WO2015063963A1 - 無線通信システム、基地局装置、及び無線端末 - Google Patents
無線通信システム、基地局装置、及び無線端末 Download PDFInfo
- Publication number
- WO2015063963A1 WO2015063963A1 PCT/JP2014/002465 JP2014002465W WO2015063963A1 WO 2015063963 A1 WO2015063963 A1 WO 2015063963A1 JP 2014002465 W JP2014002465 W JP 2014002465W WO 2015063963 A1 WO2015063963 A1 WO 2015063963A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bearer
- base station
- wireless terminal
- radio
- control information
- Prior art date
Links
- 238000004891 communication Methods 0.000 title claims abstract description 83
- 230000009977 dual effect Effects 0.000 claims abstract description 68
- 238000000034 method Methods 0.000 claims abstract description 60
- 230000005540 biological transmission Effects 0.000 claims description 112
- 238000013507 mapping Methods 0.000 claims description 11
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 230000011664 signaling Effects 0.000 abstract description 13
- 230000000977 initiatory effect Effects 0.000 abstract description 2
- 238000012545 processing Methods 0.000 description 22
- 238000010586 diagram Methods 0.000 description 16
- 230000011218 segmentation Effects 0.000 description 11
- 230000006870 function Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 230000002776 aggregation Effects 0.000 description 6
- 238000004220 aggregation Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 230000004913 activation Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 238000000638 solvent extraction Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 101150069124 RAN1 gene Proteins 0.000 description 1
- 101100355633 Salmo salar ran gene Proteins 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 239000012050 conventional carrier Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000004726 rapid resolution liquid chromatography Methods 0.000 description 1
- CSRZQMIRAZTJOY-UHFFFAOYSA-N trimethylsilyl iodide Substances C[Si](C)(C)I CSRZQMIRAZTJOY-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/15—Setup of multiple wireless link connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/30—Transmission power control [TPC] using constraints in the total amount of available transmission power
- H04W52/36—Transmission power control [TPC] using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. Transmission Power Control [TPC] or power classes
- H04W52/04—Transmission power control [TPC]
- H04W52/38—TPC being performed in particular situations
- H04W52/40—TPC being performed in particular situations during macro-diversity or soft handoff
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0473—Wireless resource allocation based on the type of the allocated resource the resource being transmission power
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/56—Allocation or scheduling criteria for wireless resources based on priority criteria
- H04W72/566—Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
- H04W74/004—Transmission of channel access control information in the uplink, i.e. towards network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
- H04W74/006—Transmission of channel access control information in the downlink, i.e. towards the terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/10—Connection setup
- H04W76/11—Allocation or use of connection identifiers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
- H04W76/27—Transitions between radio resource control [RRC] states
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
- H04W88/10—Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W92/00—Interfaces specially adapted for wireless communication networks
- H04W92/16—Interfaces between hierarchically similar devices
- H04W92/20—Interfaces between hierarchically similar devices between access points
Definitions
- This application relates to a wireless communication system in which a plurality of base stations communicate with the same wireless terminal in each cell.
- carrier aggregation Carrier Aggregation: CA
- the cell which UE can use by CA is limited to the several cell of 1 eNB (that is, the several cell operated or managed by eNB).
- the cell used by the UE in the CA is a primary cell (Primary cell: PCell) that is already used as a serving cell at the time of starting the CA, and a secondary cell (Secondary cell: SCell) that is additionally or subordinately used.
- PCell sends and receives Non-Access-Stratum (NAS) mobility information (NAS-mobility information) and security information (security input) during (re) establishment of wireless connection (RRC-Connection-Establishment, RRC-Connection-Re-establishment) ( (See Section 7.5 of Non-Patent Document 1).
- NAS Non-Access-Stratum
- NAS-mobility information Non-Access-Stratum
- security information security input
- the SCell configuration information transmitted from the eNB to the UE includes SCell (between UE) common radio resource configuration information (RadioResourceConfigCommonSCell) and SCell (per UE) dedicated radio resource configuration information (RadioResourceConfigDedicatedSCell).
- the latter mainly indicates individual configuration (PhysicalConfigDedicated) of the physical layer.
- MAC Medium Access Control
- MAC-MainConfigSCell is also transmitted from the eNB to the UE.
- the MAC sublayer setting information includes only the TA Group (TAG) index (STAG-Id) indicating the set of cells having the same TA (see Section 5.3.10.4 of Non-Patent Document 2).
- TAG TA Group
- STAG-Id TA Group index
- Other MAC sublayer settings are common to PCell and SCell.
- Dual Connectivity is each radio resource (ie cell) provided (ie managed) by the main base station (master base station, Master eNB: MeMe) and sub-base station (secondary base station, Secondary eNB: SeNB).
- the UE performs communication using the carrier at the same time.
- Dual Connectivity enables inter-eNB CA in which a UE aggregates a plurality of cells managed by different eNBs.
- Dual Connectivity is also called inter-node radio resourceUEaggregation from the viewpoint that the UE aggregates a plurality of radio resources managed by different nodes.
- MeNB is connected to SeNB through an inter-base station interface called Xn.
- the MeNB holds a connection (S1-MME) with a mobility management device (Mobility Management Entity: MME) of a core network (Evolved Packet Core: EPC) for a UE that executes Dual Connectivity. Therefore, the MeNB can be called a UE mobility management point (or mobility anchor).
- MME mobility management device
- EPC Evolved Packet Core
- the MeNB can be called a UE mobility management point (or mobility anchor).
- MeNB is Macro eNB
- SeNB is Pico eNB or Low Power Node (LPN).
- LPN Low Power Node
- EPS Bearer is a virtual set between a UE and an end point of a core network (EPC) (that is, P GW (Packet Data Network Gateway)) for each service received by the UE. Connection.
- EPC core network
- P GW Packet Data Network Gateway
- bearer division for example, both a radio bearer (Radio Bearer: RB) passing through a MeNB cell and a radio bearer passing through a SeNB cell are mapped to one network bearer.
- the radio bearer (RB) here refers mainly to a data radio bearer (Data DRB). Bearer division is expected to contribute to further improvement of user throughput.
- the wireless communication system includes a wireless access network and a wireless terminal.
- the radio access network includes a first base station that manages a first cell and a second base station that manages a second cell.
- the wireless terminal supports dual connectivity with bearer division in which a network bearer between the wireless terminal and a core network is divided into the first base station and the second base station. Further, the radio access network is configured to transmit first control information of access stratum necessary for dual connectivity accompanied by the bearer division to the radio terminal.
- the base station apparatus includes a communication control unit that controls dual connectivity with bearer division in which a network bearer between a wireless terminal and a core network is divided into the base station apparatus and a peripheral base station.
- the communication control unit is configured to transmit, to the wireless terminal, first control information of access / stratum necessary for dual connectivity with the bearer division.
- the wireless terminal includes a communication control unit that controls dual connectivity with bearer division in which a network bearer between the wireless terminal and the core network is divided into first and second base stations.
- the communication control unit receives, from the first or second base station, first control information of access stratum necessary for dual connectivity with the bearer division, and based on the first control information It is configured to recognize the presence or absence of bearer division and to control the dual-connectivity communication based on the first control information.
- control method includes a first control of an access strategy that is required for dual connectivity with a bearer split in which a network bearer between a wireless terminal and a core network is split into first and second base stations. Transmitting information from the first base station to the wireless terminal.
- the control method performed by the wireless terminal is: (a) for dual connectivity with bearer division in which a network bearer between the wireless terminal and the core network is divided into first and second base stations. Receiving necessary first access-stratum control information from the first or second base station; and (b) recognizing presence or absence of the bearer division based on the first control information, and Controlling communication of the dual-connectivity based on the control information.
- the program includes an instruction group (software code) for causing the computer to perform the above-described control method when read by the computer.
- FIG. 1 is a diagram illustrating a configuration example of a radio communication system according to first to third embodiments.
- FIG. It is a sequence diagram which shows an example of the control procedure for starting Dual Connectivity with the bearer division
- FIG. It is a sequence diagram which shows the other example of the control procedure for starting Dual Connectivity with the bearer division
- FIG. 5 is a block diagram illustrating an exemplary configuration of a MeNB according to the first to third embodiments. It is a block diagram which shows the structural example of SeNB which concerns on the 1st-3rd embodiment.
- FIG. 6 is a block diagram showing a configuration example of a UE according to the first to third embodiments.
- EPS Evolved Packet System
- UMTS Universal Mobile Telecommunications System
- GPRS general packet radio service
- WiMAX WiMAX
- EPS bearer set between a UE and an end point (that is, P-GW) of a core network (EPC) is divided into MeNB 11 and SeNB 12.
- EPS bearer # 2 is divided into MeNB11 and SeNB12.
- EPS bearer # 1 shown in FIG. 1A and FIG. 1B is a normal bearer that is not subject to bearer division, and is therefore mapped one-to-one with a radio bearer passing through the cell of MeNB 11.
- one data radio bearer (DRB) mapped one-on-one to EPS bearer # 2 is a Layer 2 Packet Data Convergence Protocol (PDCP) sublayer or Radio Link Control (RLC). It is divided into MeNB11 and SeNB12 in either the sublayer or the MAC sublayer.
- PDCP Layer 2 Packet Data Convergence Protocol
- RLC Radio Link Control
- MeNB11 and SeNB12 have independent RLC entities for bearer division, and one DRBDR (or PDCP bearer) terminated at MeNB11 is the RLC bearer of MeNB11 and SeNB12. Divided into RLC bearers.
- the PDCP bearer means a connection terminated in the PDCP sublayer of the eNB and UE.
- the PDCP bearer can also be called PDCPPDProtocol Data Unit (PDCP PDU).
- PDCP PDU PDCPPDProtocol Data Unit
- the RLC bearer means a connection terminated at the RLC sublayer of the eNB and UE.
- An RRLC bearer can also be called an RLC-PDU or logical channel.
- RLC-PDU RLC-PDU
- the PDCP entity of MeNB 11 terminates S1-U of EPS ⁇ bearer # 2. Further, regarding the EPS bearer # 2 to be divided, the MeNB 11 has a master RLC entity, and the SeNB 12 has a slave RLC entity. In the plan of FIG. 1B, UE2 only needs one RLC entity for EPS bearer # 2 to be split. On the downlink, the SeNB 12 slave RLC entity receives RLC PDUs already assembled by the master RLC entity and assigned to the slave RLC for transmission from the MeNB 11 master RLC entity.
- the cell of MeNB 11 can be called PCell and the cell of SeNB 12 can be called SCell.
- the application range of the present embodiment is not limited to this.
- a wireless terminal (UE) performs dual connectivity, and performs CA (Intra-SeNB CA) on a plurality of cells of SeNB 12 (that is, at least a plurality of downlink Component Carrier (CC))
- One of the SeNB12 cells to be used may be positioned as PCell, or may be positioned as a pseudo PCell (Pseudo PCell) such as PCell.
- the pseudo PCell can also be called AnchorAncell, Master cell, Control cell, etc.
- the former (PCell of SeNB12) has the same role as the PCell in the conventional CA in the CA of the SeNB12 cell.
- SCell configuration and SCell activation / deactivation by eNB (SeNB) for CA, Radio Link Monitoring (RLM) / Radio Link Failure (RLF) detection by UE, and the like are performed.
