WO2015050155A1 - エンジン始動制御装置 - Google Patents
エンジン始動制御装置 Download PDFInfo
- Publication number
- WO2015050155A1 WO2015050155A1 PCT/JP2014/076274 JP2014076274W WO2015050155A1 WO 2015050155 A1 WO2015050155 A1 WO 2015050155A1 JP 2014076274 W JP2014076274 W JP 2014076274W WO 2015050155 A1 WO2015050155 A1 WO 2015050155A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piston
- rotation
- engine
- electrical machine
- rotor
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N19/00—Starting aids for combustion engines, not otherwise provided for
- F02N19/005—Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/009—Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N11/00—Starting of engines by means of electric motors
- F02N11/04—Starting of engines by means of electric motors the motors being associated with current generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/009—Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
- F02D2041/0095—Synchronisation of the cylinders during engine shutdown
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/042—Introducing corrections for particular operating conditions for stopping the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N11/00—Starting of engines by means of electric motors
- F02N11/08—Circuits specially adapted for starting of engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02N—STARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
- F02N19/00—Starting aids for combustion engines, not otherwise provided for
- F02N19/005—Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation
- F02N2019/008—Aiding engine start by starting from a predetermined position, e.g. pre-positioning or reverse rotation the engine being stopped in a particular position
Definitions
- the present invention relates to an engine start control device.
- This application claims priority based on Japanese Patent Application No. 2013-206376 filed in Japan on October 1, 2013, the contents of which are incorporated herein by reference.
- Patent Document 1 discloses an engine start in which inertia energy is stored by cranking the crankshaft to a predetermined position after compression top dead center immediately after the engine is stopped during idle stop control. A control device is disclosed.
- FIG. 8 shows a general start control operation as in Patent Document 1. As shown in FIG. 8, when an ECU (Engine Control Unit) detects an engine stop signal, ignition of the spark plug is stopped and fuel injection by the injector is stopped.
- ECU Engine Control Unit
- the rotor performs inertia rotation, so the crankshaft also starts inertia rotation.
- the piston stops several times above the compression top dead center of FIG. 8 until the crankshaft starts inertial rotation and stops.
- the piston cannot exceed the compression top dead center B shown in FIG. 8 and reverses at a crank angle of 310 ° before the compression top dead center B, and finally the crank angle 690 as shown in FIG. Stop at the ° (exhaust stroke) position.
- the piston When the vehicle is started, the piston needs to exceed the compression top dead center B in order to start the engine. However, in order for the piston to exceed the compression top dead center B, a lot of torque energy is required for the rotor. Therefore, as described above, the ECU drives the rotor in the reverse direction until the piston reaches a predetermined position, and lengthens the run-up period to the compression top dead center B, thereby gaining momentum and overcoming the compression top dead center B. I am doing so.
- the predetermined position is, for example, in the expansion process, and is shown as 470 ° in FIG.
- the start state is a state in which the trigger for the forward rotation of the rotor can be recognized.
- the trigger for forward driving is, for example, a throttle switch.
- the ECU When a trigger for forward rotation driving is input to the ECU, the ECU starts ignition of the spark plug and injects fuel by the injector, and inputs a forward rotation driving signal to the ACG starter.
- the ACG starter performs forward rotation, gets over the compression top dead center B, and the vehicle starts.
- the present invention provides an engine start control device capable of restarting the engine without performing reverse rotation driving and preventing the vehicle from moving backward in starting after idle stop control.
- the engine start control device that controls the inertial rotation of the rotating electrical machine performs an engine stop operation after the throttle valve is fully closed, and causes the rotating electrical machine to rotate inertially.
- a first control step a second control step of determining whether or not to stop the piston within a predetermined stop region when the rotating electric machine is rotating inertially, and the second control step, And a third control step for controlling the inertial rotation of the rotating electrical machine so that the piston stops in the predetermined stop region when it is determined that the piston is not stopped in the predetermined stop region.
- the predetermined stop region may be a position where the piston can exceed the compression top dead center and the engine can be started.
- the engine start control device further includes a rotation detection sensor that detects an angle of rotation of the rotating electrical machine.
- the stop position of the piston is predicted based on the change rate of the rotational speed of the rotating electrical machine that rotates by inertia calculated from the rotation information indicating the rotation from the rotation detection sensor and the crank angle.
- the engine start control device uses the rotation speed, crank angle, and stop position of the piston of the rotating electrical machine in the third control step. In order to stop the rotation within a predetermined stop region, a reverse torque is generated in the rotating electric machine.
- the first braking force by fully closing the throttle valve and the rotating electrical machine are energized so that the torque works in the direction opposite to the inertia rotation.
- the second braking force By the second braking force, the inertial rotation can be stopped at a predetermined position, that is, a position where a sufficient run-up period can be secured to overcome the compression top dead center. In this way, since there is no reverse rotation drive operation of the engine, the problem of reverse rotation at the time of reverse rotation is solved even with a motorcycle with a mission.
- FIG. 1 is a diagram illustrating a block configuration of an engine start control device and an engine configuration to which the engine start control device is applied according to an embodiment of the present invention.
