[go: up one dir, main page]

WO2015076199A1 - Type recognition device for automobile tires - Google Patents

Type recognition device for automobile tires Download PDF

Info

Publication number
WO2015076199A1
WO2015076199A1 PCT/JP2014/080203 JP2014080203W WO2015076199A1 WO 2015076199 A1 WO2015076199 A1 WO 2015076199A1 JP 2014080203 W JP2014080203 W JP 2014080203W WO 2015076199 A1 WO2015076199 A1 WO 2015076199A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
tire type
rotation
recognition device
type recognition
Prior art date
Application number
PCT/JP2014/080203
Other languages
French (fr)
Japanese (ja)
Inventor
高橋亨
西川健太郎
福島靖之
正木信男
若尾泰通
Original Assignee
Ntn株式会社
株式会社ブリヂストン
高橋亨
西川健太郎
福島靖之
正木信男
若尾泰通
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 株式会社ブリヂストン, 高橋亨, 西川健太郎, 福島靖之, 正木信男, 若尾泰通 filed Critical Ntn株式会社
Publication of WO2015076199A1 publication Critical patent/WO2015076199A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/06Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle
    • B60C23/061Signalling devices actuated by deformation of the tyre, e.g. tyre mounted deformation sensors or indirect determination of tyre deformation based on wheel speed, wheel-centre to ground distance or inclination of wheel axle by monitoring wheel speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres
    • G01M17/025Tyres using infrasonic, sonic or ultrasonic vibrations