- the UE transmits L1 / L2 control information (eg, CQI, CSI, HARQ feedback, Scheduling Request) on the uplink control channel (PUCCH), Contention-based Random Access Channel (RACH) (Preamble) transmission, A response to the RACH Preamble (Random Access Response (RAR)) may be received.
- L1 / L2 control information eg, CQI, CSI, HARQ feedback, Scheduling Request
- PUCCH uplink control channel
- RACH Contention-based Random Access Channel
- RAR Random Access Response
- the latter (Pseudo PCell of SeNB12) has a role as a cell having a PCell function related to control of User Plane (UP) in a conventional CA.
- SeNB12 Pseudo PCell for example, UE transmits L1 / L2 control information on uplink control channel (PUCCH), Contention-based RACH (Preamble) transmission, reception of RACH Preamble response (RAR), etc. You may go. Further, in the UE, there may be no vertical relationship (PCell and SCell) or master-slave relationship (Master and Slave) between the cell of MeNB11 and the cell of SeNB12.
- PCell and SCell downlink control channel
- Master and Slave Master and Slave
- Dual Connectivity connectivity user plane protocol stack with bearer splitting is not limited to the plans in FIGS. 1A and 1B.
- bearer division for example, two radio bearers may be mapped to one network bearer (EPS bearer).
- EPS bearer # 2 is mapped to both a radio bearer (RB) that passes through the cell (PCell) of MeNB11 and a radio bearer that passes through the cell (SCell) of SeNB12.
- RB radio bearer that passes through the cell (PCell) of the MeNB 11
- SCell Cell of SeNB12.
- P-RB Primary RB
- S-RB Secondary RB
- P-RB and S-RB can also be called P-DRB and S-DRB.
- MeNB11 may terminate S1-U of PS bearer # 2, and each of MeNB11 and SeNB12 may have an independent PDCP entity.
- the downlink S1-U packet stream of EPS bearer # 2 may be split into a PDCP entity of MeNB11 and a PDCP entity of SeNB12 in a new layer above the PDCP entity of MeNB11.
- there are two independent PDCP bearers for EPS bearer # 2 one terminated at MeNB11 and UE2, and the other terminated at SeNB12 and UE2.
- FIG. 2 shows a configuration example of a wireless communication system according to some embodiments including this embodiment.
- the wireless communication system includes a wireless access network (Radio Access Network: RAN) 1, a wireless terminal (UE) 2, and a core network 3.
- RAN1 is Evolved UMTS Terrestrial Radio Access Network (E-UTRAN)
- Core Network 3 is Evolved Packet Core (EPC).
- the E-UTRAN 1 includes base stations (evolved NodeB: eNB) 11 and 12.
- the eNB 11 manages the cell 110, and the eNB 12 manages the cell 120.
- UE2 connects to eNB11 and 12 by radio
- the EPC 3 is accessed from the UE 2 via the E-UTRAN 1 and provides a connection service (for example, an Internet Protocol (IP) connection service) to the external network (Packet Data Network: PDN).
- IP Internet Protocol
- FIG. 2 shows a HetNet environment. Specifically, the cell 110 shown in FIG. 2 has a wider coverage than the cell 120.
- FIG. 2 shows a hierarchical cell configuration in which the cell 120 is arranged in the cell 110.
- the cell configuration shown in FIG. 2 is only an example.
- cells 110 and 120 may have similar coverage.
- the wireless communication system according to the present embodiment may be applied to a homogeneous network environment.
- the E-UTRAN 1 and UE 2 of this embodiment support Dual Connectivity with bearer division. That is, UE2 may use cell 120 of eNB (that is, SeNB) 12 as a secondary cell (SCell), while using cell 110 of eNB (that is, MeNB) 11 as a primary cell (PCell). it can.
- the UE 2 receives data of one EPS bearer to be subjected to bearer division through the PCell 110 and the SCell 120, or transmits data of one EPS bearer through the PCell 110 and the SCell 120, or both. be able to.
- E-UTRAN 1 and the UE 2 perform a control procedure or signaling described below.
- E-UTRAN1 is configured to transmit first control information of access stratum necessary for dual connectivity involving bearer division to UE2.
- UE2 recognizes the presence or absence of bearer division based on the first control information (that is, from the decoding result of the first control information), receives the first control information from E-UTRAN1, and performs bearer division. It is comprised so that the communication of accompanying dual connectivity may be controlled based on 1st control information.
- the first control information of access stratum sent from E-UTRAN 1 to UE 2 may include at least one of the following information (1) to (5).
- Radio bearer (RB) setting information related to P-RB and S-RB (2) Control information related to Scheduling Request (SR) (3) Control information related to uplink (UL) transmission power control (4) Uplink (UL) Control information on MAC PDU generation (5) Control information on UE measurement report
- the RB setting information regarding P-RB and S-RB indicates mapping between two RBs (P-RB and S-RB) passing through the PCell 110 and SCell 120 and one EPS bearer.
- This RB setting information is effective in an architecture in which one EPS bearer is mapped to both the P-RB passing through the PCell 110 and the S-RB passing through the SCell 120.
- EPS bearer identity common to P-RB may be set to S-RB.
- the RB setting information includes the same EPS bearer identity that is associated with the EPS Radio Bearer identity (or DRB-identity) of the P-RB, and the EPS Radio Bearer identity (or DRB-identity) of the S-RB. It may be shown that it is associated with.
- the same EPS bearer identity and EPS Radio Bearer identity (or DRB-identity) as the P-RB may be set for the S-RB.
- a normal CA cell SCell configuration includes SCell (per UE) dedicated radio resource configuration information (RadioResourceConfigDedicatedSCell).
- this normal CA configuration information includes SCell physical channel configuration information, but does not include information on a radio bearer (RB).
- one EPS bearer is mapped to multiple radio bearers of different eNBs (MeNB11 and SeNB12) Information is needed to show that
- the SCell setting method employed in normal CA (intra-eNB CA) lacks the SCell radio bearer setting procedure, one EPS bearer passes through the P-RB and SCell120 via PCell110. Difficult to apply to SCell configuration in architecture mapped to both S-RBs. Therefore, as described here, new RB setting information different from the normal CA (in particular, setting information related to S-RB, which can also be referred to as S-RB setting information) is required.
- Control information regarding SR Scheduling Request is transmitted from the UE to the eNB in order to request allocation of uplink radio resources when there is data to be transmitted to UE2.
- UE transmits SR in Physical Uplink Control Channel (PUCCH) or using Random Access Procedure using Random Access Channel (RACH).
- PUCCH Physical Uplink Control Channel
- RACH Random Access Procedure using Random Access Channel
- the control information related to SR is transmitted in either a cell having SR of MeNB11 (for example, PCell110) or a cell having SeNB12 (for example, SCell120). Indicates what should be done.
- control information regarding the SR may explicitly indicate whether the transmission destination of the SR (or RACH for sending the SR) is the MeNB 11 (PCell 110) or the SeNB 12 (SCell 120).
- the control information related to SR may indicate that the transmission destination of SR (or RACH for sending SR) can be selected in UE2.
- the control information regarding the SR may specify signaling that enables selection of the transmission destination of the SR (or RACH for sending the SR), and instructs the UE 2 to select the transmission destination of the SR. Also good. Through such control, the UE 2 can appropriately determine the SR transmission destination even when bearer division is performed.
- Control information on UL transmission power control At the time of bearer division, an upper limit may be defined for the total transmission power of uplink transmission in a cell of MeNB 11 (for example, PCell 110) and a cell of SeNB 12 (for example, SCell 120). .
- Control information related to UL transmission power control is obtained when uplink transmission in PCell 110 and uplink transmission in SCell 120 are scheduled in UE 2 in the same subframe (LTE subframe) (that is, UE 2 is for both PCell 110 and SCell 120).
- the present invention may be applied to a procedure for controlling uplink transmission power.
- the control information may indicate the maximum transmission power imposed on the total transmission power of uplink transmission in the PCell 110 and the SCell 120.
- UE2 may determine the transmission power in SCell120, after determining the transmission power in PCell110 first. That is, UE2 may perform the uplink transmission in SCell120 using the surplus transmission power which was not used by the uplink transmission in PCell110. On the contrary, UE 2 may perform uplink transmission in PCell 110 using surplus transmission power that was not used in uplink transmission in SCell 120. Through such control, the UE 2 can appropriately perform UL transmission power control even when bearer division is performed.
- an upper limit of transmission power may be separately defined for each uplink transmission in the PCell 110 and the SCell 120.
- the control information related to UL transmission power control may indicate the first and second maximum transmission powers individually imposed on uplink transmissions in the PCell 110 and the SCell 120, respectively.
- the control information may indicate a set value of the first maximum transmission power and an offset value (positive or negative value) for obtaining the second maximum transmission power.
- a value obtained by adding an offset value to the setting value of the first maximum transmission power may be the second maximum transmission power imposed on the uplink transmission in the SCell 120.
- UE2 can perform UL transmission power control appropriately also at the time of bearer division
- UE2 performs EPS bearer QoS (QoS class identifier (QCI) for all EPS bearers including bearer split target bearers and non-target bearers. ), Guaranteed bit rate (GBR), aggregate maximum bit rate (AMBR), etc.) should be generated.
- QCI QoS class identifier
- GRR Guaranteed bit rate
- AMBR aggregate maximum bit rate
- the MAC PDU can also be called a transport block. Therefore, the control information related to the generation of UL MAC PDU is scheduled to UE2 in the same subframe (LTE subframe) for uplink transmission in the MeNB11 cell (for example, PCell110) and uplink transmission in the SeNB12 cell (for example, SCell120).
- the first MAC PDU for uplink transmission on PCell 110 and the second for uplink transmission on SCell 120 Is applied to the procedure of generating the MAC PDU of UE2.
- the control information related to the generation of the UL MAC PDU is, for example, the first prioritized Bit Rate (PBR) applied when generating the first MAC PDU for one logical channel of the EPS bearer targeted for bearer division.
- the second PBR applied when generating the second MAC PDU.
- the information includes two PBRs for one logical channel of EPS bearer to be subjected to bearer division, that is, a first PBR for transmission in PCell 110 and a second PBR for transmission in SCell 120. , May be specified.
- the first and second PBRs are set so that the sum (arithmetic sum) of the first and second PBRs is a PBR suitable for one logical channel of EPS bearer to be subjected to bearer division. Good.
- the uplink transmission data of the EPS bearer that is subject to bearer division is excessively transmitted compared to that of the EPS bearer that is not subject to bearer division (excessively included in the MAC PDU). Can be suppressed.
- the prioritized Bit Rate (PBR) given to the logical channel of the EPS bearer subject to bearer division is preferentially secured in either the first MAC PDU or the second MAC PDU. It may indicate what to do. It may be appropriate for UE2 to preferentially use uplink resources permitted by PCell 110 for transmission of EPS bearers that are not subject to bearer division. This is because the uplink resource permitted by the SCell 120 can be used for the uplink transmission of the EPS bearer to be subjected to bearer division.
- control information regarding the generation of the UL MAC PDU may indicate that the PBR given to the logical channel of the EPS bearer that is the target of bearer division should be preferentially secured in the second MAC PDU. . Even with such control, it is possible to suppress the uplink transmission data of the EPS bearer that is subject to bearer splitting from being excessively transmitted compared to that of the EPS bearer that is not subject to bearer splitting.
