[go: up one dir, main page]

WO2015083337A1 - 光記録媒体用記録層、および光記録媒体 - Google Patents

光記録媒体用記録層、および光記録媒体 Download PDF

Info

Publication number
WO2015083337A1
WO2015083337A1 PCT/JP2014/005822 JP2014005822W WO2015083337A1 WO 2015083337 A1 WO2015083337 A1 WO 2015083337A1 JP 2014005822 W JP2014005822 W JP 2014005822W WO 2015083337 A1 WO2015083337 A1 WO 2015083337A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
recording
recording layer
optical recording
Prior art date
Application number
PCT/JP2014/005822
Other languages
English (en)
French (fr)
Inventor
康宏 曽根
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US15/037,286 priority Critical patent/US9830941B2/en
Priority to JP2015551379A priority patent/JP6447830B2/ja
Priority to CN201480065179.7A priority patent/CN105793056B/zh
Publication of WO2015083337A1 publication Critical patent/WO2015083337A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24306Metals or metalloids transition metal elements of groups 3-10
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24318Non-metallic elements
    • G11B2007/2432Oxygen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25708Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing group 13 elements (B, Al, Ga)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/2571Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing group 14 elements except carbon (Si, Ge, Sn, Pb)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25715Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing oxygen

Definitions

  • the present technology relates to a recording layer for an optical recording medium and an optical recording medium.
  • the present invention relates to an optical recording medium recording layer containing a metal oxide and an optical recording medium including the same.
  • the recording layer on the front side is a recording layer that can transmit laser light used for recording and reproduction. (Hereinafter referred to as “transparent recording layer” as appropriate).
  • an oxide of at least one metal selected from the group consisting of tungsten (W) and Mo (molybdenum), Cu (copper), Mn (manganese), Ni (nickel) and Ag (A material containing at least one metal oxide selected from the group consisting of (silver) has been proposed (for example, see Patent Document 1).
  • an object of the present technology is to provide a recording layer for an optical recording medium that can realize high transmittance, high recording sensitivity, and high S / N (high modulation degree), and an optical recording medium including the recording layer.
  • the first technique is: An oxide of a metal M A, an oxide of a metal M B, a transmission type recording layer comprising an oxide of a metal M C comprises, Metal M A is at least one selected from the group consisting of Mn and Ni, Metal M B is at least one selected from the group consisting of W and Mo, The metal M C is Zr, The atomic ratio of metal M A to metal M B (M A / M B ) is 0.37 or more and 1.31 or less, The content of the metal M C in the transmission type recording layer is an optical recording medium is 27.5 atomic% or less 0.9 atomic% or more.
  • the second technology is A metal M A oxide, a metal M B oxide, and a metal M C oxide;
  • Metal M A is at least one selected from the group consisting of Mn and Ni
  • Metal M B is at least one selected from the group consisting of W and Mo
  • the metal M C is Zr
  • the atomic ratio of metal M A to metal M B (M A / M B ) is 0.37 or more and 1.31 or less
  • the content of the metal M C in the transmission type recording layer is a recording layer for an optical recording medium is not more than 27.5 atomic% 0.9 atomic% or more.
  • FIG. 1A is a perspective view illustrating an example of an appearance of an optical recording medium according to an embodiment of the present technology.
  • FIG. 1B is a schematic cross-sectional view illustrating an example of the configuration of an optical recording medium according to an embodiment of the present technology.
  • FIG. 2 is a schematic diagram illustrating an example of the configuration of each information signal layer.
  • FIG. 3 is a diagram showing the transmittance and the degree of modulation of the L1 layer of the optical recording media of Examples 1 to 5 and Comparative Examples 1 to 3.
  • FIG. 4A is a diagram showing the transmittance and the degree of modulation of the L1 layer of the optical recording media of Examples 6 to 10 and Comparative Examples 4 and 5.
  • FIG. 1A is a perspective view illustrating an example of an appearance of an optical recording medium according to an embodiment of the present technology.
  • FIG. 1B is a schematic cross-sectional view illustrating an example of the configuration of an optical recording medium according to an embodiment of the present technology.
  • FIG. 2 is a schematic diagram illustrating
  • FIG. 4B is a diagram showing the recording power of the L1 layer of the optical recording media of Examples 6 to 10 and Comparative Examples 4 and 5.
  • FIG. 5 is a diagram showing the refractive index of the recording layer included in the L1 layer of the optical recording media of Examples 15 to 20.
  • one or more transmissive recording layers are provided on a substrate, and a cover layer is provided on the transmissive recording layer.
  • the thickness of the cover layer is not particularly limited, and the cover layer includes a substrate, a sheet, a coating layer, and the like.
  • a high NA objective lens is used, so a thin light transmission layer such as a sheet or coating layer is used as the cover layer, and information signals are emitted by irradiating light from the light transmission layer side. It is preferable to perform recording and reproduction. In this case, it is also possible to employ a substrate having opacity as the substrate.
  • the light incident surface for recording or reproducing the information signal is appropriately set on at least one of the cover layer side and the substrate side according to the format of the optical recording medium.
  • the transmissive recording layer from the viewpoint of improving storage reliability, it is preferable to further include a dielectric layer on at least one surface of the transmissive recording layer, and further include a dielectric layer on both surfaces of the transmissive recording layer. More preferred. From the viewpoint of simplifying the layer structure and manufacturing equipment, it is preferable to use the transmissive recording layer alone without providing a dielectric layer on any surface of the transmissive recording layer.
  • the number of layers of transmissive type recording layer is two or more layers, from the viewpoint of productivity, all their transmission type recording layer, those containing the same species of material, i.e. an oxide of a metal M A And the metal M B oxide and the metal M C oxide are preferable, and those having the same composition ratio of the metals M A , M B and M C are more preferable.
  • the content of the metal M C in the transmission type recording layer is preferably not more than 27.5 atomic% 0.9 atomic% or more. Also, if the number of layers of the transmissive type recording layer is a three-layer, the content of the metal M C in the transmission type recording layer is preferably not more than 8.5 atomic% 0.9 atomic% or more.
  • an optical recording medium 10 As shown in FIG. 1A, an optical recording medium 10 according to an embodiment of the present technology has a disk shape with an opening (hereinafter referred to as “center hole”) provided in the center.
  • the shape of the optical recording medium 10 is not limited to this example, and may be a card shape.
  • the optical recording medium 10 is a so-called multilayer write-once optical recording medium, and includes an information signal layer L0, an intermediate layer S1, an information signal layer L1,..., An intermediate layer Sn, and an information signal layer Ln.
  • the light transmission layer 12 serving as a cover layer is laminated on one main surface of the substrate 11 in this order.
  • n is, for example, an integer of 2 or more, preferably an integer of 3 or more or 4 or more.
  • the information signal layer L0 is located farthest with respect to the surface C, and the information signal layers L1 to Ln are located in front of it. Therefore, the information signal layers L1 to Ln are configured to be able to transmit laser light used for recording or reproduction.
  • information signals are recorded or reproduced by irradiating the information signal layers L0 to Ln with laser light from the surface C on the light transmission layer 12 side.
  • laser light having a wavelength in the range of 400 nm or more and 410 nm or less is collected by an objective lens having a numerical aperture in the range of 0.84 or more and 0.86 or less, and each information signal layer L0 from the light transmission layer 12 side.
  • Recording or reproduction of information signals is performed by irradiating .about.Ln.
  • the information signal layers L0 to Ln have a recording capacity of 25 GB or more with respect to a wavelength of 405 nm and a numerical aperture NA of the condenser lens of 0.85.
  • a multilayer Blu-ray disc (BD: Blu-ray Disc (registered trademark)
  • BD Blu-ray Disc (registered trademark)
  • the surface C on which the information signal layers L0 to Ln are irradiated with laser light for recording or reproducing information signals is referred to as a light irradiation surface C.
  • the substrate 11 the information signal layers L0 to Ln, the intermediate layers S1 to Sn, and the light transmission layer 12 constituting the optical recording medium 10 will be described in order.
  • the substrate 11 has, for example, a disk shape with a center hole provided at the center.
  • One main surface of the substrate 11 is an uneven surface, for example, and the information signal layer L0 is formed on the uneven surface.
  • the concavo-convex surface the concave portion is referred to as in-groove Gin, and the convex portion is referred to as on-groove Gon.
  • the shapes of the in-groove Gin and the on-groove Gon include various shapes such as a spiral shape and a concentric circle shape. Further, the in-groove Gin and / or the on-groove Gon are wobbled (meandered), for example, to stabilize the linear velocity and add address information.
  • the diameter (diameter) of the substrate 11 is selected to be 120 mm, for example.
  • the thickness of the substrate 11 is selected in consideration of rigidity, preferably 0.3 mm or more and 1.3 mm or less, more preferably 0.6 mm or more and 1.3 mm or less, for example 1.1 mm.
  • the diameter (diameter) of the center hole is selected to be 15 mm, for example.
  • a plastic material or glass can be used. From the viewpoint of cost, it is preferable to use a plastic material.
  • a plastic material for example, a polycarbonate resin, a polyolefin resin, an acrylic resin, or the like can be used.
  • the information signal layers L0 to Ln are, for example, adjacent to the recording layer 21 having an upper surface (first main surface) and a lower surface (second main surface), and the upper surface of the recording layer 21.
  • a dielectric layer 22 provided and a dielectric layer 23 provided adjacent to the lower surface of the recording layer 21 are provided.
  • the upper surface means a main surface on the side irradiated with laser light for recording or reproducing an information signal among both main surfaces of the recording layer 21, and the lower surface is irradiated with the above-described laser light.
  • the main surface on the opposite side to the substrate side that is, the main surface on the substrate side.
  • the recording layers 21 of the information signal layers L1 to Ln receive laser light for recording or reproducing information signals so that recording or reproduction can be performed on the recording layer 21 further on the back side as viewed from the light irradiation surface C. It is a transmissive recording layer configured to be transmissive.
  • Recording layer 21 of at least one layer of the information signal layers L1 ⁇ Ln is an inorganic recording layer containing an oxide of a metal M A, an oxide of a metal M B, and an oxide of a metal M C.
  • all of the recording layer 21 of the information signal layers L1 ⁇ Ln, and an oxide of a metal M A, an oxide of a metal M B, may be of the same material comprising an oxide of a metal M C, information Different materials may be used according to characteristics (for example, optical characteristics and durability) required for each recording layer 21 of the signal layers L0 to Ln. From the viewpoint of productivity, it is preferable to use the same material for all the recording layers 21 of the information signal layers L1 to Ln. Thus, by using the same material, the productivity of the optical recording medium 10 can be improved. Such an effect becomes more remarkable as the medium has a larger number of information signal layers L1 to Ln.
  • the metal M A has a degree of absorption coefficient in the case of a oxide, and less material than that of the absolute value of the metal M B of standard free energy of oxide. By using such a material, the recording layer 21 absorbs the laser light and converts it into heat, and oxygen can be released and swelled. Therefore, information signals can be recorded by laser light irradiation.
  • the metal M A having the above-described characteristics at least one is used selected from the group consisting of manganese (Mn) and nickel (Ni).
  • the metal M A both of Mn and Ni is preferably used.
  • the atomic ratio of Mn to Ni (Mn / Ni) is preferably 0.4 or more and 2.6 or less. This is because the power margin can be particularly improved when the atomic ratio (Mn / Ni) is within this range.
  • Ni is preferably used.
  • the metal M B is substantially transparent when it becomes an oxide, the material close to the extinction coefficient k is 0 or 0 of the oxide.
  • M B having the above-described characteristics at least one is used selected from the group consisting of tungsten (W) and molybdenum (Mo).
  • the metal M B both or Mo and W and Mo are preferably used.
  • the atomic ratio of W to Mo (W / Mo) is preferably 2.0 or less. This is because the power margin can be particularly improved when the atomic ratio (W / Mo) is within this range.
  • Atomic ratio of the metal M A to the metal M B is preferably 0.37 or more 1.31 or less, more preferably 0.54 or more 0.78 or less.
  • the atomic ratio (M A / M B ) be in the above numerical range. If it is 0.37 or more, the modulation degree of the recording layer 21 can be 40.0% or more, and if it is 0.54 or more, the modulation degree of the recording layer 21 can be 45.0% or more. it can.
  • the transmittance of the recording layer 21 can be 60.0% or more, and if it is 0.78 or less, the transmittance of the recording layer 21 is 70.0% or more. be able to.
  • the modulation degree is 40.0 or more, an information signal can be reproduced using an existing consumer drive. Further, when the modulation degree is 45.0 or more, the information signal can be reproduced using an existing consumer drive even when the modulation degree is deteriorated due to perturbation.
  • the transmittance of the recording layer 21 included in the information signal layer Ln closest to the light irradiation surface C is 60.0% or more
  • the light irradiation surface A sufficient amount of laser light can be made to reach the information signal layer Ln ⁇ 1 disposed one layer behind the information signal layer Ln as viewed from C.
  • the information signal layer Ln-1 can be irradiated with a laser beam having a recording power of 22.8 mW.
  • the transmittance of the recording layer 21 included in the information signal layers Ln and Ln ⁇ 1 (where n is an integer of 4 or more, preferably 4) is 70.0% or more, as viewed from the light irradiation surface C.
  • a sufficient amount of laser light can be made to reach the information signal layer Ln-2 disposed on the back side of the information signal layer Ln by two layers.
  • the information signal layer Ln-2 can be irradiated with a laser beam with a recording power of 18.62 mW.
  • the metal M A both of Mn and Ni is used, and as the metal M B, both of W and Mo It is preferable to be used.
  • the metal M C is Zr.
  • recording layer 21 contains an oxide of a metal M C, it is possible to improve the transmittance and degree of modulation of the recording layer 21.
  • the content of the metal M C in the recording layer 21 is preferably 27.5 atomic% 0.9 atomic% or more, more preferably 8.5 atom% 0.9 atom% or more or less, further preferably 5.5 atom % Or more and 8.5 atomic% or less.
  • the atomic ratio of metal M A to metal M B is in the range of 0.37 or more and 1.31 or less
  • the content of metal M C is particularly preferably in the above numerical range.
