[go: up one dir, main page]

WO2015099050A1 - Light guide plate unit, production method therefor, and light-transmitting composition - Google Patents

Light guide plate unit, production method therefor, and light-transmitting composition Download PDF

Info

Publication number
WO2015099050A1
WO2015099050A1 PCT/JP2014/084327 JP2014084327W WO2015099050A1 WO 2015099050 A1 WO2015099050 A1 WO 2015099050A1 JP 2014084327 W JP2014084327 W JP 2014084327W WO 2015099050 A1 WO2015099050 A1 WO 2015099050A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
guide plate
light guide
plate unit
dots
Prior art date
Application number
PCT/JP2014/084327
Other languages
French (fr)
Japanese (ja)
Inventor
小川 修
藤本 恭一
林 宏三
Original Assignee
豊田通商株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 豊田通商株式会社 filed Critical 豊田通商株式会社
Publication of WO2015099050A1 publication Critical patent/WO2015099050A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide

Definitions

  • the present invention relates to a light guide plate unit.
  • This light guide plate unit is suitable as a planar light source (backlight or frontlight) for display of electronic equipment.
  • An edge light type light guide plate unit is used as a planar light source of a display of an electronic device such as a smartphone or a tablet terminal.
  • the light guide plate unit includes a light guide plate whose one side faces a linear light source, and a light scattering layer that scatters light is formed on one surface of the light guide plate.
  • This light scattering layer is obtained by printing a light scattering pattern composed of dots (hereinafter sometimes simply referred to as “dot pattern”) on one surface of the light guide plate.
  • dot pattern a light scattering pattern composed of dots
  • the coverage by the dot pattern in the vicinity of the light introduction side is set to 3.8% (dot diameter 220 ⁇ m). .
  • the dot ink is a mixture of a light transmissive material made of acrylic / vinyl resin and a light scattering material made of titania (particle diameter: 2 ⁇ m or less). See also Patent Document 2 and Patent Document 3 as other documents disclosing techniques related to the present application.
  • an object of the present invention is to improve the light scattering ability of dots having a diameter of 200 ⁇ m or less.
  • Another object of the present invention is to improve the light scattering ability of each dot of the dot pattern of the light scattering layer of the light guide plate unit.
  • the present inventors have an average particle size of 200 nm to 2000 nm (hereinafter, “ The present inventors have found that the use of nano hollow particles (sometimes abbreviated as “200 nm to 2000 nm”) dramatically improves the light scattering ability of dots. That is, the first aspect of the present invention is configured as follows.
  • a light guide plate corresponding to the edge light system;
  • a light scattering plate unit comprising a light scattering layer formed on one surface of the light guide plate and including a light scattering pattern composed of dots,
  • the dots are made of a light transmissive composition,
  • the light transmissive composition comprises a light transmissive material and a light scattering material of nano hollow particles having an average particle size of 200 nm to 2000 nm,
  • the dots include dots having a diameter of 25 ⁇ m or more and 200 ⁇ m or less, Light guide plate unit.
  • each dot has sufficient light even if the dot diameter is 25 ⁇ m or more and 200 ⁇ m or less (hereinafter sometimes abbreviated as “25 ⁇ m to 200 ⁇ m”). Has scattering ability. Therefore, even if a dot pattern composed of such dots is applied to the back surface of the light guide plate, a sufficient amount of light is supplied from the dot pattern to the upper surface (light emitting surface) of the light guide plate, which is sufficient as a planar light source for the display. Function.
  • the second aspect of the present invention is defined as follows.
  • the nano hollow particles have an average primary particle size of 200 nm to 2000 nm.
  • the average particle size (primary particle size) is 500 nm or more and 1000 nm or less.
  • the third aspect of the present invention is defined as follows.
  • the blending amount of the light-transmitting synthetic resin material and the light-scattering substance is in a suitable range, and is formed from the light-transmitting composition having such a blending.
  • the dots exhibit excellent light scattering ability.
  • the fourth aspect of the present invention is defined as follows.
  • the light guide plate unit of the fourth aspect defined in this way even if the light guide plate is made as thin as 1.5 mm or less, the dots are hardly visible when viewed from the light emitting surface, or even if they are visible, they are diffused. The visual recognition can be easily eliminated with a sheet or the like.
  • the fifth aspect of the present invention is defined as follows.
  • the light guide plate unit defined in the fourth aspect wherein the light guide plate is for a display of 7 inches (17.8 cm) or more and 10 inches (25.4 cm) or less.
  • the entire light emitting surface of the light guide plate emits light with uniform luminance and chromaticity.
  • the sixth aspect of the present invention is defined as follows.
  • a light transmissive composition comprising a light transmissive material and a light scattering material of nano hollow particles having an average particle diameter of 200 nm to 2000 nm.
  • the dots formed on one surface of the light guide plate using the light-transmitting composition of the sixth aspect defined in this way have a high light scattering ability. Therefore, even if the dot pattern constituting the light scattering layer includes a dot diameter of 200 ⁇ m or less, a sufficient amount of light can be supplied to the light emitting layer side in the light scattering layer of the backlight type light guide plate unit.
  • the seventh aspect of the present invention is defined as follows.
  • the light-transmitting composition defined in the sixth aspect wherein the light-transmitting material is made of a light-transmitting synthetic resin material, and 10 weights of the light scattering material with respect to 100 parts by weight of the synthetic resin material. More than 40 parts by weight is blended.
  • the blending amount of the light-transmitting synthetic resin material and the light-scattering substance is in a suitable range.
  • the formed dots exhibit excellent light scattering ability.
  • the eighth aspect of the present invention is defined as follows.
  • a method of manufacturing a light guide plate unit .
  • the manufacturing method of the light guide plate unit of the eighth aspect defined in this way even a dot having a diameter of 200 ⁇ m or less has sufficient light scattering performance, so the degree of freedom in selecting the dot diameter is improved, Even if the display is diversified, a light guide plate unit meeting the requirements can be easily provided.
  • FIG. 1 is a diagram schematically illustrating the configuration of a light guide plate unit according to the present invention.
  • FIG. 2 is a transmission electron micrograph of nano hollow silica particles having an outer diameter of 1000 nm.
  • FIG. 3 is a transmission electron micrograph of nano hollow silica particles having an outer diameter of 500 nm.
  • the light guide plate unit 1 of this embodiment includes a light guide plate 3 and a light scattering layer 5 formed on the back surface of the light guide plate 3. This does not prevent the general-purpose sheet such as a light diffusion sheet, a prism sheet, and DBEF from being laminated on the upper surface of the light guide plate 3.
  • the light guide plate 3 of the present invention is a flat member made of a light transmissive material. One side captures light facing a light source (not shown). The taken-in light is scattered on the back surface (light scattering layer 5) of the light guide plate 3, and light is extracted from the upper surface (light emitting surface).
  • the light from the light source is not limited to visible light, and does not exclude infrared light or ultraviolet light.
  • the dots formed with the light-transmitting composition proposed in the present invention not only reflect and scatter incident light, but also have an effect of efficiently transmitting and scattering part of the light. Therefore, in order to return the light transmitted through the dots to the light emitting surface side, it is preferable that at least the surface facing the light scattering layer 5 in the housing for housing the light guide plate unit 1 is a light reflecting surface such as a mirror surface.
  • the molding material of the light guide plate 3 can be arbitrarily selected according to the purpose and application of the electronic device. From the viewpoint of weight reduction, a transparent synthetic resin can be selected. Examples of such synthetic resins include acrylic resins and polycarbonates.
  • the back surface and / or the top surface of the light guide plate 3 itself can be subjected to fine surface processing to scatter or reflect light as necessary.
  • the light scattering layer 5 is formed on the back surface of the light guide plate 3.
  • the light scattering layer 5 of this invention consists of a dot pattern.
  • the dot pattern is formed of a light transmissive composition. Screen printing is performed on the back surface of the light guide plate 3 using this light transmissive composition, or dots are formed on the back surface of the light guide plate 3 by spraying the light transmissive composition onto the back surface of the light guide plate 3 by an inkjet method.
  • a pattern (light scattering layer 5) is formed.
  • the dot refers to a small-area printing region made of the light-transmitting composition, and preferably has a circular shape in plan view, but the shape is not particularly limited.
  • the outer diameter is preferably 25 ⁇ m or more and 200 ⁇ m or less.
  • the dot pattern may be composed of only dots having the same diameter, or dots having different diameters may be mixed.
  • the distance (pitch) between dots can be arbitrarily selected according to the application and purpose. That is, the dot pitch may be constant or the pitch may be changed.
  • the light transmissive composition of the dot pattern is a mixture of a light transmissive material and a light scattering material.
  • auxiliaries viscosity adjusting agents and the like
  • the light transmissive material is not particularly limited as long as it is a material that transmits light.
  • light transmissive resin, glass, etc. are mentioned.
  • the light transmissive resin is not particularly limited as long as it is a material that transmits light.
  • transparent resin or inorganic glass is used.
  • the transparent resin examples include polycarbonate resin, ABS (acrylonitrile-butadiene-styrene copolymer) resin, methacrylic resin, methyl methacrylate-styrene copolymer resin, polystyrene resin, urethane resin, acrylonitrile-styrene copolymer (AS).
  • polyolefin resins such as resins, polyethylene resins, and polypropylene resins, acrylic resins, epoxy resins, silicone resins, and polyimide resins.
  • Nano hollow particles are used as the light scattering material.