- the control information related to the generation of the UL MAC PDU is weighted between the PBR applied to the PCell 110 (first MAC PDU) and the PBR applied to the SCell 120 (second MAC PDU) when bearer division is performed.
- the set value (weight value) may be included.
- the control information is weighted between the PBR given to the EPS ⁇ bearer logical channel that is subject to bearer splitting and the PBR given to the EPS bearer logical channel that is not subject to bearer splitting at the time of bearer splitting.
- a set value (weight value) for performing may be included.
- UE Measurement Report Control information on terminal measurement report
- Event A1 (Serving becomes better than threshold)
- Event A2 (Serving becomes worse than threshold)
- Event A3 (Neighbour becomes offset better than PCell)
- Event A4 (Neighbour becomes better than threshold)
- Event A5 (PCell becomes worse than threshold1 and neighbor becomes better than threshold2)
- Event A6 (Neighbour becomes offset better than SCell)
- Serving refers to each cell (cell configured and activated by network) configured and activated from the network (that is, eNB) so that UE2 can be used for data communication.
- UE2 uses two cells in the conventional CA, both of these two cells become serving cells, and which ones are focused on (that is, which of the serving cells are compared)
- the cell in which the measurement (report) is set may be determined. That is, the cell to which the setting has been notified (the cell from which the UE 2 has received the setting) may be a serving cell.
- neighbor is basically a cell other than serving cell. However, in Event A3 and A5, a serving cell other than the serving cell to be noticed (that is, a reference for comparison) may be a neighbor cell.
- the control information related to the terminal measurement report may include any of the above events, or may include an event newly defined for bearer splitting.
- the PCell may be the cell 110 of the MeNB 11 or the cell 120 of the SeNB 12.
- the SCell may be a cell other than the MeNB 11 cell 110 (if it is set), or may be a cell other than the SeNB 12 cell 120 or the SeNB 12 cell 120 (if it is set).
- a new event for example, the following events can be considered.
- the event number is an example, and the present invention is not limited to this.
- Event A7 (Neighbour becomes offset better than Pseudo PCell)
- Event A8 (Pseudo PCell becomes worse than threshold1 and neighbor becomes better than threshold2)
- Event A9 (Neighbour of SeNB becomes better than threshold)
- Event A10 (Neighbour of SeNB becomes offset better than SCell)
- FIG. 3 is a sequence diagram showing an example of a control procedure for starting Dual Connectivity with bearer division.
- Dual Connectivity with bearer division is set in the procedure of transition from the RRC_IDLE state to the RRC_CONNECTED state in order to start a certain service (for example, FTP download) by the UE2.
- E-UTRAN1 starts the setting for bearer division in response to determining that bearer division is necessary (or effective) for UE2. Further, in the example of FIG.
- one EPS Bearer is mapped to both the Primary RB (P-RB) passing through the PCell 110 and the Secondary RB (S-RB) passing through the SCell 120.
- P-RB Primary RB
- S-RB Secondary RB
- UE 2 first establishes a P-RB in PCell 110 and then establishes an S-RB in SCell 120.
- step S11 UE2 executes a Connection Establishment procedure with E-UTRAN1.
- RRC connection is first established between MeNB11 and UE2 (step 1), and then initial security activation (initial security activation) and DRB (that is, P-RB) are established.
- Step 2 includes transmission of an RRC Connection Reconfiguration message from MeNB11 to UE2, and transmission of an RRC Connection Reconfiguration Complete message from UE2 to MeNB11.
- the P-RB setting information is included in the RRC Connection Reconfiguration message in step 2.
- E-UTRAN1 transmits S-RB setting (Bearer Split Configuration) to UE2.
- the transmission of the S-RB setting may be performed by the MeNB 11, or may be performed by a combination of the MeNB 11 and the SeNB 12.
- a part of the S-RB setting may be transmitted from the MeNB 11 to the UE 2
- the rest of the S-RB setting may be transmitted from the SeNB 12 to the UE 2.
- the transmission of the S-RB setting may be performed using an RRC Connection Reconfiguration message as shown in FIG.
- step S13 UE2 reports the completion of S-RB setting to E-UTRAN1.
- UE2 may report the completion of S-RB setting to MeNB11, may report to SeNB12, and may report to both of these.
- the completion report of the S-RB setting may be performed using an RRC Connection Reconfiguration Complete message as shown in FIG.
- step S14 E-UTRAN1 notifies UE2 of the start of use of S-RB (Bearer Split Activation).
- the notification of the start of use of S-RB may be performed by MeNB 11 or may be performed by SeNB 12. Note that step S14 may be omitted. In this case, use of S-RB may be started upon completion of step S13.
- the S-RB setting (Bearer Split Configuration) transmitted from E-UTRAN1 to UE2 in step S12 of FIG. 3 corresponds to the above-mentioned “first control information of access stratum”.
- the S-RB setting (Bearer Split Configuration) is a generic name (logical name) of setting elements included in the following four messages, for example. These setting elements may be sent to UE2 as one information element (IE), or may be sent as a plurality of information elements (IE).
- IE information element
- IE information element
- DRB-ToAddMod_Sbearer indicates an S-RB setting (for example, eps-BearerIdentity, drb-Identity, pdcp-Config,, and rlc-Config).
- S-RB setting for example, eps-BearerIdentity, drb-Identity, pdcp-Config,, and rlc-Config.
- eps-BearerIdentity and drb-Identity of S-RB may be the same as eps-BearerIdentity and drb-Identity of P-RB.
- the drb-Identity of P-RB may be different from that of P-RB.
- RadioResourceConfigCommon_Sbearer indicates S-RB resource settings (for example, prach-Config, pdsch-ConfigCommon, pusch-ConfigCommon, pucch-ConfigCommon, uplinkPowerControlCommon, and tdd-Config, dl-Bandwidth).
- RadioResourceConfigCommon_Sbearer includes common radio resource information of a cell in which S-RB is set (established).
- RadioResourceConfigDedicated_Sbearer indicates S-RB resource settings (for example, physicalConfigDedicated,, and mac-MainConfig).
- RadioResourceConfigDedicated_Sbearer includes individual radio resource information of a cell in which S-RB is set (established).
- the DRB-ToAddMod_Sbearer described above may be transmitted as one element of this IE.
- ⁇ BearerSplitResourceConfig indicates the specific settings for bearer splitting.
- the specific setting for bearer division includes control parameters related to functions used when bearer division is performed. These control parameters are used to configure functions that require different settings when bearer splitting is performed than when bearer splits are not performed, or new (special) functions that apply only when bearer splitting is performed. . As described above, these control parameters include (a) control information related to scheduling request (SR) and random access channel (RACH), (b) control information related to UL transmission power control (UL power control), and (c ) It may include at least one of control information related to generation of UL-MAC-PDU (for example, logical channel priority: LCP).
- SR scheduling request
- RACH random access channel
- UL power control UL transmission power control
- It may include at least one of control information related to generation of UL-MAC-PDU (for example, logical channel priority: LCP).
- FIG. 4 is a sequence diagram showing another example of a control procedure for starting Dual Connectivity with bearer division. Compared with the example of FIG. 3, the example of FIG. 4 is different from the example of FIG. 3 in that P-RB and S-RB are set simultaneously in the procedure in which UE 2 transitions from the RRC_IDLE state to the RRC_CONNECTED state. Different.
- steps S21 to S25 UE2 executes a Connection Establishment procedure with E-UTRAN1. That is, steps S21 to S25 correspond to step S11 in FIG. Steps S21 to S23 are RRC-connection establishment procedures (step 1), and steps S24 to S25 are DRB establishment procedures (step 2).
- step S21 UE2 transmits an RRC Connection Request message to E-UTRAN1.
- E-UTRAN1 transmits an RRC Connection Setup message to UE2.
- Setup message contains both the setting of PCell110 and the setting of SCell120.
- step S23 UE2 transmits an RRC Connection Setup Complete message to E-UTRAN1. This RRC Connection Setup Complete message indicates that the PCell 110 and SCell 120 have been set up.
- E-UTRAN1 transmits an RRC Connection Reconfiguration message to UE2.
- This RRC Connection Reconfiguration message includes both P-RB settings and S-RB settings.
- UE2 transmits RRC Connection Reconfiguration Complete message to E-UTRAN1. This RRC Connection Reconfiguration Complete message indicates the completion of P-RB and S-RB settings.
- step S25 E-UTRAN1 notifies UE2 of the start of use of S-RB (BearerBSplit Activation). Similar to step S14 in FIG. 3, step S25 may be omitted.
- a part of the SCell configuration (for example, BearerSplitResourceConfig) transmitted in step S22 may be transmitted in step S24.
- MeNB 11 may be performed by MeNB 11 or a combination of MeNB 11 and SeNB 12 in the procedure of FIG.
- control or signaling for starting Dual Connectivity with bearer splitting is performed when UE 2 transitions from the RRC_IDLE state to the RRC_CONNECTED state.
- the control or signaling for initiating Dual Connectivity with bearer splitting is that UE2 is already in RRC_CONNECTED state with PCell 110 and ECM-CONNECTED state with EPC3, and receives service from EPC3 via PCell110. It may be done when (when EPS Bearer is set).
- the present embodiment can provide a control procedure or signaling necessary for starting Dual Connectivity with bearer splitting.
- the MeNB 11 exchanges signaling messages with the SeNB 12 via the inter-base station interface (for example, Xn interface), and applies the dual connectivity (for example, inter-node radio resource aggregation) setting with bearer partitioning to the SeNB 12.
- the MeNB11 may transmit the 2nd control information (namely, setting information of bearer division
- SeNB12 may determine whether it can accept the 2nd control information (setting information of bearer division) received from MeNB11. If not acceptable, the SeNB 12 may notify the MeNB 11 that it is not acceptable, or may suggest an acceptable alternative setting to the MeNB 11. Note that the content of the second control information (bearer division setting information) may be at least partially in common with the content of the first control information. Furthermore, instead of the Xn interface, the MeNB 11 and the SeNB 12 may exchange signaling messages via the X2 interface or the S1 interface.
- FIG. 5 is a sequence diagram illustrating an example of a control procedure for starting dual connectivity with bearer division in the present embodiment.
- dual connectivity with bearer splitting is performed in the procedure of transition from the RRC_IDLE state to the RRC_CONNECTED state in order to start a certain service (for example, FTP download) by the UE 2.
- the MenB 11 starts setting for bearer division in response to determining that the bearer division is necessary (or effective) for the UE2.
- one EPS Bearer is mapped to both the Primary RB (P-RB) passing through the PCell 110 and the Secondary RB (S-RB) passing through the SCell 120.
- the UE 2 similarly to the example of FIG. 3, the UE 2 first establishes a P-RB in the PCell 110 and then establishes an S-RB in the SCell 120.
- step S31 performed between MeNB11 and UE2 should just be the same as the process of step S11 shown by FIG.
- the MeNB 11 requests the SeNB 12 to perform bearer division (execution or setting).
- SeNB12 responds to MeNB11 whether bearer division (execution or setting) is acceptable.
- the processes in steps S34 to S36 are performed.
- the processing in steps S34 to S36 performed between MeNB11 and UE2 may be the same as the processing in steps S12 to S14 shown in FIG.
- the setting information of bearer division indicates, for example, mapping between EPS bearers and S-RBs to be bearer divided.
- the setting information of bearer division may include EPS bearer identity of EPS bearer and RadioSBeareridentidentity (DRB-identity) of S-RB to be subjected to bearer division.