- It is a perspective view of the rotary electric machine in one Embodiment of this invention. It is an expanded view of the inner peripheral side of the rotor in one Embodiment of this invention.
- It is the block diagram which showed the structure of the principal part in ECU which concerns on the drive control of the rotary electric machine in one Embodiment of this invention.
- FIG. 1 is a block diagram of a control system for a rotating electrical machine according to an embodiment of the present invention.
- an engine 1 that is typically an internal combustion engine using gasoline or the like as a fuel is mounted on a vehicle not shown.
- the engine start control device of the present invention is mounted on a motorcycle with a motor with a transmission.
- the engine 1 includes a rotating electrical machine 2, a rotation detection sensor 3, a piston 4, a cylinder 5, a spark plug 6, an exhaust valve 7, an intake valve 8, an injector 9, a throttle valve 10, an air cleaner 11, and an intake passage 13. .
- the ECU 200 includes a full-wave rectification bridge circuit 201 that full-wave rectifies three-phase alternating current generated by the generator function of the rotating electrical machine 2, a first control unit 203, and a second control unit 204.
- the ECU 200 receives detection signals from various sensors such as the rotation detection sensor 3 ⁇ ⁇ ⁇ , the throttle sensor 32, and the throttle switch 33. Based on the results of these sensors, the rotary electric machine 2, spark plug 6, injector 9, and throttle valve 10 are controlled.
- the air cleaner 11 takes in the outside air through the intake path indicated by the arrow. Further, the air cleaner 11 purifies the intake air by the air filter 12 and supplies it to the intake passage 13.
- a throttle valve 10 is disposed inside the intake passage 13.
- the throttle valve 10 is a valve that controls the amount of air taken in.
- the ECU 200 controls the opening and closing of the throttle valve 10 in accordance with the turning operation of the throttle grip of the motorcycle.
- the opening / closing amount (throttle opening) is detected by the throttle sensor 32.
- the throttle valve opens and closes in conjunction with the turning operation of the throttle grip.
- the outside air sucked according to the opening degree of the throttle valve 10 is mixed with the fuel injected from the injector 9.
- the mixed fuel mixed gas is supplied to the cylinder 5 of the engine 1 through the intake valve 8.
- the fuel is pressurized by a pump (not shown) and supplied to the injector 9.
- the piston 4 is provided inside the cylinder 5 and reciprocates along the inner peripheral surface of the cylinder 5 formed in a hollow cylindrical shape.
- the upper surface and the lower portion of the piston 4 are connected to the crankshaft via a connecting rod (not shown). Thereby, the reciprocating motion of the piston 4 is converted into the rotational motion of the crankshaft. Therefore, the position of the piston 4 can be obtained by obtaining the crank angle.
- the top surface 14 of the cylinder 5 is provided with an intake valve 8 for supplying intake air into the cylinder 5 and an exhaust valve 7 for discharging exhaust gas after combustion in the cylinder 5.
- the operations of the exhaust valve 7 and the intake valve 8 are individually controlled by a camshaft (not shown).
- a spark plug 6 is provided at the top of the cylinder 5 with its tip projecting toward the cylinder 5. The spark plug 6 generates a spark in response to a command from the ECU 200 and ignites a mixture of fuel and air in the piston 4.
- the exhaust valve 7 is not used only for the process of releasing the exhaust gas to the outside. At the time of starting, when compressing the mixed gas in the cylinder 5, the exhaust valve 7 is slightly opened as necessary to reduce the force necessary for moving the piston 4.
- FIG. 2 shows a rotating electrical machine 2 according to an embodiment of the present invention.
- the rotating electrical machine 2 is an outer rotor type that functions as a starter motor when the engine 1 is started and functions as a generator after the engine 1 is started.
- the rotating electrical machine 2 includes a rotor 21 fixed to a crankshaft of the engine 1 (not shown), a rotation detection sensor 3 that detects a rotation angle of the rotor 21, a stator core 26 that is formed by laminating electromagnetic steel plates, and a stator.
- FIG. 3 is a developed view of the inner peripheral side of the rotor 21.
- a plurality of magnets 24 are attached and fixed to the inner peripheral surface of the rotor 21 at equal intervals along the circumferential direction.
- One magnet 24c has a short secondary magnetic pole portion 240 whose inner surface is magnetized to S pole, either in the longitudinal direction of the main magnetic pole portion 242 whose inner surface is magnetized to N pole, either at the upper end or the lower end. Is formed.
- the magnet 24a is magnetized with an N pole in the entire inner surface
- the magnet 24a is magnetized in the entire inner surface with an S pole
- the magnet 24b is magnetized in the entire inner surface with an S pole
- the magnet 24b is magnetized in the entire inner surface with an S pole
- the magnet 24b is magnetized in the entire inner surface with an S pole
- the magnet 24b is magnetized in the entire inner surface with an S pole
- the magnet 24b the main magnetic pole portion 242
- the sub magnetic pole portion The magnet 24 provided with 240 is called a magnet 24c.
- a magnet 24c is disposed between a specific pair of adjacent magnets 24a and 24a
- a magnet 24b is disposed between other adjacent magnets 24a and 24a.
