[go: up one dir, main page]

JP2006029697A - Refrigerant evaporator - Google Patents

Refrigerant evaporator Download PDF

Info

Publication number
JP2006029697A
JP2006029697A JP2004209993A JP2004209993A JP2006029697A JP 2006029697 A JP2006029697 A JP 2006029697A JP 2004209993 A JP2004209993 A JP 2004209993A JP 2004209993 A JP2004209993 A JP 2004209993A JP 2006029697 A JP2006029697 A JP 2006029697A
Authority
JP
Japan
Prior art keywords
core
width direction
refrigerant
tank member
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004209993A
Other languages
Japanese (ja)
Inventor
Takeshi Muto
健 武藤
Yoshitake Kato
吉毅 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004209993A priority Critical patent/JP2006029697A/en
Publication of JP2006029697A publication Critical patent/JP2006029697A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems that independent controls on one side and the other side in the width direction of a core are difficult and many parts are required, a structure becomes complicated, and cost increases, although it is effective to form a cross passage in a tank member for turning a refrigerant at an upper end. <P>SOLUTION: This refrigerant evaporator is composed of a first core 30 and a second core 35 arranged in parallel, a refrigerant supply/exhaust member 25 having a refrigerant supply passage 26 and a refrigerant exhaust passage 28 arranged at lower ends of the first and second cores, a first tank member 42 arranged at upper ends of the first and second cores to communicate one side in the direction of the width of the first core with the other side in the direction of the width of the second core, and a second tank member 52 arranged at other ends in the direction of the length of the first and the second cores to communicate the other side in the direction of the width of the first core with one side in the direction of the width of the second core. The first tank member and the second tank member are arranged in an X shape. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、車両の空調システム等の冷凍サイクルにおいて冷媒を蒸発させる冷媒蒸発器に関する。   The present invention relates to a refrigerant evaporator that evaporates refrigerant in a refrigeration cycle such as an air conditioning system of a vehicle.

冷媒蒸発器は冷凍サイクル中において、気液混相の霧状の冷媒を蒸発させ、周辺を流れる風から蒸気熱(気化熱)を奪って冷風を生成するものである。一般に、多数のチューブが並設された下流側及び上流側の扁平な直方体形状のコアと、コアの上端又は下端の冷媒入口及び出口と、下端又は上端の冷媒ターン部とから成り、コアが風の流れを横切る状態で配置される。冷媒蒸発器には幅方向の一側と他側とで温度差(温度分布)がないこと、及び冷媒が上端又は下端で一方のコアから他方のコアにターンする際の圧力損失が小さいことが望まれる。   In the refrigeration cycle, the refrigerant evaporator evaporates the mist refrigerant in the gas-liquid mixed phase, and takes cold heat (vaporization heat) from the wind flowing around it to generate cold wind. Generally, it consists of a flat rectangular parallelepiped core on the downstream side and upstream side in which many tubes are arranged side by side, a refrigerant inlet and outlet at the upper end or lower end of the core, and a refrigerant turn part at the lower end or upper end. It is arranged so as to cross the flow. The refrigerant evaporator has no temperature difference (temperature distribution) between the one side and the other side in the width direction, and the pressure loss when the refrigerant turns from one core to the other at the upper or lower end is small. desired.

種々の構成の冷媒蒸発器が開発されているが、この二つの要求をもとに充足することは容易でない。図13に示す従来の冷媒蒸発器は下流側コア200及び上流側コア205と、冷媒入口211、冷媒出口212を持つ上方タンク210と、ターン部を持つ下部タンク215とから成る。下流側コア200及び上流側コア205は多数のチューブが所定間隔で配置されたもので、上端及び下端は開口している。上方タンク210の入口通路211が下流側コア200の上端開口に、出口通路212が上流側コア205の上端開口に、それぞれ連通している。下方タンク215は上流側コア200の下端開口に連通する第1通路、及び下流側コア205の下端開口に連通する第2通路を持ち、第1通路と第2通路は連通されている。
特開2003−75024号公報
Although various configurations of refrigerant evaporators have been developed, it is not easy to meet these two requirements. The conventional refrigerant evaporator shown in FIG. 13 includes a downstream core 200 and an upstream core 205, an upper tank 210 having a refrigerant inlet 211 and a refrigerant outlet 212, and a lower tank 215 having a turn portion. The downstream core 200 and the upstream core 205 have a large number of tubes arranged at predetermined intervals, and the upper end and the lower end are open. The inlet passage 211 of the upper tank 210 communicates with the upper end opening of the downstream core 200, and the outlet passage 212 communicates with the upper end opening of the upstream core 205. The lower tank 215 has a first passage communicating with the lower end opening of the upstream core 200 and a second passage communicating with the lower end opening of the downstream core 205, and the first passage and the second passage are communicated with each other.
Japanese Patent Laid-Open No. 2003-75024

上記従来例では、下流側コア200の幅方向全体のチューブを冷媒が下降し、下方タンク215でターンし、上流側コア205の幅方向全体のチューブを冷媒が上昇するので、幅方向全体で温度分布が均一である。また、下方タンク215の第1通路と第2通路とは円弧状のターン部で連通されているので、ターン時の圧力損失も小さい。   In the above conventional example, the refrigerant descends the entire tube in the width direction of the downstream core 200 and turns in the lower tank 215, and the refrigerant rises in the tube in the entire width direction of the upstream core 205. The distribution is uniform. Further, since the first passage and the second passage of the lower tank 215 are communicated with each other through an arcuate turn portion, the pressure loss during the turn is small.

しかし、近年の運転者側と助手席側とで温度を独立に制御したいとの要求に応えることはできない。この要求を満たすためには、上流側コア200及び下流側コア205の一側(左側)と他側(右側)とで冷媒の蒸発量を異ならせることが必要になる。コア200及び205を構成するチューブ内の一側と他側とで冷媒の流通量に差を付けるのは困難なので、一側又は他側にシールド等を配置して通過する風量に差をつける。   However, it cannot meet the recent demand for controlling the temperature independently on the driver side and on the passenger side. In order to satisfy this requirement, it is necessary to vary the evaporation amount of the refrigerant on one side (left side) and the other side (right side) of the upstream core 200 and the downstream core 205. Since it is difficult to make a difference in the flow rate of the refrigerant between one side and the other side in the tubes constituting the cores 200 and 205, a shield or the like is arranged on one side or the other side to make a difference in the amount of air passing therethrough.

例えば、他側即ち運転者側の風量を一側即ち助手席側の風量に比べて少なくした場合を考える。大風量が流れる一側では風と冷媒とが積極的に熱交換し、冷媒の蒸発量(気化量)は多くなり、体積の増加により圧力損失が発生する。一方、小風量の他側では蒸発量が少ないので体積の増大が小さく圧力損失があまり発生しない。その結果、主に他側に冷媒が流れ、本来大きな冷却作用が必要とされる一側には冷媒があまり流れない。   For example, let us consider a case where the air volume on the other side, that is, the driver side, is smaller than the air volume on one side, that is, on the passenger seat side. On one side where a large amount of air flows, the air and the refrigerant actively exchange heat, the amount of evaporation (vaporization amount) of the refrigerant increases, and a pressure loss occurs due to an increase in volume. On the other hand, since the amount of evaporation is small on the other side of the small air volume, the increase in volume is small and pressure loss does not occur much. As a result, the refrigerant mainly flows on the other side, and the refrigerant does not flow so much on one side where a large cooling action is originally required.