- the bearer partitioning setting information may include EPSerbearer's EPS bearer identity, and S-RB's RadioRadBearer identity (DRB-identity) may not be included.
- the SeNB 12 may determine the Radio Bearer identity (DRB-identity) of the S-RB, and notify the determined Radio Bearer identity (DRB-identity) of the S-RB to the MeNB 11 in step S33.
- the setting information of bearer division transmitted from the MeNB 11 to the SeNB 12 in step S32 in FIG. 5 may include at least one of the following information transmitted in step S12 in FIG. 3 (and step S34 in FIG. 5).
- the setting information of bearer division may include at least one of the following information.
- UE2 identification information eg C-RNTI and / or TMSI
- Information on security e.g., Information on use of wireless resources
- K eNB , K eNB * , NextHopChainingCount, and SecurityAlgorithmConfig can be considered as information regarding security. However, it may be other information related to access stratum (AS) layer security.
- the information related to the use of radio resources may be, for example, a request for resource status report (Resource Status) in SeNB 12 and / or a period of the report.
- the present embodiment can provide a control procedure or signaling between the MeNB 11 and the SeNB 12 necessary for starting Dual Connectivity with bearer division.
- a configuration example of the wireless communication system according to the present embodiment is the same as that shown in FIG. Similar to the second embodiment, the MeNB 11 according to the present embodiment exchanges signaling messages with the SeNB 12 via the inter-base station interface (for example, the Xn interface), and applies the dual connectivity setting with bearer division to the SeNB 12. To do.
- the inter-base station interface for example, the Xn interface
- FIG. 6 is a sequence diagram illustrating an example of a control procedure for starting dual connectivity with bearer division in the present embodiment.
- P-RB and S-RB are set simultaneously in the procedure in which UE 2 transitions from the RRC_IDLE state to the RRC_CONNECTED state.
- steps S41 to S43 performed between MeNB 11 and UE 2 may be the same as the processing of steps S21 to S23 shown in FIG.
- MeNB11 may transmit the request
- steps S45 and S46 performed between MeNB11 and SeNB12 may be the same as the processing in steps S32 and S33 shown in FIG. That is, in step S45, MeNB11 requests
- MeNB 11 includes RRC ConnectionRRReconfiguration including both P-RB setting and S-RB setting in step S47.
- a message may be transmitted to UE2.
- MeNB 11 transmits an RRC Connection Reconfiguration message that includes P-RB settings but does not include S-RB settings to UE 2 in step S47. That's fine.
- the present embodiment can provide a control procedure or signaling between the MeNB 11 and the SeNB 12 necessary for starting Dual Connectivity with bearer division.
- FIG. 7 is a block diagram illustrating a configuration example of the MeNB 11.
- the radio communication unit 111 receives an uplink signal (uplink signal) transmitted from the UE 2 via an antenna.
- the reception data processing unit 113 restores the received uplink signal.
- the obtained received data is transferred to another network node, for example, the Serving (Gateway (S-GW) or MME of the EPC 3, or another eNB via the communication unit 114.
- the uplink user data received from the UE 2 is transferred to the S-GW in the EPC 3.
- control data of the NAS among the control data received from the UE 2 is transferred to the MME in the EPC 3. Further, the reception data processing unit 113 receives the control data transmitted to the SeNB 12 from the communication control unit 115 and transmits it to the SeNB 12 via the communication unit 114.
- the transmission data processing unit 112 acquires user data addressed to the UE 2 from the communication unit 114, and performs error correction coding, rate matching, interleaving, and the like to generate a transport channel. Furthermore, the transmission data processing unit 112 adds control information to the transport channel data sequence to generate a transmission symbol sequence.
- the radio communication unit 111 performs each process such as carrier wave modulation, frequency conversion, and signal amplification based on the transmission symbol sequence to generate a downlink signal, and transmits this to the UE 2. Further, the transmission data processing unit 112 receives the control data transmitted to the UE 2 from the communication control unit 115 and transmits it to the UE 2 via the wireless communication unit 111.
- the communication control unit 115 controls Dual Connectivity with bearer division.
- the communication control unit 115 is configured to transmit, to the UE 2 via the transmission data processing unit 112 and the wireless communication unit 111, the first control information of access stratum necessary for dual connectivity with bearer division. .
- the communication control unit 115 transmits the radio bearer (RB) setting information indicating the mapping between the EPS bearer to be subjected to bearer division and the S-RB via the communication unit 114. And it is comprised so that it may transmit to SeNB12.
- RB radio bearer
- FIG. 8 is a block diagram illustrating a configuration example of the SeNB 12. Functions and operations of the wireless communication unit 121, the transmission data processing unit 122, the reception data processing unit 123, and the communication unit 124 illustrated in FIG. 8 correspond to elements corresponding to the MeNB 11 illustrated in FIG. 7, that is, the wireless communication unit 111.
- the transmission data processing unit 112, the reception data processing unit 113, and the communication unit 114 are the same.
- the communication control unit 125 of the SeNB 12 controls Dual Connectivity with bearer division.
- the communication control unit 125 transmits, via the communication unit 124, radio bearer (RB) setting information indicating the mapping between EPS bearers and S-RBs to be subjected to bearer division. It is comprised so that it may receive from MeNB11.
- RB radio bearer
- FIG. 9 is a block diagram illustrating a configuration example of UE2.
- the radio communication unit 21 is configured to support Dual Connectivity and perform simultaneous communication in a plurality of cells (PCell110 and SCell120) operated by different eNBs (MeNB11 and SeNB12). Specifically, the radio communication unit 21 receives a downlink signal from the MeNB 11 or the SeNB 12 or both via the antenna.
- the reception data processing unit 22 restores the reception data from the received downlink signal and sends it to the data control unit 23.
- the data control unit 23 uses the received data according to the purpose. Further, the transmission data processing unit 24 and the wireless communication unit 21 generate an uplink signal using the transmission data supplied from the data control unit 23 and transmit the uplink signal to the MeNB 11 or the SeNB 12 or both.
- the communication control unit 25 of the UE 2 controls Dual Connectivity with bearer division. As described in the first embodiment, the communication control unit 25 receives, from the E-UTRAN1 (MeNB11 or SeNB12), the first control information of access stratum necessary for dual connectivity with bearer division, Communication of dual-connectivity accompanied by bearer division is controlled based on the first control information.
- the E-UTRAN1 MeNB11 or SeNB12
- ⁇ Other embodiments Communication control in MeNB11, SeNB12, and UE2 regarding Dual Connectivity with bearer division described in the first to third embodiments is realized using a semiconductor processing device including an Application Specific Integrated Circuit (ASIC). Also good.
- these processes may be realized by causing a computer system including at least one processor (eg, a microprocessor, a micro processing unit (MPU), or a digital signal processor (DSP)) to execute a program.
- processor eg, a microprocessor, a micro processing unit (MPU), or a digital signal processor (DSP)