  • the modulation degree can be 40.0 or more, and when the content of the metal M C is 5.5 atomic% or more, the modulation degree is It can be 45.0 or more.
  • the advantages obtained by setting the modulation degree to 40.0 or more or 45.0 or more are as described above.
  • the recording power can be made 22.8 mW or less, and when the content of the metal M C is 8.5 atomic% or less, recording is performed.
  • the power can be reduced to 18.62 mW or less.
  • the recording power is 22.8 mW or less, an information signal can be recorded on the recording layer 21 of the information signal layer Ln-1 using an existing consumer drive. This is due to the following reason.
  • the recording power of the laser light applied to the signal layer Ln-1 is 22.8 mW or less. Therefore, the recording power of the laser beam for recording the information signal on the information signal layer Ln-1 is preferably set to 22.8 mW or less.
  • the recording power of 38.0 mW means not the recording power of the semiconductor laser, but the recording power of the laser light incident on the light irradiation surface C of the optical recording medium 10 or the information signal layer Ln.
  • an information signal can be recorded on the recording layer 21 of the information signal layer Ln-2 using an existing consumer drive.
  • the upper limit value of the recording power of the existing consumer drive is assumed to be 38.0 mW, and the transmittance of both recording layers 21 of the information signal layers Ln and Ln ⁇ 1 is set to 70% or more, the information signal
  • the recording power of the laser light applied to the recording layer 21 of the layer Ln-2 is 18.62 mW or less. Therefore, it is preferable that the recording power of the laser beam for recording the information signal on the recording layer 21 of the information signal layer Ln-2 is set to 18.62 mW or less.
  • Recording layer 21 may further comprise an oxide of a metal M D.
  • the metal M D is at least one selected from the group consisting of copper (Cu) and zinc (Zn). By including the oxide of the metal M D, it is possible to reduce the content of the oxide of the metal M A, to cost reduction of the optical recording medium 10.
  • Recording layer 21 may further comprise an oxide of a metal M E.
  • the metal ME is magnesium (Mg).
  • Mg magnesium
  • the Mg content in the recording layer 21 is preferably 6.6 atomic% to 43.0 atomic%, more preferably 7.57 atomic% to 43.0 atomic%, and further preferably 20.1 atomic%. It is 43.0 atomic% or more.
  • the refractive index of the recording layer 21 can be made 2.24 or less.
  • the refractive index is 2.24 or less
  • a reflectance of 4% or less can be secured in a state where the thickness of the dielectric layer 22 provided adjacent to the upper surface of the recording layer 21 is reduced to 26 nm or less. it can.
  • the reflectance is reduced in this way, the reflectances of the information signal layers L1 to Ln can be easily aligned.
  • the Mg content is 43.0 atomic% or less
  • the refractive index of the recording layer 21 is 1.97 or more
  • the reflectance is 3.3% even when the thickness of the dielectric layer 22 is 6 nm or more. This can be done.
  • a high S / N can be secured for reproduction of the recording layer 21 of the information signal layer Ln-1 using an existing consumer drive. This is due to the following reason. That is, in order to secure a sufficient S / N for reproduction with an existing consumer drive, a reflectance of 2% or more is required, and the information signal layer Ln closest to the light irradiation surface C is transmitted through the recording layer 21. When the rate is set to 60% or more, the reflectance of the information signal layer Ln-1 needs to be 3.3% or more. Therefore, it is preferable to secure 3.3% or more of the reflectance of the information signal layer Ln-1.
  • Recording layer 21 may further include a metal M F.
  • the metal M F is tin (Sn), bismuth (Bi), germanium (Ge), cobalt (Co), aluminum (Al), indium (In), silver (Ag), palladium (Pd), gallium (Ga) , Te (tellurium), V (vanadium), silicon (Si), tantalum (Ta), germanium (Ge), chromium (Cr), and at least one selected from the group consisting of terbium (Tb) can be used. .
  • a known recording layer can be used as the recording layer 21 of the information signal layer L0 which is the farthest side when viewed from the light irradiation surface C.
  • the known recording layer for example, an oxide of at least one metal selected from the group consisting of W and Mo, and an oxide of at least one metal selected from the group consisting of Cu, Mn, Ni and Ag And a recording layer containing an oxide of Pd can be used.
  • a recording layer containing an oxide of Pd can be used similarly to the recording layer 21 of the information signal layers L1 ⁇ Ln, and an oxide of a metal M A, an oxide of a metal M B, it may be used a recording layer containing an oxide of a metal M C.
  • the dielectric layers 22 and 23 function as gas barrier layers, the durability of the recording layer 21 can be improved. Further, by suppressing the escape of oxygen and the intrusion of H 2 O in the recording layer 21, changes in the film quality of the recording layer 21 (mainly detected as a decrease in reflectivity) are suppressed, and the necessary film quality for the recording layer 21 is obtained. Can be secured.
  • Examples of the material of the dielectric layers 22 and 23 include at least one selected from the group consisting of oxides, nitrides, sulfides, carbides, and fluorides. As the material of the dielectric layers 22 and 23, the same or different materials can be used.
  • As the oxide for example, an oxide of one or more elements selected from the group consisting of In, Zn, Sn, Al, Si, Ge, Ti, Ga, Ta, Nb, Hf, Zr, Cr, Bi, and Mg Is mentioned.
  • nitride for example, a nitride of one or more elements selected from the group consisting of In, Sn, Ge, Cr, Si, Al, Nb, Mo, Ti, Nb, Mo, Ti, W, Ta, and Zn
  • a nitride of one or more elements selected from the group consisting of Si, Ge, and Ti is used.
  • the sulfide include Zn sulfide.
  • the carbide include carbides of one or more elements selected from the group consisting of In, Sn, Ge, Cr, Si, Al, Ti, Zr, Ta, and W, preferably a group consisting of Si, Ti, and W And carbides of one or more elements selected from the above.
  • fluoride examples include fluorides of one or more elements selected from the group consisting of Si, Al, Mg, Ca, and La.
  • examples of the mixture include ZnS—SiO 2 , SiO 2 —In 2 O 3 —ZrO 2 (SIZ), SiO 2 —Cr 2 O 3 —ZrO 2 (SCZ), In 2 O 3 —SnO 2 (ITO).
  • the intermediate layers S1 to Sn serve to separate the information signal layers L0 to Ln with a sufficient physical and optical distance, and the surface thereof is provided with an uneven surface.
  • the uneven surface forms, for example, concentric or spiral grooves (in-groove Gin and on-groove Gon).
  • the thickness of the intermediate layers S1 to Sn is preferably set to 9 ⁇ m to 50 ⁇ m.
  • the material of the intermediate layers S1 to Sn is not particularly limited, but it is preferable to use an ultraviolet curable acrylic resin. Further, since the intermediate layers S1 to Sn serve as an optical path of laser light for recording or reproducing information signals to the inner layer, it is preferable that the intermediate layers S1 to Sn have sufficiently high light transmittance.
  • the light transmission layer 12 is a resin layer formed by curing a photosensitive resin such as an ultraviolet curable resin.
  • a photosensitive resin such as an ultraviolet curable resin.
  • the material of the resin layer include an ultraviolet curable acrylic resin.
  • the light transmissive layer 12 may be constituted by a light transmissive sheet having an annular shape and an adhesive layer for bonding the light transmissive sheet to the substrate 11.
  • the light-transmitting sheet is preferably made of a material having a low absorption ability with respect to laser light used for recording and reproduction, specifically, a material having a transmittance of 90% or more.
  • a material for the light transmissive sheet for example, a polycarbonate resin material, a polyolefin-based resin (for example, ZEONEX (registered trademark)), or the like can be used.
  • a material for the adhesive layer for example, an ultraviolet curable resin, a pressure sensitive adhesive (PSA), or the like can be used.
  • the thickness of the light transmission layer 12 is preferably selected from the range of 10 ⁇ m to 177 ⁇ m, for example, 100 ⁇ m.
  • an objective lens having a high NA (numerical aperture) of, for example, about 0.85 high density recording can be realized.
  • the hard coat layer may be made of a mixture of fine silica gel powder to improve the mechanical strength, or an ultraviolet curable resin such as a solvent type or a solventless type.
  • the thickness is preferably about 1 ⁇ m to several ⁇ m.
  • the substrate 11 having an uneven surface formed on one main surface is formed.
  • a method for molding the substrate 11 for example, an injection molding (injection) method, a photopolymer method (2P method: Photo Polymerization), or the like can be used.
  • the information signal layer L0 is formed by sequentially laminating the dielectric layer 23, the recording layer 21, and the dielectric layer 22 on the substrate 11 by sputtering, for example.
  • an ultraviolet curable resin is uniformly applied on the information signal layer L0 by, for example, a spin coating method. Thereafter, the concave / convex pattern of the stamper is pressed against the ultraviolet curable resin uniformly applied on the information signal layer L0, and the ultraviolet curable resin is irradiated with ultraviolet rays to be cured, and then the stamper is peeled off. Thereby, the uneven pattern of the stamper is transferred to the ultraviolet curable resin, and for example, an intermediate layer S1 provided with in-groove Gin and on-groove Gon is formed on the information signal layer L0.
  • the information signal layer L1 is formed by sequentially laminating the dielectric layer 23, the recording layer 21, and the dielectric layer 22 on the intermediate layer S1, for example, by sputtering. Below, the formation process of each layer of the information signal layer L1 is demonstrated concretely.
  • the substrate 11 is transported into a vacuum chamber provided with a target for forming a dielectric layer, and the inside of the vacuum chamber is evacuated to a predetermined pressure. Thereafter, the target is sputtered while introducing a process gas such as Ar gas or O 2 gas into the vacuum chamber, and the dielectric layer 23 is formed on the substrate 11.
  • a sputtering method for example, a radio frequency (RF) sputtering method or a direct current (DC) sputtering method can be used, and a direct current sputtering method is particularly preferable. This is because the direct current sputtering method is cheaper and has a higher film formation rate than the high frequency sputtering method, and therefore can reduce the manufacturing cost and improve the productivity.
  • RF radio frequency
  • DC direct current
  • the substrate 11 is transferred into a vacuum chamber provided with a target for forming a recording layer, and the inside of the vacuum chamber is evacuated until a predetermined pressure is reached. Thereafter, while introducing a process gas such as Ar gas or O 2 gas into the vacuum chamber, the target is sputtered to form the recording layer 21 on the dielectric layer 23.
  • a process gas such as Ar gas or O 2 gas
  • the metal target As a target for the recording layer deposition, and a metal M A and a metal M B, an oxide of a metal target, the metal M A containing a metal M C, and an oxide of a metal M B, oxidation of the metal M C
  • the metal target it is preferable to use the metal target. Since the direct current sputtering method has a higher film formation rate than the high frequency sputtering method, productivity can be improved.
  • the atomic ratio of metal M A to the metal M B is preferably 0.37 or more 1.31 or less, more preferably 0.54 or more 0. 78 or less.
  • the metal target is at least one may further include a member selected from the group consisting of consisting of a metal M D and the metal M E.
  • the metal oxide target may further include at least one selected from the group consisting of an oxide of metal M D and an oxide of metal M E.
  • the metal target may also include a metal M F. Also, the metal oxide target may also include an oxide of the metal M F.
  • the substrate 11 is transferred into a vacuum chamber provided with a target for forming a dielectric layer, and the inside of the vacuum chamber is evacuated to a predetermined pressure. Thereafter, the target is sputtered while introducing a process gas such as Ar gas or O 2 gas into the vacuum chamber, and the dielectric layer 22 is formed on the recording layer 21.
  • a process gas such as Ar gas or O 2 gas
  • the sputtering method for example, a radio frequency (RF) sputtering method or a direct current (DC) sputtering method can be used, and a direct current sputtering method is particularly preferable. This is because the direct current sputtering method has a higher film formation rate than the high frequency sputtering method, and thus can improve productivity. As a result, the information signal layer L1 is formed on the intermediate layer S1.
  • an ultraviolet curable resin is uniformly applied on the information signal layer L1 by, for example, a spin coating method. Thereafter, the concave / convex pattern of the stamper is pressed against the ultraviolet curable resin uniformly applied on the information signal layer L1, and the ultraviolet curable resin is irradiated with ultraviolet rays to be cured, and then the stamper is peeled off. Thereby, the uneven pattern of the stamper is transferred to the ultraviolet curable resin, and for example, an intermediate layer S2 provided with an in-groove Gin and an on-groove Gon is formed on the information signal layer L1.
  • UV resin ultraviolet curable resin
  • the recording layer 21 of at least one layer of the information signal layers L1 ⁇ Ln layer, an oxide of a metal M A, an oxide of a metal M B, and an oxide of a metal M C Contains.
  • Atomic ratio of the metal M A to the metal M B in the recording layer 21 (M A / M B) is 0.37 or more 1.31 or less, and the content of the metal M C in the recording layer 21, It is in the range of 0.9 atomic% or more and 27.5 atomic% or less.
  • the information signal layer includes a recording layer, a dielectric layer provided adjacent to the upper surface of the recording layer, and a dielectric layer provided adjacent to the lower surface of the recording layer.
  • a dielectric layer may be provided only on either the upper surface or the lower surface of the recording layer.
  • the information signal layer may be composed of only a single recording layer. With such a simple configuration, it is possible to reduce the cost of the optical recording medium and improve its productivity. This effect becomes more prominent as the number of information signal layers increases.
  • a plurality of information signal layers and a light transmission layer are stacked in this order on the substrate 11, and laser light is applied to the plurality of information signal layers from the light transmission layer side.
  • the present technology is not limited to this example.
  • a plurality of information signal layers and a protective layer are stacked in this order on a substrate, and information signals can be recorded or reproduced by irradiating a plurality of information signal layers with laser light from the substrate side.
  • An optical recording medium to be used or a structure in which a plurality of information signal layers are provided between two substrates, and by irradiating the plurality of information signal layers with laser light from at least one substrate side
  • the present technology can also be applied to an optical recording medium on which information signals are recorded or reproduced.
  • a polycarbonate substrate having a thickness of 1.1 mm was formed by injection molding. An uneven surface having in-grooves and on-grooves was formed on the polycarbonate substrate.
  • a first information signal layer (hereinafter referred to as “L0 layer”) is formed by sequentially laminating a dielectric layer (substrate side), a recording layer, and a dielectric layer (light transmission layer side) on the uneven surface of the polycarbonate substrate by sputtering. ").
  • an ultraviolet curable resin was uniformly applied on the L0 layer by a spin coating method. Thereafter, the concave / convex pattern of the stamper was pressed against the ultraviolet curable resin uniformly applied on the L0 layer, and the ultraviolet curable resin was irradiated with ultraviolet rays to be cured, and then the stamper was peeled off. As a result, an intermediate layer having a thickness of 15 ⁇ m and having in-grooves and on-grooves was formed.
