[go: up one dir, main page]

WO2015002233A1 - Automatic programming device and automatic programming method for laser processing machine - Google Patents

Automatic programming device and automatic programming method for laser processing machine Download PDF

Info

Publication number
WO2015002233A1
WO2015002233A1 PCT/JP2014/067653 JP2014067653W WO2015002233A1 WO 2015002233 A1 WO2015002233 A1 WO 2015002233A1 JP 2014067653 W JP2014067653 W JP 2014067653W WO 2015002233 A1 WO2015002233 A1 WO 2015002233A1
Authority
WO
WIPO (PCT)
Prior art keywords
product
bridge
workpiece
creating
automatic programming
Prior art date
Application number
PCT/JP2014/067653
Other languages
French (fr)
Japanese (ja)
Inventor
貴浩 山崎
Original Assignee
株式会社 アマダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 アマダ filed Critical 株式会社 アマダ
Publication of WO2015002233A1 publication Critical patent/WO2015002233A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to an automatic programming device and an automatic programming method for a laser beam machine, and more particularly, automatic programming for automatically creating a machining program for cutting a product having a shape that does not match the height and width of a workpiece by the laser beam machine.
  • the present invention relates to an apparatus and an automatic programming method.
  • FIG. 18 is a cross-sectional view of an angle material and a channel material as workpieces.
  • the present invention has been made in view of the above, and can automatically create a machining program for cutting a product having a shape that does not match the height and width of the workpiece.
  • the purpose is to reduce the burden on workers who add bridges that connect parts.
  • the present invention provides a machining system that performs cutting with a laser processing machine on each surface of a workpiece having a uniform cross section having a plurality of surfaces and is elongated.
  • An automatic programming device that creates a machining program for cutting a product having a shape that extends over all of a plurality of surfaces that do not match the length and width, with respect to the laser processing machine, the shape data of the workpiece and the product
  • This is an automatic programming device having input means for inputting the shape data and control means for controlling the following process processes (A) to (C).
  • A Using the shape data of the workpiece to be processed and the shape data of the product, a development view having an outline showing the shape of the product, in which the workpiece is developed with a development auxiliary line of the workpiece. Creating a process; (B) performing a process of creating a bridge connecting the product and an end of the workpiece on a predetermined portion of the product; (C) A step of assigning a cutting locus to a development view in which the bridge created on the development view is combined with an outline by the process of creating the bridge performed in the step (B).
  • Another feature of the present invention is to find the element of the leftmost or rightmost maximum point in the product graphic on the upper end surface of the development view, and to find out based on a preset bridge width condition. Create a bridge from the maximum point, find the element of the leftmost or rightmost minimum point in the product graphic on the bottom surface of the development, and find it based on the bridge width condition set in advance. A process of creating a bridge from the minimum point.
  • Another feature of the present invention is that when a bridge is created from the found maximum or minimum point, the development length is increased by creating a bridge having a predetermined width on the left or right side from the bridge creation start point. If this happens, create a bridge on the other side.
  • a machining system that performs cutting with a laser processing machine on each surface of a workpiece having a plurality of surfaces and having a uniform cross section, and the shape data of the workpiece and the product
  • a laser processing program for cutting a product having a shape extending over all of a plurality of surfaces that do not match the height and width of the workpiece An automatic programming method created for a processing machine, (A) The contour line that indicates the shape of the product is developed by the control means by using the shape data of the workpiece and the shape data of the product to deploy the workpiece on the development auxiliary line of the workpiece.
  • Creating a development view having (B) performing a process of creating a bridge connecting the product and an end of the workpiece on a predetermined portion of the product by the control unit; (C) The step of assigning a cutting locus to a development view in which the bridge created on the development view is coupled to an outline by the control means by the process of creating the bridge performed in the step (B). It is to have.
  • FIG. 4 It is explanatory drawing which shows the outline of the laser processing system which implemented this invention.
  • FIG. 4 It is a schematic block diagram of the automatic programming apparatus 9 shown in FIG. 4 is a flowchart showing the operation of the automatic programming device 9. It is explanatory drawing of the machining program creation operation
  • FIG. 1 is an explanatory view showing an outline of a laser processing system embodying the present invention.
  • this laser processing system 10 has an automatic programming device 9 that creates a processing program for the laser processing machine 1 using product shape data in a database (storage means) 11 and data on a workpiece to be processed. is doing.
  • NC data based on a predetermined machining program created by the automatic programming device 9 is converted into drive data by the NC device 13 and sent to the laser beam machine 1, and the control device 2 of the laser beam machine 1 according to the drive data. Control of each part is performed, and laser processing of a workpiece (workpiece) is performed.
  • the database 11 stores product shape data obtained by processing, data of workpieces, and the like.
  • the processed member is a channel material, an angle material, an unequal side angle, and the like, which is a long and narrow processed member having a plurality of surfaces. A material is used.
  • FIG. 18 is an explanatory diagram showing a cross-sectional shape of a workpiece.
  • FIG. 2 is a block diagram showing a schematic configuration of the automatic programming device 9 shown in FIG.
  • the automatic programming device 9 is composed of a computer and has a CPU (control means) 15 to which a ROM 17 and a RAM 19 are connected.
  • the CPU 15 further includes an input device (input device) such as a keyboard.
  • Means) 21 and a display device 23 such as a display are connected.
  • the database 11 is connected to the CPU 15.
  • the CPU 15 uses product shape data and workpiece data in the database 11 in accordance with an instruction from the input device 21 and uses a RAM 19 in accordance with a computer program from the ROM 17.
  • a machining program for the laser beam machine 1 as will be described later is created.
  • one end of the workpiece 5 is engaged with and gripped by a chuck 29 and supported by a product support member 31.
  • the laser beam is irradiated while moving the laser machining head 7 along the machining locus based on the control of the control device 2. It is designed to cut.
  • drive data based on the machining nesting machining program created by the automatic programming device 9 is sent to the NC device 13 and laser machining control is performed according to the drive data.
  • FIG. 3 is a flowchart showing the operation of the automatic programming device.
  • FIGS. 4, 6 to 11 and FIGS. 13 to 17 are explanatory diagrams of the machining program creation operation of the automatic programming device 9, and
  • FIG. FIG. 12 is a flowchart showing the operation of the channel processing in FIG. 3.
  • FIGS. 18 (a) to 18 (c) a description will be given of a machining program creation operation when a product is obtained by cutting a workpiece 5 including an angle member or a channel member having a corner in a cross section. To do.
  • a development view having an outline showing the shape of the product 5a in FIG. 4 is created and read based on the product shape data, the data of the workpiece, and the like.
  • the workpiece is an angle material
  • the development view as shown in FIG. 4B.
  • the product figure 5a1 is unfolded by the unfolding auxiliary line 5b that is the boundary line between the 90-degree plane and the 180-degree plane on the outer periphery.
  • step 103 in FIG. 3 it is determined whether the workpiece 5 on the read development view is an angle material or a channel material.
  • step 105 If the workpiece 5 is an angle material, the process proceeds to step 105, where the angle is processed. If the workpiece 5 is a channel material, the process proceeds to step 107, where the channel is processed.
  • step 111 assign a cutting trajectory for the pipe material.
  • This angle processing is processing for creating a bridge that connects the product 5a and the end of the workpiece in the angle material at a predetermined portion, and will be described with reference to the angle processing flowchart of FIG.
  • FIG. 5 is a flowchart showing the angle processing.
  • step 201 of FIG. 5 the development length L1 of the product graphic 5a1 is compared with the value obtained by adding the height H1 to the width W1 of the angle material from the outline indicating the shape of the product graphic 5a1 in the development view. It is determined whether the unfolded length L1 is smaller than the value obtained by adding the height H1 to the width W1 of the angle member.
  • the development length L1 of the product graphic 5a1 is equal to the value obtained by adding the height H1 to the width W1 of the angle material
  • the development length L1 of the product graphic 5a1 is the angle as shown in FIG.
  • it is smaller than the value obtained by adding the height H1 to the width W1 of the material, it becomes as shown in FIGS. 6B and 6C.
  • the development length L1 of the product graphic 5a1 is smaller than the value obtained by adding the height H1 to the width W1 of the angle material in the step 201, whether or not the development auxiliary line 5b is present on the product graphic 5a1 in the development drawing in step 203. Is determined.
  • step 205 when there is a development auxiliary line 5b on the product graphic 5a1 in the development view in step 203, in step 205, the distance L2 from the element of the maximum point Y1 of the product graphic 5a1 to the development auxiliary line 5b is the angle material. It is determined whether or not the height is smaller than H1.
  • the 90 ° plane creation flag in the development view is turned on in step 207.
  • the 90 ° plane creation flag in the development view is turned off.
  • step 211 it is determined whether or not the distance L3 from the element of the minimum point Y2 of the product figure 5a1 to the development auxiliary line 5b is smaller than the width W of the angle material.
  • step 213 When the distance L3 from the element of the minimum point Y2 of the product figure 5a1 to the development auxiliary line 5b is smaller than the width W1 of the angle material in step 211, in step 213, the 180 ° plane creation flag in the development view is turned on. When the distance L3 from the element of the minimum point Y2 of the product figure 5a1 to the development auxiliary line 5b is not smaller than the width W1 of the angle member, in step 215, the 180 ° plane creation flag in the development view is turned off.
  • the distance L2 from the element of the maximum point Y1 of the product figure 5a1 to the development auxiliary line 5b in the development view is smaller than the height H1 of the angle material and the development is started from the element of the minimum point Y2 of the product figure 5a1 in the development view.
  • the distance L3 to the auxiliary line 5b is smaller than the width W1 of the angle member, it is as shown in FIG.
  • step 217 it is determined whether or not the 90 ° plane creation flag in the development view is turned on. If the 90 ° plane creation flag is on, in step 219, the 90 ° plane creation view is turned on. In the product figure 5a1, the leftmost maximum point Y3 is found.
  • step 221 a bridge B1 is created from the found maximum point Y3 based on the condition of the bridge width W2 set in advance.
  • the maximum point Y3 is taken as a bridge creation start point, from the bridge creation point Y3 to the maximum point (upper end surface of the development view) Y4 of the development view in the vertical direction, and from the maximum point Y4 to the bridge width. (Predetermined width) Move to the right by W2, and create a bridge B1 from the moving point Y5 to the product figure 5a1.
  • the leftmost maximum point Y3 is set as the bridge creation start point, in the laser processing machine 1 that can be safely processed by shortening the path by a method of cutting the workpiece 5 from the left side toward the right side, It is a measure for performing safe machining with a shorter movement path.
  • the maximum point on the right is the bridge creation start point.
  • step 223 it is determined whether or not the 180 ° plane creation flag in the development view is turned on. If the 180 ° plane creation flag is on, in step 225, the 180 ° plane creation view is turned on. In the product graphic 5a1, the leftmost minimum point Y7 is found.
  • Step 227 a bridge B2 is created from the found minimum point Y7 based on the condition of the bridge width W2 set in advance.
  • the minimum point Y7 is a bridge creation start point, and from the bridge creation point Y7 to the minimum point (lower end surface of the development view) Y8 of the development view in the vertical direction, and from the minimum point Y8 to the bridge width. (Predetermined width) Moves to the right by W2, and creates a bridge B2 from the moving point Y9 to the product figure 5a1.
  • the leftmost minimum point Y7 is set as a bridge creation start point, in the laser processing machine 1 that can be safely processed by shortening the path by a method of cutting the workpiece 5 from the left side toward the right side, It is a measure for performing safe machining with a shorter movement path.
  • the minimum point on the right is the bridge creation start point.
  • the maximum point Y3 is taken as the bridge creation point, the element C1 from the bridge creation point Y3 to the maximum point Y4 in the development view vertically, and the maximum point Y4 to the right by the bridge width W2.
  • FIG.11 (b) is explanatory drawing which shows the product 5a which has a bridge processed according to the expanded view of Fig.11 (a).
  • the angle processing in the present embodiment when laser processing an angle component having a height and width that do not match the height and width of the workpiece, a bridge that connects the end surface of the workpiece and the component is added.
  • the program can be easily created automatically.
  • step 103 in FIG. 3 when the workpiece 5 in the developed development read is a channel material, the process proceeds to step 107, where the channel is processed.
  • This channel processing is processing for creating a bridge at a predetermined portion connecting the product 5a and the end of the workpiece in the channel material, and will be described with reference to the channel processing flowchart of FIG. FIG. 12 is a flowchart showing channel processing.
  • step 301 of FIG. 12 the development length L1 of the product graphic 5a1 in the development view is compared with the value obtained by adding the height H1 ⁇ 2 to the width W1 of the channel material, and the development length L1 of the product graphic 5a1 is It is determined whether or not it is smaller than the value obtained by adding the height H1 ⁇ 2 to the width W1.
  • the development length L1 of the product figure 5a1 is equal to the value obtained by adding the height H1 ⁇ 2 to the width W1 of the channel material
  • the development length L1 of the product figure 5a1 is as shown in FIG.
  • the width is smaller than the value obtained by adding the height H1 ⁇ 2 to the width W1 of the channel material, the results are as shown in FIGS.
  • step 303 the development assistance having different Y coordinates on the product graphic 5a1 in the development drawing. It is determined whether there are lines 5b1 and 5b2.
  • step 305 when there are development auxiliary lines 5b1 and 5b2 having different Y coordinates on the product graphic 5a1 in the development view in the above step 303, in step 305, the first expansion auxiliary line 5b1 from the element of the maximum point Y1 of the product graphic 5a1. It is determined whether or not the distance L2 is smaller than the height H1 of the channel material.
  • a 90 ° plane creation flag in the development view is obtained in step 307. Is turned on, and if the distance L2 from the element of the maximum point Y1 of the product figure 5a1 to the first development auxiliary line 5b1 is not smaller than the height H1 of the channel material, in step 309, the 90 ° plane in the development view is created. Turn off the flag.
  • step 311 it is determined whether or not the distance L3 from the element of the minimum point Y2 of the product figure 5a1 to the second development auxiliary line 5b2 is smaller than the height H1 of the channel material.
  • step 313 When the distance L3 from the element of the minimum point Y2 of the product figure 5a1 to the second auxiliary auxiliary line 5b2 is smaller than the channel material height H1 in the step 311 above, in step 313, the creation flag for the 270 ° surface in the development view Is turned on, and if the distance L3 from the element of the minimum point Y2 of the product figure 5a1 to the second development auxiliary line 5b2 is not smaller than the height H1 of the channel material, in step 315, the creation of the 270 ° plane in the development view Turn off the flag.
  • the distance L2 from the element of the maximum point Y1 of the product figure 5a1 in the development view to the first development auxiliary line 5b1 is smaller than the height H1 of the channel material, and the minimum point Y2 of the product figure 5a1 in the development view.
  • the distance L3 from the element to the second auxiliary deployment line 5b2 is smaller than the height H1 of the channel material, it is as shown in FIG.
  • step 317 it is determined whether or not the 90 ° plane creation flag in the developed view is turned on. If the 90 ° plane creation flag is turned on, in step 319, the 90 ° plane in the developed view is turned on. In the product figure 5a1, the leftmost maximum point Y3 is found.
  • Step 321 a bridge B3 is created from the found maximum point Y3 based on the condition of the bridge width W2 set in advance.
  • the maximum point Y3 is set as the bridge creation start point
  • the bridge creation point Y3 extends in the Y axis direction to the maximum point (upper end surface of the development view) Y4 of the development view, and the bridge from the maximum point Y4. It moves rightward by a width (predetermined width) W2, and creates a bridge B3 from the moving point Y5 to the product figure 5a1.
  • the leftmost maximum point Y3 is set as the bridge creation start point, in the laser processing machine 1 that can be safely processed by shortening the path by a method of cutting the workpiece 5 from the left side toward the right side, It is a measure for performing safe machining with a shorter movement path.
  • the maximum point on the right is the bridge creation start point.
  • step 323 it is determined whether or not the creation flag for the 270 ° surface in the development view is on. If the creation flag for the 270 ° surface is on, in step 325, the 270 ° surface of the development view is displayed. In the product graphic 5a1, the leftmost minimum point Y7 is found.
  • step 327 a bridge B4 is created from the found minimum point Y7 based on the condition of the bridge width W2 set in advance.
  • the minimum point Y7 is set as a bridge creation start point, and from the bridge creation point Y7 to the minimum point (lower end surface of the development view) Y8 of the development view in the vertical direction, and from the minimum point Y8 to the bridge width. (Predetermined width) Move to the right by W2, and create a bridge B4 from the moving point Y9 to the product figure 5a1.
  • the leftmost minimum point Y7 is set as a bridge creation start point, in the laser processing machine 1 that can be safely processed by shortening the path by a method of cutting the workpiece 5 from the left side toward the right side, It is a measure for performing safe machining with a shorter movement path.
  • the minimum point on the right is the bridge creation start point.
  • the maximum point Y3 is taken as the bridge creation point, the element C1 from the bridge creation point Y3 to the maximum point Y4 in the development view vertically, and the maximum point Y4 to the right by the bridge width W2.
  • a new product graphic is created and assigned to the new product graphic.
  • a program that adds a bridge that connects the workpiece end surface and the component can be automatically and automatically performed. Will be able to create.
  • an equilateral angle steel having an equal side in the cross section is used as a workpiece, but the present invention is not limited to this, and other angle steel such as an unequal angle iron or a cross section concave A shaped member may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Geometry (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Laser Beam Processing (AREA)