  • the particle size of the nano hollow particles used in the present invention can be arbitrarily selected according to the wavelength of light to be reflected, but is preferably 200 nm to 2000 nm. A more preferable range of particle diameter is 500 nm or more and 1000 nm or less.
  • the particle size may be a primary (non-aggregated) nano hollow particle particle size or a secondary (aggregated) or higher nano hollow particle particle size.
  • the use of relatively large nano hollow particles having a primary particle size of 200 nm to 2000 nm can suppress the color difference from appearing on the light emitting surface.
  • Silica is preferably used as the material for the nano hollow particles from the viewpoint of refractive index, specific gravity, miscibility with light-transmitting materials, and material costs.
  • titania, light transmissive polystyrene, or other transparent materials can be used.
  • Nano hollow silica particles having a primary particle size of 200 nm to 2000 nm can be produced, for example, by the method described in JP-A-2005-263550. That is, in the method for producing hollow particles composed of silica shells by the first step of preparing calcium carbonate, the second step of coating calcium carbonate with silica, and the third step of dissolving calcium carbonate, (1) In the first step, calcium carbonate having a primary particle size of 150 nm to 2000 nm by transmission electron microscopy is prepared in an aqueous system, aged, and then dehydrated to form a water-containing cake.
  • the water-containing cake of (1) is dispersed in alcohol, and ammonia water, water and silicon alkoxide are contained in the ammonia water in a volume ratio of silicon alkoxide / alcohol of 0.002 to 0.1.
  • the NH 3 to be, with respect to the silicon alkoxide 1 mole, 4 to 15 moles of water to silicon alkoxide 1 mole, by adding so as to be 25-200 mol, the coated calcium carbonate on silica
  • the water-containing cake of (2) is dispersed in water, acid is added, and the calcium carbonate is dissolved by adjusting the acid concentration of the liquid to 0.1 to 3 mol / L. This is a method of forming highly dispersed hollow particles made of a dense silica shell.
  • a highly dispersed nano hollow silica having a primary particle size of 200 to 2000 nm by transmission electron microscopy, a wall thickness of 10 to 100 nm, and pores of 2 nm or more are not detected in the pore distribution measured by mercury porosimetry. Particles can be produced.
  • the calcium carbonate crystals prepared in the first step are calcite and hexagonal, but by controlling the synthesis conditions, the shape as if it were cubic, that is, “cubic” Can grow.
  • the “cubic shape” means not only a cube but also a shape (spindle shape) similar to a cube surrounded by a surface.
  • FIG. 2 is a transmission electron micrograph of nano hollow silica particles having an outer diameter of 1000 nm
  • FIG. 3 is a transmission electron micrograph of nano hollow silica particles having an outer diameter of 500 nm.
  • the present inventors appropriately adjust the drug concentration, stirring method, temperature, type of alkali, etc., and thereby, nano hollow silica having various primary particle diameters, wall thicknesses, and porosity shown below. It has been confirmed that the particles can be produced.
  • the light transmissive composition of the present invention can be produced as follows using the above-described light transmissive material and light scattering material (nano hollow silica particles) as raw materials. (Preparation process)
  • the nano hollow silica particles of 200 nm to 2000 nm obtained by the above method are put in a methanol solution of trimethylchlorosilane and stirred, and then filtered, washed with water, and dried to obtain methyl group-modified nano hollow silica.
  • the alkyl group can be changed to various types.
  • an acrylic resin solution in which an acrylic resin is dissolved in an organic solvent as a light transmissive resin and the nano hollow silica particles obtained in the above preparation step are mixed so as to have a predetermined ratio, and then stirred to obtain nano A silica dispersion in which hollow silica particles are uniformly dispersed in an acrylic resin solution is obtained.
  • solid light scattering particles may be added in addition to the nano hollow silica particles.
  • the mixing ratio of the light transmitting resin and the light scattering material can be adjusted as appropriate, but the light scattering material is preferably 10 to 40 parts by weight with respect to 100 parts by weight of the light transmitting resin.
  • the blending amount of the light scattering material is less than 10 parts by weight, the light scattering property is lowered, and the dots are easily visible on the light emitting surface of the light guide plate unit.
  • the blending amount exceeds 40 parts by weight, the physical properties (viscosity, etc.) of the light-transmitting composition as the ink for forming the dots are not preferable.
  • a more preferable range of the light scattering material is 25 parts by weight or more and 30 parts by weight or less with respect to 100 parts by weight of the light-transmitting resin.
  • the light-scattering layer 5 which consists of a dot pattern is formed in the whole or part on the back surface of the light-guide plate 3 with the light transmissive composition obtained as mentioned above.
  • the dot diameter d constituting the dot pattern is preferably 25 ⁇ m to 200 ⁇ m, and the pitch p between dots (the distance between dot centers) is preferably 4 to 20 times the dot diameter d.
  • the dot pattern when the dot pattern is formed as described above on a light guide plate of 7 inches (17.8 cm) to 10 inches (25.4 cm), the dots are almost visually recognized on the entire surface of the light emitting surface. Not only is this not done, but the brightness of the entire light emitting surface is uniform, and there is almost no color difference.
  • the thickness of the dot is preferably 2 ⁇ m to 10 ⁇ m. Examples of a method for forming a dot pattern under such conditions include a screen printing method and an ink jet method.
  • the light guide plate unit has been described by taking only the backlight type as an example, but the present invention is naturally applicable to a front light type.
  • a light scattering layer is formed on the upper surface (light emitting surface) side of the light guide plate unit.
  • the diameter of the dots constituting the light scattering layer is made small (for example, 25 ⁇ m or more and 200 ⁇ m or less) so that the dots themselves do not hinder display.
  • Dots formed of a light-transmitting composition containing nano hollow particles have a high ability to absorb light not only inside the light guide plate but also outside, that is, from the light guide plate. Therefore, when such a dot is used in a front light type light guide plate unit, it is preferable to match the background color (default color) of the display with the light source color (for example, white).
  • Example 1 In Example 1, a silica dispersion having the following composition was prepared, and dot printing was performed on one side of a transparent acrylic plate to produce a light guide plate unit for an LED panel.
  • Nano balloon XP200 (methyl) manufactured by Grandex Co., Ltd. as nano hollow particles in 333 parts by weight of CAV transparent 800 medium (solid content 30%) manufactured by Seiko Advance Co., Ltd. (primary particle diameter (outer diameter): 202 0.0 nm, see Table 1) 20 parts by weight were mixed. And it disperse
  • Example 2 A 5-inch (12.7 cm) transparent acrylic plate was prepared, and the above silica dispersion was screen-printed on one side so as to have a basis weight of 12 g / m 2 (when dry). Then, it was made to dry and it was set as the light-guide plate unit of Example 1. The obtained dots had a minimum diameter of 50 ⁇ m and a maximum of 62 ⁇ m, and the dot pitch was 500 ⁇ m.
  • Example 2 The light guide plate of Example 2 under the same conditions as in Example 1 above, except that Nano Balloon NFB manufactured by Grandex Co., Ltd. (primary particle diameter (outer diameter): 630.0 nm, see Table 1) was adopted as the nano hollow particles. Got a unit.
  • Example 3 A light guide plate unit of Example 3 was obtained under the same conditions as in Example 1 except that the compounding amount of the nano hollow particles was halved (10 parts by weight).
  • Comparative Example 1 The light-guide plate unit of the comparative example 1 was obtained on the same conditions as the said Example 1 except not mix
  • Comparative Example 2 The light guide plate of Comparative Example 2 under the same conditions as Example 1 except that solid silica particles (primary particle size 200 nm, manufactured by Admatechs Co., Ltd., trade name: SO-C1) were used instead of the nano hollow particles. Got a unit.
  • solid silica particles primary particle size 200 nm, manufactured by Admatechs Co., Ltd., trade name: SO-C1
  • Table 2 shows the results.
  • the diffusion plate, the prism, and the DBEF are generally used for the planar light source and are sequentially stacked on the light emission surface side of the light guide plate unit.
  • the luminance and color difference in Table 2 were measured by the so-called 9-point method.
  • the nine-point method the light emission surface is divided into four equal parts vertically and horizontally to provide nine cells, and the luminance and chromaticity at the center of each cell are measured.
  • a two-dimensional color luminance meter CA-2000 made by Konica Minolta was used.
  • the luminance is an average luminance of nine points
  • the color difference is the difference between the chromaticity at the cell center of the eighth cell and the chromaticity at the cell center of the second cell.
  • the value of Comparative Example 1 is used as a reference (100%), and the luminance of other examples (Examples and Comparative Examples) is relatively evaluated.
  • the color difference value is preferably close to zero, and the absolute value is preferably within 0.0100. More preferably, it is within 0.0080. From the results shown in Table 2, it can be seen that the light guide plate unit of the example can obtain high luminance in a single unit. From a comparison between Example 1 and Example 2, it can be seen that when the blending amount is a constant ratio, the color difference can be more efficiently suppressed by increasing the primary particle size of the hollow nanosilica (for example, 500 nm or more).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

The light-scattering capability is improved for each dot in a dot pattern of a light-scattering layer from a light guide plate unit. The light-scattering capability of the dot is dramatically increased by adopting a hollow nano-particle having an average particle size of 200 nm to 2000 nm as a light-scattering substance in a light-transmitting composition constituting the dot. As a result, even when the dot diameter is 200 μm or smaller, the dot functions as a dot that constitutes the dot pattern of the light-scattering layer formed on the back face of a backlight-type light guide plate unit, and supplies a sufficient amount of light to the light-emitting face.