- one or a plurality of programs including an instruction group for causing a computer system to execute an algorithm described using a sequence diagram or the like may be created, and the programs may be supplied to the computer.
- Non-transitory computer readable media include various types of tangible storage media (tangible storage medium). Examples of non-transitory computer-readable media are magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), Compact Disc Read Only Memory (CD-ROM), CD-ROM R, CD-R / W, semiconductor memory (for example, mask ROM, Programmable ROM (PROM), Erasable PROM (EPROM), flash ROM, Random Access Memory (RAM)).
- the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
- the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
- the LTE system has been described.
- these embodiments may be applied to a wireless communication system other than the LTE system, for example, 3GPP UMTS, 3GPP2 CDMA2000 system (1xRTT,) HRPD), GSM / GPRS system, or WiMAX system. Good.
- Evolved UTRAN Evolved UTRAN
- UE User Equipment
- EPC Evolved Packet Core
- MeNB Master eNodeB
- SeNB Secondary eNodeB
- Communication controller 110 Primary Cell (PCell) 120 Secondary Cell (SCell)
- PCell Primary Cell
- SCell Secondary Cell
- Communication control unit 125 Communication control unit
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
始めに、本実施形態を含む複数の実施形態が対象とするベアラ分割を伴うDual Connectivityのいくつかの例について説明する。図1A及び図1Bは、ベアラ分割を伴うDual Connectivity(例えばinter-node radio resource aggregation)に関するLTE レイヤ2のユーザープレーン プロトコルスタックの2つの案(alternative)を示している。ベアラ分割では、UEとコアネットワーク(EPC)のエンドポイント(つまり、P-GW)との間に設定されるネットワークベアラ(EPS bearer)がMeNB11とSeNB12に分割される。図1A及び図1Bの案では、EPS bearer #2がMeNB11及びSeNB12に分割される。図1A及び図1Bに示されたEPS bearer #1は、ベアラ分割の対象ではない通常のベアラであり、したがってMeNB11のセルを経由する無線ベアラに一対一でマッピングされる。
(1)P-RB及びS-RBに関する無線ベアラ(RB)設定情報
(2)Scheduling Request(SR)に関する制御情報
(3)上りリンク(Uplink: UL)送信電力制御に関する制御情報
(4)上りリンク(UL)MAC PDUの生成に関する制御情報
(5)端末測定報告(UE measurement report)に関する制御情報
情報(1)~(5)について順に説明する。P-RB及びS-RBに関するRB設定情報は、PCell110及びSCell120を経由する2つのRB(P-RB及びS-RB)と1つのEPS bearerとのマッピングを示す。このRB設定情報は、1つのEPS bearerがPCell110を経由するP-RB及びSCell120を経由するS-RBの両方にマッピングされるアーキテクチャにおいて有効である。P-RB及びS-RBに関するRB設定情報は、P-RBと共通のEPS bearer identityをS-RBにも設定してもよい。例えば、当該RB設定情報は、P-RBのEPS Radio Bearer identity(又はDRB-identity)に対応付けられているのと同じEPS bearer identityが、S-RBのEPS Radio Bearer identity(又はDRB-identity)に対応付けられることを示してもよい。これに代えて、当該RB設定情報は、P-RBと同じEPS bearer identity及びEPS Radio Bearer identity(又はDRB-identity)をS-RBに対して設定してもよい。
Scheduling Request(SR)は、UE2に送信されるべきデータが存在する場合に上りリンク無線リソースの割り当てを要求するためにUEからeNBに送信される。UEは、Physical Uplink Control Channel(PUCCH)において、又はRandom Access Channel(RACH)を使用するRandom Access Procedureを利用して、SRを送信する。SRに関する制御情報は、ベアラ分割の対象とされるEPS Bearerの送信データがUE2に存在する場合に、SRがMeNB11のセル(例えば、PCell110)及びSeNB12のセル(例えばSCell120)のいずれで送信されるべきであるかを示す。一例において、SRに関する制御情報は、SR(又はSRを送るためのRACH)の送信先がMeNB11(PCell110)及びSeNB12(SCell120)のいずれであるかを明示的に示してもよい。これに代えて、SRに関する制御情報は、SR(又はSRを送るためのRACH)の送信先がUE2において選択可能であることを示してもよい。具体的には、SRに関する制御情報は、SR(又はSRを送るためのRACH)の送信先を選択可能にするシグナリングを規定してもよく、UE2においてSRの送信先を選択するよう指示してもよい。このような制御によって、UE2は、ベアラ分割の実行時にもSRの送信先を適切に決定することができる。
ベアラ分割の実行時には、MeNB11のセル(例えばPCell110)及びSeNB12のセル(例えばSCell120)での上りリンク送信の総送信電力に対して上限が規定されてもよい。UL送信電力制御に関する制御情報は、PCell110での上りリンク送信とSCell120での上りリンク送信が同一サブフレーム(LTE subframe)においてUE2にスケジュールされた場合(つまり、UE2がPCell110とSCell120の両方に対してUL grantを受信した場合)に、UE2において上りリンク送信電力を制御する手順に適用されてもよいし、PCell110とSCell120の両方で上りリンクの送信するデータまたは制御情報が存在する場合に、UE2において上りリンク送信電力を制御する手順に適用されてもよい。当該制御情報は、例えば、PCell110及びSCell120での上りリンク送信の総送信電力に課される最大送信電力を示してもよい。UE2は、まずPCell110での送信電力を決定した後に、SCell120での送信電力を決定してもよい。つまり、UE2は、PCell110での上りリンク送信で使用されなかった余剰送信電力を用いてSCell120における上りリンク送信を行ってもよい。これとは反対に、UE2は、SCell120での上りリンク送信で使用されなかった余剰送信電力を用いてPCell110における上りリンク送信を行ってもよい。このような制御によって、UE2は、ベアラ分割の実行時にもUL送信電力制御を適切に行うことができる。
ベアラ分割の実行時であっても、UE2は、ベアラ分割の対象ベアラ及び非対象ベアラを含む全てのEPS bearerについて、EPS bearer QoS(QoS class identifier(QCI)、guaranteed bit rate(GBR)、又はaggregate maximum bit rate(AMBR)など)を考慮したMAC PDUの生成を行うべきである。なお、MAC PDUは、トランスポートブロックと呼ぶこともできる。したがって、UL MAC PDUの生成に関する制御情報は、MeNB11のセル(例えばPCell110)での上りリンク送信とSeNB12のセル(例えばSCell120)での上りリンク送信が同一サブフレーム(LTE subframe)においてUE2にスケジュールされた場合(つまり、UE2がPCell110とSCell120の両方に対してUL grantを受信した場合)に、PCell110での上りリンク送信のための第1のMAC PDU及びSCell120での上りリンク送信のための第2のMAC PDUをUE2において生成する手順に適用される。
LTEでは、端末測定報告(UE Measurement Report)のトリガとなる以下のイベントが規定されている。
・Event A1 (Serving becomes better than threshold)
・Event A2 (Serving becomes worse than threshold)
・Event A3 (Neighbour becomes offset better than PCell)
・Event A4 (Neighbour becomes better than threshold)
・Event A5 (PCell becomes worse than threshold1 and neighbour becomes better than threshold2)
・Event A6 (Neighbour becomes offset better than SCell)
・Event A7 (Neighbour becomes offset better than Pseudo PCell)
・Event A8 (Pseudo PCell becomes worse than threshold1 and neighbour becomes better than threshold2)
・Event A9 (Neighbour of SeNB becomes better than threshold)
・Event A10 (Neighbour of SeNB becomes offset better than SCell)
・DRB-ToAddMod_Sbearer
・RadioResourceConfigCommon_Sbearer
・RadioResourceConfigDedicated_Sbearer
・BearerSplitResourceConfig
本実施形態は、上述した第1の実施形態の変形について説明する。本実施形態に係る無線通信システムの構成例は図2と同様である。本実施形態では、MeNB11は、基地局間インタフェース(例えば、Xnインタフェース)を介してSeNB12とシグナリングメッセージを交換し、ベアラ分割を伴うDual Connectivity(例えばinter-node radio resource aggregation)の設定をSeNB12に適用する。例えば、MeNB11は、ベアラ分割を伴うDual Connectivityを開始するために必要な第2の制御情報(つまり、ベアラ分割の設定情報)をSeNB12に送信してもよい。このとき、SeNB12は、MeNB11から受信した第2の制御情報(ベアラ分割の設定情報)を受け入れ可能であるかを判定してよい。もし受け入れ可能でない場合、SeNB12は、受け入れ不可能であることをMeNB11に通知してもよいし、受け入れ可能な代替設定をMeNB11に提案してもよい。なお、当該第2の制御情報(ベアラ分割の設定情報)の内容は、前述の第1の制御情報の内容と少なくとも一部が共通していてもよい。さらに、Xnインタフェースの代わりに、X2インタフェースや、S1インタフェースを介してMeNB11とSeNB12がシグナリングメッセージを交換してもよい。
・DRB-ToAddMod_Sbearer
・ベアラ分割の対象となるSeNBのセルの識別情報(例えば、ECGI及び/又はPCI)
・RadioResourceConfigCommon_Sbearer
・RadioResourceConfigDedicated_Sbearer
・BearerSplitResourceConfig
・UE2の識別情報(例えば、C-RNTI及び/又はTMSI)
・セキュリティに関する情報
・無線リソース使用に関する情報
本実施形態は、上述した第1及び第2の実施形態の変形について説明する。本実施形態に係る無線通信システムの構成例は図2と同様である。本実施形態に係るMeNB11は、第2の実施形態と同様に、基地局間インタフェース(例えば、Xnインタフェース)を介してSeNB12とシグナリングメッセージを交換し、ベアラ分割を伴うDual Connectivityの設定をSeNB12に適用する。
第1~第3の実施形態で説明されたベアラ分割を伴うDual Connectivityに関するMeNB11、SeNB12、及びUE2における通信制御は、いずれもApplication Specific Integrated Circuit(ASIC)を含む半導体処理装置を用いて実現されてもよい。また、これらの処理は、少なくとも1つのプロセッサ(e.g. マイクロプロセッサ、Micro Processing Unit(MPU)、Digital Signal Processor(DSP))を含むコンピュータシステムにプログラムを実行させることによって実現されてもよい。具体的には、シーケンス図等を用いて説明されたアルゴリズムをコンピュータシステムに行わせるための命令群を含む1又は複数のプログラムを作成し、当該プログラムをコンピュータに供給すればよい。
2 User Equipment(UE)
3 Evolved Packet Core(EPC)
11 Master eNodeB(MeNB)
12 Secondary eNodeB(SeNB)
25 通信制御部
110 Primary Cell(PCell)
120 Secondary Cell(SCell)
115 通信制御部
125 通信制御部
Claims (46)
- 第1のセルを管理する第1の基地局及び第2のセルを管理する第2の基地局を含む無線アクセスネットワークと、
無線端末とコアネットワークの間のネットワークベアラが前記第1の基地局及び前記第2の基地局に分割されるベアラ分割を伴うdual connectivityをサポートする無線端末と、
を備え、
前記無線アクセスネットワークは、前記ベアラ分割を伴うdual connectivityのために必要なaccess stratumの第1の制御情報を前記無線端末に送信するよう構成されている、
無線通信システム。 - 前記無線端末は、前記第1の制御情報を受信し、前記第1の制御情報を基に前記ベアラ分割の有無を認識し、前記第1の制御情報に基づいて前記dual connectivityの通信を制御するよう構成されている、請求項1に記載の無線通信システム。
- 前記ベアラ分割では、前記第1のセルを経由する第1の無線ベアラ及び前記第2のセルを経由する第2の無線ベアラの両方が前記ネットワークベアラにマッピングされ、
前記第1の制御情報は、前記第1及び第2の無線ベアラと前記ネットワークベアラとのマッピングを示す無線ベアラ設定情報を含む、請求項1又は2に記載の無線通信システム。 - 前記第1の基地局は、前記第1の制御情報を前記無線端末に送信するとともに、前記ベアラ分割を伴うdual connectivityのために必要なaccess stratumの第2の制御情報を前記第2の基地局に送信するよう構成されている、請求項1~3のいずれか1項に記載の無線通信システム。
- 前記ベアラ分割では、前記第1のセルを経由する第1の無線ベアラ及び前記第2のセルを経由する第2の無線ベアラの両方が前記ネットワークベアラにマッピングされ、
前記第2の制御情報は、前記第2の無線ベアラと前記ネットワークベアラとのマッピングを示す無線ベアラ設定情報を含む、
請求項4に記載の無線通信システム。 - 前記第2の制御情報は、ベアラ分割の設定情報を含む、請求項4又は5に記載の無線通信システム。
- 前記第1の基地局は、前記無線端末および前記第2の基地局に前記ベアラ分割の実施を指示する、請求項1~6のいずれか1項に記載の無線通信システム。
- 前記第1の制御情報は、前記ネットワークベアラの送信データが前記無線端末に存在する場合に上りリンク無線リソースの割り当てを要求するためのScheduling Request又はRandom Access Channel(RACH)が前記第1及び第2の基地局のいずれに送信されるべきであるかを示す、請求項1~7のいずれか1項に記載の無線通信システム。
- 前記第1の制御情報は、前記第1及び第2のセルでの上りリンク送信が同一サブフレームにおいて前記無線端末にスケジュールされた場合に、前記無線端末において上りリンク送信電力を制御する手順に適用されるレイヤ1設定情報を含む、請求項1~8のいずれか1項に記載の無線通信システム。
- 前記レイヤ1設定情報は、前記第1及び第2のセルでの上りリンク送信の合計に課される最大送信電力を示す、請求項9に記載の無線通信システム。
- 前記レイヤ1設定情報は、前記第1及び第2のセルでの上りリンク送信のそれぞれに個別に課される第1及び第2の最大送信電力を示す、請求項9に記載の無線通信システム。
