[go: up one dir, main page]

WO2015056525A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2015056525A1
WO2015056525A1 PCT/JP2014/074929 JP2014074929W WO2015056525A1 WO 2015056525 A1 WO2015056525 A1 WO 2015056525A1 JP 2014074929 W JP2014074929 W JP 2014074929W WO 2015056525 A1 WO2015056525 A1 WO 2015056525A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
resin
red
emitting device
Prior art date
Application number
PCT/JP2014/074929
Other languages
English (en)
French (fr)
Inventor
洋一 奥野
辻 亮
孝信 松尾
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2015542553A priority Critical patent/JPWO2015056525A1/ja
Priority to CN201480056596.5A priority patent/CN105659396A/zh
Priority to US15/028,499 priority patent/US20160233393A1/en
Publication of WO2015056525A1 publication Critical patent/WO2015056525A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8511Wavelength conversion means characterised by their material, e.g. binder
    • H10H20/8512Wavelength conversion materials
    • H10H20/8513Wavelength conversion materials having two or more wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/617Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/666Aluminates; Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/676Aluminates; Silicates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/813Bodies having a plurality of light-emitting regions, e.g. multi-junction LEDs or light-emitting devices having photoluminescent regions within the bodies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8511Wavelength conversion means characterised by their material, e.g. binder
    • H10H20/8512Wavelength conversion materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/852Encapsulations
    • H10H20/853Encapsulations characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/852Encapsulations
    • H10H20/854Encapsulations characterised by their material, e.g. epoxy or silicone resins
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate

Definitions

  • the present invention relates to a light emitting device.
  • FIG. 12 is a cross-sectional view illustrating the configuration of the semiconductor light emitting device 200 disclosed in Patent Document 1.
  • a near ultraviolet LED element 214 is mounted on a circuit board 211.
  • a blue / green light emitting portion 215 in which a blue phosphor and a green phosphor are dispersed in a sealing material is formed on the surface of the circuit board 211 so as to directly cover the near ultraviolet LED element 214.
  • a red light emitting layer 222 in which a red phosphor which is a phosphor having hexafluorosilicate as a base material is dispersed in a sealing material is disposed.
  • the blue / green light emitting portion 215 and the red light emitting layer 222 are formed so as to protrude from the circuit board 211.
  • the red light emitting layer 222 having a phosphor made of hexafluorosilicate as a base material protrudes linearly from the circuit board 211 in the vertical direction and has a shape in which the tip portion is curved. It has become.
  • one point of the surface of the circuit board 211 hereinafter simply referred to as the red light emitting layer 222 of the central axis perpendicular to the circuit board 211 of the red light emitting layer 222 (the center point of the red light emitting layer 222 when viewed in plan).
  • the distance from the center to the red light emitting layer 222 is not constant.
  • the distance between the near-ultraviolet LED element 214 arranged at the center of the red light emitting layer 222 and the red light emitting layer 222 is not constant, and the light emission intensity by the light from the near ultraviolet LED element 214 in the red light emitting layer 222.
  • variation occurs to the extent that changes with time.
  • the present invention has been made in order to solve the above-mentioned problems, and its purpose is to use a fluoride represented by (Na, K) 2 (Ge, Si, Ti) F 6 : Mn as a base material.
  • a fluoride represented by (Na, K) 2 (Ge, Si, Ti) F 6 : Mn as a base material.
  • the light-emitting layer containing a phosphor suppresses the variation in the light emission intensity over time within the layer.
  • a light-emitting device includes a substrate, a light-emitting element disposed on the substrate, a sealing resin disposed on the substrate and sealing the light-emitting element. And a first phosphor-containing layer containing a red phosphor that is a phosphor having a base material of a fluoride represented by (Na, K) 2 (Ge, Si, Ti) F 6 : Mn.
  • the first phosphor-containing layer has a hemispherical shape that covers the light emitting element by being directly or indirectly arranged on the surface of the sealing resin.
  • a light emitting layer containing a phosphor whose base material is a fluoride represented by (Na, K) 2 (Ge, Si, Ti) F 6 : Mn emits light within the layer.
  • a fluoride represented by (Na, K) 2 (Ge, Si, Ti) F 6 : Mn emits light within the layer.
  • FIG. 1 is a cross-sectional view illustrating a configuration of an LED light emitting device according to Embodiment 1.
  • FIG. 1 is a plan view illustrating a configuration of an LED light emitting device according to Embodiment 1.
  • FIG. It is sectional drawing showing the structure of the LED light-emitting device which concerns on a comparative example. It is a figure which shows the initial emission spectrum of the LED light-emitting device which concerns on a comparative example, and the emission spectrum when light emission is continued for about 100 hours. It is a figure which shows the emission spectrum when the LED light-emitting device which concerns on this invention is light-emitted continuously for 100 hours.
  • FIG. 5 is a cross-sectional view illustrating a configuration of an LED light emitting device according to Embodiment 2.
  • FIG. It is sectional drawing showing the structure of the LED light-emitting device which concerns on Embodiment 3.
  • FIG. It is sectional drawing showing the structure of the conventional semiconductor light-emitting device. It is sectional drawing showing the structure of the LED light-emitting device which concerns on the modification of the LED light-emitting device of Embodiment 3.
  • Embodiment 1 Hereinafter, embodiments of the present invention will be described in detail.
  • FIG. 1 is a cross-sectional view illustrating a configuration of an LED light emitting device 10 according to the first embodiment.
  • FIG. 2 is a plan view illustrating the configuration of the LED light emitting device 10 according to the first embodiment.
  • an LED light-emitting device (light-emitting device) 10 includes a pair of electrodes 2 and 3, two LED elements (light-emitting elements) 14a and 14b, and an LED element 14a on a substrate 1.
  • the board 1 is a wiring board on which the LED elements 14a and 14b are mounted.
  • the substrate 1 is preferably made of a material having a high reflecting effect on the main surface, which is the mounting surface of the LED elements 14a and 14b.
  • the substrate 1 is a ceramic substrate.
  • One of the electrodes 2 and 3 is an anode electrode, and the other is a cathode electrode.
  • the electrodes 2 and 3 are wires (wiring patterns) for wire bonding of the LED elements 14 a and 14 b formed on the substrate 1.
  • the LED elements 14a and 14b are disposed between the electrode 2 and the electrode 3.
  • the LED elements 14 a and 14 b are connected to each other by a wire 15 made of gold or the like, the LED element 14 a is connected to the electrode 2, and the LED element 14 b is connected to the electrode 3.
  • substrate 1 and LED element 14a * 14b are connected electrically and mechanically.
  • the LED elements 14a and 14b are blue LED elements that emit blue light having a peak wavelength of 450 nm as an example.
  • the emission colors of the LED elements 14a and 14b are not limited to this, and may be ultraviolet LED elements that emit ultraviolet (near ultraviolet) light having a peak wavelength of 390 nm to 420 nm. Luminous efficiency can be improved by using an ultraviolet LED element.
  • the LED element 14a may be a blue LED element or an ultraviolet LED element
  • the LED element 14b may be a green LED element that emits green light. In this way, white light can be created by mixing the blue light from the blue LED element, the green light from the green LED element, and the red light from the red phosphor.
  • the LED light emitting device 10 is described as using two LED elements 14a and 14b, but the number of LED elements is not limited to two.
  • the LED light emitting device 10 may have only one LED element or three or more LED elements.
  • the LED elements 14a and 14b in the LED light emitting device 10 are connected in series. However, the LED elements 14a and 14b may be connected in parallel.
  • the LED light emitting device 10 uses the LED elements 14a and 14b as light emitting elements, but other light emitting elements such as a semiconductor laser and an organic EL element can also be used.
  • the translucent resin 21 seals the LED elements 14 a and 14 b and the wire 15.
  • the translucent resin 21 may be a silicone resin.
  • the translucent resin 21 is preferably transparent, but is not necessarily transparent if it can transmit most of the light emitted from the LED elements 14a and 14b.
  • the translucent resin 21 is formed on the substrate 1 so as to have a hemispherical shape. In other words, one point of the surface of the substrate 1 (hereinafter simply referred to as the translucent resin 21) out of the central axis perpendicular to the substrate 1 of the translucent resin 21 (the central point of the translucent resin 21 when viewed in plan).
  • the translucent resin 21 can be formed in a hemispherical shape on the surface of the substrate 1 by applying a transparent resin such as a silicone resin to the surface of the substrate 1 as an example.
  • the radius of the translucent resin 21 is about 0.1 or more, preferably about 0.4 mm or more.
  • the red phosphor resin 22 is obtained by dispersing a red phosphor that emits red light by light from the LED elements 14a and 14b in a transparent resin that is a sealing material.
  • a silicone resin can be used as an example of the transparent resin constituting the red phosphor resin 22 .
  • the red phosphor dispersed in the transparent resin of the red phosphor resin 22 is a phosphor whose base material is a fluoride represented by (Na, K) 2 (Ge, Si, Ti) F 6 : Mn.
  • a phosphor using potassium hexafluorosilicate (K 2 SiF 6 ) as a base material hereinafter referred to as K 2 SiF 6 : Mn
  • K 2 SiF 6 potassium hexafluorosilicate
  • the phosphor containing K 2 SiF 6 : Mn has a problem in that the emission intensity decreases with time due to light from the LED element included in the phosphor, light emitted from the LED element, and heat. Found the inventors.
  • the emission intensity of the phosphor containing K 2 SiF 6 : Mn changes with time, and when the driving current is 300 mA, the K is particularly noticeable.
  • the emission intensity of the phosphor containing 2 SiF 6 : Mn changes with time.
  • the phosphor that emits light is not limited to a phosphor containing K 2 SiF 6 : Mn, but a phosphor that uses a fluoride represented by (Na, K) 2 (Ge, Si, Ti) F 6 : Mn as a base material. It can be said that it occurs in general.
  • the red phosphor resin 22 is disposed on the surface of the translucent resin 21 that seals the LED elements 14a and 14b without directly sealing the LED elements 14a and 14b.
  • the red phosphor resin 22 is disposed away from the LED elements 14a and 14b by at least the amount of the translucent resin 21 disposed.
  • Mn is a temporal change in emission intensity of a phosphor using a fluoride represented by Mn as a base material, and a variation in emission intensity in the red phosphor resin 22 over time. Can be suppressed.
  • the red phosphor resin 22 is preferably separated from the LED elements 14a and 14b by about 0.1 mm or more, preferably about 0.4 mm or more.
  • the red phosphor resin 22 is disposed on the surface of the translucent resin 21 and has a shape along the surface of the translucent resin 21.
  • the red phosphor resin 22 is formed in a hemispherical shape together with the translucent resin 21 disposed on the inner side.
  • one point of the surface of the substrate 1 (hereinafter simply referred to as the red phosphor resin 22) out of the central axis perpendicular to the substrate 1 of the red phosphor resin 22 (the center point of the red phosphor resin 22 in plan view).
  • the surface of the red phosphor resin 22 (interface with the outside) (hereinafter may be referred to as the radius of the red phosphor resin 22).
  • the red phosphor resin 22 has a shape other than the hemispherical shape, the light emitted from the LED elements 14a and 14b and the emitted heat are transmitted substantially uniformly.
  • the red phosphor resin 22 is described as being directly disposed on the surface of the translucent resin 21, but the red phosphor resin 22 is indirectly translucent through another layer. It may be arranged on the surface of the resin 21.
  • the plurality of LED elements 14a and 14b are arranged so as to be symmetric with respect to the center of the red phosphor resin 22. This is because the light and heat from the LED elements 14a and 14b can be transmitted to the red phosphor resin 22 as uniformly as possible.
  • Red phosphor resin 22 is a silicone resin (organo-modified silicone, phenyl silicone resin) or the like of the transparent resin K 2 SiF 6: Mn of such (Na, K) 2 (Ge , Si, Ti) F 6: In Mn
  • K 2 SiF 6 Mn of such (Na, K) 2 (Ge , Si, Ti) F 6: In Mn
  • a resin in which a phosphor containing a fluoride as a base material is dispersed is applied to the surface of the substrate 1 to form a hemispherical shape on the surface of the substrate 1.
  • a phosphor made of a fluoride represented by (Na, K) 2 (Ge, Si, Ti) F 6 : Mn is weak in resistance to light and heat, and the red phosphor resin 22 is composed of the red phosphor.
  • the red phosphor resin 22 needs to be separated from the LED elements 14a and 14b.
  • Example 1 Next, Example 1 will be described.