こうした事情を考慮して、本願の出願人は先に特願平16−41453号(平成16年2月18日出願)及び特願平16−114569号(平成16年4月8日出願)を出願した。その基本的概念は、図12に示すように、上方タンク部材185内に形成する二本の通路186及び187をその長さ方向(コアの幅方向)の中間部でクロスさせることである。上端部では、上方タンク部材185により下流側コア90の一側191a1が上流側コア194の他側(不図示)に接続され、下流側コア190の他側191bが上流側コア194の一側(不図示)に接続される。   In consideration of such circumstances, the applicant of this application must first file Japanese Patent Application No. 16-41453 (filed on February 18, 2004) and Japanese Patent Application No. 16-114569 (filed on April 8, 2004). I applied. The basic concept is to cross the two passages 186 and 187 formed in the upper tank member 185 at an intermediate portion in the length direction (core width direction) as shown in FIG. At the upper end, one side 191 a 1 of the downstream core 90 is connected to the other side (not shown) of the upstream core 194 by the upper tank member 185, and the other side 191 b of the downstream core 190 is connected to one side of the upstream core 194 ( (Not shown).

このようにすれば、下流側コア190の一側191aを上昇する冷媒の量が多く、他側191bを上昇する冷媒の量が少ない。上流側コア194の一側を下降する冷媒の量が少なく、他側を上昇する冷媒の量が多くなる結果、運転者側と助手席側とで冷媒の蒸発量をほぼ同程度にできる。但し、上方タンク部材185の通路内にクロス部を形成するため多くの部品を要し、構造が複雑であり、コストが上昇しやすい点で改良の余地があった。   In this way, the amount of refrigerant rising on one side 191a of the downstream core 190 is large, and the amount of refrigerant rising on the other side 191b is small. As a result of the small amount of refrigerant descending on one side of the upstream core 194 and the large amount of refrigerant rising on the other side, the amount of refrigerant evaporated on the driver side and on the passenger seat side can be made substantially the same. However, many parts are required to form a cross portion in the passage of the upper tank member 185, the structure is complicated, and there is room for improvement in that the cost is likely to increase.

本発明は上記事情に鑑みてなされたもので、少ない部品でしかも簡単な構成で第1コア及び第2コアの長さ方向一端(例えば上端)に冷媒のクロス流れ部を形成できる冷媒蒸発器を提供することを目的とする。   The present invention has been made in view of the above circumstances, and has a refrigerant evaporator capable of forming a refrigerant cross-flow portion at one end (for example, the upper end) in the length direction of the first core and the second core with a small number of parts and a simple configuration. The purpose is to provide.

本願の発明者は、冷媒をターンさせるタンク部材を管状のパイプ部材で形成すること、即ち二本のパイプ部材をX字状に交差させたり、二本又は一本のパイプ部材を渦巻き状に屈曲させることを思い付いて、本発明を完成した。   The inventor of the present application forms the tank member for turning the refrigerant with a tubular pipe member, that is, the two pipe members intersect in an X shape, or the two or one pipe members are bent in a spiral shape. The present invention has been completed.

(1)本願の第1発明による冷媒蒸発器は、請求項1に記載したように、複数の第1チューブが隔設されて成る第1コアと、第1コアと並置され複数の第2チューブが隔設されて成る第2コアと、第1コア及び第2コアの長さ方向一端に配置され第1チューブに連通された冷媒供給通路及び第2チューブに連通された冷媒排出通路を有する冷媒供給・排出部材と、第1コア及び第2コアの長さ方向他端に配置され第1コアの幅方向一側と該第2コアの幅方向他側とを連通する第1タンク部材と、第1コア及び第2コアの長さ方向他端に配置され第1コアの幅方向他側と第2コアの幅方向一側とを連通する第2タンク部材と、から成る。   (1) The refrigerant evaporator according to the first invention of the present application, as described in claim 1, is a first core formed by separating a plurality of first tubes, and a plurality of second tubes juxtaposed with the first cores. And a refrigerant supply passage that is disposed at one end in the longitudinal direction of the first core and the second core and communicates with the first tube, and a refrigerant discharge passage that communicates with the second tube. A first tank member disposed at the other end in the length direction of the first core and the second core and communicating with one side in the width direction of the first core and the other side in the width direction of the second core; The second tank member is disposed at the other end in the length direction of the first core and the second core, and communicates the other side in the width direction of the first core and the one side in the width direction of the second core.

この冷媒蒸発器において、第1タンク部材と第2タンク部材とはX字状に配置され、第1コアの幅方向一側を流れた冷媒が第1タンク部材を介して第2コアの幅方向他側に流れ、第1コアの幅方向他側を流れた冷媒が第2タンク部材を介して第2コアの幅方向一側に流れる。   In this refrigerant evaporator, the first tank member and the second tank member are arranged in an X shape, and the refrigerant flowing on one side in the width direction of the first core passes through the first tank member in the width direction of the second core. The refrigerant that flows to the other side and flows to the other side in the width direction of the first core flows to one side in the width direction of the second core via the second tank member.

(2)第2発明による冷媒蒸発器は、請求項9に記載したように、複数の第1チューブが隔設されて成りその幅方向で整列した第1幅方向一側コア部と第1幅方向他側コア部とを含む第1コアと、複数の第2チューブが隔設されて成りその厚さ方向で第1幅方向一側コア部から離れた第2幅方向一側コア部と厚さ方向で第1幅方向他側コア部に近接した第2幅方向他側コア部とを含む第2コアと、第1コア及び第2コアの長さ方向一端に配置され第1チューブに連通された冷媒供給通路及び第2チューブに連通された冷媒排出通路を有する冷媒供給・排出部材と、第1コア及び第2コアの長さ方向他端に配置され第1幅方向一側コア部と第2幅方向他側コア部とを連通するとともに第1幅方向他側コア部と第2幅方向一側コア部とを連通するタンク部材と、から成る。   (2) The refrigerant evaporator according to the second aspect of the present invention is the refrigerant evaporator according to the ninth aspect, wherein the first width direction one-side core portion and the first width are formed by separating the plurality of first tubes and aligning in the width direction. A first core including the other side core portion, and a plurality of second tubes spaced apart from each other and the second width direction one side core portion separated from the first width direction one core portion in the thickness direction A second core including a second width direction other side core portion adjacent to the first width direction other side core portion in the length direction, and arranged at one end in the length direction of the first core and the second core and communicated with the first tube A refrigerant supply / discharge member having a refrigerant supply passage and a refrigerant discharge passage communicated with the second tube, a first width direction one-side core portion disposed at the other longitudinal end of the first core and the second core, The second width direction other side core portion is communicated with and the first width direction other side core portion and the second width direction one side core portion are communicated. And the link member, consisting of.