  • L1 layer a second information signal layer (hereinafter referred to as “L1 layer”) is formed by sequentially laminating a dielectric layer (substrate side), a recording layer, and a dielectric layer (light transmission layer side) on the intermediate layer. Formed. Below, the structure of each layer of L1 layer is shown. Dielectric layer (substrate side) Material: ITO Thickness: 10nm Recording layer Material: Mn—W—Zr—O Thickness: 35nm Dielectric layer (light transmission layer side) Material: ITO Thickness: 10nm
  • the recording layer was formed as follows. A film was formed by co-sputtering a Mn target, a W target, and a Zr target in a mixed gas atmosphere of Ar gas and O 2 gas.
  • the input power of each target was adjusted so that the atomic ratio a / b of Mn and W in the recording layer and the content c of Zr were the ratios shown in Table 1.
  • the flow rate ratio of Ar gas and O 2 gas was adjusted so that a mixed gas atmosphere having a high oxygen concentration was obtained.
  • the specific recording layer deposition conditions are shown below. Ar gas flow rate: 10-15 sccm O 2 gas flow rate: 15-24sccm
  • Input power 100-200W
  • an ultraviolet curable resin was uniformly applied on the L1 layer by spin coating, and was irradiated with ultraviolet rays to be cured, thereby forming a light transmission layer having a thickness of 85 ⁇ m.
  • the intended optical recording medium was obtained.
  • Examples 6 to 10, Comparative Examples 4 and 5 Except for forming the recording layer of L1 layer by adjusting the input power of each target so that the atomic ratio a / b of Mn and W in the recording layer and the content c of Zr become the values shown in Table 2. Obtained an optical recording medium in the same manner as in Example 1.
  • Example 11 Using the Ni target, W target, and Zr target, the recording layer of the L1 layer was formed by Ni—W—Zr—O. In forming this recording layer, the input power of each target was adjusted so that the Ni / W atomic ratio a / b and the Zr content c in the recording layer were the ratios shown in Table 3. Except for this, an optical recording medium was obtained in the same manner as in Example 1.
  • Example 11 Using the Mn target, the Mo target, and the Zr target, an L1 recording layer was formed by Mn—Mo—Zr—O.
  • the input power of each target was adjusted so that the atomic ratio a / b of Mn and Mo in the recording layer and the content c of Zr were the ratios shown in Table 3. Except for this, an optical recording medium was obtained in the same manner as in Example 1.
  • Example 15 Using an Mn target, a W target, a Zr target, a Cu target, and a Zn target, an L1 recording layer was formed from Mn—W—Zr—Cu—Zn—O.
  • the atomic ratios a / b of Mn and W in the recording layer, the contents c and d (d 1 , d 2 ) of Zr, Cu, and Zn are set to the ratios shown in Table 4.
  • the input power of each target was adjusted. Except for this, an optical recording medium was obtained in the same manner as in Example 1.
  • Example 16 to 20 Using an Mn target, a W target, a Zr target, a Cu target, a Zn target, and an Mg target, an L1 recording layer was formed by Mn—W—Zr—Cu—Zn—Mg—O.
  • the atomic ratios a / b of Mn and W in the recording layer, the contents c, d (d 1 , d 2 ), and e of Zr, Cu, Zn, and Mg are shown in Table 4. The input power of each target was adjusted so as to obtain a ratio. Except for this, an optical recording medium was obtained in the same manner as in Example 1.
  • i-MLSE 14% is the upper limit value of i-MLSE at which error correction does not fail, and if it exceeds this, it is said that the reproduced data has a defect and the signal quality is remarkably poor.
  • the recording power means not the recording power of the semiconductor laser but the recording power of the laser light incident on the L1 layer.
  • Modulation degree Using a disk tester (trade name: ODU-1000, manufactured by Pulstec Corporation), modulation is performed by recording / reproducing 1-7 modulation data with a recording wavelength of 405 nm and a recording linear velocity of 7.69 m / s and a density of 32 GB per layer. Degree (signal amplitude ratio) was determined.
  • the refractive index of the recording layer was determined as follows. First, a thin film having the same composition as that of the recording layer included in the L1 layer was formed on a Si wafer by sputtering to produce an evaluation sample. Next, using a spectroscopic ellipsometer (product name: VASE series Ellipsometers (HS-190 monochromator) manufactured by JAwoollam co.), When a laser beam having a wavelength of 405 nm is vertically incident on the thin film surface of the evaluation sample The refractive index n was measured.
  • VASE series Ellipsometers VASE series Ellipsometers (HS-190 monochromator) manufactured by JAwoollam co.
  • Table 1 shows the composition of the recording layer included in the L1 layer of the optical recording media of Examples 1 to 5 and Comparative Examples 1 to 3, and the evaluation results of the L1 layer.
  • FIG. 3 shows the transmittance and modulation degree of the L1 layer of the optical recording media of Examples 1 to 5 and Comparative Examples 1 to 3.
  • the approximate straight lines T and M shown in FIG. 3 were obtained from linear approximation by the least square method.
  • Table 2 shows the composition of the recording layer contained in the L1 layer of the optical recording media of Examples 6 to 10 and Comparative Examples 4 and 5, and the evaluation results of the L1 layer.
  • FIG. 4A shows the transmittance and modulation factor of the L1 layer of the optical recording media of Examples 6 to 10 and Comparative Examples 4 and 5.
  • FIG. 4B shows the recording power of the recording layers included in the L1 layer of the optical recording media of Examples 6 to 10 and Comparative Examples 4 and 5.
  • the approximate straight lines T, M, and PWO shown in FIGS. 4A and 4B were obtained from linear approximation by the least square method.
  • Table 3 shows the compositions and evaluation results of the recording layers included in the L1 layer of the optical recording media of Examples 11 to 14 and Comparative Examples 6 to 9.
  • Table 4 shows the compositions of the recording layers included in the L1 layer of the optical recording media of Examples 15 to 20.
  • Table 5 shows the evaluation results of the L1 layer of the optical recording media of Examples 15 to 20.
  • FIG. 5 shows the refractive index of the recording layer included in the L1 layer of the optical recording media of Examples 15 to 20.
  • the approximate straight line n shown in FIG. 5 was obtained from linear approximation by the least square method.
  • the metal M A with respect to the M B, rather than the content of the metal M A, M B in the recording layer, ratio of the metal M A to the metal M B (atomic ratio) is important for the characteristics of the medium
  • Table 1 the through table 4 describes the ratio (atomic ratio) of the metal M a to the metal M B.
  • the metal M A, a metal other than M B M C, M D, for M E since the content of the metal M C, M D, M E in the recording layer is important for the characteristics of the medium Tables 1 to 4 list their contents.
  • the Zr content c in the recording layer is preferably 0.9 atomic% ⁇ c, and 45.0 ⁇ M. Therefore, it is understood that the Zr content c in the recording layer is preferably 5.5 atomic% ⁇ c.
  • the content c of Zr in the recording layer is preferably c ⁇ 27.5 atomic%, and P WO ⁇ 18. It can be seen that the Zr content c in the recording layer is preferably c ⁇ 8.5 atomic% in order to obtain 62 mW.
  • the Zr content c in the recording layer is 0.9 atomic% ⁇ c ⁇ 27. It is preferable that the modulation degree M and the recording power P WO are 45 ⁇ M and P WO ⁇ 18.62 mW, respectively, the Zr content c in the recording layer is 5.5 atoms. Preferably,% ⁇ c ⁇ 8.5 atomic%.
  • Examples 4 15 shown in Tables 1 and 4, as the metal M D Cu, also be added to further recording layer Zn, transmittance T, the characteristics of the recording power P WO and modulation M It turns out that there is almost no influence. From the evaluation results of Examples 15 to 20 shown in Table 4, when added to further recording layer with Mg as the metal M E, the refractive index of the recording layer is lowered. It can also be seen that the refractive index of the recording layer tends to decrease as the amount of Mg added in the recording layer increases. From the approximate straight line n shown in FIG. 5, in order to make the refractive index 2.240 or less, the Mg content e in the recording layer is preferably 6.6 atomic% or more, and the refractive index is 2.
  • the Mg content e in the recording layer is preferably 20.1 atomic% or more. It can also be seen that the Mg content e in the recording layer is preferably 43.0 atomic% or more in order to make the refractive index 1.97 or less.
  • Example 21 Except for forming the recording layer of the L1 layer by adjusting the input power of each target so that the atomic ratio a1 / b1 of Mn to W in the recording layer and the content c of Zr become the values shown in Table 6. Obtained an optical recording medium in the same manner as in Example 1.
  • Example 22 Using the Mn target, Ni target, W target and Zr target, an L1 recording layer was formed by Mn—Ni—W—Zr—O.
  • the respective targets were added so that the atomic ratio (a1 + a2) / b1 of the total amount of Mn and Ni with respect to W in the recording layer / the content c of Zr were the ratios shown in Table 6. Adjusted the power. Except for this, an optical recording medium was obtained in the same manner as in Example 21.
  • Example 25 Using the Ni target, W target, and Zr target, the recording layer of the L1 layer was formed by Ni—W—Zr—O. In forming this recording layer, the input power of each target was adjusted so that the atomic ratio a2 / b1 of Ni to W and the content c of Zr in the recording layer were the ratios shown in Table 6. Except for this, an optical recording medium was obtained in the same manner as in Example 21.
  • Example 26 Using the Mn target, Ni target, W target and Zr target, an L1 recording layer was formed by Mn—Ni—W—Zr—O.
  • the respective targets were added so that the atomic ratio (a1 + a2) / b1 of the total amount of Mn and Ni with respect to W in the recording layer / the content c of Zr were the ratios shown in Table 6. Adjusted the power. Except for this, an optical recording medium was obtained in the same manner as in Example 4.
  • Example 28 The recording layer of the L1 layer is formed by adjusting the input power of each target so that the atomic ratio a 1 / b 1 of Mn to W in the recording layer and the content c of Zr become the values shown in Table 8.
  • An optical recording medium was obtained in the same manner as in Example 1 except that.
  • Example 29 and 30 Using the Mn target, the W target, the Mo target, and the Zr target, an L1 recording layer was formed by Mn—W—Mo—Zr—O.
  • the atomic ratio a 1 / (b 1 + b 2 ) of Mn to the total amount of W and Mo in the recording layer, and the content c of Zr are the ratios shown in Table 8.
  • the input power of each target was adjusted. Except for this, an optical recording medium was obtained in the same manner as in Example 28.
  • Example 31 Using the Mn target, the W target, the Mo target, and the Zr target, an L1 recording layer was formed by Mn—W—Mo—Zr—O.
  • the atomic ratio a 1 / (b 1 + b 2 ) of Mn to the total amount of W and Mo in the recording layer, and the content c of Zr are the ratios shown in Table 8.
  • the input power of each target was adjusted. Except for this, an optical recording medium was obtained in the same manner as in Example 4.
  • Example 33 Using the Mn target, Ni target, W target, Mo target, and Zr target, an L1 recording layer was formed by Mn—Ni—W—Mo—Zr—O.
  • the atomic ratio (a 1 + a 2 ) / (b 1 + b 2 ) of the total amount of Mn and Ni with respect to the total amount of W and Mo in the recording layer, and the content c of Zr are as follows. The input power of each target was adjusted so that the ratio shown in FIG. Except for this, an optical recording medium was obtained in the same manner as in Example 21.
  • the recording power (optimum recording power) Pwo of the L1 layer was determined in the same manner as in Example 1. Next, using the obtained recording power Pwo, the L1 layers of the optical recording media of Examples 4, 12 to 14, and 21 to 34 were evaluated according to the following criteria.
  • modulation degree (signal amplitude ratio) M of the L1 layer was obtained.
  • the L1 layers of the optical recording media of Examples 4, 12 to 14, and 21 to 34 were evaluated according to the following criteria.
  • Sensitivity degradation [%] [((PwoA) ⁇ (PwoB)) / (PwoA)] ⁇ 100
  • the L1 layers of the optical recording media of Examples 4, 12 to 14, and 21 to 34 were evaluated according to the following criteria.
  • Table 6 shows the composition of the recording layers included in the L1 layer of the optical recording media of Examples 4, 12, and 21 to 27.
  • Table 7 shows the evaluation results of the L1 layer of the optical recording media of Examples 4, 12, and 21 to 27.
  • Table 8 shows the composition of the recording layers contained in the L1 layer of the optical recording media of Examples 4, 13, 14, and 28 to 32.
  • Table 9 shows the evaluation results of the L1 layer of the optical recording media of Examples 4, 13, 14, and 28 to 32.
  • Table 10 shows the composition of the recording layer included in the L1 layer of the optical recording media of Examples 33 and 34.
  • Table 11 shows the evaluation results of the L1 layer of the optical recording media of Examples 33 and 34.
  • Tables 6 and 7 show the following.
  • the power margin can be particularly improved.
  • the power margin is particularly improved when the atomic ratio of Mn to Ni (Mn / Ni) is in the range of 0.4 to 2.6.
  • Ni as the metal M A, in comparison with the case of using both or Mn of Mn and Ni as the metal M A, it can inhibit the sensitivity deterioration before and after the accelerated test.
  • Tables 8 and 9 show the following.
  • W and Mo as the metal M B
  • the power margin can be particularly improved.
  • the power margin is particularly improved when the atomic ratio of W to Mo (W / Mo) is 2.0 or less.
  • Mo as the metal M B, as compared with the case of using W as the metal M B, it can improve the power margin.
  • An oxide of a metal M A, an oxide of a metal M B, a transmission type recording layer comprising an oxide of a metal M C comprises,
  • the metal M A is at least one selected from the group consisting of Mn and Ni
  • the metal M B is at least one selected from the group consisting of W and Mo
  • the metal M C is Zr
  • Atomic ratio of the metal M A for the metal M B (M A / M B ) is 0.37 or more 1.31 or less
  • the content of the metal M C in the transmission type recording layer, the optical recording medium is 27.5 atomic% or less 0.9 atomic% or more.
  • the transmission type recording layer further comprises an oxide of a metal M E, The optical recording medium according to (1), wherein the metal ME is Mg. (3) The content of the metal M E in the transmission type recording layer, an optical recording medium according to 6.6 atomic% or more 43.0 atomic% or less (2). (4) The optical recording medium according to any one of (1) to (3), wherein the number of the transmissive recording layers is two. (5) The content of the metal M C in the transmission type recording layer, an optical recording medium according to any one of at most 8.5 atomic% 0.9 atom% (1) (3). (6) The optical recording medium according to (5), wherein the number of the transmissive recording layers is three.
  • the metal M atom ratio of the metal M A for B (M A / M B), the optical recording medium according to any one of is 0.54 or more 0.78 or less (1) (6).
  • the transmission type recording layer further comprises an oxide of a metal M D, The metal M D, the optical recording medium according to any one of at least one selected from the group consisting of Cu and Zn (1) (7).
  • the metal M A the optical recording medium according to any one of a both Mn and Ni (1) (8).
  • the metal M B the optical recording medium according to any one of a both W and Mo (1) (8).
  • the metal M A is both Mn and Ni
  • the metal M B the optical recording medium according to any one of a both W and Mo (1) (8).
  • a metal M A oxide, a metal M B oxide, and a metal M C oxide The metal M A is at least one selected from the group consisting of Mn and Ni, The metal M B is at least one selected from the group consisting of W and Mo, The metal M C is Zr, Atomic ratio of the metal M A for the metal M B (M A / M B ) is 0.37 or more 1.31 or less, The content of the metal M C in the transmission type recording layer, an optical recording medium for recording layer is not more than 27.5 atomic% 0.9 atomic% or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