  • FIG. 3 is a cross-sectional view illustrating a configuration of an LED light emitting device 100 according to a comparative example.
  • the LED light emitting device 100 includes a pair of electrodes (not shown), an LED element 114, a red / green phosphor resin 123 that seals the LED element 114, and red / green fluorescence on a substrate 111. And a translucent resin 121 provided on the surface of the red / green phosphor resin 123 so as to cover the body resin 123.
  • the LED element 114 emits blue light.
  • the LED element 114 is wire bonded to the pair of electrodes.
  • the red / green phosphor resin 123 is disposed on the substrate 111 and directly covers the LED element 114.
  • the red / green phosphor resin 123 is a transparent resin in which a green phosphor 123G that emits green light by the light from the LED element 114 and a red phosphor 123R that emits red light by the light from the LED element 114 are dispersed. It is.
  • the red phosphor 123R is K 2 SiF 6 : Mn.
  • FIG. 4 is a diagram showing an initial emission spectrum of the LED light emitting device 100 according to the comparative example and an emission spectrum when light emission is continued for about 100 hours (92 h).
  • the drive current passed through the LED element 114 for light emission of the LED light emitting device 100 was 300 mA.
  • the emission spectrum of the light emitted for about 100 hours has a reduced red emission intensity in the range of 600 nm to 660 nm compared to the initial emission spectrum. From this result, it can be seen that the LED light emitting device 100 causes a change in chromaticity and light emission intensity with time. This is considered that the light and heat from the LED element 114 affect K 2 SiF 6 : Mn.
  • the LED light emitting device 10 according to the present embodiment shown in FIG. 1 was produced.
  • the red phosphor resin 22 was disposed at a distance of about 0.4 mm from the LED elements 14 a and 14 b by setting the radius of the translucent resin 21 to 0.4 mm.
  • the drive current sent through LED element 14a * 14b for light emission of the LED light-emitting device 10 was 300 mA, and the LED light-emitting device 10 was light-emitted for 100 hours.
  • FIG. 5 is a diagram showing an emission spectrum when the LED light emitting device 10 is allowed to emit light continuously for 100 hours.
  • the emission spectrum when the LED light emitting device 10 is continuously emitted for 100 hours is the same as the initial emission spectrum and the emission intensity in the LED light emitting device 100 which is the comparative example shown in FIG. 4.
  • the red emission intensity does not decrease in the range of 600 nm to 660 nm.
  • the intensity of the emission spectrum, in particular, the emission spectrum in the red wavelength band can be reduced. It was found that changes with time can be suppressed.
  • the red phosphor resin 22 is arranged on the surface of the translucent resin 21 to form a hemispherical shape, and is separated from the LED elements 14a and 14b covered by the red phosphor resin 22 at a substantially equal distance. It was also found that the intensity variation in the red phosphor resin 22 layer accompanying the change with time of the red light emitted from the red phosphor resin 22 by the light from the LED elements 14a and 14b can be suppressed.
  • FIG. 6 is a diagram showing a relationship between the light emission time and the chromaticity x in the xy chromaticity coordinates in the LED light emitting devices 10 and 100.
  • FIG. 7 is a diagram showing the relationship between the light emission time and the chromaticity y in the xy chromaticity coordinates in the LED light emitting devices 10 and 100. Note that the drive current is 300 mA for both the LED light emitting devices 10 and 100.
  • the “energization time” shown on the horizontal axis of FIGS. 6 and 7 represents the light emission time of each of the LED light emitting devices 10 and 100.
  • FIGS. 6 and 7 show changes over time in chromaticity of the LED light-emitting device 10 and the LED light-emitting device 100 of FIG. 1 using K 2 SiF 6 : Mn as a red phosphor.
  • the LED light-emitting device 100 has a value that greatly decreases with time, especially the value indicated by x in xy.
  • the values of x and y hardly change with time.
  • FIG. 8 is a diagram showing the relationship between the light emission time when the drive current of the LED light emitting device 100 is changed and the chromaticity x in the xy chromaticity coordinates.
  • FIG. 9 is a diagram showing the relationship between the light emission time when the drive current of the LED light emitting device 100 is changed and the chromaticity y in the xy chromaticity coordinates.
  • the “energization time” shown on the horizontal axis of FIGS. 8 and 9 represents the light emission time of the LED light emitting device 100.
  • the drive current is (1) 200 mA (2) 145 mA (3) 119 mA (4) 95 mA (5) 300 mA, which is a high current (1) 200 mA and (5) 300 mA. It can be seen that the change with time of the chromaticity x is remarkable, and in particular, (5) the change with time of the chromaticity x at 300 mA is large.
  • Embodiment 2 The following describes Embodiment 2 of the present invention with reference to FIG.
  • members having the same functions as those described in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
  • embodiments of the present invention will be described in detail.
  • FIG. 10 is a cross-sectional view illustrating a configuration of the LED light emitting device 11 according to the second embodiment.
  • the LED light-emitting device (light-emitting device) 11 includes a red / green phosphor resin (first phosphor-containing layer) 23 instead of the red phosphor resin 22, and one LED element (light-emitting element) instead of the LED elements 14a and 14b. It differs from the LED light-emitting device 10 by the point provided with (element) 14.
  • a red / yellow phosphor resin first phosphor-containing layer
  • Other configurations of the LED light emitting device 11 are the same as those of the LED light emitting device 10.
  • the LED element 14 is connected to each of a pair of electrodes (not shown) disposed on the surface of the substrate 1 by wires (not shown).
  • the LED element 14 is arranged on the surface of the substrate 1 so as to be positioned at the center of the translucent resin 21 having a hemispherical shape when viewed in plan.
  • the LED element 14 is a blue LED element that emits blue light having a peak wavelength of 450 nm.
  • the emission color of the LED element 14 is not limited to this, and it may be an ultraviolet LED element that emits ultraviolet (near ultraviolet) light having a peak wavelength of 390 nm to 420 nm.
  • the translucent resin 21 covers the LED element 14 and is arranged on the substrate 1 so as to have a hemispherical shape.
  • the radius of the translucent resin 21 is about 0.1 mm or more, preferably about 0.4 mm or more.
  • the red / green phosphor resin 23 is a sealing material, a transparent resin such as a silicone resin, and a fluoride represented by (Na, K) 2 (Ge, Si, Ti) F 6 : Mn that is a red phosphor. And a green phosphor which is excited by blue light and emits green light is dispersed.
  • An example of the red phosphor dispersed in the red / green phosphor resin 23 is K 2 SiF 6 : Mn.
  • the red / yellow phosphor resin is a sealing material and a red phosphor on a transparent resin such as a silicone resin.
  • (Na, K) 2 (Ge, Si, Ti) F 6 Disperse a phosphor having a base material of fluoride represented by Mn and a yellow phosphor that is excited by blue light and emits yellow light. Just do it.
  • An example of the red phosphor dispersed in the red / yellow phosphor resin is K 2 SiF 6 : Mn.
  • Examples of the green phosphor or yellow phosphor constituting the red / green phosphor resin 23 or the red / yellow phosphor resin include (Ba, Sr, Ca, Mg) 2 SiO 4 : Eu, (Mg, Ca, Sr).
  • the red / green phosphor resin 23 is disposed on the surface of the translucent resin 21 and has a shape along the surface of the translucent resin 21.
  • the red / green phosphor resin 23 is formed in a hemispherical shape together with the translucent resin 21 disposed on the inner side.
  • one point of the surface of the substrate 1 (hereinafter simply referred to as red) of the central axis perpendicular to the substrate 1 of the red / green phosphor resin 23 (the center point of the red / green phosphor resin 23 when viewed in plan).
  • the red / green phosphor resin 23 is irradiated with light emitted from the LED element 14 substantially uniformly as compared with the case of a shape other than the hemispherical shape. Therefore, (Na, K) 2 (Ge, Si, Ti) F 6 : Mn contained in the red / green phosphor resin 23 due to the light emitted from the LED element 14 or the heat dissipated. It is possible to suppress the variation of the luminescence intensity of the phosphor having the fluoride as a base material in the red / green phosphor resin 23 over time.
  • the red / green phosphor resin 23 covers only one LED element 14, and when viewed in plan, the LED element 14 is positioned on the surface of the substrate 1 so as to be positioned at the center of the hemispherical red / green phosphor resin 23. It is arranged in. Thereby, compared with the case where two or more LED elements are arranged, the light emitted from the LED elements 14 is more uniformly irradiated to the red / green phosphor resin 23. For this reason, the fluoride represented by (Na, K) 2 (Ge, Si, Ti) F 6 : Mn contained in the red / green phosphor resin 23 due to the light emitted from the LED element 14. It is possible to further suppress the variation in the luminescence intensity of the phosphor having the base material in the red / green phosphor resin 23 over time.
  • red / green phosphor resin 23 which is a kind different from a phosphor using a fluoride represented by (Na, K) 2 (Ge, Si, Ti) F 6 : Mn as a base material.
  • (Na, K) 2 (Ge, Si, Ti) F 6 Mn as a base material.
  • Mn can reduce the amount of phosphors whose base material is a fluoride represented by Mn.
  • the red / green phosphor resin 23 is not directly sealed on the LED element 14 but is disposed on the surface of the translucent resin 21 that seals the LED element 14, the red / green phosphor resin 23 is disposed apart from the LED element 14. ing.
  • the red / green phosphor resin 23 is preferably separated from the LED element 14 by about 0.1 mm or more, preferably about 0.4 mm or more.
  • Example 2 The LED light-emitting device 11 shown in FIG. 10 was produced, and the change with time of the emission spectrum was confirmed in the same manner as in Example 1.
  • the radius of the translucent resin 21 was set to 0.4 mm, so that the red / green phosphor resin 23 was separated from the LED element 14 by about 0.4 mm.
  • the drive current for light emission of LED light-emitting device 11 was 300 mA, and LED light-emitting device 11 was made to light-emit for 100 hours. As a result, an emission spectrum almost similar to the emission spectrum shown in FIG. 5 was obtained.
  • the emission spectrum when the LED light emitting device 11 continuously emits light for 100 hours is the same as the initial emission spectrum and the emission intensity in the LED light emitting device 100 which is the comparative example shown in FIG. It was found that the red emission intensity did not decrease in the range of ⁇ 660 nm.
  • the red / green phosphor resin 23 containing K 2 SiF 6 : Mn is separated from the LED element 14 by about 0.4 mm, so that the emission spectrum, particularly the red wavelength band, is obtained. It was found that the change with time of the intensity of the emission spectrum in can be suppressed.
  • the red / green phosphor resin 23 is arranged on the surface of the translucent resin 21 to form a hemispherical shape, and is separated from the LED elements 14 covered by the red / green phosphor resin 23 at a substantially equal distance.
  • the intensity variation in the red / green phosphor resin 23 layer with time change of the red light emitted from the red / green phosphor resin 23 by the light from the LED element 14 can be suppressed. .
  • FIG. 11 is a cross-sectional view illustrating the configuration of the LED light emitting device 12 according to the third embodiment.