- the main magnetic pole portion 242 is disposed at a position M2 facing the axial center of the inner peripheral surface of the rotor 21 and mainly detects a reference point for detecting the commutation timing of the coil 25. Used as a target.
- the sub magnetic pole part 240 is disposed at a position M1 on one end side in the axial direction of the rotor 21, and is used as a target for detecting the ignition timing of the engine.
- the magnet 24a, the magnet 24c, and the magnet 24a are continuously arranged side by side.
- the N pole and the S pole appear alternately in the magnet 24, but the position on one end side in the axial direction of the rotor 21 In M1, N poles appear continuously for three magnets only before and after the magnet 24c (front and rear in the circumferential direction). Therefore, the inner peripheral side of the rotor 21 is the N pole and the S pole except for a part of the position M1 on one end side in the axial direction of the rotor 21 (a place where the magnet 24a, the magnet 24c, and the magnet 24a are continuously arranged). Appear alternately.
- the rotation detection sensor 3 includes a first Hall IC (sensor element) 3a, a second Hall IC (sensor element) 3b, a third Hall IC (sensor element) 3c, and a fourth Hall IC (sensor element) 3d shown in FIG. Each is housed.
- the rotation detection sensor 3 is fixed to the stator 22.
- These Hall ICs 3a, 3b, 3c, and 3d face the inner peripheral surface of the rotor 21 and detect the switching of the magnetic flux of the magnet 24.
- Each of the first Hall IC 3a, the second Hall IC 3b, the third Hall IC 3c, and the fourth Hall IC 3d has a different installation height in the longitudinal direction of the magnet. As shown in FIG. 3, the first Hall IC 3 a is disposed at a position M ⁇ b> 1 that faces one end side of the inner peripheral surface of the rotor 21 in the axial direction. On the other hand, unlike the first Hall IC 3a, each of the second Hall IC 3b, the third Hall IC 3c, and the fourth Hall IC 3d is disposed at a position M2 facing the central side in the axial direction of the inner peripheral surface of the rotor 21.
- the first Hall IC 3a detects only switching of the magnetic fluxes of the magnets 24a and 24b at a height that passes through the sub magnetic pole part 240 of the magnet 24c.
- the second Hall IC 3b, the third Hall IC 3c, and the fourth Hall IC 3d detect the switching of the magnetic flux of the magnets 24a, 24b, and 24c at a height that passes through the main magnetic pole portion 242 of the magnet 24c.
- the magnet 24a, the magnet 24b, the main magnetic pole part 242, and the sub magnetic pole part 240 shown in FIG. 3 may reverse each magnetic pole. That is, the magnetic poles may be changed to the S poles for the N poles and to the N poles for the S poles.
- the second Hall IC 3b, the third Hall IC 3c, and the fourth Hall IC 3d output a signal detected at the position M2 on the center side of the rotor 21 to the engine start control device as a rotation position signal of the rotor 21.
- the first Hall IC 3a outputs a signal detected at a position M1 on one end side in the axial direction of the rotor 21 to the ECU 200 as an absolute position information signal on the circumference of the rotor 21.
- the ECU 200 receives the output signals of the second, third, and fourth Hall ICs 3b, 3c, and 3d, controls the commutation timing for the three-phase coil 25, and outputs the output signals of the first Hall IC 3a and the second Hall IC 3b.
- the rotational speed (rotational speed) of the rotor and the position of the piston 4 are always calculated.
- the rotation detection sensor 3 was shown about the case where it is an ACG starter sensor, it should just be able to detect rotation of a rotor, and is not restricted to this. That is, the sensor which detects the trigger piece formed in the outer peripheral surface of a rotor may be sufficient. In that case, the ECU 200 always calculates the rotational speed (rotational speed) of the rotor 21 and the position of the piston 4 based on the rotation information of the trigger piece detected by the sensor.
- FIG. 4 is a block diagram showing a configuration of a main part in the ECU 200 related to the drive control of the rotating electrical machine 2.
- the second control unit 204 includes a sensor signal processing unit 210, a rotor state calculation unit 211, and an advance angle calculation unit 212.
- the three-phase full-wave rectification bridge circuit is configured by connecting FETs (Field Effect Transistors) connected in series in parallel.
- the sensor signal processing unit 210 shapes the signal from the rotation detection sensor 3 into a rectangular wave as shown in FIG. Note that each of the pulse signals P2, P3, and P4 in the figure is a pulse signal obtained by waveform-shaping the outputs of the second Hall IC 3b, the third Hall IC 3c, and the fourth Hall IC 3d that are equally installed. Show.
- the pulse signal P1 indicates a pulse signal obtained by shaping the output of the first Hall IC 3a.
- the sensor signal processing unit 210 outputs pulse signals P1 to P4 obtained by waveform shaping to the rotor state calculation unit 211.
- the rotor state calculation unit 211 calculates the angular velocity, the angular acceleration, and the current position of the piston 4. First, the calculation method of angular velocity and angular acceleration will be described.