 光記録媒体は、金属MAの酸化物と、金属MBの酸化物と、金属MCの酸化物とを含む透過型記録層を備える。金属MAは、MnおよびNiからなる群より選ばれる少なくとも1種であり、金属MBは、WおよびMoからなる群より選ばれる少なくとも1種であり、金属MCは、Zrである。金属MBに対する金属MAの原子比(MA/MB)は、0.37以上1.31以下である。透過型記録層中における金属MCの含有量は、0.9原子%以上27.5原子%以下である。

Description

光記録媒体用記録層、および光記録媒体
 本技術は、光記録媒体用記録層、および光記録媒体に関する。詳しくは、金属酸化物を含む光記録媒体用記録層およびそれを備える光記録媒体に関する。
 近年では、光記録媒体においては、記録容量をさらに増大させるために、記録層を多層化する技術が広く採用されている。多層光記録媒体では、媒体表面から最も奥側の記録層に十分な光を到達させるために、それよりも手前側にある記録層としては、記録再生に用いられるレーザ光を透過可能な記録層(以下「透過型記録層」と適宜称する。)が用いられる。
 透過型記録層の材料として、タングステン(W)およびMo(モリブデン)からなる群より選ばれる少なくとも1種の金属の酸化物と、Cu(銅)、Mn(マンガン)、Ni(ニッケル)およびAg(銀)からなる群より選ばれる少なくとも1種の金属の酸化物とを含むものが提案されている(例えば特許文献1参照)。
特開2013-86336号広報
 近年では、透過型記録層の材料として、高透過率、高記録感度および高S/N(高変調度)を実現できるものが望まれている。
 したがって、本技術の目的は、高透過率、高記録感度および高S/N(高変調度)を実現できる光記録媒体用記録層、およびそれを備える光記録媒体を提供することにある。
 上述の課題を解決するために、第1の技術は、
 金属MAの酸化物と、金属MBの酸化物と、金属MCの酸化物とを含む透過型記録層を備え、
 金属MAは、MnおよびNiからなる群より選ばれる少なくとも1種であり、
 金属MBは、WおよびMoからなる群より選ばれる少なくとも1種であり、
 金属MCは、Zrであり、
 金属MBに対する金属MAの原子比(MA/MB)は、0.37以上1.31以下であり、
 透過型記録層中における金属MCの含有量は、0.9原子%以上27.5原子%以下である光記録媒体である。
 第2の技術は、
 金属MAの酸化物と、金属MBの酸化物と、金属MCの酸化物とを含み、
 金属MAは、MnおよびNiからなる群より選ばれる少なくとも1種であり、
 金属MBは、WおよびMoからなる群より選ばれる少なくとも1種であり、
 金属MCは、Zrであり、
 金属MBに対する金属MAの原子比(MA/MB)は、0.37以上1.31以下であり、
 透過型記録層中における金属MCの含有量は、0.9原子%以上27.5原子%以下である光記録媒体用記録層である。
 以上説明したように、本技術によれば、高透過率、高記録感度および高S/N(高変調度)を実現できる。
図1Aは、本技術の一実施形態に係る光記録媒体の外観の一例を示す斜視図である。図1Bは、本技術の一実施形態に係る光記録媒体の構成の一例を示す概略断面図である。 図2は、各情報信号層の構成の一例を示す模式図である。 図3は、実施例1~5、比較例1~3の光記録媒体のL1層の透過率および変調度を示す図である。 図4Aは、実施例6~10、比較例4、5の光記録媒体のL1層の透過率および変調度を示す図である。図4Bは、実施例6~10、比較例4、5の光記録媒体のL1層の記録パワーを示す図である。 図5は、実施例15~20の光記録媒体のL1層に含まれる記録層の屈折率を示す図である。
 本技術では、1層または複数層の透過型記録層が基板上に設けられ、その透過型記録層上にカバー層が設けられていることが好ましい。このカバー層の厚さは特に限定されるものではなく、カバー層には、基板、シート、コーティング層などが含まれる。高密度の光記録媒体では、高NAの対物レンズが用いられるため、カバー層としてシート、コーティング層などの薄い光透過層を採用し、この光透過層の側から光を照射することにより情報信号の記録および再生を行うことが好ましい。この場合、基板としては、不透明性を有するものを採用することも可能である。情報信号を記録または再生するための光の入射面は、光記録媒体のフォーマットに応じてカバー層側および基板側の表面の少なくとも一方に適宜設定される。
 本技術において、保存信頼性向上の観点からすると、透過型記録層の少なくとも一方の表面に誘電体層をさらに備えることが好ましく、透過型記録層の両方の表面に誘電体層をさらに備えることがより好ましい。層構成や製造設備の簡略化の観点からすると、透過型記録層のいずれの表面にも誘電体層を設けずに、透過型記録層を単独で用いることが好ましい。
 本技術において、透過型記録層の層数が2層以上である場合、生産性の観点からすると、それらの透過型記録層がすべて、同一種の材料を含むもの、すなわち金属MAの酸化物と、金属MBの酸化物と、金属MCの酸化物とを含むものであることが好ましく、それらの金属MA、MB、MCの組成比が同一であるものがより好ましい。
 透過型記録層の層数が2層である場合、透過型記録層中における金属MCの含有量は、0.9原子%以上27.5原子%以下であることが好ましい。また、透過型記録層の層数が3層である場合、透過型記録層中における金属MCの含有量は、0.9原子%以上8.5原子%以下であることが好ましい。
 本技術の実施形態について以下の順序で説明する。
1 光記録媒体の構成
2 光記録媒体の製造方法
3 効果
4 変形例
[1 光記録媒体の構成]
 図1Aに示すように、本技術の一実施形態に係る光記録媒体10は、中央に開口(以下「センターホール」と称する。)が設けられた円盤形状を有する。なお、光記録媒体10の形状はこの例に限定されるものではなく、カード状などとすることも可能である。
 図1Bに示すように、光記録媒体10は、いわゆる多層の追記型光記録媒体であり、情報信号層L0、中間層S1、情報信号層L1、・・・、中間層Sn、情報信号層Ln、カバー層である光透過層12がこの順序で基板11の一主面に積層された構成を有する。但し、nは、例えば2以上の整数、好ましくは3以上または4以上の整数である。情報信号層L0が表面Cを基準として最も奥に位置し、その手前に情報信号層L1~Lnが位置している。このため、情報信号層L1~Lnは、記録または再生に用いられるレーザ光を透過可能に構成されている。
 この一実施形態に係る光記録媒体10では、光透過層12側の表面Cからレーザ光を各情報信号層L0~Lnに照射することにより、情報信号の記録または再生が行われる。例えば、400nm以上410nm以下の範囲の波長を有するレーザ光を、0.84以上0.86以下の範囲の開口数を有する対物レンズにより集光し、光透過層12の側から各情報信号層L0~Lnに照射することにより、情報信号の記録または再生が行われる。情報信号層L0~Lnは、例えば、波長405nm、集光レンズの開口数NA0.85に対して25GB以上の記録容量を有する。このような光記録媒体10としては、例えば多層のブルーレイディスク(BD:Blu-ray Disc(登録商標))が挙げられる。以下では、情報信号層L0~Lnに情報信号を記録または再生するためのレーザ光が照射される表面Cを光照射面Cと称する。
 以下、光記録媒体10を構成する基板11、情報信号層L0~Ln、中間層S1~Sn、および光透過層12について順次説明する。
(基板)
 基板11は、例えば、中央にセンターホールが設けられた円盤形状を有する。この基板11の一主面は、例えば、凹凸面となっており、この凹凸面上に情報信号層L0が成膜される。以下では、凹凸面のうち凹部をイングルーブGin、凸部をオングルーブGonと称する。
 このイングルーブGinおよびオングルーブGonの形状としては、例えば、スパイラル状、同心円状などの各種形状が挙げられる。また、イングルーブGinおよび/またはオングルーブGonが、例えば、線速度の安定化やアドレス情報付加などのためにウォブル(蛇行)されている。
 基板11の径(直径)は、例えば120mmに選ばれる。基板11の厚さは、剛性を考慮して選ばれ、好ましくは0.3mm以上1.3mm以下、より好ましくは0.6mm以上1.3mm以下、例えば1.1mmに選ばれる。また、センターホールの径(直径)は、例えば15mmに選ばれる。
 基板11の材料としては、例えば、プラスチック材料またはガラスを用いることができ、コストの観点から、プラスチック材料を用いることが好ましい。プラスチック材料としては、例えば、ポリカーボネート系樹脂、ポリオレフィン系樹脂、アクリル系樹脂などを用いることができる。
(情報信号層)
 図2に示すように、情報信号層L0~Lnは、例えば、上面(第1の主面)および下面(第2の主面)を有する記録層21と、記録層21の上面に隣接して設けられた誘電体層22と、記録層21の下面に隣接して設けられた誘電体層23とを備える。このような構成とすることで、情報信号層L0~Lnの保存信頼性を向上することができる。ここで、上面とは、記録層21の両主面のうち、情報信号を記録または再生するためのレーザ光が照射される側の主面をいい、下面とは、上述のレーザ光が照射される側とは反対側の主面、すなわち基板側の主面をいう。
(情報信号層L1~Lnの記録層)
 情報信号層L1~Lnの記録層21は、光照射面Cから見て、さらに奥側の記録層21に対する記録または再生が可能なように、情報信号の記録または再生を行うためのレーザ光を透過可能に構成された透過型記録層である。
 情報信号層L1~Lnのうちの少なくとも1層の記録層21は、金属MAの酸化物と、金属MBの酸化物と、金属MCの酸化物とを含む無機記録層である。情報信号層L1~Lnの全ての記録層21として、金属MAの酸化物と、金属MBの酸化物と、金属MCの酸化物とを含む同一の材料を用いてもよいし、情報信号層L0~Lnの記録層21ごとに求められる特性(例えば光学特性や耐久性など)に応じて異なる材料を用いてもよい。生産性の観点からすると、情報信号層L1~Lnの全ての記録層21として、同一の材料を用いることが好ましい。このように同一の材料を用いることで、光記録媒体10の生産性を向上することができる。このような効果は、情報信号層L1~Lnの層数が多い媒体ほど、顕著となる。
 金属MAとしては、酸化物となった場合にある程度の吸収係数を有し、かつ、酸化物の標準生成自由エネルギーの絶対値が金属MBのそれよりも小さい材料が用いられる。このような材料を用いることで、記録層21がレーザ光を吸収して熱に変換し、酸素が放出されて膨らむことができる。したがって、レーザ光の照射により情報信号の記録が可能となる。上述した特性を有する金属MAとして、マンガン(Mn)およびニッケル(Ni)からなる群より選ばれる少なくとも1種が用いられる。
 パワーマージン改善の観点からすると、金属MAとして、MnおよびNiの両方が用いられることが好ましい。この場合、Niに対するMnの原子比(Mn/Ni)は、0.4以上2.6以下であることが好ましい。原子比(Mn/Ni)がこの範囲であると、パワーマージンを特に改善することができるからである。長期保存後においてレーザパワーに対する感度の劣化を抑制する観点からすると、金属MAとして、Niが用いられることが好ましい。
 金属MBとしては、酸化物となった場合にほぼ透明であり、その酸化物の消衰係数kが0または0に近い材料が用いられる。上述した特性を有するMBとして、タングステン(W)およびモリブデン(Mo)からなる群より選ばれる少なくとも1種が用いられる。
 パワーマージン改善の観点からすると、金属MBとして、WおよびMoの両方またはMoが用いられることが好ましい。この場合、Moに対するWの原子比(W/Mo)は、2.0以下であることが好ましい。原子比(W/Mo)がこの範囲であると、パワーマージンを特に改善することができるからである。
 金属MBに対する金属MAの原子比(MA/MB)が、好ましくは0.37以上1.31以下、より好ましくは0.54以上0.78以下である。記録層21における金属MCの含有量が0.9原子%以上27.5原子%以下の範囲である場合において、原子比(MA/MB)を上記数値範囲にすることが特に好ましい。0.37以上であると、記録層21の変調度を40.0%以上にすることができ、0.54以上であると、記録層21の変調度を45.0%以上にすることができる。一方、1.31以下であると、記録層21の透過率を60.0%以上にすることができ、0.78以下であると、記録層21の透過率を70.0%以上にすることができる。
 変調度が40.0以上であると、既存の民生用ドライブを用いて情報信号を再生することができる。また、変調度が45.0以上であると、摂動による変調度の劣化が生じた場合にも、既存の民生用ドライブを用いて情報信号を再生することができる。
 光照射面Cに最も近い情報信号層Ln(但し、nは3以上の整数、好ましくは3である。)に含まれる記録層21の透過率が60.0%以上であると、光照射面Cからみて情報信号層Lnよりも1層奥側に配置された情報信号層Ln-1に、十分な光量のレーザ光を到達させることができる。例えば、既存の民生用ドライブの記録パワーの上限値を38.0mWと想定すると、情報信号層Ln-1に記録パワー22.8mWのレーザ光を照射することができる。
 情報信号層Ln、Ln-1(但し、nは4以上の整数、好ましくは4である。)に含まれる記録層21の透過率が70.0%以上であると、光照射面Cからみて情報信号層Lnよりも2層奥側に配置された情報信号層Ln-2に、十分な光量のレーザ光を到達させることができる。例えば、既存の民生用ドライブの記録パワーの上限値を38.0mWと想定すると、情報信号層Ln-2に記録パワー18.62mWのレーザ光を照射することができる。
 パワーマージンを改善し、かつ長期保存後においてレーザパワーに対する感度の劣化を抑制する観点からすると、金属MAとして、MnおよびNiの両方が用いられ、かつ金属MBとして、WおよびMoの両方が用いられることが好ましい。
 金属MCは、Zrである。記録層21が金属MCの酸化物を含むことで、記録層21の透過率および変調度を向上することができる。記録層21における金属MCの含有量は、好ましくは0.9原子%以上27.5原子%以下、より好ましくは0.9原子%以上8.5原子%以下、さらに好ましくは5.5原子%以上8.5原子%以下である。金属MBに対する金属MAの原子比(MA/MB)が0.37以上1.31以下の範囲である場合において、金属MCの含有量を上記数値範囲にすることが特に好ましい。
 金属MCの含有量が0.9原子%以上であると、変調度を40.0以上にすることができ、金属MCの含有量が5.5原子%以上であると、変調度を45.0以上にすることができる。変調度を40.0以上または45.0以上にすることで得られる利点は、上述した通りである。