  • the LED light-emitting device (light-emitting device) 12 includes a red phosphor resin (first phosphor-containing layer) 24 and a green phosphor resin (second phosphor-containing layer) 25 in place of the red phosphor resin 22. Different from the LED light emitting device 11. Other configurations of the LED light emitting device 12 are the same as those of the LED light emitting device 11.
  • the red phosphor resin 24 is a sealing material, and a transparent resin such as a silicone resin is used as a base material, and a fluoride represented by (Na, K) 2 (Ge, Si, Ti) F 6 : Mn that is a red phosphor.
  • the phosphor used as a material is dispersed.
  • An example of the red phosphor dispersed in the red phosphor resin 24 is K 2 SiF 6 : Mn.
  • the red phosphor resin 24 is disposed on the surface of the translucent resin 21 and has a shape along the surface of the translucent resin 21.
  • the red phosphor resin 24 is formed in a hemispherical shape together with the translucent resin 21 disposed on the inner side.
  • one point of the surface of the substrate 1 (hereinafter simply referred to as the red phosphor resin 24) of the central axis perpendicular to the substrate 1 of the red phosphor resin 24 (the center point of the red phosphor resin 24 when viewed in plan).
  • the surface of the red phosphor resin 24 (the interface with the green phosphor resin 25) (hereinafter sometimes referred to as the radius of the red phosphor resin 24).
  • the red phosphor resin 24 has a shape other than the hemispherical shape, the light emitted from the LED element 14 is irradiated substantially uniformly.
  • the green phosphor resin 25 is a sealing material in which the green phosphor emitting green light by the light from the LED element 14 is dispersed in a transparent resin such as a silicone resin.
  • the green phosphor resin 25 is disposed on the surface of the red phosphor resin 24 and has a shape along the surface of the red phosphor resin 24.
  • the green phosphor resin 25 is formed in a hemispherical shape together with the translucent resin 21 and the red phosphor resin 24 disposed on the inside.
  • one point of the surface of the substrate 1 (hereinafter simply referred to as the green phosphor resin 25) out of the central axis perpendicular to the substrate 1 of the green phosphor resin 25 (the center point of the green phosphor resin 25 when viewed in plan). )
  • the surface of the green phosphor resin 25 (interface with the outside) (hereinafter may be referred to as the radius of the green phosphor resin 25).
  • the shape of the green phosphor resin 25 is not limited to a hemispherical shape, and may be other shapes.
  • the red phosphor resin 24 covers only one LED element 14, and when viewed in plan, the LED element 14 is disposed on the surface of the substrate 1 so as to be positioned at the center of the hemispherical red phosphor resin 24. Yes. Thereby, compared with the case where two or more LED elements are arranged, the light emitted from the LED elements 14 is more uniformly irradiated to the red phosphor resin 24. For this reason, the fluoride represented by (Na, K) 2 (Ge, Si, Ti) F 6 : Mn contained in the red phosphor resin 24 due to the light emitted from the LED element 14 is a base material. It is possible to further suppress variation in the emission intensity of the phosphor used as the material over time in the red phosphor resin 24.
  • the red phosphor resin 24 does not directly seal the LED element 14. Since the red phosphor resin 24 is disposed on the surface of the translucent resin 21 that seals the LED element 14, the red phosphor resin 24 is disposed apart from the LED element 14. Thereby, the suppression effect of the temporal change of the emission intensity of K 2 SiF 6 : Mn contained in the red phosphor resin 24 due to the light emitted from the LED element 14 can be improved.
  • the red phosphor resin 24 is preferably separated from the LED element 14 by about 0.1 mm or more, preferably about 0.4 mm or more. Thereby, the fall of the emitted light intensity of the red fluorescent substance resin 24 can be suppressed more reliably.
  • the LED light emitting device 11 has a phosphor-containing layer containing two different phosphors, a red phosphor resin 24 and a green phosphor resin 25.
  • the phosphor-containing layer is composed of one, (Na, K) 2 ( Ge, Si, Ti) F 6: containing a phosphor fluoride represented by Mn as a matrix material
  • the thickness of the red phosphor resin 24 to be reduced can be reduced.
  • the fluoride represented by (Na, K) 2 (Ge, Si, Ti) F 6 : Mn contained in the red phosphor resin 24 due to the light emitted from the LED element 14 is the base material. It is possible to suppress the variation in the luminescence intensity of the phosphor used as the material over time in the red phosphor resin 24 as compared with the LED light emitting device having a single phosphor-containing layer.
  • the red phosphor resin 24 is disposed between the translucent resin 21 and the green phosphor resin 25, scattering of the red phosphor from the red phosphor resin 24 is prevented. Has the effect of In addition, since the water supply to the red phosphor resin 24 is blocked, the reaction between the red phosphor and moisture can be suppressed, and there is an effect of suppressing the generation of hydrofluoric acid.
  • Example 3 The LED light-emitting device 12 shown in FIG. 11 was produced, and the temporal change of the emission spectrum was confirmed in the same manner as in Examples 1 and 2.
  • the radius of the translucent resin 21 is set to 0.4 mm, and the red phosphor resin 24 is disposed on the surface of the translucent resin 21, whereby the red phosphor resin 24 is replaced with the LED element 14. And spaced apart by 0.4 mm or more.
  • the drive current for light emission of LED light-emitting device 12 was 300 mA, and LED light-emitting device 12 was light-emitted for 100 hours. As a result, an emission spectrum almost similar to the emission spectrum shown in FIG. 5 was obtained.
  • the emission spectrum when the LED light-emitting device 12 is continuously emitted for 100 hours is the same as the initial light emission spectrum and the light emission intensity in the LED light-emitting device 100 which is the comparative example shown in FIG. It was found that the red emission intensity did not decrease in the range of ⁇ 660 nm.
  • the red phosphor resin 24 containing K 2 SiF 6 : Mn is separated from the LED element 14 by 0.4 mm or more to emit light in the emission spectrum, particularly in the red wavelength band. It was found that the change in spectral intensity over time can be suppressed.
  • the red phosphor resin 24 is arranged on the surface of the green phosphor resin 25 so as to have a hemispherical shape, and is separated from the LED element 14 covered by the red phosphor resin 24 at a substantially equal distance. It was also found that the intensity variation in the layer of the red phosphor resin 24 accompanying the change with time of the red light emitted from the red phosphor resin 24 by the light from the element 14 can be suppressed.
  • FIG. 13 is a cross-sectional view illustrating a configuration of an LED light emitting device 12a according to a modification of the LED light emitting device 12 illustrated in FIG.
  • LED 13 is different from the LED light emitting device 12 in that a reflector (reflecting member) 17 is provided.
  • Other configurations of the LED light emitting device 12a are the same as those of the LED light emitting device 12.
  • the reflector 17 is disposed on the surface of the substrate 1 so as to surround the LED element 14, the translucent resin 21, the red phosphor resin 24, and the green phosphor resin 25.
  • the material constituting the reflector 17 can be a white resin material, but is not limited thereto, and a material generally used for a reflecting member can be used.
  • the LED light emitting device (light emitting device) 12a According to the LED light emitting device (light emitting device) 12a, the light emitted from the LED element 14, the red phosphor resin 24, and the green phosphor resin 25 is reflected by the reflector 17 in the emission direction of the LED light emitting device 12a (upper in FIG. 13). Therefore, it is possible to emit light with higher luminance than the LED light emitting device 12 that does not have the reflector 17.
  • the light-emitting device (LED light-emitting device 10, 11, 12) according to aspect 1 of the present invention is disposed on the substrate 1, the light-emitting elements (LED elements 14 a, 14 b, 14) disposed on the substrate 1, and the substrate 1,
  • a first phosphor-containing layer (red phosphor resin 22, 24, red / green phosphor resin 23) containing a red phosphor, wherein the first phosphor-containing layer is made of the sealing resin.
  • the light-emitting element is covered directly or indirectly on the surface and has a hemispherical shape.
  • the first phosphor-containing layer is directly or indirectly disposed on the surface of the sealing resin, the first phosphor-containing layer is separated from the light emitting element by at least the amount of the sealing resin disposed. Can be made. Thereby, the time-dependent change of the emission intensity
  • the first phosphor-containing layer has a hemispherical shape, the emission intensity of the red phosphor due to the light and heat emitted from the light emitting element is higher than that of the shape other than the hemispherical shape. It is possible to suppress variation in change with time in one phosphor-containing layer.
  • the sealing resin preferably has a hemispherical shape, and the radius of the sealing resin is preferably 0.1 mm or more.
  • the first phosphor-containing layer (red / green phosphor resin 23) further emits light of a color different from that of the red phosphor. It is preferable to contain a phosphor. With the above-described configuration, the content of the red phosphor can be reduced, and the variation with time in the first phosphor-containing layer of the emission intensity of the red phosphor caused by light or heat emitted from the light-emitting element can be reduced. Can be further suppressed.
  • the light-emitting device includes a second phosphor-containing layer (green phosphor resin 25) containing a phosphor that emits light of a color different from that of the red phosphor in the aspects 1 to 3.
  • the second phosphor-containing layer is preferably disposed on the surface of the first phosphor-containing layer.
  • the red phosphor is preferably a phosphor having potassium hexafluorosilicate as a base material.
  • the said red fluorescent substance can be comprised as one aspect
  • a driving current passed through the light-emitting element is 200 mA or more. Even when a high current is passed through the light-emitting element in this way, the time-dependent change in the emission intensity of the red phosphor due to the light and heat emitted from the light-emitting element and the time-lapse of the emission intensity in the first phosphor-containing layer. Variation in change can be suppressed.
  • the light-emitting device is preferably arranged such that the light-emitting element is arranged at the center of the first phosphor-containing layer when viewed in plan in the above-described embodiment.
  • variation in the time-dependent change in the said 1st fluorescent substance content layer can be suppressed more more in the emitted light intensity of the red fluorescent substance resulting from the light and heat which are emitted from the said light emitting element.
  • the sealing resin preferably has a hemispherical shape, and the radius of the sealing resin is preferably 0.4 mm or more. According to the said structure, the temporal change of the emitted light intensity of the said red fluorescent substance can be suppressed further reliably.
  • the present invention can be used for a light emitting device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 基板(1)に配されたLED素子(14a・14b)を封止する透光性樹脂封(21)の表面に配されることでLED素子(14a・14b)を覆い、かつ、半球形状である、KSiF:Mnを母体材料とする赤蛍光体が含有された赤色蛍光体樹脂(24)を備える。これにより、(Na,K)(Ge,Si,Ti)F:Mnを母体材料とする蛍光体を含有する発光層の層内での発光強度の経時変化バラつきを抑制する。