Definitions

  • the present invention relates to an automobile tire type recognition device that estimates the type of an automobile tire while the automobile is running, and relates to a technology that contributes to a warning about safety and a process of notifying a driver of a difference in tire type.
  • Patent Document 1 proposes a method of specifying a tire ground contact pattern using an acceleration sensor provided in a rotation mechanism.
  • Patent Document 2 proposes a method for identifying a tire by obtaining a linear regression coefficient and a correlation coefficient between a tire slip ratio and a vehicle acceleration / deceleration from a measured value of a rotational speed detection device. Yes.
  • Patent Document 3 proposes a method for calculating the reciprocal of the turning radius and the determination value from the rotation information of the drive wheel, and identifying whether the tire mounted on the drive shaft is a summer tire or a winter tire.
  • Patent Document 4 proposes a high-resolution rotation detection device provided with a function of multiplying a signal by attaching a rotation detection device to a wheel bearing of an automobile.
  • Patent Document 5 proposes a rotation detection device capable of detecting an absolute angle by attaching a rotation detection device to a wheel bearing of an automobile.
  • Patent Document 6 presents a method for estimating a slip ratio and the like from a tire rotation sensor signal, and also presents a method for detecting the rotation synchronization component by averaging the rotation signal of the tire over several rotations.
  • JP 2006-153832 A Japanese Patent Laid-Open No. 2002-019435 JP 2000-077981 A JP 2011-002357 A JP 2008-232426 A JP 2006-126164 A
  • the car tire is a summer tire, it will be easier to slip on a snowy road or a frozen road surface. Moreover, when driving on a dry road surface with a studless tire, ride comfort and driving performance deteriorate.
  • An object of the present invention is to provide an automobile tire that can detect information on the type of tire while traveling, does not need a special sensor, and can be mounted on a vehicle without significantly increasing costs. It is to provide a type recognition device.
  • a vehicle tire type recognition device is configured to rotate from a rotation sensor 2 that detects the rotation of a wheel 1 and a rotation signal detected by the rotation sensor 2 so as to measure the speed of the vehicle.
  • a signal processing unit 3 for obtaining a rotational speed fluctuation pattern including a rotational speed fluctuation synchronized with the rotation from the extracted rotational speed fluctuation, and a plurality of types of tires 1a.
  • the reference pattern storage unit 13 in which the pattern data of the rotational speed variation pattern or the characteristic parameter related to the type of tire is registered, and the acquired rotational speed variation pattern are stored in the reference pattern storage unit 13. Characteristic parameters obtained from registered pattern data or the obtained rotational speed fluctuation pattern are used as the reference pattern.
  • the rotation sensor 2 is installed on a wheel bearing 30 or a drive shaft, and detects the rotation of the wheel 1.
  • the signal processing unit 3 uses the rotation signal detected by the rotation sensor 2 to extract a change in rotational speed synchronized with the rotation of the tire 1a during traveling.
  • the tire type determination unit 4 uses the extracted rotational speed variation pattern as a reference pattern registered in the reference pattern storage unit 13, that is, pattern data of the rotational speed variation pattern, or a characteristic parameter of the tire 1a extracted from the rotational speed variation pattern. And the type of the tire 1a is estimated.
  • the reference pattern storage unit 13 is configured in a database, for example.
  • the rotational speed variation pattern is also different. That is, this pattern differs depending on the type of the tire 1a, and the type of the tire 1a can be estimated based on the feature. Therefore, the rotational speed fluctuation pattern pattern data or the characteristic parameter extracted from the rotational speed fluctuation pattern is registered in the reference pattern storage unit 13 in advance, and the registered rotational speed fluctuation pattern or characteristic parameter is measured. The type of the tire 1a can be estimated by comparing the acquired rotational speed variation pattern.
  • the type recognition function of the tire 1a can be mounted on the vehicle without significantly increasing the cost. Further, even when the driver forgets the type of the tire 1a that is installed, information on what type of tire 1a is installed can be transmitted to the driver, so that preventive safety can be realized. Even if you forget that you are driving in a state where the type of the tire 1a is different from normal, such as when installing an emergency tire, or if the tire 1a suitable for the road surface condition is not installed, the detection signal Since the vehicle can issue a warning based on this, it is possible to prompt the driver to perform a driving operation such as reducing the speed and to prevent a traffic accident.
  • a filter process is performed by a low-pass filter (LPF) or a high-pass filter (HPF), and the tire is generated from the rotation signal as the rotation speed data. You may make it extract the component resulting from the tread pattern of 1a.
  • LPF low-pass filter
  • HPF high-pass filter
  • the reference pattern storage unit 13 further stores an initial state or normal rotation speed fluctuation pattern as a reference pattern, and the rotation speed fluctuation pattern detected by the signal processing unit 3 during traveling is stored.
  • the driver outputs inquiry information to the driver regarding a predetermined possibility including after puncture and tire replacement.
  • a reference pattern re-registration unit 23 may be provided for re-registering the rotation speed fluctuation pattern acquired last as the reference pattern in the reference pattern storage unit 13 when the driver permission information is input.
  • the “case where the change is greater than the predetermined change reference” refers to a case where the displacement is greater than a predetermined amount, and in particular, a case where the rotational speed variation pattern suddenly changes greatly from the reference pattern.
  • the signal processing unit 3 subjects the rotation speed fluctuation pattern synchronized with the rotation to a rotation signal over a plurality of rotations of the rotation sensor 2 by performing an averaging process or an integration process synchronized with the rotation, You may get it.
  • the rotation signal data for one rotation is affected by road surface irregularities, etc., but the rotation signal for a period of a certain number of rotations is collected and averaged or integrated to extract an arbitrary rotation speed fluctuation pattern.
  • the influence of road surface unevenness is eliminated.
  • extracting the rotation synchronization component by integrating or averaging, it is possible to detect a very slight fluctuation in the rotation speed, and therefore it is possible to accurately estimate and notify the tire type.
  • the signal processing unit 3 may perform the process of extracting the fluctuation of the rotational speed synchronized with the rotation in a traveling speed range selected from one or more set traveling speed ranges. . Since the occurrence state of the rotational speed changes depending on the state of the tire 1a, it is affected by the traveling speed. That is, the rotational speed fluctuation component exhibits frequency characteristics due to the transmission characteristics of the tire 1a, and its phase and amplitude vary depending on the traveling speed. Therefore, when extracting the rotational speed variation pattern, it is desirable to process using a signal in a state where the rotational speed is in a specific range.
  • the signal processing unit 3 performs the extraction process for each of a plurality of travel speed ranges, and the tire type determination unit 4 performs a tire type estimation process for each speed range data, and the plurality of estimations. It is good also as a structure which comprehensively judges the kind of tire 1a from the result of a process. By detecting the rotational speed variation pattern in a plurality of speed regions, it is possible to obtain a comprehensive result based on more travel data compared to the case where only one rotational speed region pattern is acquired and determined. Since determination becomes possible, the precision which estimates the kind of tire 1a improves.
  • the tire type determination unit 4 determines the tire 1a from the amount of change or correlation between the autocorrelation of the rotational speed variation pattern detected by the signal processing unit 3 and the autocorrelation of the reference rotational variation pattern.
  • the type may be estimated.
  • the type of the tire 1a can be estimated with higher accuracy.
  • the rotation sensor 2 is constituted by a rotation sensor 2 having a zero phase or a rotation sensor 2 having an absolute angle detection function, and the signal processing unit 3 determines the phase of the acquired rotation speed fluctuation pattern.
  • a difference between the rotational speed variation pattern and the reference pattern may be obtained, and the tire type may be estimated based on the magnitude of the difference.
  • the rotation sensor 2 includes a magnetic sensor 2b and a magnetic encoder 2a having a detected pole detected by the magnetic sensor 2b or a pulsar gear, and outputs fluctuations in magnetic strength due to rotation as an analog signal. It is good also as a structure.
  • the magnetic sensor 2b is preferably a magnetic sensor as the rotation sensor 2 installed in an environment that is more resistant to temperature changes and dirt than the optical sensor and is easily contaminated.
  • the rotation sensor 2 outputs a magnetic encoder 2a or a pulser gear having a magnetic sensor 2b and a detected pole detected by the magnetic sensor 2b, and a rotation pulse for multiplying a detection signal of the magnetic sensor 2b.
  • a multiplier circuit 2ca may be provided.
  • a rotation sensor 2 mounted on the wheel 1 having sufficient detection accuracy and sufficient spatial resolution is used. It is desirable.
  • the rotation sensor 2 that combines the magnetic encoder 2a or the pulser gear and the magnetic sensor 2b as described above, and multiplies the detected magnetic field signal to increase the resolution is resistant to inferior environments such as temperature changes and dirt, and performs, for example, one rotation. Since it has a rotational resolution of 100 pulses or more, it is suitable for this application.
  • the rotational fluctuation component in the low-speed running state can be detected with high resolution, so that the detection accuracy of the type of the tire 1a is increased.
  • tire type recognition result utilization means 17 may be provided that performs notification to the driver or change of the control state of the vehicle based on the tire type information estimated by the tire type determination unit 4. .
  • the tire type recognition result utilization means 17 is provided in the computer 16 of the vehicle that is higher than the tire type determination unit 4, for example.
  • the tire type determination unit 4 has, for example, one of the following functions.
  • the tire type recognition result utilization unit 17 may cause the notification unit 19 provided in the driver's seat to be notified based on the information on the type of the tire 1a estimated by the tire type determination unit 4.
  • the notification means 19 is, for example, an image display device 19b such as a liquid crystal display device provided on the console of the driver's seat.
  • the tire type recognition result utilization means 17 may compare the information of, for example, four-wheel tires 1a and issue a warning when a different type of tire 1a is detected.
  • the tire type recognition result utilization means 17 changes the control parameter of the vehicle control computer such as the vehicle control ECU 22 based on the information on the type of the tire 1a estimated by the tire type determination unit 4, and according to the type of the tire 1a. It may be a means for performing the predetermined safety control.
  • the parameters of the safety control system 22a such as vehicle attitude control may be changed according to the detected type of the tire 1a, and the safety control system 22a may be adjusted in consideration of the ability of the tire 1a.
  • the vehicle may be controlled so as to limit the traveling speed to avoid a dangerous state.
  • the tire type recognition result utilization means 17 gives a warning at a predetermined weather based on the information on the type of the tire 1a estimated by the tire type determination unit 4 and the weather during driving obtained from the weather information acquisition means 25.
  • the structure which emits may be sufficient.
  • a warning is not issued in fine weather, but a warning is issued during rainy weather when slipping is likely to occur. You can call attention.
  • the tire type recognition result utilization means 17 is configured so that the computer 16 mounted on the vehicle uses the communication line 18 to obtain information on the type of the tire 1a based on the information on the type of the tire 1a estimated by the tire type determination unit 4. It may be a means having a function of transmitting to a terminal of a predetermined sales office 20 capable of inspecting or exchanging tires. For example, information is transmitted through the vehicle communication line 18 at the same time as the notification by displaying a warning lamp or the like, and the inspection and replacement are promoted through the sales office 20 such as a vehicle dealer or a service store as necessary. To do. Thereby, the inventory check of the tire 1a in the sales office 20 is performed at an early stage, and prompt and appropriate inspection and replacement can be expected.
  • FIG. 1 is a block diagram showing a conceptual configuration of an automobile tire type recognition device according to a first embodiment of the present invention.
  • FIG. It is a block diagram which shows the conceptual structure of the signal processing unit of the tire type recognition apparatus. It is a block diagram which shows the conceptual structure of the tire type determination unit of the tire type recognition apparatus. It is a block diagram which shows the utilization form of the tire type recognition apparatus.
  • (A)-(c) is a graph which shows the difference in the rotational speed fluctuation pattern by the difference in a tire type.
  • (A)-(c) is a graph which shows the autocorrelation pattern of the rotational speed fluctuation pattern of various tires. It is sectional drawing of an example of the bearing for wheels equipped with the rotation sensor used with the kind recognition apparatus of the tire. It is the figure which looked at the bearing for the wheels from the inboard. It is sectional drawing of the other example of the wheel bearing equipped with the rotation sensor used with the kind recognition apparatus of the tire. It is the figure which looked at the bearing for the wheels from the inboard. It is sectional drawing of the further another example of the wheel bearing equipped with the rotation sensor used with the kind recognition apparatus of the tire.
  • FIG. 18B is a perspective view of the rotation sensor of FIG. 18A.
  • FIG. 18A is a block diagram which shows an example of the multiplication circuit in a rotation sensor.
  • composition explanatory drawing which shows the example of the absolute angle rotation sensor used as the rotation sensor.
  • (A)-(E) are explanatory drawings of the magnetic pole arrangement and detection signals of the rotation sensor.
  • (A)-(E) are explanatory drawings of a magnetic pole arrangement and detection signal processing example of the same rotation sensor.
  • this type of automobile tire type recognition device 5 is a rotation sensor 2 for detecting the rotational speed of a wheel 1 having a tire 1a to be type-recognized, and is a wheel bearing or a drive shaft outer ring. And a signal processing unit 3 for processing the output rotation signal.
  • the vehicle tire type recognition device 5 also includes a tire type determination unit 4 that estimates the type of the tire 1 a using the output of the signal processing unit 3.
  • the signal processing unit 3 is a means for extracting the fluctuation of the rotation speed synchronized with the rotation from the rotation signal detected by the rotation sensor 3 and extracting the rotation speed fluctuation pattern synchronized with the rotation from the extracted fluctuation of the rotation speed.
  • the pattern of the ground contact surface of the tire is different, so that the state of occurrence of rotational speed variation is different. This is detected by the tire type determination unit 4 and information on the type of the tire 1a is output.
  • the signal processing unit 3 and the tire type determination unit 4 constitute a type determination device main body 15.
  • the type determination device main body 15 may be an independent ECU, or may be provided as a part of an ECU that controls the entire vehicle.
  • FIG. 11 to FIG. 16 illustrate wheel bearings with rotation sensors, which will be described later.
  • FIG. 2 shows a conceptual configuration of the signal processing unit 3.
  • the rotational speed of the running wheel 1 is measured by the rotational speed discriminating unit 5a using the rotational signal detected by the rotational sensor 2, and the fluctuation of the rotational speed synchronized with the rotation of the wheel 1, that is, one revolution.
  • the rotation fluctuation pattern for each rotation is extracted by the rotation fluctuation pattern extraction unit 6.
  • a detection target such as a magnetic encoder used for the rotation sensor 2 includes a pitch error due to manufacturing variations. Therefore, the rotation speed fluctuation pattern in the normal state in the initial state is stored in the reference speed pattern storage unit 7 as the reference speed pattern P0, and a minute error component superimposed on the rotation signal of the rotation sensor 2 is corrected for error. The correction is performed by the unit 8.
  • filter processing is performed by a low-pass filter (LPF) or a high-pass filter (HPF) (both not shown), Components derived from the shape and tread pattern of the tire 1a are extracted.
  • LPF low-pass filter
  • HPF high-pass filter
  • rotation signals for a period of a certain number of rotations are collected and averaged or integrated to extract an arbitrary rotation speed fluctuation pattern.
  • the rotation synchronization component is averaged and detected from the rotation signal of the wheel 1 over several rotations.
  • the extraction of the rotation variation pattern will be described. Since the occurrence state of the rotational speed changes depending on the state of the tire 1a, it is affected by the traveling speed. That is, the rotational speed fluctuation component exhibits frequency characteristics due to the transmission characteristics of the tire 1a, and its phase and amplitude vary depending on the traveling speed. Therefore, when extracting the rotational speed variation pattern, it is desirable to perform processing using a signal in a state where the rotational speed is in a specific range.
  • the signal processing unit 3 is provided with a rotational speed discriminating unit 5a, so A speed discrimination function is provided.
  • the rotational speed fluctuation patterns are classified by a plurality of rotational speed regions (rotational speed levels). That is, a configuration is adopted in which a rotational speed variation pattern is extracted for each rotational speed region, the type of the tire 1a is determined in each region, and a comprehensive determination is made from the result.
  • a rotational speed variation pattern is extracted for each rotational speed region, the type of the tire 1a is determined in each region, and a comprehensive determination is made from the result.
  • the rotation sensor 2 is composed of a magnetic encoder 2a and a magnetic sensor 2b, and the magnetic encoder 2a has N and S magnetic poles 2aa which are detected portions alternately. It is applied when it is a sensor.
  • the rotation sensor 2 will be specifically described later.
  • the output of the rotation sensor 2 is rotated by the rotation speed of the detected portion (the magnetic pole 2aa or the individual teeth of the detection gear) or the required time for the rotation of the tire for one rotation of the tire.
  • An averaging unit 6a of the fluctuation pattern extraction unit 6 averages and a rotation speed fluctuation pattern that becomes tire characteristics is obtained by the extraction unit 6b. Not only taking a simple average but also taking a weighted average that puts more weight on the previous value than the past value, you can always get the latest tire characteristics and follow the tire characteristics over time .
  • the passing speed or the passing time of the detected portion (the individual teeth of the magnetic pole 2aa or the detection gear) for a plurality of rotations.
  • the rotational speed fluctuation pattern which is the tire characteristic shown in FIG. 6B is obtained.
  • the vertical axis represents the passing speed or the time required for passing through each detected part
  • the horizontal axis represents the time (corresponding to each detected part).
  • a method for estimating the tire type (tire type) from the rotational speed variation pattern will be described.
  • the type of the tire 1a is changed, the pattern shape of the tire ground contact surface is changed, thereby changing the state of occurrence of the rotational speed fluctuation. This is detected by the tire type determination unit 4 and information relating to the type of the tire 1a is output.
  • the tire type determination unit 4 sets a reference for the rotation sensor 2 so that the rotational phase of the traveling speed pattern can be matched, and can detect a change in the rotational speed fluctuation pattern directly. good.
  • the tire type determination unit 4 takes the difference between the detected rotational speed fluctuation pattern and the rotational speed fluctuation pattern as the reference pattern in a state where the rotational phases are matched, and compares the difference with a predetermined threshold value. Alternatively, it may be determined by taking a change amount or correlation between the detected speed fluctuation pattern and the reference rotation speed fluctuation pattern.
  • a sensor having a Z-phase (zero-phase) signal may be used for the rotation sensor 2, or a resolver or other absolute angle sensor may be used.
  • the tire type determination unit 4 stores, in the reference pattern storage unit 13, a plurality of reference patterns and autocorrelations of tires according to various road surface conditions, and features of each pattern (number and position of peaks, output). Level) is stored, and the type of tire is estimated by comparing with which data the detected rotational speed fluctuation pattern and autocorrelation match.
  • the tire type determination unit 4 includes a reference pattern storage unit 13 including a storage unit that stores reference patterns for a plurality of conditions, and a processing block 4a that compares and searches corresponding patterns from the memory contents of the reference pattern storage unit 13. .
  • the reference pattern storage unit 13 has reference patterns for various tire types A, B, C,... For three road surface conditions of dry (Dry), frozen (Ice), and others (Other). It is remembered.
  • the reference pattern storage unit 13 is a database.
  • Warning output means 27 may be provided.
  • the warning output means 27 may be provided as a partial function of the tire type estimation unit 11. Further, the tire type determination unit 4 compares the tire information of the four wheels, and when only one different type of tire is detected, the warning output means 27 or another warning output means (not shown). ) May issue a warning.
  • the outputs of the warning output means 27 are transmitted to a tire type recognition result utilization means 17 provided in the host computer 16 of the vehicle, which will be described later with reference to FIG. 4, and the driver can recognize the tire type recognition result utilization means 17. It outputs to the notification means 19.
  • the tire 1a may have been replaced or some abnormality may have occurred, It can be output.
  • the state of the traveling road surface can be used by receiving information from the host vehicle computer 16 (FIG. 4). In this case, the condition of the corresponding condition among the reference patterns stored in the reference pattern storage unit 13 is used. It will be compared with the pattern.
  • the autocorrelation of the reference pattern is compared with the autocorrelation of the detected rotational speed fluctuation pattern.
  • the autocorrelation pattern shows the characteristics of the tire 1a and has less noise than the rotational speed fluctuation pattern itself, and is therefore suitable for comparison to identify the tire 1a.
  • the autocorrelation pattern of the reference pattern is compared with the autocorrelation pattern obtained from the detected rotation signal, and the difference or correlation value between the two is calculated.
  • the sum of squares of the differences may be obtained, and it may be determined that the values match if the value is smaller than a predetermined threshold value. Alternatively, it may be determined that they match when the calculated correlation value exceeds a preset threshold value.
  • the inner product of the detected autocorrelation of the rotational speed fluctuation pattern and the autocorrelation of the reference pattern may be calculated and judged based on the value.
  • an initial rotational speed variation pattern (at the time when there is almost no wear or abnormality immediately after tire replacement) is stored as the reference pattern, an inherent error pattern of the rotation sensor 2, an unbalance of the tire 1a, etc.
  • the amount of change from the initial state including this information can be detected, and the detection sensitivity can be further increased.
  • the tire type determination unit 4 When the tire type determination unit 4 detects a pattern having a large deviation from the reference pattern, that is, when the rotational speed variation pattern changes more than the change reference set for the reference pattern, the tire type determination unit 4 When 1a is replaced, warning information is output, and candidate tire types are estimated (identified) with reference to the reference pattern storage unit 13. At the same time, the phase difference from the reference pattern is also investigated, and if the reference pattern shifted in phase matches the detection pattern, it is determined that “the phase has changed when the tire is remounted”. If the phase shift is the wheel nut interval, it is determined that the mounting angle is different. In the case of puncture, it is determined that the tire is not appropriate.
  • the tire type determination unit 4 presents the detected information to the driver through the vehicle interface (screen display device or the like), and the driver responds to the presented information.
  • the vehicle interface screen display device or the like
  • An inquiry to the driver is, for example, a display on the screen such as “Did you change the tire?” Or “Is there any abnormality such as puncture in the right front tire?” Prompt to check the status of
  • the tire type determination unit 4 has a reference pattern re-registration means 23.
  • the rotation sensor 2 mounted on the wheel 1 has sufficient detection accuracy and sufficient spatial resolution. Desir. For example, it has an accuracy capable of detecting at least 0.5% rotation speed variation, and the number of pulses per rotation is 40 or more. In order to acquire sufficient data at the time of low-speed rotation including a higher-order rotation fluctuation component, it is desirable to further increase the resolution of the rotation sensor 2. Considering the structure such as the block size of the tire 1a, it is desirable that the number of output pulses per rotation of the rotation sensor 2 be at least 100 or more so as to ensure a resolution with a contact length of about 20 mm.
  • the output of the rotation sensor 2 is not necessarily a pulse output, and may be an analog signal. If an analog signal output with rotation is analyzed, fluctuations in the rotation speed can be extracted from the distortion of the waveform included in the signal, so that the same processing as in the case of pulse output is possible. In particular, when the resolution (multiplication capability) of the rotation pulse is low, it is desirable to execute signal processing with high resolution by actively using analog signals.
  • FIGS. 9A to 9C show the rotational speed fluctuation patterns of the summer tire, the studless tire, and the sports tire, respectively. It can be seen that the rotational speed variation pattern changes depending on the type of the tire 1a.
  • FIGS. 10A to 10C show autocorrelation patterns of rotational speed fluctuation patterns of summer tires, studless tires, and sports tires, respectively. The characteristics of each tire appear in the autocorrelation pattern. Since the same autocorrelation pattern is obtained for the same type of tire, the tire type can be estimated.
  • tire type recognition result utilization means 17 is provided for informing the driver or changing the control state of the vehicle based on the tire type information estimated by the tire type determination unit 4.
  • the tire type recognition result utilization means 17 is provided in the computer 16 of the vehicle that is higher than the tire type determination unit 4, for example.
  • the tire type determination unit 4 has, for example, one of the following functions.
  • Information on the detected tire type is transmitted from the signal processing unit 3 (FIG. 1) to the host computer 16 (FIG. 4) of the vehicle, and the tire type recognition result utilization means 17 determines the tire type (summer, studless, etc. Depending on the type, etc., a lamp or the like is turned on to display information on the type of tire that is mounted to the driver.
  • the tire type recognition result utilization means 17 Notification by the notification means 19, for example, lighting of a display lamp 19a such as a warning lamp or display of a caution display by an image display device 19b such as a liquid crystal display device is performed to prompt the driver to check or replace the tire 1a.
  • a display lamp 19a such as a warning lamp or display of a caution display by an image display device 19b such as a liquid crystal display device is performed to prompt the driver to check or replace the tire 1a.
  • the tire type recognition result utilization means 17 transmits information through the vehicle communication line 18, and if necessary, adjustment and inspection are promoted through the sales office 20 such as a vehicle dealer or a service store.
  • the tire type recognition result utilization unit 17 warns at the time of a predetermined weather based on the information on the type of the tire 1 a estimated by the tire type determination unit 4 and the weather during traveling obtained from the weather information acquisition unit 25. To emit. If it is determined that the state is particularly dangerous, a function of automatically limiting the traveling speed may be provided.
  • the weather information acquisition means 25 is a means for obtaining input from a radio, television, or other weather information communication means mounted on the vehicle, or a sensor (not shown) for detecting the weather.
  • the parameters of the safety control system 22a such as the vehicle attitude control provided in the vehicle control computer such as the vehicle control ECU 22 that controls the operation of the vehicle are changed according to the detected type of the tire 1a, and the capability of the tire 1a is changed.
  • the safety control system 22a may be adjusted in consideration of the above.
  • the vehicle can issue a warning by the detection signal, it is possible to perform a driving operation such as reducing the speed and to prevent a traffic accident.
  • a driving operation such as reducing the speed and to prevent a traffic accident.
  • -Since vehicle control in consideration of the type of tire 1a is possible, appropriate driving assistance and safety control can be performed according to driving conditions, and traffic accidents can be prevented.
  • -By integrating and averaging and extracting the rotation synchronization component it is possible to detect a rotation fluctuation pattern having a very slight fluctuation, so that the type of the tire 1a can be accurately detected and notified.
  • the rotational fluctuation component in the low-speed traveling state can be detected with a high resolution, so that the detection accuracy of the type of the tire 1a is increased.
  • FIGS. 17A and 17B show a first example of the rotation sensor 2.
  • the rotation sensor 2 is a radial type magnetic type, and includes an annular magnetic encoder 2a that is a target, and a magnetic sensor 2b that faces the outer peripheral surface of the magnetic encoder 2a and detects the magnetism of the magnetic encoder 2a. .
  • the magnetic encoder 2a has N and S magnetic poles 2aa alternately, and outputs a sine wave rotation signal from the magnetic sensor 2b. This sinusoidal rotation signal is shaped into a rectangle by the signal processing means 2c and output as a rectangular wave pulse signal.
  • the signal processing means 2c may have a multiplication circuit 2ca, and in that case, outputs a multiplied high-resolution rotation signal.
  • the magnetic encoder 2a may include a magnetic pole 2ab for detecting the Z phase (zero phase) in one place on the circumference, aligned in the axial direction with the magnetic pole 2aa.
  • the magnetic sensor 2b In addition to the sensor unit 2ba for detecting the N and S alternating magnetic poles 2aa, a sensor unit 2bb for detecting the magnetic pole 2ab for detecting the Z phase is provided. This sensor unit 2bb outputs a Z-phase (zero-phase) signal once in one rotation.
  • the rotation sensor 2 is an axial magnetic type, and an annular magnetic encoder 2a and a magnetic sensor 2b face each other in the axial direction.
  • the magnetic encoder 2a is attached to a flange portion of a sensor attachment ring 2d having an L-shaped cross section.
  • Other configurations are the same as those of the radial type rotation sensor 2 shown in FIGS. 17A and 17B.
  • the radial type rotation sensor 2 may also be provided with a zero-phase magnetic pole and a sensor unit, and a multiplier circuit as described above.
  • FIGS. 18A and 18B all show the rotation sensor 2 having the magnetic encoder 2a.
  • the rotation sensor 2 is a so-called pulsar ring (not shown) whose target is made of a gear-type magnetic material. It may be a detection gear. In that case, the magnetic sensor detects the teeth of the pulsar ring and outputs a rotation signal.
  • the magnetic rotation sensor 2 using the magnetic encoder 2a and the gear-type pulsar ring is resistant to inferior environments such as temperature changes and dirt. In the case of the magnetic type, it is difficult to provide the magnetic poles more finely than in the optical type. However, if the multiplication circuit 2ca is provided, a rotation signal having a resolution necessary for detecting the rotation speed fluctuation pattern can be obtained.
  • FIG. 19 shows an example of the multiplier circuit 2ca.
  • the multiplication circuit 2ca has a phase difference of 90 degrees ( ⁇ / 4) when the pitch ⁇ of one magnetic pole pair of the magnetic encoder 2ba is one cycle, as shown in FIG.
  • this multiplication circuit 2ca includes a signal generating means 41, a fan-shaped detecting means 42, a multiplexer means 43, and a fine interpolation means 44.
  • the signal generating means 41 has the same amplitude A0 and the same average value C0 from the two-phase signals sin ⁇ and cos ⁇ which are the outputs of the magnetic sensor elements 2baa and 2bab of the magnetic sensor 2b, and m is n
  • i is a means for generating 2 m-1 signals si having phases shifted by 2 ⁇ / 2 m-1 from each other, where i is a positive integer of 1 to 2 m-1 .
  • the sector detection means 42 generates m digital signals bn-m + 1, bn-m + 2, ..., bn-1, bnb encoded to define 2m equal sector Pi ⁇ ⁇ ⁇ . This is means for detecting 2m sector Pi delimited by 2m-1 signals si.
  • the multiplexer means 43 is controlled by the m digital signals bn-m + 1, bn-m + 2,..., Bn-1, bn generated from the sector detecting means 42, and is generated from the signal generating means 41.
  • 2m-1 of the above-mentioned signals si are processed, and the amplitude is constituted by a portion of the series of 2m-1 of the signals si between the average value C0 and the first threshold value L1.
  • the fine interpolation means 44 is coded to subdivide each of the 2 m sectors Pi at an angle 2 ⁇ / 2 m into 2 nm identical subsectors at an angle 2 ⁇ / 2n to obtain the desired resolution.
  • the (n ⁇ m) digital signals b1, b2,..., Bn-m ⁇ 1, bn-m (here b1, b2,..., B8, b9) are multiplied by rotation pulses.
  • FIG. 21, FIG. 22 (A) to (E) and FIG. 23 (A) to (E) show an example in which the rotation sensor 2 is an absolute angle detection type.
  • the magnetic encoder 2a is provided with two magnetic pole rows 2aA and 2aB, the number of magnetic pole pairs of one magnetic pole row 2aA is P, and the number of magnetic pole pairs of the other magnetic pole row 2aB is P + n. Therefore, there is a phase difference of n magnetic pole pairs per rotation between the magnetic pole arrays 2aA and 2aB, and the phases of the detection signals of the magnetic sensors 2ba and 2bb corresponding to these magnetic magnetic pole arrays 2aA and 2aB are It coincides with every 360 / n degrees of rotation.
  • the phase difference detection means 2cb constituting the signal processing means 2c outputs a phase difference signal as shown in FIG. 22 (E) based on the detection signals of the magnetic sensors 2ba and 2bb.
  • the angle calculation means 2cc provided in the subsequent stage corrects the phase difference obtained by the phase difference detection means 2cb and then performs a process of converting into an absolute angle according to a preset calculation parameter.
  • FIGS. 22A and 22B show examples of magnetic pole patterns of both magnetic pole arrays 2aA and 2aB.
  • FIGS. 22C and 22D show waveforms of detection signals of the magnetic sensors 2ba and 2bb corresponding to the magnetic pole arrays 2aA and 2aB.
  • two magnetic pole pairs of the magnetic pole array 2aB correspond to three magnetic pole pairs of the magnetic pole array 2aA, and the absolute position within this section can be detected.
  • FIG. 23E shows a waveform diagram of a phase difference output signal obtained by the phase difference detecting means 2cb of FIG. 21 based on the detection signals of FIGS. 22C and 22D.
  • phase difference signals detected by the phase difference detecting means 2cb are affected by the magnetic interference and noise of the magnetic pole arrays 2aA and 2aB, they are actually distorted. A waveform with Therefore, the angle calculation means 2cc corrects the angle correction means 2cca to calculate an absolute angle with high detection accuracy.
  • the wheel bearing 30 shown in FIGS. 11 and 12 is a third generation type inner ring rotation type and is for driving wheel support, and shows an example in which the rotation sensor 2 is provided in the center of the double row.
  • the wheel bearing 30 includes an outer member 31 having a double row rolling surface 33 formed on the inner periphery, an inner member 32 having a rolling surface 34 opposed to each of the rolling surfaces 33, and these outer members.
  • the rolling member 35 of the double row interposed between the rolling surfaces 33 and 34 of the direction member 31 and the inward member 32 is provided, and a wheel is rotatably supported with respect to a vehicle body.
  • the wheel bearing 30 is a double-row outward angular ball bearing type, and the rolling elements 35 are formed of balls and are held by a cage 36 for each row.
  • the inner member 32 includes a hub wheel 32a and an inner ring 32b fitted to the outer periphery of the inboard side end of the hub wheel 32a.
  • the rolling surface 34 is provided on the outer periphery of each wheel 32a, 32b. . Both ends of the bearing space between the outer member 31 and the inner member 32 are sealed by seals 37 and 38, respectively.
  • the encoder 2 a of the rotation sensor 2 is provided on the outer periphery between the rolling surfaces 34 of the inner member 32, and the magnetic sensor 2 b facing the encoder 2 a is provided on the outer member 31. It is installed in the provided sensor mounting hole 40 in the radial direction.
  • the rotation sensor 2 is, for example, the radial type described above with reference to FIG.
  • the wheel bearing 30 shown in FIG. 13 and FIG. 14 is a third generation type inner ring rotation type and is for driving wheel support, and shows an example in which the rotation sensor 2 is provided at the inboard side end.
  • the rotation sensor 2 is of the axial type described above with reference to FIGS. 18A and 18B.
  • the slinger that is press-fitted and fixed to the outer peripheral surface of the inner member 32 in the seal 38 at the inboard side end also serves as the sensor support ring 2d in the example of FIGS. 18A and 18B.
  • the magnetic sensor 2 b is resin-molded in a ring-shaped metal case 39 and fixed to the outer member 31 via the metal case 39.
  • Other configurations are the same as those of the example shown in FIGS.
  • the wheel bearing 30 is a third generation inner ring rotating type and is for supporting a driven wheel
  • the rotation sensor 2 is provided at the inboard side end.
  • the end face opening at the inboard side end portion of the outer member 31 is covered with a cover 29, and the magnetic sensor 2 b of the rotation sensor 2 is attached to the cover 29.
  • Other configurations and operational effects are the same as those of the example shown in FIGS.
  • this automobile tire type recognition device can be applied widely from small cars such as passenger cars and taxis to large cars such as trucks, trailers and buses.
  • the most preferable form is application to large vehicles such as trucks, trailers and buses.
  • These automobiles require passengers and cargo to be transported safely and efficiently, so it is important to always keep the vehicle in a normal state.
  • tire type information is detected during traveling, so that inspection errors and unavoidable circumstances prevent tires 1a suitable for road conditions from being worn. Even so, the driver can recognize the fact and take measures such as driving the vehicle according to the type of tire before the operation is affected, and the vehicle can be transported safely and efficiently.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

Provided is a type recognition device for automobile tires, capable of detecting information about tire type, during travel, and not requiring a special sensor. The tire type recognition device comprises: a rotation sensor (2) that detects rotation signals from a wheel (1) so as to measure the speed of the automobile; a signal processing unit (3) that extracts fluctuation in rotation speed synchronized to rotation, from the rotation signals detected by this rotation sensor (2), and obtains a rotation speed fluctuation pattern synchronized to the rotation, from the extracted rotation speed fluctuation; a reference pattern storage unit (13) having stored therein either pattern data for rotation speed fluctuation patterns, for each of the plurality of tire (1a) types, or feature parameters related to the tire types; and a tire type determination unit (4) that compares the obtained rotation speed fluctuation pattern to a rotation speed fluctuation pattern recorded in the reference pattern storage unit (13) and estimates the tire (1a) type.