 一方、金属MCの含有量が27.5原子%以下であると、記録パワーを22.8mW以下にすることができ、金属MCの含有量が8.5原子%以下であると、記録パワーを18.62mW以下にすることができる。記録パワーが22.8mW以下であると、既存の民生用ドライブを用いて、情報信号層Ln-1の記録層21に対して情報信号を記録することができる。これは以下の理由による。すなわち、既存の民生用ドライブの記録パワーの上限値を38.0mWと想定するとともに、光照射面Cに最も近い情報信号層Lnの記録層21の透過率を60%以上と設定した場合、情報信号層Ln-1に照射されるレーザ光の記録パワーは22.8mW以下となる。したがって、情報信号層Ln-1に対して情報信号を記録するためのレーザ光の記録パワーは、22.8mW以下に設定することが好ましい。なお、記録パワー38.0mWは、半導体レーザの記録パワーではなく、光記録媒体10の光照射面Cまたは情報信号層Lnに入射するレーザ光の記録パワーを意味する。
 記録パワーが18.62mW以下であると、既存の民生用ドライブを用いて、情報信号層Ln-2の記録層21に対して情報信号の記録することができる。これは以下の理由による。すなわち、既存の民生用ドライブの記録パワーの上限値を38.0mWと想定するとともに、情報信号層Ln、Ln-1の両方の記録層21の透過率を70%以上と設定した場合、情報信号層Ln-2の記録層21に照射されるレーザ光の記録パワーは18.62mW以下となる。したがって、情報信号層Ln-2の記録層21に対して情報信号の記録するためのレーザ光の記録パワーは、18.62mW以下に設定することが好ましい。
 記録層21は、金属MDの酸化物をさらに含んでいてもよい。金属MDは、銅(Cu)および亜鉛(Zn)からなる群より選ばれる少なくとも1種である。金属MDの酸化物を含むことで、金属MAの酸化物の含有量を低減し、光記録媒体10を低廉化することができる。
 記録層21は、金属MEの酸化物をさらに含んでいてもよい。金属MEは、マグネシウム(Mg)である。金属MEの酸化物を含むことで、記録層21の屈折率を低減し、記録層21の上面に隣接して設けられた誘電体層22の厚さを薄くすることができる。したがって、光記録媒体10を低廉化することができる。記録層21中におけるMgの含有量は、好ましくは6.6原子%以上43.0原子%以下、より好ましくは7.57原子%以上43.0原子%以下、さらに好ましくは20.1原子%以上43.0原子%以下である。Mgの含有量が6.6原子%以上であると、記録層21の屈折率を2.24以下にすることができる。屈折率が2.24以下であると、記録層21の上面に隣接して設けられた誘電体層22の厚さを26nm以下に薄くした状態で、4%以下の反射率を確保することができる。このように反射率を低減すると、情報信号層L1~Lnの各層の反射率を揃えやすくなる。一方、Mgの含有量が43.0原子%以下であると、記録層21の屈折率が1.97以上となり、誘電体層22の厚さが6nm以上の状態でも反射率を3.3%以上にすることができる。反射率が3.3%以上であると、既存の民生用ドライブを用いた情報信号層Ln-1の記録層21の再生に対して高S/Nを確保できる。これは以下の理由による。すなわち、既存の民生用ドライブにて再生に十分なS/Nを確保するには、2%以上の反射率が必要であり、光照射面Cに最も近い情報信号層Lnの記録層21の透過率を60%以上と設定した場合、情報信号層Ln-1の反射率としては3.3%以上の反射率が必要となる。したがって、情報信号層Ln-1の反射率については3.3%以上を確保することが好ましい。
 記録層21は、金属MFをさらに含んでいてもよい。金属MFとしては、スズ(Sn)、ビスマス(Bi)、ゲルマニウム(Ge)、コバルト(Co)、アルミニウム(Al)、インジウム(In)、銀(Ag)、パラジウム(Pd)、ガリウム(Ga)、Te(テルル)、V(バナジウム)、ケイ素(Si)、タンタル(Ta)、ゲルマニウム(Ge)、クロム(Cr)、およびテルビウム(Tb)からなる群より選ばれる少なくとも1種を用いることができる。
(情報信号層L0の記録層)
 光照射面Cから見て最も奥側となる情報信号層L0の記録層21としては、公知の記録層を用いることができる。公知の記録層としては、例えば、WおよびMoからなる群より選ばれる少なくとも1種の金属の酸化物と、Cu、Mn、NiおよびAgからなる群より選ばれる少なくとも1種の金属の酸化物とを含む記録層、Pdの酸化物を含む記録層などを用いることができる。また、情報信号層L1~Lnの記録層21と同様に、金属MAの酸化物と、金属MBの酸化物と、金属MCの酸化物とを含む記録層を用いてもよい。
(誘電体層)
 誘電体層22、23がガスバリア層として機能することで、記録層21の耐久性を向上することができる。また、記録層21の酸素の逃避やH2Oの侵入を抑制することで、記録層21の膜質の変化(主に反射率の低下として検出)を抑制し、記録層21として必要な膜質を確保することができる。
 誘電体層22、23の材料としては、例えば、酸化物、窒化物、硫化物、炭化物およびフッ化物からなる群より選ばれる少なくとも1種以上を含んでいる。誘電体層22、23の材料としては、互いに同一または異なる材料を用いることができる。酸化物としては、例えば、In、Zn、Sn、Al、Si、Ge、Ti、Ga、Ta、Nb、Hf、Zr、Cr、BiおよびMgからなる群から選ばれる1種以上の元素の酸化物が挙げられる。窒化物としては、例えば、In、Sn、Ge、Cr、Si、Al、Nb、Mo、Ti、Nb、Mo、Ti、W、TaおよびZnからなる群から選ばれる1種以上の元素の窒化物、好ましくはSi、GeおよびTiからなる群から選ばれる1種以上の元素の窒化物が挙げられる。硫化物としては、例えば、Zn硫化物が挙げられる。炭化物としては、例えば、In、Sn、Ge、Cr、Si、Al、Ti、Zr、TaおよびWからなる群より選ばれる1種以上の元素の炭化物、好ましくはSi、Ti、およびWからなる群より選ばれる1種以上の元素の炭化物が挙げられる。フッ化物としては、例えば、Si、Al、Mg、CaおよびLaからなる群より選ばれる1種以上の元素のフッ化物が挙げられる。これらの混合物としては、例えば、ZnS-SiO2、SiO2-In23-ZrO2(SIZ)、SiO2-Cr23-ZrO2(SCZ)、In23-SnO2(ITO)、In23-CeO2(ICO)、In23-Ga23(IGO)、In23-Ga23-ZnO(IGZO)、Sn23-Ta25(TTO)、TiO2-SiO2、Al23-ZnO、Al23-BaOなどが挙げられる。
(中間層)
 中間層S1~Snは、情報信号層L0~Lnを物理的および光学的に十分な距離をもって離間させる役割を果たし、その表面には凹凸面が設けられている。その凹凸面は、例えば、同心円状または螺旋状のグルーブ(イングルーブGinおよびオングルーブGon)を形成している。中間層S1~Snの厚みは、9μm~50μmに設定することが好ましい。中間層S1~Snの材料は特に限定されるものではないが、紫外線硬化性アクリル樹脂を用いることが好ましい。また、中間層S1~Snは、奥側の層への情報信号の記録または再生のためのレーザ光の光路となることから、十分に高い光透過性を有していることが好ましい。
(光透過層)
 光透過層12は、例えば、紫外線硬化樹脂などの感光性樹脂を硬化してなる樹脂層である。この樹脂層の材料としては、例えば、紫外線硬化型のアクリル系樹脂が挙げられる。また、円環形状を有する光透過性シートと、この光透過性シートを基板11に対して貼り合わせるための接着層とから光透過層12を構成するようにしてもよい。光透過性シートは、記録および再生に用いられるレーザ光に対して、吸収能が低い材料からなることが好ましく、具体的には透過率90パーセント以上の材料からなることが好ましい。光透過性シートの材料としては、例えば、ポリカーボネート樹脂材料、ポリオレフィン系樹脂(例えばゼオネックス(登録商標))などを用いることができる。接着層の材料としては、例えば、紫外線硬化樹脂、感圧性粘着剤(PSA:Pressure Sensitive Adhesive)などを用いることができる。
 光透過層12の厚さは、好ましくは10μm以上177μm以下の範囲内から選ばれ、例えば100μmに選ばれる。このような薄い光透過層12と、例えば0.85程度の高NA(numerical aperture)化された対物レンズとを組み合わせることによって、高密度記録を実現することができる。
(ハードコート層)
 なお、図示しないが、光透過層12の表面(光照射面C)に、例えば機械的な衝撃や傷に対する保護、また利用者の取り扱い時の塵埃や指紋の付着などから、情報信号の記録再生品質を保護するためのハードコート層をさらに設けてもよい。ハードコート層には、機械的強度を向上させるためにシリカゲルの微粉末を混入したものや、溶剤タイプ、無溶剤タイプなどの紫外線硬化樹脂を用いることができる。機械的強度を有し、撥水性や撥油性を持たせるには、厚さを1μmから数μm程度とすることが好ましい。
[2 光記録媒体の製造方法]
 次に、本技術の一実施形態に係る光記録媒体の製造方法の一例について説明する。
(基板の成形工程)
 まず、一主面に凹凸面が形成された基板11を成形する。基板11の成形の方法としては、例えば、射出成形(インジェクション)法、フォトポリマー法(2P法:Photo Polymerization)などを用いることができる。
(情報信号層L0の形成工程)
 次に、例えばスパッタ法により、基板11上に、誘電体層23、記録層21、および誘電体層22を順次積層することにより、情報信号層L0を形成する。
(中間層の形成工程)
 次に、例えばスピンコート法により紫外線硬化樹脂を情報信号層L0上に均一に塗布する。その後、情報信号層L0上に均一に塗布された紫外線硬化樹脂に対してスタンパの凹凸パターンを押し当て、紫外線を紫外線硬化樹脂に対して照射して硬化させた後、スタンパを剥離する。これにより、スタンパの凹凸パターンが紫外線硬化樹脂に転写され、例えばイングルーブGinおよびオングルーブGonが設けられた中間層S1が情報信号層L0上に形成される。
(情報信号層L1の形成工程)
 次に、例えばスパッタ法により、中間層S1上に、誘電体層23、記録層21、および誘電体層22を順次積層することにより、情報信号層L1を形成する。以下に、情報信号層L1の各層の形成工程について具体的に説明する。
 まず、基板11を、誘電体層形成用のターゲットが備えられた真空チャンバー内に搬送し、真空チャンバー内を所定の圧力になるまで真空引きする。その後、真空チャンバー内にArガスやO2ガスなどのプロセスガスを導入しながら、ターゲットをスパッタして、基板11上に誘電体層23を成膜する。スパッタ法としては、例えば高周波(RF)スパッタ法、直流(DC)スパッタ法を用いることができるが、特に直流スパッタ法が好ましい。直流スパッタ法は高周波スパッタ法に比して装置が安く且つ成膜レートが高いため、製造コストを下げ生産性を向上することができるからである。
 次に、基板11を、記録層成膜用のターゲットが備えられた真空チャンバー内に搬送し、真空チャンバー内を所定の圧力になるまで真空引きする。その後、真空チャンバー内にArガスやO2ガスなどのプロセスガスを導入しながら、ターゲットをスパッタして、誘電体層23上に記録層21を成膜する。
 記録層成膜用のターゲットとしては、金属MAと、金属MBと、金属MCとを含む金属ターゲット、金属MAの酸化物と、金属MBの酸化物と、金属MCの酸化物とを含む金属酸化物ターゲットを用いることができ、直流スパッタ法により成膜可能である観点からすると、上記金属ターゲットを用いることが好ましい。直流スパッタ法は高周波スパッタ法に比して成膜レートが高いため、生産性を向上することができる。上記金属ターゲットおよび金属酸化物ターゲット中において、金属MBに対する金属MAの原子比(MA/MB)は、好ましくは0.37以上1.31以下、より好ましくは0.54以上0.78以下である。上記金属ターゲットおよび金属酸化物ターゲット中において、金属MC(=Zr)の含有量は、好ましくは0.9原子%以上27.5原子%以下、より好ましくは0.9原子%以上8.5原子%以下、さらに好ましくは5.5原子%以上8.5原子%以下である。
 上記金属ターゲットが、金属MDおよび金属MEからなるからなる群より選ばれる少なくとも1種をさらに含んでいてもよい。また、上記金属酸化物ターゲットが、金属MDの酸化物および金属MEの酸化物からなるからなる群より選ばれる少なくとも1種をさらに含んでいてもよい。上記金属ターゲットおよび金属酸化物ターゲット中における金属ME(=Mg)の含有量は、好ましくは6.6原子%以上43.0原子%以下、より好ましくは7.57原子%以上43.0原子%以下、さらに好ましくは20.1原子%以上43.0原子%以下である。上記金属ターゲットが、金属MFをさらに含んでいてもよい。また、上記金属酸化物ターゲットが、金属MFの酸化物をさらに含んでいてもよい。
 次に、基板11を、誘電体層形成用のターゲットが備えられた真空チャンバー内に搬送し、真空チャンバー内を所定の圧力になるまで真空引きする。その後、真空チャンバー内にArガスやO2ガスなどのプロセスガスを導入しながら、ターゲットをスパッタして、記録層21上に誘電体層22を成膜する。スパッタ法としては、例えば高周波(RF)スパッタ法、直流(DC)スパッタ法を用いることができるが、特に直流スパッタ法が好ましい。直流スパッタ法は高周波スパッタ法に比して成膜レートが高いため、生産性を向上することができるからである。以上により、中間層S1上に情報信号層L1が形成される。
(中間層の形成工程)
 次に、例えばスピンコート法により紫外線硬化樹脂を情報信号層L1上に均一に塗布する。その後、情報信号層L1上に均一に塗布された紫外線硬化樹脂に対してスタンパの凹凸パターンを押し当て、紫外線を紫外線硬化樹脂に対して照射して硬化させた後、スタンパを剥離する。これにより、スタンパの凹凸パターンが紫外線硬化樹脂に転写され、例えばイングルーブGinおよびオングルーブGonが設けられた中間層S2が情報信号層L1上に形成される。
(情報信号層L2~Lnおよび中間層S3~Snの形成工程)
 次に、上述の情報信号層L1および中間層S2の形成工程と同様にして、中間層S2上に、情報信号層L2、中間層S2、情報信号層L3、・・・、中間層Sn、情報信号層Lnをこの順序で中間層S2上に積層する。
(光透過層の形成工程)
 次に、例えばスピンコート法により、紫外線硬化樹脂(UVレジン)などの感光性樹脂を情報信号層Ln上にスピンコートした後、紫外線などの光を感光性樹脂に照射し、硬化する。これにより、情報信号層Ln上に光透過層12が形成される。
 以上の工程により、目的とする光記録媒体10が得られる。
[3 効果]
