[go: up one dir, main page]

WO2014181547A1 - Refrigerant evaporator - Google Patents

Refrigerant evaporator Download PDF

Info

Publication number
WO2014181547A1
WO2014181547A1 PCT/JP2014/002453 JP2014002453W WO2014181547A1 WO 2014181547 A1 WO2014181547 A1 WO 2014181547A1 JP 2014002453 W JP2014002453 W JP 2014002453W WO 2014181547 A1 WO2014181547 A1 WO 2014181547A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
tank
heat exchange
tube
exchange core
Prior art date
Application number
PCT/JP2014/002453
Other languages
French (fr)
Japanese (ja)
Inventor
長屋 誠一
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2014181547A1 publication Critical patent/WO2014181547A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section

Definitions

  • the present disclosure relates to a refrigerant evaporator.
  • the refrigerant evaporator functions as a cooling heat exchanger that cools the fluid to be cooled by absorbing heat from the fluid to be cooled (for example, air) flowing outside and evaporating the refrigerant (liquid phase refrigerant) flowing inside. .
  • the first and second evaporation parts including a heat exchange core part formed by laminating a plurality of tubes and a pair of tank parts connected to both ends of the plurality of tubes are covered.
  • a configuration is known in which the tanks are arranged in series in the flow direction of the cooling fluid, and one tank unit in each evaporation unit is connected via a pair of communication units (see, for example, Patent Document 1).
  • the refrigerant that has flowed through the heat exchange core portion of the first evaporation portion is secondly passed through one tank portion of each evaporation portion and a pair of communication portions that connect the tank portions.
  • the refrigerant flow is changed in the width direction (left-right direction) of the heat exchange core part. That is, in the refrigerant evaporator, the refrigerant flowing on one side in the width direction of the heat exchange core portion of the first evaporation portion is caused to flow in the width direction of the heat exchange core portion of the second evaporation portion by one of the pair of communication portions.
  • the refrigerant is caused to flow to the other side, and the refrigerant flowing on the other side in the width direction of the heat exchange core part of the first evaporation part is caused to flow to one side in the width direction of the heat exchange core part of the second evaporation part. Yes.
  • the liquid-phase refrigerant that has flowed into the first evaporation section tends to easily flow into a tube located near the introduction section of the liquid-phase refrigerant, and the laminated refrigerant is sufficiently supplied to the tube far from the introduction section. Can't flow. Therefore, the liquid refrigerant sufficiently flows on one side in the width direction of the heat exchange core part of the second evaporation part, while the state of the refrigerant on one side in the width direction of the heat exchange core part of the second evaporation part becomes superheat. .
  • This disclosure is intended to provide a refrigerant evaporator capable of suppressing deterioration of refrigerant distribution.
  • a refrigerant evaporator that performs heat exchange between a cooled fluid flowing outside and a refrigerant includes a first evaporator and a second evaporator arranged in series with respect to the flow direction of the cooled fluid. A part.
  • Each of the first evaporation section and the second evaporation section is connected to a heat exchange core section configured by laminating a plurality of tubes through which the refrigerant flows, and both ends of the plurality of tubes, and a set of refrigerants flowing through the plurality of tubes or A pair of tank portions that perform distribution.
  • the heat exchange core part in a 1st evaporation part has the 2nd core part comprised by the 1st core part comprised by some tube groups among several tubes, and the remaining tube group.
  • the heat exchange core part in the second evaporation part includes a third core part composed of a tube group that faces at least a part of the first core part in the flow direction of the fluid to be cooled, and the fluid to be cooled.
  • the fourth core portion is composed of a tube group facing at least a part of the second core portion in the flow direction.
  • one tank part includes a first refrigerant collecting part that collects refrigerant from the first core part, and a second refrigerant collecting part that collects refrigerant from the second core part. Consists of including.
  • one tank part includes a first refrigerant distribution part that distributes the refrigerant to the third core part, and a second refrigerant distribution part that distributes the refrigerant to the fourth core part. Composed.
  • the first evaporation section and the second evaporation section are a first communication section that guides the refrigerant of the first refrigerant assembly section to the second refrigerant distribution section, and a second communication that guides the refrigerant of the second refrigerant assembly section to the first refrigerant distribution section. It is connected via a refrigerant replacement part having a part.
  • the tank internal space of one tank portion in the first evaporation section is partitioned into a first tank internal space and a second tank internal space in the longitudinal direction of the tube, and the first tank internal space is inside the second tank. It arrange
  • the tank internal space of one tank portion in the second evaporation unit is partitioned into a third tank internal space and a fourth tank internal space in the longitudinal direction of the tube, and the third tank internal space is the interior of the fourth tank. It arrange
  • the first tank internal space forms a second refrigerant assembly, and the second tank internal space forms the first refrigerant assembly.
  • the third tank inner space forms a first refrigerant distributor, and the fourth tank inner space forms a second refrigerant distributor.
  • the tank internal space of one tank portion in the first evaporation portion is partitioned into the first tank internal space and the second tank internal space in the longitudinal direction of the tube, and one tank portion in the second evaporation portion is formed.
  • a refrigerant flow path for guiding the refrigerant from the first core portion to the fourth core portion by partitioning the tank inner space into a third tank inner space and a fourth tank inner space in the longitudinal direction of the tube;
  • the pressure loss of the refrigerant flowing through the refrigerant flow path can be adjusted by changing the length of the refrigerant flow path that guides the refrigerant from the core section to the third core section.
  • a refrigerant introduction part for introducing a refrigerant into the other tank part is connected to a side closer to the first core part than the second core part in the other tank part of the first evaporation part.
  • a refrigerant derivation unit for deriving a refrigerant from the inside of the other tank unit is connected to a side closer to the third core unit than the fourth core unit in the other tank unit of the second evaporation unit.
  • the tube constituting the first core part is longer in the longitudinal direction than the tube constituting the second core part, and the tube constituting the fourth core part is longer than the tube constituting the third core part. Is long.
  • the longitudinal direction of the tube which comprises the 1st core part longer than the longitudinal direction length of the tube which constitutes the 2nd core part
  • the longitudinal direction of the tube which constitutes the 4th core part The refrigerant flow path for guiding the refrigerant from the first core part to the fourth core part by the length of the tube by making the length of the tube longer than the length in the longitudinal direction of the tube constituting the third core part
  • the pressure loss of the refrigerant flowing through the refrigerant flow path can be adjusted by changing the length of the refrigerant flow path that guides the refrigerant from the second core section to the third core section.
  • FIG. It is a typical perspective view of the refrigerant evaporator concerning an embodiment. It is explanatory drawing of the refrigerant evaporator shown in FIG. It is explanatory drawing for demonstrating the flow of the refrigerant
  • the refrigerant evaporator 1 is applied to a vapor compression refrigeration cycle of a vehicle air conditioner that adjusts the temperature in the passenger compartment, and absorbs heat from the blown air that is blown into the passenger compartment to form a refrigerant (liquid phase refrigerant). It is a heat exchanger for cooling which cools blowing air by evaporating.
  • the blown air corresponds to the fluid to be cooled flowing outside.
  • the refrigeration cycle includes a compressor, a radiator (condenser), an expansion valve, and the like (not shown) in addition to the refrigerant evaporator 1, and in this embodiment, liquid is received between the radiator and the expansion valve. It is configured as a receiver cycle in which a device is arranged.
  • the refrigerant of the refrigeration cycle is mixed with refrigeration oil for lubricating the compressor, and a part of the refrigeration oil circulates in the cycle together with the refrigerant.
  • the refrigerant evaporator 1 includes two evaporators 10 and 20 arranged in series with respect to the flow direction (flow direction of the fluid to be cooled) X of the blown air. It is prepared for.
  • positioned among the two evaporation parts 10 and 20 on the windward side (upstream side) of the air flow direction of blowing air is called the windward evaporation part 10, and the flow of blowing air
  • the evaporator disposed on the leeward side (downstream side) in the direction is referred to as a leeward evaporator 20.
  • the windward side evaporation part 10 in this embodiment comprises a 2nd evaporation part
  • the leeward side evaporation part 20 comprises the 1st evaporation part.
  • the basic configurations of the windward side evaporator 10 and the leeward side evaporator 20 are the same, and the heat exchange core parts 11 and 21 and a pair of tank parts 12 disposed on the upper and lower sides of the heat exchange core parts 11 and 21, respectively. 13, 22, and 23.
  • the heat exchange core part in the windward side evaporation part 10 is called the windward heat exchange core part 11
  • the heat exchange core part in the leeward side evaporation part 20 is called the leeward side heat exchange core part 21.
  • the tank portion disposed on the upper side is referred to as a first windward tank portion 12
  • the tank portion disposed on the lower side is referred to as the second windward side. This is referred to as a tank portion 13.
  • the tank part arranged on the upper side is referred to as the first leeward side tank part 22, and the tank part arranged on the lower side is referred to as the second leeward side. This is referred to as a side tank portion 23.
  • Each of the windward side heat exchange core part 11 and the leeward side heat exchange core part 21 of the present embodiment includes a plurality of tubes 111 and 211 extending in the vertical direction and fins 112 and 212 joined between the adjacent tubes 111 and 211. And a laminate in which layers are alternately arranged.
  • the stacking direction in the stacked body of the plurality of tubes 111 and 211 and the plurality of fins 112 and 212 is referred to as a tube stacking direction.
  • the windward side heat exchange core part 11 is the 2nd wind comprised by the 1st windward heat exchange core part 11a comprised by some tube groups among the some tubes 111, and the remaining tube group. It has the upper side heat exchange core part 11b.
  • the 1st windward heat exchange core part 11a in this embodiment comprises a 3rd core part
  • the 2nd windward heat exchange core part 11b comprises a 4th core part.
  • the first windward heat exchange core part 11a is configured by a tube group existing on the right side of the tube lamination direction, and the tube lamination direction
  • the second upwind heat exchange core portion 11b is configured by a tube group existing on the left side of the above.
  • the leeward side heat exchange core part 21 is the 2nd leeward side comprised by the 1st leeward side heat exchange core part 21a comprised by some tube groups among the some tubes 211, and the remaining tube group. It has a heat exchange core portion 21b.
  • the 1st leeward side heat exchange core part 21a in this embodiment comprises a 1st core part
  • the 2nd leeward side heat exchange core part 21b comprises a 2nd core part.
  • the first leeward heat exchange core portion 21a when the leeward heat exchange core portion 21 is viewed from the flow direction of the blown air, the first leeward heat exchange core portion 21a is configured by a tube group existing on the right side of the tube lamination direction, and the tube lamination direction
  • the second leeward heat exchange core portion 21b is configured by a tube group existing on the left side of the leeward side.
  • the first windward side heat exchange core portion 11a and the first leeward side heat exchange core portion 21a are arranged so as to overlap (opposite) when viewed from the flow direction of the blown air.
  • the second leeward side heat exchange core part 11b and the second leeward side heat exchange core part 21b are arranged so as to overlap (oppose) each other.
  • Each of the tubes 111 and 211 is formed of a flat tube in which a refrigerant passage through which a refrigerant flows is formed and a cross-sectional shape thereof is a flat shape extending along the flow direction of the blown air.
  • each tube 211 (hereinafter referred to as the first leeward side tube 211a) constituting the first leeward side heat exchange core part 21a is each tube 211 (hereinafter referred to as the first leeward side heat exchange core part 21b).
  • the second leeward side tube 211b) is longer in the longitudinal direction.
  • each tube 111 (hereinafter referred to as the first windward side tube 111a) constituting the first windward side heat exchange core part 11a is each tube 111 (hereinafter referred to as the second side) that constitutes the second windward side heat exchange core part 11b.
  • the length in the longitudinal direction is shorter than that of the windward tube 111b.
  • the tube 111 of the windward side heat exchange core part 11 has one end side (upper end side) in the longitudinal direction connected to the first windward tank part 12, and the other end side (lower end side) in the longitudinal direction is the second windward side. It is connected to the tank unit 13.
  • the tube 211 of the leeward heat exchange core portion 21 has one end side (upper end side) in the longitudinal direction connected to the first leeward tank portion 22 and the other end side (lower end side) in the longitudinal direction is second.
  • the leeward tank unit 23 is connected.
  • Each of the fins 112 and 212 is a corrugated fin formed by bending a thin plate material into a wave, joined to the flat outer surface side of the tubes 111 and 211, and heat for expanding the heat transfer area between the blown air and the refrigerant. It constitutes an exchange promoting means.
  • side plates 113 and 213 that reinforce the heat exchange core parts 11 and 12 are arranged at both ends in the tube lamination direction.
  • the side plates 113 and 213 are joined to the fins 112 and 212 arranged on the outermost side in the tube stacking direction.
  • the first upwind tank unit 12 is closed at one end (the left end when viewed from the flow direction of the blown air) and at the other end (the right end when viewed from the flow direction of the blown air). Further, it is constituted by a cylindrical member in which a refrigerant derivation part 12a for deriving the refrigerant from the inside of the tank to the suction side of a compressor (not shown) is formed.
  • the first upwind tank unit 12 has a through hole (not shown) in which one end side (upper end side) of each tube 111 is inserted and joined at the bottom.
  • the first upwind tank unit 12 is configured such that the internal space thereof communicates with each tube 111 of the upwind heat exchange core unit 11, and the core units 11 a and 11 b of the upwind heat exchange core unit 11. It functions as a refrigerant collecting part that collects the refrigerant from.