Description

発光装置
 本発明は発光装置に関する。
 LED素子から発光された光を波長変換し、外部へ出射させるLED発光装置が知られている。図12は、特許文献1に開示された半導体発光装置200の構成を表す断面図である。図12に示すように、回路基板211に近紫外LED素子214が実装されている。そして、この近紫外LED素子214を直接覆って、回路基板211表面に、青色蛍光体及び緑色蛍光体が封止材に分散された青/緑色発光部215が形成されている。青/緑色発光部215の表面に、さらに、ヘキサフルオロケイ酸塩を母体材料とする蛍光体である赤色蛍光体が封止材に分散された赤色発光層222が配されている。青/緑色発光部215及び赤色発光層222は回路基板211から凸となるように形成されている。
日本国公開特許公報「特開2010‐251621号公報(2010年11月4日公開)」
 図12に示す半導体発光装置200のうち、ヘキサフルオロケイ酸塩を母体材料とする蛍光体を有する赤色発光層222は、回路基板211から垂直方向へ直線状に突出し、先端部分が湾曲する形状となっている。換言すると、赤色発光層222の回路基板211に対して垂直な中心軸(平面視したときの赤色発光層222の中心点)のうちの回路基板211表面の一点(以下、単に赤色発光層222の中心と称する)から赤色発光層222までの距離が一定ではない。
 このため、赤色発光層222の中心に配された近紫外LED素子214と、赤色発光層222との距離が一定ではなく、赤色発光層222内において、近紫外LED素子214からの光により発光強度が経時変化する程度にバラつきを生じるという課題がある。
 本発明は、上記の問題点を解決するためになされたもので、その目的は、(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体を含有する発光層が、層内で発光強度の経時変化にバラつきを生じることを抑制することである。
 上記の課題を解決するために、本発明の一態様に係る発光装置は、基板と、上記基板に配された発光素子と、上記基板に配され、上記発光素子を封止する封止樹脂と、少なくとも(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体である赤蛍光体が含有された第1蛍光体含有層とを備え、上記第1蛍光体含有層は、上記封止樹脂の表面に、直接又は間接的に配されることで上記発光素子を覆い、かつ、半球形状であることを特徴とする。
 本発明の一態様によれば、(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体を含有する発光層が、層内で発光強度の経時変化にバラつきを生じることを抑制するという効果を奏する。
実施形態1に係るLED発光装置の構成を表す断面図である。 実施形態1に係るLED発光装置の構成を表す平面図である。 比較例に係るLED発光装置の構成を表す断面図である。 比較例に係るLED発光装置の初期の発光スペクトルと、発光を約100時間継続させたときの発光スペクトルを示す図である。 本発明に係るLED発光装置を100時間継続して発光させたときの発光スペクトルを示す図である。 実施形態1に係るLED発光装置及び比較例に係るLED発光装置における、発光時間と、xy色度座標における色度xとの関係を示す図である。 実施形態1に係るLED発光装置及び比較例に係るLED発光装置における、発光時間と、xy色度座標における色度yとの関係を示す図である。 比較例に係るLED発光装置の駆動電流を変化させたときの発光時間と、xy色度座標における色度xとの関係を示す図である。 比較例に係るLED発光装置の駆動電流を変化させたときの発光時間と、xy色度座標における色度yとの関係を示す図である。 実施形態2に係るLED発光装置の構成を表す断面図である。 実施形態3に係るLED発光装置の構成を表す断面図である。 従来の半導体発光装置の構成を表す断面図である。 実施形態3のLED発光装置の変形例に係るLED発光装置の構成を表す断面図である。
 〔実施形態1〕
 以下、本発明の実施の形態について、詳細に説明する。
 (LED発光装置10の構成)
 図1は実施形態1に係るLED発光装置10の構成を表す断面図である。図2は実施形態1に係るLED発光装置10の構成を表す平面図である。
 図1、図2に示すように、LED発光装置(発光装置)10は、基板1上に、一対の電極2・3と、2個のLED素子(発光素子)14a・14bと、LED素子14a・14bを封止する透光性樹脂(封止樹脂)21と、透光性樹脂21を覆って透光性樹脂21の表面に設けられた赤色蛍光体樹脂(第1蛍光体含有層)22とを備えている。
 基板1は、LED素子14a・14bが実装される配線基板である。基板1はLED素子14a・14bの実装面である主表面の反射作用が高い材質のものが好ましい。一例として基板1はセラミック基板である。
 電極2・3の一方がアノード電極、他方がカソード電極である。電極2・3は、基板1上に形成された、LED素子14a・14bのワイヤボンディング用の配線(配線パターン)である。
 LED素子14a・14bは、電極2と電極3との間に配置されている。LED素子14a・14bは、金等からなるワイヤ15によって、互いに接続されていると共に、LED素子14aは電極2と接続されており、LED素子14bは電極3と接続されている。これにより、基板1とLED素子14a・14bとが、電気的および機械的に接続される。
 LED素子14a・14bは、一例として、ピーク波長が450nmの青色光を発光する青色LED素子である。なお、LED素子14a・14bの発光色はこれに限定されず、ピーク波長が390nm~420nmの紫外(近紫外)光を発光する紫外LED素子であってもよい。紫外LED素子を用いることで発光効率の向上を図ることができる。
 また、LED素子14aを青色LED素子又は紫外LED素子とし、LED素子14bを緑色光を発光する緑色LED素子としてもよい。このように、青色LED素子からの青色光、緑色LED素子からの緑色光、及び赤蛍光体からの赤色光の混色により白色光を創ることができる。
 なお、本実施形態ではLED発光装置10は2個のLED素子14a・14bを用いるものとして説明するが、LED素子の個数は2個に限定されるものではない。LED発光装置10が有するLED素子は一つのみであってもよいし、3個以上であってもよい。
 また、本実施形態では、LED発光装置10におけるLED素子14a・14bが直列接続された場合について説明しているが、LED素子14a・14bは並列接続されてもよい。
 さらに、本実施形態では、LED発光装置10はLED素子14a・14bを発光素子としているが、半導体レーザ、有機EL素子等の他の発光素子を用いることも可能である。
 透光性樹脂21は、LED素子14a・14bおよびワイヤ15を封止する。透光性樹脂21は、一例として、シリコーン樹脂を用いることができる。透光性樹脂21は、透明であることが好ましいが、LED素子14a・14bの発光の大部分を透過することができれば、必ずしも透明である必要はない。透光性樹脂21は、半球形状となるように基板1に形成されている。換言すると、透光性樹脂21の基板1に対して垂直な中心軸(平面視したときの透光性樹脂21の中心点)のうちの基板1表面の一点(以下、単に透光性樹脂21の中心と称する)と、透光性樹脂21表面(赤色蛍光体樹脂22との界面)との距離(以下、透光性樹脂21の半径と称する場合がある)が等しくなる形状を有する。透光性樹脂21は、シリコーン樹脂等の透明樹脂を、一例として基板1表面に塗布することにより基板1表面に半球形状となるように形成することができる。透光性樹脂21の半径は、約0.1以上好ましくは約0.4mm以上であることが好ましい。
 赤色蛍光体樹脂22は、封止材である透明樹脂に、LED素子14a・14bからの光により赤色の光を発光する赤蛍光体が分散されたものである。赤色蛍光体樹脂22を構成する透明樹脂としては、一例として、シリコーン樹脂を用いることができる。赤色蛍光体樹脂22の透明樹脂に分散する赤蛍光体は、(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体である。このような赤蛍光体の一例としてヘキサフルオロケイ酸カリウム(KSiF)を母体材料とする蛍光体(以下、KSiF:Mnと称する)を挙げることができる。
 ここで、KSiF:Mnを含有する蛍光体は、当該蛍光体が包含するLED素子からの光やLED素子から発せられる光や熱により、発光強度が経過時間とともに低下するという課題を本願の発明者らは見出した。
 特に、LED素子に流す駆動電流が200mA以上の高電流の場合、顕著にKSiF:Mnを含有する蛍光体の発光強度は経時変化し、さらに、駆動電流が300mAとすると特に顕著にKSiF:Mnを含有する蛍光体の発光強度は経時変化する。
 このように、1次光を発光するLED素子からの光や熱により、当該1次光により励起され2次光を発光する蛍光体の発光強度が経時変化するという課題は、当該2次光を発光る蛍光体がKSiF:Mnを含有する蛍光体に限らず、(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体全般に生じると言える。
 そこで、赤色蛍光体樹脂22は、LED素子14a・14bを直接封止せず、LED素子14a・14bを封止する透光性樹脂21の表面に配されている。これにより、赤色蛍光体樹脂22は、少なくとも透光性樹脂21が配されている分、LED素子14a・14bから離間して配されることになる。これにより、LED素子14a・14bから発光された光や放出された熱に起因して赤色蛍光体樹脂22に含有されている(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体の発光強度の経時変化を抑制することができる。
 このため、LED素子14a・14bを発光させるために、LED素子14a・14bに流す駆動電流を200mA以上、さらに、約300mAとしても、LED素子14a・14bから発せられる光や熱に起因する(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体の発光強度の経時変化や、赤色蛍光体樹脂22内における発光強度の経時変化のばらつきを抑制することができる。
 特に、赤色蛍光体樹脂22は、LED素子14a・14bから約0.1mm以上、好ましくは約0.4mm以上離間していることが好ましい。これにより、LED素子14a・14bから発光された光や放出された熱に起因して赤色蛍光体樹脂22に含有されている(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体の発光強度の経時変化をより確実に抑制することができる。
 さらに、赤色蛍光体樹脂22は、透光性樹脂21の表面に配されており、透光性樹脂21の表面に沿った形状を有している。
 具体的に、赤色蛍光体樹脂22は、内側に配された透光性樹脂21とともに半球形状となるように形成されている。換言すると、赤色蛍光体樹脂22の基板1に対して垂直な中心軸(平面視したときの赤色蛍光体樹脂22の中心点)のうちの基板1表面の一点(以下、単に赤色蛍光体樹脂22の中心と称する場合がある)と、赤色蛍光体樹脂22表面(外部との界面)との距離(以下、赤色蛍光体樹脂22の半径と称する場合がある)が等しくなる形状を有する。
 これにより、赤色蛍光体樹脂22は、半球形状以外の形状の場合と比べて、LED素子14a・14bから発光された光や放出された熱が略均一に伝わる。このため、LED素子14a・14bから発光された光や放出された熱に起因して赤色蛍光体樹脂22に含有されている(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体の発光強度の、赤色蛍光体樹脂22内における経時変化のばらつきを抑制することができる。
 なお、赤色蛍光体樹脂22は、透光性樹脂21の表面に直接配されているものとして説明しているが、赤色蛍光体樹脂22は、他の層を介して、間接的に透光性樹脂21の表面に配されていてもよい。
 複数のLED素子14a・14bは、赤色蛍光体樹脂22の中心を中心として点対称になるように配されていることが好ましい。これにより、LED素子14a・14bからの光や熱を、なるべく均一となるように赤色蛍光体樹脂22に伝えることができるためである。