Description

自動車用タイヤの種類認識装置Automotive tire type recognition device 関連出願Related applications
 本出願は、2013年11月21日出願の特願2013-241127の優先権を主張するものであり、それらの全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2013-241127 filed on Nov. 21, 2013, which is incorporated herein by reference in its entirety.
 この発明は、自動車のタイヤの種類を自動車の走行中に推定する、自動車用タイヤの種類認識装置に関し、安全性に関する警告やタイヤの種類の違いを運転者に知らせる処理に寄与する技術に関する。 The present invention relates to an automobile tire type recognition device that estimates the type of an automobile tire while the automobile is running, and relates to a technology that contributes to a warning about safety and a process of notifying a driver of a difference in tire type.
 特許文献1には、回転機構部に設けられた加速度センサを用いて、タイヤの接地パターンを特定する方法が提示されている。 Patent Document 1 proposes a method of specifying a tire ground contact pattern using an acceleration sensor provided in a rotation mechanism.
 特許文献2には、回転速度検出装置の測定値から、タイヤのスリップ比と車両の加減速度との互いの1次の回帰係数と相関係数を求めることによりタイヤを識別する方法が提示されている。 Patent Document 2 proposes a method for identifying a tire by obtaining a linear regression coefficient and a correlation coefficient between a tire slip ratio and a vehicle acceleration / deceleration from a measured value of a rotational speed detection device. Yes.
 特許文献3には、駆動輪の回転情報から旋回半径の逆数と判定値を算出し、駆動軸に装着されているタイヤが夏タイヤか冬タイヤかを識別する方法が提示されている。 Patent Document 3 proposes a method for calculating the reciprocal of the turning radius and the determination value from the rotation information of the drive wheel, and identifying whether the tire mounted on the drive shaft is a summer tire or a winter tire.
 特許文献4には、自動車の車輪用軸受に回転検出装置を取り付け、信号を逓倍する機能を設けた高分解能回転検出装置が提示されている。
 特許文献5には、自動車の車輪用軸受に回転検出装置を取り付けた、絶対角検出を可能とした回転検出装置が提示されている。
 特許文献6には、タイヤの回転センサ信号からスリップ率等を推定する方法が提示されており、数回転にわたるタイヤの回転信号から回転同期成分を平均化して検出する方法も提示されている。
Patent Document 4 proposes a high-resolution rotation detection device provided with a function of multiplying a signal by attaching a rotation detection device to a wheel bearing of an automobile.
Patent Document 5 proposes a rotation detection device capable of detecting an absolute angle by attaching a rotation detection device to a wheel bearing of an automobile.
Patent Document 6 presents a method for estimating a slip ratio and the like from a tire rotation sensor signal, and also presents a method for detecting the rotation synchronization component by averaging the rotation signal of the tire over several rotations.
特開2006-153832号公報JP 2006-153832 A 特開2002-019435号公報Japanese Patent Laid-Open No. 2002-019435 特開2000-079812号公報JP 2000-077981 A 特開2011-002357号公報JP 2011-002357 A 特開2008-232426号公報JP 2008-232426 A 特開2006-126164号公報JP 2006-126164 A
 自動車のタイヤがサマータイヤであると、雪道や凍結した路面を走行時にスリップし易くなる。また、スタッドレスタイヤで乾いた路面を走行すると、乗り心地や運転性能が悪化する。 If the car tire is a summer tire, it will be easier to slip on a snowy road or a frozen road surface. Moreover, when driving on a dry road surface with a studless tire, ride comfort and driving performance deteriorate.
 これらを予防するために、シーズンごとにタイヤの点検や交換をし、路面に適したタイヤを装着することが推奨されている。それにもかかわらず、一時的に異なる種類のタイヤ(応急タイヤなど)を装着していることや、スタッドレスタイヤを装着していることを運転者が忘れてしまい、タイヤの種類が適正ではない状態で走行してしまうことがある。 In order to prevent these, it is recommended that tires be inspected and replaced every season, and that tires suitable for the road surface be fitted. Nevertheless, the driver forgets to temporarily wear a different type of tire (such as an emergency tire) or a studless tire, and the tire type is not appropriate. You may run.
 これに対して、特殊なセンサを設けることなく、それほど大きくコストが増加することなしにタイヤの種類を検出し、運転者にタイヤの交換が必要なことを知らせることを可能にして、不安全な状態での走行による事故を未然に防ぐことが望まれている。 On the other hand, without providing a special sensor, it is possible to detect the type of tire without significantly increasing the cost and to inform the driver that the tire needs to be replaced, which is unsafe. It is desired to prevent accidents caused by running in the state.
 この発明の目的は、タイヤの種類の情報を走行中に検出することができ、特殊なセンサを設ける必要がなくて、大幅にコストアップすることなく、車両に実装することができる自動車用タイヤの種類認識装置を提供することである。 An object of the present invention is to provide an automobile tire that can detect information on the type of tire while traveling, does not need a special sensor, and can be mounted on a vehicle without significantly increasing costs. It is to provide a type recognition device.
 以下、便宜上理解を容易にするために、実施形態の符号を参照して説明する。 Hereinafter, in order to facilitate understanding, description will be made with reference to the reference numerals of the embodiments.
 この発明の一構成に係る自動車用タイヤの種類認識装置は、前記自動車の速度を測定するように、車輪1の回転を検出する回転センサ2と、この回転センサ2によって検出された回転信号から回転に同期した回転速度の変動を抽出し、この抽出した回転速度の変動から、回転に同期した回転速度の変動を含む回転速度変動パターンを取得する信号処理ユニット3と、複数のタイヤ1aの種類それぞれに対して、回転速度変動パターンのパターンデータ、または、タイヤの種類に関連した特徴パラメータが登録されている基準パターン記憶部13と、前記取得した回転速度変動パターンを、前記基準パターン記憶部13に登録されたパターンデータ、または前記取得した回転速度変動パターンから得られる特徴パラメータを、前記基準パターン記憶部13に登録された特徴パラメータからなる基準パターンと比較して、タイヤ1aの種類を推定(識別)するタイヤ種類判断ユニット4とを備える。
 なお、回転に同期した回転速度の変動は、タイヤ1aが路面上を転動することによって生じる。
A vehicle tire type recognition device according to one configuration of the present invention is configured to rotate from a rotation sensor 2 that detects the rotation of a wheel 1 and a rotation signal detected by the rotation sensor 2 so as to measure the speed of the vehicle. And a signal processing unit 3 for obtaining a rotational speed fluctuation pattern including a rotational speed fluctuation synchronized with the rotation from the extracted rotational speed fluctuation, and a plurality of types of tires 1a. In contrast, the reference pattern storage unit 13 in which the pattern data of the rotational speed variation pattern or the characteristic parameter related to the type of tire is registered, and the acquired rotational speed variation pattern are stored in the reference pattern storage unit 13. Characteristic parameters obtained from registered pattern data or the obtained rotational speed fluctuation pattern are used as the reference pattern. It is compared with a reference pattern consisting of feature parameters registered in the 憶部 13, and a tire type judging unit 4 for estimating (identification) the type of tire 1a.
In addition, the fluctuation | variation of the rotational speed synchronized with rotation arises when the tire 1a rolls on the road surface.
 前記回転センサ2は、車輪用軸受30またはドライブシャフト等に設置され、車輪1の回転を検出する。前記信号処理ユニット3は、前記回転センサ2によって検出された回転信号を用いて、走行中に、タイヤ1aの回転に同期した回転速度の変動を抽出する。タイヤ種類判断ユニット4は、抽出した回転速度変動パターンを、基準パターン記憶部13に登録された基準パターン、すなわち回転速度変動パターンのパターンデータ、または前記回転速度変動パターンから抽出したタイヤ1aの特徴パラメータと比較して、タイヤ1aの種類を推定する。前記基準パターン記憶部13は、例えばデータベースに構成される。 The rotation sensor 2 is installed on a wheel bearing 30 or a drive shaft, and detects the rotation of the wheel 1. The signal processing unit 3 uses the rotation signal detected by the rotation sensor 2 to extract a change in rotational speed synchronized with the rotation of the tire 1a during traveling. The tire type determination unit 4 uses the extracted rotational speed variation pattern as a reference pattern registered in the reference pattern storage unit 13, that is, pattern data of the rotational speed variation pattern, or a characteristic parameter of the tire 1a extracted from the rotational speed variation pattern. And the type of the tire 1a is estimated. The reference pattern storage unit 13 is configured in a database, for example.
 タイヤ1aの種類に応じてタイヤの接地面の形状が異なるため回転速度変動のパターンも異なる。すなわち、このパターンはタイヤ1aの種類によって異なっており、その特徴によってタイヤ1aの種類を推定することができる。そのため、予め基準パターン記憶部13に回転速度変動パターンのパターンデータ、またはその回転速度変動パターンから抽出される特徴パラメータを登録しておき、この登録された回転速度変動パターンまたは特徴パラメータと、測定し取得した回転速度変動パターンとを比較することで、タイヤ1aの種類を推定することができる。 Depending on the type of the tire 1a, the shape of the ground contact surface of the tire is different, so the rotational speed variation pattern is also different. That is, this pattern differs depending on the type of the tire 1a, and the type of the tire 1a can be estimated based on the feature. Therefore, the rotational speed fluctuation pattern pattern data or the characteristic parameter extracted from the rotational speed fluctuation pattern is registered in the reference pattern storage unit 13 in advance, and the registered rotational speed fluctuation pattern or characteristic parameter is measured. The type of the tire 1a can be estimated by comparing the acquired rotational speed variation pattern.
 このように、タイヤ1aの種類の情報を、走行中に検出することができるため、特殊なセンサを設ける必要がない。そのため、大幅にコストアップすることなく、タイヤ1aの種類認識機能を車両に実装することができる。また、装着しているタイヤ1aの種類を忘れて運転している場合でも、運転者にどのようなタイヤ1aを装着しているかの情報を発信できるため、予防安全を実現できる。応急タイヤ装着時などでタイヤ1aの種類が通常と異なる状態で運転していることを忘れている場合や、路面状態に対して適したタイヤ1aが装着されていない場合であっても、検出信号に基づいて車両が警告を発信できるため、速度を落とすなどの運転操作を運転者に促し、交通事故を防止することができる。 Thus, since the information on the type of the tire 1a can be detected during traveling, it is not necessary to provide a special sensor. Therefore, the type recognition function of the tire 1a can be mounted on the vehicle without significantly increasing the cost. Further, even when the driver forgets the type of the tire 1a that is installed, information on what type of tire 1a is installed can be transmitted to the driver, so that preventive safety can be realized. Even if you forget that you are driving in a state where the type of the tire 1a is different from normal, such as when installing an emergency tire, or if the tire 1a suitable for the road surface condition is not installed, the detection signal Since the vehicle can issue a warning based on this, it is possible to prompt the driver to perform a driving operation such as reducing the speed and to prevent a traffic accident.
 なお、前記信号処理ユニット3による信号処理においては、ノイズ成分やセンサ誤差成分を抑制するために、ローパスフィルタ(LPF)やハイパスフィルタ(HPF)によりフィルタ処理し、回転速度データである回転信号からタイヤ1aのトレッドパターンに起因する成分を抽出するようにしても良い。 In the signal processing by the signal processing unit 3, in order to suppress a noise component and a sensor error component, a filter process is performed by a low-pass filter (LPF) or a high-pass filter (HPF), and the tire is generated from the rotation signal as the rotation speed data. You may make it extract the component resulting from the tread pattern of 1a.
 好ましい実施形態において、さらに、前記基準パターン記憶部13に初期状態または正常時の回転速度変動パターンを基準パターンとして記憶しておき、走行中に前記信号処理ユニット3で検出された回転速度変動パターンが、前記基準パターンに対して、定められた変化の基準よりも大きく変化した場合に、パンクおよびタイヤ交換後であることを含む所定の可能性について運転手に問い合わせ情報を出力し、この問い合わせ情報に対する運転手の許可情報の入力を得た場合に、最後に取得された回転速度変動パターンを、前記基準パターンとして前記基準パターン記憶部13に再登録する基準パターン再登録手段23を備えても良い。
 前記「定められた変化の基準よりも大きく変化した場合」とは、定められた大きさ以上に変位した場合であり、特に、回転速度変動パターンが基準パターンから急に大きく変化した場合である。
In a preferred embodiment, the reference pattern storage unit 13 further stores an initial state or normal rotation speed fluctuation pattern as a reference pattern, and the rotation speed fluctuation pattern detected by the signal processing unit 3 during traveling is stored. When the reference pattern is changed more than a predetermined change reference, the driver outputs inquiry information to the driver regarding a predetermined possibility including after puncture and tire replacement. A reference pattern re-registration unit 23 may be provided for re-registering the rotation speed fluctuation pattern acquired last as the reference pattern in the reference pattern storage unit 13 when the driver permission information is input.
The “case where the change is greater than the predetermined change reference” refers to a case where the displacement is greater than a predetermined amount, and in particular, a case where the rotational speed variation pattern suddenly changes greatly from the reference pattern.
 初期に登録しておいた基準パターンから急に違いが出た場合は、タイヤ1aが、交換、付け替え、パンク等により変化した場合である可能性が高い。このようなタイヤ1aの交換、付け替え、パンク等があった場合は、回転速度変動パターンが変化するため、登録しておく基準パターンを新しいパターンとして再登録しておくことで、交換後等のタイヤに適切なタイヤ種類の推定が行える。また、再登録は、運転手への問い合わせを行い、運転者の許可を得た場合にのみ行うことで、実際にタイヤ交換等があった場合であることを確認した上で再登録されることになり、不測に基準パターンが再登録されることを回避でき、タイヤ種類推定の信頼性が担保される。 If there is a sudden difference from the reference pattern registered in the initial stage, there is a high possibility that the tire 1a has changed due to replacement, replacement, puncture, or the like. When the tire 1a is replaced, replaced, punctured, etc., the rotational speed variation pattern changes. Therefore, by re-registering the reference pattern to be registered as a new pattern, the tire after replacement etc. The appropriate tire type can be estimated. In addition, re-registration should be done only after inquiring of the driver and obtaining permission from the driver, and re-registration after confirming that the tire has actually been changed. Therefore, it is possible to avoid the re-registration of the reference pattern unexpectedly, and the reliability of the tire type estimation is ensured.
 好ましい実施形態において、前記信号処理ユニット3は、前記回転に同期した回転速度変動パターンを、前記回転センサ2の複数回転にわたる回転信号に、回転に同期させた平均化処理または積算処理を施して、取得しても良い。
 1回転の回転信号のデータでは、路面の凹凸などによる影響が現れるが、ある程度の回転回数にわたる期間の回転信号を収集し、平均化または積算処理して、任意の回転速度変動パターンを抽出することで、路面の凹凸などによる影響が排除される。
 また、回転同期成分を積算もしくは平均化して抽出することにより、ごくわずかな回転速度変動を検出できるため、タイヤの種類を精度よく推定して通知できる。
In a preferred embodiment, the signal processing unit 3 subjects the rotation speed fluctuation pattern synchronized with the rotation to a rotation signal over a plurality of rotations of the rotation sensor 2 by performing an averaging process or an integration process synchronized with the rotation, You may get it.
The rotation signal data for one rotation is affected by road surface irregularities, etc., but the rotation signal for a period of a certain number of rotations is collected and averaged or integrated to extract an arbitrary rotation speed fluctuation pattern. Thus, the influence of road surface unevenness is eliminated.
Further, by extracting the rotation synchronization component by integrating or averaging, it is possible to detect a very slight fluctuation in the rotation speed, and therefore it is possible to accurately estimate and notify the tire type.
 好ましい実施形態において、前記信号処理ユニット3は、前記回転に同期した回転速度の変動の抽出の処理を、一つ以上の設定された走行速度範囲から選択された走行速度範囲で実施しても良い。回転速度変動の発生状況はタイヤ1aの状態に応じて変化するため、走行速度によって影響を受ける。すなわち、回転速度変動成分はタイヤ1aの伝達特性により周波数特性を示し、走行速度によってその位相や振幅が変化する。そのため、回転速度変動パターンを抽出する際には、回転速度が特定の範囲にある状態の信号を用いて処理するのが望ましい。 In a preferred embodiment, the signal processing unit 3 may perform the process of extracting the fluctuation of the rotational speed synchronized with the rotation in a traveling speed range selected from one or more set traveling speed ranges. . Since the occurrence state of the rotational speed changes depending on the state of the tire 1a, it is affected by the traveling speed. That is, the rotational speed fluctuation component exhibits frequency characteristics due to the transmission characteristics of the tire 1a, and its phase and amplitude vary depending on the traveling speed. Therefore, when extracting the rotational speed variation pattern, it is desirable to process using a signal in a state where the rotational speed is in a specific range.
 前記信号処理ユニット3は、前記抽出の処理を複数の走行速度範囲についてそれぞれ行い、前記タイヤ種類判断ユニット4は、それぞれの速度範囲のデータについてそれぞれタイヤの種類の推定処理を行い、これら複数の推定処理の結果からタイヤ1aの種類を総合判断する構成としても良い。複数の速度領域で回転速度変動パターンを検出することにより、一つに限定された回転速度領域のパターンだけを取得して判別する場合と比較して、より多くの走行データに基づいて総合的な判断が可能になるため、タイヤ1aの種類を推定する精度が向上する。 The signal processing unit 3 performs the extraction process for each of a plurality of travel speed ranges, and the tire type determination unit 4 performs a tire type estimation process for each speed range data, and the plurality of estimations. It is good also as a structure which comprehensively judges the kind of tire 1a from the result of a process. By detecting the rotational speed variation pattern in a plurality of speed regions, it is possible to obtain a comprehensive result based on more travel data compared to the case where only one rotational speed region pattern is acquired and determined. Since determination becomes possible, the precision which estimates the kind of tire 1a improves.
 好ましい実施形態において、前記タイヤ種類判断ユニット4は、前記信号処理ユニット3で検出された回転速度変動パターンの自己相関と、基準となる回転変動パターンの自己相関との変化量または相関からタイヤ1aの種類を推定しても良い。
 このように自己相関等から判別することで、タイヤ1aの種類の推定がより精度良く行える。
In a preferred embodiment, the tire type determination unit 4 determines the tire 1a from the amount of change or correlation between the autocorrelation of the rotational speed variation pattern detected by the signal processing unit 3 and the autocorrelation of the reference rotational variation pattern. The type may be estimated.
Thus, by discriminating from autocorrelation or the like, the type of the tire 1a can be estimated with higher accuracy.
 好ましい実施形態において、前記回転センサ2は、零相を備えた回転センサ2または絶対角検出機能を備えた回転センサ2で構成し、前記信号処理ユニット3は、取得した回転速度変動パターンの位相を合わせた状態で、前記回転速度変動パターンと基準パターンとの差分を求め、この差分の大きさいに基づいてタイヤ種類を推定しても良い。
 位相を合わせて差分を求めることで、その差分の大きさからタイヤ1aの種類を容易にかつ精度良く推定できる。
In a preferred embodiment, the rotation sensor 2 is constituted by a rotation sensor 2 having a zero phase or a rotation sensor 2 having an absolute angle detection function, and the signal processing unit 3 determines the phase of the acquired rotation speed fluctuation pattern. In a combined state, a difference between the rotational speed variation pattern and the reference pattern may be obtained, and the tire type may be estimated based on the magnitude of the difference.
By obtaining the difference by matching the phases, the type of the tire 1a can be easily and accurately estimated from the magnitude of the difference.
 好ましい実施形態において、前記回転センサ2は、磁気センサ2bとこの磁気センサ2bで検出される被検出極を有する磁気エンコーダ2aまたはパルサギヤとで構成され、回転による磁気強度の変動をアナログ信号で出力する構成としても良い。 In a preferred embodiment, the rotation sensor 2 includes a magnetic sensor 2b and a magnetic encoder 2a having a detected pole detected by the magnetic sensor 2b or a pulsar gear, and outputs fluctuations in magnetic strength due to rotation as an analog signal. It is good also as a structure.
 回転に伴って出力されるアナログ信号を分析すれば、信号に含まれている波形の歪みなどから回転速度の変動を抽出できるため、パルス出力の場合と同様の処理が可能である。また、磁気センサ2bは、光学式のセンサに比べて温度変化や汚れに対して強く、汚れ易い環境下に設置される回転センサ2として、磁気センサが好ましい。 If the analog signal output with rotation is analyzed, the fluctuation of the rotation speed can be extracted from the distortion of the waveform included in the signal, so the same processing as in the case of pulse output is possible. Further, the magnetic sensor 2b is preferably a magnetic sensor as the rotation sensor 2 installed in an environment that is more resistant to temperature changes and dirt than the optical sensor and is easily contaminated.
 好ましい実施形態において、前記回転センサ2は、磁気センサ2bとこの磁気センサ2bで検出される被検出極を有する磁気エンコーダ2aまたはパルサギヤと、前記磁気センサ2bの検出信号を逓倍する回転パルスを出力する逓倍回路2caを備えるようにしても良い。 In a preferred embodiment, the rotation sensor 2 outputs a magnetic encoder 2a or a pulser gear having a magnetic sensor 2b and a detected pole detected by the magnetic sensor 2b, and a rotation pulse for multiplying a detection signal of the magnetic sensor 2b. A multiplier circuit 2ca may be provided.