- the rotor state calculation unit 211 calculates an angular velocity by calculating a time required for the rotor to make one rotation.
- the time required for one rotation of the rotor can be calculated by measuring the time between the pulse signals P2, P3 and P4. For example, the rising edge of the signal P2 is T1, and the falling edge of the signal P4 that rises thereafter is T2.
- the angular velocity ⁇ 2 at T2 can be calculated from the time between T1 and T2 by the following equation (1).
- ⁇ 2 10 / (T2-T1) (1)
- the rising edge of the signal P3 that rises thereafter is defined as T3.
- T3 the rising edge of the signal P3 that rises thereafter.
- the rotor state calculation unit 211 can calculate the angular acceleration a3 at T3 from the calculated ⁇ 2 and ⁇ 3 by the following equation (3).
- a3 ( ⁇ 3- ⁇ 2) / (T3-T2) (3)
- the top dead center position is set to 0
- the piston stroke is set to X
- the position of the current piston 4 from the top dead center is set to x
- the top dead center timing is set to T4
- the sensor signal P2 from T4.
- the number y of edges of the rectangular wave can be counted and calculated by the following equation (4).
- x X / 2 ⁇ (1-cos (y ⁇ 10)) (4)
- the piston stroke X is a movement distance from the top dead center to the bottom dead center of the piston 4.
- the top dead center timing T4 is a timing at which the output (pulse signal P4) of the fourth Hall IC 3d switches from high to low while the output (pulse signal P1) of the first Hall IC 3a remains in the high state.
- This timing T4 is an absolute position signal indicating top dead center.
- the top dead center includes a compression top dead center and an exhaust top dead center. For this reason, even if it is a top dead center, it cannot be discriminated only by the position of the piston 4 whether it is a compression top dead center or an exhaust top dead center. Therefore, if the angular acceleration at the top dead center is smaller than the predetermined angular acceleration, the rotor state calculation unit 211 regards it as a compression top dead center.
- the rotor state calculation unit 211 determines whether or not the piston 4 can exceed the compression top dead center in these states.
- the first control unit 203 If it is determined that the position of the piston 4 is the compression top dead center, it is determined whether or not the crank angular speed at the top dead center is equal to or less than a threshold value. . When it is determined that the piston 4 cannot exceed the next compression top dead center, the first control unit 203 immediately starts reverse energization of the rotor 21. The first control unit 203 stops the inertial rotation of the rotor 21 by energizing the rotor 21 in reverse and generating reverse torque. That is, the first control unit 203 controls the reverse torque so that the crank angle is within the angular range because the crank angle corresponding to the stop position of the piston 4 is determined in advance.
- the advance angle calculation unit 212 determines a reverse energization advance angle value (timing to energize the rotor 21 in the reverse direction) according to the rotational speed based on the advance angle MAP.
- the advance angle MAP is a table showing the relationship between the rotation speed and the reverse rotation energization advance value that is optimally set according to the rotation speed.
- the rotational speed and the reverse energization advance angle value are associated with each other.
- the rotor state calculation unit 211 can calculate the rotation speed from the angular velocity.
- the first control unit 203 controls the gate voltage supplied to each power FET of the full-wave rectification bridge circuit based on the reverse energization advance angle value, and sends the set drive pulse to each power FET of the full-wave rectification bridge circuit 201. To supply.
- FIG. 6 is a view showing the position of the piston 4 corresponding to the crank angle at the time of idle stop in one embodiment of the present embodiment.
- the engine shown in FIG. 6 is an example of a four-stroke engine so that four piston movements of intake, compression, expansion, and exhaust are shown in the drawing.
- the top dead center in FIG. 6 represents the position where the piston 4 is at the top, that is, the position of the piston 4 where the volume of the internal space of the cylinder 5 is the smallest.
- the bottom dead center in FIG. 6 represents the position where the piston 4 is at the lowest position, that is, the position of the piston 4 where the volume of the internal space of the cylinder 5 is the largest.
- the rotation at the start depends on the stroke position of the piston 4 of the engine 1.
- the load is different.
- the piston 4 is moved up and down while either the exhaust valve or the intake valve is closed, so the rotational load for rotating the crankshaft is relatively small.
- the rotating electrical machine 2 is started in the compression stroke, the piston 4 is raised to the top dead center while compressing the gas in the internal space while the intake valve and the exhaust valve are closed. The rotational load on the shaft increases.
- step S1 the process proceeds to step S1 and ECU 200 executes the engine 1 stop process.
- the throttle grip and throttle valve are linked by a wire, check that the throttle valve is fully closed by operating the throttle grip.
- the ECU 200 fully closes the throttle valve 10 when performing idle stop control.
- the throttle valve 10 is fully closed, the amount of air sucked into the cylinder 5 decreases, so that the pressure in the cylinder 5 decreases and a braking force (first braking force) is applied to the rotation of the rotor 21.
- first braking force a braking force
- the rotational speed (rotational speed) of the rotor 21 decreases.
- the reverse torque (second braking force) required for stopping the rotation of the rotor 21 can be reduced.
- step S2 after the throttle valve 10 is fully closed, the ECU 200 stops ignition of the spark plug 6 and fuel injection by the injector 9 in order to stop the engine 1.