Abstract

An automatic programming device which, in a processing system for performing cutting processing on each surface of a member to be processed having a plurality of surfaces by a laser processing machine, creates, for the laser processing machine, a processing program for performing cutting processing on a product having a shape with a height and a width that are not the same as those of the member to be processed, the automatic programming device developing the member to be processed along a development auxiliary line of the member to be processed using shape data relating to the member to be processed and shape data relating to the product, creating a development diagram having an outline showing the shape of the product, performing processing for creating, in a predetermined portion of the product, a bridge connecting the product and an end of the member to be processed, and laying out a cutting locus for the development diagram in which the bridge created on the development diagram by the processing for creating the bridge is connected to the outline.

Description

レーザ加工機の自動プログラミング装置及び自動プログラミング方法Automatic programming device and automatic programming method for laser beam machine
 本発明は、レーザ加工機の自動プログラミング装置及び自動プログラミング方法に関し、特に、レーザ加工機により、ワークの高さおよび幅と一致しない形状の製品の切断加工の加工プログラムを自動的に作成する自動プログラミング装置及び自動プログラミング方法に関する。 The present invention relates to an automatic programming device and an automatic programming method for a laser beam machine, and more particularly, automatic programming for automatically creating a machining program for cutting a product having a shape that does not match the height and width of a workpiece by the laser beam machine. The present invention relates to an apparatus and an automatic programming method.
 一般に、製品として、断面がL字形状のアングル部品やコの字形状のチャンネル部品をレーザ加工する場合、通常、その部品の高さおよび幅がワークの高さおよび幅と一致していた。図18は、ワークとしてのアングル材およびチャンネル材の断面図である。 In general, when laser processing is performed on an angle part or a U-shaped channel part having a L-shaped cross section as a product, the height and width of the part usually coincides with the height and width of the workpiece. FIG. 18 is a cross-sectional view of an angle material and a channel material as workpieces.
 しかしながら、ワークの高さおよび幅と一致しない高さおよび幅を有するアングル部品等をレーザ加工しなければならない場合があり、そのような場合、仕様外となり、自動プログラミング装置で加工データの作成ができなかった。 However, there are cases in which angle parts, etc., whose height and width do not match the workpiece height and width must be laser machined. In such cases, the specifications will be out of scope and machining data can be created with an automatic programming device. There wasn't.
 なお、先行技術文献は該当のものがありませんでした。 Note that there was no relevant prior art document.
 従来の自動プログラミングによるレーザ加工の場合、ワークの高さおよび幅と一致しない高さおよび幅を有するアングル部品等をレーザ加工する場合、仕様外と判定され、自動的に加工データの作成をすることができないため、予め、モデリング時にワークの端面と部品とを繋ぐブリッジを付加して、ワークの高さおよび幅と部品の高さおよび幅とが等しくなるようなモデルを作成しなければならない問題点があった。 In the case of laser processing by conventional automatic programming, when machining an angle component with a height and width that does not match the workpiece height and width, it will be judged out of specification and processing data will be created automatically. Because it is not possible to add a bridge that connects the workpiece end face and the part at the time of modeling, it is necessary to create a model that makes the work height and width equal to the part height and width. was there.
 そして、予め、モデリング時にワークの端面と部品とを繋ぐブリッジを付加する作業には、時間がかかると共に、作業者の負担を増加させることとなった。 And, in advance, the work of adding a bridge that connects the workpiece end face and the parts during modeling takes time and increases the burden on the operator.
 そこで、本発明は、上記に鑑みてなされたものであり、ワークの高さおよび幅と一致しない形状の製品の切断加工の加工プログラムを自動的に作成できるようになり、モデリング時にワークの端面と部品とを繋ぐブリッジを付加する作業者の負担を軽減することを目的とする。 Therefore, the present invention has been made in view of the above, and can automatically create a machining program for cutting a product having a shape that does not match the height and width of the workpiece. The purpose is to reduce the burden on workers who add bridges that connect parts.
 上記課題を解決するために、本発明は、複数の面を有する断面が一様で細長い被加工部材の各面に対してレーザ加工機によって切断加工を行う加工システムにおいて、前記被加工部材の高さおよび幅と一致しない複数の面のすべてにまたがる形状の製品の切断加工する加工プログラムを、前記レーザ加工機に対して作成する自動プログラミング装置であって、前記被加工部材の形状データおよび前記製品の形状データを入力するための入力手段と、以下の(A)~(C)の工程処理を制御する制御手段と、を有する自動プログラミング装置である。 In order to solve the above-described problems, the present invention provides a machining system that performs cutting with a laser processing machine on each surface of a workpiece having a uniform cross section having a plurality of surfaces and is elongated. An automatic programming device that creates a machining program for cutting a product having a shape that extends over all of a plurality of surfaces that do not match the length and width, with respect to the laser processing machine, the shape data of the workpiece and the product This is an automatic programming device having input means for inputting the shape data and control means for controlling the following process processes (A) to (C).
 (A)前記被加工部材の形状データおよび前記製品の形状データを用いて、前記被加工部材の展開補助線で前記被加工部材を展開し、前記製品の形状を示す外形線を有する展開図を作成する工程と、
 (B)前記製品の所定部分に、前記製品と前記被加工部材の端部とを繋ぐブリッジを作成する処理を行う工程と、
 (C)前記工程(B)において行われた前記ブリッジを作成する処理により展開図上に作成された前記ブリッジを外形線に結合した展開図に対して切断軌跡を割り付ける工程。
(A) Using the shape data of the workpiece to be processed and the shape data of the product, a development view having an outline showing the shape of the product, in which the workpiece is developed with a development auxiliary line of the workpiece. Creating a process;
(B) performing a process of creating a bridge connecting the product and an end of the workpiece on a predetermined portion of the product;
(C) A step of assigning a cutting locus to a development view in which the bridge created on the development view is combined with an outline by the process of creating the bridge performed in the step (B).
 本発明の他の特徴は、前記展開図の上端面における製品図形の中で、一番左側あるいは右側の最大点の要素を見つけ出し、前もって設定されたブリッジ巾の条件に基づいて、見つけ出された前記最大点よりブリッジを作成し、前記展開図の下端面における前記製品図形の中で、一番左側あるいは右側の最小点の要素を見つけ出し、前もって設定されたブリッジ巾の条件に基づいて、見つけ出された前記最小点よりブリッジを作成する処理からなることである。 Another feature of the present invention is to find the element of the leftmost or rightmost maximum point in the product graphic on the upper end surface of the development view, and to find out based on a preset bridge width condition. Create a bridge from the maximum point, find the element of the leftmost or rightmost minimum point in the product graphic on the bottom surface of the development, and find it based on the bridge width condition set in advance. A process of creating a bridge from the minimum point.
 本発明の他の特徴は、前記見つけ出された最大点あるいは最小点よりブリッジを作成する場合において、ブリッジ作成開始点から左側あるいは右側に所定巾のブリッジを作成することにより展開長が大きくなってしまう場合には反対側にブリッジを作成することである。 Another feature of the present invention is that when a bridge is created from the found maximum or minimum point, the development length is increased by creating a bridge having a predetermined width on the left or right side from the bridge creation start point. If this happens, create a bridge on the other side.
 本発明の他の特徴は、複数の面を有する断面が一様で細長い被加工部材の各面に対してレーザ加工機によって切断加工を行う加工システムにおいて、前記被加工部材の形状データおよび前記製品の形状データを入力するための入力手段と制御手段とを有し、前記被加工部材の高さおよび幅と一致しない複数の面のすべてにまたがる形状の製品の切断加工する加工プログラムを、前記レーザ加工機に対して作成する自動プログラミング方法であって、
 (A)前記制御手段により、前記被加工部材の形状データおよび前記製品の形状データを用いて、前記被加工部材の展開補助線で前記被加工部材を展開し、前記製品の形状を示す外形線を有する展開図を作成する工程と、
 (B)前記制御手段により、前記製品の所定部分に、前記製品と前記被加工部材の端部とを繋ぐブリッジを作成する処理を行う工程と、
 (C)前記制御手段により、前記工程(B)において行われた前記ブリッジを作成する処理により展開図上に作成された前記ブリッジを外形線に結合した展開図に対して切断軌跡を割り付ける工程と、を有することである。
According to another aspect of the present invention, there is provided a machining system that performs cutting with a laser processing machine on each surface of a workpiece having a plurality of surfaces and having a uniform cross section, and the shape data of the workpiece and the product A laser processing program for cutting a product having a shape extending over all of a plurality of surfaces that do not match the height and width of the workpiece, An automatic programming method created for a processing machine,
(A) The contour line that indicates the shape of the product is developed by the control means by using the shape data of the workpiece and the shape data of the product to deploy the workpiece on the development auxiliary line of the workpiece. Creating a development view having
(B) performing a process of creating a bridge connecting the product and an end of the workpiece on a predetermined portion of the product by the control unit;
(C) The step of assigning a cutting locus to a development view in which the bridge created on the development view is coupled to an outline by the control means by the process of creating the bridge performed in the step (B). It is to have.