- 前記レイヤ1設定情報は、前記第1の最大送信電力の設定値と、前記第2の最大送信電力を求めるための前記設定値からのオフセット値を含む、請求項11に記載の無線通信システム。
- 前記第1の制御情報は、前記第1及び第2のセルでの上りリンク送信が同一サブフレームにおいて前記無線端末にスケジュールされた場合に、前記第1のセルでの上りリンク送信のための第1のMedium Access Control Protocol Data Unit(MAC PDU)及び前記第2のセルでの上りリンク送信のための第2のMAC PDUを前記無線端末において生成する手順に適用されるレイヤ2設定情報を含む、請求項1~12のいずれか1項に記載の無線通信システム。
- 前記レイヤ2設定情報は、前記第1のMAC PDUの生成時に前記ネットワークベアラの論理チャネルに対して適用される第1のPrioritized Bit Rate(PBR)、及び前記第2のMAC PDUの生成時に前記論理チャネルに対して適用される第2のPBRを示す、請求項13に記載の無線通信システム。
- 前記レイヤ2設定情報は、前記ネットワークベアラの論理チャネルに与えられるPrioritized Bit Rate(PBR)が、前記第1及び第2のMAC PDUのいずれにおいて優先的に確保されるべきかを示す、請求項13に記載の無線通信システム。
- 基地局装置であって、
無線端末とコアネットワークの間のネットワークベアラが前記基地局装置及び周辺基地局に分割されるベアラ分割を伴うdual connectivityを制御する通信制御手段を備え、
前記通信制御手段は、前記ベアラ分割を伴うdual connectivityのために必要なaccess stratumの第1の制御情報を前記無線端末に送信するよう構成されている、
基地局装置。 - 前記ベアラ分割では、前記基地局装置によって管理される第1のセルを経由する第1の無線ベアラ及び前記周辺基地局によって管理される第2のセルを経由する第2の無線ベアラの両方が前記ネットワークベアラにマッピングされ、
前記第1の制御情報は、前記第1及び第2の無線ベアラと前記ネットワークベアラとのマッピングを示す無線ベアラ設定情報を含む、請求項16に記載の基地局装置。 - 前記通信制御手段は、前記ベアラ分割を伴うdual connectivityのために必要なaccess stratumの第2の制御情報を前記周辺基地局に送信するよう構成されている、請求項16又は17に記載の基地局装置。
- 前記ベアラ分割では、前記基地局装置によって管理される第1のセルを経由する第1の無線ベアラ及び前記周辺基地局によって管理される第2のセルを経由する第2の無線ベアラの両方が前記ネットワークベアラにマッピングされ、
前記第2の制御情報は、前記第2の無線ベアラと前記ネットワークベアラとのマッピングを示す無線ベアラ設定情報を含む、
請求項18に記載の基地局装置。 - 前記第2の制御情報は、ベアラ分割の設定情報を含む、請求項18又は19に記載の基地局装置。
- 前記通信制御手段は、前記無線端末および前記周辺基地局に前記ベアラ分割の実施を指示する、請求項16~19のいずれか1項に記載の基地局装置。
- 前記第1の制御情報は、前記ネットワークベアラの送信データが前記無線端末に存在する場合に上りリンク無線リソースの割り当てを要求するためのScheduling Request又はRandom Access Channel(RACH)が前記基地局装置及び前記周辺基地局のいずれに送信されるべきであるかを示す、請求項16~21のいずれか1項に記載の基地局装置。
- 前記第1の制御情報は、前記基地局装置によって管理される第1のセル及び前記周辺基地局によって管理される第2のセルでの上りリンク送信が同一サブフレームにおいて前記無線端末にスケジュールされた場合に、前記無線端末において上りリンク送信電力を制御する手順に適用されるレイヤ1設定情報を含む、請求項16~22のいずれか1項に記載の基地局装置。
- 前記レイヤ1設定情報は、前記第1及び第2のセルでの上りリンク送信の合計に課される最大送信電力を示す、請求項23に記載の基地局装置。
- 前記レイヤ1設定情報は、前記第1及び第2のセルでの上りリンク送信のそれぞれに個別に課される第1及び第2の最大送信電力を示す、請求項23に記載の基地局装置。
- 前記レイヤ1設定情報は、前記第1の最大送信電力の設定値と、前記第2の最大送信電力を求めるための前記設定値からのオフセット値を含む、請求項25に記載の基地局装置。
- 前記第1の制御情報は、前記基地局装置によって管理される第1のセル及び前記周辺基地局によって管理される第2のセルでの上りリンク送信が同一サブフレームにおいて前記無線端末にスケジュールされた場合に、前記第1のセルでの上りリンク送信のための第1のMedium Access Control Protocol Data Unit(MAC PDU)及び前記第2のセルでの上りリンク送信のための第2のMAC PDUを前記無線端末において生成する手順に適用されるレイヤ2設定情報を含む、請求項16~26のいずれか1項に記載の基地局装置。
- 前記レイヤ2設定情報は、前記第1のMAC PDUの生成時に前記ネットワークベアラの論理チャネルに対して適用される第1のPrioritized Bit Rate(PBR)、及び前記第2のMAC PDUの生成時に前記論理チャネルに対して適用される第2のPBRを示す、請求項27に記載の基地局装置。
- 前記レイヤ2設定情報は、前記ネットワークベアラの論理チャネルに与えられるPrioritized Bit Rate(PBR)が、前記第1及び第2のMAC PDUのいずれにおいて優先的に確保されるべきかを示す、請求項27に記載の基地局装置。
- 無線端末であって、
前記無線端末とコアネットワークの間のネットワークベアラが第1及び第2の基地局に分割されるベアラ分割を伴うdual connectivityを制御する通信制御手段を備え、
前記通信制御手段は、前記ベアラ分割を伴うdual connectivityのために必要なaccess stratumの第1の制御情報を前記第1又は第2の基地局から受信し、前記第1の制御情報を基に前記ベアラ分割の有無を認識し、前記第1の制御情報に基づいて前記dual connectivityの通信を制御するよう構成されている、
無線端末。 - 前記ベアラ分割では、前記第1の基地局によって管理される第1のセルを経由する第1の無線ベアラ及び前記第2の基地局によって管理される第2のセルを経由する第2の無線ベアラの両方が前記ネットワークベアラにマッピングされ、
前記第1の制御情報は、前記第1及び第2の無線ベアラと前記ネットワークベアラとのマッピングを示す無線ベアラ設定情報を含む、請求項30に記載の無線端末。 - 前記第1の制御情報は、前記ネットワークベアラの送信データが前記無線端末に存在する場合に上りリンク無線リソースの割り当てを要求するためのScheduling Request又はRandom Access Channel(RACH)が前記第1及び第2の基地局のいずれに送信されるべきであるかを示す、請求項30又は31に記載の無線端末。
- 前記第1の制御情報は、前記第1の基地局によって管理される第1のセル及び前記第2の基地局によって管理される第2のセルでの上りリンク送信が同一サブフレームにおいて前記無線端末にスケジュールされた場合に、前記無線端末において上りリンク送信電力を制御する手順に適用されるレイヤ1設定情報を含む、請求項30~32のいずれか1項に記載の無線端末。
- 前記レイヤ1設定情報は、前記第1及び第2のセルでの上りリンク送信の合計に課される最大送信電力を示す、請求項33に記載の無線端末。
- 前記レイヤ1設定情報は、前記第1及び第2のセルでの上りリンク送信のそれぞれに個別に課される第1及び第2の最大送信電力を示す、請求項33に記載の無線端末。
- 前記レイヤ1設定情報は、前記第1の最大送信電力の設定値と、前記第2の最大送信電力を求めるための前記設定値からのオフセット値を含む、請求項35に記載の無線端末。
- 前記第1の制御情報は、前記第1の基地局によって管理される第1のセル及び前記第2の基地局によって管理される第2のセルでの上りリンク送信が同一サブフレームにおいて前記無線端末にスケジュールされた場合に、前記第1のセルでの上りリンク送信のための第1のMedium Access Control Protocol Data Unit(MAC PDU)及び前記第2のセルでの上りリンク送信のための第2のMAC PDUを前記無線端末において生成する手順に適用されるレイヤ2設定情報を含む、請求項30~36のいずれか1項に記載の無線端末。
- 前記レイヤ2設定情報は、前記第1のMAC PDUの生成時に前記ネットワークベアラの論理チャネルに対して適用される第1のPrioritized Bit Rate(PBR)、及び前記第2のMAC PDUの生成時に前記論理チャネルに対して適用される第2のPBRを示す、請求項37に記載の無線端末。
- 前記レイヤ2設定情報は、前記ネットワークベアラの論理チャネルに与えられるPrioritized Bit Rate(PBR)が、前記第1及び第2のMAC PDUのいずれにおいて優先的に確保されるべきかを示す、請求項37に記載の無線端末。
- 無線端末とコアネットワークの間のネットワークベアラが第1及び第2の基地局に分割されるベアラ分割を伴うdual connectivityのために必要なaccess stratumの第1の制御情報を前記第1の基地局から前記無線端末に送信することを備える、制御方法。
- 前記ベアラ分割では、前記第1の基地局によって管理される第1のセルを経由する第1の無線ベアラ及び前記第2の基地局によって管理される第2のセルを経由する第2の無線ベアラの両方が前記ネットワークベアラにマッピングされ、
前記第1の制御情報は、前記第1及び第2の無線ベアラと前記ネットワークベアラとのマッピングを示す無線ベアラ設定情報を含む、請求項40に記載の制御方法。 - 前記第1の制御情報は、前記ネットワークベアラの送信データが前記無線端末に存在する場合に上りリンク無線リソースの割り当てを要求するためのScheduling Request又はRandom Access Channel(RACH)が前記第1及び第2の基地局のいずれに送信されるべきであるかを示す、請求項40又は41に記載の制御方法。
- 前記第1の制御情報は、前記第1の基地局によって管理される第1のセル及び前記第2の基地局によって管理される第2のセルでの上りリンク送信が同一サブフレームにおいて前記無線端末にスケジュールされた場合に、前記無線端末において上りリンク送信電力を制御する手順に適用されるレイヤ1設定情報を含む、請求項40~42のいずれか1項に記載の制御方法。
- 前記第1の制御情報は、前記第1の基地局によって管理される第1のセル及び前記第2の基地局によって管理される第2のセルでの上りリンク送信が同一サブフレームにおいて前記無線端末にスケジュールされた場合に、前記第1のセルでの上りリンク送信のための第1のMedium Access Control Protocol Data Unit(MAC PDU)及び前記第2のセルでの上りリンク送信のための第2のMAC PDUを前記無線端末において生成する手順に適用されるレイヤ2設定情報を含む、請求項40~43のいずれか1項に記載の制御方法。
- 無線端末において行われる制御方法であって、
前記無線端末とコアネットワークの間のネットワークベアラが第1及び第2の基地局に分割されるベアラ分割を伴うdual connectivityのために必要なaccess stratumの第1の制御情報を前記第1又は第2の基地局から受信すること、及び
前記第1の制御情報を基に前記ベアラ分割の有無を認識し、前記第1の制御情報に基づいて前記dual connectivityの通信を制御すること、
を備える、制御方法。 - 請求項40~45のいずれか1項に記載の方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体。
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910977220.2A CN110831137B (zh) | 2013-10-31 | 2014-05-09 | 无线电站、无线电终端、及其控制方法 |
CN201910976524.7A CN110856243B (zh) | 2013-10-31 | 2014-05-09 | 无线电通信系统、基站、无线电终端及其方法 |
AU2014343147A AU2014343147B2 (en) | 2013-10-31 | 2014-05-09 | Radio communication system, base station apparatus, and radio terminal |
EP14856858.7A EP3065484B1 (en) | 2013-10-31 | 2014-05-09 | Wireless communication system, base station device, and wireless terminal |
EP19154059.0A EP3496495B1 (en) | 2013-10-31 | 2014-05-09 | Radio communication system, base station apparatus, and method |
CN201480060250.2A CN105874863B (zh) | 2013-10-31 | 2014-05-09 | 无线电通信系统、基站装置以及无线电终端 |
US15/033,039 US10383066B2 (en) | 2013-10-31 | 2014-05-09 | Radio communication system, base station apparatus, and radio terminal |
JP2015544755A JP6376137B2 (ja) | 2013-10-31 | 2014-05-09 | 無線通信システム、基地局装置、及び無線端末 |
EP20202426.1A EP3787363B1 (en) | 2013-10-31 | 2014-05-09 | Radio communication system, base station apparatus, and radio terminal |
SA516371027A SA516371027B1 (ar) | 2013-10-31 | 2016-04-28 | نظام للاتصال اللاسلكي، جهاز للمحطة الرئيسية، وجهاز طرفي لاسلكي |
AU2018200493A AU2018200493B2 (en) | 2013-10-31 | 2018-01-22 | Radio communication system, base station apparatus, and radio terminal |
US16/041,114 US11134532B2 (en) | 2013-10-31 | 2018-07-20 | Radio communication system, base station apparatus, and radio terminal |
US16/245,061 US12177913B2 (en) | 2013-10-31 | 2019-01-10 | Radio communication system, base station apparatus, and radio terminal |
AU2019203201A AU2019203201B2 (en) | 2013-10-31 | 2019-05-07 | Radio communication system, base station apparatus, and radio terminal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013227472 | 2013-10-31 | ||
JP2013-227472 | 2013-10-31 |
Related Child Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/033,039 A-371-Of-International US10383066B2 (en) | 2013-10-31 | 2014-05-09 | Radio communication system, base station apparatus, and radio terminal |
US16/041,114 Continuation US11134532B2 (en) | 2013-10-31 | 2018-07-20 | Radio communication system, base station apparatus, and radio terminal |
US16/245,061 Continuation US12177913B2 (en) | 2013-10-31 | 2019-01-10 | Radio communication system, base station apparatus, and radio terminal |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015063963A1 true WO2015063963A1 (ja) | 2015-05-07 |
Family
ID=53003601
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/002465 WO2015063963A1 (ja) | 2013-10-31 | 2014-05-09 | 無線通信システム、基地局装置、及び無線端末 |
Country Status (8)
Country | Link |
---|---|
US (3) | US10383066B2 (ja) |
EP (3) | EP3496495B1 (ja) |
JP (5) | JP6376137B2 (ja) |
CN (3) | CN105874863B (ja) |
AU (3) | AU2014343147B2 (ja) |
ES (1) | ES2842958T3 (ja) |
SA (1) | SA516371027B1 (ja) |