- the rotor 21 starts inertial rotation.
- the pressure in the cylinder is lower than that when the throttle valve 10 is fully open. That is, the rotational speed (rotational speed) of the rotor 21 is lower than that in the fully opened state because the throttle valve 10 is in the fully closed state.
- the stop operation of the engine 1 in step S2 described above and the inertial rotation of the rotor 21 that starts after the engine 1 is stopped are collectively referred to as a first control process.
- step S3 after the rotor 21 starts inertial rotation, the ECU 200 confirms the rotational speed of the rotor 21 and the current position of the piston 4.
- the sensor signal processing unit 210 shapes the signals supplied from the first Hall IC 3a, the second Hall IC 3b, the third Hall IC 3c, and the fourth Hall IC 3d to generate pulse signals P1, P2, P3, and P4. After waveform shaping, the sensor signal processing unit 210 sends pulse signals P1, P2, P3, and P4 to the rotor state calculation unit 211.
- the rotor state calculation unit 211 calculates the current position of the piston 4, the angular velocity of the crank, and the angular acceleration from the pulse signals P1, P2, P3, and P4.
- step S4 the rotor state calculation unit 211 determines whether or not it is possible to apply a second braking force that can stop the piston 4 within a predetermined stop region based on the calculated data. Specifically, the rotor state calculation unit 211 determines whether or not the current position of the piston 4 is a compression top dead center.
- the rotor state calculation unit 211 determines that the current position of the piston 4 is not the compression top dead center, the rotor 21 continues the inertial rotation as it is.
- the rotor state calculation unit 211 confirms the rotational speed of the rotor 21 and the current position of the piston 4 again (returns to S2).
- step S5 the rotor state calculation unit 211 has the crank angular velocity at the top dead center equal to or less than the threshold value. It is determined whether or not.
- the rotor state calculation unit 211 determines that the next compression top dead center cannot be exceeded if the crank angular velocity at the top dead center is less than or equal to the threshold value.
- the compression top dead center A shown in FIG. 6 indicates the compression top dead center that has been exceeded by the inertial motion at the time of idling stop.
- the compression top dead center B indicates the compression top dead center that first exceeds at the start.
- the rotor state calculation unit 211 determines that the current position of the piston 4 is the first compression top dead center (compression top dead center A) shown in FIG. 6, for example, the rotor 21 continues the inertial rotation and the rotor state calculation is performed.
- the part 211 confirms again the rotation speed of the rotor 21 and the current position of the piston 4 (return to S2).
- the control process from step S3 to S4 is referred to as a second control process.
- step S6 the first control unit 203 immediately performs braking energization control on the rotating electrical machine 2. The inertial rotation is stopped and the piston 4 is stopped at a predetermined position.
- the advance angle calculation unit 212 sends the rotation speed and the current piston 4 position. Send location data.
- the advance angle calculation unit 212 determines a reverse energization advance angle value corresponding to the position data of the piston 4 and the rotation speed based on the advance angle MAP.
- the advance angle calculator 212 sends the determined reverse energization advance angle value to the first controller 203.
- step S ⁇ b> 7 the first control unit 203 applies a second braking force to the rotating electrical machine 2 and gradually decreases the rotational speed of the rotor 21.
- the first control unit 203 fixes the energization pattern when the rotation speed becomes lower than the stop determination rotation speed.
- the stop determination rotation speed is the rotation speed of the rotor 21 at which it is determined that the piston 4 can stop within a predetermined stop region.
- the first control unit 203 cancels the energization after confirming that the rotational speed has become zero. At this time, if the crankshaft reverses, power supply is immediately stopped, and it is confirmed that the crank angle stops somewhere in the expansion stroke.
- crank angle is not within the angle range and the piston 4 stops outside the predetermined stop region, the piston 4 cannot exceed the compression top dead center B even if the ECU 200 restarts the engine 1. Engine 1 does not move.
- the present invention is not limited to this. That is, it may be within a range in which the run-up period of the rotor 21 can be ensured. For example, the same effect can be obtained even when the predetermined stop area is in the middle of the compression process.
- the above-described control process of steps S5 to S7 is a third control process.
- the restart time can be shortened compared to the conventional method.
- the first braking force by fully closing the throttle valve and the rotating electrical machine are energized so that the torque works in the direction opposite to the inertia rotation.