  • the first leeward tank unit 22 is closed at one end, and has a cylinder formed with a refrigerant introduction unit 22a for introducing low-pressure refrigerant decompressed by an expansion valve (not shown) into the tank at the other end. It is comprised by the shape-shaped member.
  • the first leeward tank portion 22 has a through hole (not shown) in which one end side (upper end side) of each tube 211 is inserted and joined at the bottom. That is, the 1st leeward side tank part 22 is comprised so that the internal space may connect with each tube 211 of the leeward side heat exchange core part 21, and each core part 21a, 21b of the leeward side heat exchange core part 21 is comprised. It functions as a refrigerant distribution unit that distributes the refrigerant.
  • the second upwind tank unit 13 is composed of a cylindrical member whose both ends are closed.
  • the second upwind tank portion 13 has a through hole (not shown) in which the other end side (lower end side) of each tube 111 is inserted and joined to the ceiling portion. That is, the second upwind tank unit 13 is configured such that its internal space communicates with each tube 111.
  • a first partition member 131 is disposed inside the second upwind tank portion 13 at a portion opposite to the windward heat exchange core portion 11 with respect to the longitudinal end portion of the tube 111, and this first partition member. 131 divides the tank internal space into two in the tube longitudinal direction.
  • the first partition member 131 has a through hole (not shown) into which the second upwind tube 111b is inserted and joined.
  • the 1st partition member 131 is arrange
  • the first windward side tube 111a communicates with the space closer to the first windward side tank unit 12 (the upper side in FIG. 1).
  • the second windward tube 111b communicates with a space on the side farther from the windward side tank unit 12 (lower side in FIG. 1).
  • the space communicating with each tube 111 constituting the first upwind heat exchange core unit 11a distributes the refrigerant to the first upwind heat exchange core unit 11a.
  • a second refrigerant distributor that constitutes the first refrigerant distributor 13a and that communicates with the tubes 111 constituting the second windward heat exchange core 11b distributes the refrigerant to the second windward heat exchange core 11b. 13b is constituted.
  • the first refrigerant distributor 13a constitutes the third tank space.
  • the 2nd refrigerant distribution part 13b comprises the 4th tank inner space.
  • the second leeward tank portion 23 is formed of a cylindrical member whose both ends are closed.
  • the second leeward tank portion 23 has a through hole (not shown) in which the other end side (lower end side) of each tube 211 is inserted and joined to the ceiling portion. That is, the second leeward tank unit 23 is configured such that the internal space thereof communicates with each tube 211.
  • a second partition member 231 is disposed inside the second leeward tank portion 23 at a portion on the opposite side of the longitudinal end portion of the tube 211 from the leeward heat exchange core portion 21, and this second partition member.
  • the tank internal space is divided into two in the longitudinal direction of the tube by 231.
  • the second partition member 231 is formed with a through hole (not shown) into which the first leeward side tube 211a is inserted and joined.
  • the second partition member 231 is disposed at the center position in the tube longitudinal direction inside the second leeward tank portion 23.
  • the second leeward side tube 211 b communicates with the space closer to the first leeward side tank unit 22 (upper side in FIG. 1).
  • the first leeward side tube 211a communicates with the space on the side farther from the leeward side tank unit 22 (lower side in FIG. 1).
  • the space communicating with each tube 211 constituting the first leeward side heat exchange core part 21a collects the refrigerant from the first leeward side heat exchange core part 21a.
  • the second refrigerant that constitutes the first refrigerant collecting portion 23a to be communicated and in which the space where the tubes 211 constituting the second leeward heat exchange core portion 21b communicate with each other collects refrigerant from the second leeward heat exchange core portion 21b.
  • the aggregation unit 23b is configured.
  • the first refrigerant assembly portion 23a constitutes the second tank space.
  • coolant gathering part 23b comprises the 1st tank inner space.
  • the second leeward tank unit 13 and the second leeward tank unit 23 are connected via a refrigerant replacement unit 30.
  • the refrigerant replacement unit 30 guides the refrigerant in the first refrigerant collecting unit 23 a in the second leeward tank unit 23 to the second refrigerant distribution unit 13 b in the second leeward tank unit 13 and also the second leeward tank unit 23.
  • the refrigerant in the second refrigerant collecting portion 23b is guided to the first refrigerant distributing portion 13a in the second upwind tank portion 13. That is, the refrigerant replacement unit 30 is configured to replace the refrigerant flow in the core width direction in each of the heat exchange core units 11 and 21.
  • the refrigerant replacement unit 30 includes a first connecting member 30a that communicates the first refrigerant collecting unit 23a in the second leeward tank unit 23 and the second refrigerant distribution unit 13b in the second leeward tank unit 13;
  • the second refrigerant member 23b in the second leeward tank unit 23 and the second refrigerant member 13b in the second leeward tank unit 13 communicate with the first refrigerant distributor 13a.
  • Each of the first connecting member 30a and the second connecting member 30b is configured by a cylindrical member in which a refrigerant flow passage through which a refrigerant flows is formed, and one end side thereof is connected to the second leeward tank unit 23. At the same time, the other end is connected to the intermediate tank 33.
  • one end side of the first connecting member 30a is connected to a side farther from the refrigerant introducing portion 22a in the stacking direction of the tubes 211 in the first refrigerant collecting portion 23a, and one end side of the second connecting member 30b is Of the two refrigerant collecting portions 23b, the refrigerant is connected to the side closer to the refrigerant introducing portion 22a in the stacking direction of the tubes 211.
  • the other end side of the first connecting member 30a is connected to a side of the second refrigerant distribution portion 13b that is far from the refrigerant deriving portion 12a in the stacking direction of the tubes 111, and the other end side of the second connecting member 30b is the first side. It connects to the side near the refrigerant
  • the first connecting member 30a constitutes the first communicating portion.
  • the 2nd connection member 30b comprises the 2nd communication part.
  • the low-pressure refrigerant decompressed by an expansion valve (not shown) is introduced into the tank from a refrigerant introduction part 22a formed on one end side of the first leeward tank part 22 as indicated by an arrow A.
  • the refrigerant introduced into the first leeward tank unit 22 descends the first leeward heat exchange core portion 21a of the leeward heat exchange core portion 21 as indicated by an arrow B, and at the same time leeward heat exchange as indicated by an arrow C.
  • the second leeward heat exchange core portion 21b of the core portion 21 is lowered.
  • the refrigerant descending the first leeward heat exchange core portion 21a flows into the first refrigerant collecting portion 23a of the second leeward tank portion 23 as indicated by an arrow D.
  • the refrigerant descending the second leeward heat exchange core portion 21b flows into the second refrigerant collecting portion 23b of the second leeward tank portion 23 as indicated by an arrow E.
  • the refrigerant that has flowed into the first refrigerant collecting portion 23a flows into the second refrigerant distribution portion 13b of the second upwind tank portion 13 through the first connecting member 30a as indicated by the arrow F. Further, the refrigerant flowing into the second refrigerant collecting portion 23b flows into the first refrigerant distributing portion 13a of the second upwind tank portion 13 through the second connecting member 30b as indicated by an arrow G.
  • the refrigerant that has flowed into the second refrigerant distribution section 13b of the second upwind tank section 13 ascends the second upwind heat exchange core section 11b of the upwind heat exchange core section 11 as indicated by an arrow H.
  • the refrigerant that has flowed into the first refrigerant distribution unit 13a ascends the first upwind heat exchange core unit 11a of the upwind heat exchange core unit 11 as indicated by an arrow I.
  • the refrigerant that has risen up the second upwind heat exchange core portion 11b and the refrigerant that has risen up the first upwind heat exchange core portion 11a flow into the tank of the first upwind tank portion 12 as indicated by arrows J and K, respectively. As indicated by the arrow L, the refrigerant is led out to the compressor (not shown) suction side from the refrigerant lead-out portion 12a formed on one end side of the first upwind tank portion 12.
  • FIG. 4 shows that the refrigerant evaporator 1 according to the comparative example, that is, the space in the tank of the second leeward tank portion 23 and the second leeward tank portion 13 is divided into two in the stacking direction of the tubes 111 and 1111, respectively.
  • FIG. 5 is each heat exchange core part of the refrigerant evaporator 1 which concerns on this embodiment.
  • 11 is an explanatory diagram for explaining a distribution of a liquid-phase refrigerant flowing through 11 and 21.
  • FIGS. 4 (b) and 5 (b) show the leeward heat exchange core unit 21.
  • FIGS. 4 (b) and 5 (b) show the leeward heat exchange core unit 21.
  • 4 (c) and FIG. 5 (c) show the synthesis of the distribution of the liquid phase refrigerant flowing through the heat exchange core portions 11 and 21.
  • FIG. 4 and 5 show the distribution of the liquid-phase refrigerant when the refrigerant evaporator 1 is viewed from the direction of the arrow Y in FIG. 1 (the direction opposite to the flow direction X of the blown air).
  • a portion indicated by a portion indicates a portion where the liquid-phase refrigerant exists.
  • the refrigerant evaporator 1 according to the comparative example and the refrigerant according to the present embodiment. The same is true for the evaporator 1, and a portion where the liquid-phase refrigerant hardly flows (a white portion on the lower right side in the figure) is generated in a part of the second leeward heat exchange core portion 21 b.
  • the tank internal space of the second leeward tank unit 23 is divided into two in the longitudinal direction of the tube 211, whereby the first refrigerant assembly 23a and the second refrigerant are separated.
  • the first refrigerant distribution portion 13a and the second refrigerant distribution portion 13b are formed by forming the collecting portion 23b and partitioning the space in the tank of the second upwind tank portion 13 into two in the longitudinal direction of the tube 11. ing.
  • the refrigerant flow path for guiding the refrigerant from the first leeward heat exchange core portion 21a to the second leeward heat exchange core portion 11b and the refrigerant from the second leeward heat exchange core portion 21b are used as the first windward heat.
  • the pressure loss of the refrigerant flowing through these two refrigerant flow paths can be adjusted by changing the length of the refrigerant flow path leading to the replacement core portion 11a.
  • the length in the longitudinal direction of the first leeward side tube 211a is longer than the length in the longitudinal direction of the second leeward side tube 211b, and the length in the longitudinal direction of the second leeward side tube 111b. Is longer than the length in the longitudinal direction of the first upwind tube 111a.
  • the refrigerant flow path for guiding the refrigerant from the first leeward heat exchange core portion 21a to the second leeward heat exchange core portion 11b, and the second leeward heat exchange core portion 21b can be adjusted by changing the length of the refrigerant flow path from the refrigerant flow path leading to the first upwind heat exchange core portion 11a.
  • the refrigerant introduction part 22a is arranged at a position close to the first leeward heat exchange core part 21a in the first leeward heat exchange core part 21a and the second leeward heat exchange core part 21b.
  • the refrigerant flow rate flowing into the first leeward side tube 211a is larger than the refrigerant flow rate flowing into the second leeward side tube 211b.
  • a large amount of gas-phase refrigerant is present in the first upwind tube 111a, and the pressure loss of the liquid phase refrigerant flowing through the first upwind tube 111a increases.
  • the flow rate of the refrigerant flowing through the refrigerant flow path for guiding the refrigerant from the first leeward heat exchange core portion 21a to the second leeward heat exchange core portion 11b causes the refrigerant from the second leeward heat exchange core portion 21b to It becomes more than the refrigerant
  • the length in the longitudinal direction of the first leeward side tube 211a is made longer than the length in the longitudinal direction of the second leeward side tube 211b, and the longitudinal direction of the second leeward side tube 111b. Is made longer than the length in the longitudinal direction of the first windward tube 111a, so that the pressure loss of the refrigerant flowing through the first leeward tube 211a and the second windward tube 111b is reduced to the second leeward tube. It becomes larger than the pressure loss of the refrigerant
  • the pressure loss of the refrigerant flowing through the refrigerant flow path that guides the refrigerant from the first leeward heat exchange core portion 21a to the second leeward heat exchange core portion 11b increases.
  • the pressure loss of the refrigerant flowing through the refrigerant flow path for guiding the refrigerant from the first leeward heat exchange core portion 21a to the second leeward heat exchange core portion 11b and the refrigerant from the second leeward heat exchange core portion 21b Can be made uniform with the pressure loss of the refrigerant flowing through the refrigerant flow path leading to the first upwind heat exchange core portion 11a.
  • the flow rate of the refrigerant flowing through the refrigerant flow path for guiding the refrigerant from the first leeward heat exchange core portion 21a to the second leeward heat exchange core portion 11b and the refrigerant from the second leeward heat exchange core portion 21b are the first.
  • a difference with the flow rate of the refrigerant flowing through the refrigerant flow path leading to the windward heat exchange core portion 11a becomes small, and deterioration of refrigerant distribution can be suppressed.
  • the refrigerant evaporator 1 is arranged so that the first windward heat exchange core portion 11a and the first leeward heat exchange core portion 21a are superposed when viewed from the flow direction of the blown air.
  • the example has been described in which the second leeward heat exchange core portion 11b and the second leeward heat exchange core portion 21b are superposed, but the present invention is not limited thereto.
  • the refrigerant evaporator 1 is arranged so that at least a part of the first windward heat exchange core portion 11a and the first leeward heat exchange core portion 21a are polymerized when viewed from the flow direction of the blown air, You may arrange
  • the windward side evaporator 10 in the refrigerant evaporator 1 on the upstream side in the flow direction X of the blown air with respect to the leeward side evaporator 20, but not limited to this, the windward side evaporator
  • the part 10 may be arranged on the downstream side in the flow direction X of the blown air with respect to the leeward side evaporation part 20.
  • each heat exchange core portion 11, 21 is configured by the plurality of tubes 111, 211 and the fins 112, 212 .
  • the exchange core parts 11 and 21 may be configured.
  • the fins 112 and 212 may employ
  • the present invention is not limited thereto, and may be applied to, for example, a refrigeration cycle used in a water heater or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