本発明を実施したレーザ加工システムの概略を示す説明図である。It is explanatory drawing which shows the outline of the laser processing system which implemented this invention. 図1に示した自動プログラミング装置9の概略構成図である。It is a schematic block diagram of the automatic programming apparatus 9 shown in FIG. 自動プログラミング装置9の動作を示すフローチャートである。4 is a flowchart showing the operation of the automatic programming device 9. 自動プログラミング装置9の加工プログラム作成動作の説明図である。It is explanatory drawing of the machining program creation operation | movement of the automatic programming apparatus. 図3におけるアングルの処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the process of an angle in FIG. 自動プログラミング装置9の加工プログラム作成動作の説明図である。It is explanatory drawing of the machining program creation operation | movement of the automatic programming apparatus. 自動プログラミング装置9の加工プログラム作成動作の説明図である。It is explanatory drawing of the machining program creation operation | movement of the automatic programming apparatus. 自動プログラミング装置9の加工プログラム作成動作の説明図である。It is explanatory drawing of the machining program creation operation | movement of the automatic programming apparatus. 自動プログラミング装置9の加工プログラム作成動作の説明図である。It is explanatory drawing of the machining program creation operation | movement of the automatic programming apparatus. 自動プログラミング装置9の加工プログラム作成動作の説明図である。It is explanatory drawing of the machining program creation operation | movement of the automatic programming apparatus. 自動プログラミング装置9の加工プログラム作成動作の説明図である。It is explanatory drawing of the machining program creation operation | movement of the automatic programming apparatus. 図3におけるチャンネルの処理の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of the process of the channel in FIG. 自動プログラミング装置9の加工プログラム作成動作の説明図である。It is explanatory drawing of the machining program creation operation | movement of the automatic programming apparatus. 自動プログラミング装置9の加工プログラム作成動作の説明図である。It is explanatory drawing of the machining program creation operation | movement of the automatic programming apparatus. 自動プログラミング装置9の加工プログラム作成動作の説明図である。It is explanatory drawing of the machining program creation operation | movement of the automatic programming apparatus. 自動プログラミング装置9の加工プログラム作成動作の説明図である。It is explanatory drawing of the machining program creation operation | movement of the automatic programming apparatus. 自動プログラミング装置9の加工プログラム作成動作の説明図である。It is explanatory drawing of the machining program creation operation | movement of the automatic programming apparatus. 被加工部材としてのアングル材およびチャンネル材の説明図である。It is explanatory drawing of the angle material and channel material as a to-be-processed member.
 以下、図面を用いて本発明を実施した実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明を実施したレーザ加工システムの概略を示す説明図である。 FIG. 1 is an explanatory view showing an outline of a laser processing system embodying the present invention.
 図1に示すように、このレーザ加工システム10は、データベース(記憶手段)11内の製品形状データおよび被加工部材のデータ等を用いレーザ加工機1の加工プログラムを作成する自動プログラミング装置9を有している。 As shown in FIG. 1, this laser processing system 10 has an automatic programming device 9 that creates a processing program for the laser processing machine 1 using product shape data in a database (storage means) 11 and data on a workpiece to be processed. is doing.
 そして、その自動プログラミング装置9により作成された所定の加工プログラムによるNCデータがNC装置13によりドライブデータに変換されてレーザ加工機1へ送られ、そのドライブデータに従ってレーザ加工機1の制御装置2により各所の制御がおこなわれ、被加工部材(ワーク)のレーザ加工が行われる。なお、上記データベース11内には、加工によって得られる製品形状データおよび被加工部材のデータ等が蓄積されている。 Then, NC data based on a predetermined machining program created by the automatic programming device 9 is converted into drive data by the NC device 13 and sent to the laser beam machine 1, and the control device 2 of the laser beam machine 1 according to the drive data. Control of each part is performed, and laser processing of a workpiece (workpiece) is performed. The database 11 stores product shape data obtained by processing, data of workpieces, and the like.
 ここで、被加工部材としては、図18(a)~(c)に示すように、複数の面を有する断面が一様で細長い被加工部材であるところのチャンネル材、アングル材、不等辺アングル材が用いられる。図18は、被加工部材の断面形状を示す説明図である。 Here, as shown in FIGS. 18 (a) to 18 (c), the processed member is a channel material, an angle material, an unequal side angle, and the like, which is a long and narrow processed member having a plurality of surfaces. A material is used. FIG. 18 is an explanatory diagram showing a cross-sectional shape of a workpiece.
 図2は、図1に示した自動プログラミング装置9の概略構成を示すブロック図である。 FIG. 2 is a block diagram showing a schematic configuration of the automatic programming device 9 shown in FIG.
 図2に示すように、自動プログラミング装置9は、コンピュータからなり、ROM17およびRAM19が接続されたCPU(制御手段)15を有しており、CPU15には、さらに、キーボードのような入力装置(入力手段)21とデイスプレイのような表示装置23が接続されている。また、上記CPU15に、データベース11が接続されるようになっている。 As shown in FIG. 2, the automatic programming device 9 is composed of a computer and has a CPU (control means) 15 to which a ROM 17 and a RAM 19 are connected. The CPU 15 further includes an input device (input device) such as a keyboard. Means) 21 and a display device 23 such as a display are connected. Further, the database 11 is connected to the CPU 15.
 そして、この自動プログラミング装置9では、CPU15が、入力装置21よりのオペレータからの指示に従い、データベース11内の製品形状データおよび被加工部材のデータを用いると共に、ROM17よりのコンピュータプログラムに従ってRAM19を用いて、後述するようなレーザ加工機1の加工プログラムを作成するようになっている。 In the automatic programming device 9, the CPU 15 uses product shape data and workpiece data in the database 11 in accordance with an instruction from the input device 21 and uses a RAM 19 in accordance with a computer program from the ROM 17. A machining program for the laser beam machine 1 as will be described later is created.
 次に、図1に示したレーザ加工機1における加工動作および構成について簡単に説明する。 Next, the processing operation and configuration of the laser processing machine 1 shown in FIG. 1 will be briefly described.
 図1において、レーザ加工機1のレーザ加工テーブル25上において、被加工部材5の一端を、チャック29に係合して把持すると共に製品サポート部材31によって支持するようになっている。 In FIG. 1, on the laser processing table 25 of the laser processing machine 1, one end of the workpiece 5 is engaged with and gripped by a chuck 29 and supported by a product support member 31.
 そして、被加工部材5がレーザ加工テーブル25上において固定された状態で、制御装置2の制御に基づいて、レーザ加工ヘッド7を加工軌跡に沿って移動させながらレーザ照射し、被加工部材5を切断加工するようになっている。 Then, in a state where the workpiece 5 is fixed on the laser machining table 25, the laser beam is irradiated while moving the laser machining head 7 along the machining locus based on the control of the control device 2. It is designed to cut.
 なお、自動プログラミング装置9により作成された加工ネスティングの加工プログラムによるドライブデータがNC装置13へ送られ、そのドライブデータに従ってレーザ加工制御が行われる。 Note that drive data based on the machining nesting machining program created by the automatic programming device 9 is sent to the NC device 13 and laser machining control is performed according to the drive data.
 次に、図3~7を参照して、図1および図2に示した自動プログラミング装置9の加工プログラム作成動作(自動プログラミング方法)について説明する。 Next, the machining program creation operation (automatic programming method) of the automatic programming device 9 shown in FIGS. 1 and 2 will be described with reference to FIGS.
 図3は、自動プログラミング装置の動作を示すフローチャートであり、図4、図6~11、図13~17は、自動プログラミング装置9の加工プログラム作成動作の説明図であり、図5は、図3におけるアングルの処理の動作を示すフローチャートであり、図12は、図3におけるチャンネルの処理の動作を示すフローチャートである。 FIG. 3 is a flowchart showing the operation of the automatic programming device. FIGS. 4, 6 to 11 and FIGS. 13 to 17 are explanatory diagrams of the machining program creation operation of the automatic programming device 9, and FIG. FIG. 12 is a flowchart showing the operation of the channel processing in FIG. 3.
 ここでは、図18(a)~(c)に示すように、断面に角を有するアングル材やチャンネル材を含む被加工部材5に切断加工を行って製品を得る場合の加工プログラム作成動作について説明する。 Here, as shown in FIGS. 18 (a) to 18 (c), a description will be given of a machining program creation operation when a product is obtained by cutting a workpiece 5 including an angle member or a channel member having a corner in a cross section. To do.
 図3のステップ101において、製品形状データおよび被加工部材のデータ等に基づいて、図4の製品5aの形状を示す外形線を有する展開図が作成されて読み込まれる。 3, a development view having an outline showing the shape of the product 5a in FIG. 4 is created and read based on the product shape data, the data of the workpiece, and the like.
 ここでは、展開図としては、被加工部材がアングル材で、図4(a)に示すような複数の面のすべてにまたがる形状の製品5aの場合、図4(b)に示すような展開図となり、製品図形5a1の外周における90度面と180度面との境界線である展開補助線5bで展開された状態となっている。 Here, as a development view, in the case of a product 5a having a shape that spans all of a plurality of surfaces as shown in FIG. 4A, the workpiece is an angle material, and the development view as shown in FIG. 4B. Thus, the product figure 5a1 is unfolded by the unfolding auxiliary line 5b that is the boundary line between the 90-degree plane and the 180-degree plane on the outer periphery.
 次に、図3のステップ103において、読み込まれた展開図上における被加工部材5がアングル材かチャンネル材かの判定が行われる。 Next, in step 103 in FIG. 3, it is determined whether the workpiece 5 on the read development view is an angle material or a channel material.