- the second braking force By the second braking force, the inertial rotation can be stopped at a predetermined position, that is, a position where a sufficient running period can be secured to overcome the compression top dead center. In this way, since there is no reverse rotation drive operation of the engine, the problem of reverse rotation at the time of reverse rotation is solved even with a motorcycle with a mission.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
本願は、2013年10月1日に、日本に出願された特願2013-206376号に基づき優先権を主張し、その内容をここに援用する。
しかし、エンジンの再始動時において、ACG(AC Generator)スタータのモータトルク単体では、トルクが不足する場合がある。このため、特許文献1には、アイドルストップ制御時において、エンジン停止直後にクランクシャフトを圧縮上死点後の所定位置まで逆転駆動してからクランキングすることにより慣性エネルギーを蓄えるようにしたエンジン始動制御装置が開示されている。
図1は、本発明の一実施形態による回転電機の制御系ブロック図である。図1に示すように、典型的にはガソリン等を燃料とする内燃機関であるエンジン1は、図示を省略する車両に搭載される。
本発明の一実施形態の説明においては、本発明のエンジン始動制御装置がミッション付モータの自動二輪車に搭載されていることを前提とする。
または、スロットルグリップとスロットル弁がワイヤで接続されているシステムにおいては、スロットルグリップの回動操作に連動してスロットル弁が開閉する。
同図にも示すように、ロータ21の内周面には、複数のマグネット24が円周方向に沿って等間隔に取り付け、固定されている。そして、一つのマグネット24cは内側面がN極に着磁された主磁極部242の長尺方向、上端あるいは下端のいずれかに、内側面がS極に着磁された短尺な副磁極部240が形成されている。
副磁極部240は、ロータ21の軸方向の一端側の位置M1に配置され、エンジンの点火タイミングを検出するためのターゲットとして用いられる。そして、本実施形態においては、マグネット24a、マグネット24c、マグネット24aと連続して並んで配置されている。したがって、ロータ21の内周面の軸方向の中央側に対峙する位置M2においては、マグネット24は、N極とS極が交互に現れることになるが、ロータ21の軸方向の一端側の位置M1においては、マグネット24cの前後(円周方向の前後)のみマグネット3個分だけN極が連続して現れる。
したがって、ロータ21の内周側は、ロータ21の軸方向の一端側の位置M1の一部(マグネット24a、マグネット24c、マグネット24aが連続して配置されている箇所)以外ではN極とS極が交互に現れる。
一方、第2ホールIC3b、第3ホールIC3c、第4ホールIC3dの各々は、第1ホールIC3aと異なり、ロータ21の内周面の軸方向の中央側に対峙する位置M2に配置されている。これにより、第1ホールIC3aは、マグネット24cの副磁極部240を通る高さでマグネット24aと24bの磁束の切り替わりのみを検出する。また、第2ホールIC3b、第3ホールIC3c、第4ホールIC3dは、マグネット24cの主磁極部242を通る高さでマグネット24a、24b、24cの磁束の切り替わりを検出する。なお、図3に示すマグネット24a、マグネット24b、主磁極部242、副磁極部240は、それぞれの磁極を反転させてもよい。すなわち、N極ならS極に、S極ならN極に磁極を替えても良い。
なお、回転検出センサ3は、ACGスタータのセンサである場合について示したが、ロータの回転を検出できればよいのであってこれに限られない。すなわち、ロータの外周面に形成されたトリガーピースを検出するセンサであっても良い。その場合は、ECU200は、センサが検出したトリガーピースの回転情報を基に、常時、ロータ21の回転数(回転速度)とピストン4の位置を算出する。
図4は回転電機2の駆動制御に係るECU200内の主要部の構成を示したブロック図である。
第2制御部204はセンサ信号処理部210、ロータ状態演算部211、進角演算部212を有している。
3相全波整流ブリッジ回路は、直列接続されたFET(Field Effect Transistor)を並列接続して構成される。
まず、角速度と角加速度の算出方法について述べる。
ロータ状態演算部211は、ロータが1回転するために必要な時間を算出することで角速度を算出する。ロータが1回転するために必要な時間は、パルス信号P2、P3、P4の間の時間を計測することによって、算出することができる。
例えば、信号P2の立ち上がりをT1とし、その後立ち上がる信号P4の立下りをT2とする。T1からT2の間の角度を10度と設定することで、T1とT2の間の時間からT2時の角速度ω2を以下に示す式(1)で計算することができる。
ω2=10/(T2-T1) ・・・(1)
ω3=10/(T3-T2) ・・・(2)
a3=(ω3-ω2)/(T3-T2) ・・・(3)
ピストン4の現在位置は、上死点位置を0とし、ピストンストロークをXとし、上死点から現在のピストン4の位置をxとし、さらに、上死点タイミングをT4とし、T4からセンサ信号P2からP4の矩形波のエッジの数yをカウントし、以下に示す式(4)で計算することができる。
x=X/2×(1-cos(y×10)) ・・・(4)
ピストンストロークXは、ピストン4の上死点から下死点までの運動距離である。上死点タイミングT4は、第1ホールIC3aの出力(パルス信号P1)がハイ状態のまま第4ホールIC3dの出力(パルス信号P4)がハイからローに切り替わるタイミングである。このタイミングT4は上死点であることを示す絶対位置信号である。
ピストン4が次の圧縮上死点を越えられないと判断されると、第1制御部203は、ロータ21に逆転通電をただちに開始する。
第1制御部203は、ロータ21に逆転通電をかけ逆転トルクを発生させることでロータ21の慣性回転を停止させる。すなわち第1制御部203は、予めピストン4の停止位置に対応するクランク角の角度範囲内は決まっているため、クランク角がその角度範囲に収まるように逆転トルクを制御する。
そのために進角演算部212は、進角MAPに基づき、回転数に応じた逆転通電進角値(ロータ21を逆転させる方向に通電するタイミング)を決定する。進角MAPは、回転数と、この回転数に応じて最適に設定してある逆転通電進角値との関係を示すテーブルである。進角MAPでは、回転数と、逆転通電進角値が対応づけられている。