In this refrigerant evaporator (1), a first refrigerant collection section (23a) and a second refrigerant collection section (23b) are formed by dividing a tank internal space of a tank section (23) of a first evaporation section (20) in two in the longitudinal direction of tubes (211), and a first refrigerant distribution section (13a) and a second refrigerant distribution section (13b) are formed by dividing a tank internal space of a tank section (13) of a second evaporation section (10) in two in the longitudinal direction of tubes (111). The first refrigerant collection section (23a) and the second refrigerant distribution section (13b) are connected to each other, and the second refrigerant collection section (23b) and the first refrigerant distribution section (13a) are connected to each other.

Description

冷媒蒸発器Refrigerant evaporator 関連出願の相互参照Cross-reference of related applications
 本開示は、2013年5月10日に出願された日本出願番号2013-100487号に基づくもので、ここにその記載内容を援用する。 This disclosure is based on Japanese Patent Application No. 2013-1000048 filed on May 10, 2013, the contents of which are incorporated herein.
 本開示は、冷媒蒸発器に関する。 The present disclosure relates to a refrigerant evaporator.
 冷媒蒸発器は、外部を流れる被冷却流体(例えば、空気)から吸熱して、内部を流れる冷媒(液相冷媒)を蒸発させることで、被冷却流体を冷却する冷却用熱交換器として機能する。 The refrigerant evaporator functions as a cooling heat exchanger that cools the fluid to be cooled by absorbing heat from the fluid to be cooled (for example, air) flowing outside and evaporating the refrigerant (liquid phase refrigerant) flowing inside. .
 この種の冷媒蒸発器としては、複数のチューブを積層して構成される熱交換コア部、および複数のチューブの両端部に接続された一対のタンク部を備える第1、第2蒸発部を被冷却流体の流れ方向に直列に配置し、各蒸発部における一方のタンク部同士を一対の連通部を介して連結する構成が知られている(例えば、特許文献1参照)。 As this type of refrigerant evaporator, the first and second evaporation parts including a heat exchange core part formed by laminating a plurality of tubes and a pair of tank parts connected to both ends of the plurality of tubes are covered. A configuration is known in which the tanks are arranged in series in the flow direction of the cooling fluid, and one tank unit in each evaporation unit is connected via a pair of communication units (see, for example, Patent Document 1).
 この特許文献1の冷媒蒸発器では、第1蒸発部の熱交換コア部を流れた冷媒を、各蒸発部の一方のタンク部および当該タンク部同士を連結する一対の連通部を介して第2蒸発部の熱交換コア部に流す際に、冷媒の流れを熱交換コア部の幅方向(左右方向)で入れ替える構成としている。つまり、冷媒蒸発器は、一対の連通部のうち、一方の連通部によって、第1蒸発部の熱交換コア部の幅方向一側を流れる冷媒を第2蒸発部の熱交換コア部の幅方向他側に流すと共に、他方の連通部によって第1蒸発部の熱交換コア部の幅方向他側を流れる冷媒を第2蒸発部の熱交換コア部の幅方向一側に流すように構成されている。 In the refrigerant evaporator of Patent Document 1, the refrigerant that has flowed through the heat exchange core portion of the first evaporation portion is secondly passed through one tank portion of each evaporation portion and a pair of communication portions that connect the tank portions. When flowing through the heat exchange core part of the evaporation part, the refrigerant flow is changed in the width direction (left-right direction) of the heat exchange core part. That is, in the refrigerant evaporator, the refrigerant flowing on one side in the width direction of the heat exchange core portion of the first evaporation portion is caused to flow in the width direction of the heat exchange core portion of the second evaporation portion by one of the pair of communication portions. The refrigerant is caused to flow to the other side, and the refrigerant flowing on the other side in the width direction of the heat exchange core part of the first evaporation part is caused to flow to one side in the width direction of the heat exchange core part of the second evaporation part. Yes.
特許第4124136号公報Japanese Patent No. 4124136
 しかしながら、特許文献1の冷媒蒸発器の如く、各蒸発部の一対のタンク部のうち連通部が接続される一方のタンクをチューブ積層方向に分割することで冷媒の流れ方向を入れ替える構成とすると、第1蒸発部の熱交換コア部からの冷媒が第2蒸発部の熱交換コア部に流れる際に、液相冷媒が第2蒸発部の熱交換コア部の一部に偏って分配されることがある。 However, like the refrigerant evaporator of Patent Document 1, when the refrigerant flow direction is changed by dividing one tank to which the communicating portion is connected among the pair of tank portions of each evaporation portion in the tube stacking direction, When the refrigerant from the heat exchange core part of the first evaporation part flows to the heat exchange core part of the second evaporation part, the liquid-phase refrigerant is distributed unevenly to a part of the heat exchange core part of the second evaporation part. There is.
 具体的には、第1蒸発部に流入した液相冷媒は、液相冷媒の導入部の近くに位置するチューブに流れ易い傾向があり、前記導入部から遠く離れたチューブに積層冷媒を充分に流すことができない。このため、第2蒸発部の熱交換コア部の幅方向一側に液相冷媒が充分に流れる一方、第2蒸発部の熱交換コア部の幅方向一側における冷媒の状態がスーパーヒートとなる。 Specifically, the liquid-phase refrigerant that has flowed into the first evaporation section tends to easily flow into a tube located near the introduction section of the liquid-phase refrigerant, and the laminated refrigerant is sufficiently supplied to the tube far from the introduction section. Can't flow. Therefore, the liquid refrigerant sufficiently flows on one side in the width direction of the heat exchange core part of the second evaporation part, while the state of the refrigerant on one side in the width direction of the heat exchange core part of the second evaporation part becomes superheat. .
 このように、冷媒蒸発器における液相冷媒の分配性が悪化すると、第2蒸発部の熱交換コア部において、被冷却流体と冷媒との熱交換が有効に行われない領域が生じ、冷媒放熱器を送風空気の流れ方向から見たときに、熱交換コア部の幅方向に温度分布が生じる。 Thus, when the distribution property of the liquid-phase refrigerant in the refrigerant evaporator deteriorates, a region where heat exchange between the fluid to be cooled and the refrigerant is not effectively performed occurs in the heat exchange core part of the second evaporation part, and the refrigerant radiates heat. When the chamber is viewed from the flow direction of the blown air, a temperature distribution is generated in the width direction of the heat exchange core portion.
 本開示は、冷媒の分配性の悪化を抑制可能な冷媒蒸発器を提供することを目的とする。 This disclosure is intended to provide a refrigerant evaporator capable of suppressing deterioration of refrigerant distribution.
 上記目的を達成するため、外部を流れる被冷却流体と冷媒との間で熱交換を行う冷媒蒸発器は、被冷却流体の流れ方向に対して直列に配置された第1蒸発部および第2蒸発部を備える。第1蒸発部および第2蒸発部それぞれは、冷媒が流れる複数のチューブを積層して構成された熱交換コア部と、複数のチューブの両端部に接続され、複数のチューブを流れる冷媒の集合あるいは分配を行う一対のタンク部と、を有する。第1蒸発部における熱交換コア部は、複数のチューブのうち、一部のチューブ群で構成される第1コア部、および残部のチューブ群で構成される第2コア部を有する。第2蒸発部における熱交換コア部は、複数のチューブのうち、被冷却流体の流れ方向において第1コア部の少なくとも一部と対向するチューブ群で構成される第3コア部、および被冷却流体の流れ方向において第2コア部の少なくとも一部と対向するチューブ群で構成される第4コア部を有する。第1蒸発部における一対のタンク部のうち、一方のタンク部は、第1コア部からの冷媒を集合させる第1冷媒集合部、第2コア部からの冷媒を集合させる第2冷媒集合部を含んで構成される。第2蒸発部における一対のタンク部のうち、一方のタンク部は、第3コア部に冷媒を分配させる第1冷媒分配部、第4コア部に冷媒を分配させる第2冷媒分配部を含んで構成される。第1蒸発部および第2蒸発部は、第1冷媒集合部の冷媒を第2冷媒分配部に導く第1連通部、および第2冷媒集合部の冷媒を第1冷媒分配部に導く第2連通部を有する冷媒入替部を介して連結されている。第1蒸発部における一方のタンク部のタンク内空間は、チューブの長手方向に、第1タンク内空間と第2タンク内空間とに仕切られており、第1タンク内空間は、第2タンク内空間よりも、第1蒸発部における一対のタンク部のうち他方のタンク部に近い側に配置されている。第2蒸発部における一方のタンク部のタンク内空間は、チューブの長手方向に、第3タンク内空間と第4タンク内空間とに仕切られており、第3タンク内空間は、第4タンク内空間よりも、第2蒸発部における一対のタンク部のうち他方のタンク部に近い側に配置されている。第1タンク内空間が第2冷媒集合部を形成するとともに、第2タンク内空間が第1冷媒集合部を形成している。第3タンク内空間が第1冷媒分配部を形成するとともに、第4タンク内空間が第2冷媒分配部を形成している。 In order to achieve the above object, a refrigerant evaporator that performs heat exchange between a cooled fluid flowing outside and a refrigerant includes a first evaporator and a second evaporator arranged in series with respect to the flow direction of the cooled fluid. A part. Each of the first evaporation section and the second evaporation section is connected to a heat exchange core section configured by laminating a plurality of tubes through which the refrigerant flows, and both ends of the plurality of tubes, and a set of refrigerants flowing through the plurality of tubes or A pair of tank portions that perform distribution. The heat exchange core part in a 1st evaporation part has the 2nd core part comprised by the 1st core part comprised by some tube groups among several tubes, and the remaining tube group. The heat exchange core part in the second evaporation part includes a third core part composed of a tube group that faces at least a part of the first core part in the flow direction of the fluid to be cooled, and the fluid to be cooled. The fourth core portion is composed of a tube group facing at least a part of the second core portion in the flow direction. Of the pair of tank parts in the first evaporation part, one tank part includes a first refrigerant collecting part that collects refrigerant from the first core part, and a second refrigerant collecting part that collects refrigerant from the second core part. Consists of including. Of the pair of tank parts in the second evaporation part, one tank part includes a first refrigerant distribution part that distributes the refrigerant to the third core part, and a second refrigerant distribution part that distributes the refrigerant to the fourth core part. Composed. The first evaporation section and the second evaporation section are a first communication section that guides the refrigerant of the first refrigerant assembly section to the second refrigerant distribution section, and a second communication that guides the refrigerant of the second refrigerant assembly section to the first refrigerant distribution section. It is connected via a refrigerant replacement part having a part. The tank internal space of one tank portion in the first evaporation section is partitioned into a first tank internal space and a second tank internal space in the longitudinal direction of the tube, and the first tank internal space is inside the second tank. It arrange | positions from the space near the other tank part among a pair of tank parts in a 1st evaporation part rather than space. The tank internal space of one tank portion in the second evaporation unit is partitioned into a third tank internal space and a fourth tank internal space in the longitudinal direction of the tube, and the third tank internal space is the interior of the fourth tank. It arrange | positions from the space near the other tank part among a pair of tank parts in a 2nd evaporation part rather than space. The first tank internal space forms a second refrigerant assembly, and the second tank internal space forms the first refrigerant assembly. The third tank inner space forms a first refrigerant distributor, and the fourth tank inner space forms a second refrigerant distributor.
 このように、第1蒸発部における一方のタンク部のタンク内空間を、チューブの長手方向に、第1タンク内空間と第2タンク内空間とに仕切るとともに、第2蒸発部における一方のタンク部のタンク内空間を、チューブの長手方向に、第3タンク内空間と第4タンク内空間とに仕切ることで、第1コア部からの冷媒を第4コア部へ導く冷媒流路と、第2コア部からの冷媒を第3コア部へ導く冷媒流路との長さを変えて、冷媒流路を流れる冷媒の圧力損失を調整することができる。これにより、前記二つの冷媒流路を流れる冷媒の圧力損失を均一にすることで、第2蒸発部において各冷媒分配部から熱交換コア部への液相冷媒の分配の偏りを抑制することができる。 Thus, the tank internal space of one tank portion in the first evaporation portion is partitioned into the first tank internal space and the second tank internal space in the longitudinal direction of the tube, and one tank portion in the second evaporation portion is formed. A refrigerant flow path for guiding the refrigerant from the first core portion to the fourth core portion by partitioning the tank inner space into a third tank inner space and a fourth tank inner space in the longitudinal direction of the tube; The pressure loss of the refrigerant flowing through the refrigerant flow path can be adjusted by changing the length of the refrigerant flow path that guides the refrigerant from the core section to the third core section. Thereby, by making the pressure loss of the refrigerant flowing through the two refrigerant flow paths uniform, it is possible to suppress the uneven distribution of the liquid-phase refrigerant from each refrigerant distributor to the heat exchange core in the second evaporator. it can.
 したがって、各蒸発部の一方のタンク部同士を連結する連通部にて冷媒の流れ方向を入れ替える構成において、冷媒の分配性の悪化を抑制することができ、冷媒蒸発器における被冷却流体の冷却性能の低下を抑制することが可能となる。 Therefore, in the configuration in which the flow direction of the refrigerant is changed at the communication portion that connects one tank portion of each evaporation portion, deterioration of the refrigerant distribution property can be suppressed, and the cooling performance of the fluid to be cooled in the refrigerant evaporator Can be suppressed.
 また、第1蒸発部の他方のタンク部における、第2コア部よりも第1コア部に近い側には、当該他方のタンク部内部に冷媒を導入するための冷媒導入部が接続されており、第2蒸発部の他方のタンク部における、第4コア部よりも第3コア部に近い側には、当該他方のタンク部内部から冷媒を導出するための冷媒導出部が接続されている。第1コア部を構成するチューブは、第2コア部を構成するチューブよりも長手方向の長さが長く、第4コア部を構成するチューブは、第3コア部を構成するチューブよりも長手方向の長さが長い。 In addition, a refrigerant introduction part for introducing a refrigerant into the other tank part is connected to a side closer to the first core part than the second core part in the other tank part of the first evaporation part. A refrigerant derivation unit for deriving a refrigerant from the inside of the other tank unit is connected to a side closer to the third core unit than the fourth core unit in the other tank unit of the second evaporation unit. The tube constituting the first core part is longer in the longitudinal direction than the tube constituting the second core part, and the tube constituting the fourth core part is longer than the tube constituting the third core part. Is long.
 このように、第1コア部を構成するチューブの長手方向の長さを、第2コア部を構成するチューブの長手方向の長さよりも長くするとともに、第4コア部を構成するチューブの長手方向の長さを、第3コア部を構成するチューブの長手方向の長さよりも長くすることで、チューブの長さによって、第1コア部からの冷媒を第4コア部へ導く冷媒流路と、第2コア部からの冷媒を第3コア部へ導く冷媒流路との長さを変えて、冷媒流路を流れる冷媒の圧力損失を調整することができる。 Thus, while making the length of the longitudinal direction of the tube which comprises the 1st core part longer than the longitudinal direction length of the tube which constitutes the 2nd core part, the longitudinal direction of the tube which constitutes the 4th core part The refrigerant flow path for guiding the refrigerant from the first core part to the fourth core part by the length of the tube by making the length of the tube longer than the length in the longitudinal direction of the tube constituting the third core part, The pressure loss of the refrigerant flowing through the refrigerant flow path can be adjusted by changing the length of the refrigerant flow path that guides the refrigerant from the second core section to the third core section.