この冷媒蒸発器において、第1幅方向一側コア部を流れた冷媒がタンク部材を介して第2幅方向他側コア部に流れ、第1幅方向他側コア部を流れた冷媒がタンク部材を介して第2幅方向一側コア部に流れる。   In this refrigerant evaporator, the refrigerant that has flowed through the first width direction one side core portion flows to the second width direction other side core portion via the tank member, and the refrigerant that has flowed through the first width direction other side core portion is the tank member. It flows through the second width direction one-side core part.

(1)本願の第1発明にかかる冷媒蒸発器によれば、第1コア及び第2コアの長さ方向他端で冷媒をターンさせるタンク部材が、X字形状に配置した第1タンク部材及び第2タンク部材からなる。その結果、部品点数が少なく、構成が簡単で、コストが低減できる。   (1) According to the refrigerant evaporator according to the first invention of the present application, the tank member that turns the refrigerant at the other longitudinal end of the first core and the second core includes the first tank member arranged in an X shape, It consists of a second tank member. As a result, the number of parts is small, the configuration is simple, and the cost can be reduced.

(2)第2発明にかかる冷媒蒸発器によれば、第1コア及び第2コアの長さ方向他端で冷媒をターンさせるタンク部材が、二本のU字形状の第1及び第2タンク部材、または一本の渦巻き状のタンク部材からなる。その結果、部品点数が少なく、構成が簡単で、加工が簡単で、コストが低減できる。   (2) According to the refrigerant evaporator according to the second invention, the tank member for turning the refrigerant at the other longitudinal end of the first core and the second core has two U-shaped first and second tanks. It consists of a member or one spiral tank member. As a result, the number of parts is small, the configuration is simple, the processing is simple, and the cost can be reduced.

(3)請求項2の冷媒蒸発器によれば、X字形状に配置された第1タンク部材及び第2タンク部材により、第1コアの幅方向一側と第2コアの幅方向他側とが、及び第1コアの幅方向他側と第2コアの幅方向一側とが、確実かつ容易に接続できる。請求項3の冷媒蒸発器によれば、第1及び第2コアの幅方向一側と幅方向他側とで冷媒の蒸発量を独立に制御でき、また冷媒が第1及び第2タンク部材の第1及び第2出口部に冷媒が届きやすい。   (3) According to the refrigerant evaporator of claim 2, by the first tank member and the second tank member arranged in an X shape, the width direction one side of the first core and the width direction other side of the second core However, the other side in the width direction of the first core and the one side in the width direction of the second core can be reliably and easily connected. According to the refrigerant evaporator of the third aspect, the evaporation amount of the refrigerant can be independently controlled on one side in the width direction and the other side in the width direction of the first and second cores, and the refrigerant can be controlled by the first and second tank members. The refrigerant easily reaches the first and second outlet portions.

請求項4の冷媒蒸発器によれば、第1タンク部材及び第2タンク部材が簡単に製作できる。請求項5の冷媒蒸発器によれば、第1コアの第1チューブと第1タンク部材の第1入口部との連通、及び第2コアの第2チューブと第2タンク部材の第2入口部との連通が確実である。請求項6の冷媒蒸発器によれば、第1コア及び第2コアのうち第1及び第2クロス部の可能に位置するチューブ群内でも冷媒が流れるので、第1コア及び第2コアの幅方向での温度分布で中央部のみが高温となることが防止される。   According to the refrigerant evaporator of the fourth aspect, the first tank member and the second tank member can be easily manufactured. According to the refrigerant evaporator of claim 5, the communication between the first tube of the first core and the first inlet portion of the first tank member, and the second tube of the second core and the second inlet portion of the second tank member. Communication with is reliable. According to the refrigerant evaporator of the sixth aspect, since the refrigerant flows also in the tube group in which the first and second cross portions of the first core and the second core are possible, the width of the first core and the second core. It is prevented that only the central part becomes high in temperature distribution in the direction.

請求項7の冷媒蒸発器によれば、第1及び第2クロス部も第1及び第2チューブと連通できるので、冷媒の流通量が増加する。請求項10の冷媒蒸発器によれば、U字形状の第1タンク部材及び第2タンク部材により、第1コアの第1幅方向一側コア部と第2コアの第2幅方向他側コア部とが、及び第1コアの第1幅方向他側コア部と第2コアの第2幅方向一側コア部とが、確実かつ容易に接続できる。請求項11の冷媒蒸発器によれば、タンク部材の軸直角方向寸法を小さくできる。   According to the refrigerant evaporator of the seventh aspect, since the first and second cross portions can also communicate with the first and second tubes, the amount of refrigerant flowing increases. According to the refrigerant evaporator of claim 10, the first width direction one side core portion of the first core and the second width direction other side core of the second core by the U-shaped first tank member and second tank member. And the first width direction other side core portion of the first core and the second width direction one side core portion of the second core can be reliably and easily connected. According to the refrigerant evaporator of the eleventh aspect, the dimension perpendicular to the axis of the tank member can be reduced.

請求項12及び15の冷媒蒸発器によれば、第1及び第2コアの剛性が増大し、耐振動性が向上するとともに、冷媒の通過音が抑制できる。請求項13及び16の冷媒蒸発器によれば、第1及び第2クロス部でも第及び第2チューブと連通できる。請求項14の冷媒蒸発器によれば、一本のパイプ部材でタンク部材を形成することができ、部品点数が少なくできる。   According to the refrigerant evaporator of the twelfth and fifteenth aspects, the rigidity of the first and second cores is increased, the vibration resistance is improved, and the passage sound of the refrigerant can be suppressed. According to the refrigerant evaporator of the thirteenth and sixteenth aspects, the first and second cross portions can communicate with the second and second tubes. According to the refrigerant evaporator of the fourteenth aspect, the tank member can be formed by one pipe member, and the number of parts can be reduced.

<全体>
本発明の冷媒蒸発器は、車両の空調システムの冷凍サイクルのクーラモード等で使用され、周辺を流れる風(空気)により霧状の冷媒が蒸発されてガス状の冷媒に変化し、それに伴い周辺の風から蒸発熱を奪って冷風を生成する。冷媒の種類は不問であり、例えばCO2が使用できる。コアの構成及び配置、冷媒供給・排出部材の構成、並びに第1及び第2タンク部材の構成に応じて二つのタイプに分けられる。
<Overall>
The refrigerant evaporator of the present invention is used in a cooler mode of a refrigeration cycle of a vehicle air-conditioning system, etc., and the mist refrigerant is evaporated by the wind (air) flowing in the vicinity to change to a gaseous refrigerant, and accordingly Removes heat of evaporation from the wind and produces cold air. The type of the refrigerant is not limited, and for example, CO 2 can be used. There are two types according to the configuration and arrangement of the core, the configuration of the refrigerant supply / discharge member, and the configuration of the first and second tank members.

<第1タイプ>
第1タイプは、第1コア部及び第2コア部幅方向で直線状に延びており、コアの長さ方向一端で冷媒をターンさせるタンク部材が、X字状にクロス配置された一対のタンク部材を含む(請求項1参照)。
<First type>
The first type extends in a straight line in the width direction of the first core portion and the second core portion, and a pair of tanks in which tank members that turn the refrigerant at one end in the length direction of the core are arranged in an X shape. A member (see claim 1).