なお、ロータ状態演算部211は、角速度より回転数を算出することができる。
図6の上死点とは、ピストン4が一番上の位置、つまり、シリンダー5の内部空間の体積が最も小さくなるピストン4の位置を表す。図6の下死点とは、ピストン4が一番下の位置、つまり、シリンダー5の内部空間の体積が最も大きくなるピストン4の位置を表す。
ECU200が予め設定されたエンジンの停止条件を満たしたと判断すると、ステップS1に進んで、ECU200はエンジン1の停止処理を実行する。
ECU200はアイドルストップ制御を行う際、スロットル弁10を全閉状態にする。
スロットル弁10が全閉状態になると、シリンダー5内に吸い込む空気量が減少するので、シリンダー5内の圧力が下がり、ロータ21の回転に対して制動力(第1の制動力)が加わる。その結果、ロータ21の回転数(回転速度)が下がる。これにより、ロータ21の回転を停止させるのに必要な逆転トルク(第2の制動力)が少なくて済むという効果がある。
具体的には、ロータ状態演算部211は、ピストン4の現在位置が圧縮上死点か否かを判断する。
ここで、図6に示す圧縮上死点Aはアイドルストップ時における慣性運動によって越えた圧縮上死点を示す。また、圧縮上死点Bは始動時に最初に越える圧縮上死点を示している。
このステップS3~S4までの制御工程を第2の制御工程とする。
ピストン4が所定の停止領域内に移動すると、回転数は下がり続け、やがてロータ21の回転数は0となり停止する。第1制御部203は、回転数が0になったことを確認後、通電を解除する。このとき、クランクシャフトが逆転することがあれば、ただちに通電を停止し、クランク角度が膨張行程のどこかで停止することを確認する。
上述した、ステップS5~S7の制御工程を第3の制御工程とする。
2 回転電機
3 回転検出センサ
4 ピストン
5 シリンダー
6 点火プラグ
7 排気弁
8 吸気弁
9 インジェクター
10 スロットル弁
11 エアクリーナ
12 エアフィルタ
13 吸気通路
14 頂面
21 ロータ
22 ステータ
24 マグネット
25 コイル
26 ステータ鉄心
200 ECU
201 全波整流ブリッジ回路
202 バッテリ
203 第1制御部
204 第2制御部
210 センサ信号処理部
211 ロータ状態演算部
212 進角演算部
240 副磁極部
242 主磁極部
32 スロットルセンサ
33 スロットルスイッチ
Claims (4)
- 回転電機の慣性回転を制御するエンジン始動制御装置において、
スロットル弁が全閉状態になった後にエンジンの停止作業を実行し、前記回転電機を慣性回転させる第1の制御工程と、
前記回転電機が慣性回転している際に、ピストンを所定の停止領域内で停止するか否かを判断する第2の制御工程と、
前記第2の制御工程で、ピストンを所定の停止領域内で停止しないと判断した際に、ピストンが所定の停止領域内で停止するように、回転電機の慣性回転を制御する第3の制御工程と、
を有するエンジン始動制御装置。 - 前記所定の停止領域内とは、ピストンが圧縮上死点を越えて、エンジンが始動できる位置であることを特徴とする請求項1に記載のエンジン始動制御装置。
- 前記回転電機の回転する角度を検知する回転検出センサを更に備え、
前記第2の制御工程において、前記回転検出センサからのエンジンの回転を示す回転情報から算出した慣性回転する前記回転電機の回転数の変化率とクランク角に基づいて、前記ピストンの停止位置を予測する請求項1又は2に記載のエンジン始動制御装置。 - 前記第3の制御工程において、前記回転電機の回転数とクランク角と前記ピストンの停止位置とを用いて、
前記回転電機の慣性回転を所定の停止領域内で停止させるために、前記回転電機に逆転トルクを発生させる請求項3に記載のエンジン始動制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015540517A JP6019246B2 (ja) | 2013-10-01 | 2014-10-01 | エンジン始動制御装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-206376 | 2013-10-01 | ||
JP2013206376 | 2013-10-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015050155A1 true WO2015050155A1 (ja) | 2015-04-09 |
Family
ID=52778743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/076274 WO2015050155A1 (ja) | 2013-10-01 | 2014-10-01 | エンジン始動制御装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6019246B2 (ja) |
WO (1) | WO2015050155A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017002820A (ja) * | 2015-06-11 | 2017-01-05 | 三菱電機株式会社 | エンジン始動制御装置およびエンジン始動制御方法 |
JP2017207066A (ja) * | 2017-06-29 | 2017-11-24 | 三菱電機株式会社 | エンジン始動制御装置およびエンジン始動制御方法 |
WO2018180560A1 (ja) * | 2017-03-30 | 2018-10-04 | 本田技研工業株式会社 | 内燃機関 |
US20200018279A1 (en) * | 2017-03-28 | 2020-01-16 | Honda Motor Co., Ltd. | Engine start control device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004068632A (ja) * | 2002-08-02 | 2004-03-04 | Toyota Motor Corp | 内燃機関の制御装置 |
JP2007231786A (ja) * | 2006-02-28 | 2007-09-13 | Toyota Motor Corp | 内燃機関の自動停止装置及びこの自動停止装置を備えた自動車用内燃機関 |
JP2009299598A (ja) * | 2008-06-13 | 2009-12-24 | Toyota Motor Corp | エンジンの制御装置 |
JP2013124082A (ja) * | 2011-12-16 | 2013-06-24 | Daimler Ag | ハイブリッド電気自動車の制御装置 |