 検出対象である特定の変動を有する回転速度変動パターンを精度よく検出するためには、車輪1に搭載される回転センサ2には十分な検出精度と、十分な空間分解能を備えたものを使用することが望まれる。上記のように磁気エンコーダ2aまたパルサギヤと磁気センサ2bを組み合わせ、検出した磁界信号を逓倍して分解能を高めた回転センサ2は、温度変化や汚れなどの劣悪な環境に強く、かつ、例えば1回転あたり100パルス以上の回転分解能を有するため、本用途に適している。
 高分解能な回転センサ2と組み合わせることで、低速走行状態における回転変動成分を、高い分解能で検出できるため、タイヤ1aの種類の検出精度が高くなる。
In order to accurately detect a rotational speed fluctuation pattern having a specific fluctuation, which is a detection target, a rotation sensor 2 mounted on the wheel 1 having sufficient detection accuracy and sufficient spatial resolution is used. It is desirable. The rotation sensor 2 that combines the magnetic encoder 2a or the pulser gear and the magnetic sensor 2b as described above, and multiplies the detected magnetic field signal to increase the resolution, is resistant to inferior environments such as temperature changes and dirt, and performs, for example, one rotation. Since it has a rotational resolution of 100 pulses or more, it is suitable for this application.
By combining with the high-resolution rotation sensor 2, the rotational fluctuation component in the low-speed running state can be detected with high resolution, so that the detection accuracy of the type of the tire 1a is increased.
 好ましい実施形態において、前記タイヤ種類判断ユニット4が推定したタイヤ1aの種類の情報に基づいて、運転者への報知または車両の制御状態の変更を行うタイヤ種類認識結果利用手段17を備えても良い。タイヤ種類認識結果利用手段17は、例えばタイヤ種類判断ユニット4に対して上位となる車両のコンピュータ16に設けられる。タイヤ種類判断ユニット4は、具体的には、例えば次のいずれかの機能を持つものとされる。 In a preferred embodiment, tire type recognition result utilization means 17 may be provided that performs notification to the driver or change of the control state of the vehicle based on the tire type information estimated by the tire type determination unit 4. . The tire type recognition result utilization means 17 is provided in the computer 16 of the vehicle that is higher than the tire type determination unit 4, for example. Specifically, the tire type determination unit 4 has, for example, one of the following functions.
 前記タイヤ種類認識結果利用手段17は、前記タイヤ種類判断ユニット4が推定したタイヤ1aの種類の情報に基づいて、運転席に設けられた報知手段19に報知させるようにしても良い。前記報知手段19は、例えば運転席のコンソールに設けられた液晶表示装置等の画像表示装置19bである。
 タイヤ種類認識結果利用手段17は、例えば4輪のタイヤ1aの情報を比較して、異種のタイヤ1aが検出された場合に、警告を発するようにしても良い。
The tire type recognition result utilization unit 17 may cause the notification unit 19 provided in the driver's seat to be notified based on the information on the type of the tire 1a estimated by the tire type determination unit 4. The notification means 19 is, for example, an image display device 19b such as a liquid crystal display device provided on the console of the driver's seat.
The tire type recognition result utilization means 17 may compare the information of, for example, four-wheel tires 1a and issue a warning when a different type of tire 1a is detected.
 前記タイヤ種類認識結果利用手段17は、前記タイヤ種類判断ユニット4が推定したタイヤ1aの種類の情報に基づいて、車両制御ECU22等の車両制御コンピュータの制御パラメータを変更し、タイヤ1aの種類に応じて定められた安全制御を行わせる手段であっても良い。 The tire type recognition result utilization means 17 changes the control parameter of the vehicle control computer such as the vehicle control ECU 22 based on the information on the type of the tire 1a estimated by the tire type determination unit 4, and according to the type of the tire 1a. It may be a means for performing the predetermined safety control.
 例えば、検出されたタイヤ1aの種類に応じて、車両姿勢制御などの安全制御システム22aのパラメータを変更し、タイヤ1aの能力を考慮して安全制御システム22aを調整してもよい。この他に、例えば応急タイヤを装着している状態では、走行速度を制限するように車両を制御して、危険な状態を回避するようにしてもよい。
 このように、タイヤ1aの種類を考慮した車両制御が可能になるため、走行条件に応じて適切な運転補助や安全制御を施し、交通事故を防止することができる。
For example, the parameters of the safety control system 22a such as vehicle attitude control may be changed according to the detected type of the tire 1a, and the safety control system 22a may be adjusted in consideration of the ability of the tire 1a. In addition, for example, in a state where emergency tires are mounted, the vehicle may be controlled so as to limit the traveling speed to avoid a dangerous state.
Thus, since vehicle control in consideration of the type of the tire 1a is possible, appropriate driving assistance and safety control can be performed according to traveling conditions, and traffic accidents can be prevented.
 前記タイヤ種類認識結果利用手段17は、前記タイヤ種類判断ユニット4が推定したタイヤ1aの種類の情報と、天候情報入手手段25から得た走行時の天候に基づいて、定められた天候時に警告を発する構成であっても良い。
 推定されているタイヤ1aの種類に応じて、晴天時には警告は出さないが、スリップ等が発生し易い雨天時の走行中には警告を発するようにするなど、危険が高いと判断される場合の注意を促すこともできる。
The tire type recognition result utilization means 17 gives a warning at a predetermined weather based on the information on the type of the tire 1a estimated by the tire type determination unit 4 and the weather during driving obtained from the weather information acquisition means 25. The structure which emits may be sufficient.
Depending on the type of tire 1a that is estimated, a warning is not issued in fine weather, but a warning is issued during rainy weather when slipping is likely to occur. You can call attention.
 前記タイヤ種類認識結果利用手段17は、前記タイヤ種類判断ユニット4が推定したタイヤ1aの種類の情報に基づいて、車両に搭載されたコンピュータ16が通信回線18を通じてタイヤ1aの種類の情報を、車両の点検またはタイヤの交換が可能な定められた営業所20の端末に発信する機能を有する手段であっても良い。
 例えば、警告ランプなどの表示による報知と同時に、車両の通信回線18を通じて情報が発信され、必要に応じて車両販売店やサービス店などの営業所20を通じた点検・交換の促進が行われるようにする。これにより、営業所20におけるタイヤ1aの在庫確認等を早期に行い、迅速かつ適切な点検,交換が期待できる。
The tire type recognition result utilization means 17 is configured so that the computer 16 mounted on the vehicle uses the communication line 18 to obtain information on the type of the tire 1a based on the information on the type of the tire 1a estimated by the tire type determination unit 4. It may be a means having a function of transmitting to a terminal of a predetermined sales office 20 capable of inspecting or exchanging tires.
For example, information is transmitted through the vehicle communication line 18 at the same time as the notification by displaying a warning lamp or the like, and the inspection and replacement are promoted through the sales office 20 such as a vehicle dealer or a service store as necessary. To do. Thereby, the inventory check of the tire 1a in the sales office 20 is performed at an early stage, and prompt and appropriate inspection and replacement can be expected.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の第1の実施形態に係る自動車用タイヤの種類認識装置の概念構成を示すブロック図である。 同タイヤの種類認識装置の信号処理ユニットの概念構成を示すブロック図である。 同タイヤの種類認識装置のタイヤ種類判断ユニットの概念構成を示すブロック図である。 同タイヤの種類認識装置の利用形態を示すブロック図である。 複数回転にわたる回転に同期した回転速度変動パターンの作成方法の一例を示す概念図である。 (A)および(B)は、複数回転にわたる回転に同期した回転速度変動パターンの作成方法の一例を波形により示す説明図であって、(A)は、複数回転にわたる回転に同期した回転速度変動パターンを示し、(B)は、これら複数のパターンを平均化した回転速度変動パターンを示す。 同タイヤの種類認識装置における回転速度変動パターンまたは自己相関からタイヤ情報を取得する構成部分の概念構成を示す説明図 同タイヤの種類認識装置における自己相関を比較する概念図である。 (a)~(c)は、タイヤ種類の違いによる回転速度変動パターンの違いを示すグラフである。 (a)~(c)は、各種タイヤの回転速度変動パターンの自己相関パターンをグラフである。 同タイヤの種類認識装置で用いる回転センサを装備した車輪用軸受の一例の断面図である。 同車輪用軸受をインボードから見た図である。 同タイヤの種類認識装置で用いる回転センサを装備した車輪用軸受の他の例の断面図である。 同車輪用軸受をインボードから見た図である。 同タイヤの種類認識装置で用いる回転センサを装備した車輪用軸受のさらに他の例の断面図である。 同車輪用軸受をインボードから見た図である。 同タイヤの種類認識装置が用いる回転センサの第1の例を示す断面図である。 図17Aの回転センサの斜視図である。 同タイヤの種類認識装置が用いる回転センサの第2の例を示す断面図である。 図18Aの回転センサの斜視図である。 回転センサにおける逓倍回路の一例を示すブロック図である。 同逓倍回路を用いる磁気センサの説明図である。 同回転センサとして用いる絶対角回転センサの例を示す構成説明図である。 (A)~(E)は、同回転センサの磁極配列および検出信号の説明図である。 (A)~(E)は、同回転センサの磁極配列および検出信号の処理例の説明図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
1 is a block diagram showing a conceptual configuration of an automobile tire type recognition device according to a first embodiment of the present invention. FIG. It is a block diagram which shows the conceptual structure of the signal processing unit of the tire type recognition apparatus. It is a block diagram which shows the conceptual structure of the tire type determination unit of the tire type recognition apparatus. It is a block diagram which shows the utilization form of the tire type recognition apparatus. It is a conceptual diagram which shows an example of the preparation method of the rotational speed fluctuation pattern synchronized with the rotation over several rotations. (A) And (B) is explanatory drawing which shows an example of the production method of the rotational speed fluctuation pattern synchronized with the rotation over multiple rotations, and (A) is the rotational speed fluctuation synchronized with the rotation over multiple rotations A pattern is shown, (B) shows the rotational speed fluctuation pattern which averaged these some patterns. Explanatory drawing which shows the conceptual structure of the component which acquires tire information from the rotational speed fluctuation pattern or autocorrelation in the tire type recognition device It is a conceptual diagram which compares the autocorrelation in the tire type recognition apparatus. (A)-(c) is a graph which shows the difference in the rotational speed fluctuation pattern by the difference in a tire type. (A)-(c) is a graph which shows the autocorrelation pattern of the rotational speed fluctuation pattern of various tires. It is sectional drawing of an example of the bearing for wheels equipped with the rotation sensor used with the kind recognition apparatus of the tire. It is the figure which looked at the bearing for the wheels from the inboard. It is sectional drawing of the other example of the wheel bearing equipped with the rotation sensor used with the kind recognition apparatus of the tire. It is the figure which looked at the bearing for the wheels from the inboard. It is sectional drawing of the further another example of the wheel bearing equipped with the rotation sensor used with the kind recognition apparatus of the tire. It is the figure which looked at the bearing for the wheels from the inboard. It is sectional drawing which shows the 1st example of the rotation sensor which the kind recognition apparatus of the tire uses. It is a perspective view of the rotation sensor of FIG. 17A. It is sectional drawing which shows the 2nd example of the rotation sensor which the kind recognition apparatus of the tire uses. FIG. 18B is a perspective view of the rotation sensor of FIG. 18A. It is a block diagram which shows an example of the multiplication circuit in a rotation sensor. It is explanatory drawing of the magnetic sensor using the same multiplication circuit. It is composition explanatory drawing which shows the example of the absolute angle rotation sensor used as the rotation sensor. (A)-(E) are explanatory drawings of the magnetic pole arrangement and detection signals of the rotation sensor. (A)-(E) are explanatory drawings of a magnetic pole arrangement and detection signal processing example of the same rotation sensor.
 この発明の第1の実施形態に係るタイヤ種類認識装置について図面を参照して説明する。図1に示すように、この自動車用タイヤの種類認識装置5は、種類認識の対象となるタイヤ1aを有する車輪1の回転速度を検出する回転センサ2であって、車輪用軸受もしくはドライブシャフト外輪等に設置された回転センサ2と、出力される回転信号を処理するための信号処理ユニット3とを有する。自動車用タイヤ種類認識装置5は、また、この信号処理ユニット3の出力を用いてタイヤ1aの種類を推定するタイヤ種類判断ユニット4を有する。 A tire type recognition device according to a first embodiment of the present invention will be described with reference to the drawings. As shown in FIG. 1, this type of automobile tire type recognition device 5 is a rotation sensor 2 for detecting the rotational speed of a wheel 1 having a tire 1a to be type-recognized, and is a wheel bearing or a drive shaft outer ring. And a signal processing unit 3 for processing the output rotation signal. The vehicle tire type recognition device 5 also includes a tire type determination unit 4 that estimates the type of the tire 1 a using the output of the signal processing unit 3.
 信号処理ユニット3は、回転センサ3が検出した回転信号から回転に同期した回転速度の変動を抽出し、この抽出した回転速度の変動から回転に同期した回転速度変動パターンを抽出する手段である。タイヤ1aの種類に応じて、タイヤの接地面のパターン形状が異なることにより、回転速度変動の発生状態が異なる。これをタイヤ種類判断ユニット4で検出しタイヤ1aの種類に関する情報を出力する。これら信号処理ユニット3とタイヤ種類判断ユニット4とで、種類判断装置本体15が構成される。種類判断装置本体15は、独立したECUとしても良く、また車両全体の制御を行うECUの一部として設けても良い。図11~図16に回転センサ付きの車輪用軸受を例示するが、これについては後に説明する。 The signal processing unit 3 is a means for extracting the fluctuation of the rotation speed synchronized with the rotation from the rotation signal detected by the rotation sensor 3 and extracting the rotation speed fluctuation pattern synchronized with the rotation from the extracted fluctuation of the rotation speed. Depending on the type of the tire 1a, the pattern of the ground contact surface of the tire is different, so that the state of occurrence of rotational speed variation is different. This is detected by the tire type determination unit 4 and information on the type of the tire 1a is output. The signal processing unit 3 and the tire type determination unit 4 constitute a type determination device main body 15. The type determination device main body 15 may be an independent ECU, or may be provided as a part of an ECU that controls the entire vehicle. FIG. 11 to FIG. 16 illustrate wheel bearings with rotation sensors, which will be described later.
 図2に信号処理ユニット3の概念構成を示す。信号処理ユニット3では、回転センサ2が検出した回転信号を用いて走行中の車輪1の回転速度を回転速度判別部5aで測定し、車輪1の回転に同期した回転速度の変動、つまり1回転毎の回転速度変動パターンを、回転変動パターン抽出部6で抽出する。
 ここで、回転センサ2に用いられる磁気エンコーダなどの検出ターゲットには、製造上のばらつきなどによるピッチ誤差が含まれている。そのため、初期状態の正常な状態の回転速度変動パターンを基準の速度パターンP0として、基準速度パターン記憶部7に記憶しておき、回転センサ2の回転信号に重畳する微小な誤差成分を、誤差補正部8で補正する構成としている。
FIG. 2 shows a conceptual configuration of the signal processing unit 3. In the signal processing unit 3, the rotational speed of the running wheel 1 is measured by the rotational speed discriminating unit 5a using the rotational signal detected by the rotational sensor 2, and the fluctuation of the rotational speed synchronized with the rotation of the wheel 1, that is, one revolution. The rotation fluctuation pattern for each rotation is extracted by the rotation fluctuation pattern extraction unit 6.
Here, a detection target such as a magnetic encoder used for the rotation sensor 2 includes a pitch error due to manufacturing variations. Therefore, the rotation speed fluctuation pattern in the normal state in the initial state is stored in the reference speed pattern storage unit 7 as the reference speed pattern P0, and a minute error component superimposed on the rotation signal of the rotation sensor 2 is corrected for error. The correction is performed by the unit 8.
 回転変動パターン抽出部6による信号処理においては、ノイズ成分やセンサ誤差成分を抑制するために、ローパスフィルタ(LPF)やハイパスフィルタ(HPF)(いずれも図示せず)によってフィルタ処理し、回転信号からタイヤ1aの形状やトレッドパターンに起因する成分を抽出する。また、路面の凹凸による影響を排除するために、ある程度の回転回数にわたる期間の回転信号を収集し、平均化処理または積算処理して、任意の回転速度変動パターンを抽出する。例えば、数回転にわたる車輪1の回転信号から回転同期成分を平均化して検出する。抽出処理に平均化処理または積算処理を適用することで、効果的に車輪1の回転に同期しないランダムな回転変動の影響が、効果的に排除される。 In the signal processing by the rotation variation pattern extraction unit 6, in order to suppress noise components and sensor error components, filter processing is performed by a low-pass filter (LPF) or a high-pass filter (HPF) (both not shown), Components derived from the shape and tread pattern of the tire 1a are extracted. In addition, in order to eliminate the influence of road surface unevenness, rotation signals for a period of a certain number of rotations are collected and averaged or integrated to extract an arbitrary rotation speed fluctuation pattern. For example, the rotation synchronization component is averaged and detected from the rotation signal of the wheel 1 over several rotations. By applying an averaging process or an integration process to the extraction process, the influence of random rotation fluctuations that are not effectively synchronized with the rotation of the wheel 1 is effectively eliminated.
 回転変動パターンの抽出につき説明する。
 回転速度変動の発生状況はタイヤ1aの状態に応じて変化するため、走行速度によって影響を受ける。すなわち、回転速度変動成分はタイヤ1aの伝達特性により周波数特性を示し、走行速度によってその位相や振幅が変化する。そのため、回転速度変動パターンを抽出する際には、回転速度が特定の範囲にある状態の信号を用いて処理するのが望ましく、信号処理ユニット3には回転速度判別部5aを設けることによって、回転速度の判別機能を備えておく。
The extraction of the rotation variation pattern will be described.
Since the occurrence state of the rotational speed changes depending on the state of the tire 1a, it is affected by the traveling speed. That is, the rotational speed fluctuation component exhibits frequency characteristics due to the transmission characteristics of the tire 1a, and its phase and amplitude vary depending on the traveling speed. Therefore, when extracting the rotational speed variation pattern, it is desirable to perform processing using a signal in a state where the rotational speed is in a specific range. The signal processing unit 3 is provided with a rotational speed discriminating unit 5a, so A speed discrimination function is provided.
 好ましくは、回転速度判別部5aによる回転速度判別処理では、回転速度変動パターンを、複数の回転速度領域(回転速度レベル)によって分類する。すなわち、それぞれの回転速度領域に対して回転速度変動パターンを抽出し、それぞれの領域でタイヤ1aの種類を判別し、その結果から総合判断するように構成する。複数の速度領域で回転速度変動パターンを検出することにより、一つに限定された回転速度領域のパターンだけを抽出して判別する場合と比較して、より多くの走行データに基づいて総合的な判断が可能になるため、タイヤ1aの種類を推定する精度が向上する。 Preferably, in the rotational speed discrimination process by the rotational speed discriminating unit 5a, the rotational speed fluctuation patterns are classified by a plurality of rotational speed regions (rotational speed levels). That is, a configuration is adopted in which a rotational speed variation pattern is extracted for each rotational speed region, the type of the tire 1a is determined in each region, and a comprehensive determination is made from the result. By detecting the rotational speed variation pattern in a plurality of speed regions, compared to the case of extracting and discriminating only the rotational speed region pattern limited to one, it is comprehensive based on more travel data Since determination becomes possible, the precision which estimates the kind of tire 1a improves.
 上記平均化処理の具体例を図5,図6(A),(B)と共に説明する。この例は、回転センサ2が、図17A,17Bに示すように、磁気エンコーダ2aと磁気センサ2bとで構成され、磁気エンコーダ2aが、被検出部であるN,Sの磁極2aaを交互に有するセンサである場合に適用される。磁気エンコーダ2aの代わりにパルサギヤ(図示せず)を用いた場合も、磁気エンコーダ2aの場合と同様に適用される。回転センサ2については、後に具体的に説明する。 A specific example of the averaging process will be described with reference to FIGS. 5 and 6A and 6B. In this example, as shown in FIGS. 17A and 17B, the rotation sensor 2 is composed of a magnetic encoder 2a and a magnetic sensor 2b, and the magnetic encoder 2a has N and S magnetic poles 2aa which are detected portions alternately. It is applied when it is a sensor. The same applies to the case of using a pulser gear (not shown) instead of the magnetic encoder 2a as in the case of the magnetic encoder 2a. The rotation sensor 2 will be specifically described later.