(イ)コア
コアは風の流れ方向で下流側の第1コア(下流側コア)と、上流側の第2コア(上流側コア)とを含む。何れのコアも中空矩形状で細長く延び両端が開口した複数のチューブが隔設されて成り、全体として幅及び長さ(高さ)に対して厚さが小さい扁平な直方体形状を持つ。第1コアは冷媒供給通路から第1タンク部材及び第2タンク部材に冷媒を流すものであり、第2コアは第1タンク部材及び第2タンク部材から冷媒排出通路に冷媒を流すものである。つまり、第1コアと第2コアとでは冷媒の流れ方向が反対である。
(A) Core The core includes a first core (downstream core) on the downstream side in the wind flow direction and a second core (upstream core) on the upstream side. Each of the cores is a hollow rectangular shape that is formed by a plurality of tubes that are elongated and open at both ends, and has a flat rectangular parallelepiped shape whose thickness is small with respect to width and length (height) as a whole. The first core flows refrigerant from the refrigerant supply passage to the first tank member and the second tank member, and the second core flows refrigerant from the first tank member and the second tank member to the refrigerant discharge passage. That is, the flow direction of the refrigerant is opposite between the first core and the second core.

第1コアでも第2コアでも幅方向の一側と他側とでは冷媒が別々に流れる。複数の第1チューブ及び第2チューブは互いに分離していても良いし(請求項5参照)、複数のチューブ毎にグループ化されていても良い(請求項6参照)。後者の場合、各群のチューブは相互に接続され、その一端で冷媒供給通路に連通される。第1チューブ及び第2チューブの長さ方向他端は連通を容易にするためタンク部材の軸線方向と同じ方向にねじっても良い(請求項7参照)。   In both the first core and the second core, the refrigerant flows separately on one side and the other side in the width direction. The plurality of first tubes and the second tube may be separated from each other (see claim 5), or may be grouped for each of the plurality of tubes (see claim 6). In the latter case, the tubes of each group are connected to each other and communicated with the refrigerant supply passage at one end thereof. The other ends in the length direction of the first tube and the second tube may be twisted in the same direction as the axial direction of the tank member in order to facilitate communication (see claim 7).

冷媒蒸発器が全体として縦方向に配置されると第1コア及び第2コアは上下方向に延び、横方向に配置されるとき第1コア及び第2コアは横方向に延びる。   When the refrigerant evaporator is arranged in the vertical direction as a whole, the first core and the second core extend in the vertical direction, and when arranged in the horizontal direction, the first core and the second core extend in the horizontal direction.

(ロ)冷媒供給・排出部材
冷媒供給・排出部材は、コアの長さ方向一端(縦方向配置のときは下端)で冷媒の供給通路及び排出通路を形成するものである。直線状に延びる冷媒供給通路及び直線状に延びる冷媒排出通路を有する。
(B) Refrigerant supply / discharge member The refrigerant supply / discharge member forms a refrigerant supply passage and a discharge passage at one end in the longitudinal direction of the core (the lower end when arranged in the vertical direction). It has a refrigerant supply passage extending linearly and a refrigerant discharge passage extending linearly.

(ハ)第1タンク部材、第2タンク部材
第1タンク部材及び第2タンク部材は第1コア及び第2コアの長さ方向他端(縦方向配置のときは上端)で冷媒のターン部を形成するものであり、管状のパイプ部材から成り、中間部でクロスしたX字状に配置する。
(C) First tank member, second tank member The first tank member and the second tank member have the refrigerant turn portion at the other end in the longitudinal direction of the first core and the second core (the upper end when arranged in the vertical direction). It is formed, is made of a tubular pipe member, and is arranged in an X shape that is crossed at an intermediate portion.

第1タンク部材は第1入口部、第1出口部及び第1クロス部を含む。第1入口部は第1コアの幅方向一側で第1チューブの長さ方向他端に連通され、第1出口部は第2コアの幅方向他側で第2チューブの長さ方向他端に連通されている。第1クロス部は第1コアと第2コアとの間を斜断し第1入口部と第1出口部とを接続している(請求項2参照)。   The first tank member includes a first inlet portion, a first outlet portion, and a first cross portion. The first inlet is connected to the other end in the length direction of the first tube on one side in the width direction of the first core, and the first outlet is the other end in the length direction of the second tube on the other side in the width direction of the second core. It is communicated to. The first cross part obliquely cuts between the first core and the second core to connect the first inlet part and the first outlet part (see claim 2).

第2タンク部材は第2入口部、第2出口部及び第2クロス部を含む。第2入口部は第1コアの幅方向他側で第1チューブの長さ方向他端に連通され、第2出口部は第2コアの幅方向一側で第2チューブに連通されている。第2クロス部は第2コアと第1コアとの間を斜断し第1クロス部の上方又は下方を通過して交差し第2入口部と第2出口部とを接続している。第1クロス部及び第2クロス部は幅に比べて高さが小さい扁平な長円形状を持つことが望ましく、第1コア及び第2コアの軸方向中央で交差できる(請求項3参照)。   The second tank member includes a second inlet portion, a second outlet portion, and a second cross portion. The second inlet portion communicates with the other end in the length direction of the first tube on the other side in the width direction of the first core, and the second outlet portion communicates with the second tube on the one side in the width direction of the second core. The second cross portion obliquely cuts between the second core and the first core, passes over or below the first cross portion, intersects, and connects the second inlet portion and the second outlet portion. The first cross part and the second cross part preferably have a flat oval shape whose height is smaller than the width, and can intersect at the center in the axial direction of the first core and the second core (see claim 3).

<第2タイプ>
第2タイプは、第1コア部又は第2コア部の幅方向一側コア部と幅方向他側コア部とが厚さ方向でずれており、第1コア及び第2コアの長さ方向一端で冷媒をターンさせるためのタンク部材が、二本のU字形状のタンク部材、又は一本の渦巻き状のタンク部材を含む(請求項9参照)。
<Second type>
In the second type, the width direction one side core portion and the width direction other side core portion of the first core portion or the second core portion are shifted in the thickness direction, and one end in the length direction of the first core and the second core. The tank member for turning the refrigerant in the tank includes two U-shaped tank members or one spiral tank member (see claim 9).

(イ)コア
コアの第1コアは複数の第1チューブが隔設されて成り、幅方向で整列した第1幅方向一側コア部と第1幅方向他側コア部とを含む。第2コアは複数の第2チューブが隔設されて成り、厚さ方向で第1幅方向一側コア部から離れた第2幅方向一側コア部と、厚さ方向で第1幅方向他側コア部に近接した第2幅方向他側コア部とを含む。つまり、厚さ方向に少しずれている。
(A) Core The first core of the core includes a plurality of first tubes, and includes a first width direction one core portion and a first width direction other core portion aligned in the width direction. The second core is composed of a plurality of second tubes spaced apart from each other, the second width direction one side core portion separated from the first width direction one side core portion in the thickness direction, and the first width direction and the like in the thickness direction. 2nd width direction other side core part adjacent to the side core part. That is, it is slightly shifted in the thickness direction.