 本実施形態によれば、情報信号層L1~Ln層のうちの少なくとも1層の記録層21は、金属MAの酸化物と、金属MBの酸化物と、金属MCの酸化物とを含んでいる。記録層21中における金属MBに対する金属MAの原子比(MA/MB)は、0.37以上1.31以下であり、かつ、記録層21中における金属MCの含有量は、0.9原子%以上27.5原子%以下の範囲内である。これにより、高透過率、高記録感度および高変調度(すなわち高S/N)を実現できる。
[4 変形例]
 上述の実施形態では、多層の情報信号層がすべて、同一の層構成を有する場合について説明したが、情報信号層ごとに求められる特性(例えば光学特性や耐久性など)に応じて層構成を変えるようにしてもよい。但し、生産性の観点からすると、全ての情報信号層を同一の層構成とすることが好ましい。
 また、上述の実施形態では、情報信号層が、記録層と、記録層の上面に隣接して設けられた誘電体層と、記録層の下面に隣接して設けられた誘電体層とを備える構成について説明したが、情報信号層の構成はこれに限定されるものではない。例えば、記録層の上面および下面のいずれか一方にのみ誘電体層を設けるようにしてもよい。また、情報信号層を記録層単層のみから構成するようにしてもよい。このような単純な構成とすることで、光記録媒体を低廉化し、かつ、その生産性を向上することができる。この効果は、情報信号層の層数が多い媒体ほど、顕著となる。
 また、上述の実施形態では、基板11上に複数層の情報信号層、光透過層がこの順序で積層された構成を有し、この光透過層側からレーザ光を複数層の情報信号層に照射することにより情報信号の記録または再生が行われる光記録媒体に対して本技術を適用した場合を例として説明したが、本技術はこの例に限定されるものではない。例えば、基板上に複数層の情報信号層、保護層がこの順序で積層された構成を有し、基板側からレーザ光を複数層の情報信号層に照射することにより情報信号の記録または再生が行われる光記録媒体、または2枚の基板の間に複数層の情報信号層が設けられた構成を有し、少なくとも一方の基板の側からレーザ光を複数層の情報信号層に照射することにより情報信号の記録または再生が行われる光記録媒体に対しても本技術は適用可能である。
 また、上述の実施形態では、複数層の情報信号層のすべてが、追記型の記録層である場合を例として説明したが、複数層の情報信号層が、追記型の記録層に加えて、追記型以外の記録層をさらに備えていてもよい。
 以下、実施例により本技術を具体的に説明するが、本技術はこれらの実施例のみに限定されるものではない。
(実施例1~5、比較例1~3)
 まず、射出成形により、厚さ1.1mmのポリカーボネート基板を成形した。なお、このポリカーボネート基板上には、イングルーブおよびオングルーブを有する凹凸面を形成した。次に、スパッタ法によりポリカーボネート基板の凹凸面上に誘電体層(基板側)、記録層、誘電体層(光透過層側)を順次積層することにより、第1情報信号層(以下「L0層」と称する。)を形成した。
 以下に、L0層の各層の構成を示す。
 誘電体層(基板側)
  材料:ITO
  厚さ:10nm
 記録層
  材料:Pd-W-Zn-Cu-O
  厚さ:35nm
 誘電体層(光透過層側)
  材料:ITO
  厚さ:10nm
 次に、スピンコート法により紫外線硬化樹脂をL0層上に均一に塗布した。その後、L0層上に均一に塗布された紫外線硬化樹脂に対してスタンパの凹凸パターンを押し当て、紫外線を紫外線硬化樹脂に対して照射して硬化させた後、スタンパを剥離した。これらにより、イングルーブおよびオングルーブを有する、厚さ15μmの中間層が形成された。
 次に、中間層上に誘電体層(基板側)、記録層、誘電体層(光透過層側)を順次積層することにより、第2情報信号層(以下「L1層」と称する。)を形成した。
 以下に、L1層の各層の構成を示す。
 誘電体層(基板側)
  材料:ITO
  厚さ:10nm
 記録層
  材料:Mn-W-Zr-O
  厚さ:35nm
 誘電体層(光透過層側)
  材料:ITO
  厚さ:10nm
 記録層は、以下のようにして成膜した。ArガスとO2ガスとの混合ガス雰囲気下にて、Mnターゲット、Wターゲット、Zrターゲットをコスパッタすることにより成膜した。この記録層の形成に際しては、記録層中のMn、Wの原子比a/b、Zrの含有量cが、表1に示す比率となるように、各ターゲットの投入電力を調整した。ここで、aは、記録層中における金属MA(=Mn)の含有量を示し、bは、記録層中における金属MB(=W)の含有量を示す。また、酸素濃度が高い混合ガス雰囲気となるように、ArガスとO2ガスとの流量比を調整した。
 以下に、具体的な記録層の成膜条件を示す。
   Arガス流量:10~15sccm
   O2ガス流量:15~24sccm
   投入電力:100~200W
 次に、スピンコート法により、紫外線硬化樹脂をL1層上に均一塗布し、これに紫外線を照射して硬化させることにより、厚さ85μmを有する光透過層を形成した。
 以上により、目的とする光記録媒体を得た。
(実施例6~10、比較例4、5)
 記録層中のMn、Wの原子比a/b、Zrの含有量cが、表2に示す値となるように、各ターゲットの投入電力を調整して、L1層の記録層を形成する以外は実施例1と同様にして光記録媒体を得た。
(実施例11、12)
 Niターゲット、WターゲットおよびZrターゲットを用いて、Ni-W-Zr-OによりL1層の記録層を形成した。この記録層の形成に際しては、記録層中のNi、Wの原子比a/b、Zrの含有量cが、表3に示す比率となるように、各ターゲットの投入電力を調整した。これ以外のことは実施例1と同様にして光記録媒体を得た。
(比較例6)
 Agターゲット、WターゲットおよびZrターゲットを用いて、Ag-W-Zr-OによりL1層の記録層を形成した。この記録層の形成に際しては、記録層中のAg、Wの原子比a/b、Zrの含有量cが、表3に示す比率となるように、各ターゲットの投入電力を調整した。これ以外のことは実施例1と同様にして光記録媒体を得た。
(比較例7)
 Coターゲット、WターゲットおよびZrターゲットを用いて、Co-W-Zr-OによりL1層の記録層を形成した。この記録層の形成に際しては、記録層中のCo、Wの原子比a/b、Zrの含有量cが、表3に示す比率となるように、各ターゲットの投入電力を調整した。これ以外のことは実施例1と同様にして光記録媒体を得た。
(実施例11、12)
 Mnターゲット、MoターゲットおよびZrターゲットを用いて、Mn-Mo-Zr-OによりL1層の記録層を形成した。この記録層の形成に際しては、記録層中のMn、Moの原子比a/b、Zrの含有量cが、表3に示す比率となるように、各ターゲットの投入電力を調整した。これ以外のことは実施例1と同様にして光記録媒体を得た。
(比較例8)
 Mnターゲット、TaターゲットおよびZrターゲットを用いて、Mn-Ta-Zr-OによりL1層の記録層を形成した。この記録層の形成に際しては、記録層中のMn、Taの原子比a/b、Zrの含有量cが、表3に示す比率となるように、各ターゲットの投入電力を調整した。これ以外のことは実施例1と同様にして光記録媒体を得た。
(比較例9)
 Mnターゲット、VターゲットおよびZrターゲットを用いて、Mn-V-Zr-OによりL1層の記録層を形成した。この記録層の形成に際しては、記録層中のMn、Vの原子比a/b、Zrの含有量cが、表3に示す比率となるように、各ターゲットの投入電力を調整した。これ以外のことは実施例1と同様にして光記録媒体を得た。
(実施例15)
 Mnターゲット、Wターゲット、Zrターゲット、CuターゲットおよびZnターゲットを用いて、Mn-W-Zr-Cu-Zn-OによりL1層の記録層を形成した。この記録層の形成に際しては、記録層中のMn、Wの原子比a/b、Zr、Cu、Znの含有量c、d(d1、d2)が、表4に示す比率となるように、各ターゲットの投入電力を調整した。これ以外のことは実施例1と同様にして光記録媒体を得た。
(実施例16~20)
 Mnターゲット、Wターゲット、Zrターゲット、Cuターゲット、ZnターゲットおよびMgターゲットを用いて、Mn-W-Zr-Cu-Zn-Mg-OによりL1層の記録層を形成した。この記録層の形成に際しては、記録層中のMn、Wの原子比a/b、Zr、Cu、Zn、Mgの含有量c、d(d1、d2)、eが、表4に示す比率となるように、各ターゲットの投入電力を調整した。これ以外のことは実施例1と同様にして光記録媒体を得た。
(評価)
 上述のようにして得られた実施例1~20、比較例1~9の光記録媒体のL1層に対して以下の評価を行った。
(透過率)
 分光高度計(日本分光(株)製、商品名:V-530)を用いて、記録波長405nmに対するL1層の透過率を測定した。
(記録パワー)
 ディスクテスタ(パルステック社製、商品名:ODU-1000)を用いて、記録波長405nm、記録線速7.69m/sで1層あたり32GB密度の1-7変調データを記録再生して、i-MLSEを求めた。このi-MLSEを記録パワーに対し求め、14%を超える記録パワーの低い側をPwl、高い側をPwhとし、PwlとPwhとの中間値を記録パワー(最適記録パワー)Pwoとした。ここで、i-MLSE14%はエラー補正が破綻しないi-MLSEの上限値であり、これを超えると再生データに欠陥が発生して信号品質が著しく悪いと言われている。また、記録パワーは、半導体レーザの記録パワーではなく、L1層に入射するレーザ光の記録パワーを意味する。
(変調度)
 ディスクテスタ(パルステック社製、商品名:ODU-1000)を用いて、記録波長405nm、記録線速7.69m/sで1層あたり32GB密度の1-7変調データを記録再生して、変調度(信号振幅比)を求めた。
(屈折率)
 記録層の屈折率を以下のようにして求めた。まず、スパッタリング法により、Siウェハ上に、L1層に含まれる記録層と同様の組成を有する薄膜を製膜して評価サンプルを作製した。次に、分光エリプソメータ(J.A.woollam co.製、商品名:VASE series Ellipsometers (HS-190 monochromator))を用いて、波長405nmのレーザ光を評価サンプルの薄膜の膜面に対して垂直入射させたときの屈折率nを測定した。
(総合評価)
 上述の透過率、記録パワーおよび変調度の評価結果を用いて、実施例1~14、比較例1~9の光記録媒体のL1層を以下の基準で評価した。
 ◎:70.0%≦T、Pwo≦18.62mW、45.0≦M
 ○:60.0%≦T<70.0%、18.62mW<Pwo≦22.8mW、40.0≦M<45.0
 ×:T<60.0%、22.8mW<Pwo、M<40.0
 但し、T:透過率、Pwo:記録パワー、M:変調度である。
(総合評価)
 上述の透過率、記録パワーおよび変調度の評価結果を用いて、実施例15~20の光記録媒体のL1層を以下の基準で評価した。
 ◎+:70.0%≦T、Pwo≦22.8mW、45.0≦M、1.970≦n≦2.240
 ◎-:70.0%≦T、Pwo≦22.8mW、45.0≦M、n<1.970、2.240<n
 表1は、実施例1~5、比較例1~3の光記録媒体のL1層に含まれる記録層の組成およびL1層の評価結果を示す。
Figure JPOXMLDOC01-appb-T000001
 図3は、実施例1~5、比較例1~3の光記録媒体のL1層の透過率および変調度を示す。なお、図3に示した近似直線T、Mは、最小二乗法による線形近似から求めた。
 表2は、実施例6~10、比較例4、5の光記録媒体のL1層に含まれる記録層の組成およびL1層の評価結果を示す。
Figure JPOXMLDOC01-appb-T000002
 図4Aは、実施例6~10、比較例4、5の光記録媒体のL1層の透過率および変調度を示す。図4Bは、実施例6~10、比較例4、5の光記録媒体のL1層に含まれる記録層の記録パワーを示す。なお、図4A、図4Bに示した近似直線T、M、PWOは、最小二乗法による線形近似から求めた。
 表3は、実施例11~14、比較例6~9の光記録媒体のL1層に含まれる記録層の組成および評価結果を示す。
Figure JPOXMLDOC01-appb-T000003
 表4は、実施例15~20の光記録媒体のL1層に含まれる記録層の組成を示す。
Figure JPOXMLDOC01-appb-T000004
 表5は、実施例15~20の光記録媒体のL1層の評価結果を示す。
Figure JPOXMLDOC01-appb-T000005
 図5は、実施例15~20の光記録媒体のL1層に含まれる記録層の屈折率を示す。なお、図5に示した近似直線nは、最小二乗法による線形近似から求めた。
 なお、表1~表4中、記号a、b、d、eは、以下の内容を示している。
a/b:記録層中にける金属MBに対する金属MAの比率(原子比)
c:記録層中にける金属MCの含有量(原子%)(但し、表1~表3中では、cは、金属MA、MBおよびMCの合計量に対する金属MCの原子比率(原子%)も意味する。)
d:記録層中にける金属MDの含有量(原子%)(具体的には、d1:記録層中におけるCuの含有量(原子%)、d2:記録層中におけるZnの含有量(原子%))
e:記録層中にける金属MEの含有量(原子%)
 金属MA、MBに関しては、記録層中における金属MA、MBの含有量ではなく、金属MBに対する金属MAの比率(原子比)が媒体の特性にとって重要であるため、表1~表4には金属MBに対する金属MAの比率(原子比)を記載している。これに対して、金属MA、MB以外の金属MC、MD、MEについては、記録層中における金属MC、MD、MEの含有量が媒体の特性にとって重要であるため、表1~表4にはそれらの含有量を記載している。
 図3に示した近似直線Tから、60.0%≦Tにするためにはa/b≦1.31にすることが好ましく、70.0%≦Tにするためにはa/b≦0.78にすることが好ましいことがわかる。
 図3に示した近似直線Mから、40.0≦Mにするためには0.37≦a/bにすることが好ましく、45≦Mにするためには0.54≦a/bにすることが好ましいことがわかる。
 以上により、透過率T、変調度Mをそれぞれ60.0%≦T、40.0≦Mにするためには、0.37≦a/b≦1.31とすることが好ましく、透過率T、変調度Mをそれぞれ70.0%≦T、45.0≦Mにするためには、0.54≦a/b≦0.78とすることが好ましい。
 図4Aに示した近似直線Mから、40.0≦Mにするためには記録層中におけるZrの含有量cを0.9原子%≦cにすることが好ましく、45.0≦Mにするためには記録層中におけるZrの含有量cを5.5原子%≦cにすることが好ましいことがわかる。
 図4Bに示した近似直線PWOから、PWO≦22.8mWにするためには記録層中におけるZrの含有量cをc≦27.5原子%にすることが好ましく、PWO≦18.62mWにするためには記録層中におけるZrの含有量cをc≦8.5原子%にすることが好ましいことがわかる。