 図5に示すように、回転センサ2の出力を、タイヤ1回転を周期として、タイヤ複数回転分の、被検出部(磁極2aaまたは検出歯車の個々の歯)の通過速度または通過所要時間を回転変動パターン抽出部6の平均化部6aで平均して、タイヤ特性となる回転速度変動パターンを抽出部6bで得る。単純平均をとるだけでなく、過去の値よりも直前の値に重きを置いた加重平均をとれば、常に最新のタイヤの特性を得ることができ、タイヤ特性の経時変化に追従することができる。 As shown in FIG. 5, the output of the rotation sensor 2 is rotated by the rotation speed of the detected portion (the magnetic pole 2aa or the individual teeth of the detection gear) or the required time for the rotation of the tire for one rotation of the tire. An averaging unit 6a of the fluctuation pattern extraction unit 6 averages and a rotation speed fluctuation pattern that becomes tire characteristics is obtained by the extraction unit 6b. Not only taking a simple average but also taking a weighted average that puts more weight on the previous value than the past value, you can always get the latest tire characteristics and follow the tire characteristics over time .
 例えば、図6(A)に示すように、回転センサ2の出力が与えられた場合に、複数回転分の被検出部(磁極2aaまたは検出歯車の個々の歯)の通過速度または通過所要時間の値を平均すると、図6(B)に示すタイヤ特性である回転速度変動パターンが得られる。なお、図6(A),(B)において縦軸は個々の被検出部の通過速度または通過所要時間、横軸は時刻(個々の被検出部に対応)である。 For example, as shown in FIG. 6 (A), when the output of the rotation sensor 2 is given, the passing speed or the passing time of the detected portion (the individual teeth of the magnetic pole 2aa or the detection gear) for a plurality of rotations. When the values are averaged, the rotational speed fluctuation pattern which is the tire characteristic shown in FIG. 6B is obtained. In FIGS. 6A and 6B, the vertical axis represents the passing speed or the time required for passing through each detected part, and the horizontal axis represents the time (corresponding to each detected part).
 回転速度変動パターンからタイヤ種(タイヤの種類)を推定する方法を説明する。
 タイヤ1aの種類が変わると、タイヤ接地面のパターン形状が変化することにより、回転速度変動の発生状態が変化する。これをタイヤ種類判断ユニット4で検出し、タイヤ1aの種類に関する情報を出力する。
A method for estimating the tire type (tire type) from the rotational speed variation pattern will be described.
When the type of the tire 1a is changed, the pattern shape of the tire ground contact surface is changed, thereby changing the state of occurrence of the rotational speed fluctuation. This is detected by the tire type determination unit 4 and information relating to the type of the tire 1a is output.
 この場合に、タイヤ種類判断ユニット4は、回転センサ2に基準を設けて、走行中の速度パターンの回転位相を合わせることができるようにしておき、回転速度変動パターンの変化を直接検出しても良い。タイヤ種類判断ユニット4は、検出した回転速度変動パターンと基準パターンとなる回転速度変動パターンとを、回転位相を合わせた状態で両者の差分を取り、その差分と予め決めておいたしきい値と比較しても良いし、検出した速度変動パターンと基準の回転速度変動パターンとの変化量や相関をとって判断してもよい。 In this case, the tire type determination unit 4 sets a reference for the rotation sensor 2 so that the rotational phase of the traveling speed pattern can be matched, and can detect a change in the rotational speed fluctuation pattern directly. good. The tire type determination unit 4 takes the difference between the detected rotational speed fluctuation pattern and the rotational speed fluctuation pattern as the reference pattern in a state where the rotational phases are matched, and compares the difference with a predetermined threshold value. Alternatively, it may be determined by taking a change amount or correlation between the detected speed fluctuation pattern and the reference rotation speed fluctuation pattern.
 回転位相の判別を容易にするために、回転センサ2にZ相(零相)信号を備えたセンサを使用しても良いし、レゾルバやその他の絶対角センサを使用してもよい。 In order to facilitate the determination of the rotation phase, a sensor having a Z-phase (zero-phase) signal may be used for the rotation sensor 2, or a resolver or other absolute angle sensor may be used.
 図7に示すように、タイヤ種類判断ユニット4は、基準パターン記憶部13に、各種路面の状況に応じて複数のタイヤの基準パターンや自己相関、各パターンの特徴(ピークの数や位置、出力レベル)を記憶させておき、検出した回転速度変動パターンや自己相関が、どのデータと一致するかを比較してタイヤの種類を推定する。タイヤ種類判断ユニット4は、複数の条件について基準パターンを記憶した記憶手段からなる基準パターン記憶部13と、この基準パターン記憶部13のメモリ内容から相当するパターンを比較検索する処理ブロック4aとを含む。図7の例では、基準パターン記憶部13には乾燥(Dry)、凍結(Ice)、その他(Other)の3つの路面条件について、各種のタイヤ種類A,B,C,…毎の基準パターンが記憶されている。基準パターン記憶部13はデータベースである。 As shown in FIG. 7, the tire type determination unit 4 stores, in the reference pattern storage unit 13, a plurality of reference patterns and autocorrelations of tires according to various road surface conditions, and features of each pattern (number and position of peaks, output). Level) is stored, and the type of tire is estimated by comparing with which data the detected rotational speed fluctuation pattern and autocorrelation match. The tire type determination unit 4 includes a reference pattern storage unit 13 including a storage unit that stores reference patterns for a plurality of conditions, and a processing block 4a that compares and searches corresponding patterns from the memory contents of the reference pattern storage unit 13. . In the example of FIG. 7, the reference pattern storage unit 13 has reference patterns for various tire types A, B, C,... For three road surface conditions of dry (Dry), frozen (Ice), and others (Other). It is remembered. The reference pattern storage unit 13 is a database.
 なお、初期に登録した基準パターンとあまりにも異なる回転速度変動パターンが検出された場合には、タイヤ交換(ローテンションを含む)やパンクが考えられるため、タイヤ種類判断ユニット4には、警告を発する警告出力手段27を設けても良い。警告出力手段27は、タイヤ種類推定部11の一部の機能として設けても良い。さらに、タイヤ種類判断ユニット4は、4輪のタイヤ情報を比較して、どれか1つだけ異種のタイヤが検出された場合にも、前記警告出力手段27または別の警告出力手段(図示せず)が警告を発するようにしても良い。これらの警告出力手段27の出力は、後に図4と共に説明する車両の上位コンピュータ16に設けられたタイヤ種類認識結果利用手段17に伝えられ、タイヤ種類認識結果利用手段17によって、運転者が認識できる報知手段19に出力する。 If a rotational speed fluctuation pattern that is too different from the reference pattern registered in the initial stage is detected, tire replacement (including low tension) or puncture may be considered, so a warning is issued to the tire type determination unit 4. Warning output means 27 may be provided. The warning output means 27 may be provided as a partial function of the tire type estimation unit 11. Further, the tire type determination unit 4 compares the tire information of the four wheels, and when only one different type of tire is detected, the warning output means 27 or another warning output means (not shown). ) May issue a warning. The outputs of the warning output means 27 are transmitted to a tire type recognition result utilization means 17 provided in the host computer 16 of the vehicle, which will be described later with reference to FIG. 4, and the driver can recognize the tire type recognition result utilization means 17. It outputs to the notification means 19.
 走行中のタイヤの種類が既知の場合であって、基準パターン記憶部13に路面に応じた基準パターンが登録されていれば、この方法を用いて、どの路面の状態に近いかを推定することができる。 If the type of tire that is running is known and a reference pattern corresponding to the road surface is registered in the reference pattern storage unit 13, this method is used to estimate which road surface is close to. Can do.
 基準パターン記憶部13に記憶された基準パターンのデータと検出された回転速度変動パターンとが一致しなくなった場合には、タイヤ1aが交換されたか、何らかの異常が発生している可能性があり、それを出力することができる。なお、走行路面の状態は、上位の車両コンピュータ16(図4)から情報を受けて利用することもでき、その場合には、基準パターン記憶部13に記憶された基準パターンのうちの該当条件のパターンと比較処理することになる。 If the reference pattern data stored in the reference pattern storage unit 13 and the detected rotational speed variation pattern do not match, the tire 1a may have been replaced or some abnormality may have occurred, It can be output. In addition, the state of the traveling road surface can be used by receiving information from the host vehicle computer 16 (FIG. 4). In this case, the condition of the corresponding condition among the reference patterns stored in the reference pattern storage unit 13 is used. It will be compared with the pattern.
 タイヤ種をタイヤ種類判断ユニット4で推定する方法の具体例を説明する。
 図8に示すように、基準パターンの自己相関と検出した回転速度変動パターンの自己相関とを比較する。自己相関パターンにはタイヤ1aの特徴が表れており、回転速度変動パターンそのものよりもノイズが少ないため、タイヤ1aを識別するために比較するのに適している。
A specific example of a method for estimating the tire type by the tire type determination unit 4 will be described.
As shown in FIG. 8, the autocorrelation of the reference pattern is compared with the autocorrelation of the detected rotational speed fluctuation pattern. The autocorrelation pattern shows the characteristics of the tire 1a and has less noise than the rotational speed fluctuation pattern itself, and is therefore suitable for comparison to identify the tire 1a.
 一致度を評価するには、基準パターンの自己相関パターンと検出した回転信号から求めた自己相関パターンとを比較し、両者の差分あるいは相関値を算出する。差分の二乗和を求め、その値が予め決めておいたしきい値よりも小さい場合に一致していると判断してもよい。または、算出した相関値があらかじめ設定したしきい値を超えている場合に一致していると判断してもよい。
 あるいは、検出した回転速度変動パターンの自己相関と基準パターンの自己相関との内積を計算し、その値で判断してもよい。
In order to evaluate the degree of coincidence, the autocorrelation pattern of the reference pattern is compared with the autocorrelation pattern obtained from the detected rotation signal, and the difference or correlation value between the two is calculated. The sum of squares of the differences may be obtained, and it may be determined that the values match if the value is smaller than a predetermined threshold value. Alternatively, it may be determined that they match when the calculated correlation value exceeds a preset threshold value.
Alternatively, the inner product of the detected autocorrelation of the rotational speed fluctuation pattern and the autocorrelation of the reference pattern may be calculated and judged based on the value.
 前記基準パターンとして、初期(タイヤ交換直後のような摩耗や異常がほとんど生じていない時点)の回転速度変動パターンを記憶しておけば、回転センサ2の固有の誤差パターンやタイヤ1aのアンバランスなどの情報も含めた初期状態からの変化分を検出することができ、より検出感度を高めることができる。 If an initial rotational speed variation pattern (at the time when there is almost no wear or abnormality immediately after tire replacement) is stored as the reference pattern, an inherent error pattern of the rotation sensor 2, an unbalance of the tire 1a, etc. The amount of change from the initial state including this information can be detected, and the detection sensitivity can be further increased.
 タイヤ種類判断ユニット4は、基準パターンとのずれが大きいパターンが検出された場合に、すなわち回転速度変動パターンが、基準パターンに対して定められた変化の基準よりも大きく変化した場合には、タイヤ1aが交換されたと、警告情報を出力するとともに、基準パターン記憶部13を参照して候補となるタイヤ種を推定(識別)する。同時に、基準パターンとの位相違いについても調査し、位相をずらした基準パターンと検出パターンとが一致した場合には「タイヤを取り付け直したときに、位相が変わった」と判断する。位相ずれがホイールナット間隔であれば、取り付け角度違いと判断する。また、パンクの場合も、タイヤが適切ではないと判断する。 When the tire type determination unit 4 detects a pattern having a large deviation from the reference pattern, that is, when the rotational speed variation pattern changes more than the change reference set for the reference pattern, the tire type determination unit 4 When 1a is replaced, warning information is output, and candidate tire types are estimated (identified) with reference to the reference pattern storage unit 13. At the same time, the phase difference from the reference pattern is also investigated, and if the reference pattern shifted in phase matches the detection pattern, it is determined that “the phase has changed when the tire is remounted”. If the phase shift is the wheel nut interval, it is determined that the mounting angle is different. In the case of puncture, it is determined that the tire is not appropriate.
 ただし、基準パターンが変化したと判断した場合には、タイヤ種類判断ユニット4は、車両のインターフェイス(画面表示装置等)を通じて運転者に検出された情報を提示し、この提示した情報に対する運転者による所定の入力が得られたことにより、現在の状況が正常な状態であることが確認されたときには、初期パターンを更新して新しく登録するのが望ましい。運転者への問い合わせは、例えば「タイヤ交換をしましたか?」、あるいは「右前のタイヤにパンク等の異常はありませんか?」、といった画面への表示または音声による報知とし、運転手にタイヤ1aの状態確認を促す。 However, if it is determined that the reference pattern has changed, the tire type determination unit 4 presents the detected information to the driver through the vehicle interface (screen display device or the like), and the driver responds to the presented information. When it is confirmed that the current situation is normal because the predetermined input is obtained, it is desirable to update the initial pattern and newly register it. An inquiry to the driver is, for example, a display on the screen such as “Did you change the tire?” Or “Is there any abnormality such as puncture in the right front tire?” Prompt to check the status of
 上記の候補となるタイヤ種の決定、運転手への情報の提示によるタイヤ1aの状態確認の促し、および提示した情報に対する運転者による所定の入力により初期パターンを更新して新しく登録する処理を行う手段として、基準パターン再登録手段23をタイヤ種類判断ユニット4が有する。 Determination of the candidate tire type, prompting the driver to confirm the state of the tire 1a by presenting information to the driver, and updating and initial registration of the initial pattern by a predetermined input by the driver for the presented information are performed. As a means, the tire type determination unit 4 has a reference pattern re-registration means 23.
 検出対象である特定の変動を有する回転速度変動パターンを精度よく検出するために、車輪1に搭載される回転センサ2には十分な検出精度と、十分な空間分解能を備えたものとするのが望ましい。例えば、少なくとも0.5%の回転速度変動を検出できる精度を備え、1回転あたりのパルス数を40以上とする。より高い次数の回転変動成分を含む低速回転時に十分なデータを取得するためには、回転センサ2の分解能をさらに高いものにするのが望ましい。タイヤ1aのブロックサイズなどの構造を考慮すると、接地長20mm程度の分解能を確保できるように、回転センサ2の1回転あたりの出力パルス数を最低100以上にするのが望ましい。 In order to accurately detect a rotational speed fluctuation pattern having a specific fluctuation that is a detection target, the rotation sensor 2 mounted on the wheel 1 has sufficient detection accuracy and sufficient spatial resolution. desirable. For example, it has an accuracy capable of detecting at least 0.5% rotation speed variation, and the number of pulses per rotation is 40 or more. In order to acquire sufficient data at the time of low-speed rotation including a higher-order rotation fluctuation component, it is desirable to further increase the resolution of the rotation sensor 2. Considering the structure such as the block size of the tire 1a, it is desirable that the number of output pulses per rotation of the rotation sensor 2 be at least 100 or more so as to ensure a resolution with a contact length of about 20 mm.
 なお、回転センサ2の出力は必ずしもパルス出力である必要はなく、アナログ信号であってもよい。回転に伴って出力されるアナログ信号を分析すれば、信号に含まれている波形の歪みなどから回転速度の変動を抽出できるため、パルス出力の場合と同様の処理が可能である。特に、回転パルスの分解能(逓倍能力)が低い場合には、アナログ信号を積極的に利用することにより、高い分解能での信号処理を実行するのが望ましい。 Note that the output of the rotation sensor 2 is not necessarily a pulse output, and may be an analog signal. If an analog signal output with rotation is analyzed, fluctuations in the rotation speed can be extracted from the distortion of the waveform included in the signal, so that the same processing as in the case of pulse output is possible. In particular, when the resolution (multiplication capability) of the rotation pulse is low, it is desirable to execute signal processing with high resolution by actively using analog signals.
 複数のタイヤ1aの種類について試験したデータ例を説明する。
 タイヤ1aの種類を変えて一回転あたり960回の分解能で回転速度データを収集した。タイヤ1aの種類が異なると、タイヤの接地面の形状やゴムの柔軟性等の違いにより、タイヤの接地面に作用する力が変化するため回転速度変動パターンも変化する。図9(a)~(c)に、それぞれ、サマータイヤ、スタッドレスタイヤ、スポーツタイヤの回転速度変動パターンを示す。
 タイヤ1aの種類によって、回転速度変動パターンが変化していることが分かる。
The example of the data tested about the kind of several tire 1a is demonstrated.
Rotational speed data was collected at a resolution of 960 times per revolution by changing the type of tire 1a. If the type of the tire 1a is different, the force acting on the tire contact surface changes due to the difference in the shape of the tire contact surface, the flexibility of the rubber, etc., and the rotational speed variation pattern also changes. FIGS. 9A to 9C show the rotational speed fluctuation patterns of the summer tire, the studless tire, and the sports tire, respectively.
It can be seen that the rotational speed variation pattern changes depending on the type of the tire 1a.
 また、図10(a)~(c)に、それぞれ、サマータイヤ、スタッドレスタイヤ、スポーツタイヤの回転速度変動パターンの自己相関パターンを示す。各タイヤの特徴が自己相関パターンに現れている。同一種類のタイヤであれば、同様の自己相関パターンが得られるため、タイヤ種を推定することができる。 FIGS. 10A to 10C show autocorrelation patterns of rotational speed fluctuation patterns of summer tires, studless tires, and sports tires, respectively. The characteristics of each tire appear in the autocorrelation pattern. Since the same autocorrelation pattern is obtained for the same type of tire, the tire type can be estimated.
 推定したタイヤ1aの種類の情報を利用する方法を、図4共に説明する。
 同図のように、タイヤ種類判断ユニット4が推定したタイヤ1aの種類の情報に基づいて、運転者への報知または車両の制御状態の変更を行うタイヤ種類認識結果利用手段17を設ける。タイヤ種類認識結果利用手段17は、例えばタイヤ種類判断ユニット4に対して上位となる車両のコンピュータ16に設ける。タイヤ種類判断ユニット4は、具体的には、例えば次のいずれかの機能を持つものとされる。
A method of using the estimated type information of the tire 1a will be described with reference to FIG.
As shown in the figure, tire type recognition result utilization means 17 is provided for informing the driver or changing the control state of the vehicle based on the tire type information estimated by the tire type determination unit 4. The tire type recognition result utilization means 17 is provided in the computer 16 of the vehicle that is higher than the tire type determination unit 4, for example. Specifically, the tire type determination unit 4 has, for example, one of the following functions.
 検出されたタイヤの種類の情報は、信号処理ユニット3(図1)から車両の上位コンピュータ16(図4)に伝達され、タイヤ種類認識結果利用手段17は、タイヤの種類(サマー、スタッドレス、その他などの種類)に応じてランプなどを点灯させ、運転者に、装着しているタイヤの種類に関する情報を表示する。 Information on the detected tire type is transmitted from the signal processing unit 3 (FIG. 1) to the host computer 16 (FIG. 4) of the vehicle, and the tire type recognition result utilization means 17 determines the tire type (summer, studless, etc. Depending on the type, etc., a lamp or the like is turned on to display information on the type of tire that is mounted to the driver.
 また、推定されたタイヤ1aの種類のうち1つだけが異なる場合や、走行中の路面状態に対して適したタイヤを装着していない場合に、タイヤ種類認識結果利用手段17は、運転席の報知手段19による報知、例えば警告ランプなどの表示ランプ19aの点灯、または液晶表示装置等の画像表示装置19bによる注意表示等の表示を行い、運転者にタイヤ1aの確認や交換を促す。 Further, when only one of the estimated types of tires 1a is different, or when a tire suitable for the road surface condition during traveling is not worn, the tire type recognition result utilization means 17 Notification by the notification means 19, for example, lighting of a display lamp 19a such as a warning lamp or display of a caution display by an image display device 19b such as a liquid crystal display device is performed to prompt the driver to check or replace the tire 1a.
 これと同時に、タイヤ種類認識結果利用手段17により、車両の通信回線18を通じて情報が発信され、必要に応じて車両販売店やサービス店などの営業所20を通じた調整・点検の促進が行われる。 At the same time, the tire type recognition result utilization means 17 transmits information through the vehicle communication line 18, and if necessary, adjustment and inspection are promoted through the sales office 20 such as a vehicle dealer or a service store.
 また、検出されているタイヤ1aの種類に応じて、晴天時には警告は発しないが、降雪や雨天時の走行中には警告を発するようにするなど、危険が高いと判断される場合の注意を促すこともできる。例えば、タイヤ種類認識結果利用手段17は、タイヤ種類判断ユニット4が推定した、タイヤ1aの種類の情報と、天候情報入手手段25から得た走行時の天候に基づいて、定められた天候時に警告を発する。特に危険な状態と判断された場合には、走行速度を自動的に制限する機能を設けてもよい。天候情報入手手段25は、車両に搭載されたラジオ、テレビ、その他の天候情報通信手段から入力を得る手段、または天候を検出するセンサ(図示せず)である。 In addition, depending on the type of tire 1a being detected, a warning is not issued when the weather is fine, but a warning is issued during driving during snowfall or rain. It can also be urged. For example, the tire type recognition result utilization unit 17 warns at the time of a predetermined weather based on the information on the type of the tire 1 a estimated by the tire type determination unit 4 and the weather during traveling obtained from the weather information acquisition unit 25. To emit. If it is determined that the state is particularly dangerous, a function of automatically limiting the traveling speed may be provided. The weather information acquisition means 25 is a means for obtaining input from a radio, television, or other weather information communication means mounted on the vehicle, or a sensor (not shown) for detecting the weather.