(ロ)冷媒供給・排出部材
冷媒供給・排出部材は第1コアの長さ方向一端(例えば下端)に配置され、第1チューブに連通された冷媒供給通路及び第2チューブに連通された冷媒排出通路を有する。
(B) Refrigerant supply / discharge member The refrigerant supply / discharge member is disposed at one end (for example, the lower end) in the length direction of the first core, and the refrigerant supply passage communicated with the first tube and the refrigerant discharge communicated with the second tube. Has a passage.

(ハ)タンク部材
タンク部材は管状のパイプ部材から成り、第1コア及び第2コアの長さ方向他端に配置され、第1幅方向一側コア部と第2幅方向他側コア部とを連通するとともに、第1幅方向他側コア部と第2幅方向一側コア部とを連通するものである。二つのタンク部材から成る場合(aタイプ)と、単一のタンク部材から成る場合(bタイプ)とがある。
(C) Tank member The tank member is composed of a tubular pipe member, and is disposed at the other end in the length direction of the first core and the second core, and includes a first width direction one side core portion and a second width direction other side core portion. The first width direction other side core portion and the second width direction one side core portion are communicated with each other. There are two cases (a type) and two tank members (b type).

aタイプのタンク部材は一対のU字形状のタンク部材から成る。第1タンク部材は、第1幅方向一側コア部に連通された第1入口部、その軸直角方向で第1入口部に近接し第2幅方向他側コア部に連通された第1出口部、及び第1入口部と第1出口部とを接続するU字形状の第1接続部を有する。また、第2タンク部材は、第1幅方向他側コア部に連通された第2入口部、その軸直角方向で第2入口部から少し離れ第2幅方向一側コア部に連通された第2出口部、及び第2入口部と第2出口部とを接続するU字形状の第2接続部を有する(請求項10参照)。   The a-type tank member is composed of a pair of U-shaped tank members. The first tank member has a first inlet portion communicated with the first width direction one side core portion, a first outlet portion adjacent to the first inlet portion in a direction perpendicular to the axis thereof and communicated with the second width direction other side core portion. And a U-shaped first connection part that connects the first inlet part and the first outlet part. In addition, the second tank member communicates with the second inlet portion communicated with the first widthwise other side core portion, and with a second widthwise one side core portion separated from the second inlet portion in a direction perpendicular to the axis. 2 outlet portions, and a U-shaped second connecting portion that connects the second inlet portion and the second outlet portion (see claim 10).

その軸方向で第1入口部と第2入口部とは整列し、その軸直角方向で第1入口部及び第2入口部と第2出口部との間に第1出口部が位置している(請求項11参照)。第1コア及び第2コアの幅方向で、第1接続部が幅方向一端に、第2接続部が幅方向他端に位置している(請求項12参照)。第1チューブ及び第2チューブの上端は、第1タンク部材及び第2タンク部材の軸方向にねじられている(請求項13参照)。   The first inlet portion and the second inlet portion are aligned in the axial direction, and the first outlet portion is located between the first inlet portion and the second inlet portion and the second outlet portion in the direction perpendicular to the axis. (See claim 11). In the width direction of the first core and the second core, the first connection portion is located at one end in the width direction and the second connection portion is located at the other end in the width direction (see claim 12). The upper ends of the first tube and the second tube are twisted in the axial direction of the first tank member and the second tank member (see claim 13).

bタイプのタンク部材は渦巻き状の一本の管部材から成り、外周側の第1直線部、内周側の第2直線部及び第1直線部と第2直線部との間の第3直線部とを含み、これれは軸直角方向で並置されている。第1直線部が第2幅方向一側コア部に連通された第2出口部を有し、第2直線部が第2幅方向他側コア部に連通された第1出口部を有し、第3直線部が第1幅方向一側コア部に連通された第1入口部及び第1幅方向他側コア部に連通された第2入口部を有する(請求項14参照)。   The b-type tank member is formed of a single spiral tube member, and includes a first straight portion on the outer peripheral side, a second straight portion on the inner peripheral side, and a third straight line between the first straight portion and the second straight portion. Which are juxtaposed in a direction perpendicular to the axis. The first straight portion has a second outlet portion communicated with the second width direction one core portion, the second straight portion has a first outlet portion communicated with the second width direction other core portion, The third straight portion has a first inlet portion communicated with the first width direction one side core portion and a second inlet portion communicated with the first width direction other side core portion (see claim 14).

以下、本発明の実施例を添付図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

<第1実施例>
(構成)
図1から図4に第1実施例を示す。はじめに、図1をもとに車両の空調システムの冷凍サイクルを説明する。冷媒循環路10上にコンプレッサ12、切替弁13、放熱器(外部熱交換器)14、内部熱交換器16、膨張弁17及び冷媒蒸発器20が配置されている。
<First embodiment>
(Constitution)
1 to 4 show a first embodiment. First, a refrigeration cycle of a vehicle air conditioning system will be described with reference to FIG. A compressor 12, a switching valve 13, a radiator (external heat exchanger) 14, an internal heat exchanger 16, an expansion valve 17, and a refrigerant evaporator 20 are disposed on the refrigerant circuit 10.

次に、図2をもとに冷媒蒸発器(以下「蒸発器」と呼ぶ)20を説明する。この蒸発器20は冷媒供給・排出部材25と、下流側コア30及び上流側コア35と、2本の上方タンク部材42及び52とから成る。このうち冷媒供給・排出部材25は一方向(図2で左斜め下方から右斜め上方、幅方向)に延びる互いに平行な入口通路26及び出口通路28を有する。入口通路26は矢印Wで示す風の流れ方向において下流側(図2で右斜め下方)に位置し、冷媒供給・排出部材25の全体にわたって延びている。その左端開口から供給される冷媒(CO2)が右方向に流れ、下流側コア30内を上昇する。出口通路28は風の流れ方向において上流側に位置し、冷媒供給・排出部材25の全体にわたって延びている。上流側コア35内を下降した後その左端開口から冷媒が排出される。 Next, the refrigerant evaporator (hereinafter referred to as “evaporator”) 20 will be described with reference to FIG. The evaporator 20 includes a refrigerant supply / discharge member 25, a downstream core 30 and an upstream core 35, and two upper tank members 42 and 52. Among them, the refrigerant supply / discharge member 25 has an inlet passage 26 and an outlet passage 28 that are parallel to each other and extend in one direction (from the diagonally lower left to the diagonally upper right in FIG. 2, the width direction). The inlet passage 26 is located on the downstream side (downward and rightward in FIG. 2) in the wind flow direction indicated by the arrow W, and extends over the entire refrigerant supply / discharge member 25. The refrigerant (CO 2 ) supplied from the left end opening flows in the right direction and rises in the downstream core 30. The outlet passage 28 is located upstream in the flow direction of the wind and extends over the entire refrigerant supply / discharge member 25. After descending in the upstream core 35, the refrigerant is discharged from the left end opening.