 そして、被加工部材5がアングル材の場合、ステップ105に移り、アングルの処理が行われ、被加工部材5がチャンネル材の場合、ステップ107に移り、チャンネルの処理が行われる。 If the workpiece 5 is an angle material, the process proceeds to step 105, where the angle is processed. If the workpiece 5 is a channel material, the process proceeds to step 107, where the channel is processed.
 なお、アングル材でもチャンネル材でも無い場合は、ステップ111に移り、パイプ材の切断軌跡の割り付けとなる。 If the material is neither an angle material nor a channel material, the process proceeds to step 111 to assign a cutting trajectory for the pipe material.
 このアングルの処理は、アングル材において製品5aと被加工部材の端部とを繋ぐブリッジを所定部分に作成する処理であり、図5のアングルの処理のフローチャートを用いて説明する。図5は、アングルの処理を示すフローチャートである。 This angle processing is processing for creating a bridge that connects the product 5a and the end of the workpiece in the angle material at a predetermined portion, and will be described with reference to the angle processing flowchart of FIG. FIG. 5 is a flowchart showing the angle processing.
 図5のステップ201において、展開図における製品図形5a1の形状を示す外形線から、製品図形5a1の展開長L1が、アングル材の巾W1に高さH1を加えた値と比較され、製品図形5a1の展開長L1が、アングル材の巾W1に高さH1を加えた値より小さいか否かが判定される。 In step 201 of FIG. 5, the development length L1 of the product graphic 5a1 is compared with the value obtained by adding the height H1 to the width W1 of the angle material from the outline indicating the shape of the product graphic 5a1 in the development view. It is determined whether the unfolded length L1 is smaller than the value obtained by adding the height H1 to the width W1 of the angle member.
 なお、製品図形5a1の展開長L1が、アングル材の巾W1に高さH1を加えた値と等しい場合は、図6(a)に示すようになり、製品図形5a1の展開長L1が、アングル材の巾W1に高さH1を加えた値より小さい場合は、図6(b)、(c)に示すようになる。 When the development length L1 of the product graphic 5a1 is equal to the value obtained by adding the height H1 to the width W1 of the angle material, the development length L1 of the product graphic 5a1 is the angle as shown in FIG. When it is smaller than the value obtained by adding the height H1 to the width W1 of the material, it becomes as shown in FIGS. 6B and 6C.
 上記ステップ201において製品図形5a1の展開長L1が、アングル材の巾W1に高さH1を加えた値より小さい場合、ステップ203において、展開図における製品図形5a1上に展開補助線5bがあるか否かが判定される。 If the development length L1 of the product graphic 5a1 is smaller than the value obtained by adding the height H1 to the width W1 of the angle material in the step 201, whether or not the development auxiliary line 5b is present on the product graphic 5a1 in the development drawing in step 203. Is determined.
 すなわち、展開図における製品図形5a1上に展開補助線5bが無い場合は、図7(a)、(b)に示すようになり、展開図における製品5a上に展開補助線5bがある場合は、図7(c)に示すようになる。 That is, when there is no development auxiliary line 5b on the product figure 5a1 in the development view, it becomes as shown in FIGS. 7A and 7B, and when there is the development auxiliary line 5b on the product 5a in the development view, As shown in FIG.
 次に、上記ステップ203において展開図における製品図形5a1上に展開補助線5bがある場合、ステップ205において、製品図形5a1の最大点Y1の要素から展開補助線5bまでの距離L2が、アングル材の高さH1より小さいか否かが判定される。 Next, when there is a development auxiliary line 5b on the product graphic 5a1 in the development view in step 203, in step 205, the distance L2 from the element of the maximum point Y1 of the product graphic 5a1 to the development auxiliary line 5b is the angle material. It is determined whether or not the height is smaller than H1.
 すなわち、展開図における製品図形5a1の最大点Y1の要素から展開補助線5bまでの距離L2が、アングル材の高さH1より小さい場合は、図8(a)に示すようになる。 That is, when the distance L2 from the element of the maximum point Y1 of the product figure 5a1 in the development view to the development auxiliary line 5b is smaller than the height H1 of the angle material, it is as shown in FIG.
 上記ステップ205において製品図形5a1の最大点Y1の要素から展開補助線5bまでの距離L2が、アングル材の高さH1より小さい場合、ステップ207において、展開図における90°面の作成フラグをオンにし、製品図形5a1の最大点Y1の要素から展開補助線5bまでの距離L2が、アングル材の高さH1より小さくない場合、ステップ209において、展開図における90°面の作成フラグをオフにする。 When the distance L2 from the element of the maximum point Y1 of the product figure 5a1 to the development auxiliary line 5b is smaller than the height H1 of the angle material in step 205, the 90 ° plane creation flag in the development view is turned on in step 207. When the distance L2 from the element of the maximum point Y1 of the product figure 5a1 to the development auxiliary line 5b is not smaller than the height H1 of the angle member, in step 209, the 90 ° plane creation flag in the development view is turned off.
 次に、ステップ211において、製品図形5a1の最小点Y2の要素から展開補助線5bまでの距離L3が、アングル材の巾Wより小さいか否かが判定される。 Next, in step 211, it is determined whether or not the distance L3 from the element of the minimum point Y2 of the product figure 5a1 to the development auxiliary line 5b is smaller than the width W of the angle material.
 すなわち、展開図における製品図形5a1の最小点Y2の要素から展開補助線5bまでの距離L3が、アングル材の巾W1より小さい場合は、図8(b)に示すようになる。 That is, when the distance L3 from the element of the minimum point Y2 of the product figure 5a1 in the development view to the development auxiliary line 5b is smaller than the width W1 of the angle material, it is as shown in FIG.
 上記ステップ211において製品図形5a1の最小点Y2の要素から展開補助線5bまでの距離L3が、アングル材の巾W1より小さい場合、ステップ213において、展開図における180°面の作成フラグをオンにし、製品図形5a1の最小点Y2の要素から展開補助線5bまでの距離L3が、アングル材の巾W1より小さくない場合、ステップ215において、展開図における180°面の作成フラグをオフにする。 When the distance L3 from the element of the minimum point Y2 of the product figure 5a1 to the development auxiliary line 5b is smaller than the width W1 of the angle material in step 211, in step 213, the 180 ° plane creation flag in the development view is turned on. When the distance L3 from the element of the minimum point Y2 of the product figure 5a1 to the development auxiliary line 5b is not smaller than the width W1 of the angle member, in step 215, the 180 ° plane creation flag in the development view is turned off.
 なお、展開図における製品図形5a1の最大点Y1の要素から展開補助線5bまでの距離L2が、アングル材の高さH1より小さく、かつ、展開図における製品図形5a1の最小点Y2の要素から展開補助線5bまでの距離L3が、アングル材の巾W1より小さい場合は、図8(c)に示すようになる。 It should be noted that the distance L2 from the element of the maximum point Y1 of the product figure 5a1 to the development auxiliary line 5b in the development view is smaller than the height H1 of the angle material and the development is started from the element of the minimum point Y2 of the product figure 5a1 in the development view. When the distance L3 to the auxiliary line 5b is smaller than the width W1 of the angle member, it is as shown in FIG.
 次に、ステップ217において、展開図における90°面の作成フラグがオンしているか否かが判定され、90°面の作成フラグがオンしている場合、ステップ219において、展開図の90°面における製品図形5a1の中で、一番左側の最大点Y3を見つけ出す。 Next, in step 217, it is determined whether or not the 90 ° plane creation flag in the development view is turned on. If the 90 ° plane creation flag is on, in step 219, the 90 ° plane creation view is turned on. In the product figure 5a1, the leftmost maximum point Y3 is found.
 次に、ステップ221において、前もって設定されたブリッジ巾W2の条件に基づいて、見つけ出された最大点Y3よりブリッジB1が作成される。 Next, in step 221, a bridge B1 is created from the found maximum point Y3 based on the condition of the bridge width W2 set in advance.
 すなわち、図10に示すように、最大点Y3をブリッジ作成開始点とし、そのブリッジ作成点Y3から垂直方向へ展開図の最大点(展開図の上端面)Y4までと、最大点Y4からブリッジ巾(所定巾)W2だけ右方向へ移動し、その移動点Y5から製品図形5a1までのブリッジB1を作成する。 That is, as shown in FIG. 10, the maximum point Y3 is taken as a bridge creation start point, from the bridge creation point Y3 to the maximum point (upper end surface of the development view) Y4 of the development view in the vertical direction, and from the maximum point Y4 to the bridge width. (Predetermined width) Move to the right by W2, and create a bridge B1 from the moving point Y5 to the product figure 5a1.
 ここで、ブリッジ巾W2だけ右方向へ移動すると、展開長が大きくなってしまう場合は、展開図の右端をブリッジ作成開始点として、ブリッジ巾W2だけ左方向(反対側)へ移動して、ブリッジB1を作成する。 Here, if the unfolded length increases when moving to the right by the bridge width W2, the bridge is moved to the left (opposite side) by the bridge width W2 using the right end of the unfolded view as the bridge creation start point. Create B1.
 なお、一番左側の最大点Y3をブリッジ作成開始点としているが、これは、被加工部材5を左側から右側に向かって切断する方式により経路短縮されて安全に加工できるレーザ加工機1において、より移動経路が短く安全な加工を行うための処置となっている。 In addition, although the leftmost maximum point Y3 is set as the bridge creation start point, in the laser processing machine 1 that can be safely processed by shortening the path by a method of cutting the workpiece 5 from the left side toward the right side, It is a measure for performing safe machining with a shorter movement path.
 なお、被加工部材5を右側から左側に向かって切断する方式により経路短縮されて安全に加工できるレーザ加工機1の場合には、一番右側の最大点がブリッジ作成開始点とされる。 In the case of the laser beam machine 1 that can be safely machined by cutting the workpiece 5 from the right side to the left side and can be machined safely, the maximum point on the right is the bridge creation start point.
 次に、ステップ223において、展開図における180°面の作成フラグがオンしているか否かが判定され、180°面の作成フラグがオンしている場合、ステップ225において、展開図の180°面における製品図形5a1の中で、一番左側の最小点Y7を見つけ出す。 Next, in step 223, it is determined whether or not the 180 ° plane creation flag in the development view is turned on. If the 180 ° plane creation flag is on, in step 225, the 180 ° plane creation view is turned on. In the product graphic 5a1, the leftmost minimum point Y7 is found.