 また、検出されたタイヤ1aの種類に応じて、車両の動作を制御する車両制御ECU22等の車両制御コンピュータに設けられた車両姿勢制御などの安全制御システム22aのパラメータを変更し、タイヤ1aの能力を考慮して安全制御システム22aを調整してもよい。 Further, the parameters of the safety control system 22a such as the vehicle attitude control provided in the vehicle control computer such as the vehicle control ECU 22 that controls the operation of the vehicle are changed according to the detected type of the tire 1a, and the capability of the tire 1a is changed. The safety control system 22a may be adjusted in consideration of the above.
 上記実施形態に係るタイヤ種別認識装置よる効果を纏め直して次に示す。
  ・タイヤ1aの種類の情報を、走行中に検出することができるため、特殊なセンサを設ける必要がない。そのため、大幅にコストアップすることなく、車両に実装することができる。
  ・装着しているタイヤ1aの種類を運転者が忘れて運転している場合でも、運転者にどのようなタイヤ1aを装着しているか情報を発信できるため、予防安全を実現できる。
  ・応急タイヤ装着時などでタイヤ1aの種類が適切でない状態で運転していることを運転者が忘れている場合や、路面状態に対して適したタイヤ1aが装着されていない場合であっても、検出信号によって車両が警告を発信できるため、速度を落とすなどの運転操作が可能になり、交通事故を防止することができる。
  ・タイヤ1aの種類を考慮した車両制御が可能になるため、走行条件に応じて適切な運転補助や安全制御を施し、交通事故を防止することができる。
  ・回転同期成分を積算もしくは平均化して抽出することにより、ごくわずかな変動を有する回転変動パターンを検出できるため、タイヤ1aの種類を精度よく検知して通知できる。
  ・さらに高分解能な回転センサ2と組み合わせることで、低速走行状態における回転変動成分を、高い分解能で検出できるため、タイヤ1aの種類の検出精度が高くなる。
The effects of the tire type recognition device according to the above embodiment are summarized below.
-Since the information on the type of the tire 1a can be detected during traveling, it is not necessary to provide a special sensor. Therefore, it can be mounted on a vehicle without significantly increasing the cost.
Even when the driver forgets the type of the tire 1a that is installed, information on what type of tire 1a is installed can be transmitted to the driver, so that preventive safety can be realized.
-Even when the driver forgets that the driver is forgetting that the type of the tire 1a is not appropriate, such as when an emergency tire is mounted, or when the tire 1a suitable for the road surface condition is not mounted. Since the vehicle can issue a warning by the detection signal, it is possible to perform a driving operation such as reducing the speed and to prevent a traffic accident.
-Since vehicle control in consideration of the type of tire 1a is possible, appropriate driving assistance and safety control can be performed according to driving conditions, and traffic accidents can be prevented.
-By integrating and averaging and extracting the rotation synchronization component, it is possible to detect a rotation fluctuation pattern having a very slight fluctuation, so that the type of the tire 1a can be accurately detected and notified.
-By combining with the rotation sensor 2 having a higher resolution, the rotational fluctuation component in the low-speed traveling state can be detected with a high resolution, so that the detection accuracy of the type of the tire 1a is increased.
 図17A,17Bは、回転センサ2の第1の例を示す。この回転センサ2は、ラジアルタイプの磁気式であり、ターゲットとなる環状の磁気エンコーダ2aと、この磁気エンコーダ2aの外周面に対面してこの磁気エンコーダ2aの磁気を検出する磁気センサ2bとを有する。磁気エンコーダ2aは、N,Sの磁極2aaを交互に有し、磁気センサ2bからは正弦波状の回転信号を出力する。この正弦波状の回転信号は信号処理手段2cで矩形に整形され、矩形波のパルス信号として出力される。信号処理手段2cは、逓倍回路2caを有していても良く、その場合、逓倍された高分解能の回転信号を出力する。 FIGS. 17A and 17B show a first example of the rotation sensor 2. The rotation sensor 2 is a radial type magnetic type, and includes an annular magnetic encoder 2a that is a target, and a magnetic sensor 2b that faces the outer peripheral surface of the magnetic encoder 2a and detects the magnetism of the magnetic encoder 2a. . The magnetic encoder 2a has N and S magnetic poles 2aa alternately, and outputs a sine wave rotation signal from the magnetic sensor 2b. This sinusoidal rotation signal is shaped into a rectangle by the signal processing means 2c and output as a rectangular wave pulse signal. The signal processing means 2c may have a multiplication circuit 2ca, and in that case, outputs a multiplied high-resolution rotation signal.
 磁気エンコーダ2aは、前記磁極2aaに軸方向に並んで、円周上の1か所にZ相(零相)検出用の磁極2abを有するものであっても良く、その場合、磁気センサ2bは、前記N,S交互の磁極2aaの検出用のセンサ部2baに加えて、Z相検出用の磁極2abを検出するセンサ部2bbが設けられる。このセンサ部2bbは、1回転で1回のZ相(零相)信号を出力する。 The magnetic encoder 2a may include a magnetic pole 2ab for detecting the Z phase (zero phase) in one place on the circumference, aligned in the axial direction with the magnetic pole 2aa. In this case, the magnetic sensor 2b In addition to the sensor unit 2ba for detecting the N and S alternating magnetic poles 2aa, a sensor unit 2bb for detecting the magnetic pole 2ab for detecting the Z phase is provided. This sensor unit 2bb outputs a Z-phase (zero-phase) signal once in one rotation.
 図18A,18Bは、回転センサ2の第2の例を示す。この回転センサ2は、アキシアルタイプの磁気式であり、環状の磁気エンコーダ2aと磁気センサ2bとがアキシアル方向に対面する。磁気エンコーダ2aは、断面L字状のセンサ取付リング2dのフランジ部に取付けられている。その他の構成は、図17A,17Bに示したラジアルタイプの回転センサ2と同様である。なお、図18A,18Bの例では図示を省略したが、このラジアルタイプの回転センサ2においても、前記と同様に零相用の磁極およびセンサ部、並びに逓倍回路を設けても良い。 18A and 18B show a second example of the rotation sensor 2. The rotation sensor 2 is an axial magnetic type, and an annular magnetic encoder 2a and a magnetic sensor 2b face each other in the axial direction. The magnetic encoder 2a is attached to a flange portion of a sensor attachment ring 2d having an L-shaped cross section. Other configurations are the same as those of the radial type rotation sensor 2 shown in FIGS. 17A and 17B. Although not shown in the examples of FIGS. 18A and 18B, the radial type rotation sensor 2 may also be provided with a zero-phase magnetic pole and a sensor unit, and a multiplier circuit as described above.
 なお、図17A,17Bおよび図18A,18Bは、いずれも磁気エンコーダ2aを有する回転センサ2を示したが、回転センサ2は、ターゲットがギヤ型の磁性体からなるパルサリング(図示せず)、いわゆる検出歯車であっても良い。その場合、磁気センサはパルサリングの歯部を検出して回転信号を出力する。
 これら磁気エンコーダ2aやギヤ型のパルサリングを用いた磁気式の回転センサ2によると、温度変化や汚れなどの劣悪な環境に強い。磁気式の場合、光学式に比べて磁極を細かく設けることが困難であるが、逓倍回路2caを有すると、回転速度変動パターンを検出するために必要な分解能の回転信号が得られる。
17A and 17B and FIGS. 18A and 18B all show the rotation sensor 2 having the magnetic encoder 2a. The rotation sensor 2 is a so-called pulsar ring (not shown) whose target is made of a gear-type magnetic material. It may be a detection gear. In that case, the magnetic sensor detects the teeth of the pulsar ring and outputs a rotation signal.
The magnetic rotation sensor 2 using the magnetic encoder 2a and the gear-type pulsar ring is resistant to inferior environments such as temperature changes and dirt. In the case of the magnetic type, it is difficult to provide the magnetic poles more finely than in the optical type. However, if the multiplication circuit 2ca is provided, a rotation signal having a resolution necessary for detecting the rotation speed fluctuation pattern can be obtained.
 図19は、前記逓倍回路2caの一例を示す。なお、この逓倍回路2caは、磁気センサ2bとして、図20に示すように、磁気エンコーダ2baの1磁極対のピッチλを1周期とするとき、90度位相差(λ/4)となるように磁極の並び方向に離して配置したホール素子などの2つの磁気センサ素子2baa,2babを用い、これら2つの磁気センサ素子2baa,2babにより得られる2相の信号(sinφ,cosφ) から磁極内位相 (φ=tan-1(sinφ/cos φ))を逓倍して算出するものとしている。 FIG. 19 shows an example of the multiplier circuit 2ca. As shown in FIG. 20, the multiplication circuit 2ca has a phase difference of 90 degrees (λ / 4) when the pitch λ of one magnetic pole pair of the magnetic encoder 2ba is one cycle, as shown in FIG. Using two magnetic sensor elements 2baa and 2bab such as Hall elements arranged apart from each other in the arrangement direction of the magnetic poles, a phase in the magnetic pole ( The calculation is made by multiplying φ = tan-1 (sinφ / cos φ)).
 この逓倍回路2ca、図19に示すように、信号発生手段41、扇形検出手段42、マルチプレクサ手段43、および微細内挿手段44を備える。 As shown in FIG. 19, this multiplication circuit 2ca includes a signal generating means 41, a fan-shaped detecting means 42, a multiplexer means 43, and a fine interpolation means 44.
 信号発生手段41は、前記磁気センサ2bの磁気センサ素子2baa,2babの各の出力である2相の信号sinφ,cosφから、同一の振幅A0と同一の平均値C0とを有し、mをn以下の正の整数、iを1~2m-1 の正の整数として、相次いで互いに2π/2m-1 ずつ位相がずれた、2m-1 個の信号si を生成する手段である。 The signal generating means 41 has the same amplitude A0 and the same average value C0 from the two-phase signals sinφ and cosφ which are the outputs of the magnetic sensor elements 2baa and 2bab of the magnetic sensor 2b, and m is n The following positive integer, i is a means for generating 2 m-1 signals si having phases shifted by 2π / 2 m-1 from each other, where i is a positive integer of 1 to 2 m-1 .
 扇形検出手段42は、2m 個の等しい扇形Pi を定義するようにコード化された、m個のディジタル信号bn-m+1 ,bn-m+2 ,……,bn-1 ,bn を発生する、2m-1 個の信号si によって区切られた2m 個の扇形Pi を検出する手段である。 The sector detection means 42 generates m digital signals bn-m + 1, bn-m + 2, ..., bn-1, bnb encoded to define 2m equal sector Pi 等 し い. This is means for detecting 2m sector Pi delimited by 2m-1 signals si.
 マルチプレクサ手段43は、上記扇形検出手段42から発生するm個の上記ディジタル信号bn-m+1 ,bn-m+2 ,……,bn-1 ,bn によって制御され、上記信号発生手段41から生成される2m-1 個の上記信号si を処理して、振幅が一連の2m-1 個の上記信号si の上記平均値C0 と第1のしきい値L1 との間にある部分によって構成される一方の信号Aと、振幅が一連の2m-1 個の上記信号si の上記第1のしきい値L1 とこのしきい値よりも高い第2のしきい値L2 との間にある部分によって構成される他方の信号Bとを生成するアナログの手段である。 The multiplexer means 43 is controlled by the m digital signals bn-m + 1, bn-m + 2,..., Bn-1, bn generated from the sector detecting means 42, and is generated from the signal generating means 41. 2m-1 of the above-mentioned signals si are processed, and the amplitude is constituted by a portion of the series of 2m-1 of the signals si between the average value C0 and the first threshold value L1. By a portion of one signal A between the first threshold L1 of the series of 2 m-1 signals si and the second threshold L2 higher than this threshold. This is an analog means for generating the other signal B to be constructed.
 微細内挿手段44は、所望の分解能を得るために、角度2π/2m の2m 個の上記扇形Pi の各々を角度2π/2n の2n-m 個の同じサブ扇形に細分するようにコード化された、(n-m)個のディジタル信号b1 ,b2 ,……,bn-m-1 ,bn-m (ここではb1 ,b2 ,……,b8 ,b9 )回転パルスに逓倍される。 The fine interpolation means 44 is coded to subdivide each of the 2 m sectors Pi at an angle 2π / 2 m into 2 nm identical subsectors at an angle 2π / 2n to obtain the desired resolution. The (n−m) digital signals b1, b2,..., Bn-m−1, bn-m (here b1, b2,..., B8, b9) are multiplied by rotation pulses.
 図21、図22(A)~(E)および図23(A)~(E)は、回転センサ2を絶対角検出型とした一例を示す。この例では、磁気エンコーダ2aに2列の磁極列2aA,2aBを設け、片方の磁極列2aAの磁極対数をP、もう片方の磁極列2aBの磁極対数をP+nとしている。そのため、両磁極列2aA,2aBの間で、1回転あたり磁極対にしてn個分の位相差があり、これら磁気磁極列2aA,2aBに対応する磁気センサ2ba,2bbの検出信号の位相は、360/n度回転するごとに一致する。 FIG. 21, FIG. 22 (A) to (E) and FIG. 23 (A) to (E) show an example in which the rotation sensor 2 is an absolute angle detection type. In this example, the magnetic encoder 2a is provided with two magnetic pole rows 2aA and 2aB, the number of magnetic pole pairs of one magnetic pole row 2aA is P, and the number of magnetic pole pairs of the other magnetic pole row 2aB is P + n. Therefore, there is a phase difference of n magnetic pole pairs per rotation between the magnetic pole arrays 2aA and 2aB, and the phases of the detection signals of the magnetic sensors 2ba and 2bb corresponding to these magnetic magnetic pole arrays 2aA and 2aB are It coincides with every 360 / n degrees of rotation.
 信号処理手段2cを構成する位相差検出手段2cbは、磁気センサ2ba,2bbの検出信号により、図22(E)に示したような位相差信号を出力する。その次段に設けられた角度算出手段2ccは、位相差検出手段2cbで求められた位相差を補正した後に、予め設定された計算パラメータにしたがって絶対角度へ換算する処理を行う。 The phase difference detection means 2cb constituting the signal processing means 2c outputs a phase difference signal as shown in FIG. 22 (E) based on the detection signals of the magnetic sensors 2ba and 2bb. The angle calculation means 2cc provided in the subsequent stage corrects the phase difference obtained by the phase difference detection means 2cb and then performs a process of converting into an absolute angle according to a preset calculation parameter.
 図22(A),(B)には両磁極列2aA,2aBの磁極のパターン例を示す。図22(C),(D)にはこれら磁極列2aA,2aBに対応する磁気センサ2ba,2bbの検出信号の波形を示す。図示の例では、磁極列2aAの3磁極対に対して、磁極列2aBの2磁極対が対応しており、この区間内での絶対位置を検出することができる。図23(E)は、図22(C),(D)の検出信号に基づき、図21の位相差検出手段2cbにより求められる位相差の出力信号の波形図を示す。 22A and 22B show examples of magnetic pole patterns of both magnetic pole arrays 2aA and 2aB. FIGS. 22C and 22D show waveforms of detection signals of the magnetic sensors 2ba and 2bb corresponding to the magnetic pole arrays 2aA and 2aB. In the illustrated example, two magnetic pole pairs of the magnetic pole array 2aB correspond to three magnetic pole pairs of the magnetic pole array 2aA, and the absolute position within this section can be detected. FIG. 23E shows a waveform diagram of a phase difference output signal obtained by the phase difference detecting means 2cb of FIG. 21 based on the detection signals of FIGS. 22C and 22D.
 位相差検出手段2cbの検出した位相差信号(図22(E),図23(E))は、互いの磁極列2aA,2aBの磁気干渉やノイズの影響を受けているため、実際には歪みを持った波形となる。そこで角度算出手段2ccでは、角度補正手段2ccaで補正し、検出精度の高い絶対角度を算出する。 Since the phase difference signals detected by the phase difference detecting means 2cb (FIGS. 22E and 23E) are affected by the magnetic interference and noise of the magnetic pole arrays 2aA and 2aB, they are actually distorted. A waveform with Therefore, the angle calculation means 2cc corrects the angle correction means 2cca to calculate an absolute angle with high detection accuracy.
 図11~図16は、前記回転センサ2が設けられる車輪用軸受の各例を示す。図11,図12に示す車輪用軸受30は、第3世代型の内輪回転タイプで、かつ駆動輪支持用であり、複列の中央に回転センサ2を設けた例を示す。この車輪用軸受30は、内周に複列の転走面33を形成した外方部材31と、これら各転走面33に対向する転走面34を形成した内方部材32と、これら外方部材31および内方部材32の転走面33,34間に介在した複列の転動体35とを備え、車体に対して車輪を回転自在に支持する。この車輪用軸受30は、複列外向きアンギュラ玉軸受型とされていて、転動体35はボールからなり、各列毎に保持器36で保持されている。内方部材32は、ハブ輪32aと、このハブ輪32aのインボード側端の外周に嵌合した内輪32bとでなり、各輪32a、32bの外周に前記転走面34が設けられている。外方部材31と内方部材32の間の軸受空間の両端は、シール37,38によりそれぞれ密封されている。 11 to 16 show examples of wheel bearings provided with the rotation sensor 2. The wheel bearing 30 shown in FIGS. 11 and 12 is a third generation type inner ring rotation type and is for driving wheel support, and shows an example in which the rotation sensor 2 is provided in the center of the double row. The wheel bearing 30 includes an outer member 31 having a double row rolling surface 33 formed on the inner periphery, an inner member 32 having a rolling surface 34 opposed to each of the rolling surfaces 33, and these outer members. The rolling member 35 of the double row interposed between the rolling surfaces 33 and 34 of the direction member 31 and the inward member 32 is provided, and a wheel is rotatably supported with respect to a vehicle body. The wheel bearing 30 is a double-row outward angular ball bearing type, and the rolling elements 35 are formed of balls and are held by a cage 36 for each row. The inner member 32 includes a hub wheel 32a and an inner ring 32b fitted to the outer periphery of the inboard side end of the hub wheel 32a. The rolling surface 34 is provided on the outer periphery of each wheel 32a, 32b. . Both ends of the bearing space between the outer member 31 and the inner member 32 are sealed by seals 37 and 38, respectively.
 この車輪用軸受30において、内方部材32の両転走面34,34間の外周に、回転センサ2のエンコーダ2aが設けられ、このエンコーダ2aに対面する磁気センサ2bが、外方部材31に設けられた半径方向のセンサ取付孔40内に設置されている。回転センサ2は、例えば図18と共に前述したラジアルタイプのものである。 In the wheel bearing 30, the encoder 2 a of the rotation sensor 2 is provided on the outer periphery between the rolling surfaces 34 of the inner member 32, and the magnetic sensor 2 b facing the encoder 2 a is provided on the outer member 31. It is installed in the provided sensor mounting hole 40 in the radial direction. The rotation sensor 2 is, for example, the radial type described above with reference to FIG.
 図13,図14に示す車輪用軸受30は、第3世代型の内輪回転タイプで、かつ駆動輪支持用であり、インボード側端に回転センサ2を設けた例を示す。この例では、回転センサ2には、図18A,18Bと共に前述したアキシアルタイプのものが用いられている。具体的にはインボード側端のシール38における、内方部材32の外周面に圧入固定されるスリンガが、図18A,18Bの例のセンサ支持リング2dを兼ねている。磁気センサ2bは、リング状の金属ケース39内に樹脂モールドされ、金属ケース39を介して外方部材31に固定される。その他の構成は、図11,図12に示した例と同様である。 The wheel bearing 30 shown in FIG. 13 and FIG. 14 is a third generation type inner ring rotation type and is for driving wheel support, and shows an example in which the rotation sensor 2 is provided at the inboard side end. In this example, the rotation sensor 2 is of the axial type described above with reference to FIGS. 18A and 18B. Specifically, the slinger that is press-fitted and fixed to the outer peripheral surface of the inner member 32 in the seal 38 at the inboard side end also serves as the sensor support ring 2d in the example of FIGS. 18A and 18B. The magnetic sensor 2 b is resin-molded in a ring-shaped metal case 39 and fixed to the outer member 31 via the metal case 39. Other configurations are the same as those of the example shown in FIGS.
 図15,図16に示す車輪用軸受30は、第3世代型の内輪回転タイプで、かつ従動輪支持用であり、インボード側端に回転センサ2を設けた例を示す。この例では、外方部材31のインボード側端部の端面開口がカバー29で覆われており、このカバー29に回転センサ2の磁気センサ2bが取付けられている。その他の構成および作用効果は図11,図12に示した例と同様である。 15 and 16 show an example in which the wheel bearing 30 is a third generation inner ring rotating type and is for supporting a driven wheel, and the rotation sensor 2 is provided at the inboard side end. In this example, the end face opening at the inboard side end portion of the outer member 31 is covered with a cover 29, and the magnetic sensor 2 b of the rotation sensor 2 is attached to the cover 29. Other configurations and operational effects are the same as those of the example shown in FIGS.
 なお、この自動車用タイヤの種類認識装置は、乗用車やタクシーなど小型の自動車から、トラックやトレーラー、バスなどの大型自動車まで幅広く適用できる。最も好ましい形態は、トラックやトレーラー、バスなどの大型自動車への適用である。これらの自動車では、乗客や貨物を安全に効率よく運搬することが要求されるため、常に車両を正常な状態に保つことが重要になる。日常の運行前点検に加えて、走行中にもタイヤの種類の情報を検出することにより、点検ミスや止むを得ない事情で、路面状態に対して適したタイヤ1aが装着されていない場合などであっても、運転者がその事実を認識し、運行に影響が出る前に、タイヤの種類に応じた運転操作するなどの処置が取れ、安全で効率よく運搬することができる。 It should be noted that this automobile tire type recognition device can be applied widely from small cars such as passenger cars and taxis to large cars such as trucks, trailers and buses. The most preferable form is application to large vehicles such as trucks, trailers and buses. These automobiles require passengers and cargo to be transported safely and efficiently, so it is important to always keep the vehicle in a normal state. In addition to daily pre-service inspections, tire type information is detected during traveling, so that inspection errors and unavoidable circumstances prevent tires 1a suitable for road conditions from being worn. Even so, the driver can recognize the fact and take measures such as driving the vehicle according to the type of tire before the operation is affected, and the vehicle can be transported safely and efficiently.
1…車輪
1a…タイヤ
2…回転センサ
3…信号処理ユニット
4…タイヤ種類判断ユニット
DESCRIPTION OF SYMBOLS 1 ... Wheel 1a ... Tire 2 ... Rotation sensor 3 ... Signal processing unit 4 ... Tire type judgment unit