図2、図3から分かるように、下流側コア30は長尺状で横断面が扁平な矩形状の多数のチューブ32を含み、多数のチューブ32はその幅方向が風の流れ方向となる向きで垂直で配置され、開口した下端が入口通路26に連通している。熱交換の効率を高めるために隣接するチューブ間に多数のフィン33が介在されている。上流側コア35は基本的に下流側コア30と同じ構成を持ち、長尺状で横断面が扁平な矩形状の多数のチューブ37がその幅方向が風の流れ方向となる向きで垂直で配置され、開口した下端が出口通路28に連通している。   As can be seen from FIG. 2 and FIG. 3, the downstream core 30 includes a large number of rectangular tubes 32 that are long and have a flat cross section, and the numerous tubes 32 are oriented in the width direction of the wind flow direction. The lower end opened in communication with the inlet passage 26. A large number of fins 33 are interposed between adjacent tubes in order to increase the efficiency of heat exchange. The upstream core 35 basically has the same configuration as the downstream core 30, and a large number of rectangular tubes 37 having a long shape and a flat cross section are arranged vertically with the width direction being the direction of the wind flow. The opened lower end communicates with the outlet passage 28.

図3に示すように、上方タンク部材40は長さ方向の中間部がクロスして(X状に交差して)配置された一対の上方タンク部材42及び52から成る。第1上方タンク部材42は横断面円筒形状で下流側コア30の左半分33aの上方に位置する入口部43と、上流側コア35の右半分38bの上方に位置する出口部45と、両者を接続する斜断部(クロス部)47とを含む。一端(右端)は閉じられ、他端(左端)開口はキャップ48で閉じられている。入口部43の下面が左半分33aのチューブの上端開口に連通し、出口部45の下面が右半分38bの上端開口に連通している。クロス部47は下流側コア30にも上流側コア35にも連通していない。   As shown in FIG. 3, the upper tank member 40 is composed of a pair of upper tank members 42 and 52 that are arranged with their intermediate portions in the length direction crossed (crossed in an X shape). The first upper tank member 42 has a cylindrical cross section and has an inlet portion 43 positioned above the left half 33a of the downstream core 30, an outlet portion 45 positioned above the right half 38b of the upstream core 35, and both. And an oblique cut portion (cross portion) 47 to be connected. One end (right end) is closed, and the other end (left end) opening is closed with a cap 48. The lower surface of the inlet portion 43 communicates with the upper end opening of the tube in the left half 33a, and the lower surface of the outlet portion 45 communicates with the upper end opening of the right half 38b. The cross portion 47 does not communicate with the downstream core 30 or the upstream core 35.

第2上方タンク部材52は 横断面円筒形状で上流側コア35の右半分35bの上方に位置する入口部53と、下流側コア30の左半分38aの上方に位置する出口部55と、両者を接続する斜断部(クロス部)57とを含む。右端は閉じられ、左端開口はキャップ58で閉じられている。入口部53の下面が右半分33bのチューブの上端開口に連通し、出口部55の下面が左半分38aの上端開口に連通している。クロス部57は下流側コア30にも上流側コア35にも連通していない。   The second upper tank member 52 has a cylindrical shape in cross section, an inlet portion 53 located above the right half 35b of the upstream core 35, an outlet portion 55 located above the left half 38a of the downstream core 30, and both And an oblique cut portion (cross portion) 57 to be connected. The right end is closed and the left end opening is closed with a cap 58. The lower surface of the inlet portion 53 communicates with the upper end opening of the tube of the right half 33b, and the lower surface of the outlet portion 55 communicates with the upper end opening of the left half 38a. The cross portion 57 does not communicate with the downstream core 30 or the upstream core 35.

入口部43と入口部53とは同一高さにあり、出口部45と出口部55とは同一高さにある。クロス部57は上記クロス部47の上方を通過し交差し、両者はロー付けされている。   The inlet portion 43 and the inlet portion 53 are at the same height, and the outlet portion 45 and the outlet portion 55 are at the same height. The cross part 57 passes over the cross part 47 and intersects, and both are brazed.

図3及び図4に示すように、第1上方タンク部材42のクロス部47及び第2上方タンク部材52のクロス部57は高さ方向寸法が横方向寸法よりも小さい横長の長円形状を持ち、両者が上下方向で重なっている。これは、図4(a)及び(b)に示すように、2本の細長い円筒形状のパイプ部材42A及び52Aを準備し、一方のパイプ部材42Aの中間部にクロス部47を形成すると共に、他方のパイプ部材52Aの中間部にクロス部57を形成する。両方のクロス部を重ねた状態で(高さ)厚さ方向に圧縮して、短径が当初の直径の半分程度になるまでまで押しつぶしたものである。   As shown in FIGS. 3 and 4, the cross portion 47 of the first upper tank member 42 and the cross portion 57 of the second upper tank member 52 have a horizontally long oval shape whose height dimension is smaller than the horizontal dimension. , Both overlap in the vertical direction. As shown in FIGS. 4A and 4B, two elongated cylindrical pipe members 42A and 52A are prepared, and a cross portion 47 is formed at an intermediate portion of one pipe member 42A. A cross part 57 is formed in an intermediate part of the other pipe member 52A. In a state where both the cross portions are overlapped, they are compressed in the thickness direction (height) and crushed until the minor axis becomes about half of the original diameter.

(作用)
クーラモード時は、図1においてコンプレッサ12で圧縮された冷媒(CO2)は切替弁13を介して放熱器14に至り、高温空気との熱交換により高圧低温の冷媒になる。その後内部熱交換器16及び膨張弁17により低圧低温の冷媒となり、蒸発器20に流入し、車室内の空気を冷却する。その後、受液タンク18で気液分離された後、コンプレッサ12で高圧高温の冷媒になる。
(Function)
In the cooler mode, the refrigerant (CO 2 ) compressed by the compressor 12 in FIG. 1 reaches the radiator 14 through the switching valve 13 and becomes high-pressure and low-temperature refrigerant by heat exchange with high-temperature air. Thereafter, the refrigerant becomes low-pressure and low-temperature refrigerant by the internal heat exchanger 16 and the expansion valve 17 and flows into the evaporator 20 to cool the air in the passenger compartment. Thereafter, after the gas and liquid are separated in the liquid receiving tank 18, the refrigerant becomes a high-pressure and high-temperature refrigerant in the compressor 12.

第2図及び図3を参照しつつ、蒸発器20での作用を詳述する。冷媒は冷媒供給・排出部材25の入口通路26から供給され、下流側コア30の左半分33aのチューブ内を上向き(矢印a)に流れる。チューブ32の上端において上方第1タンク部材42の入口部43に流入しクロス部47を介して出口部45に流れる(矢印x)。その後上流側コア35の右半分38bのチューブ37を下降し(矢印b)、下方タンク部材25の出口通路28から排出される。   The operation of the evaporator 20 will be described in detail with reference to FIGS. The refrigerant is supplied from the inlet passage 26 of the refrigerant supply / discharge member 25 and flows upward (arrow a) in the tube of the left half 33 a of the downstream core 30. At the upper end of the tube 32, it flows into the inlet portion 43 of the upper first tank member 42 and flows to the outlet portion 45 via the cross portion 47 (arrow x). Thereafter, the tube 37 in the right half 38 b of the upstream core 35 is lowered (arrow b) and discharged from the outlet passage 28 of the lower tank member 25.