 次に、ステップ227において、前もって設定されたブリッジ巾W2の条件に基づいて、見つけ出された最小点Y7よりブリッジB2が作成される。 Next, in Step 227, a bridge B2 is created from the found minimum point Y7 based on the condition of the bridge width W2 set in advance.
 すなわち、図10に示すように、最小点Y7をブリッジ作成開始点とし、そのブリッジ作成点Y7から垂直方向へ展開図の最小点(展開図の下端面)Y8までと、最小点Y8からブリッジ巾(所定巾)W2だけ右方向へ移動し、その移動点Y9から製品図形5a1までとのブリッジB2を作成する。 That is, as shown in FIG. 10, the minimum point Y7 is a bridge creation start point, and from the bridge creation point Y7 to the minimum point (lower end surface of the development view) Y8 of the development view in the vertical direction, and from the minimum point Y8 to the bridge width. (Predetermined width) Moves to the right by W2, and creates a bridge B2 from the moving point Y9 to the product figure 5a1.
 ここで、ブリッジ巾W2だけ右方向へ移動すると、展開長が大きくなってしまう場合は、展開図の右端をブリッジ作成開始点として、ブリッジ巾W2だけ左方向(反対側)へ移動して、ブリッジB2を作成する。 Here, if the unfolded length increases when moving to the right by the bridge width W2, the bridge is moved to the left (opposite side) by the bridge width W2 using the right end of the unfolded view as the bridge creation start point. Create B2.
 なお、一番左側の最小点Y7をブリッジ作成開始点としているが、これは、被加工部材5を左側から右側に向かって切断する方式により経路短縮されて安全に加工できるレーザ加工機1において、より移動経路が短く安全な加工を行うための処置となっている。 In addition, although the leftmost minimum point Y7 is set as a bridge creation start point, in the laser processing machine 1 that can be safely processed by shortening the path by a method of cutting the workpiece 5 from the left side toward the right side, It is a measure for performing safe machining with a shorter movement path.
 なお、被加工部材5を右側から左側に向かって切断する方式により経路短縮されて安全に加工できるレーザ加工機1の場合には、一番右側の最小点がブリッジ作成開始点とされる。 In the case of the laser processing machine 1 that can be processed safely by cutting the path of the workpiece 5 from the right side to the left side, the minimum point on the right is the bridge creation start point.
 そして、図3のステップ109に戻り、最大点Y3をブリッジ作成点とし、そのブリッジ作成点Y3から垂直方向へ展開図の最大点Y4までの要素C1と、最大点Y4からブリッジ巾W2だけ右方向へ移動し、その移動点Y5から製品図形5a1までの垂直の要素C2と、最小点Y7をブリッジ作成点とし、そのブリッジ作成点Y7から垂直方向へ展開図の最小点Y8までの要素C3と、最小点Y8からブリッジ巾W2だけ右方向へ移動し、その移動点Y9から製品図形5a1までの垂直の要素C4とし、これらのC1~C4の要素を製品図形5a1の要素と結合して、図11(a)に示すように新たな製品図形を作成し、新たな製品図形に対して割り付けが行われる。また、図11(b)は、図11(a)の展開図に従って加工されたブリッジを有する製品5aを示す説明図である。 Then, returning to step 109 in FIG. 3, the maximum point Y3 is taken as the bridge creation point, the element C1 from the bridge creation point Y3 to the maximum point Y4 in the development view vertically, and the maximum point Y4 to the right by the bridge width W2. A vertical element C2 from the movement point Y5 to the product figure 5a1, a minimum point Y7 as a bridge creation point, and an element C3 from the bridge creation point Y7 to the minimum point Y8 in the development view in the vertical direction; 11 moves from the minimum point Y8 to the right by the bridge width W2 to form a vertical element C4 from the movement point Y9 to the product graphic 5a1, and these C1 to C4 elements are combined with the elements of the product graphic 5a1 to form FIG. As shown in (a), a new product graphic is created and assigned to the new product graphic. Moreover, FIG.11 (b) is explanatory drawing which shows the product 5a which has a bridge processed according to the expanded view of Fig.11 (a).
 このように、本実施形態におけるアングルの処理によれば、ワークの高さおよび幅と一致しない高さおよび幅を有するアングル部品をレーザ加工するに当たって、ワークの端面と部品とを繋ぐブリッジを付加したプログラムを簡単に自動作成することができるようになる。 As described above, according to the angle processing in the present embodiment, when laser processing an angle component having a height and width that do not match the height and width of the workpiece, a bridge that connects the end surface of the workpiece and the component is added. The program can be easily created automatically.
 次に、図3のステップ103において、読み込まれた展開図における被加工部材5がチャンネル材の場合、ステップ107に移り、チャンネルの処理が行われる。 Next, in step 103 in FIG. 3, when the workpiece 5 in the developed development read is a channel material, the process proceeds to step 107, where the channel is processed.
 このチャンネルの処理は、チャンネル材において製品5aと被加工部材の端部とを繋ぐ所定部分にブリッジを作成する処理であり、図12のチャンネルの処理のフローチャートを用いて説明する。図12は、チャンネルの処理を示すフローチャートである。 This channel processing is processing for creating a bridge at a predetermined portion connecting the product 5a and the end of the workpiece in the channel material, and will be described with reference to the channel processing flowchart of FIG. FIG. 12 is a flowchart showing channel processing.
 図12のステップ301において、展開図における製品図形5a1の展開長L1が、チャンネル材の巾W1に高さH1×2を加えた値と比較され、製品図形5a1の展開長L1が、チャンネル材の巾W1に高さH1×2を加えた値より小さいか否かが判定される。 In step 301 of FIG. 12, the development length L1 of the product graphic 5a1 in the development view is compared with the value obtained by adding the height H1 × 2 to the width W1 of the channel material, and the development length L1 of the product graphic 5a1 is It is determined whether or not it is smaller than the value obtained by adding the height H1 × 2 to the width W1.
 なお、製品図形5a1の展開長L1が、チャンネル材の巾W1に高さH1×2を加えた値と等しい場合は、図13(a)に示すようになり、製品図形5a1の展開長L1が、チャンネル材の巾W1に高さH1×2を加えた値より小さい場合は、図13(b)、(c)に示すようになる。 When the development length L1 of the product figure 5a1 is equal to the value obtained by adding the height H1 × 2 to the width W1 of the channel material, the development length L1 of the product figure 5a1 is as shown in FIG. When the width is smaller than the value obtained by adding the height H1 × 2 to the width W1 of the channel material, the results are as shown in FIGS.
 上記ステップ301において製品図形5a1の展開長L1が、チャンネル材の巾W1に高さH1×2を加えた値より小さい場合、ステップ303において、展開図における製品図形5a1上にY座標の異なる展開補助線5b1、5b2があるか否かが判定される。 When the development length L1 of the product graphic 5a1 is smaller than the value obtained by adding the height H1 × 2 to the width W1 of the channel material in the above step 301, in step 303, the development assistance having different Y coordinates on the product graphic 5a1 in the development drawing. It is determined whether there are lines 5b1 and 5b2.
 すなわち、展開図における製品図形5a1上にY座標の異なる展開補助線5b1、5b2が無い場合は、図14(a)、(b)に示すようになり、展開図における製品図形5a1上にY座標の異なる展開補助線5b1、5b2がある場合は、図14(c)に示すようになる。 That is, when there are no development auxiliary lines 5b1 and 5b2 having different Y coordinates on the product figure 5a1 in the development view, they are as shown in FIGS. 14A and 14B, and the Y coordinate is on the product figure 5a1 in the development view. When there are different deployment auxiliary lines 5b1 and 5b2, they are as shown in FIG.
 次に、上記ステップ303において展開図における製品図形5a1上にY座標の異なる展開補助線5b1、5b2がある場合、ステップ305において、製品図形5a1の最大点Y1の要素から第1の展開補助線5b1までの距離L2が、チャンネル材の高さH1より小さいか否かが判定される。 Next, when there are development auxiliary lines 5b1 and 5b2 having different Y coordinates on the product graphic 5a1 in the development view in the above step 303, in step 305, the first expansion auxiliary line 5b1 from the element of the maximum point Y1 of the product graphic 5a1. It is determined whether or not the distance L2 is smaller than the height H1 of the channel material.
 すなわち、展開図における製品図形5a1の最大点Y1の要素から第1の展開補助線5b1までの距離L2が、チャンネル材の高さH1より小さい場合は、図15(a)に示すようになる。 That is, when the distance L2 from the element of the maximum point Y1 of the product figure 5a1 in the development view to the first development auxiliary line 5b1 is smaller than the height H1 of the channel material, it is as shown in FIG.
 上記ステップ305において製品図形5a1の最大点Y1の要素から第1の展開補助線5b1までの距離L2が、チャンネル材の高さH1より小さい場合、ステップ307において、展開図における90°面の作成フラグをオンにし、製品図形5a1の最大点Y1の要素から第1の展開補助線5b1までの距離L2が、チャンネル材の高さH1より小さくない場合、ステップ309において、展開図における90°面の作成フラグをオフにする。 If the distance L2 from the element of the maximum point Y1 of the product figure 5a1 to the first development auxiliary line 5b1 is smaller than the height H1 of the channel material in step 305, a 90 ° plane creation flag in the development view is obtained in step 307. Is turned on, and if the distance L2 from the element of the maximum point Y1 of the product figure 5a1 to the first development auxiliary line 5b1 is not smaller than the height H1 of the channel material, in step 309, the 90 ° plane in the development view is created. Turn off the flag.
 次に、ステップ311において、製品図形5a1の最小点Y2の要素から第2の展開補助線5b2までの距離L3が、チャンネル材の高さH1より小さいか否かが判定される。 Next, in step 311, it is determined whether or not the distance L3 from the element of the minimum point Y2 of the product figure 5a1 to the second development auxiliary line 5b2 is smaller than the height H1 of the channel material.
 すなわち、展開図における製品図形5a1の最小点Y2の要素から第2の展開補助線5b2までの距離L3が、チャンネル材の高さH1より小さい場合は、図15(b)に示すようになる。 That is, when the distance L3 from the element of the minimum point Y2 of the product figure 5a1 in the development view to the second development auxiliary line 5b2 is smaller than the height H1 of the channel material, it is as shown in FIG.