 赤色蛍光体樹脂22は、シリコーン樹脂(有機変性シリコーン、フェニルシリコーン樹脂等)等の透明樹脂にKSiF:Mn等の(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体を分散させた樹脂を、一例として基板1表面に塗布することにより基板1表面に半球形状となるように形成することができる。
 (Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体は光や熱による耐性が弱く、赤色蛍光体樹脂22は、当該赤蛍光体の一例としてのKSiF:Mnを大量に使用するため、赤色蛍光体樹脂22はLED素子14a・14bから離す必要がある。
 〔実施例1〕
 次に、実施例1について説明する。本実施形態に係るLED発光装置10と、図3に示す比較例に係るLED発光装置100とで発光強度の経時変化の比較実験を行った。図3は比較例に係るLED発光装置100の構成を表す断面図である。
 図3に示すように、LED発光装置100は、基板111上に、図示しない一対の電極と、LED素子114と、LED素子114を封止する赤/緑色蛍光体樹脂123と、赤/緑色蛍光体樹脂123を覆って赤/緑色蛍光体樹脂123の表面に設けられた透光性樹脂121とを備えている。
 LED素子114は青色光を発光する。LED素子114は上記一対の電極にワイヤボンディングされている。赤/緑色蛍光体樹脂123は基板111上に配され、LED素子114を直接覆っている。赤/緑色蛍光体樹脂123は透明樹脂に、LED素子114からの光により緑色に発光する緑色蛍光体123Gと、LED素子114からの光により赤色に発光する赤色蛍光体123Rとを分散させたものである。赤色蛍光体123RはKSiF:Mnである。
 図4は、比較例に係るLED発光装置100の初期の発光スペクトルと、発光を約100時間(92h)継続させたときの発光スペクトルを示す図である。LED発光装置100の発光のためにLED素子114に流す駆動電流は300mAとした。
 図4に示すように、約100時間発光させた方の発光スペクトルは、初期の発光スペクトルと比べ、600nm~660nmの範囲で赤色の発光強度が減少していることが分かる。この結果より、LED発光装置100は、色度、発光強度の経時変化を生じていることが分かる。これは、LED素子114からの光と熱がKSiF:Mnに影響していると考えられる。
 そこで、図1に示した本実施の形態に係るLED発光装置10を作製した。LED発光装置10において、透光性樹脂21の半径を0.4mmとすることで、赤色蛍光体樹脂22を、LED素子14a・14bから、約0.4mm離間させて配した。そして、比較例に係るLED発光装置100による発光実験と同様に、LED発光装置10の発光のためにLED素子14a・14bに流す駆動電流を300mAとし、LED発光装置10を100時間発光させた。
 図5は、LED発光装置10を100時間継続して発光させたときの発光スペクトルを示す図である。
 図5に示すように、LED発光装置10を100時間継続して発光させたときの発光スペクトルは、図4に示した比較例であるLED発光装置100における初期の発光スペクトルと発光強度は変わらず、特に、600nm~660nmの範囲で赤色の発光強度が低下していないことが分かる。
 このように、KSiF:Mnを含有する赤色蛍光体樹脂22を、LED素子14a・14bから、約0.4mm離間させることで、発光スペクトル、特に、赤色波長帯における発光スペクトルの強度の経時変化を抑えることができることが分かった。
 また、この結果から、赤色蛍光体樹脂22を、透光性樹脂21の表面に配することで半球形状とし、赤色蛍光体樹脂22が覆うLED素子14a・14bから略等距離に離間させることで、LED素子14a・14bからの光により赤色蛍光体樹脂22が発光する赤色光の、経時変化に伴う赤色蛍光体樹脂22層内の強度バラつきを抑制することができることも分かった。
 図6は、LED発光装置10・100における、発光時間と、xy色度座標における色度xとの関係を示す図である。図7は、LED発光装置10・100における、発光時間と、xy色度座標における色度yとの関係を示す図である。なお、LED発光装置10・100共に駆動電流は300mAである。
 図6、図7の横軸に示す「通電時間」は、LED発光装置10・100それぞれの発光時間を表す。図6、図7では、赤色蛍光体としてKSiF:Mnを使用した、図1のLED発光装置10及びLED発光装置100のそれぞれの色度の経時変化を表している。
 図6、7より、LED発光装置100は、特にxyのうち、xに示す値が時間とともに大きく値が低下していることが分かる。一方、LED発光装置10は、x、yの値ともほとんど経時変化していないことが分かる。
 図8はLED発光装置100の駆動電流を変化させたときの発光時間と、xy色度座標における色度xとの関係を示す図である。図9はLED発光装置100の駆動電流を変化させたときの発光時間と、xy色度座標における色度yとの関係を示す図である。図8、図9の横軸に示す「通電時間」は、LED発光装置100の発光時間を表す。
 図8、図9に示すように、駆動電流が(1)200mA(2)145mA(3)119mA(4)95mA(5)300mAのうち、高電流である(1)200mA及び(5)300mAのとき、色度xの経時変化が顕著となっており、特に(5)300mAのときの色度xの経時変化が大きいことが分かる。
 〔実施形態2〕
 本発明の実施形態2について、図10に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態1にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。以下、本発明の実施の形態について、詳細に説明する。
 図10は、実施形態2に係るLED発光装置11の構成を表す断面図である。LED発光装置(発光装置)11は、赤色蛍光体樹脂22に替えて赤/緑色蛍光体樹脂(第1蛍光体含有層)23を備え、LED素子14a・14bに替えて一つのLED素子(発光素子)14を備える点で、LED発光装置10と相違する。なお、LED発光装置11において、赤/緑色蛍光体樹脂23ではなく、赤/黄色蛍光体樹脂(第1蛍光体含有層)を用いてもよい。LED発光装置11の他の構成は、LED発光装置10と同様である。
 LED素子14は、基板1表面に配された図示しない一対の電極のそれぞれと、図示しないワイヤにより接続されている。LED素子14は、平面視したとき、半球形状である透光性樹脂21の中心に位置するように基板1表面に配されている。LED素子14は、一例として、ピーク波長が450nmの青色光を発光する青色LED素子である。なお、LED素子14の発光色はこれに限定されず、ピーク波長が390nm~420nmの紫外(近紫外)光を発光する紫外LED素子であってもよい。
 透光性樹脂21は、LED素子14を覆い、基板1上に半球形状となるように配されている。透光性樹脂21の半径は、約0.1mm以上、好ましくは約0.4mm以上であることが好ましい。
 赤/緑色蛍光体樹脂23は、封止材でありシリコーン樹脂等の透明樹脂に、赤蛍光体である(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体と、青色光により励起され、緑色光を発光する緑蛍光体とを分散させたものである。赤/緑色蛍光体樹脂23に分散させる赤蛍光体の一例としてはKSiF:Mnを挙げることができる。
 または、赤/緑色蛍光体樹脂23に替えて、赤/黄色蛍光体樹脂を用いる場合、当該赤/黄色蛍光体樹脂は、封止材でありシリコーン樹脂等の透明樹脂に、赤蛍光体である(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体と、青色光により励起され、黄色光を発光する黄蛍光体とを分散させればよい。なお、赤/黄色蛍光体樹脂に分散させる赤蛍光体の一例としてはKSiF:Mnを挙げることができる。
 赤/緑色蛍光体樹脂23または赤/黄色蛍光体樹脂を構成する緑蛍光体または黄蛍光体としては、例えば、(Ba,Sr,Ca,Mg)SiO:Eu、(Mg,Ca,Sr,Ba)Si:Eu、(Ba,Sr)Si12:Eu、Eu付活β-サイアロン、(Sr,Ca,Ba)(Al,Ga,In):Eu、(Y,Tb,Lu,Gd)(Al,Ga)12:Ce、Ca(Sc,Mg,Na,Li)Si12:Ce、(Ca,Sr)Sc:Ceなどを用いることができる。
 赤/緑色蛍光体樹脂23は、透光性樹脂21の表面に配されており、透光性樹脂21の表面に沿った形状を有している。赤/緑色蛍光体樹脂23は、内側に配された透光性樹脂21とともに半球形状となるように形成されている。換言すると、赤/緑色蛍光体樹脂23の基板1に対して垂直な中心軸(平面視したときの赤/緑色蛍光体樹脂23の中心点)のうちの基板1表面の一点(以下、単に赤/緑色蛍光体樹脂23の中心と称する場合がある)と、赤/緑色蛍光体樹脂23表面(外部との界面)との距離(以下、赤/緑色蛍光体樹脂23の半径と称する場合がある)が等しくなる形状を有する。
 これにより、赤/緑色蛍光体樹脂23は、半球形状以外の形状の場合と比べて、LED素子14から発光された光が略均一に照射される。このため、LED素子14から発光された光や放熱された熱に起因して赤/緑色蛍光体樹脂23に含有されている(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体の発光強度の、赤/緑色蛍光体樹脂23内における経時変化のばらつきを抑制することができる。
 さらに、赤/緑色蛍光体樹脂23は一つのLED素子14のみを覆い、平面視したとき、LED素子14は、半球形状である赤/緑色蛍光体樹脂23の中心に位置するように基板1表面に配されている。これにより、LED素子を複数配した場合と比べ、LED素子14から発光された光はより均一に赤/緑色蛍光体樹脂23に照射される。このため、LED素子14から発光された光に起因して赤/緑色蛍光体樹脂23に含有されている(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体の発光強度の、赤/緑色蛍光体樹脂23内における経時変化のばらつきを、より抑制することができる。
 また、赤/緑色蛍光体樹脂23のように、(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体とは異なる種類である緑蛍光体を含有させることで、(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体のみからなる蛍光体含有層と比べて(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体の量を減らすことができる。これにより、赤/緑色蛍光体樹脂23内における発光強度の経時変化のばらつきを、より抑制することができる。
 また、赤/緑色蛍光体樹脂23は、LED素子14を直接封止せず、LED素子14を封止する透光性樹脂21の表面に配されているため、LED素子14と離間して配されている。赤/緑色蛍光体樹脂23は、LED素子14から約0.1mm以上、好ましくは約0.4mm以上離間していることが好ましい。これにより、LED素子14から発光された光に起因して赤/緑色蛍光体樹脂23に含有されている(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体の発光強度の経時変化を抑制することができる。
 〔実施例2〕
 図10に示すLED発光装置11を作製し、実施例1と同様に発光スペクトルの経時変化を確認した。
 LED発光装置11において、透光性樹脂21の半径を0.4mmとすることで、赤/緑色蛍光体樹脂23を、LED素子14から、約0.4mm離間させて配した。そして、実施例1と同様に、LED発光装置11の発光のための駆動電流を300mAとし、LED発光装置11を100時間発光させた。この結果、図5に示した発光スペクトルとほぼ同様の発光スペクトルを得ることができた。
 これにより、LED発光装置11を100時間継続して発光させたときの発光スペクトルは、図4に示した比較例であるLED発光装置100における初期の発光スペクトルと発光強度は変わらず、特に、600nm~660nmの範囲で赤色の発光強度が低下していないことが分かった。
 このため、LED発光装置11においても、KSiF:Mnを含有する赤/緑色蛍光体樹脂23を、LED素子14から、約0.4mm離間させることで、発光スペクトル、特に、赤色波長帯における発光スペクトルの強度の経時変化を抑えることができることが分かった。