WO (1) | WO2015063963A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017505056A (ja) * | 2014-01-30 | 2017-02-09 | シャープ株式会社 | デュアル接続性オペレーションのためのシステムおよび方法 |
EP3393173A4 (en) * | 2016-01-08 | 2018-10-31 | Huawei Technologies Co., Ltd. | Terminal device, access network device, air interface configuration method, and wireless communication system |
CN109076549A (zh) * | 2016-04-08 | 2018-12-21 | 株式会社Ntt都科摩 | 用户装置以及通信方法 |
KR20190017026A (ko) * | 2016-06-30 | 2019-02-19 | 후아웨이 테크놀러지 컴퍼니 리미티드 | 다중연결 통신 방법 및 디바이스 |
JP2019092055A (ja) * | 2017-11-15 | 2019-06-13 | シャープ株式会社 | 端末装置および方法 |
EP3387859A4 (en) * | 2015-12-10 | 2019-07-03 | Nokia Solutions and Networks Oy | PROCESS, SYSTEM AND DEVICE |
JP2022118227A (ja) * | 2017-11-15 | 2022-08-12 | シャープ株式会社 | 端末装置、基地局装置、および方法 |
JP2022185122A (ja) * | 2022-06-23 | 2022-12-13 | シャープ株式会社 | 端末装置、基地局装置、および方法 |
JP2023082208A (ja) * | 2022-10-12 | 2023-06-13 | シャープ株式会社 | 端末装置、基地局装置、および方法 |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9572171B2 (en) | 2013-10-31 | 2017-02-14 | Intel IP Corporation | Systems, methods, and devices for efficient device-to-device channel contention |
US10292196B2 (en) * | 2013-12-23 | 2019-05-14 | Apple Inc. | Radio link control duplication for carrier aggregation |
US10159083B2 (en) * | 2014-01-24 | 2018-12-18 | Sharp Kabushiki Kaisha | Wireless communication system, base station apparatus, terminal apparatus, wireless communication method, and integrated circuit |
US10321502B2 (en) * | 2014-01-31 | 2019-06-11 | Sharp Kabushiki Kaisha | Terminal device, base station apparatus, communication system, communication control method, and integrated circuit |
JP5869013B2 (ja) * | 2014-01-31 | 2016-02-24 | 株式会社Nttドコモ | 移動局及び上りデータ送信方法 |
US10141983B2 (en) | 2014-05-08 | 2018-11-27 | Samsung Electronics Co., Ltd. | Method for activating pSCell and SCell in mobile communication system supporting dual connectivity |
WO2016074913A1 (en) * | 2014-11-13 | 2016-05-19 | Telefonaktiebolaget L M Ericsson (Publ) | Systems and methods of discontinuous operation for wireless devices |
CN106162892B (zh) * | 2015-04-15 | 2019-10-29 | 上海诺基亚贝尔股份有限公司 | 非授权频段信道的占用方法及装置 |
JP6709800B2 (ja) * | 2015-05-12 | 2020-06-17 | エルジー エレクトロニクス インコーポレイティド | 無免許スペクトルで動作する少なくとも一つのSCellを有する搬送波集成における論理チャネル優先順位決定を行う方法及びその端末 |
US10568159B2 (en) * | 2015-07-03 | 2020-02-18 | Nokia Solutions And Networks Oy | Split bearer enhancement for multi-connectivity |
US10602529B2 (en) * | 2016-04-29 | 2020-03-24 | Ofinno, Llc | Resource allocation in a wireless device |
KR102076816B1 (ko) * | 2016-05-12 | 2020-02-12 | 에스케이 텔레콤주식회사 | 이종 네트워크 환경에서 차세대 네트워크 서비스를 제공하는 방법 및 장치 |
EP3459292A1 (en) * | 2016-05-20 | 2019-03-27 | Nokia Solutions and Networks Oy | Power efficiency in multiple radio access technologies scenarios |
CN106165488A (zh) * | 2016-06-30 | 2016-11-23 | 北京小米移动软件有限公司 | Rrc连接建立方法及设备 |
US11533771B2 (en) | 2016-09-28 | 2022-12-20 | Nec Corporation | Communication system, radio-access apparatus, radio communication terminal, and control method therefor |
CN109804707A (zh) * | 2016-10-17 | 2019-05-24 | 瑞典爱立信有限公司 | 用于向终端装置提供多个无线电接入网络连接性的技术 |
CN110169141B (zh) | 2016-12-29 | 2021-08-03 | 瑞典爱立信有限公司 | 配置pdcp的网络节点和无线设备、方法及介质 |
US10644974B2 (en) | 2017-05-04 | 2020-05-05 | At&T Intellectual Property I, L.P. | Measurements and radio link monitoring in a wireless communications system |
US11032744B2 (en) | 2017-05-04 | 2021-06-08 | At&T Intellectual Property I, L.P. | Inter-distributed unit beam switch procedure triggered by radio link interruption |
WO2018230623A1 (ja) * | 2017-06-14 | 2018-12-20 | 株式会社Nttドコモ | 無線通信システム、ユーザ装置、無線基地局及び無線通信方法 |
US10485048B2 (en) | 2017-06-15 | 2019-11-19 | Apple Inc. | TDM transmission for inter-RAT dual connectivity UE |
CN109152030B (zh) | 2017-06-16 | 2022-11-15 | 中兴通讯股份有限公司 | 功率共享的方法及装置 |
KR102450189B1 (ko) * | 2017-09-15 | 2022-09-30 | 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 | 스케줄링 요청의 구성 방법, 단말 기기 및 컴퓨터 저장 매체 |
US10499398B2 (en) | 2017-09-29 | 2019-12-03 | At&T Intellectual Property I, L.P. | Facilitating mobile device-assisted mobility enhancement to improve user plane interruption time |
TWI688286B (zh) * | 2017-10-29 | 2020-03-11 | 宏達國際電子股份有限公司 | 處理無線存取技術的無線承載組態的裝置及方法 |
JP2021514561A (ja) * | 2017-12-27 | 2021-06-10 | オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. | データ伝送方法、装置及びコンピュータ記憶媒体 |
JP2019121831A (ja) * | 2017-12-28 | 2019-07-22 | シャープ株式会社 | 端末装置、方法、および、集積回路 |
JP7043252B2 (ja) * | 2017-12-28 | 2022-03-29 | シャープ株式会社 | 端末装置、方法、および、集積回路 |
US11601841B2 (en) * | 2018-08-01 | 2023-03-07 | Nec Corporation | Radio station, radio communication method, non-transitory computer readable medium, and radio communication system |
US11363497B2 (en) | 2019-01-03 | 2022-06-14 | Samsung Electronics Co., Ltd. | Multi-path end-to-end connectivity for cellular mesh networks |
JP7077985B2 (ja) * | 2019-02-13 | 2022-05-31 | 日本電信電話株式会社 | リソース競合調停装置、リソース競合調停方法、及びプログラム |
US11083032B2 (en) * | 2019-03-29 | 2021-08-03 | At&T Intellectual Property I, L.P. | Apparatus and method for multi-network connectivity with a dynamic node selection |
CN113452487B (zh) * | 2020-03-25 | 2022-09-13 | 展讯通信(上海)有限公司 | 数据传输方法及装置 |
CN113473602A (zh) * | 2020-03-30 | 2021-10-01 | 维沃移动通信有限公司 | 传输控制方法及设备 |
CN115398992A (zh) * | 2020-04-08 | 2022-11-25 | 苹果公司 | 用于闭环上行链路功率控制的系统和方法 |
US12133159B2 (en) * | 2020-10-12 | 2024-10-29 | Cisco Technology, Inc. | In-band signaling of access network information along the user-plane for differentiated charging |
US12245168B2 (en) | 2020-12-29 | 2025-03-04 | Samsung Electronics Co., Ltd. | Electronic device and method of controlling transmission power in electronic device supporting carrier aggregation |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014039124A (ja) * | 2012-08-14 | 2014-02-27 | Ntt Docomo Inc | 移動通信方法及び移動局 |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7899060B2 (en) * | 2004-04-01 | 2011-03-01 | Nortel Networks Limited | Method for providing bearer specific information for wireless networks |
CN101262679B (zh) * | 2007-03-06 | 2012-02-08 | 中兴通讯股份有限公司 | 资源释放方法 |
US8223688B2 (en) | 2007-03-07 | 2012-07-17 | Wi-Lan, Inc. | Channel aggregation |
CN101345703A (zh) | 2007-08-06 | 2009-01-14 | 华为技术有限公司 | 一种承载资源预留方法、系统和装置 |
EP2327250B1 (en) * | 2008-01-14 | 2011-12-07 | Nortel Networks Limited | Co-existence of single radio voice call continuity (srvcc) solutions |
KR101697596B1 (ko) * | 2009-01-29 | 2017-01-18 | 엘지전자 주식회사 | 전송 전력을 제어하는 방법 및 이를 위한 장치 |
US20100271970A1 (en) * | 2009-04-22 | 2010-10-28 | Interdigital Patent Holdings, Inc. | Method and apparatus for transmitting uplink control information for carrier aggregated spectrums |
CN101932070B (zh) * | 2009-06-19 | 2013-12-11 | 电信科学技术研究院 | 一种载波聚合系统中配置载波的方法及装置 |
WO2011085230A2 (en) * | 2010-01-08 | 2011-07-14 | Interdigital Patent Holdings, Inc. | Channel state information transmission for multiple carriers |
KR101568139B1 (ko) * | 2010-01-11 | 2015-11-12 | 삼성전자주식회사 | 이동 통신 시스템 및 그 이동 통신 시스템에서 rach 액세스 방법 |
WO2011135096A1 (en) | 2010-04-30 | 2011-11-03 | Nokia Siemens Networks Oy | Radio base station, control node, and methods for supporting a serving cell change of a mobile terminal in a radio communications system |
US8965442B2 (en) * | 2010-05-07 | 2015-02-24 | Qualcomm Incorporated | Uplink power control in aggregated carrier communication systems |
EP3145108A1 (en) * | 2010-06-18 | 2017-03-22 | BlackBerry Limited | System and method for uplink control information transmission in carrier aggregation |
CN107437985B (zh) * | 2011-02-18 | 2023-10-13 | 华为技术有限公司 | 一种建立演进分组系统承载的方法及基站 |
JP5329598B2 (ja) * | 2011-04-20 | 2013-10-30 | シャープ株式会社 | 通信システム、移動局装置、基地局装置、ランダムアクセス処理方法及び集積回路 |
CN102833862B (zh) | 2011-06-17 | 2015-04-29 | 华为技术有限公司 | 通讯方法、基站和终端设备 |
KR20140038509A (ko) | 2011-07-12 | 2014-03-28 | 미쓰비시 가가꾸 가부시키가이샤 | 수지 조성물 및 이형 필름 |
SG2014011043A (en) | 2011-08-12 | 2014-07-30 | Interdigital Patent Holdings | Methods, apparatus and systems for power control and timing advance |
WO2013048143A2 (en) | 2011-09-27 | 2013-04-04 | Samsung Electronics Co., Ltd. | A method and appratus for transmission power control for a sounding reference signal |