Description

導光板ユニット及びその製造方法並びに光透過性組成物Light guide plate unit, method for producing the same, and light transmissive composition
 本発明は導光板ユニットに関する。この導光板ユニットは電子機器のディスプレイ用の面状光源(バックライト若しくはフロントライト)として好適である。 The present invention relates to a light guide plate unit. This light guide plate unit is suitable as a planar light source (backlight or frontlight) for display of electronic equipment.
 スマートフォンやタブレット端末等の電子機器のディスプレイの面状光源としてエッジライト方式の導光板ユニットが用いられる。
 この導光板ユニットは、その一辺を線状光源に対向させる導光板を備え、導光板の一面には光を散乱させる光散乱層が形成される。この光散乱層はドットで構成される光散乱パターン(以下、単に「ドットパターン」ということがある)を導光板の一面に印刷することにより得られる。光散乱層をドットパターンとすることにより光散乱の度合いを任意にかつ容易に調整可能になる。ドットパターンを構成するドットの径(ドット径)やドット間のピッチ、更にはドットの形成材料である光透過性組成物(インク)を調整すればよいからである。
An edge light type light guide plate unit is used as a planar light source of a display of an electronic device such as a smartphone or a tablet terminal.
The light guide plate unit includes a light guide plate whose one side faces a linear light source, and a light scattering layer that scatters light is formed on one surface of the light guide plate. This light scattering layer is obtained by printing a light scattering pattern composed of dots (hereinafter sometimes simply referred to as “dot pattern”) on one surface of the light guide plate. By making the light scattering layer a dot pattern, the degree of light scattering can be arbitrarily and easily adjusted. This is because the diameter of the dots constituting the dot pattern (dot diameter), the pitch between the dots, and the light-transmitting composition (ink) that is the dot forming material may be adjusted.
 そこで、従来より、ドットパターンにつき種々の検討がなされてきた。
 例えば、薄型(1.5mm)の導光板を用いる特許文献1に開示のバックライト式導光板ユニットの場合、光導入辺近傍におけるドットパターンによる被覆割合を3.8%(ドット径220μm)としている。これにより、光導入辺近傍での強発光を防止しつつドットの視認性の低下を図っている。なお、ドットのインク(光透過性組成物)はアクリル・ビニル樹脂からなる光透過性材料とチタニア(粒子径:2μm以下)からなる光散乱物質の混合物である。
 本願に関連する技術を開示する他の文献として、特許文献2及び特許文献3も参照されたい。
Therefore, various studies have been made on dot patterns.
For example, in the case of the backlight type light guide plate unit disclosed in Patent Document 1 using a thin light guide plate (1.5 mm), the coverage by the dot pattern in the vicinity of the light introduction side is set to 3.8% (dot diameter 220 μm). . Thereby, the visibility of dots is reduced while preventing strong light emission in the vicinity of the light introduction side. The dot ink (light transmissive composition) is a mixture of a light transmissive material made of acrylic / vinyl resin and a light scattering material made of titania (particle diameter: 2 μm or less).
See also Patent Document 2 and Patent Document 3 as other documents disclosing techniques related to the present application.
特開平7-72479号公報JP-A-7-72479 WO2010/004610号公報WO2010 / 004610 Publication 特開2007-87659号公報JP 2007-87659 A
 電子機器の多様化に伴い、電子機器に搭載されるディスプレイ、ひいてはその面状光源となる導光板ユニットにも多様化が求められている。
 ディスプレイの多様化の方向として大画面化や薄型化があるが、いずれの場合にも均一な輝度や色度が求められることは言うまでもない。そのため、導光板の一面に形成される光散乱層においてドットパターンにも多様性が求められる。
 本発明者らの検討によれば、例えばバックライト方式の導光板ユニットの場合、ドット径が200μm以下となると光散乱能力が劣り、十分な光量を導光板の発光面へ供給することが困難であった。つまり、ドットパターンに200μm以下の径のドットを含ませることができなかった。
 そこでこの発明は、200μm以下の径のドットにおける光散乱能力を向上させることを一つの目的とする。
 この発明の他の目的は、導光板ユニットの光散乱層のドットパターンの各ドットにおける光散乱能力を向上させることにある。
With diversification of electronic devices, diversification is also demanded for displays mounted on the electronic devices, and thus light guide plate units serving as the planar light sources.
As a direction of diversification of displays, there are large screens and thinnings, but it goes without saying that uniform luminance and chromaticity are required in any case. Therefore, diversity is also required for the dot pattern in the light scattering layer formed on one surface of the light guide plate.
According to the study by the present inventors, for example, in the case of a backlight type light guide plate unit, when the dot diameter is 200 μm or less, the light scattering ability is inferior, and it is difficult to supply a sufficient amount of light to the light emitting surface of the light guide plate. there were. That is, it was impossible to include dots having a diameter of 200 μm or less in the dot pattern.
Accordingly, an object of the present invention is to improve the light scattering ability of dots having a diameter of 200 μm or less.
Another object of the present invention is to improve the light scattering ability of each dot of the dot pattern of the light scattering layer of the light guide plate unit.
 本発明者らは、上記目的の少なくとも一つを達成すべく鋭意検討を重ねてきた結果、ドットを構成する光透過性組成物の光散乱物質として平均粒径が200nm以上2000nm以下(以下、「200nm~2000nm」と略することがある)のナノ中空粒子を採用すると、ドットの光散乱能力が飛躍的に向上することを見出し、この発明に想到した。
 即ち、この発明の第1の局面は次のように構成される。
 エッジライト方式に対応する導光板と、
 該導光板の一面に形成され、ドットで構成される光散乱パターンを含む光散乱層と、を備える導光板ユニットであって、
 前記ドットは光透過性組成物からなり、
 該光透過性組成物は光透過性材料と平均粒径が200nm以上2000nm以下のナノ中空粒子の光散乱物質とを含んでなり、
 前記ドットは25μm以上200μm以下の径のドットを含む、
 導光板ユニット。
As a result of intensive studies to achieve at least one of the above-mentioned purposes, the present inventors have an average particle size of 200 nm to 2000 nm (hereinafter, “ The present inventors have found that the use of nano hollow particles (sometimes abbreviated as “200 nm to 2000 nm”) dramatically improves the light scattering ability of dots.
That is, the first aspect of the present invention is configured as follows.
A light guide plate corresponding to the edge light system;
A light scattering plate unit comprising a light scattering layer formed on one surface of the light guide plate and including a light scattering pattern composed of dots,
The dots are made of a light transmissive composition,
The light transmissive composition comprises a light transmissive material and a light scattering material of nano hollow particles having an average particle size of 200 nm to 2000 nm,
The dots include dots having a diameter of 25 μm or more and 200 μm or less,
Light guide plate unit.
 このように構成される第1の局面に規定の導光板ユニットによれば、ドット径を25μm以上200μm以下(以下、「25μm~200μm」と略することがある)としても各ドットが十分な光散乱能力を有する。従って、導光板の裏面にこのようなドットからなるドットパターンを適用しても、このドットパターンから導光板の上面(発光面)へ十分な光量が供給され、もってディスプレイの面状光源として十分に機能する。 According to the light guide plate unit defined in the first aspect thus configured, each dot has sufficient light even if the dot diameter is 25 μm or more and 200 μm or less (hereinafter sometimes abbreviated as “25 μm to 200 μm”). Has scattering ability. Therefore, even if a dot pattern composed of such dots is applied to the back surface of the light guide plate, a sufficient amount of light is supplied from the dot pattern to the upper surface (light emitting surface) of the light guide plate, which is sufficient as a planar light source for the display. Function.
 この発明の第2の局面は次のように規定される。
 第1の局面で規定の導光板ユニットにおいて、ナノ中空粒子は、その一次粒子の平均粒径が200nm以上2000nm以下である。
 第2の局面で規定の導光板ユニットによれば、ナノ中空粒子として比較的大粒のもの(平均粒径(一次粒子径)が200nm~2000nm)を採用した結果、導光板ユニットの発光面において色差の発現を抑制できる。更に好ましくは平均粒子径(一次粒子径)を500nm以上1000nm以下とする。
The second aspect of the present invention is defined as follows.
In the light guide plate unit defined in the first aspect, the nano hollow particles have an average primary particle size of 200 nm to 2000 nm.
According to the light guide plate unit specified in the second aspect, as a result of adopting relatively large particles (average particle size (primary particle size) of 200 nm to 2000 nm) as the nano hollow particles, the color difference on the light emitting surface of the light guide plate unit Can be suppressed. More preferably, the average particle size (primary particle size) is 500 nm or more and 1000 nm or less.
 この発明の第3の局面は次のように規定される。
 第1又は第2の局面で規定の導光板ユニットであって、前記光透過性組成物において前記光透過性材料は光透過性の合成樹脂材料からなり、該合成樹脂材料100重量部に対して前記光散乱物質の10重量部以上40重量部以下が配合されている。
 このように規定される第3の局面の導光板ユニットによれば、光透過性の合成樹脂材料と光散乱物質との配合量が好適な範囲となり、かかる配合の光透過性組成物により形成されたドットは優れた光散乱能力を発揮する。
The third aspect of the present invention is defined as follows.
The light guide plate unit defined in the first or second aspect, wherein in the light transmissive composition, the light transmissive material is made of a light transmissive synthetic resin material, and 100 parts by weight of the synthetic resin material. 10 parts by weight or more and 40 parts by weight or less of the light scattering material is blended.
According to the light guide plate unit of the third aspect defined as described above, the blending amount of the light-transmitting synthetic resin material and the light-scattering substance is in a suitable range, and is formed from the light-transmitting composition having such a blending. The dots exhibit excellent light scattering ability.
 この発明の第4の局面は次のように規定される。
 第1~第3の局面に規定のいずれかの導光板ユニットであって、前記導光板の厚さが1.5mm以下であり、前記ドットのピッチが前記ドット径の4倍以上20倍以下(以下、単に「4~20倍」ということがある)であり、前記光散乱層はバックライト用として前記導光板の裏面に形成される。
 このように規定される第4の局面の導光板ユニットによれば、導光板を1.5mm以下の薄いものとしても、その発光面からみたときドットが殆ど視認されないか、視認されたとしても拡散シート等で容易にその視認をなくすことができる。
The fourth aspect of the present invention is defined as follows.
The light guide plate unit defined in any one of the first to third aspects, wherein the light guide plate has a thickness of 1.5 mm or less, and the dot pitch is 4 to 20 times the dot diameter ( Hereinafter, the light scattering layer may be simply referred to as “4 to 20 times”), and the light scattering layer is formed on the back surface of the light guide plate for backlight.