JP2013194656A (ja) * | 2012-03-21 | 2013-09-30 | Suzuki Motor Corp | エンジンの停止制御装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3824132B2 (ja) * | 2000-10-26 | 2006-09-20 | 本田技研工業株式会社 | エンジン始動制御装置 |
-
2014
- 2014-10-01 JP JP2015540517A patent/JP6019246B2/ja active Active
- 2014-10-01 WO PCT/JP2014/076274 patent/WO2015050155A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004068632A (ja) * | 2002-08-02 | 2004-03-04 | Toyota Motor Corp | 内燃機関の制御装置 |
JP2007231786A (ja) * | 2006-02-28 | 2007-09-13 | Toyota Motor Corp | 内燃機関の自動停止装置及びこの自動停止装置を備えた自動車用内燃機関 |
JP2009299598A (ja) * | 2008-06-13 | 2009-12-24 | Toyota Motor Corp | エンジンの制御装置 |
JP2013124082A (ja) * | 2011-12-16 | 2013-06-24 | Daimler Ag | ハイブリッド電気自動車の制御装置 |
JP2013194656A (ja) * | 2012-03-21 | 2013-09-30 | Suzuki Motor Corp | エンジンの停止制御装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017002820A (ja) * | 2015-06-11 | 2017-01-05 | 三菱電機株式会社 | エンジン始動制御装置およびエンジン始動制御方法 |
US20200018279A1 (en) * | 2017-03-28 | 2020-01-16 | Honda Motor Co., Ltd. | Engine start control device |
US11008992B2 (en) * | 2017-03-28 | 2021-05-18 | Honda Motor Co., Ltd. | Engine start control device |
WO2018180560A1 (ja) * | 2017-03-30 | 2018-10-04 | 本田技研工業株式会社 | 内燃機関 |
CN110475960A (zh) * | 2017-03-30 | 2019-11-19 | 本田技研工业株式会社 | 内燃机 |
JPWO2018180560A1 (ja) * | 2017-03-30 | 2020-01-23 | 本田技研工業株式会社 | 内燃機関 |
JP2017207066A (ja) * | 2017-06-29 | 2017-11-24 | 三菱電機株式会社 | エンジン始動制御装置およびエンジン始動制御方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6019246B2 (ja) | 2016-11-02 |
JPWO2015050155A1 (ja) | 2017-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4230116B2 (ja) | 内燃機関の始動装置および始動制御装置 | |
US7891330B2 (en) | Engine starting method and device | |
EP1233175B1 (en) | Starter, start control device, and crank angle detector of internal combustion engine | |
TWI551776B (zh) | Engine unit and vehicle | |
US20090020092A1 (en) | Engine starting device | |
TWI544143B (zh) | Engine unit and vehicle | |
JP6252085B2 (ja) | 車両駆動システム | |
JP6019246B2 (ja) | エンジン始動制御装置 | |
CN105736168A (zh) | 曲轴角控制方法及其系统 | |
JP5929342B2 (ja) | 車両の始動制御装置 | |
CN107076092B (zh) | 发动机起动装置 | |
JP2019152146A (ja) | 鞍乗型車両用エンジンユニットおよび鞍乗型車両 | |
US10584672B2 (en) | Engine starting system | |
JP6264158B2 (ja) | エンジン始動装置 | |
EP3533994B1 (en) | Method for controlling an engine unit for a straddled vehicle, engine unit and straddled vehicle | |
JP2014040794A (ja) | 内燃機関の制御装置 | |
JP2006129680A (ja) | 発電機の制御装置、発電機の制御方法及び自動二輪車 | |
JP2019152147A (ja) | 鞍乗型車両用エンジンユニットおよび鞍乗型車両 | |
TWI573933B (zh) | 引擎系統及跨坐型車輛 | |
TWI613364B (zh) | 啓動兼發電裝置控制引擎起動之方法 | |
JP2005113781A (ja) | エンジンの始動装置 | |
JP5929414B2 (ja) | エンジン駆動車両用モータジェネレータ制御装置 | |
CN110382850B (zh) | 无电池的发动机系统 | |
JP6720045B2 (ja) | エンジン始動装置 | |
EP3837436B1 (en) | Method of starting an internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14851075 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015540517 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: IDP00201602135 Country of ref document: ID |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14851075 Country of ref document: EP Kind code of ref document: A1 |