実施形態に係る冷媒蒸発器の模式的な斜視図である。It is a typical perspective view of the refrigerant evaporator concerning an embodiment. 図1に示す冷媒蒸発器の説明図である。It is explanatory drawing of the refrigerant evaporator shown in FIG. 実施形態に係る冷媒蒸発器における冷媒の流れを説明するための説明図である。It is explanatory drawing for demonstrating the flow of the refrigerant | coolant in the refrigerant evaporator which concerns on embodiment. 比較例に係る冷媒蒸発器の各熱交換コア部を流れる液相冷媒の分布を説明するための説明図である。It is explanatory drawing for demonstrating distribution of the liquid phase refrigerant | coolant which flows through each heat exchange core part of the refrigerant evaporator which concerns on a comparative example. 実施形態に係る冷媒蒸発器の各熱交換コア部を流れる液相冷媒の分布を説明するための説明図である。It is explanatory drawing for demonstrating distribution of the liquid phase refrigerant | coolant which flows through each heat exchange core part of the refrigerant evaporator which concerns on embodiment.
 以下、本開示の一実施形態について図1~図5を用いて説明する。本実施形態に係る冷媒蒸発器1は、車室内の温度を調整する車両用空調装置の蒸気圧縮式の冷凍サイクルに適用され、車室内へ送風する送風空気から吸熱して冷媒(液相冷媒)を蒸発させることで、送風空気を冷却する冷却用熱交換器である。なお、本実施形態では、送風空気が、外部を流れる被冷却流体に相当する。 Hereinafter, an embodiment of the present disclosure will be described with reference to FIGS. 1 to 5. The refrigerant evaporator 1 according to the present embodiment is applied to a vapor compression refrigeration cycle of a vehicle air conditioner that adjusts the temperature in the passenger compartment, and absorbs heat from the blown air that is blown into the passenger compartment to form a refrigerant (liquid phase refrigerant). It is a heat exchanger for cooling which cools blowing air by evaporating. In the present embodiment, the blown air corresponds to the fluid to be cooled flowing outside.
 冷凍サイクルは、周知の如く、冷媒蒸発器1以外に、図示しない圧縮機、放熱器(凝縮器)、膨張弁等を備えおり、本実施形態では、放熱器と膨張弁との間に受液器を配置するレシーバサイクルとして構成されている。また、冷凍サイクルの冷媒には、圧縮機を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。 As is well known, the refrigeration cycle includes a compressor, a radiator (condenser), an expansion valve, and the like (not shown) in addition to the refrigerant evaporator 1, and in this embodiment, liquid is received between the radiator and the expansion valve. It is configured as a receiver cycle in which a device is arranged. The refrigerant of the refrigeration cycle is mixed with refrigeration oil for lubricating the compressor, and a part of the refrigeration oil circulates in the cycle together with the refrigerant.
 図2では、後述する各熱交換コア部11、21におけるフィン112、212の図示を省略している。 In FIG. 2, illustration of the fins 112 and 212 in the heat exchange core portions 11 and 21 described later is omitted.
 図1、図2に示すように、本実施形態の冷媒蒸発器1は、送風空気の流れ方向(被冷却流体の流れ方向)Xに対して直列に配置された2つの蒸発部10、20を備えて構成されている。ここで、本実施形態では、2つの蒸発部10、20のうち、送風空気の空気流れ方向の風上側(上流側)に配置される蒸発部を風上側蒸発部10と称し、送風空気の流れ方向の風下側(下流側)に配置される蒸発部を風下側蒸発部20と称する。なお、本実施形態における風上側蒸発部10が、第2蒸発部を構成し、風下側蒸発部20が、第1蒸発部を構成している。 As shown in FIGS. 1 and 2, the refrigerant evaporator 1 according to the present embodiment includes two evaporators 10 and 20 arranged in series with respect to the flow direction (flow direction of the fluid to be cooled) X of the blown air. It is prepared for. Here, in this embodiment, the evaporation part arrange | positioned among the two evaporation parts 10 and 20 on the windward side (upstream side) of the air flow direction of blowing air is called the windward evaporation part 10, and the flow of blowing air The evaporator disposed on the leeward side (downstream side) in the direction is referred to as a leeward evaporator 20. In addition, the windward side evaporation part 10 in this embodiment comprises a 2nd evaporation part, and the leeward side evaporation part 20 comprises the 1st evaporation part.
 風上側蒸発部10および風下側蒸発部20の基本的構成は同一であり、それぞれ熱交換コア部11、21と、熱交換コア部11、21の上下両側に配置された一対のタンク部12、13、22、23を有して構成されている。 The basic configurations of the windward side evaporator 10 and the leeward side evaporator 20 are the same, and the heat exchange core parts 11 and 21 and a pair of tank parts 12 disposed on the upper and lower sides of the heat exchange core parts 11 and 21, respectively. 13, 22, and 23.
 なお、本実施形態では、風上側蒸発部10における熱交換コア部を風上側熱交換コア部11と称し、風下側蒸発部20における熱交換コア部を風下側熱交換コア部21と称する。また、風上側蒸発部10における一対のタンク部12、13のうち、上方側に配置されるタンク部を第1風上側タンク部12と称し、下方側に配置されるタンク部を第2風上側タンク部13と称する。同様に、風下側蒸発部20における一対のタンク部22、23のうち、上方側に配置されるタンク部を第1風下側タンク部22と称し、下方側に配置されるタンク部を第2風下側タンク部23と称する。 In addition, in this embodiment, the heat exchange core part in the windward side evaporation part 10 is called the windward heat exchange core part 11, and the heat exchange core part in the leeward side evaporation part 20 is called the leeward side heat exchange core part 21. Of the pair of tank portions 12 and 13 in the windward side evaporation unit 10, the tank portion disposed on the upper side is referred to as a first windward tank portion 12, and the tank portion disposed on the lower side is referred to as the second windward side. This is referred to as a tank portion 13. Similarly, of the pair of tank parts 22 and 23 in the leeward side evaporation part 20, the tank part arranged on the upper side is referred to as the first leeward side tank part 22, and the tank part arranged on the lower side is referred to as the second leeward side. This is referred to as a side tank portion 23.
 本実施形態の風上側熱交換コア部11および風下側熱交換コア部21それぞれは、上下方向に延びる複数のチューブ111、211と、隣り合うチューブ111、211の間に接合されるフィン112、212とが交互に積層配置された積層体で構成されている。なお、以下、複数のチューブ111、211および複数のフィン112、212の積層体における積層方向をチューブ積層方向と称する。 Each of the windward side heat exchange core part 11 and the leeward side heat exchange core part 21 of the present embodiment includes a plurality of tubes 111 and 211 extending in the vertical direction and fins 112 and 212 joined between the adjacent tubes 111 and 211. And a laminate in which layers are alternately arranged. Hereinafter, the stacking direction in the stacked body of the plurality of tubes 111 and 211 and the plurality of fins 112 and 212 is referred to as a tube stacking direction.
 ここで、風上側熱交換コア部11は、複数のチューブ111のうち、一部のチューブ群で構成される第1風上側熱交換コア部11a、および残部のチューブ群で構成される第2風上側熱交換コア部11bを有している。なお、本実施形態における第1風上側熱交換コア部11aが、第3コア部を構成し、第2風上側熱交換コア部11bが、第4コア部を構成する。 Here, the windward side heat exchange core part 11 is the 2nd wind comprised by the 1st windward heat exchange core part 11a comprised by some tube groups among the some tubes 111, and the remaining tube group. It has the upper side heat exchange core part 11b. In addition, the 1st windward heat exchange core part 11a in this embodiment comprises a 3rd core part, and the 2nd windward heat exchange core part 11b comprises a 4th core part.
 本実施形態では、風上側熱交換コア部11を送風空気の流れ方向から見たときに、チューブ積層方向の右側に存するチューブ群で第1風上側熱交換コア部11aが構成され、チューブ積層方向の左側に存するチューブ群で第2風上側熱交換コア部11bが構成されている。 In the present embodiment, when the windward heat exchange core part 11 is viewed from the flow direction of the blown air, the first windward heat exchange core part 11a is configured by a tube group existing on the right side of the tube lamination direction, and the tube lamination direction The second upwind heat exchange core portion 11b is configured by a tube group existing on the left side of the above.
 また、風下側熱交換コア部21は、複数のチューブ211のうち、一部のチューブ群で構成される第1風下側熱交換コア部21a、および残部のチューブ群で構成される第2風下側熱交換コア部21bを有している。なお、本実施形態における第1風下側熱交換コア部21aが、第1コア部を構成し、第2風下側熱交換コア部21bが、第2コア部を構成する。 Moreover, the leeward side heat exchange core part 21 is the 2nd leeward side comprised by the 1st leeward side heat exchange core part 21a comprised by some tube groups among the some tubes 211, and the remaining tube group. It has a heat exchange core portion 21b. In addition, the 1st leeward side heat exchange core part 21a in this embodiment comprises a 1st core part, and the 2nd leeward side heat exchange core part 21b comprises a 2nd core part.
 本実施形態では、風下側熱交換コア部21を送風空気の流れ方向から見たときに、チューブ積層方向の右側に存するチューブ群で第1風下側熱交換コア部21aが構成され、チューブ積層方向の左側に存するチューブ群で第2風下側熱交換コア部21bが構成されている。なお、本実施形態では、送風空気の流れ方向から見たときに、第1風上側熱交換コア部11aおよび第1風下側熱交換コア部21aそれぞれが重合(対向)するように配置されると共に、第2風上側熱交換コア部11bおよび第2風下側熱交換コア部21bそれぞれが重合(対向)するように配置されている。 In this embodiment, when the leeward heat exchange core portion 21 is viewed from the flow direction of the blown air, the first leeward heat exchange core portion 21a is configured by a tube group existing on the right side of the tube lamination direction, and the tube lamination direction The second leeward heat exchange core portion 21b is configured by a tube group existing on the left side of the leeward side. In the present embodiment, the first windward side heat exchange core portion 11a and the first leeward side heat exchange core portion 21a are arranged so as to overlap (opposite) when viewed from the flow direction of the blown air. The second leeward side heat exchange core part 11b and the second leeward side heat exchange core part 21b are arranged so as to overlap (oppose) each other.
 各チューブ111、211は、内部に冷媒が流れる冷媒通路が形成されると共に、その断面形状が送風空気の流れ方向に沿って延びる扁平形状となる扁平チューブで構成されている。 Each of the tubes 111 and 211 is formed of a flat tube in which a refrigerant passage through which a refrigerant flows is formed and a cross-sectional shape thereof is a flat shape extending along the flow direction of the blown air.
 本実施形態では、第1風下側熱交換コア部21aを構成する各チューブ211(以下、第1風下側チューブ211aという)は、第2風下側熱交換コア部21bを構成する各チューブ211(以下、第2風下側チューブ211bという)よりも、長手方向の長さが長くなっている。また、第1風上側熱交換コア部11aを構成する各チューブ111(以下、第1風上側チューブ111aという)は、第2風上側熱交換コア部11bを構成する各チューブ111(以下、第2風上側チューブ111bという)よりも、長手方向の長さが短くなっている。 In the present embodiment, each tube 211 (hereinafter referred to as the first leeward side tube 211a) constituting the first leeward side heat exchange core part 21a is each tube 211 (hereinafter referred to as the first leeward side heat exchange core part 21b). The second leeward side tube 211b) is longer in the longitudinal direction. Further, each tube 111 (hereinafter referred to as the first windward side tube 111a) constituting the first windward side heat exchange core part 11a is each tube 111 (hereinafter referred to as the second side) that constitutes the second windward side heat exchange core part 11b. The length in the longitudinal direction is shorter than that of the windward tube 111b.
 風上側熱交換コア部11のチューブ111は、長手方向の一端側(上端側)が第1風上側タンク部12に接続されると共に、長手方向の他端側(下端側)が第2風上側タンク部13に接続されている。また、風下側熱交換コア部21のチューブ211は、長手方向の一端側(上端側)が第1風下側タンク部22に接続されると共に、長手方向の他端側(下端側)が第2風下側タンク部23に接続されている。 The tube 111 of the windward side heat exchange core part 11 has one end side (upper end side) in the longitudinal direction connected to the first windward tank part 12, and the other end side (lower end side) in the longitudinal direction is the second windward side. It is connected to the tank unit 13. The tube 211 of the leeward heat exchange core portion 21 has one end side (upper end side) in the longitudinal direction connected to the first leeward tank portion 22 and the other end side (lower end side) in the longitudinal direction is second. The leeward tank unit 23 is connected.
 各フィン112、212は、薄板材を波上に曲げて成形したコルゲートフィンであり、チューブ111、211における平坦な外面側に接合され、送風空気と冷媒との伝熱面積を拡大させるための熱交換促進手段を構成する。 Each of the fins 112 and 212 is a corrugated fin formed by bending a thin plate material into a wave, joined to the flat outer surface side of the tubes 111 and 211, and heat for expanding the heat transfer area between the blown air and the refrigerant. It constitutes an exchange promoting means.
 チューブ111、211およびフィン112、212の積層体には、チューブ積層方向の両端部に、各熱交換コア部11、12を補強するサイドプレート113、213が配置されている。なお、サイドプレート113、213は、チューブ積層方向の最も外側に配置されたフィン112、212に接合されている。 In the laminated body of the tubes 111 and 211 and the fins 112 and 212, side plates 113 and 213 that reinforce the heat exchange core parts 11 and 12 are arranged at both ends in the tube lamination direction. The side plates 113 and 213 are joined to the fins 112 and 212 arranged on the outermost side in the tube stacking direction.
 第1風上側タンク部12は、一端側(送風空気の流れ方向から見たときの左側端部)が閉塞されると共に、他端側(送風空気の流れ方向から見たときの右側端部)にタンク内部から圧縮機(図示略)の吸入側に冷媒を導出するための冷媒導出部12aが形成された筒状の部材で構成されている。この第1風上側タンク部12は、底部に各チューブ111の一端側(上端側)が挿入接合される貫通穴(図示略)が形成されている。つまり、第1風上側タンク部12は、その内部空間が風上側熱交換コア部11の各チューブ111に連通するように構成されており、風上側熱交換コア部11の各コア部11a、11bからの冷媒を集合させる冷媒集合部として機能する。 The first upwind tank unit 12 is closed at one end (the left end when viewed from the flow direction of the blown air) and at the other end (the right end when viewed from the flow direction of the blown air). Further, it is constituted by a cylindrical member in which a refrigerant derivation part 12a for deriving the refrigerant from the inside of the tank to the suction side of a compressor (not shown) is formed. The first upwind tank unit 12 has a through hole (not shown) in which one end side (upper end side) of each tube 111 is inserted and joined at the bottom. That is, the first upwind tank unit 12 is configured such that the internal space thereof communicates with each tube 111 of the upwind heat exchange core unit 11, and the core units 11 a and 11 b of the upwind heat exchange core unit 11. It functions as a refrigerant collecting part that collects the refrigerant from.
 第1風下側タンク部22は、一端側が閉塞されると共に、他端側にタンク内部に膨張弁(図示略)にて減圧された低圧冷媒を導入するための冷媒導入部22aが形成された筒状の部材で構成されている。この第1風下側タンク部22は、底部に各チューブ211の一端側(上端側)が挿入接合される貫通穴(図示略)が形成されている。つまり、第1風下側タンク部22は、その内部空間が風下側熱交換コア部21の各チューブ211に連通するように構成されており、風下側熱交換コア部21の各コア部21a、21bへ冷媒を分配する冷媒分配部として機能する。 The first leeward tank unit 22 is closed at one end, and has a cylinder formed with a refrigerant introduction unit 22a for introducing low-pressure refrigerant decompressed by an expansion valve (not shown) into the tank at the other end. It is comprised by the shape-shaped member. The first leeward tank portion 22 has a through hole (not shown) in which one end side (upper end side) of each tube 211 is inserted and joined at the bottom. That is, the 1st leeward side tank part 22 is comprised so that the internal space may connect with each tube 211 of the leeward side heat exchange core part 21, and each core part 21a, 21b of the leeward side heat exchange core part 21 is comprised. It functions as a refrigerant distribution unit that distributes the refrigerant.
 第2風上側タンク部13は、両端側が閉塞された筒状の部材で構成されている。この第2風上側タンク部13は、天井部に各チューブ111の他端側(下端側)が挿入接合される貫通穴(図示略)が形成されている。つまり、第2風上側タンク部13は、その内部空間が各チューブ111に連通するように構成されている。 The second upwind tank unit 13 is composed of a cylindrical member whose both ends are closed. The second upwind tank portion 13 has a through hole (not shown) in which the other end side (lower end side) of each tube 111 is inserted and joined to the ceiling portion. That is, the second upwind tank unit 13 is configured such that its internal space communicates with each tube 111.