According to the light guide plate unit of the fourth aspect defined in this way, even if the light guide plate is made as thin as 1.5 mm or less, the dots are hardly visible when viewed from the light emitting surface, or even if they are visible, they are diffused. The visual recognition can be easily eliminated with a sheet or the like.
 この発明の第5の局面は次のように規定される。
 第4の局面に規定の導光板ユニットであって、前記導光板は7インチ(17.8cm)以上10インチ(25.4cm)以下のディスプレイ用である。
 このように規定される導光板ユニットによれば、導光板の発光面全面が均一な輝度及び色度で発光する。
The fifth aspect of the present invention is defined as follows.
The light guide plate unit defined in the fourth aspect, wherein the light guide plate is for a display of 7 inches (17.8 cm) or more and 10 inches (25.4 cm) or less.
According to the light guide plate unit thus defined, the entire light emitting surface of the light guide plate emits light with uniform luminance and chromaticity.
 この発明の第6の局面は次のように規定される。
 エッジライト方式に対応する導光板と、
 該導光板の一面に形成され、25μm以上200μm以下の径のドットを含む光散乱層と、を備える導光板ユニットにおいて前記ドットを形成する光透過性組成物であって、
 光透過性材料と平均粒径が200nm以上2000nm以下のナノ中空粒子の光散乱物質とを含んでなる、光透過性組成物。
 このように規定される第6の局面の光透過性組成物を用いて導光板の一面に形成されたドットは高い光散乱能力を備える。従って、光散乱層を構成するドットパターンにドット径が200μm以下のものが含まれていても、バックライト式導光板ユニットの光散乱層において発光層側へ十分な光量を供給できる。
The sixth aspect of the present invention is defined as follows.
A light guide plate corresponding to the edge light system;
A light-transmitting composition that forms the dots in a light guide plate unit that is formed on one surface of the light guide plate and includes a light scattering layer including dots having a diameter of 25 μm or more and 200 μm or less,
A light transmissive composition comprising a light transmissive material and a light scattering material of nano hollow particles having an average particle diameter of 200 nm to 2000 nm.
The dots formed on one surface of the light guide plate using the light-transmitting composition of the sixth aspect defined in this way have a high light scattering ability. Therefore, even if the dot pattern constituting the light scattering layer includes a dot diameter of 200 μm or less, a sufficient amount of light can be supplied to the light emitting layer side in the light scattering layer of the backlight type light guide plate unit.
 この発明の第7の局面は次のように規定される。
 第6の局面で規定される光透過性組成物であって、前記光透過性材料は光透過性の合成樹脂材料からなり、該合成樹脂材料100重量部に対して前記光散乱物質の10重量部以上40重量部以下が配合されている。
 このように規定される第7の局面の光透過性組成物によれば、光透過性の合成樹脂材料と光散乱物質との配合量が好適な範囲となり、かかる配合の光透過性組成物により形成されたドットは優れた光散乱能力を発揮する。
The seventh aspect of the present invention is defined as follows.
The light-transmitting composition defined in the sixth aspect, wherein the light-transmitting material is made of a light-transmitting synthetic resin material, and 10 weights of the light scattering material with respect to 100 parts by weight of the synthetic resin material. More than 40 parts by weight is blended.
According to the light-transmitting composition of the seventh aspect defined as described above, the blending amount of the light-transmitting synthetic resin material and the light-scattering substance is in a suitable range. The formed dots exhibit excellent light scattering ability.
 この発明の第8の局面は次のように規定される。
 エッジライト方式に対応する導光板と、
 該導光板の一面に形成され、ドットで構成される光散乱パターンを含む光散乱層と、を備える導光板ユニットの製造方法であって、
 光透過性材料と平均粒径が200nm以上2000nm以下のナノ中空粒子の光散乱物質とを含んでなる光透過性組成物を準備するステップと、
 該光透過性組成物で前記導光板の一面にドット径が25μm以上200μm以下のドットを含む前記光散乱パターンを印刷し、前記光散乱層を形成するステップと、を含む
 導光板ユニットの製造方法。
 このように規定される第8の局面の導光板ユニットの製造方法によれば、200μm以下の径のドットであっても十分な光散乱性能を有するので、ドット径の選択自由度が向上し、ディスプレイが多様化してもその要求に合致する導光板ユニットを容易に提供できる。
The eighth aspect of the present invention is defined as follows.
A light guide plate corresponding to the edge light system;
A light scattering layer including a light scattering pattern formed on one surface of the light guide plate and including dots, and a method of manufacturing a light guide plate unit,
Providing a light transmissive composition comprising a light transmissive material and a light scattering material of nano hollow particles having an average particle size of 200 nm to 2000 nm;
Printing the light scattering pattern including dots having a dot diameter of 25 μm or more and 200 μm or less on one surface of the light guide plate with the light transmissive composition, and forming the light scattering layer. A method of manufacturing a light guide plate unit .
According to the manufacturing method of the light guide plate unit of the eighth aspect defined in this way, even a dot having a diameter of 200 μm or less has sufficient light scattering performance, so the degree of freedom in selecting the dot diameter is improved, Even if the display is diversified, a light guide plate unit meeting the requirements can be easily provided.
図1はこの発明の導光板ユニットの構成を模式的に説明する図である。FIG. 1 is a diagram schematically illustrating the configuration of a light guide plate unit according to the present invention. 図2は外径1000nmのナノ中空シリカ粒子の透過型電子顕微鏡写真である。FIG. 2 is a transmission electron micrograph of nano hollow silica particles having an outer diameter of 1000 nm. 図3は外径500nmのナノ中空シリカ粒子の透過型電子顕微鏡写真である。FIG. 3 is a transmission electron micrograph of nano hollow silica particles having an outer diameter of 500 nm.
 以下、この発明の導光板ユニットの実施の形態について説明する。
 この実施形態の導光板ユニット1は、図1に示すように、導光板3と該導光板3の裏面に形成される光散乱層5とを備える。導光板3の上面に光拡散シート、プリズムシート及びDBEF等の汎用的なシートを積層することを妨げるものではない。
<導光板>
 この発明の導光板3は光透過性材料からなる平板状の部材である。
 その一辺が図示しない光源に対向して光を取り込む。取り込まれた光は導光板3の裏面(光散乱層5)で散乱され、その上面(発光面)から光が取り出される。光源からの光は可視光に限定されず、赤外光や紫外光を除外するものではない。
 発光面からの光取り出し効率を向上させるため、光を取り込む側面以外の側面に光反射層を形成することが好ましい。
 この発明で提案する光透過性組成物で形成されたドットは入射した光を反射して散乱させるだけでなく、その光の一部を効率よく透過させて散乱させる効果もある。従って、ドットを透過した光を発光面側へ戻すため、導光板ユニット1を収める筺体において、少なくとも光散乱層5に対向する面を鏡面等の光反射面とすることが好ましい。
 導光板3の成形材料は電子機器の使用目的や用途等に応じて任意に選択可能である。軽量化の観点からは透明な合成樹脂を選択できる。かかる合成樹脂としてアクリル樹脂、ポリカーボネート等を挙げることができる。
 導光板3自体の裏面及び/又は上面には、必要に応じて、光を散乱ないしは反射させるため微細表面加工を施すことができる。
Hereinafter, embodiments of the light guide plate unit of the present invention will be described.
As shown in FIG. 1, the light guide plate unit 1 of this embodiment includes a light guide plate 3 and a light scattering layer 5 formed on the back surface of the light guide plate 3. This does not prevent the general-purpose sheet such as a light diffusion sheet, a prism sheet, and DBEF from being laminated on the upper surface of the light guide plate 3.
<Light guide plate>
The light guide plate 3 of the present invention is a flat member made of a light transmissive material.
One side captures light facing a light source (not shown). The taken-in light is scattered on the back surface (light scattering layer 5) of the light guide plate 3, and light is extracted from the upper surface (light emitting surface). The light from the light source is not limited to visible light, and does not exclude infrared light or ultraviolet light.
In order to improve the light extraction efficiency from the light emitting surface, it is preferable to form a light reflecting layer on the side surface other than the side surface that takes in light.
The dots formed with the light-transmitting composition proposed in the present invention not only reflect and scatter incident light, but also have an effect of efficiently transmitting and scattering part of the light. Therefore, in order to return the light transmitted through the dots to the light emitting surface side, it is preferable that at least the surface facing the light scattering layer 5 in the housing for housing the light guide plate unit 1 is a light reflecting surface such as a mirror surface.
The molding material of the light guide plate 3 can be arbitrarily selected according to the purpose and application of the electronic device. From the viewpoint of weight reduction, a transparent synthetic resin can be selected. Examples of such synthetic resins include acrylic resins and polycarbonates.
The back surface and / or the top surface of the light guide plate 3 itself can be subjected to fine surface processing to scatter or reflect light as necessary.
<光散乱層>
 光散乱層5は導光板3の裏面に形成される。この発明の光散乱層5はドットパターンからなる。
 ドットパターンは光透過性組成物で形成される。この光透過性組成物を用いて導光板3の裏面へスクリーン印刷を実行するか、若しくはインクジェット方式で当該光透過性組成物を導光板3の裏面へ吹き付けることで、導光板3の裏面にドットパターン(光散乱層5)が形成される。
 ここにドットとは、光透過性組成物による小面積の印刷領域をいい、平面視円形とすることが好ましいが、その形状は特に限定されるものではない。ドットが円形の場合、その外径は25μm以上、200μm以下とすることが好ましい。
 ドットパターンは同一径のドットのみで構成してもよいし、異なる径のドットを混用してもより。ドット間の距離(ピッチ)は用途や目的に応じて任意に選択できる。即ち、ドットのピッチは一定でもよいし、またはピッチが変化していてもよい。
<Light scattering layer>
The light scattering layer 5 is formed on the back surface of the light guide plate 3. The light scattering layer 5 of this invention consists of a dot pattern.
The dot pattern is formed of a light transmissive composition. Screen printing is performed on the back surface of the light guide plate 3 using this light transmissive composition, or dots are formed on the back surface of the light guide plate 3 by spraying the light transmissive composition onto the back surface of the light guide plate 3 by an inkjet method. A pattern (light scattering layer 5) is formed.
Here, the dot refers to a small-area printing region made of the light-transmitting composition, and preferably has a circular shape in plan view, but the shape is not particularly limited. When the dots are circular, the outer diameter is preferably 25 μm or more and 200 μm or less.