 また、この結果から、赤/緑色蛍光体樹脂23を、透光性樹脂21の表面に配することで半球形状とし、赤/緑色蛍光体樹脂23が覆うLED素子14から略等距離に離間させることで、LED素子14からの光により赤/緑色蛍光体樹脂23が発光する赤色光の、経時変化に伴う赤/緑色蛍光体樹脂23の層内の強度バラつきを抑制することができることも分かった。
 〔実施形態3〕
 本発明の実施形態3について、図11に基づいて説明すれば、以下のとおりである。なお、説明の便宜上、前記実施形態1、2にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。以下、本発明の実施の形態について、詳細に説明する。
 図11は、実施形態3に係るLED発光装置12の構成を表す断面図である。LED発光装置(発光装置)12は、赤色蛍光体樹脂22に替えて赤色蛍光体樹脂(第1蛍光体含有層)24及び緑色蛍光体樹脂(第2蛍光体含有層)25を備える点で、LED発光装置11と相違する。LED発光装置12の他の構成は、LED発光装置11と同様である。
 赤色蛍光体樹脂24は、封止材でありシリコーン樹脂等の透明樹脂に、赤蛍光体である(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体を分散させたものである。赤色蛍光体樹脂24に分散させる赤蛍光体の一例としてはKSiF:Mnを挙げることができる。赤色蛍光体樹脂24は、透光性樹脂21の表面に配されており、透光性樹脂21の表面に沿った形状を有している。赤色蛍光体樹脂24は、内側に配された透光性樹脂21とともに半球形状となるように形成されている。換言すると、赤色蛍光体樹脂24の基板1に対して垂直な中心軸(平面視したときの赤色蛍光体樹脂24の中心点)のうちの基板1表面の一点(以下、単に赤色蛍光体樹脂24の中心と称する場合がある)と、赤色蛍光体樹脂24表面(緑色蛍光体樹脂25との界面)との距離(以下、赤色蛍光体樹脂24の半径と称する場合がある)が等しくなる形状を有する。
 これにより、赤色蛍光体樹脂24は、半球形状以外の形状の場合と比べて、LED素子14から発光された光が略均一に照射される。このため、LED素子14から発光された光や熱に起因して赤色蛍光体樹脂24に含有されている(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体の発光強度の、赤色蛍光体樹脂24内における経時変化のばらつきを抑制することができる。
 緑色蛍光体樹脂25は、封止材でありシリコーン樹脂等の透明樹脂に、LED素子14からの光により緑色の光を発光する上記緑蛍光体を分散させたものである。緑色蛍光体樹脂25は、赤色蛍光体樹脂24の表面に配されており、赤色蛍光体樹脂24の表面に沿った形状を有している。緑色蛍光体樹脂25は、内側に配された透光性樹脂21及び赤色蛍光体樹脂24とともに半球形状となるように形成されている。換言すると、緑色蛍光体樹脂25の基板1に対して垂直な中心軸(平面視したときの緑色蛍光体樹脂25の中心点)のうちの基板1表面の一点(以下、単に緑色蛍光体樹脂25の中心と称する場合がある)と、緑色蛍光体樹脂25表面(外部との界面)との距離(以下、緑色蛍光体樹脂25の半径と称する場合がある)が等しくなる形状を有する。なお、緑色蛍光体樹脂25の形状は半球形状に限定されず、他の形状であってもよい。
 さらに、赤色蛍光体樹脂24は一つのLED素子14のみを覆い、平面視したとき、LED素子14は、半球形状である赤色蛍光体樹脂24の中心に位置するように基板1表面に配されている。これにより、LED素子を複数配した場合と比べ、LED素子14から発光された光はより均一に赤色蛍光体樹脂24に照射される。このため、LED素子14から発光された光に起因して赤色蛍光体樹脂24に含有されている(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体の発光強度の、赤色蛍光体樹脂24内における経時変化のばらつきを、より抑制することができる。
 また、赤色蛍光体樹脂24は、LED素子14を直接封止しない。赤色蛍光体樹脂24は、LED素子14を封止する透光性樹脂21の表面に配されているため、LED素子14と離間して配されている。これにより、LED素子14から発光された光に起因して赤色蛍光体樹脂24に含有されているKSiF:Mnの発光強度の経時変化の抑制効果を向上させることができる。
 赤色蛍光体樹脂24は、LED素子14から約0.1mm以上、好ましくは約0.4mm以上離間していることが好ましい。これにより、より確実に赤色蛍光体樹脂24の発光強度の低下を抑制することができる。
 また、LED発光装置11は、赤色蛍光体樹脂24と、緑色蛍光体樹脂25との2層の異なる蛍光体を含有した蛍光体含有層を有する。これにより、蛍光体含有層が一層からなるLED発光装置と比べて、(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体を含有する赤色蛍光体樹脂24の厚さを薄くすることができる。これにより、LED素子14から発光された光に起因して赤色蛍光体樹脂24に含有されている(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体の発光強度の、赤色蛍光体樹脂24内における経時変化のばらつきを、蛍光体含有層が一層からなるLED発光装置よりも抑制することができる。
 また、LED発光装置12によると、赤色蛍光体樹脂24が透光性樹脂21と緑色蛍光体樹脂25との間に配されているため、赤色蛍光体樹脂24からの赤色蛍光体の飛散を防止する効果を有する。加えて、赤色蛍光体樹脂24への水分供給が遮断されるため、赤色蛍光体と水分との反応を抑えることができ、フッ酸の発生を抑える効果もある。
 〔実施例3〕
 図11に示すLED発光装置12を作製し、実施例1、2と同様に発光スペクトルの経時変化を確認した。
 LED発光装置12において、透光性樹脂21の半径を0.4mmとし、さらに、透光性樹脂21の表面に赤色蛍光体樹脂24を配することで、赤色蛍光体樹脂24を、LED素子14から、0.4mm以上離間させて配した。そして、実施例1、2と同様に、LED発光装置12の発光のための駆動電流を300mAとし、LED発光装置12を100時間発光させた。この結果、図5に示した発光スペクトルとほぼ同様の発光スペクトルを得ることができた。
 これにより、LED発光装置12を100時間継続して発光させたときの発光スペクトルは、図4に示した比較例であるLED発光装置100における初期の発光スペクトルと発光強度は変わらず、特に、600nm~660nmの範囲で赤色の発光強度が低下していなことが分かった。
 このため、LED発光装置12においても、KSiF:Mnを含有する赤色蛍光体樹脂24を、LED素子14から、0.4mm以上離間させることで、発光スペクトル、特に、赤色波長帯における発光スペクトルの強度の経時変化を抑えることができることが分かった。
 また、この結果から、赤色蛍光体樹脂24を、緑色蛍光体樹脂25の表面に配することで半球形状とし、赤色蛍光体樹脂24が覆うLED素子14から略等距離に離間させることで、LED素子14からの光により赤色蛍光体樹脂24が発光する赤色光の、経時変化に伴う赤色蛍光体樹脂24の層内の強度バラつきを抑制することができることも分かった。
 〔変形例〕
 図13は、図11に示したLED発光装置12の変形例に係るLED発光装置12aの構成を表す断面図である。
 図13に示すLED発光装置(発光装置)12aは、リフレクタ(反射部材)17を設けた点でLED発光装置12と相違する。LED発光装置12aの他の構成はLED発光装置12と同様である。
 リフレクタ17は、LED素子14、透光性樹脂21、赤色蛍光体樹脂24、および緑色蛍光体樹脂25の周囲を囲んで、基板1の表面に配されている。
 リフレクタ17を構成する材料は、一例として、白色の樹脂材料を挙げることができるが、これに限定されるものではなく、一般的に反射部材に用いられている材料を使用することができる。
 LED発光装置(発光装置)12aによると、LED素子14、赤色蛍光体樹脂24、および緑色蛍光体樹脂25から発光された光を、リフレクタ17が、LED発光装置12aの出射方向(図13における上方向)に反射するため、リフレクタ17を有しないLED発光装置12と比べて高輝度の光を出射することができる。
 〔まとめ〕
 本発明の態様1に係る発光装置(LED発光装置10・11・12)は、基板1と、基板1に配された発光素子(LED素子14a・14b・14)と、基板1に配され、上記発光素子を封止する封止樹脂(透光性樹脂21)と、少なくとも(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体である赤蛍光体が含有された第1蛍光体含有層(赤色蛍光体樹脂22・24・赤/緑色蛍光体樹脂23)とを備え、上記第1蛍光体含有層は、上記封止樹脂の表面に、直接又は間接的に配されることで上記発光素子を覆い、かつ、半球形状であることを特徴としている。
 上記構成によると、上記第1蛍光体含有層は、上記封止樹脂の表面に、直接又は間接的に配されているため、少なくとも、上記封止樹脂が配されている分上記発光素子から離間させることができる。これにより、上記発光素子から発せられる光や熱に起因する赤蛍光体の発光強度の経時変化を抑制することができる。加えて、上記第1蛍光体含有層は半球形状であるため、半球形状以外の形状の場合と比べて、上記発光素子から発せられる光や熱に起因する赤蛍光体の発光強度の、上記第1蛍光体含有層内における経時変化のばらつきを抑制することができる。
 本発明の態様2に係る発光装置は、上記態様1において、上記封止樹脂は半球形状を有し、当該封止樹脂の半径は0.1mm以上であることが好ましい。上記構成により、上記発光素子から発せられる光や熱に起因する赤蛍光体の発光強度の経時変化を確実に抑制することができる。
 本発明の態様3に係る発光装置は、上記態様1または2において、上記第1蛍光体含有層(赤/緑色蛍光体樹脂23)は、さらに、上記赤蛍光体とは異なる色の光を発光する蛍光体を含有することが好ましい。上記構成により、上記赤蛍光体の含有量を減らすことができ、上記発光素子から発せられる光や熱に起因する赤蛍光体の発光強度の、上記第1蛍光体含有層内における経時変化のばらつきを、より抑制することができる。
 本発明の態様4に係る発光装置は、上記態様1~3において、上記赤蛍光体とは異なる色の光を発光する蛍光体を含有する第2蛍光体含有層(緑色蛍光体樹脂25)を備え、上記第2蛍光体含有層は、上記第1蛍光体含有層の表面に配されていることが好ましい。上記構成により、上記第1蛍光体含有層の厚さを薄くすることができる。このため、上記赤蛍光体の含有量を減らすことができ、上記発光素子から発せられる光や熱に起因する赤蛍光体の発光強度の、上記第1蛍光体含有層内における経時変化のばらつきを、より抑制することができる。
 本発明の態様5に係る発光装置は、上記態様1~4において、上記赤蛍光体は、ヘキサフルオロケイ酸カリウムを母体材料とする蛍光体であることが好ましい。これにより、一態様として上記赤蛍光体を構成することができる。
 本発明の一態様に係る発光装置は、上記態様において、上記発光素子を発光させるために、当該発光素子に流す駆動電流は200mA以上であることが好ましい。このように高電流を上記発光素子に流しても、上記発光素子から発せられる光や熱に起因する赤蛍光体の発光強度の経時変化や、上記第1蛍光体含有層内における発光強度の経時変化のばらつきを抑制することができる。
 本発明の一態様に係る発光装置は、上記態様において、平面視したとき、上記発光素子は、上記第1蛍光体含有層の中心に配されていることが好ましい。上記構成によると、上記発光素子から発せられる光や熱に起因する赤蛍光体の発光強度の、上記第1蛍光体含有層内における経時変化のばらつきを、より抑制することができる。
 本発明の一態様に係る発光装置は、上記態様において、上記封止樹脂は半球形状を有し、当該封止樹脂の半径は0.4mm以上であることが好ましい。上記構成によると、さらに、上記赤蛍光体の発光強度の経時変化を確実に抑制することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明は、発光装置に利用することができる。
1 基板
2・3 電極
10・11・12 LED発光装置(発光装置)
14・14a・14b LED素子(発光素子)
15 ワイヤ
21 透光性樹脂(封止樹脂)
22 赤色蛍光体樹脂(第1蛍光体含有層)
23 赤/緑色蛍光体樹脂(第1蛍光体含有層)
24 赤色蛍光体樹脂(第1蛍光体含有層)
25 緑色蛍光体樹脂(第2蛍光体含有層)

