及其制造方法 | |
JP2016167473A (ja) | 窒化物半導体積層基板、窒化物半導体装置および窒化物半導体積層基板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15742856 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015559839 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15100557 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15742856 Country of ref document: EP Kind code of ref document: A1 |