The dot pattern may be composed of only dots having the same diameter, or dots having different diameters may be mixed. The distance (pitch) between dots can be arbitrarily selected according to the application and purpose. That is, the dot pitch may be constant or the pitch may be changed.
 ドットパターンの光透過性組成物は光透過性材料と光散乱物質との混合物である。勿論、他の助剤(粘度調整剤等)を含んでいてもよい。
 光透過性材料としては、光を透過する材料であれば特に限定はない。例えば光透過性樹脂や、ガラス等が挙げられる。光透過性樹脂としては、光を透過する材料であれば特に限定はない。例えば、透明樹脂や無機ガラス等が用いられる。透明樹脂としては、例えばポリカーボネート樹脂、ABS(アクリロニトリル-ブタジエン-スチレン共重合体)樹脂、メタクリル樹脂、メタクリル酸メチル-スチレン共重合体樹脂、ポリスチレン樹脂、ウレタン樹脂、アクリロニトリル-スチレン共重合体(AS)樹脂、ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂、アクリル樹脂、エポキシ樹脂、シリコーン樹脂、ポリイミド樹脂などが挙げられる。
The light transmissive composition of the dot pattern is a mixture of a light transmissive material and a light scattering material. Of course, other auxiliaries (viscosity adjusting agents and the like) may be included.
The light transmissive material is not particularly limited as long as it is a material that transmits light. For example, light transmissive resin, glass, etc. are mentioned. The light transmissive resin is not particularly limited as long as it is a material that transmits light. For example, transparent resin or inorganic glass is used. Examples of the transparent resin include polycarbonate resin, ABS (acrylonitrile-butadiene-styrene copolymer) resin, methacrylic resin, methyl methacrylate-styrene copolymer resin, polystyrene resin, urethane resin, acrylonitrile-styrene copolymer (AS). Examples thereof include polyolefin resins such as resins, polyethylene resins, and polypropylene resins, acrylic resins, epoxy resins, silicone resins, and polyimide resins.
 光散乱物質としてはナノ中空粒子を用いる。
 ここに、ナノ中空粒子とは外径が2000nm(=2ミクロン)以下で、かつその内部が空洞(ポーラスなものは除く)である粒子を指す。
 この発明で用いるナノ中空粒子の粒径は、反射させる光の波長に応じて任意に選択できるものであるが、200nm~2000nmとすることが好ましい。より好ましい粒径の範囲は500nm以上1000nm以下である。
 なお、上記の粒径は一次(何ら凝集していない)のナノ中空粒子の粒径であっても、二次(凝集したもの)以上のナノ中空粒子の粒径であってもよい。なお、本発明者らの検討によれば、一次の粒径200nm~2000nmという比較的大きなナノ中空粒子を用いることにより、発光面に色差が発現することを抑制できる。
 ナノ中空粒子の材料には、屈折率、比重、光透過性材料との混合性、材料コストの点からシリカを採用することが好ましい。勿論、チタニアや光透過性ポリスチレンその他の透明な材料を用いることができる。
Nano hollow particles are used as the light scattering material.
Here, the nano hollow particle refers to a particle having an outer diameter of 2000 nm (= 2 microns) or less and a hollow inside (excluding porous particles).
The particle size of the nano hollow particles used in the present invention can be arbitrarily selected according to the wavelength of light to be reflected, but is preferably 200 nm to 2000 nm. A more preferable range of particle diameter is 500 nm or more and 1000 nm or less.
The particle size may be a primary (non-aggregated) nano hollow particle particle size or a secondary (aggregated) or higher nano hollow particle particle size. According to the study by the present inventors, the use of relatively large nano hollow particles having a primary particle size of 200 nm to 2000 nm can suppress the color difference from appearing on the light emitting surface.
Silica is preferably used as the material for the nano hollow particles from the viewpoint of refractive index, specific gravity, miscibility with light-transmitting materials, and material costs. Of course, titania, light transmissive polystyrene, or other transparent materials can be used.
 一次粒径が200nm~2000nmのナノ中空シリカ粒子は、例えば、特開2005-263550号公報に記載の方法によって製造することができる。すなわち、炭酸カルシウムを調製する第1工程、炭酸カルシウムにシリカをコーティングする第2工程、及び炭酸カルシウムを溶解させる第3工程により、シリカの殻からなる中空粒子を製造する方法において、
(1)第1工程において、透過型電子顕微鏡法による一次粒子径が150nm~2000nmの炭酸カルシウムを水系にて調製し、熟成させた後、脱水して含水ケーキの状態とし、
(2)第2工程において、(1)の含水ケーキをアルコール中に分散させ、アンモニア水、水、シリコンアルコキシドを、シリコンアルコキシド/アルコールの体積比を0.002~0.1、アンモニア水に含有されるNH3を、シリコンアルコキシド1モルに対して、4~15モル、水をシリコンアルコキシド1モルに対して、25~200モルとなるように添加することにより、シリカでコーティングされた炭酸カルシウムを調製した後、アルコール及び水による洗浄を行い、再び含水ケーキとし、
(3)第3工程において、(2)の含水ケーキを水に分散させ、酸を添加して、液の酸濃度を0.1~3モル/Lとすることにより炭酸カルシウムを溶解させることにより、緻密なシリカ殻からなる高分散の中空状粒子とする方法である。
Nano hollow silica particles having a primary particle size of 200 nm to 2000 nm can be produced, for example, by the method described in JP-A-2005-263550. That is, in the method for producing hollow particles composed of silica shells by the first step of preparing calcium carbonate, the second step of coating calcium carbonate with silica, and the third step of dissolving calcium carbonate,
(1) In the first step, calcium carbonate having a primary particle size of 150 nm to 2000 nm by transmission electron microscopy is prepared in an aqueous system, aged, and then dehydrated to form a water-containing cake.
(2) In the second step, the water-containing cake of (1) is dispersed in alcohol, and ammonia water, water and silicon alkoxide are contained in the ammonia water in a volume ratio of silicon alkoxide / alcohol of 0.002 to 0.1. the NH 3 to be, with respect to the silicon alkoxide 1 mole, 4 to 15 moles of water to silicon alkoxide 1 mole, by adding so as to be 25-200 mol, the coated calcium carbonate on silica After preparation, washing with alcohol and water, again as a water-containing cake,
(3) In the third step, the water-containing cake of (2) is dispersed in water, acid is added, and the calcium carbonate is dissolved by adjusting the acid concentration of the liquid to 0.1 to 3 mol / L. This is a method of forming highly dispersed hollow particles made of a dense silica shell.
 この方法によれば、透過型電子顕微鏡法による一次粒子径が200~2000nm、壁厚10~100nm、水銀圧入法により測定される細孔分布において2nm以上の細孔が検出されない高分散ナノ中空シリカ粒子を製造することができる。また、上記第1工程において調製される炭酸カルシウムの結晶はカルサイトであり六方晶系であるが、合成条件を制御することにより、あたかも立方晶系であるかのような形状、即ち「立方体状」に成長させることができる。ここで、「立方体状」とは、立方体に限らず面で囲まれた立方体に似た形状(紡錘形状)も含む意味である。
 図2は外径1000nmのナノ中空シリカ粒子の透過型電子顕微鏡写真、図3は外径500nmのナノ中空シリカ粒子の透過型電子顕微鏡写真である。
According to this method, a highly dispersed nano hollow silica having a primary particle size of 200 to 2000 nm by transmission electron microscopy, a wall thickness of 10 to 100 nm, and pores of 2 nm or more are not detected in the pore distribution measured by mercury porosimetry. Particles can be produced. Further, the calcium carbonate crystals prepared in the first step are calcite and hexagonal, but by controlling the synthesis conditions, the shape as if it were cubic, that is, “cubic” Can grow. Here, the “cubic shape” means not only a cube but also a shape (spindle shape) similar to a cube surrounded by a surface.
FIG. 2 is a transmission electron micrograph of nano hollow silica particles having an outer diameter of 1000 nm, and FIG. 3 is a transmission electron micrograph of nano hollow silica particles having an outer diameter of 500 nm.
 本発明者らは、この方法に準じ、薬剤濃度、撹拌法、温度、アルカリの種類等を適宜調整することにより、以下に示す様々な1次粒子径、壁厚、及び空隙率のナノ中空シリカ粒子を製造できることを確認している。 In accordance with this method, the present inventors appropriately adjust the drug concentration, stirring method, temperature, type of alkali, etc., and thereby, nano hollow silica having various primary particle diameters, wall thicknesses, and porosity shown below. It has been confirmed that the particles can be produced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<光透過性組成物の製造方法>
 本発明の光透過性組成物は、上述した光透過性材料と光散乱物質(ナノ中空シリカ粒子)を原料として以下のようにして製造することができる。
(準備工程)
<Method for producing light-transmitting composition>
The light transmissive composition of the present invention can be produced as follows using the above-described light transmissive material and light scattering material (nano hollow silica particles) as raw materials.
(Preparation process)
 上述した方法によって得た200nm~2000nmのナノ中空シリカ粒子をトリメチルクロロシランのメタノール溶液中に入れて撹拌した後、ろ別し、水洗、乾燥を経てメチル基修飾ナノ中空シリカを得る。なお、トリメチルクロロシランの替りに他のアルキル基が結合したトリアルキルクロロシランを用いることにより、アルキル基を種々のものに変えることができる。
(分散液調製工程)
The nano hollow silica particles of 200 nm to 2000 nm obtained by the above method are put in a methanol solution of trimethylchlorosilane and stirred, and then filtered, washed with water, and dried to obtain methyl group-modified nano hollow silica. In addition, by using trialkylchlorosilane to which another alkyl group is bonded instead of trimethylchlorosilane, the alkyl group can be changed to various types.
(Dispersion preparation process)
 次に、光透過性樹脂としてアクリル樹脂を有機溶媒に溶かしたアクリル樹脂溶液と上記準備工程で得られたナノ中空シリカ粒子とを所定の割合となるように混合した後、攪拌することによって、ナノ中空シリカ粒子をアクリル樹脂溶液中に均一に分散したシリカ分散液を得る。なお、光散乱効果を調節するため、ナノ中空シリカ粒子以外に中実の光散乱粒子を添加しても良い。
 光透過性樹脂と光散乱物質との配合比は適宜調整可能であるが、光透過性樹脂の100重量部に対して光散乱物質を10~40重量部とすることが好ましい。
 光散乱物質の配合量が10重量部未満となると、光の散乱特性が低下し導光板ユニットの発光面においてドットが視認されやすくなる。他方、その配合量が40重量部を超えると、ドットを形成するインクとしての光透過性組成物の物理特性(粘度等)が低下するので好ましくない。
光散乱物質の更に好ましい範囲は、光透過性樹脂100重量部に対して、25重量部以上30重量部以下である。
<光散乱層の形成>
Next, an acrylic resin solution in which an acrylic resin is dissolved in an organic solvent as a light transmissive resin and the nano hollow silica particles obtained in the above preparation step are mixed so as to have a predetermined ratio, and then stirred to obtain nano A silica dispersion in which hollow silica particles are uniformly dispersed in an acrylic resin solution is obtained. In order to adjust the light scattering effect, solid light scattering particles may be added in addition to the nano hollow silica particles.
The mixing ratio of the light transmitting resin and the light scattering material can be adjusted as appropriate, but the light scattering material is preferably 10 to 40 parts by weight with respect to 100 parts by weight of the light transmitting resin.