Claims (14)

  1.  自動車用タイヤの種類を認識する装置であって、
     前記自動車の速度を測定するように、車輪の回転信号を検出する回転センサと、
     この回転センサによって検出された回転信号から回転に同期した回転速度の変動を抽出し、この抽出した回転速度の変動から、回転に同期した回転速度の変動を含む回転速度変動パターンを取得する信号処理ユニットと、
     複数のタイヤの種類それぞれに対して、回転速度変動パターンのパターンデータ、または、タイヤの種類に関連した特徴パラメータが登録されている基準パターン記憶部と、
     前記取得した回転速度変動パターンを、前記基準パターン記憶部に登録されたパターンデータと比較するか、または、前記取得した回転速度変動パターンから得られる特徴パラメータを、前記基準パターン記憶部に登録された特徴パラメータと比較して、タイヤの種類を推定するタイヤ種類判断ユニットと
    を備えたタイヤの種類認識装置。
    A device for recognizing the type of automobile tire,
    A rotation sensor for detecting a rotation signal of a wheel so as to measure the speed of the automobile;
    Signal processing for extracting a rotational speed fluctuation synchronized with the rotation from the rotational signal detected by the rotational sensor, and obtaining a rotational speed fluctuation pattern including the rotational speed fluctuation synchronized with the rotation from the extracted rotational speed fluctuation Unit,
    For each of a plurality of tire types, pattern data of a rotational speed variation pattern, or a reference pattern storage unit in which characteristic parameters related to the tire type are registered,
    The acquired rotational speed variation pattern is compared with the pattern data registered in the reference pattern storage unit, or the characteristic parameter obtained from the acquired rotational speed variation pattern is registered in the reference pattern storage unit. A tire type recognition device including a tire type determination unit that estimates a tire type in comparison with a characteristic parameter.
  2.  請求項1に記載の自動車用タイヤの種類認識装置において、さらに、前記基準パターン記憶部に、初期状態または正常時の回転速度変動パターンまたはこの回転速度パターンから得られる特徴パラメータを、基準パターンとして記憶しておき、走行中に前記信号処理ユニットで取得された回転速度変動パターンが、前記基準パターンから、定められた変化の基準よりも大きく変化した場合に、パンクおよびタイヤ交換後であることを含む所定の可能性について運転手に問い合わせ情報を出力し、この問い合わせ情報に対する運転手の許可情報の入力を得た場合に、最後に取得された回転速度変動パターンを、前記基準パターンとして前記基準パターン記憶部に再登録する基準パターン再登録手段を備えた自動車用タイヤの種類認識装置。 2. The automobile tire type recognition device according to claim 1, further comprising storing, as a reference pattern, an initial state or a normal rotation speed fluctuation pattern or a characteristic parameter obtained from the rotation speed pattern in the reference pattern storage unit. In addition, when the rotational speed fluctuation pattern acquired by the signal processing unit during traveling changes more greatly than a predetermined change reference from the reference pattern, this includes after puncture and tire replacement. When the inquiry information is output to the driver about the predetermined possibility and the driver permission information is input for the inquiry information, the rotation speed variation pattern acquired last is stored as the reference pattern as the reference pattern storage. An automobile tire type recognition device provided with a reference pattern re-registration means for re-registering with a section.
  3.  請求項1または請求項2に記載の自動車用タイヤの種類認識装置において、前記信号処理ユニットは、前記回転に同期した回転速度変動パターンを、前記回転センサの複数回転にわたる回転信号に、回転に同期させた平均化処理または積算処理を施して、取得する自動車用タイヤの種類認識装置。 3. The automobile tire type recognition device according to claim 1, wherein the signal processing unit synchronizes the rotation speed fluctuation pattern synchronized with the rotation with a rotation signal over a plurality of rotations of the rotation sensor. A type recognition device for an automobile tire that is obtained by performing the averaging process or the integration process.
  4.  請求項1ないし請求項3のいずれか1項に記載の自動車用タイヤの種類認識装置において、前記信号処理ユニットは、前記回転に同期した回転速度の変動の抽出の処理を、一つ以上の設定された走行速度範囲から選択された走行速度範囲で実施する自動車用タイヤの種類認識装置。 4. The automobile tire type recognition device according to claim 1, wherein the signal processing unit is configured to perform one or more setting processes for extracting fluctuations in rotational speed synchronized with the rotation. 5. An automobile tire type recognition device that is implemented in a travel speed range selected from the travel speed range.
  5.  請求項4に記載の自動車用タイヤの種類認識装置において、前記信号処理ユニットは、前記抽出の処理を複数の走行速度範囲についてそれぞれ行い、前記タイヤ種類判断ユニットは、前記信号処理ユニットが前記抽出の処理を行うそれぞれの速度範囲のデータについて、それぞれタイヤの種類の推定処理を行い、これら複数の推定処理の結果からタイヤの種類を総合判断する自動車用タイヤの種類認識装置。 5. The vehicle tire type recognition apparatus according to claim 4, wherein the signal processing unit performs the extraction process for each of a plurality of travel speed ranges, and the tire type determination unit includes the signal processing unit that performs the extraction. An automobile tire type recognition device that performs estimation processing of a tire type for each speed range data to be processed, and comprehensively determines the tire type from the results of the plurality of estimation processes.
  6.  請求項1ないし請求項5のいずれか1項に記載の自動車用タイヤの種類認識装置において、前記タイヤ種類判断ユニットは、前記信号処理ユニットで取得された回転速度変動パターンの自己相関と、前記基準パターン記憶部記憶された、基準となる回転変動パターンの自己相関との変化量からタイヤの種類を判別する自動車用タイヤの種類認識装置。 6. The vehicle tire type recognition device according to claim 1, wherein the tire type determination unit includes an autocorrelation of a rotational speed variation pattern acquired by the signal processing unit and the reference. A tire type recognition device for a vehicle that discriminates the type of a tire from the amount of change with the autocorrelation of a reference rotation variation pattern stored in a pattern storage unit.
  7.  請求項1ないし請求項6のいずれか1項に記載の自動車用タイヤの種類認識装置において、前記回転センサは、零相を備えた回転センサまたは絶対角検出機能を備えた回転センサで構成し、前記信号処理ユニットは、取得した速度変動パターンの位相を合わせた状態で、前記回転速度変動パターンと前記基準パターンとの差分を求め、この差分の大きさいに基づいてタイヤ種類を推定する自動車用タイヤの種類認識装置。 7. The automobile tire type recognition device according to claim 1, wherein the rotation sensor is constituted by a rotation sensor having a zero phase or a rotation sensor having an absolute angle detection function, The signal processing unit obtains a difference between the rotational speed fluctuation pattern and the reference pattern in a state where the phases of the acquired speed fluctuation patterns are matched, and estimates a tire type based on the magnitude of the difference. Type recognition device.
  8.  請求項1ないし請求項6のいずれか1項に記載の自動車用タイヤの種類認識装置において、前記回転センサは、磁気センサとこの磁気センサで検出される被検出極を有する磁気エンコーダまたはパルサギヤとで構成され、回転による磁気強度の変動をアナログ信号で出力する構成とした自動車用タイヤの種類認識装置。 7. The automobile tire type recognition device according to claim 1, wherein the rotation sensor includes a magnetic sensor and a magnetic encoder or a pulser gear having a detected pole detected by the magnetic sensor. An automotive tire type recognition device configured to output a variation in magnetic strength due to rotation as an analog signal.
  9.  請求項1ないし請求項6のいずれか1項に記載の自動車用タイヤの種類認識装置において、前記回転センサは、磁気センサとこの磁気センサで検出される被検出極を有する磁気エンコーダまたはパルサギヤと、前記磁気センサの検出信号を逓倍する回転パルスを出力する逓倍回路を備える自動車用タイヤの種類認識装置。 7. The automobile tire type recognition device according to claim 1, wherein the rotation sensor includes a magnetic sensor and a magnetic encoder or pulser gear having a detected pole detected by the magnetic sensor, An automobile tire type recognition device comprising a multiplication circuit for outputting a rotation pulse for multiplying a detection signal of the magnetic sensor.
  10.  請求項1ないし請求項9のいずれか1項に記載の自動車用タイヤの種類認識装置において、前記タイヤ種類判断ユニットが推定したタイヤの種類の情報に基づいて、運転者への報知または車両の制御状態の変更を行うタイヤ種類認識結果利用手段を備えた自動車用タイヤの種類認識装置。 The vehicle tire type recognition device according to any one of claims 1 to 9, wherein, based on the tire type information estimated by the tire type determination unit, notification to a driver or control of the vehicle. An automobile tire type recognition device comprising tire type recognition result utilization means for changing a state.
  11.  請求項10に記載の自動車用タイヤの種類認識装置において、前記タイヤ種類認識結果利用手段は、前記タイヤ種類判断ユニットが推定したタイヤの種類の情報に基づいて、運転席に設けられた報知手段に報知させる自動車用タイヤの種類認識装置。 11. The vehicle tire type recognition device according to claim 10, wherein the tire type recognition result utilization means is a notification means provided in a driver's seat based on tire type information estimated by the tire type determination unit. A device for recognizing the type of an automobile tire to be notified.
  12.  請求項10に記載の自動車用タイヤの種類認識装置において、前記タイヤ種類認識結果利用手段は、前記タイヤ種類判断ユニットが推定したタイヤの種類の情報に基づいて、車両制御コンピュータの制御パラメータを変更し、タイヤの種類に応じて定められた安全制御を行わせる自動車用タイヤの種類認識装置。 11. The vehicle tire type recognition apparatus according to claim 10, wherein the tire type recognition result utilization unit changes a control parameter of a vehicle control computer based on tire type information estimated by the tire type determination unit. An automobile tire type recognition device for performing safety control determined according to the type of tire.
  13.  請求項10に記載の自動車用タイヤの種類認識装置において、前記タイヤ種類認識結果利用手段は、前記タイヤ種類判断ユニットが推定したタイヤの種類の情報と、天候情報入手手段から得た走行時の天候に基づいて、定められた天候時に警告を発する自動車用タイヤの種類認識装置。 11. The vehicle tire type recognition device according to claim 10, wherein the tire type recognition result utilization means includes information on a tire type estimated by the tire type determination unit and weather during driving obtained from a weather information acquisition means. Based on the above, a tire tire type recognition device that issues a warning at a predetermined weather.
  14.  請求項10に記載の自動車用タイヤの種類認識装置において、前記タイヤ種類認識結果利用手段は、前記タイヤ種類判断ユニットが推定したタイヤの種類の情報に基づいて、車両に搭載されたコンピュータが通信回線を通じてタイヤの種類の情報を、車両の点検またはタイヤの交換が可能な定められた営業所の端末に発信する機能を有する自動車用タイヤの種類認識装置。 11. The tire type recognition device for an automobile according to claim 10, wherein the tire type recognition result utilization unit is configured such that a computer mounted on the vehicle is a communication line based on tire type information estimated by the tire type determination unit. A tire tire type recognition device having a function of transmitting tire type information to a terminal of a predetermined sales office where vehicle inspection or tire replacement is possible.
PCT/JP2014/080203 2013-11-21 2014-11-14 Type recognition device for automobile tires WO2015076199A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013241127A JP6425882B2 (en) 2013-11-21 2013-11-21 Automotive tire type recognition device
JP2013-241127 2013-11-21