 上記ステップ311において製品図形5a1の最小点Y2の要素から第2の展開補助線5b2までの距離L3が、チャンネル材の高さH1より小さい場合、ステップ313において、展開図における270°面の作成フラグをオンにし、製品図形5a1の最小点Y2の要素から第2の展開補助線5b2までの距離L3が、チャンネル材の高さH1より小さくない場合、ステップ315において、展開図における270°面の作成フラグをオフにする。 When the distance L3 from the element of the minimum point Y2 of the product figure 5a1 to the second auxiliary auxiliary line 5b2 is smaller than the channel material height H1 in the step 311 above, in step 313, the creation flag for the 270 ° surface in the development view Is turned on, and if the distance L3 from the element of the minimum point Y2 of the product figure 5a1 to the second development auxiliary line 5b2 is not smaller than the height H1 of the channel material, in step 315, the creation of the 270 ° plane in the development view Turn off the flag.
 なお、展開図における製品図形5a1の最大点Y1の要素から第1の展開補助線5b1までの距離L2が、チャンネル材の高さH1より小さく、かつ、展開図における製品図形5a1の最小点Y2の要素から第2の展開補助線5b2までの距離L3が、チャンネル材の高さH1より小さい場合は、図15(c)に示すようになる。 The distance L2 from the element of the maximum point Y1 of the product figure 5a1 in the development view to the first development auxiliary line 5b1 is smaller than the height H1 of the channel material, and the minimum point Y2 of the product figure 5a1 in the development view. When the distance L3 from the element to the second auxiliary deployment line 5b2 is smaller than the height H1 of the channel material, it is as shown in FIG.
 次に、ステップ317において、展開図における90°面の作成フラグがオンしているか否かが判定され、90°面の作成フラグがオンしている場合、ステップ319において、展開図の90°面における製品図形5a1の中で、一番左側の最大点Y3を見つけ出す。 Next, in step 317, it is determined whether or not the 90 ° plane creation flag in the developed view is turned on. If the 90 ° plane creation flag is turned on, in step 319, the 90 ° plane in the developed view is turned on. In the product figure 5a1, the leftmost maximum point Y3 is found.
 次に、ステップ321において、前もって設定されたブリッジ巾W2の条件に基づいて、見つけ出された最大点Y3よりブリッジB3が作成される。 Next, in Step 321, a bridge B3 is created from the found maximum point Y3 based on the condition of the bridge width W2 set in advance.
 すなわち、図17に示すように、最大点Y3をブリッジ作成開始点とし、そのブリッジ作成点Y3からY軸方向へ展開図の最大点(展開図の上端面)Y4までと、最大点Y4からブリッジ巾(所定巾)W2だけ右方向へ移動し、その移動点Y5から製品図形5a1までのブリッジB3を作成する。 That is, as shown in FIG. 17, the maximum point Y3 is set as the bridge creation start point, the bridge creation point Y3 extends in the Y axis direction to the maximum point (upper end surface of the development view) Y4 of the development view, and the bridge from the maximum point Y4. It moves rightward by a width (predetermined width) W2, and creates a bridge B3 from the moving point Y5 to the product figure 5a1.
 ここで、ブリッジ巾W2だけ右方向へ移動すると、展開長が大きくなってしまう場合は、展開図の右端をブリッジ作成開始点として、ブリッジ巾W2だけ左方向(反対側)へ移動して、ブリッジB3を作成する。 Here, if the unfolded length increases when moving to the right by the bridge width W2, the bridge is moved to the left (opposite side) by the bridge width W2 using the right end of the unfolded view as the bridge creation start point. Create B3.
 なお、一番左側の最大点Y3をブリッジ作成開始点としているが、これは、被加工部材5を左側から右側に向かって切断する方式により経路短縮されて安全に加工できるレーザ加工機1において、より移動経路が短く安全な加工を行うための処置となっている。 In addition, although the leftmost maximum point Y3 is set as the bridge creation start point, in the laser processing machine 1 that can be safely processed by shortening the path by a method of cutting the workpiece 5 from the left side toward the right side, It is a measure for performing safe machining with a shorter movement path.
 なお、被加工部材5を右側から左側に向かって切断する方式により経路短縮されて安全に加工できるレーザ加工機1の場合には、一番右側の最大点がブリッジ作成開始点とされる。 In the case of the laser beam machine 1 that can be safely machined by cutting the workpiece 5 from the right side to the left side and can be machined safely, the maximum point on the right is the bridge creation start point.
 次に、ステップ323において、展開図における270°面の作成フラグがオンしているか否かが判定され、270°面の作成フラグがオンしている場合、ステップ325において、展開図の270°面における製品図形5a1の中で、一番左側の最小点Y7を見つけ出す。 Next, in step 323, it is determined whether or not the creation flag for the 270 ° surface in the development view is on. If the creation flag for the 270 ° surface is on, in step 325, the 270 ° surface of the development view is displayed. In the product graphic 5a1, the leftmost minimum point Y7 is found.
 次に、ステップ327において、前もって設定されたブリッジ巾W2の条件に基づいて、見つけ出された最小点Y7よりブリッジB4が作成される。 Next, in step 327, a bridge B4 is created from the found minimum point Y7 based on the condition of the bridge width W2 set in advance.
 すなわち、図17に示すように、最小点Y7をブリッジ作成開始点とし、そのブリッジ作成点Y7から垂直方向へ展開図の最小点(展開図の下端面)Y8までと、最小点Y8からブリッジ巾(所定巾)W2だけ右方向へ移動し、その移動点Y9から製品図形5a1までとのブリッジB4を作成する。 That is, as shown in FIG. 17, the minimum point Y7 is set as a bridge creation start point, and from the bridge creation point Y7 to the minimum point (lower end surface of the development view) Y8 of the development view in the vertical direction, and from the minimum point Y8 to the bridge width. (Predetermined width) Move to the right by W2, and create a bridge B4 from the moving point Y9 to the product figure 5a1.
 ここで、ブリッジ巾W2だけ右方向へ移動すると、展開長が大きくなってしまう場合は、展開図の右端をブリッジ作成開始点として、ブリッジ巾W2だけ左方向(反対側)へ移動して、ブリッジB4を作成する。 Here, if the unfolded length increases when moving to the right by the bridge width W2, the bridge is moved to the left (opposite side) by the bridge width W2 using the right end of the unfolded view as the bridge creation start point. Create B4.
 なお、一番左側の最小点Y7をブリッジ作成開始点としているが、これは、被加工部材5を左側から右側に向かって切断する方式により経路短縮されて安全に加工できるレーザ加工機1において、より移動経路が短く安全な加工を行うための処置となっている。 In addition, although the leftmost minimum point Y7 is set as a bridge creation start point, in the laser processing machine 1 that can be safely processed by shortening the path by a method of cutting the workpiece 5 from the left side toward the right side, It is a measure for performing safe machining with a shorter movement path.
 なお、被加工部材5を右側から左側に向かって切断する方式により経路短縮されて安全に加工できるレーザ加工機1の場合には、一番右側の最小点がブリッジ作成開始点とされる。 In the case of the laser processing machine 1 that can be processed safely by cutting the path of the workpiece 5 from the right side to the left side, the minimum point on the right is the bridge creation start point.
 そして、図3のステップ109に戻り、最大点Y3をブリッジ作成点とし、そのブリッジ作成点Y3から垂直方向へ展開図の最大点Y4までの要素C1と、最大点Y4からブリッジ巾W2だけ右方向へ移動し、その移動点Y5から製品図形5a1までの垂直の要素C2と、最小点Y7をブリッジ作成点とし、そのブリッジ作成点Y7から垂直方向へ展開図の最小点Y8までの要素C3と、最小点Y8からブリッジ巾W2だけ右方向へ移動し、その移動点Y9から製品図形5a1までの垂直の要素C4とし、これらのC1~C4の要素を製品図形5a1の要素と結合して、図11(a)に示すように新たな製品図形を作成し、新たな製品図形に対して割り付けが行われる。 Then, returning to step 109 in FIG. 3, the maximum point Y3 is taken as the bridge creation point, the element C1 from the bridge creation point Y3 to the maximum point Y4 in the development view vertically, and the maximum point Y4 to the right by the bridge width W2. A vertical element C2 from the movement point Y5 to the product figure 5a1, a minimum point Y7 as a bridge creation point, and an element C3 from the bridge creation point Y7 to the minimum point Y8 in the development view in the vertical direction; 11 moves to the right by the bridge width W2 from the minimum point Y8 to form a vertical element C4 from the movement point Y9 to the product graphic 5a1, and these C1 to C4 elements are combined with the elements of the product graphic 5a1. As shown in (a), a new product graphic is created and assigned to the new product graphic.
 このように、本実施形態におけるチャンネルの処理によれば、ワークの高さと一致しない高さを有するチャンネル部品をレーザ加工するに当たって、ワークの端面と部品とを繋ぐブリッジを付加したプログラムを簡単に自動作成することができるようになる。 As described above, according to the channel processing in this embodiment, when laser processing is performed on a channel component having a height that does not match the workpiece height, a program that adds a bridge that connects the workpiece end surface and the component can be automatically and automatically performed. Will be able to create.
 この発明は前述の発明の実施の形態に限定されることなく、適宜な変更を行うことにより、その他の態様で実施し得るものである。 The present invention is not limited to the embodiment of the invention described above, and can be implemented in other modes by making appropriate modifications.
 例えば、上記実施形態では、被加工部材として、断面に等辺を有する等辺山形鋼を用いたが、本願発明はこれに限定されることなく、不等辺山形鋼等の他の山形鋼や、断面凹形状の部材を用いても良い。 For example, in the above embodiment, an equilateral angle steel having an equal side in the cross section is used as a workpiece, but the present invention is not limited to this, and other angle steel such as an unequal angle iron or a cross section concave A shaped member may be used.
 本発明によれば、ワークの高さおよび幅と一致しない形状の製品の切断加工の加工プログラムを自動的に作成できるようになり、モデリング時にワークの端面と部品とを繋ぐブリッジを付加する作業者の負担を軽減することができる。 According to the present invention, it becomes possible to automatically create a machining program for cutting a product having a shape that does not match the height and width of the workpiece, and an operator who adds a bridge that connects the end face of the workpiece and a part during modeling Can be reduced.