When the blending amount of the light scattering material is less than 10 parts by weight, the light scattering property is lowered, and the dots are easily visible on the light emitting surface of the light guide plate unit. On the other hand, when the blending amount exceeds 40 parts by weight, the physical properties (viscosity, etc.) of the light-transmitting composition as the ink for forming the dots are not preferable.
A more preferable range of the light scattering material is 25 parts by weight or more and 30 parts by weight or less with respect to 100 parts by weight of the light-transmitting resin.
<Formation of light scattering layer>
 上記のようにして得られた光透過性組成物で導光板3の裏面へ全面的に若しくは部分的にドットパターンからなる光散乱層5を形成する。
 ドットパターンを構成するドット径dは25μm~200μmとし、ドット間のピッチp(ドットの中心間距離)はドット径dの4~20倍とすることが好ましい。
 このように構成されたドットパターンをバックライト式の導光板ユニットに使用すると、導光板の厚さを1.5mm以下としても、その発光面においてドットは殆ど視認されないか、若しくは薄い拡散シートでドットの視認をなくすることができる。
 本発明者らの検討によれば、7インチ(17.8cm)~10インチ(25.4cm)の導光板に対してドットパターンを上記のように形成すると、発光面の全面においてドットが殆ど視認されないことはもとより、発光面の全面の輝度が均一になり、色差も殆ど現れない。
 なおドットの厚さは2μm~10μmとすることが好ましい。
 かかる条件のドットパターンの形成方法として、スクリーン印刷法やインクジェット法を挙げられる。
The light-scattering layer 5 which consists of a dot pattern is formed in the whole or part on the back surface of the light-guide plate 3 with the light transmissive composition obtained as mentioned above.
The dot diameter d constituting the dot pattern is preferably 25 μm to 200 μm, and the pitch p between dots (the distance between dot centers) is preferably 4 to 20 times the dot diameter d.
When the dot pattern configured in this way is used in a backlight type light guide plate unit, even if the thickness of the light guide plate is 1.5 mm or less, the dots are hardly visible on the light emitting surface, or the dots are formed with a thin diffusion sheet. Can be eliminated.
According to the study by the present inventors, when the dot pattern is formed as described above on a light guide plate of 7 inches (17.8 cm) to 10 inches (25.4 cm), the dots are almost visually recognized on the entire surface of the light emitting surface. Not only is this not done, but the brightness of the entire light emitting surface is uniform, and there is almost no color difference.
The thickness of the dot is preferably 2 μm to 10 μm.
Examples of a method for forming a dot pattern under such conditions include a screen printing method and an ink jet method.
 上記の説明では、導光板ユニットとして専らバックライト式のものを例に採りあげて説明してきたが、勿論フロントライト式のものにもこの発明は適用可能である。
 フロントライト式の場合、導光板ユニットの上面(発光面)側に光散乱層が形成される。フロントライト式の場合、光散乱層を構成するドットの径を小さく(例えば25μm以上200μm以下)し、ドット自体が表示の妨げとならないようにする。
 ナノ中空粒子を配合した光透過性組成物で形成されたドットは、導光板の内部側だけではなく外部、即ち導光板から光を外部へ吸い出す能力も高い。従って、かかるドットをフロントライト式の導光板ユニットに使用するときは、ディスプレイの背景色(デフォルト時の色)を光源色(例えば白色)と一致させることが好ましい。 
In the above description, the light guide plate unit has been described by taking only the backlight type as an example, but the present invention is naturally applicable to a front light type.
In the case of the front light type, a light scattering layer is formed on the upper surface (light emitting surface) side of the light guide plate unit. In the case of the front light type, the diameter of the dots constituting the light scattering layer is made small (for example, 25 μm or more and 200 μm or less) so that the dots themselves do not hinder display.
Dots formed of a light-transmitting composition containing nano hollow particles have a high ability to absorb light not only inside the light guide plate but also outside, that is, from the light guide plate. Therefore, when such a dot is used in a front light type light guide plate unit, it is preferable to match the background color (default color) of the display with the light source color (for example, white).
(実施例1)
 実施例1では、以下の組成からなるシリカ分散液を調製し、透明アクリル板の一面側にドット印刷を行い、LEDパネル用の導光板ユニットを作製した。
Example 1
In Example 1, a silica dispersion having the following composition was prepared, and dot printing was performed on one side of a transparent acrylic plate to produce a light guide plate unit for an LED panel.
 株式会社セイコーアドバンス製メジウムスクリーン印刷用インキCAV透明800メジューム(固形分30%)333重量部にナノ中空粒子としてグランデックス株式会社製のナノバルーンXP200(メチル)(一次粒子径(外径):202.0nm、表1参照)20重量部を混合した。そして、遊星式撹拌・脱泡装置として倉敷紡績株式会社製マルゼスターを用いて分散を行い、ナノ中空シリカ粒子がアクリル樹脂溶液に均一に分散したシリカ分散液を得た。 Nano balloon XP200 (methyl) manufactured by Grandex Co., Ltd. as nano hollow particles in 333 parts by weight of CAV transparent 800 medium (solid content 30%) manufactured by Seiko Advance Co., Ltd. (primary particle diameter (outer diameter): 202 0.0 nm, see Table 1) 20 parts by weight were mixed. And it disperse | distributed using Kurashiki Boseki Co., Ltd. Maruzester as a planetary-type stirring and defoaming apparatus, and obtained the silica dispersion liquid by which the nano hollow silica particle was disperse | distributed uniformly in the acrylic resin solution.
 5インチ(12.7cm)の透明アクリル板を用意し、その一面側に上記シリカ分散液を12g/m2の目付量(乾燥時)となるようにスクリーン印刷した。その後、乾燥させて実施例1の導光板ユニットとした。得られたドットの径は最小50μm、最大62μmであり、ドットのピッチは500μmであった。
(実施例2)
 ナノ中空粒子としてグランデックス株式会社製のナノバルーンNFB(一次粒子径(外径):630.0nm、表1参照)を採用した以外は、上記実施例1と同じ条件で実施例2の導光板ユニットを得た。
(実施例3)
 ナノ中空粒子の配合量を半分(10重量部)にした以外は、上記実施例1と同じ条件で実施例3の導光板ユニットを得た。
A 5-inch (12.7 cm) transparent acrylic plate was prepared, and the above silica dispersion was screen-printed on one side so as to have a basis weight of 12 g / m 2 (when dry). Then, it was made to dry and it was set as the light-guide plate unit of Example 1. The obtained dots had a minimum diameter of 50 μm and a maximum of 62 μm, and the dot pitch was 500 μm.
(Example 2)
The light guide plate of Example 2 under the same conditions as in Example 1 above, except that Nano Balloon NFB manufactured by Grandex Co., Ltd. (primary particle diameter (outer diameter): 630.0 nm, see Table 1) was adopted as the nano hollow particles. Got a unit.
Example 3
A light guide plate unit of Example 3 was obtained under the same conditions as in Example 1 except that the compounding amount of the nano hollow particles was halved (10 parts by weight).
(比較例1)
 ナノ中空粒子を配合しないこと以外は、上記実施例1と同じ条件で比較例1の導光板ユニットを得た。
(比較例2)
 ナノ中空粒子の替わりに、中実シリカ粒子(一次粒子径200nm、株式会社アドマテックス製、商品名:SO-C1)を用いたこと以外は、実施例1と同じ条件で比較例2の導光板ユニットを得た。
(Comparative Example 1)
The light-guide plate unit of the comparative example 1 was obtained on the same conditions as the said Example 1 except not mix | blending nano hollow particle.
(Comparative Example 2)
The light guide plate of Comparative Example 2 under the same conditions as Example 1 except that solid silica particles (primary particle size 200 nm, manufactured by Admatechs Co., Ltd., trade name: SO-C1) were used instead of the nano hollow particles. Got a unit.
<評 価>
 実施例及び比較例の導光板ユニットの輝度及び色差について測定した。
 表2はその結果を示す。
Figure JPOXMLDOC01-appb-T000002
 なお、表2において拡散板、プリズム及びDBEFは面状光源へ汎用的に用いられるものであり、導光板ユニットの光放出面側に順次積層した。
 表2の輝度及び色差はいわゆる9点法で測定した。ここに、9点法では光放出面を縦横4等分して9つのセルを設け、各セルの中心の輝度及び色度を計測する。計測には、コニカミノルタ製の二次元色彩輝度計 CA-2000を用いた。輝度は9点の平均輝度であり、色差は8番のセル中心の色度と2番のセル中心の色度の差である。
 輝度は比較例1の値を基準(100%)として、その他の例(実施例、比較例)の輝度を相対評価している。
 色差の値はゼロに近いほどよく、その絶対値が0.0100以内が好適である。更に好ましくは0.0080以内である。
 表2の結果から、実施例の導光板ユニットは、その単体において高い輝度を得られることが分かる。
 実施例1と実施例2との比較から、配合量が一定比率の場合、中空ナノシリカの一次粒径を大きくすること(例えば500nm以上)することで、より効率的に色差を抑制できることがわかる。
<Evaluation>
It measured about the brightness | luminance and color difference of the light-guide plate unit of an Example and a comparative example.
Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000002
In Table 2, the diffusion plate, the prism, and the DBEF are generally used for the planar light source and are sequentially stacked on the light emission surface side of the light guide plate unit.
The luminance and color difference in Table 2 were measured by the so-called 9-point method. Here, in the nine-point method, the light emission surface is divided into four equal parts vertically and horizontally to provide nine cells, and the luminance and chromaticity at the center of each cell are measured. For measurement, a two-dimensional color luminance meter CA-2000 made by Konica Minolta was used. The luminance is an average luminance of nine points, and the color difference is the difference between the chromaticity at the cell center of the eighth cell and the chromaticity at the cell center of the second cell.
With respect to the luminance, the value of Comparative Example 1 is used as a reference (100%), and the luminance of other examples (Examples and Comparative Examples) is relatively evaluated.
The color difference value is preferably close to zero, and the absolute value is preferably within 0.0100. More preferably, it is within 0.0080.
From the results shown in Table 2, it can be seen that the light guide plate unit of the example can obtain high luminance in a single unit.
From a comparison between Example 1 and Example 2, it can be seen that when the blending amount is a constant ratio, the color difference can be more efficiently suppressed by increasing the primary particle size of the hollow nanosilica (for example, 500 nm or more).
 この発明は上記発明の実施の態様及び実施例の説明に何ら限定されるものではない。特許請求の範囲を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。 The present invention is not limited to the description of the embodiments and examples of the above invention. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.
1 導光板ユニット
3 導光板
5 光散乱層
1 Light guide plate unit 3 Light guide plate 5 Light scattering layer