Publications (1)

Publication Number Publication Date
WO2015076199A1 true WO2015076199A1 (en) 2015-05-28

Family

ID=53179464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080203 WO2015076199A1 (en) 2013-11-21 2014-11-14 Type recognition device for automobile tires

Country Status (2)

Country Link
JP (1) JP6425882B2 (en)
WO (1) WO2015076199A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220080788A1 (en) * 2019-05-29 2022-03-17 Huf Baolong Electronics Bretten Gmbh Tire pressure monitoring unit and method for managing tire data in a tire pressure monitoring unit
US11987079B2 (en) 2019-08-29 2024-05-21 Pacific Industrial Co., Ltd. Transmitter, receiver, and transmission-reception system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7391742B2 (en) * 2020-03-24 2023-12-05 大阪瓦斯株式会社 Abnormality analyzer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06278419A (en) * 1993-03-24 1994-10-04 Nippondenso Co Ltd Car body speed estimating device and tire condition detecting device using estimated car speed
JPH11235907A (en) * 1997-12-15 1999-08-31 Denso Corp Tire air pressure estimating device
JP2000255230A (en) * 1999-02-26 2000-09-19 Continental Ag Method and device for detecting emergency traveling state of pneumatic tire
JP2005170065A (en) * 2003-12-05 2005-06-30 Hitachi Ltd A wireless tag having a vehicle information memory area, a device for reading and writing to a wireless tag having a vehicle information memory area, a method for reading and writing to a wireless tag having a vehicle information memory area, and a read / write to a wireless tag having a vehicle information memory area Vehicle with device
JP2005186702A (en) * 2003-12-24 2005-07-14 Bridgestone Corp Tire and method and device for estimating wear of the same
JP2006131137A (en) * 2004-11-08 2006-05-25 Denso Corp Signal processing device for vehicle
WO2010147004A1 (en) * 2009-06-15 2010-12-23 Ntn株式会社 System for monitoring tire air pressure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4292955B2 (en) * 2003-11-12 2009-07-08 日本精工株式会社 Stability control device
US6993449B2 (en) * 2004-01-31 2006-01-31 Continental Teves, Inc. Tire pressure loss detection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06278419A (en) * 1993-03-24 1994-10-04 Nippondenso Co Ltd Car body speed estimating device and tire condition detecting device using estimated car speed
JPH11235907A (en) * 1997-12-15 1999-08-31 Denso Corp Tire air pressure estimating device
JP2000255230A (en) * 1999-02-26 2000-09-19 Continental Ag Method and device for detecting emergency traveling state of pneumatic tire
JP2005170065A (en) * 2003-12-05 2005-06-30 Hitachi Ltd A wireless tag having a vehicle information memory area, a device for reading and writing to a wireless tag having a vehicle information memory area, a method for reading and writing to a wireless tag having a vehicle information memory area, and a read / write to a wireless tag having a vehicle information memory area Vehicle with device
JP2005186702A (en) * 2003-12-24 2005-07-14 Bridgestone Corp Tire and method and device for estimating wear of the same
JP2006131137A (en) * 2004-11-08 2006-05-25 Denso Corp Signal processing device for vehicle
WO2010147004A1 (en) * 2009-06-15 2010-12-23 Ntn株式会社 System for monitoring tire air pressure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220080788A1 (en) * 2019-05-29 2022-03-17 Huf Baolong Electronics Bretten Gmbh Tire pressure monitoring unit and method for managing tire data in a tire pressure monitoring unit
US12202301B2 (en) * 2019-05-29 2025-01-21 Huf Baolong Electronics Bretten Gmbh Tire pressure monitoring unit and method for managing tire data in a tire pressure monitoring unit
US11987079B2 (en) 2019-08-29 2024-05-21 Pacific Industrial Co., Ltd. Transmitter, receiver, and transmission-reception system

Also Published As

Publication number Publication date
JP6425882B2 (en) 2018-11-21
JP2015101124A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
JP6227385B2 (en) Wear detection device for automobile tires
JP6425881B2 (en) Abnormal condition detection device for automobile tire
US9921134B2 (en) System and method for determining tire wear
JP6099819B2 (en) Vehicle sensor unit
JP6526818B2 (en) Loose wheel detection
US20080001728A1 (en) Method and device or system to monitor the state of tires, and detection of snow chains or spikes use, on a vehicle
US20160109331A1 (en) Tire contact state estimation method
HUP0000903A2 (en) Method and equipment for testing tubed tyres
WO2015076199A1 (en) Type recognition device for automobile tires
FR3072165B1 (en) METHOD FOR DETERMINING THE THICKNESS OF A TIRE OF A MOTOR VEHICLE
CN105555555B (en) Determine the method and system of the theoretical tire pressure of vehicle tyre and the pressure ratio of practical tire pressure
US7257997B2 (en) Method of detecting longitudinal force of tire and longitudinal force detecting apparatus used therein
JP6425883B2 (en) Tire pressure drop detection device for automobile tires
KR20230161387A (en) Road condition diagnosis system and wheel bearing provided therewith
JP6442316B2 (en) Wheel speed rotation fluctuation pattern extraction device and its reference pattern setting method
JP6563207B2 (en) Wheel speed sensor error correction structure and wheel bearing with rotation detector
WO2013064581A1 (en) System for monitoring tyre pressures of a plurality of wheels of a motor vehicle and pressure monitoring method
US12306061B2 (en) Method for monitoring the balancing of the wheels of a motor vehicle
JP6563206B2 (en) Wheel speed rotation fluctuation pattern extraction device
JP5097438B2 (en) Tire dynamic load radius reference value initialization method and apparatus, and tire dynamic load radius reference value initialization program
JPH06183229A (en) Method and device for detecting tire pressure abnormality
JP2016145765A (en) Rotation detector
JP6411160B2 (en) Rotational speed information detector
JP2010122067A (en) Vehicle-use sensor system
JP2005207788A (en) Load measuring device for rolling bearing units

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864275

Country of ref document: EP

Kind code of ref document: A1