これと同時に、冷媒供給・排出部材25の入口通路26から下流側コア30の右半分33bに供給される冷媒は、右半分33bのチューブ32内を上向きに流れ(矢印c)、上端において上方第2タンク部材52の入口部53に流入しクロス部57を介して出口部55に流れる(矢印y)。その後上流側コア35の左半分38aのチューブ37を下降し(矢印d)、冷媒供給・排出部材材25の出口通路28から排出される。   At the same time, the refrigerant supplied from the inlet passage 26 of the refrigerant supply / discharge member 25 to the right half 33b of the downstream core 30 flows upward in the tube 32 of the right half 33b (arrow c), 2 flows into the inlet 53 of the tank member 52 and flows to the outlet 55 via the cross 57 (arrow y). Thereafter, the tube 37 in the left half 38 a of the upstream core 35 is lowered (arrow d) and discharged from the outlet passage 28 of the refrigerant supply / discharge member 25.

なお、管状の上方タンク部材42及び52は引抜き加工により形成することができる。また、図7に示すように、平行でしかも長手方向にずれた第1部分91,96及び第2部分92,97と、両者と直交する方向に延び両者をつなぐ第3部分93,98とを持つ2枚の金属板90,95をプレス加工して、幅方向中央部に溝94,99を形成する。その後、両方の金属板の両縁部を接合することにより、第1上方タンク部材42が完成する。第2上方タンク部材42も同様に製作する。このようなタンク部材は耐圧性が小さくて良い場合に適しており、薄肉加工が可能なので、コストが低減できる。   The tubular upper tank members 42 and 52 can be formed by drawing. Further, as shown in FIG. 7, the first portions 91 and 96 and the second portions 92 and 97 that are parallel and shifted in the longitudinal direction, and the third portions 93 and 98 that extend in a direction orthogonal to both and connect the two portions are provided. The two metal plates 90 and 95 are pressed to form grooves 94 and 99 at the center in the width direction. Then, the 1st upper tank member 42 is completed by joining the both edge parts of both metal plates. The second upper tank member 42 is similarly manufactured. Such a tank member is suitable when the pressure resistance may be small and can be processed with a thin wall, so that the cost can be reduced.

(効果)
この蒸発器20によれば、下流側コア30及び上流側コア35の左半分33a及び38bと右半分33b及び38bとで冷媒の蒸発量を独立に制御できる。例えば第1及び第2コア30及び35の右半分33b及び38bをシールド部材で覆い、風量を少なくした場合を考える。この場合、下流側コア30の左半分33aを上昇する冷媒の量が多く、右半分33bを上昇する冷媒の量が少ない。上端部では、第1上方タンク部材42により下流側コア32の一側33aが上流側コア35の他側38bに接続され、第2タンク部材52により下流側コア30の他側33bが上流側コア35の一側38aに接続される。その結果、上流側コア35の一側38aを下降する冷媒の量が少なく、他側38bを上昇する冷媒の量が多くなる結果、運転者側と助手席側とで冷媒の蒸発量をほぼ同程度にできる。
(effect)
According to the evaporator 20, the evaporation amount of the refrigerant can be independently controlled by the left halves 33a and 38b and the right halves 33b and 38b of the downstream core 30 and the upstream core 35. For example, consider a case where the right halves 33b and 38b of the first and second cores 30 and 35 are covered with a shield member to reduce the air volume. In this case, the amount of refrigerant rising in the left half 33a of the downstream core 30 is large, and the amount of refrigerant rising in the right half 33b is small. At the upper end, the first upper tank member 42 connects one side 33a of the downstream core 32 to the other side 38b of the upstream core 35, and the second tank member 52 connects the other side 33b of the downstream core 30 to the upstream core. 35 is connected to one side 38a. As a result, the amount of refrigerant descending one side 38a of the upstream core 35 is small and the amount of refrigerant ascending the other side 38b is large. As a result, the evaporation amount of the refrigerant is almost the same between the driver side and the passenger seat side. To the extent possible.

また、上記下流側コア30及び上流側コア35の左半分33a及び38aと右半分33b及び38bとの蒸発量を独立制御するための上方タンク部材40の構成がシンプルである。上方タンク部材40はX状にクロス配置された第1上方タンク部材42及び第2上方タンク部材52のみから成る。各タンク部材42及び52はそれぞれ下面に開口が形成された入口部43及び53、下面に開口が形成された出口部45及び55、並びにこれらをつなぐクロス部47及び57を含めば良い。汎用のパイプ部材を利用できるので、コストが安くできる。   Further, the configuration of the upper tank member 40 for independently controlling the evaporation amounts of the left halves 33a and 38a and the right halves 33b and 38b of the downstream core 30 and the upstream core 35 is simple. The upper tank member 40 includes only a first upper tank member 42 and a second upper tank member 52 that are arranged in an X shape. Each of the tank members 42 and 52 may include inlet portions 43 and 53 having an opening on the lower surface, outlet portions 45 and 55 having an opening on the lower surface, and cross portions 47 and 57 connecting them. Since a general-purpose pipe member can be used, the cost can be reduced.

更に、第1上方タンク部材42のクロス部47及び第2上方タンク部材52のクロス部57は断面長円形状で、円筒形状の入口部42,53及び出口部45,55よりも断面積が小さい。そのため冷媒は入口部43,54から出口部45,55に流れるためにクロス部47,57を通過する際その流速が向上する。その結果、出口部45,55の先端まで冷媒が届き易くなる。   Further, the cross portion 47 of the first upper tank member 42 and the cross portion 57 of the second upper tank member 52 have an oval cross section, and have a smaller cross sectional area than the cylindrical inlet portions 42 and 53 and the outlet portions 45 and 55. . Therefore, since the refrigerant flows from the inlet portions 43 and 54 to the outlet portions 45 and 55, the flow velocity is improved when passing through the cross portions 47 and 57. As a result, the refrigerant can easily reach the ends of the outlet portions 45 and 55.

加えて、第1タンク部材42のクロス部47と第2タンク部材52のクロス部57とがロー付けされて剛性が向上しているので、冷媒の通過音が抑制されるとともに、耐振動性が向上する。   In addition, since the cross portion 47 of the first tank member 42 and the cross portion 57 of the second tank member 52 are brazed to improve rigidity, the passage sound of the refrigerant is suppressed and vibration resistance is improved. improves.

<変形例>
(1)図5に第1実施例の第1変形例を示す。この変形例では下流側コア70の多数のチューブが三つのグループに分かれ、各群内の複数のチューブは相互の接続されている。左方チューブ群72の左方下端は入口通路26に連通され、右方上端は入口部43に連通されている。中央チューブ群73の左方下端は入口通路26に連通され、右方上端は入口部53に連通されている。右方チューブ群74の左方下端は入口通路26に連通され、右方上端は入口部53に連通されている。上流側コアの多数のチューブ78は下流側コアの多数のチューブ72と同様の構成を持つ。
<Modification>
(1) FIG. 5 shows a first modification of the first embodiment. In this modification, a large number of tubes of the downstream core 70 are divided into three groups, and a plurality of tubes in each group are connected to each other. The left lower end of the left tube group 72 communicates with the inlet passage 26, and the right upper end communicates with the inlet portion 43. The lower left end of the central tube group 73 communicates with the inlet passage 26, and the upper right end communicates with the inlet portion 53. The lower left end of the right tube group 74 communicates with the inlet passage 26, and the upper right end communicates with the inlet portion 53. The multiple tubes 78 in the upstream core have the same configuration as the multiple tubes 72 in the downstream core.