Claims (8)

  1.  エッジライト方式に対応する導光板と、
     該導光板の一面に形成され、ドットで構成される光散乱パターンを含む光散乱層と、を備える導光板ユニットであって、
     前記ドットは光透過性組成物からなり、
     該光透過性組成物は光透過性材料と平均粒径が200nm以上2000nm以下のナノ中空粒子の光散乱物質とを含んでなり、
     前記ドットは25μm以上200μm以下の径のドットを含む、
     導光板ユニット。
    A light guide plate corresponding to the edge light system;
    A light scattering plate unit comprising a light scattering layer formed on one surface of the light guide plate and including a light scattering pattern composed of dots,
    The dots are made of a light transmissive composition,
    The light transmissive composition comprises a light transmissive material and a light scattering material of nano hollow particles having an average particle size of 200 nm to 2000 nm,
    The dots include dots having a diameter of 25 μm or more and 200 μm or less,
    Light guide plate unit.
  2.  前記ナノ中空粒子は、その一次粒子の平均粒径が200nm以上2000nm以下である、請求項1に記載の導光板ユニット。 The light guide plate unit according to claim 1, wherein the nano hollow particles have an average primary particle size of 200 nm to 2000 nm.
  3.  前記光透過性組成物において前記光透過性材料は光透過性の合成樹脂材料からなり、該合成樹脂材料100重量部に対して前記光散乱物質の10重量部以上40重量部以下が配合されている、請求項1又は請求項2に記載の導光板ユニット。 In the light transmissive composition, the light transmissive material is made of a light transmissive synthetic resin material, and 10 parts by weight or more and 40 parts by weight or less of the light scattering material is blended with 100 parts by weight of the synthetic resin material. The light guide plate unit according to claim 1 or 2.
  4.  前記導光板の厚さが1.5mm以下であり、前記ドットのピッチが前記ドット径の4倍以上20倍以下であり、前記光散乱層はバックライト用として前記導光板の裏面に形成される、請求項1~3のいずれかに記載の導光板ユニット。 The light guide plate has a thickness of 1.5 mm or less, the dot pitch is 4 to 20 times the dot diameter, and the light scattering layer is formed on the back surface of the light guide plate for backlight. The light guide plate unit according to any one of claims 1 to 3.
  5.  前記導光板は7インチ(17.8cm)以上10インチ(25.4cm)以下のディスプレイ用である、請求項4に記載の導光板ユニット。 The light guide plate unit according to claim 4, wherein the light guide plate is for a display of 7 inches (17.8 cm) or more and 10 inches (25.4 cm) or less.
  6.  エッジライト方式に対応する導光板と、
     該導光板の一面に形成され、25μm以上200μm以下の径のドットを含む光散乱層と、を備える導光板ユニットにおいて前記ドットを形成する光透過性組成物であって、
     光透過性材料と平均粒径が200nm以上2000nm以下のナノ中空粒子の光散乱物質とを含んでなる、光透過性組成物。
    A light guide plate corresponding to the edge light system;
    A light-transmitting composition that forms the dots in a light guide plate unit that is formed on one surface of the light guide plate and includes a light scattering layer including dots having a diameter of 25 μm or more and 200 μm or less,
    A light transmissive composition comprising a light transmissive material and a light scattering material of nano hollow particles having an average particle diameter of 200 nm to 2000 nm.
  7.  前記光透過性材料は光透過性の合成樹脂材料からなり、該合成樹脂材料100重量部に対して前記光散乱物質の10重量部以上40重量部以下が配合されている、請求項6に記載の光透過性組成物。 The light transmissive material is made of a light transmissive synthetic resin material, and 10 parts by weight or more and 40 parts by weight or less of the light scattering material is blended with 100 parts by weight of the synthetic resin material. Light transmissive composition.
  8.  エッジライト方式に対応する導光板と、
     該導光板の一面に形成され、ドットで構成される光散乱パターンを含む光散乱層と、を備える導光板ユニットの製造方法であって、
     光透過性材料と平均粒径が200nm以上2000nm以下のナノ中空粒子の光散乱物質とを含んでなる光透過性組成物を準備するステップと、
     該光透過性組成物で前記導光板の一面にドット径が25μm以上200μm以下のドットを含む前記光散乱パターンを印刷し、前記光散乱層を形成するステップと、を含む
     導光板ユニットの製造方法。
    A light guide plate corresponding to the edge light system;
    A light scattering layer including a light scattering pattern formed on one surface of the light guide plate and including dots, and a method of manufacturing a light guide plate unit,
    Providing a light transmissive composition comprising a light transmissive material and a light scattering material of nano hollow particles having an average particle size of 200 nm to 2000 nm;
    Printing the light scattering pattern including dots having a dot diameter of 25 μm or more and 200 μm or less on one surface of the light guide plate with the light transmissive composition, and forming the light scattering layer. A method of manufacturing a light guide plate unit .
PCT/JP2014/084327 2013-12-26 2014-12-25 Light guide plate unit, production method therefor, and light-transmitting composition WO2015099050A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-268254 2013-12-26
JP2013268254A JP2015125836A (en) 2013-12-26 2013-12-26 Light guide plate unit, manufacturing method thereof, and composition with light transparency