 第2風上側タンク部13の内部には、チューブ111の長手方向端部よりも風上側熱交換コア部11と反対側の部位に第1仕切部材131が配置されており、この第1仕切部材131によって、タンク内部空間がチューブ長手方向に二つに仕切られている。第1仕切部材131には、第2風上側チューブ111bが挿入接合される貫通穴(図示略)が形成されている。本実施形態では、第1仕切部材131は、第2風上側タンク部13の内部におけるチューブ長手方向(図1における上下方向)の中央位置に配置されている。 A first partition member 131 is disposed inside the second upwind tank portion 13 at a portion opposite to the windward heat exchange core portion 11 with respect to the longitudinal end portion of the tube 111, and this first partition member. 131 divides the tank internal space into two in the tube longitudinal direction. The first partition member 131 has a through hole (not shown) into which the second upwind tube 111b is inserted and joined. In this embodiment, the 1st partition member 131 is arrange | positioned in the center position of the tube longitudinal direction (up-down direction in FIG. 1) in the inside of the 2nd windward side tank part 13. As shown in FIG.
 第1仕切部材131によって仕切られた二つのタンク内部空間のうち、第1風上側タンク部12に近い側(図1における上側)の空間に第1風上側チューブ111aが連通しており、第1風上側タンク部12から遠い側(図1における下側)の空間に第2風上側チューブ111bが連通している。 Of the two tank internal spaces partitioned by the first partition member 131, the first windward side tube 111a communicates with the space closer to the first windward side tank unit 12 (the upper side in FIG. 1). The second windward tube 111b communicates with a space on the side farther from the windward side tank unit 12 (lower side in FIG. 1).
 ここで、第2風上側タンク部13の内部のうち、第1風上側熱交換コア部11aを構成する各チューブ111に連通する空間が、第1風上側熱交換コア部11aに冷媒を分配する第1冷媒分配部13aを構成し、第2風上側熱交換コア部11bを構成する各チューブ111に連通する空間が、第2風上側熱交換コア部11bに冷媒を分配する第2冷媒分配部13bを構成する。 Here, in the inside of the second upwind tank unit 13, the space communicating with each tube 111 constituting the first upwind heat exchange core unit 11a distributes the refrigerant to the first upwind heat exchange core unit 11a. A second refrigerant distributor that constitutes the first refrigerant distributor 13a and that communicates with the tubes 111 constituting the second windward heat exchange core 11b distributes the refrigerant to the second windward heat exchange core 11b. 13b is constituted.
 したがって、本実施形態では、第1冷媒分配部13aが、第3タンク内空間を構成している。また、第2冷媒分配部13bが、第4タンク内空間を構成している。 Therefore, in the present embodiment, the first refrigerant distributor 13a constitutes the third tank space. Moreover, the 2nd refrigerant distribution part 13b comprises the 4th tank inner space.
 第2風下側タンク部23は、両端側が閉塞された筒状の部材で構成されている。この第2風下側タンク部23は、天井部に各チューブ211の他端側(下端側)が挿入接合される貫通穴(図示略)が形成されている。つまり、第2風下側タンク部23は、その内部空間が各チューブ211に連通するように構成されている。 The second leeward tank portion 23 is formed of a cylindrical member whose both ends are closed. The second leeward tank portion 23 has a through hole (not shown) in which the other end side (lower end side) of each tube 211 is inserted and joined to the ceiling portion. That is, the second leeward tank unit 23 is configured such that the internal space thereof communicates with each tube 211.
 第2風下側タンク部23の内部には、チューブ211の長手方向端部よりも風下側熱交換コア部21と反対側の部位に第2仕切部材231が配置されており、この第2仕切部材231によって、タンク内部空間がチューブ長手方向に二つに仕切られている。第2仕切部材231には、第1風下側チューブ211aが挿入接合される貫通穴(図示略)が形成されている。本実施形態では、第2仕切部材231は、第2風下側タンク部23の内部におけるチューブ長手方向の中央位置に配置されている。 A second partition member 231 is disposed inside the second leeward tank portion 23 at a portion on the opposite side of the longitudinal end portion of the tube 211 from the leeward heat exchange core portion 21, and this second partition member. The tank internal space is divided into two in the longitudinal direction of the tube by 231. The second partition member 231 is formed with a through hole (not shown) into which the first leeward side tube 211a is inserted and joined. In the present embodiment, the second partition member 231 is disposed at the center position in the tube longitudinal direction inside the second leeward tank portion 23.
 第2仕切部材231によって仕切られた二つのタンク内部空間のうち、第1風下側タンク部22に近い側(図1における上側)の空間に第2風下側チューブ211bが連通しており、第1風下側タンク部22から遠い側(図1における下側)の空間に第1風下側チューブ211aが連通している。 Of the two tank internal spaces partitioned by the second partition member 231, the second leeward side tube 211 b communicates with the space closer to the first leeward side tank unit 22 (upper side in FIG. 1). The first leeward side tube 211a communicates with the space on the side farther from the leeward side tank unit 22 (lower side in FIG. 1).
 ここで、第2風下側タンク部23の内部のうち、第1風下側熱交換コア部21aを構成する各チューブ211に連通する空間が、第1風下側熱交換コア部21aからの冷媒を集合させる第1冷媒集合部23aを構成し、第2風下側熱交換コア部21bを構成する各チューブ211が連通する空間が、第2風下側熱交換コア部21bからの冷媒を集合させる第2冷媒集合部23bを構成する。 Here, in the inside of the second leeward side tank part 23, the space communicating with each tube 211 constituting the first leeward side heat exchange core part 21a collects the refrigerant from the first leeward side heat exchange core part 21a. The second refrigerant that constitutes the first refrigerant collecting portion 23a to be communicated and in which the space where the tubes 211 constituting the second leeward heat exchange core portion 21b communicate with each other collects refrigerant from the second leeward heat exchange core portion 21b. The aggregation unit 23b is configured.
 したがって、本実施形態では、第1冷媒集合部23aが、第2タンク内空間を構成している。また、第2冷媒集合部23bが、第1タンク内空間を構成している。 Therefore, in the present embodiment, the first refrigerant assembly portion 23a constitutes the second tank space. Moreover, the 2nd refrigerant | coolant gathering part 23b comprises the 1st tank inner space.
 第2風上側タンク部13、および第2風下側タンク部23それぞれは、冷媒入替部30を介して連結されている。この冷媒入替部30は、第2風下側タンク部23における第1冷媒集合部23a内の冷媒を第2風上側タンク部13における第2冷媒分配部13bに導くと共に、第2風下側タンク部23における第2冷媒集合部23b内の冷媒を第2風上側タンク部13における第1冷媒分配部13aに導くように構成されている。すなわち、冷媒入替部30は、冷媒の流れを各熱交換コア部11、21においてコア幅方向に入れ替えるように構成されている。 The second leeward tank unit 13 and the second leeward tank unit 23 are connected via a refrigerant replacement unit 30. The refrigerant replacement unit 30 guides the refrigerant in the first refrigerant collecting unit 23 a in the second leeward tank unit 23 to the second refrigerant distribution unit 13 b in the second leeward tank unit 13 and also the second leeward tank unit 23. The refrigerant in the second refrigerant collecting portion 23b is guided to the first refrigerant distributing portion 13a in the second upwind tank portion 13. That is, the refrigerant replacement unit 30 is configured to replace the refrigerant flow in the core width direction in each of the heat exchange core units 11 and 21.
 具体的には、冷媒入替部30は、第2風下側タンク部23における第1冷媒集合部23aと第2風上側タンク部13における第2冷媒分配部13bとを連通させる第1連結部材30aと、第2風下側タンク部23における第2冷媒集合部23bと第2風上側タンク部13における第1冷媒分配部13aとを連通させる第2連結部材30bと、を有して構成されている。 Specifically, the refrigerant replacement unit 30 includes a first connecting member 30a that communicates the first refrigerant collecting unit 23a in the second leeward tank unit 23 and the second refrigerant distribution unit 13b in the second leeward tank unit 13; The second refrigerant member 23b in the second leeward tank unit 23 and the second refrigerant member 13b in the second leeward tank unit 13 communicate with the first refrigerant distributor 13a.
 第1連結部材30aおよび第2連結部材30bのそれぞれは、内部に冷媒が流通する冷媒流通路が形成された筒状の部材で構成されており、その一端側が第2風下側タンク部23に接続されると共に、他端側が中間タンク部33に接続されている。 Each of the first connecting member 30a and the second connecting member 30b is configured by a cylindrical member in which a refrigerant flow passage through which a refrigerant flows is formed, and one end side thereof is connected to the second leeward tank unit 23. At the same time, the other end is connected to the intermediate tank 33.
 本実施形態では、第1連結部材30aの一端側が、第1冷媒集合部23aのうち、チューブ211の積層方向における冷媒導入部22aから遠い側に接続され、第2連結部材30bの一端側が、第2冷媒集合部23bのうち、チューブ211の積層方向における冷媒導入部22aに近い側に接続されている。また、第1連結部材30aの他端側が、第2冷媒分配部13bのうち、チューブ111の積層方向における冷媒導出部12aから遠い側に接続され、第2連結部材30bの他端側が、第1冷媒分配部13aのうち、チューブ111の積層方向における冷媒導出部12aに近い側に接続されている。 In the present embodiment, one end side of the first connecting member 30a is connected to a side farther from the refrigerant introducing portion 22a in the stacking direction of the tubes 211 in the first refrigerant collecting portion 23a, and one end side of the second connecting member 30b is Of the two refrigerant collecting portions 23b, the refrigerant is connected to the side closer to the refrigerant introducing portion 22a in the stacking direction of the tubes 211. Further, the other end side of the first connecting member 30a is connected to a side of the second refrigerant distribution portion 13b that is far from the refrigerant deriving portion 12a in the stacking direction of the tubes 111, and the other end side of the second connecting member 30b is the first side. It connects to the side near the refrigerant | coolant derivation | leading-out part 12a in the lamination direction of the tube 111 among the refrigerant | coolant distribution parts 13a.
 本実施形態では、第1連結部材30aが、第1連通部を構成している。また、第2連結部材30bが、第2連通部を構成している。 In the present embodiment, the first connecting member 30a constitutes the first communicating portion. Moreover, the 2nd connection member 30b comprises the 2nd communication part.
 次に、本実施形態に係る冷媒蒸発器1における冷媒の流れについて図3を用いて説明する。 Next, the flow of the refrigerant in the refrigerant evaporator 1 according to the present embodiment will be described with reference to FIG.
 図3に示すように、膨張弁(図示略)にて減圧された低圧冷媒は、矢印Aの如く第1風下側タンク部22の一端側に形成された冷媒導入部22aからタンク内部に導入される。第1風下側タンク部22の内部に導入された冷媒は、矢印Bの如く風下側熱交換コア部21の第1風下側熱交換コア部21aを下降すると共に、矢印Cの如く風下側熱交換コア部21の第2風下側熱交換コア部21bを下降する。 As shown in FIG. 3, the low-pressure refrigerant decompressed by an expansion valve (not shown) is introduced into the tank from a refrigerant introduction part 22a formed on one end side of the first leeward tank part 22 as indicated by an arrow A. The The refrigerant introduced into the first leeward tank unit 22 descends the first leeward heat exchange core portion 21a of the leeward heat exchange core portion 21 as indicated by an arrow B, and at the same time leeward heat exchange as indicated by an arrow C. The second leeward heat exchange core portion 21b of the core portion 21 is lowered.
 第1風下側熱交換コア部21aを下降した冷媒は、矢印Dの如く第2風下側タンク部23の第1冷媒集合部23aに流入する。一方、第2風下側熱交換コア部21bを下降した冷媒は、矢印Eの如く第2風下側タンク部23の第2冷媒集合部23bに流入する。 The refrigerant descending the first leeward heat exchange core portion 21a flows into the first refrigerant collecting portion 23a of the second leeward tank portion 23 as indicated by an arrow D. On the other hand, the refrigerant descending the second leeward heat exchange core portion 21b flows into the second refrigerant collecting portion 23b of the second leeward tank portion 23 as indicated by an arrow E.
 第1冷媒集合部23aに流入した冷媒は、矢印Fの如く第1連結部材30aを介して第2風上側タンク部13の第2冷媒分配部13bに流入する。また、第2冷媒集合部23bに流入した冷媒は、矢印Gの如く第2連結部材30bを介して第2風上側タンク部13の第1冷媒分配部13aに流入する。 The refrigerant that has flowed into the first refrigerant collecting portion 23a flows into the second refrigerant distribution portion 13b of the second upwind tank portion 13 through the first connecting member 30a as indicated by the arrow F. Further, the refrigerant flowing into the second refrigerant collecting portion 23b flows into the first refrigerant distributing portion 13a of the second upwind tank portion 13 through the second connecting member 30b as indicated by an arrow G.
 第2風上側タンク部13の第2冷媒分配部13bに流入した冷媒は、矢印Hの如く風上側熱交換コア部11の第2風上側熱交換コア部11bを上昇する。一方、第1冷媒分配部13aに流入した冷媒は、矢印Iの如く風上側熱交換コア部11の第1風上側熱交換コア部11aを上昇する。 The refrigerant that has flowed into the second refrigerant distribution section 13b of the second upwind tank section 13 ascends the second upwind heat exchange core section 11b of the upwind heat exchange core section 11 as indicated by an arrow H. On the other hand, the refrigerant that has flowed into the first refrigerant distribution unit 13a ascends the first upwind heat exchange core unit 11a of the upwind heat exchange core unit 11 as indicated by an arrow I.
 第2風上側熱交換コア部11bを上昇した冷媒、および第1風上側熱交換コア部11aを上昇した冷媒は、それぞれ矢印J、Kの如く第1風上側タンク部12のタンク内部に流入し、矢印Lの如く第1風上側タンク部12の一端側に形成された冷媒導出部12aから圧縮機(図示略)吸入側に導出される。 The refrigerant that has risen up the second upwind heat exchange core portion 11b and the refrigerant that has risen up the first upwind heat exchange core portion 11a flow into the tank of the first upwind tank portion 12 as indicated by arrows J and K, respectively. As indicated by the arrow L, the refrigerant is led out to the compressor (not shown) suction side from the refrigerant lead-out portion 12a formed on one end side of the first upwind tank portion 12.
 図4は、比較例に係る冷媒蒸発器1、つまり第2風下側タンク部23および第2風上側タンク部13のタンク内空間が、それぞれチューブ111、2111の積層方向に二つに仕切られている冷媒蒸発器1の各熱交換コア部11、21を流れる液相冷媒の分布を説明するための説明図であり、図5は、本実施形態に係る冷媒蒸発器1の各熱交換コア部11、21を流れる液相冷媒の分布を説明するための説明図である。 FIG. 4 shows that the refrigerant evaporator 1 according to the comparative example, that is, the space in the tank of the second leeward tank portion 23 and the second leeward tank portion 13 is divided into two in the stacking direction of the tubes 111 and 1111, respectively. It is explanatory drawing for demonstrating distribution of the liquid phase refrigerant | coolant which flows through each heat exchange core part 11 and 21 of the refrigerant | coolant evaporator 1 which is located, and FIG. 5 is each heat exchange core part of the refrigerant evaporator 1 which concerns on this embodiment. 11 is an explanatory diagram for explaining a distribution of a liquid-phase refrigerant flowing through 11 and 21. FIG.
 図4(a)および図5(a)は、風上側熱交換コア部11を流れる液相冷媒の分布を示し、図4(b)および図5(b)は、風下側熱交換コア部21を流れる液相冷媒の分布を示し、図4(c)および図5(c)は、各熱交換コア部11、21を流れる液相冷媒の分布の合成を示している。なお、図4および図5は、冷媒蒸発器1を図1の矢印Y方向(送風空気の流れ方向Xの逆方向)から見たときの液相冷媒の分布を示すもので、図中の網掛部分で示す箇所が、液相冷媒が存する部分を示す。 4 (a) and 5 (a) show the distribution of the liquid-phase refrigerant flowing through the windward heat exchange core unit 11, and FIGS. 4 (b) and 5 (b) show the leeward heat exchange core unit 21. 4 (c) and FIG. 5 (c) show the synthesis of the distribution of the liquid phase refrigerant flowing through the heat exchange core portions 11 and 21. FIG. 4 and 5 show the distribution of the liquid-phase refrigerant when the refrigerant evaporator 1 is viewed from the direction of the arrow Y in FIG. 1 (the direction opposite to the flow direction X of the blown air). A portion indicated by a portion indicates a portion where the liquid-phase refrigerant exists.