Claims (4)

  1.  複数の面を有する断面が一様で細長い被加工部材の各面に対してレーザ加工機によって切断加工を行う加工システムにおいて、前記被加工部材の高さおよび幅と一致しない複数の面のすべてにまたがる形状の製品の切断加工する加工プログラムを、前記レーザ加工機に対して作成する自動プログラミング装置であって、
     前記被加工部材の形状データおよび前記製品の形状データを入力するための入力手段と、
     以下の(A)~(C)の工程処理を制御する制御手段と、を有する自動プログラミング装置。
    (A)前記被加工部材の形状データおよび前記製品の形状データを用いて、前記被加工部材の展開補助線で前記被加工部材を展開し、前記製品の形状を示す外形線を有する展開図を作成する工程と、
    (B)前記製品の所定部分に、前記製品と前記被加工部材の端部とを繋ぐブリッジを作成する処理を行う工程と、
    (C)前記工程(B)において行われた前記ブリッジを作成する処理により展開図上に作成された前記ブリッジを外形線に結合した展開図に対して切断軌跡を割り付ける工程。
    In a processing system that performs cutting with a laser processing machine on each surface of a long and thin workpiece having a uniform cross section having a plurality of surfaces, all of the plurality of surfaces that do not match the height and width of the workpiece An automatic programming device for creating a machining program for cutting a product having a shape that straddles the laser beam machine,
    Input means for inputting the shape data of the workpiece and the shape data of the product;
    And an automatic programming device having control means for controlling the following process steps (A) to (C).
    (A) Using the shape data of the workpiece to be processed and the shape data of the product, a development view having an outline showing the shape of the product, in which the workpiece is developed with a development auxiliary line of the workpiece. Creating a process;
    (B) performing a process of creating a bridge connecting the product and an end of the workpiece on a predetermined portion of the product;
    (C) A step of assigning a cutting locus to a development view in which the bridge created on the development view is combined with an outline by the process of creating the bridge performed in the step (B).
  2.  前記展開図の上端面における製品図形の中で、一番左側あるいは右側の最大点の要素を見つけ出し、前もって設定されたブリッジ巾の条件に基づいて、見つけ出された前記最大点よりブリッジを作成し、
     前記展開図の下端面における前記製品図形の中で、一番左側あるいは右側の最小点の要素を見つけ出し、前もって設定されたブリッジ巾の条件に基づいて、見つけ出された前記最小点よりブリッジを作成する処理からなることを特徴とする請求項1に記載の自動プログラミング装置。
    In the product graphic on the upper end surface of the development view, find the element of the leftmost or rightmost maximum point, and create a bridge from the found maximum point based on the preset bridge width condition. ,
    Find the leftmost or rightmost minimum point element in the product graphic at the bottom of the developed view, and create a bridge from the found minimum point based on the preset bridge width condition. The automatic programming device according to claim 1, further comprising:
  3.  前記見つけ出された最大点あるいは最小点よりブリッジを作成する場合において、ブリッジ作成開始点から左側あるいは右側に所定巾のブリッジを作成することにより展開長が大きくなってしまう場合には反対側にブリッジを作成することを特徴とする請求項2に記載の自動プログラミング装置。 When creating a bridge from the found maximum or minimum point, if the unfolded length is increased by creating a bridge with a predetermined width on the left or right side from the bridge creation start point, the bridge on the opposite side The automatic programming device according to claim 2, wherein:
  4.  複数の面を有する断面が一様で細長い被加工部材の各面に対してレーザ加工機によって切断加工を行う加工システムにおいて、前記被加工部材の形状データおよび製品の形状データを入力するための入力手段と制御手段とを有し、前記被加工部材の高さおよび幅と一致しない複数の面のすべてにまたがる形状の前記製品の切断加工する加工プログラムを、前記レーザ加工機に対して作成する自動プログラミング方法であって、
     (A)前記制御手段により、前記被加工部材の形状データおよび前記製品の形状データを用いて、前記被加工部材の展開補助線で前記被加工部材を展開し、前記製品の形状を示す外形線を有する展開図を作成する工程と、
     (B)前記制御手段により、前記製品の所定部分に、前記製品と前記被加工部材の端部とを繋ぐブリッジを作成する処理を行う工程と、
     (C)前記制御手段により、前記工程(B)において行われた前記ブリッジを作成する処理により展開図上に作成された前記ブリッジを外形線に結合した展開図に対して切断軌跡を割り付ける工程と、を有することを特徴とする自動プログラミング方法。
    An input for inputting the shape data of the workpiece and the shape data of the product in a machining system that performs cutting with a laser processing machine on each surface of the workpiece having a uniform cross section having a plurality of faces. Means for creating a machining program for cutting the product having a shape extending over all of a plurality of surfaces that do not coincide with the height and width of the workpiece, for the laser beam machine. A programming method,
    (A) The contour line that indicates the shape of the product is developed by the control means by using the shape data of the workpiece and the shape data of the product to deploy the workpiece on the development auxiliary line of the workpiece. Creating a development view having
    (B) performing a process of creating a bridge connecting the product and an end of the workpiece on a predetermined portion of the product by the control unit;
    (C) The step of assigning a cutting locus to a development view in which the bridge created on the development view is coupled to an outline by the control means by the process of creating the bridge performed in the step (B). And an automatic programming method.
PCT/JP2014/067653 2013-07-03 2014-07-02 Automatic programming device and automatic programming method for laser processing machine WO2015002233A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-139570 2013-07-03
JP2013139570A JP5891206B2 (en) 2013-07-03 2013-07-03 Automatic programming device and automatic programming method for laser beam machine