KR101867314B1 (ko) * | 2011-11-15 | 2018-06-15 | 주식회사 골드피크이노베이션즈 | 다중 요소 반송파 시스템에서 상향링크 전송전력의 제어장치 및 방법 |
CN106100816B (zh) * | 2011-11-25 | 2019-10-22 | 华为技术有限公司 | 实现载波聚合的方法、基站和用户设备 |
JP6105641B2 (ja) | 2012-03-07 | 2017-03-29 | 株式会社Nttドコモ | 移動通信のための物理レイヤおよびリンクレイヤにおける方法および装置 |
CN106488544B (zh) * | 2012-03-23 | 2020-08-07 | 华为技术有限公司 | 上行功率控制方法、网络节点及系统 |
US20130260735A1 (en) | 2012-04-01 | 2013-10-03 | Esmael Hejazi Dinan | Radio Configuration for a Wireless Device and Base Station |
US9320077B2 (en) * | 2012-07-17 | 2016-04-19 | Innovative Sonic Corporation | Method and apparatus for reducing signaling overhead in a wireless communication network |
EP2943020B1 (en) | 2013-01-03 | 2019-05-01 | LG Electronics Inc. | Method and apparatus for transmitting uplink signals in wireless communication system |
EP2944133B1 (en) * | 2013-01-10 | 2022-09-07 | Telefonaktiebolaget LM Ericsson (publ) | A user equipment and a method for power control of uplink transmissions |
US20160021581A1 (en) * | 2013-01-17 | 2016-01-21 | Interdigital Patent Holdings, Inc. | Packet data convergence protocol (pdcp) placement |
US9144091B2 (en) * | 2013-01-17 | 2015-09-22 | Sharp Kabushiki Kaisha | Devices for establishing multiple connections |
AU2014219562B2 (en) * | 2013-02-22 | 2017-09-21 | Samsung Electronics Co., Ltd. | Method and system for providing simultaneous connectivity between multiple E-NodeBs and user equipment |
US9386619B2 (en) | 2013-02-22 | 2016-07-05 | Htc Corporation | Method of handling a cell addition for dual connectivity and related communication device |
US9444745B2 (en) * | 2013-03-08 | 2016-09-13 | Blackberry Limited | Sending data rate information to a wireless access network node |
US9237589B2 (en) * | 2013-04-04 | 2016-01-12 | Lg Electronics Inc. | Method and apparatus for performing plural network attachment procedures to support plural connections in a wireless access system |
US20160128046A1 (en) | 2013-05-09 | 2016-05-05 | Nokia Siemens Networks Oy | Bearer Configuration in Dual Connectivity Communication |
US9479230B2 (en) * | 2013-05-31 | 2016-10-25 | Blackberry Limited | Systems and methods for data offload in wireless networks |
US9497682B2 (en) * | 2013-06-07 | 2016-11-15 | Intel Corporation | Central processing unit and methods for supporting coordinated multipoint transmission in an LTE network |
CN104349441B (zh) | 2013-08-07 | 2020-03-17 | 夏普株式会社 | 主基站、用户设备及其控制方法 |
WO2015020606A1 (en) | 2013-08-09 | 2015-02-12 | Telefonaktiebolaget L M Ericsson (Publ) | Mobile terminal, first wireless network access point and methods performed therein |
WO2015046911A1 (en) * | 2013-09-26 | 2015-04-02 | Lg Electronics Inc. | Method and apparatus for signaling between enbs in a wireless communication system supporting dual connectivity |
US20150089382A1 (en) * | 2013-09-26 | 2015-03-26 | Wu-chi Feng | Application context migration framework and protocol |
CN105580419B (zh) | 2013-09-26 | 2020-02-07 | 株式会社Kt | 上行链路数据传输方法及其装置 |
EP2854444A1 (en) * | 2013-09-27 | 2015-04-01 | Panasonic Intellectual Property Corporation of America | Efficient uplink scheduling mechanism for dual connectivity |
EP2854460B1 (en) * | 2013-09-27 | 2017-04-05 | Sun Patent Trust | Power control and power headroom reporting for dual connectivity |
-
2014
- 2014-05-09 CN CN201480060250.2A patent/CN105874863B/zh active Active
- 2014-05-09 CN CN201910977220.2A patent/CN110831137B/zh active Active
- 2014-05-09 AU AU2014343147A patent/AU2014343147B2/en not_active Ceased
- 2014-05-09 EP EP19154059.0A patent/EP3496495B1/en active Active
- 2014-05-09 WO PCT/JP2014/002465 patent/WO2015063963A1/ja active Application Filing
- 2014-05-09 EP EP20202426.1A patent/EP3787363B1/en active Active
- 2014-05-09 EP EP14856858.7A patent/EP3065484B1/en active Active
- 2014-05-09 CN CN201910976524.7A patent/CN110856243B/zh active Active
- 2014-05-09 US US15/033,039 patent/US10383066B2/en active Active
- 2014-05-09 JP JP2015544755A patent/JP6376137B2/ja active Active
- 2014-05-09 ES ES19154059T patent/ES2842958T3/es active Active
-
2016
- 2016-04-28 SA SA516371027A patent/SA516371027B1/ar unknown
-
2018
- 2018-01-22 AU AU2018200493A patent/AU2018200493B2/en not_active Ceased
- 2018-06-12 JP JP2018112030A patent/JP6512345B2/ja active Active
- 2018-07-18 JP JP2018134701A patent/JP2018182752A/ja not_active Withdrawn
- 2018-07-20 US US16/041,114 patent/US11134532B2/en active Active
-
2019
- 2019-01-10 US US16/245,061 patent/US12177913B2/en active Active
- 2019-04-08 JP JP2019073618A patent/JP6575714B2/ja active Active
- 2019-05-07 AU AU2019203201A patent/AU2019203201B2/en not_active Ceased
- 2019-08-08 JP JP2019146329A patent/JP6766931B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014039124A (ja) * | 2012-08-14 | 2014-02-27 | Ntt Docomo Inc | 移動通信方法及び移動局 |
Non-Patent Citations (8)
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017505056A (ja) * | 2014-01-30 | 2017-02-09 | シャープ株式会社 | デュアル接続性オペレーションのためのシステムおよび方法 |
EP3387859A4 (en) * | 2015-12-10 | 2019-07-03 | Nokia Solutions and Networks Oy | PROCESS, SYSTEM AND DEVICE |
EP3687223A1 (en) * | 2016-01-08 | 2020-07-29 | Huawei Technologies Co., Ltd. | Terminal device, access network device, air interface configuration method, and wireless communications system |
EP3393173A4 (en) * | 2016-01-08 | 2018-10-31 | Huawei Technologies Co., Ltd. | Terminal device, access network device, air interface configuration method, and wireless communication system |
CN108781403A (zh) * | 2016-01-08 | 2018-11-09 | 华为技术有限公司 | 终端设备、接入网设备、空口配置方法和无线通信系统 |
US10999749B2 (en) | 2016-01-08 | 2021-05-04 | Huawei Technologies Co., Ltd. | Terminal device, access network device, air interface configuration method, and wireless communications system |
CN108781403B (zh) * | 2016-01-08 | 2020-12-08 | 华为技术有限公司 | 终端设备、接入网设备、空口配置方法和无线通信系统 |
US10652764B2 (en) | 2016-01-08 | 2020-05-12 | Huawei Technologies Co., Ltd. | Terminal device, access network device, air interface configuration method, and wireless communications system |
CN109076549A (zh) * | 2016-04-08 | 2018-12-21 | 株式会社Ntt都科摩 | 用户装置以及通信方法 |
JPWO2017175816A1 (ja) * | 2016-04-08 | 2019-02-21 | 株式会社Nttドコモ | ユーザ装置及び通信方法 |
US10764956B2 (en) | 2016-04-08 | 2020-09-01 | Ntt Docomo, Inc. | User equipment and communication method |
EP3435728A4 (en) * | 2016-04-08 | 2019-11-06 | Ntt Docomo, Inc. | USER DEVICE AND COMMUNICATION PROCESS |
EP3461216A4 (en) * | 2016-06-30 | 2019-04-24 | Huawei Technologies Co., Ltd. | METHOD AND DEVICE FOR COMMUNICATING WITH SEVERAL CONNECTIONS |
JP2019524039A (ja) * | 2016-06-30 | 2019-08-29 | 華為技術有限公司Huawei Technologies Co.,Ltd. | マルチコネクティビティ通信方法及び装置 |
KR20190017026A (ko) * | 2016-06-30 | 2019-02-19 | 후아웨이 테크놀러지 컴퍼니 리미티드 | 다중연결 통신 방법 및 디바이스 |
US11013048B2 (en) | 2016-06-30 | 2021-05-18 | Huawei Technologies Co., Ltd. | Multi-connectivity communication method and device |
KR102280393B1 (ko) | 2016-06-30 | 2021-07-21 | 후아웨이 테크놀러지 컴퍼니 리미티드 | 다중연결 통신 방법 및 디바이스 |
US11805564B2 (en) | 2016-06-30 | 2023-10-31 | Huawei Technologies Co., Ltd. | Multi-connectivity communication method and device |
JP2019092055A (ja) * | 2017-11-15 | 2019-06-13 | シャープ株式会社 | 端末装置および方法 |
JP7095977B2 (ja) | 2017-11-15 | 2022-07-05 | シャープ株式会社 | 端末装置、基地局装置、および方法 |
JP2022118227A (ja) * | 2017-11-15 | 2022-08-12 | シャープ株式会社 | 端末装置、基地局装置、および方法 |
JP2022185122A (ja) * | 2022-06-23 | 2022-12-13 | シャープ株式会社 | 端末装置、基地局装置、および方法 |
JP2023082208A (ja) * | 2022-10-12 | 2023-06-13 | シャープ株式会社 | 端末装置、基地局装置、および方法 |
JP7518306B2 (ja) | 2022-10-12 | 2024-07-17 | シャープ株式会社 | 端末装置、基地局装置、および方法 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6575714B2 (ja) | 無線局、制御方法、及び無線通信システム | |
JP6904460B2 (ja) | 無線局、無線通信システム、及び通信制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14856858 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015544755 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2014343147 Country of ref document: AU Date of ref document: 20140509 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15033039 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2014856858 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014856858 Country of ref document: EP |