 まず、風下側熱交換コア部21を流れる液相冷媒の分布については、図4(b)および図5(b)で示すように、比較例に係る冷媒蒸発器1と本実施形態に係る冷媒蒸発器1とで同様であり、それぞれ第2風下側熱交換コア部21bにおける一部に液相冷媒が流れ難い箇所(図中右下方側の白抜き箇所)が生ずる。 First, regarding the distribution of the liquid-phase refrigerant flowing through the leeward heat exchange core section 21, as shown in FIGS. 4B and 5B, the refrigerant evaporator 1 according to the comparative example and the refrigerant according to the present embodiment. The same is true for the evaporator 1, and a portion where the liquid-phase refrigerant hardly flows (a white portion on the lower right side in the figure) is generated in a part of the second leeward heat exchange core portion 21 b.
 また、比較例に係る冷媒蒸発器1における風上側熱交換コア部11を流れる液相冷媒の分布については、図4(a)に示すように、風上側熱交換コア部11の第1風上側熱交換コア部11aでは、第2風上側熱交換コア部11bよりも液相冷媒が流れ難くなっている。一方、本実施形態に係る冷媒蒸発器1では、図5(a)に示すように、比較例に係る冷媒蒸発器1と比較して、風上側熱交換コア部11の第1風上側熱交換コア部11aに液相冷媒が流れ易くなっている。 Moreover, about distribution of the liquid phase refrigerant | coolant which flows through the windward heat exchange core part 11 in the refrigerant evaporator 1 which concerns on a comparative example, as shown to Fig.4 (a), the 1st windward of the windward heat exchange core part 11 is shown. In the heat exchange core part 11a, the liquid-phase refrigerant is less likely to flow than in the second upwind heat exchange core part 11b. On the other hand, in the refrigerant evaporator 1 according to the present embodiment, as shown in FIG. 5A, the first windward heat exchange of the windward heat exchange core unit 11 is compared with the refrigerant evaporator 1 according to the comparative example. The liquid-phase refrigerant easily flows through the core portion 11a.
 また、図4(c)および図5(c)に示すように、比較例に係る冷媒蒸発器1および本実施形態に係る冷媒蒸発器1を送風空気の流れ方向Xから見たときに、それぞれ第2風上側熱交換コア部11bおよび第2風下側熱交換コア部21bにおける重合する部位の全域に液相冷媒が流れる。 Further, as shown in FIG. 4C and FIG. 5C, when the refrigerant evaporator 1 according to the comparative example and the refrigerant evaporator 1 according to the present embodiment are viewed from the flow direction X of the blown air, respectively. The liquid-phase refrigerant flows over the entire region of the second leeward heat exchange core portion 11b and the second leeward heat exchange core portion 21b to be polymerized.
 以上説明した本実施形態に係る冷媒蒸発器1では、第2風下側タンク部23のタンク内空間を、チューブ211の長手方向に二つに仕切ることにより、第1冷媒集合部23aおよび第2冷媒集合部23bを形成するとともに、第2風上側タンク部13のタンク内空間を、チューブ11の長手方向に二つに仕切ることにより、第1冷媒分配部13aおよび第2冷媒分配部13bを形成している。 In the refrigerant evaporator 1 according to the present embodiment described above, the tank internal space of the second leeward tank unit 23 is divided into two in the longitudinal direction of the tube 211, whereby the first refrigerant assembly 23a and the second refrigerant are separated. The first refrigerant distribution portion 13a and the second refrigerant distribution portion 13b are formed by forming the collecting portion 23b and partitioning the space in the tank of the second upwind tank portion 13 into two in the longitudinal direction of the tube 11. ing.
 このため、第1風下側熱交換コア部21aからの冷媒を第2風上側熱交換コア部11bへ導く冷媒流路と、第2風下側熱交換コア部21bからの冷媒を第1風上側熱交換コア部11aへ導く冷媒流路との長さを変えて、これら二つの冷媒流路を流れる冷媒の圧力損失を調整することができる。これにより、二つの冷媒流路を流れる冷媒の圧力損失を均一にすることで、第2蒸発部10において各冷媒分配部13a、13bから熱交換コア部11への液相冷媒の分配の偏りを抑制することができる。 For this reason, the refrigerant flow path for guiding the refrigerant from the first leeward heat exchange core portion 21a to the second leeward heat exchange core portion 11b and the refrigerant from the second leeward heat exchange core portion 21b are used as the first windward heat. The pressure loss of the refrigerant flowing through these two refrigerant flow paths can be adjusted by changing the length of the refrigerant flow path leading to the replacement core portion 11a. Thereby, by making the pressure loss of the refrigerant flowing through the two refrigerant flow paths uniform, the distribution of the liquid-phase refrigerant from the respective refrigerant distribution units 13a and 13b to the heat exchange core unit 11 in the second evaporation unit 10 is made uniform. Can be suppressed.
 したがって、各蒸発部10、20の一方のタンク部同士を連結する冷媒入替部30にて冷媒の流れ方向を入れ替える構成において、冷媒の分配性の悪化を抑制することができ、冷媒蒸発器1における送風空気の冷却性能の低下を抑制することが可能となる。 Therefore, in the configuration in which the flow direction of the refrigerant is changed in the refrigerant replacement unit 30 that connects one tank unit of each of the evaporation units 10 and 20, deterioration of the refrigerant distribution property can be suppressed, and in the refrigerant evaporator 1 It becomes possible to suppress a decrease in the cooling performance of the blown air.
 また、本実施形態では、第1風下側チューブ211aの長手方向の長さを、第2風下側チューブ211bの長手方向の長さよりも長くするとともに、第2風上側チューブ111bの長手方向の長さを、第1風上側チューブ111aの長手方向の長さよりも長くしている。このため、チューブ111、211の長さによって、第1風下側熱交換コア部21aからの冷媒を第2風上側熱交換コア部11bへ導く冷媒流路と、第2風下側熱交換コア部21bからの冷媒を第1風上側熱交換コア部11aへ導く冷媒流路との長さを変えて、これら二つの冷媒流路を流れる冷媒の圧力損失を調整することができる。 In the present embodiment, the length in the longitudinal direction of the first leeward side tube 211a is longer than the length in the longitudinal direction of the second leeward side tube 211b, and the length in the longitudinal direction of the second leeward side tube 111b. Is longer than the length in the longitudinal direction of the first upwind tube 111a. For this reason, depending on the length of the tubes 111 and 211, the refrigerant flow path for guiding the refrigerant from the first leeward heat exchange core portion 21a to the second leeward heat exchange core portion 11b, and the second leeward heat exchange core portion 21b. The pressure loss of the refrigerant flowing through these two refrigerant flow paths can be adjusted by changing the length of the refrigerant flow path from the refrigerant flow path leading to the first upwind heat exchange core portion 11a.
 本実施形態では、冷媒導入部22aを、第1風下側熱交換コア部21aおよび第2風下側熱交換コア部21bのうち第1風下側熱交換コア部21aに近い位置に配置している。このとき、第1風下側チューブ211aに流入する冷媒流量は、第2風下側チューブ211bに流入する冷媒流量よりも多くなる。 また、第1風上側チューブ111aには気相冷媒が多く存在することになり、第1風上側チューブ111aを流れる液相冷媒の圧力損失が大きくなる。 In the present embodiment, the refrigerant introduction part 22a is arranged at a position close to the first leeward heat exchange core part 21a in the first leeward heat exchange core part 21a and the second leeward heat exchange core part 21b. At this time, the refrigerant flow rate flowing into the first leeward side tube 211a is larger than the refrigerant flow rate flowing into the second leeward side tube 211b. Further, a large amount of gas-phase refrigerant is present in the first upwind tube 111a, and the pressure loss of the liquid phase refrigerant flowing through the first upwind tube 111a increases.
 このため、第1風下側熱交換コア部21aからの冷媒を第2風上側熱交換コア部11bへ導く冷媒流路を流れる冷媒流量が、第2風下側熱交換コア部21bからの冷媒を第1風上側熱交換コア部11aへ導く冷媒流路を流れる冷媒流量より多くなり、冷媒の分配性が悪化する。 For this reason, the flow rate of the refrigerant flowing through the refrigerant flow path for guiding the refrigerant from the first leeward heat exchange core portion 21a to the second leeward heat exchange core portion 11b causes the refrigerant from the second leeward heat exchange core portion 21b to It becomes more than the refrigerant | coolant flow volume which flows through the refrigerant | coolant flow path which leads to the 1 windward side heat exchange core part 11a, and the distribution of a refrigerant | coolant deteriorates.
 このとき、本実施形態のように、第1風下側チューブ211aの長手方向の長さを、第2風下側チューブ211bの長手方向の長さよりも長くするとともに、第2風上側チューブ111bの長手方向の長さを、第1風上側チューブ111aの長手方向の長さよりも長くすることで、第1風下側チューブ211aおよび第2風上側チューブ111bを流通する冷媒の圧力損失が、第2風下側チューブ211bおよび第1風上側チューブ111aを流通する冷媒の圧力損失より大きくなる。 At this time, as in the present embodiment, the length in the longitudinal direction of the first leeward side tube 211a is made longer than the length in the longitudinal direction of the second leeward side tube 211b, and the longitudinal direction of the second leeward side tube 111b. Is made longer than the length in the longitudinal direction of the first windward tube 111a, so that the pressure loss of the refrigerant flowing through the first leeward tube 211a and the second windward tube 111b is reduced to the second leeward tube. It becomes larger than the pressure loss of the refrigerant | coolant which distribute | circulates 211b and the 1st windward tube 111a.
 これにより、第1風下側熱交換コア部21aからの冷媒を第2風上側熱交換コア部11bへ導く冷媒流路を流れる冷媒の圧力損失が大きくなる。このため、第1風下側熱交換コア部21aからの冷媒を第2風上側熱交換コア部11bへ導く冷媒流路を流れる冷媒の圧力損失と、第2風下側熱交換コア部21bからの冷媒を第1風上側熱交換コア部11aへ導く冷媒流路を流れる冷媒の圧力損失とを均一化できる。 Thereby, the pressure loss of the refrigerant flowing through the refrigerant flow path that guides the refrigerant from the first leeward heat exchange core portion 21a to the second leeward heat exchange core portion 11b increases. For this reason, the pressure loss of the refrigerant flowing through the refrigerant flow path for guiding the refrigerant from the first leeward heat exchange core portion 21a to the second leeward heat exchange core portion 11b and the refrigerant from the second leeward heat exchange core portion 21b Can be made uniform with the pressure loss of the refrigerant flowing through the refrigerant flow path leading to the first upwind heat exchange core portion 11a.
 したがって、第1風下側熱交換コア部21aからの冷媒を第2風上側熱交換コア部11bへ導く冷媒流路を流れる冷媒流量と、第2風下側熱交換コア部21bからの冷媒を第1風上側熱交換コア部11aへ導く冷媒流路を流れる冷媒流量との差が小さくなり、冷媒の分配性の悪化を抑制できる。 Therefore, the flow rate of the refrigerant flowing through the refrigerant flow path for guiding the refrigerant from the first leeward heat exchange core portion 21a to the second leeward heat exchange core portion 11b and the refrigerant from the second leeward heat exchange core portion 21b are the first. A difference with the flow rate of the refrigerant flowing through the refrigerant flow path leading to the windward heat exchange core portion 11a becomes small, and deterioration of refrigerant distribution can be suppressed.
 (他の実施形態)
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
 上述の実施形態では、冷媒蒸発器1として、送風空気の流れ方向から見たときに、第1風上側熱交換コア部11aおよび第1風下側熱交換コア部21aが重合するように配置されると共に、第2風上側熱交換コア部11bおよび第2風下側熱交換コア部21bが重合するように配置される例について説明したが、これに限られない。冷媒蒸発器1としては、送風空気の流れ方向から見たときに、第1風上側熱交換コア部11aおよび第1風下側熱交換コア部21aの少なくとも一部が重合するように配置したり、第2風上側熱交換コア部11bおよび第2風下側熱交換コア部21bの少なくとも一部が重合するように配置したりしてもよい。 In the above-described embodiment, the refrigerant evaporator 1 is arranged so that the first windward heat exchange core portion 11a and the first leeward heat exchange core portion 21a are superposed when viewed from the flow direction of the blown air. In addition, the example has been described in which the second leeward heat exchange core portion 11b and the second leeward heat exchange core portion 21b are superposed, but the present invention is not limited thereto. The refrigerant evaporator 1 is arranged so that at least a part of the first windward heat exchange core portion 11a and the first leeward heat exchange core portion 21a are polymerized when viewed from the flow direction of the blown air, You may arrange | position so that at least one part of the 2nd leeward side heat exchange core part 11b and the 2nd leeward side heat exchange core part 21b may superpose | polymerize.
 上述の実施形態の如く、冷媒蒸発器1における風上側蒸発部10を風下側蒸発部20よりも送風空気の流れ方向Xにおける上流側に配置することが望ましいが、これに限らず、風上側蒸発部10を風下側蒸発部20よりも送風空気の流れ方向Xにおける下流側に配置するようにしてもよい。 As in the above-described embodiment, it is desirable to arrange the windward side evaporator 10 in the refrigerant evaporator 1 on the upstream side in the flow direction X of the blown air with respect to the leeward side evaporator 20, but not limited to this, the windward side evaporator The part 10 may be arranged on the downstream side in the flow direction X of the blown air with respect to the leeward side evaporation part 20.
 上述の実施形態では、各熱交換コア部11、21を複数のチューブ111、211とフィン112、212で構成する例を説明したが、これに限らず、複数のチューブ111、211だけで各熱交換コア部11、21を構成するようにしてもよい。また、各熱交換コア部11、21を複数のチューブ111、211とフィン112、212で構成する場合、フィン112、212は、コルゲートフィンに限らずプレートフィンを採用してもよい。 In the above-described embodiment, the example in which each heat exchange core portion 11, 21 is configured by the plurality of tubes 111, 211 and the fins 112, 212 has been described. The exchange core parts 11 and 21 may be configured. Moreover, when each heat exchange core part 11 and 21 is comprised with the some tubes 111 and 211 and the fins 112 and 212, the fins 112 and 212 may employ | adopt a plate fin not only a corrugated fin.
 上述の実施形態では、冷媒蒸発器1を車両用空調装置の冷凍サイクルに適用する例について説明したが、これに限らず、例えば、給湯機等に用いられる冷凍サイクルに適用してもよい。 In the above-described embodiment, the example in which the refrigerant evaporator 1 is applied to the refrigeration cycle of the vehicle air conditioner has been described. However, the present invention is not limited thereto, and may be applied to, for example, a refrigeration cycle used in a water heater or the like.
 上述の実施形態では、熱交換コア部11、21の上下両側に配置された一対のタンク部12、13、22、23を略円筒状に形成した例について説明したが、これに限らず、四角筒状等の中空筒状に形成してもよい。 In the above-described embodiment, the example in which the pair of tank portions 12, 13, 22, and 23 disposed on the upper and lower sides of the heat exchange core portions 11 and 21 are formed in a substantially cylindrical shape has been described. You may form in hollow cylinder shapes, such as a cylinder shape.
 上述の実施形態では、第1仕切部材131を、第2風上側タンク部13の内部におけるチューブ長手方向の中央位置に配置した例について説明したが、これに限らず、チューブ111の長手方向端部よりも風上側熱交換コア部11と反対側の部位における任意の位置に配置してもよい。 In the above-described embodiment, the example in which the first partition member 131 is disposed at the center position in the tube longitudinal direction inside the second upwind tank unit 13 has been described. You may arrange | position in the arbitrary positions in the site | part on the opposite side to the windward heat exchange core part 11 rather.
 また、上述の実施形態では、第2仕切部材231を、第2風下側タンク部23の内部におけるチューブ長手方向の中央位置に配置した例について説明したが、これに限らず、チューブ211の長手方向端部よりも風下側熱交換コア部21と反対側の部位における任意の位置に配置してもよい。 Moreover, although the above-mentioned embodiment demonstrated the example which has arrange | positioned the 2nd partition member 231 in the center position of the tube longitudinal direction inside the 2nd leeward side tank part 23, it is not restricted to this, The longitudinal direction of the tube 211 You may arrange | position in the arbitrary positions in the site | part on the opposite side to the leeward side heat exchange core part 21 rather than an edge part.