Publications (1)

Publication Number Publication Date
WO2015002233A1 true WO2015002233A1 (en) 2015-01-08

Family

ID=52143805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067653 WO2015002233A1 (en) 2013-07-03 2014-07-02 Automatic programming device and automatic programming method for laser processing machine

Country Status (2)

Country Link
JP (1) JP5891206B2 (en)
WO (1) WO2015002233A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106112272A (en) * 2016-07-14 2016-11-16 昆山嘉斯特自动化技术有限公司 The automatic feed light-wall conduit laser cutting machine of bit function is led with figure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06161528A (en) * 1992-11-25 1994-06-07 Amada Co Ltd Generationg method and device for nc data
JP2001209417A (en) * 1998-06-01 2001-08-03 Amada Co Ltd Automatic programming system and recorded medium recording sheet metal graphic generation program
JP2002108426A (en) * 2000-09-28 2002-04-10 Shibuya Kogyo Co Ltd Nc data generating method for three-dimensional work system and three-dimensional work system
JP2004302808A (en) * 2003-03-31 2004-10-28 Nikon Corp Nc data creating device and program
JP2005301557A (en) * 2004-04-09 2005-10-27 Murata Mach Ltd Automatic nesting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3069176B2 (en) * 1991-11-01 2000-07-24 キワ技研株式会社 Method and apparatus for forming scrap lines in laser processing
JP3858316B2 (en) * 1996-11-29 2006-12-13 日産自動車株式会社 Member layout method in NC fusing
JP4352632B2 (en) * 2001-05-14 2009-10-28 三菱電機株式会社 CAD / CAM device and scrap cutting line setting method
JP2003071580A (en) * 2001-09-04 2003-03-11 Murata Mach Ltd Plate material nesting cutting line preparation device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06161528A (en) * 1992-11-25 1994-06-07 Amada Co Ltd Generationg method and device for nc data
JP2001209417A (en) * 1998-06-01 2001-08-03 Amada Co Ltd Automatic programming system and recorded medium recording sheet metal graphic generation program
JP2002108426A (en) * 2000-09-28 2002-04-10 Shibuya Kogyo Co Ltd Nc data generating method for three-dimensional work system and three-dimensional work system
JP2004302808A (en) * 2003-03-31 2004-10-28 Nikon Corp Nc data creating device and program
JP2005301557A (en) * 2004-04-09 2005-10-27 Murata Mach Ltd Automatic nesting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106112272A (en) * 2016-07-14 2016-11-16 昆山嘉斯特自动化技术有限公司 The automatic feed light-wall conduit laser cutting machine of bit function is led with figure

Also Published As

Publication number Publication date
JP5891206B2 (en) 2016-03-22
JP2015014822A (en) 2015-01-22

Similar Documents

Publication Publication Date Title
JP6126143B2 (en) Numerical control device with drawing path correction function
US9841751B2 (en) Numerical-control machining-program creation device
WO2019167650A1 (en) Method and device for generating tool paths
JP2016189183A (en) Method for manufacturing prescribed object, non-transient computer-readable medium, and controller
WO2015080179A1 (en) Laser cutting method and device, and automatic programming device
WO2013073215A1 (en) Automatic programming device and automatic programming method for laser processing machine, and laser processing system
US10444718B2 (en) Program generator having function of optimizing machining sequence
WO2015002233A1 (en) Automatic programming device and automatic programming method for laser processing machine
JP6148921B2 (en) Automatic programming device for laser machine
JPWO2019082394A1 (en) Numerical controller
JP2005288563A (en) Method and device for creating working program
JP5883717B2 (en) Processing defect prevention system and method
JP5926984B2 (en) Joint generation system and method
JP6457418B2 (en) Machining program creation device
JP5037895B2 (en) Electric discharge machining apparatus and electric discharge machining method
KR101495043B1 (en) A processing route generation method of workpiece using computer numerical control
US10082781B2 (en) Machining program creation apparatus for wire electrical discharge machine
WO2016063756A1 (en) Laser cutting processing method, control device in laser cutting processing machine, and programming device
JP4343072B2 (en) NC machining simulation equipment
US10754321B2 (en) Automatic quality evaluation for a sequence of movement commands
JP6758441B2 (en) Laser processing machine, laser processing method, and processing program creation device
TWI682256B (en) Program generating apparatus and program generating method
KR100246885B1 (en) Numerical control chamfering device and processing method
JP2007061934A (en) Machining tool movement path creation method and machining method
JP2013190834A (en) Automatic programming device and method for laser processing machine and laser processing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14820478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14820478

Country of ref document: EP

Kind code of ref document: A1