Claims (5)

  1.  基板と、
     上記基板に配された発光素子と、
     上記基板に配され、上記発光素子を封止する封止樹脂と、
     少なくとも(Na,K)(Ge,Si,Ti)F:Mnで表されるフッ化物を母体材料とする蛍光体である赤蛍光体が含有された第1蛍光体含有層とを備え、
     上記第1蛍光体含有層は、上記封止樹脂の表面に、直接又は間接的に配されることで上記発光素子を覆い、かつ、半球形状であることを特徴とする発光装置。
  2.  上記封止樹脂は半球形状を有し、当該封止樹脂の半径は0.1mm以上であることを特徴とする請求項1に記載の発光装置。
  3.  上記第1蛍光体含有層は、さらに、上記赤蛍光体とは異なる色の光を発光する蛍光体を含有することを特徴とする請求項1または2に記載の発光装置。
  4.  上記赤蛍光体とは異なる色の光を発光する蛍光体を含有する第2蛍光体含有層を備え、上記第2蛍光体含有層は、上記第1蛍光体含有層の表面に配されていることを特徴とする請求項1~3の何れか1項に記載の発光装置。
  5.  上記赤蛍光体は、ヘキサフルオロケイ酸カリウムを母体材料とする蛍光体であることを特徴とする請求項1~4の何れか1項に記載の発光装置。
PCT/JP2014/074929 2013-10-18 2014-09-19 発光装置 WO2015056525A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015542553A JPWO2015056525A1 (ja) 2013-10-18 2014-09-19 発光装置
CN201480056596.5A CN105659396A (zh) 2013-10-18 2014-09-19 发光装置
US15/028,499 US20160233393A1 (en) 2013-10-18 2014-09-19 Light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-217477 2013-10-18
JP2013217477 2013-10-18

Publications (1)

Publication Number Publication Date
WO2015056525A1 true WO2015056525A1 (ja) 2015-04-23

Family

ID=52827978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074929 WO2015056525A1 (ja) 2013-10-18 2014-09-19 発光装置

Country Status (4)

Country Link
US (1) US20160233393A1 (ja)
JP (1) JPWO2015056525A1 (ja)
CN (1) CN105659396A (ja)
WO (1) WO2015056525A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017114108A1 (zh) * 2015-12-29 2017-07-06 有研稀土新材料股份有限公司 红色荧光粉、其制备方法及包含该红色荧光粉的发光器件
WO2017192322A1 (en) * 2016-05-02 2017-11-09 Ge Lighting Solutions Llc Phosphor materials for light sources and method for fluidizing the same
JP2019169557A (ja) * 2018-03-22 2019-10-03 日亜化学工業株式会社 発光装置
DE102017205819B4 (de) 2016-04-06 2025-01-16 Nichia Corporation Lichtemittierendes Bauelement

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106098907A (zh) * 2016-06-13 2016-11-09 深圳市玲涛光电科技有限公司 高色域荧光粉组合、白光led及其制备方法
CN105938868A (zh) * 2016-06-13 2016-09-14 深圳市玲涛光电科技有限公司 高色域荧光粉组合、白光led及其制备方法
CN106085424A (zh) * 2016-06-13 2016-11-09 深圳市玲涛光电科技有限公司 高色域荧光粉组合、白光led及其制备方法
CN106058014A (zh) * 2016-06-13 2016-10-26 深圳市玲涛光电科技有限公司 高色域荧光粉组合、白光led及其制备方法
JP2018022844A (ja) * 2016-08-05 2018-02-08 日亜化学工業株式会社 発光装置及び発光装置の製造方法
US10535805B2 (en) 2017-01-13 2020-01-14 Intematix Corporation Narrow-band red phosphors for LED lamps
US11342311B2 (en) * 2019-03-18 2022-05-24 Intematix Corporation LED-filaments and LED-filament lamps utilizing manganese-activated fluoride red photoluminescence material
JP7242894B2 (ja) 2019-03-18 2023-03-20 インテマティックス・コーポレーション 光ルミネセンス層状構造体を備えるパッケージ化された白色発光デバイス
US11781714B2 (en) 2019-03-18 2023-10-10 Bridgelux, Inc. LED-filaments and LED-filament lamps
CN113841238A (zh) 2019-03-18 2021-12-24 英特曼帝克司公司 Led灯丝

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159813A (ja) * 2010-02-01 2011-08-18 Panasonic Electric Works Co Ltd 発光装置
JP2012169653A (ja) * 2010-08-23 2012-09-06 Toshiba Corp 発光装置の製造方法
JP2013012778A (ja) * 2011-06-02 2013-01-17 Mitsubishi Chemicals Corp 照明器具
JP2013135084A (ja) * 2011-12-26 2013-07-08 Nitto Denko Corp 発光ダイオード装置の製造方法
JP2013211250A (ja) * 2012-02-27 2013-10-10 Mitsubishi Chemicals Corp 波長変換部材及びこれを用いた半導体発光装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306441A (en) * 1992-12-31 1994-04-26 Gte Products Corporation Method of preparing fluoroplogopite phosphor
CN100539224C (zh) * 2006-10-31 2009-09-09 东芝照明技术株式会社 发光装置
JP5028466B2 (ja) * 2008-11-27 2012-09-19 サムソン エルイーディー カンパニーリミテッド. 車用ヘッドライト
US8436527B2 (en) * 2010-09-07 2013-05-07 Kabushiki Kaisha Toshiba Light emitting device
JP5105132B1 (ja) * 2011-06-02 2012-12-19 三菱化学株式会社 半導体発光装置、半導体発光システムおよび照明器具
JP5751154B2 (ja) * 2011-12-14 2015-07-22 豊田合成株式会社 発光装置及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159813A (ja) * 2010-02-01 2011-08-18 Panasonic Electric Works Co Ltd 発光装置
JP2012169653A (ja) * 2010-08-23 2012-09-06 Toshiba Corp 発光装置の製造方法
JP2013012778A (ja) * 2011-06-02 2013-01-17 Mitsubishi Chemicals Corp 照明器具
JP2013135084A (ja) * 2011-12-26 2013-07-08 Nitto Denko Corp 発光ダイオード装置の製造方法
JP2013211250A (ja) * 2012-02-27 2013-10-10 Mitsubishi Chemicals Corp 波長変換部材及びこれを用いた半導体発光装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017114108A1 (zh) * 2015-12-29 2017-07-06 有研稀土新材料股份有限公司 红色荧光粉、其制备方法及包含该红色荧光粉的发光器件
CN106929015A (zh) * 2015-12-29 2017-07-07 有研稀土新材料股份有限公司 红色荧光粉、其制备方法及包含该红色荧光粉的发光器件
US10385265B2 (en) 2015-12-29 2019-08-20 Grirem Advanced Materials Co., Ltd. Red phosphor powder, preparation method thereof and luminescent device comprising same
CN106929015B (zh) * 2015-12-29 2020-05-12 有研稀土新材料股份有限公司 红色荧光粉、其制备方法及包含该红色荧光粉的发光器件
DE102017205819B4 (de) 2016-04-06 2025-01-16 Nichia Corporation Lichtemittierendes Bauelement
WO2017192322A1 (en) * 2016-05-02 2017-11-09 Ge Lighting Solutions Llc Phosphor materials for light sources and method for fluidizing the same
US10883045B2 (en) 2016-05-02 2021-01-05 Current Lighting Solutions, Llc Phosphor materials including fluidization materials for light sources
JP2019169557A (ja) * 2018-03-22 2019-10-03 日亜化学工業株式会社 発光装置
JP7089159B2 (ja) 2018-03-22 2022-06-22 日亜化学工業株式会社 発光装置
US11605617B2 (en) 2018-03-22 2023-03-14 Nichia Corporation Light emitting device

Also Published As

Publication number Publication date
US20160233393A1 (en) 2016-08-11
CN105659396A (zh) 2016-06-08
JPWO2015056525A1 (ja) 2017-03-09

Similar Documents

Publication Publication Date Title
WO2015056525A1 (ja) 発光装置
JP5410342B2 (ja) 発光装置
JP5240603B2 (ja) 白色光源モジュール及びバックライトユニット並びにlcdディスプレイ
CN100576535C (zh) 发光器件和使用所述发光器件的照明装置
KR101265094B1 (ko) 백색 발광 다이오드 및 그 제조 방법
JP2017118130A (ja) 光源装置および発光装置
KR20140005389U (ko) 2칩 발광 다이오드
JP2010034183A (ja) 発光装置
JP6230392B2 (ja) 発光装置
JP5847619B2 (ja) 発光装置および照明装置
JP2012009684A (ja) 半導体発光装置
JP2007081090A (ja) 白色発光体及び照明装置
TWI549320B (zh) 發光裝置
JP2013191778A5 (ja)
JP2008013592A (ja) 白色発光蛍光体およびそれを用いた発光モジュール
JP6405738B2 (ja) 発光装置
KR101493708B1 (ko) 백색 발광 장치
JP2007134606A (ja) 白色光源
JP2016115941A (ja) 発光装置
CN106716653A (zh) 用于发光二极管的颜色转换的基板及其制造方法
JP2014086696A (ja) 発光装置
CN1677695A (zh) 白光发光二极管单元
JP2005167138A (ja) 白色発光素子
JP6258283B2 (ja) 発光装置および照明装置
JP3118485U (ja) 白色光発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853359

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015542553

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15028499

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853359

Country of ref document: EP

Kind code of ref document: A1