Claims (2)

  1.  外部を流れる被冷却流体と冷媒との間で熱交換を行う冷媒蒸発器であって、
     前記被冷却流体の流れ方向に対して直列に配置された第1蒸発部(20)および第2蒸発部(10)を備え、
     前記第1蒸発部(20)および前記第2蒸発部(10)それぞれは、
     冷媒が流れる複数のチューブ(111、211)を積層して構成された熱交換コア部(11、21)と、
     前記複数のチューブ(111、211)の両端部に接続され、前記複数のチューブ(111、211)を流れる冷媒の集合あるいは分配を行う一対のタンク部(12、13、22、23)と、を有し、
     前記第1蒸発部(20)における前記熱交換コア部(21)は、前記複数のチューブ(211)のうち、一部のチューブ群で構成される第1コア部(21a)、および残部のチューブ群で構成される第2コア部(21b)を有し、
     前記第2蒸発部(10)における前記熱交換コア部(11)は、前記複数のチューブ(111)のうち、前記被冷却流体の流れ方向において前記第1コア部(21a)の少なくとも一部と対向するチューブ群で構成される第3コア部(11a)、および前記被冷却流体の流れ方向において前記第2コア部(21b)の少なくとも一部と対向するチューブ群で構成される第4コア部(11b)を有し、
     前記第1蒸発部(20)における前記一対のタンク部(22、23)のうち、一方のタンク部(23)は、前記第1コア部(21a)からの冷媒を集合させる第1冷媒集合部(23a)、前記第2コア部(21b)からの冷媒を集合させる第2冷媒集合部(23b)を含んで構成され、
     前記第2蒸発部(10)における前記一対のタンク部(12、13)のうち、一方のタンク部(13)は、前記第3コア部(11a)に冷媒を分配させる第1冷媒分配部(13a)、前記第4コア部(11b)に冷媒を分配させる第2冷媒分配部(13b)を含んで構成され、
     前記第1蒸発部(20)および前記第2蒸発部(10)は、前記第1冷媒集合部(23a)の冷媒を前記第2冷媒分配部(13b)に導く第1連通部(30a)、および前記第2冷媒集合部(23b)の冷媒を前記第1冷媒分配部(13a)に導く第2連通部(30b)を有する冷媒入替部(30)を介して連結されており、
     前記第1蒸発部(20)における前記一方のタンク部(23)のタンク内空間は、前記チューブ(211)の長手方向に、第1タンク内空間(23b)と第2タンク内空間(23a)とに仕切られており、
     前記第1タンク内空間(23b)は、前記第2タンク内空間(23a)よりも、前記第1蒸発部(20)における前記一対のタンク部(22、23)のうち他方のタンク部(22)に近い側に配置されており、
     前記第2蒸発部(10)における前記一方のタンク部(13)のタンク内空間は、前記チューブ(111)の長手方向に、第3タンク内空間(13a)と第4タンク内空間(13b)とに仕切られており、
     前記第3タンク内空間(13a)は、前記第4タンク内空間(13b)よりも、前記第2蒸発部(10)における前記一対のタンク部(12、13)のうち他方のタンク部(12)に近い側に配置されており、
     前記第1タンク内空間が前記第2冷媒集合部(23b)を形成するとともに、前記第2タンク内空間が前記第1冷媒集合部(23a)を形成しており、
     前記第3タンク内空間が前記第1冷媒分配部(13a)を形成するとともに、前記第4タンク内空間が前記第2冷媒分配部(13b)を形成している冷媒蒸発器。
    A refrigerant evaporator that exchanges heat between a cooled fluid flowing outside and a refrigerant,
    A first evaporator (20) and a second evaporator (10) arranged in series with respect to the flow direction of the fluid to be cooled;
    Each of the first evaporator (20) and the second evaporator (10)
    A heat exchange core (11, 21) configured by laminating a plurality of tubes (111, 211) through which refrigerant flows;
    A pair of tank parts (12, 13, 22, 23) connected to both ends of the plurality of tubes (111, 211) and collecting or distributing refrigerant flowing through the plurality of tubes (111, 211); Have
    The heat exchange core part (21) in the first evaporation part (20) includes a first core part (21a) constituted by a part of a tube group among the plurality of tubes (211), and a remaining tube. Having a second core portion (21b) composed of a group;
    The heat exchange core part (11) in the second evaporation part (10) includes at least a part of the first core part (21a) in the flow direction of the fluid to be cooled among the plurality of tubes (111). A third core portion (11a) composed of opposing tube groups, and a fourth core portion composed of a tube group facing at least part of the second core portion (21b) in the flow direction of the fluid to be cooled. (11b)
    Of the pair of tank parts (22, 23) in the first evaporation part (20), one tank part (23) is a first refrigerant collecting part that collects refrigerant from the first core part (21a). (23a) includes a second refrigerant assembly part (23b) that collects the refrigerant from the second core part (21b),
    Of the pair of tank parts (12, 13) in the second evaporation part (10), one tank part (13) is a first refrigerant distribution part that distributes the refrigerant to the third core part (11a). 13a), including a second refrigerant distribution part (13b) for distributing the refrigerant to the fourth core part (11b),
    The first evaporating section (20) and the second evaporating section (10) include a first communicating section (30a) that guides the refrigerant in the first refrigerant collecting section (23a) to the second refrigerant distributing section (13b), And a refrigerant replacement part (30) having a second communication part (30b) for guiding the refrigerant of the second refrigerant assembly part (23b) to the first refrigerant distribution part (13a),
    The tank internal space of the one tank section (23) in the first evaporation section (20) has a first tank internal space (23b) and a second tank internal space (23a) in the longitudinal direction of the tube (211). And is divided into
    The first tank inner space (23b) is the other tank portion (22) of the pair of tank portions (22, 23) in the first evaporator (20) than the second tank inner space (23a). ) Near the side,
    The tank internal space of the one tank section (13) in the second evaporation section (10) has a third tank internal space (13a) and a fourth tank internal space (13b) in the longitudinal direction of the tube (111). And is divided into
    The third tank inner space (13a) is more than the fourth tank inner space (13b), the other tank portion (12 of the pair of tank portions (12, 13) in the second evaporation portion (10). ) Near the side,
    The first tank inner space forms the second refrigerant collecting portion (23b), and the second tank inner space forms the first refrigerant collecting portion (23a),
    The refrigerant evaporator in which the third tank inner space forms the first refrigerant distribution part (13a) and the fourth tank inner space forms the second refrigerant distribution part (13b).
  2.  前記第1蒸発部(20)の前記他方のタンク部(22)における、前記第2コア部(21b)よりも前記第1コア部(21a)に近い側には、当該他方のタンク部(22)内部に冷媒を導入するための冷媒導入部(22a)が接続されており、
     前記第2蒸発部(10)の前記他方のタンク部(12)における、前記第4コア部(11b)よりも前記第3コア部(11a)に近い側には、当該他方のタンク部(11b)内部から前記冷媒を導出するための冷媒導出部(12a)が接続されており、
     前記第1コア部(21a)を構成する前記チューブ(211)は、前記第2コア部(21b)を構成する前記チューブ(211)よりも長手方向の長さが長くなっており、
     前記第4コア部(11b)を構成する前記チューブ(111)は、前記第3コア部(11a)を構成する前記チューブ(111)よりも長手方向の長さが長くなっている請求項1に記載の冷媒蒸発器。
    In the other tank part (22) of the first evaporation part (20), the other tank part (22) is closer to the first core part (21a) than the second core part (21b). ) A refrigerant introduction part (22a) for introducing refrigerant into the interior is connected,
    In the other tank part (12) of the second evaporation part (10), the other tank part (11b) is closer to the third core part (11a) than the fourth core part (11b). ) A refrigerant outlet part (12a) for extracting the refrigerant from the inside is connected,
    The tube (211) constituting the first core portion (21a) is longer in the longitudinal direction than the tube (211) constituting the second core portion (21b),
    The tube (111) constituting the fourth core part (11b) is longer in the longitudinal direction than the tube (111) constituting the third core part (11a). The refrigerant evaporator as described.
PCT/JP2014/002453 2013-05-10 2014-05-09 Refrigerant evaporator WO2014181547A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-100487 2013-05-10
JP2013100487A JP2014219175A (en) 2013-05-10 2013-05-10 Refrigerant evaporator