 以上により、変調度M、記録パワーPWOをそれぞれ40.0≦M、PWO≦22.8mWにするためには、記録層中におけるZrの含有量cを0.9原子%≦c≦27.5原子%にすることが好ましく、変調度M、記録パワーPWOをそれぞれ45≦M、PWO≦18.62mWにするためには、記録層中におけるZrの含有量cを5.5原子%≦c≦8.5原子%とすることが好ましい。
 表3に示した実施例11、12の評価結果から、金属MAとしてMnに代えてNiを用いた場合にも、透過率T、記録パワーPWO、変調度Mをそれぞれ60%≦T、PWO≦22.8mW、40.0≦Mとすることができることがわかる。
 表3に示した比較例6、7の評価結果から、金属MAとしてMnに代えてAg、Coを用いた場合には、透過率T、記録パワーPWOをそれぞれ60.0%≦T、PWO≦22.8mWとすることはできるが、変調度Mを40.0≦Mとすることが困難であることがわかる。
 表3に示した実施例13、14の評価結果から、金属MBとしてWに代えてMoを用いた場合にも、透過率T、記録パワーPWO、変調度Mをそれぞれ60%≦T、PWO≦22.8mW、40.0≦Mとすることができることがわかる。
 表3に示した比較例8、9の評価結果から、金属MBとしてWに代えてTa、Vを用いた場合には、透過率T、記録パワーPWOをそれぞれ60.0%≦T、PWO≦22.8mWとすることはできるが、変調度Mを40.0≦Mとすることが困難であることがわかる。
 表1、4にそれぞれ示した実施例4、15の評価結果から、金属MDとしてCu、Znをさらに記録層に添加しても、透過率T、記録パワーPWOおよび変調度Mの特性にほとんど影響がないことがわかる。
 表4に示した実施例15~20の評価結果から、金属MEとしてMgをさらに記録層に添加すると、記録層の屈折率が低下することがわかる。また、記録層中におけるMgの添加量が増加するに従って、記録層の屈折率が低下する傾向があることがわかる。
 図5に示した近似直線nから、屈折率を2.240以下にするためには、記録層中におけるMgの含有量eを6.6原子%以上にすることが好ましく、屈折率を2.140以下にするためには、記録層中におけるMgの含有量eを20.1原子%以上にすることが好ましいことがわかる。また、屈折率を1.97以下にするためには、記録層中におけるMgの含有量eを43.0原子%以上にすることが好ましいことがわかる。
(実施例21)
 記録層中におけるWに対するMnの原子比a1/b1、Zrの含有量cが、表6に示す値となるように、各ターゲットの投入電力を調整して、L1層の記録層を形成する以外は実施例1と同様にして光記録媒体を得た。
(実施例22~24)
 Mnターゲット、Niターゲット、WターゲットおよびZrターゲットを用いて、Mn-Ni-W-Zr-OによりL1層の記録層を形成した。この記録層の形成に際しては、記録層中におけるWに対するMnおよびNiの合計量の原子比(a1+a2)/b1、Zrの含有量cが、表6に示す比率となるように、各ターゲットの投入電力を調整した。これ以外のことは実施例21と同様にして光記録媒体を得た。
(実施例25)
 Niターゲット、WターゲットおよびZrターゲットを用いて、Ni-W-Zr-OによりL1層の記録層を形成した。この記録層の形成に際しては、記録層中におけるWに対するNiの原子比a2/b1、Zrの含有量cが、表6に示す比率となるように、各ターゲットの投入電力を調整した。これ以外のことは実施例21と同様にして光記録媒体を得た。
(実施例26、27)
 Mnターゲット、Niターゲット、WターゲットおよびZrターゲットを用いて、Mn-Ni-W-Zr-OによりL1層の記録層を形成した。この記録層の形成に際しては、記録層中におけるWに対するMnおよびNiの合計量の原子比(a1+a2)/b1、Zrの含有量cが、表6に示す比率となるように、各ターゲットの投入電力を調整した。これ以外のことは実施例4と同様にして光記録媒体を得た。
 なお、表6に示した実施21~25では、金属MAの含有量a(=a1+a2)がすべて同一量に維持されるよう成膜条件を調整にした。また、表6に示した実施例4、12、26、27では、金属MAの含有量a(=a1+a2)がすべて同一量に維持されるように成膜条件を調整した。
(実施例28)
 記録層中におけるWに対するMnの原子比a1/b1、Zrの含有量cが、表8に示す値となるように、各ターゲットの投入電力を調整して、L1層の記録層を形成する以外は実施例1と同様にして光記録媒体を得た。
(実施例29、30)
 Mnターゲット、Wターゲット、MoターゲットおよびZrターゲットを用いて、Mn-W-Mo-Zr-OによりL1層の記録層を形成した。この記録層の形成に際しては、記録層中におけるWおよびMoの合計量に対するMnの原子比a1/(b1+b2)、Zrの含有量cが、表8に示す比率となるように、各ターゲットの投入電力を調整した。これ以外のことは実施例28と同様にして光記録媒体を得た。
(実施例31、32)
 Mnターゲット、Wターゲット、MoターゲットおよびZrターゲットを用いて、Mn-W-Mo-Zr-OによりL1層の記録層を形成した。この記録層の形成に際しては、記録層中のWおよびMoの合計量に対するMnの原子比a1/(b1+b2)、Zrの含有量cが、表8に示す比率となるように、各ターゲットの投入電力を調整した。これ以外のことは実施例4と同様にして光記録媒体を得た。
 なお、表8に示した実施例4、13、14、28~32では、金属MBの含有量b(=b1+b2)がすべて同一量に維持されるように成膜条件を調整した。
(実施例33、34)
 Mnターゲット、Niターゲット、Wターゲット、MoターゲットおよびZrターゲットを用いて、Mn-Ni-W-Mo-Zr-OによりL1層の記録層を形成した。この記録層の形成に際しては、記録層中におけるWおよびMoの合計量に対するMnおよびNiの合計量の原子比(a1+a2)/(b1+b2)、Zrの含有量cが、表10に示す比率となるように、各ターゲットの投入電力を調整した。これ以外のことは実施例21と同様にして光記録媒体を得た。
(評価)
 上述のようにして得られた実施例4、12~14、21~34の光記録媒体のL1層に対して以下の評価を行った。
(透過率)
 実施例1と同様にしてL1層の透過率Tを測定した。次に、測定した透過率Tを用いて、実施例4、12~14、21~34の光記録媒体のL1層を以下の基準で評価した。
 ◎:70.0%≦T
 ○:60.0%≦T<70.0%
 ×:T<60.0%
(記録パワー)
 実施例1と同様にしてL1層の記録パワー(最適記録パワー)Pwoを求めた。次に、求めた記録パワーPwoを用いて、実施例4、12~14、21~34の光記録媒体のL1層を以下の基準で評価した。
 ◎:Pwo≦18.62mW
 ○:18.62mW<Pwo≦22.8mW
 ×:22.8mW<Pwo
(変調度)
 実施例1と同様にしてL1層の変調度(信号振幅比)Mを求めた。次に、求めた記録パワーPwoを用いて、実施例4、12~14、21~34の光記録媒体のL1層を以下の基準で評価した。
 ◎:45.0≦M
 ○:40.0≦M<45.0
 ×:M<40.0
(パワーマージン)
 光記録媒体のランダムシンボルエラーレート(SER)に対するパワーマージンPMを以下のようにして求めた。まず、SERを記録パワーに対し求め、4×10-3を超える記録パワーの低い側をPwl、高い側をPwhとした。次に、求めた記録パワーPwl、Pwh、最適記録パワーPwoを下記の式に代入してSERに対するパワーマージンPMを求めた。
 PM[%]=((Pwh-Pwl)/Pwo)×100
 次に、求めたパワーマージンPMを用いて、実施例4、12~14、21~34の光記録媒体のL1層を以下の基準で評価した。
 ◎:28%≦PM
 ○:20%≦PM<28%
 ×:PM<20%
(感度)
 まず、加速試験前におけるL1層の記録パワー(最適記録パワー)PwoAを求めた。次に、光記録媒体に対して以下の条件で加速試験を行った。
 温度:80℃
 相対湿度(Relative Humidity:RH):85%、
 加速時間:200h
 次に、加速試験後におけるL1層の記録パワー(最適記録パワー)PwoBを求めた。次に、以下の式から感度劣化を求めた。
 感度劣化[%]=[((PwoA)-(PwoB))/(PwoA)]×100
 次に、求めた感度劣化を用いて、実施例4、12~14、21~34の光記録媒体のL1層を以下の基準で評価した。
 ◎:感度劣化が10%以下である。
 ○:感度劣化が10%を超え20%以下である。
 ×:感度劣化が20%を超える。
 表6は、実施例4、12、21~27の光記録媒体のL1層に含まれる記録層の組成を示す。
Figure JPOXMLDOC01-appb-T000006
 表7は、実施例4、12、21~27の光記録媒体のL1層の評価結果を示す。
Figure JPOXMLDOC01-appb-T000007
 表8は、実施例4、13、14、28~32の光記録媒体のL1層に含まれる記録層の組成を示す。
Figure JPOXMLDOC01-appb-T000008
 表9は、実施例4、13、14、28~32の光記録媒体のL1層の評価結果を示す。
Figure JPOXMLDOC01-appb-T000009
 表10は、実施例33、34の光記録媒体のL1層に含まれる記録層の組成を示す。
Figure JPOXMLDOC01-appb-T000010
 表11は、実施例33、34の光記録媒体のL1層の評価結果を示す。
Figure JPOXMLDOC01-appb-T000011
 なお、表6、表8、表10中、記号a1、a2、b1、b2、cは、以下の内容を示している。
a1:記録層中におけるMn(金属MA1)の含有量
a2:記録層中におけるNi(金属MA2)の含有量
b1:記録層中におけるW(金属MB1)の含有量
b2:記録層中におけるMo(金属MB2)の含有量
c:記録層中にけるMCの含有量(原子%)
 表6、表7から以下のことがわかる。金属MAとしてMnおよびNiの両方を用いると、パワーマージンを特に改善できる。Niに対するMnの原子比(Mn/Ni)が0.4以上2.6以下の範囲において、パワーマージンが特に改善される。金属MAとしてNiを用いると、金属MAとしてMnおよびNiの両方またはMnを用いた場合に比べて、加速試験前後における感度劣化を抑制できる。
 表8、表9から以下のことがわかる。金属MBとしてWおよびMoの両方を用いると、パワーマージンを特に改善できる。Moに対するWの原子比(W/Mo)が2.0以下の範囲において、パワーマージンが特に改善される。金属MBとしてMoを用いると、金属MBとしてWを用いた場合に比べて、パワーマージンを改善できる。
 表9、表10から以下のことがわかる。金属MAとしてMnおよびNiの両方を用い、かつ金属MBとしてWおよびMoの両方を用いると、パワーマージンを改善し、かつ加速試験前後における感度劣化を抑制できる。
 以上、本技術の実施形態および実施例について具体的に説明したが、本技術は、上述の実施形態および実施例に限定されるものではなく、本技術の技術的思想に基づく各種の変形が可能である。
 例えば、上述の実施形態および実施例において挙げた構成、方法、工程、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値などを用いてもよい。
 また、上述の実施形態および実施例の構成、方法、工程、形状、材料および数値などは、本技術の主旨を逸脱しない限り、互いに組み合わせることが可能である。
 また、本技術は以下の構成を採用することもできる。
(1)
 金属MAの酸化物と、金属MBの酸化物と、金属MCの酸化物とを含む透過型記録層を備え、
 上記金属MAは、MnおよびNiからなる群より選ばれる少なくとも1種であり、
 上記金属MBは、WおよびMoからなる群より選ばれる少なくとも1種であり、
 上記金属MCは、Zrであり、
 上記金属MBに対する上記金属MAの原子比(MA/MB)は、0.37以上1.31以下であり、
 上記透過型記録層中における上記金属MCの含有量は、0.9原子%以上27.5原子%以下である光記録媒体。
(2)
 上記透過型記録層は、金属MEの酸化物をさらに含み、
 上記金属MEは、Mgである(1)に記載の光記録媒体。
(3)
 上記透過型記録層中における上記金属MEの含有量は、6.6原子%以上43.0原子%以下である(2)に記載の光記録媒体。
(4)
 上記透過型記録層の層数が、2層である(1)から(3)のいずれかに記載の光記録媒体。
(5)
 上記透過型記録層中における上記金属MCの含有量は、0.9原子%以上8.5原子%以下である(1)から(3)のいずれかに記載の光記録媒体。
(6)
 上記透過型記録層の層数が、3層である(5)に記載の光記録媒体。
(7)
 上記金属MBに対する上記金属MAの原子比(MA/MB)は、0.54以上0.78以下である(1)から(6)のいずれかに記載の光記録媒体。
(8)
 上記透過型記録層は、金属MDの酸化物をさらに含み、
 上記金属MDは、CuおよびZnからなる群より選ばれる少なくとも1種である(1)から(7)のいずれかに記載の光記録媒体。
(9)
 上記金属MAは、MnおよびNiの両方である(1)から(8)のいずれかに記載の光記録媒体。
(10)
 上記金属MBは、WおよびMoの両方である(1)から(8)のいずれかに記載の光記録媒体。
(11)
 上記金属MAは、MnおよびNiの両方であり、
 上記金属MBは、WおよびMoの両方である(1)から(8)のいずれかに記載の光記録媒体。
(12)
 上記透過型記録層の少なくとも一方の面に設けられた誘電体層をさらに備える(1)から(11)のいずれかに記載の光記録媒体。
(13)
 上記透過型記録層の両方の面に設けられた誘電体層をさらに備える(1)から(11)のいずれかに記載の光記録媒体。
(14)
 金属MAの酸化物と、金属MBの酸化物と、金属MCの酸化物とを含み、
 上記金属MAは、MnおよびNiからなる群より選ばれる少なくとも1種であり、
 上記金属MBは、WおよびMoからなる群より選ばれる少なくとも1種であり、
 上記金属MCは、Zrであり、
 上記金属MBに対する上記金属MAの原子比(MA/MB)は、0.37以上1.31以下であり、
 上記透過型記録層中における上記金属MCの含有量は、0.9原子%以上27.5原子%以下である光記録媒体用記録層。
 11  基板
 12  光透過層
 10  光記録媒体
 21  記録層
 22、23  誘電体層
 L0~Ln  情報信号層
 S1~Sn  中間層
 Gin  イングルーブ
 Gon  オングルーブ
 C  光照射面