Publications (1)

Publication Number Publication Date
WO2015099050A1 true WO2015099050A1 (en) 2015-07-02

Family

ID=53478895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084327 WO2015099050A1 (en) 2013-12-26 2014-12-25 Light guide plate unit, production method therefor, and light-transmitting composition

Country Status (2)

Country Link
JP (1) JP2015125836A (en)
WO (1) WO2015099050A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101891304B1 (en) * 2016-04-04 2018-08-24 희성전자 주식회사 Transparent light guide plate and transparent display apparatus having the same
KR200488057Y1 (en) * 2016-08-25 2018-12-10 희성전자 주식회사 Transparent neon board
KR102106785B1 (en) * 2017-08-25 2020-05-28 주식회사 엘지화학 Diffraction light guide plate and manufacturing method for diffraction light guide plate
CN113614445B (en) 2019-03-28 2023-10-20 三菱电机株式会社 Diffuser and lighting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013097927A (en) * 2011-10-28 2013-05-20 Sumitomo Chemical Co Ltd Light guide plate
JP2013140704A (en) * 2011-12-30 2013-07-18 Toyota Tsusho Corp Reflected light diffusion layer and light guide device using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013097927A (en) * 2011-10-28 2013-05-20 Sumitomo Chemical Co Ltd Light guide plate
JP2013140704A (en) * 2011-12-30 2013-07-18 Toyota Tsusho Corp Reflected light diffusion layer and light guide device using the same

Also Published As

Publication number Publication date
JP2015125836A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
TWI289687B (en) Light-diffusing sheet having voids for TFT-LCD
Hu et al. Optical diffusers with enhanced properties based on novel polysiloxane@ CeO 2@ PMMA fillers
WO2015099050A1 (en) Light guide plate unit, production method therefor, and light-transmitting composition
US9188711B2 (en) Light guide plate and light-emitting assembly having the same
CN101910879B (en) Light-diffusing sheet and backlight device using same
TW201033661A (en) Light guide plate
JPWO2018123543A1 (en) Light diffusing film, coating agent for forming light diffusing film and method for producing the same, and projection screen and method for producing the same
KR102067160B1 (en) Film for improving color sense and method for preparing the same
JP2009036892A (en) Directional film and directional diffusion film
KR20100015839A (en) Backlit device
CN1834752A (en) optical sheet
JP7061184B2 (en) Light scatterer, composition for forming light scatterer, sheet-like laminate, projection screen, light diffusion sheet and lighting device with built-in light enhancer
JP2009001726A (en) Coating composition and light guide plate printed therewith
JP2013140703A (en) Emission light diffusion layer and light guide device using the same
JP2013089543A (en) Light guide plate and planar light-emitting device
CN106873061A (en) A kind of printing-ink type reflectance coating and preparation method thereof
KR100708490B1 (en) Anti-glare film and its manufacturing method
JP6301576B2 (en) Light diffusion transmission sheet
US20230129382A1 (en) Backlight unit and image display device
JP6475849B2 (en) Light diffusing and transmitting sheet and method for producing composite particles
CN105891919B (en) Light transmitting base material
JP2016027430A (en) Light transmissive composition
JP2013140704A (en) Reflected light diffusion layer and light guide device using the same
CN109407202A (en) A kind of SMS light guide plate and preparation method
JP2013140702A (en) Light distribution layer and light guide device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873526

Country of ref document: EP

Kind code of ref document: A1