Publications (1)

Publication Number Publication Date
WO2014181547A1 true WO2014181547A1 (en) 2014-11-13

Family

ID=51867035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002453 WO2014181547A1 (en) 2013-05-10 2014-05-09 Refrigerant evaporator

Country Status (2)

Country Link
JP (1) JP2014219175A (en)
WO (1) WO2014181547A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10168084B2 (en) 2013-05-10 2019-01-01 Denso Corporation Refrigerant evaporator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015112833A1 (en) * 2015-08-05 2017-02-09 Valeo Klimasysteme Gmbh Heat exchanger and vehicle air conditioning

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207716A (en) * 2003-04-21 2005-08-04 Denso Corp Refrigerant evaporator
JP2006029697A (en) * 2004-07-16 2006-02-02 Denso Corp Refrigerant evaporator
US20090025914A1 (en) * 2007-07-27 2009-01-29 Johnson Controls Technology Company Multi-Slab Multichannel Heat Exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207716A (en) * 2003-04-21 2005-08-04 Denso Corp Refrigerant evaporator
JP2006029697A (en) * 2004-07-16 2006-02-02 Denso Corp Refrigerant evaporator
US20090025914A1 (en) * 2007-07-27 2009-01-29 Johnson Controls Technology Company Multi-Slab Multichannel Heat Exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10168084B2 (en) 2013-05-10 2019-01-01 Denso Corporation Refrigerant evaporator

Also Published As

Publication number Publication date
JP2014219175A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP6098343B2 (en) Refrigerant evaporator
JP5454553B2 (en) Refrigerant evaporator
JP6123484B2 (en) Refrigerant evaporator
WO2014181550A1 (en) Refrigerant evaporator
JP6497262B2 (en) Laminate heat exchanger
WO2014068842A1 (en) Refrigerant evaporation device
WO2016113825A1 (en) Refrigerant evaporator
WO2014188689A1 (en) Refrigerant evaporator
WO2018207556A1 (en) Refrigerant evaporator and method for manufacturing same
JP6322982B2 (en) Refrigerant evaporator
WO2014181547A1 (en) Refrigerant evaporator
JP6131705B2 (en) Refrigerant evaporator
JP2014228233A (en) Refrigerant evaporator
JP6098358B2 (en) Refrigerant evaporator
JP2010107131A (en) Refrigerant evaporator
JP6477306B2 (en) Refrigerant evaporator
JP6458617B2 (en) Refrigerant evaporator
WO2016067551A1 (en) Stacked heat exchanger
JP2017003140A (en) Refrigerant evaporator
JP5761134B2 (en) Refrigerant evaporator
JP6613996B2 (en) Refrigerant evaporator
JP6432275B2 (en) Refrigerant evaporator
JP2017142067A (en) Cool storage heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14794258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14794258

Country of ref document: EP

Kind code of ref document: A1