Claims (14)

  1.  金属MAの酸化物と、金属MBの酸化物と、金属MCの酸化物とを含む透過型記録層を備え、
     上記金属MAは、MnおよびNiからなる群より選ばれる少なくとも1種であり、
     上記金属MBは、WおよびMoからなる群より選ばれる少なくとも1種であり、
     上記金属MCは、Zrであり、
     上記金属MBに対する上記金属MAの原子比(MA/MB)は、0.37以上1.31以下であり、
     上記透過型記録層中における上記金属MCの含有量は、0.9原子%以上27.5原子%以下である光記録媒体。
  2.  上記透過型記録層は、金属MEの酸化物をさらに含み、
     上記金属MEは、Mgである請求項1に記載の光記録媒体。
  3.  上記透過型記録層中における上記金属MEの含有量は、6.6原子%以上43.0原子%以下である請求項2に記載の光記録媒体。
  4.  上記透過型記録層の層数が、2層である請求項1に記載の光記録媒体。
  5.  上記透過型記録層中における上記金属MCの含有量は、0.9原子%以上8.5原子%以下である請求項1に記載の光記録媒体。
  6.  上記透過型記録層の層数が、3層である請求項5に記載の光記録媒体。
  7.  上記金属MBに対する上記金属MAの原子比(MA/MB)は、0.54以上0.78以下である請求項1に記載の光記録媒体。
  8.  上記透過型記録層は、金属MDの酸化物をさらに含み、
     上記金属MDは、CuおよびZnからなる群より選ばれる少なくとも1種である請求項1に記載の光記録媒体。
  9.  上記金属MAは、MnおよびNiの両方である請求項1に記載の光記録媒体。
  10.  上記金属MBは、WおよびMoの両方である請求項1に記載の光記録媒体。
  11.  上記金属MAは、MnおよびNiの両方であり、
     上記金属MBは、WおよびMoの両方である請求項1に記載の光記録媒体。
  12.  上記透過型記録層の少なくとも一方の面に設けられた誘電体層をさらに備える請求項1に記載の光記録媒体。
  13.  上記透過型記録層の両方の面に設けられた誘電体層をさらに備える請求項1に記載の光記録媒体。
  14.  金属MAの酸化物と、金属MBの酸化物と、金属MCの酸化物とを含み、
     上記金属MAは、MnおよびNiからなる群より選ばれる少なくとも1種であり、
     上記金属MBは、WおよびMoからなる群より選ばれる少なくとも1種であり、
     上記金属MCは、Zrであり、
     上記金属MBに対する上記金属MAの原子比(MA/MB)は、0.37以上1.31以下の関係を満たし、
     上記透過型記録層中における上記金属MCの含有量は、0.9原子%以上27.5原子%以下である光記録媒体用記録層。
PCT/JP2014/005822 2013-12-04 2014-11-19 光記録媒体用記録層、および光記録媒体 WO2015083337A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/037,286 US9830941B2 (en) 2013-12-04 2014-11-19 Recording layer for optical recording medium and optical recording medium
JP2015551379A JP6447830B2 (ja) 2013-12-04 2014-11-19 光記録媒体用透過型記録層、および光記録媒体
CN201480065179.7A CN105793056B (zh) 2013-12-04 2014-11-19 用于光记录介质的记录层和光记录介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-251558 2013-12-04
JP2013251558 2013-12-04

Publications (1)

Publication Number Publication Date
WO2015083337A1 true WO2015083337A1 (ja) 2015-06-11

Family

ID=53273122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005822 WO2015083337A1 (ja) 2013-12-04 2014-11-19 光記録媒体用記録層、および光記録媒体

Country Status (5)

Country Link
US (1) US9830941B2 (ja)
JP (1) JP6447830B2 (ja)
CN (1) CN105793056B (ja)
TW (1) TWI654604B (ja)
WO (1) WO2015083337A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017159561A1 (ja) * 2016-03-14 2017-09-21 パナソニックIpマネジメント株式会社 情報記録媒体、並びに情報記録媒体の製造方法
WO2017175580A1 (ja) * 2016-04-08 2017-10-12 ソニー株式会社 光記録媒体およびその製造方法、光記録媒体用記録層
CN107993722A (zh) * 2017-12-05 2018-05-04 天津大学 一种针对点阵光源下光子在媒质中分布的快速提取方法
WO2018155070A1 (ja) * 2017-02-24 2018-08-30 パナソニックIpマネジメント株式会社 情報記録媒体とその製造方法、およびスパッタリングターゲット
JP2019212353A (ja) * 2018-06-07 2019-12-12 株式会社神戸製鋼所 光情報記録媒体用記録層、光情報記録媒体、及びスパッタリングターゲット
CN113348510B (zh) * 2019-02-01 2023-09-15 索尼集团公司 光记录介质、记录层以及记录层形成用溅射靶

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202141472A (zh) * 2019-12-26 2021-11-01 日商索尼股份有限公司 光記錄媒體

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027770A1 (ja) * 2002-09-18 2004-04-01 Matsushita Electric Industrial Co., Ltd. 光学情報記録媒体とその製造方法
JP2007073154A (ja) * 2005-09-08 2007-03-22 Ricoh Co Ltd 追記型光記録媒体
WO2010095466A1 (ja) * 2009-02-23 2010-08-26 パナソニック株式会社 情報記録媒体
JP2012164374A (ja) * 2011-02-03 2012-08-30 Sony Corp 光情報記録媒体
JP2013086336A (ja) * 2011-10-17 2013-05-13 Sony Corp 光情報記録媒体用記録層、および光情報記録媒体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192025A (ja) * 2009-02-17 2010-09-02 Sony Corp 光情報記録媒体
JP5935234B2 (ja) * 2011-02-03 2016-06-15 ソニー株式会社 光情報記録媒体
JP2014026704A (ja) * 2012-07-27 2014-02-06 Sony Corp 光記録媒体、光記録媒体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004027770A1 (ja) * 2002-09-18 2004-04-01 Matsushita Electric Industrial Co., Ltd. 光学情報記録媒体とその製造方法
JP2007073154A (ja) * 2005-09-08 2007-03-22 Ricoh Co Ltd 追記型光記録媒体
WO2010095466A1 (ja) * 2009-02-23 2010-08-26 パナソニック株式会社 情報記録媒体
JP2012164374A (ja) * 2011-02-03 2012-08-30 Sony Corp 光情報記録媒体
JP2013086336A (ja) * 2011-10-17 2013-05-13 Sony Corp 光情報記録媒体用記録層、および光情報記録媒体

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017159561A1 (ja) * 2016-03-14 2019-01-17 パナソニックIpマネジメント株式会社 情報記録媒体、並びに情報記録媒体の製造方法
WO2017159560A1 (ja) * 2016-03-14 2017-09-21 パナソニックIpマネジメント株式会社 情報記録媒体、並びに情報記録媒体の製造方法
WO2017159561A1 (ja) * 2016-03-14 2017-09-21 パナソニックIpマネジメント株式会社 情報記録媒体、並びに情報記録媒体の製造方法
JPWO2017159560A1 (ja) * 2016-03-14 2019-01-31 パナソニックIpマネジメント株式会社 情報記録媒体、並びに情報記録媒体の製造方法
US10522181B2 (en) 2016-04-08 2019-12-31 Sony Corporation High density optical recording medium having multiple recording layers
JPWO2017175580A1 (ja) * 2016-04-08 2019-02-14 ソニー株式会社 光記録媒体およびその製造方法、光記録媒体用記録層
WO2017175580A1 (ja) * 2016-04-08 2017-10-12 ソニー株式会社 光記録媒体およびその製造方法、光記録媒体用記録層
JP7014152B2 (ja) 2016-04-08 2022-02-01 ソニーグループ株式会社 光記録媒体およびその製造方法
WO2018155070A1 (ja) * 2017-02-24 2018-08-30 パナソニックIpマネジメント株式会社 情報記録媒体とその製造方法、およびスパッタリングターゲット
CN107993722A (zh) * 2017-12-05 2018-05-04 天津大学 一种针对点阵光源下光子在媒质中分布的快速提取方法
JP2019212353A (ja) * 2018-06-07 2019-12-12 株式会社神戸製鋼所 光情報記録媒体用記録層、光情報記録媒体、及びスパッタリングターゲット
JP7130447B2 (ja) 2018-06-07 2022-09-05 株式会社神戸製鋼所 光情報記録媒体用記録層、光情報記録媒体、及びスパッタリングターゲット
CN113348510B (zh) * 2019-02-01 2023-09-15 索尼集团公司 光记录介质、记录层以及记录层形成用溅射靶

Also Published As

Publication number Publication date
TW201535361A (zh) 2015-09-16
US9830941B2 (en) 2017-11-28
CN105793056A (zh) 2016-07-20
JP6447830B2 (ja) 2019-01-09
JPWO2015083337A1 (ja) 2017-03-16
CN105793056B (zh) 2019-10-29
US20160293201A1 (en) 2016-10-06
TWI654604B (zh) 2019-03-21

Similar Documents

Publication Publication Date Title
JP6447830B2 (ja) 光記録媒体用透過型記録層、および光記録媒体
TWI457922B (zh) A recording layer for optical information recording media, an optical information recording medium, and a sputtering target
WO2013183277A1 (ja) 記録層、情報記録媒体およびターゲット
US8632870B2 (en) Recording layer for optical information recording medium and optical information recording medium
US9111555B2 (en) Optical recording medium
TWI449039B (zh) A recording layer for optical information recording medium, and an optical information recording medium
JP6201377B2 (ja) 光記録媒体
JP5760464B2 (ja) 光情報記録媒体
US8545957B2 (en) Optical information recording medium and manufacturing method thereof and optical information recording medium recording layer
JP5793881B2 (ja) 光情報記録媒体
US8685518B2 (en) Information recording medium and method for producing same
US20100291337A1 (en) Optical recording medium and method for manufacturing the same
US11837265B2 (en) Optical recording medium
TWI668318B (zh) 記錄層、光訊息記錄介質、濺射靶
JP6838558B2 (ja) 光記録媒体
WO2012120816A1 (ja) 情報記録媒体とその製造方法
WO2015122130A1 (ja) 光記録媒体
JP2011194617A (ja) 光記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015551379

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15037286

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14868402

Country of ref document: EP

Kind code of ref document: A1