この第1変形例によれば、第1実施例の効果に加えて、以下の特有の効果が得られる。即ち、クロス部と47とクロス部57との交差部の下方領域eでも、ここに配置した中央チューブ群73により入口通路26から入口部53へ冷媒が流れる。下流側コア70及び上流側コア78のの中チューブ群73にも冷媒を流すことができるので、下流側コア70の幅方向における温度分布において中間部のみが高温となることが防止される。その結果、
冷媒蒸発器の性能が向上する。
According to this first modification, in addition to the effects of the first embodiment, the following specific effects can be obtained. In other words, the refrigerant flows from the inlet passage 26 to the inlet portion 53 by the central tube group 73 disposed also in the lower region e of the crossing portion between the cross portion 47 and the cross portion 57. Since the refrigerant can also flow through the middle tube group 73 of the downstream core 70 and the upstream core 78, only the intermediate portion in the temperature distribution in the width direction of the downstream core 70 is prevented. as a result,
The performance of the refrigerant evaporator is improved.

(2)図6に示す第2変形例では、下流側コア80の左半分81aのチューブ82の上端部83をねじって上端開口を上方タンク部材42の入口部43の延在方向(軸方向)と一致させている。右半分(不図示)についても同様である。   (2) In the second modification shown in FIG. 6, the upper end 83 of the tube 82 in the left half 81 a of the downstream core 80 is twisted to extend the upper end opening in the extending direction (axial direction) of the inlet 43 of the upper tank member 42. To match. The same applies to the right half (not shown).

このようにすれば、第1実施例の効果に加えて、クロス部57の下方に位置するクロス部47と、コア80の幅方向中間領域fに位置するチューブ82等の上端開口との接続が可能となり、冷媒の流通量が増大し、冷却能力が向上する。   In this way, in addition to the effects of the first embodiment, the connection between the cross portion 47 positioned below the cross portion 57 and the upper end opening of the tube 82 and the like positioned in the intermediate region f in the width direction of the core 80 is achieved. It becomes possible, the circulation amount of the refrigerant increases, and the cooling capacity is improved.

<第2実施例>
(構成)
図8及び図9を参照しつつ、第2実施例を説明する。第2実施例では、下流側コア110の左半分113と右半分116とは整列しているが、上流側コア120の左半分123と右半分126とが当該上流側コアの厚さ方向即ち風の流れ方向にずれている。これとの関係で、冷媒供給・排出部材(不図示)の冷媒排出通路はその途中で屈曲し、またタンク部材130はその軸直角方向即ち風の流れ方向でずれて配置された三つの部分から成る。
<Second embodiment>
(Constitution)
The second embodiment will be described with reference to FIGS. In the second embodiment, the left half 113 and the right half 116 of the downstream core 110 are aligned, but the left half 123 and the right half 126 of the upstream core 120 are in the thickness direction of the upstream core, that is, the wind. It is shifted in the flow direction. In relation to this, the refrigerant discharge passage of the refrigerant supply / discharge member (not shown) is bent in the middle thereof, and the tank member 130 is separated from the three parts arranged in the direction perpendicular to the axis, that is, in the wind flow direction. Become.

以下、説明は第1実施例と異なる構成を中心に行い、共通する構成は第1実施例の説明を流用する。   Hereinafter, the description will be focused on the configuration different from the first embodiment, and the description of the first embodiment will be used for the common configuration.

図8において、下流側コア110はチューブ111が隔設されて成り、幅方向一側コア部(以下「一側コア部」という)113と幅方向他側コア部(以下「他側コア部」という)116とを含み、両者は同一平面内にあり、幅方向で整列している。   In FIG. 8, the downstream core 110 is formed by separating the tubes 111, and includes a width direction one side core portion (hereinafter referred to as “one side core portion”) 113 and a width direction other side core portion (hereinafter referred to as “other side core portion”). 116, which are in the same plane and aligned in the width direction.

上流側コア120はチューブ121が隔設されて成り、一側コア部123と他側コア部126とを含む。厚さ方向で一側コア部123は一側コア部113から少し離れており、他側コア部126は他側コア部116に近接している。その結果、一側コア部123と他側コア部126とはこれらの厚さ方向にずれている。   The upstream core 120 is formed by separating tubes 121, and includes a one-side core portion 123 and an other-side core portion 126. In the thickness direction, the one-side core part 123 is slightly separated from the one-side core part 113, and the other-side core part 126 is close to the other-side core part 116. As a result, the one-side core portion 123 and the other-side core portion 126 are displaced in the thickness direction.

なお、冷媒供給・排出部材は下流側コア110及び上流側コア120の下端に配置され、第1チューブ111に連通する直線上の冷媒供給通路(不図示)と、途中で屈曲し第2チューブ121に連通された冷媒排出通路(不図示)とを有する。   Note that the refrigerant supply / discharge member is disposed at the lower ends of the downstream core 110 and the upstream core 120, a straight refrigerant supply passage (not shown) communicating with the first tube 111, and the second tube 121 bent in the middle. And a refrigerant discharge passage (not shown) communicated with the refrigerant.

図9において、タンク部材130はともにU字形状の二つのタンク部材132を含む。第1タンク部材132は、下流側コア110及び上流側コア120の上端に配置され、一側コア部113の第1チューブ111に連通された第1入口部133、他側コア部126の第2チューブ121に連通された第1出口部135、及び第1入口部133と第1出口部135とを接続するU字形状の第1接続部137を含む。第1入口部133と第1出口部135とは軸直角方向で近接(接触)し、第1接続部137は急激に折り返されている。チューブ111の上端は第1入口部133及び第2入口部143の軸方向にねじっている。   In FIG. 9, the tank member 130 includes two U-shaped tank members 132. The first tank member 132 is disposed at the upper ends of the downstream core 110 and the upstream core 120, and communicates with the first tube 111 of the one-side core portion 113 and the second inlet portion 133 of the other-side core portion 126. A first outlet 135 connected to the tube 121 and a U-shaped first connecting part 137 connecting the first inlet 133 and the first outlet 135 are included. The first inlet portion 133 and the first outlet portion 135 are close (contacted) in the direction perpendicular to the axis, and the first connection portion 137 is rapidly folded back. The upper end of the tube 111 is twisted in the axial direction of the first inlet portion 133 and the second inlet portion 143.

第2タンク部材142は、下流側コア110及び上流側コア120の上端に配置され、他側コア部114の第1チューブ111に連通された第2入口部143、一側コア部123のチューブ121に連通された第2出口部145、及び第2入口部143と第2出口部145とを接続するU字形状の第2接続部147を含む。第2入口部143と第2出口部145とは軸直角方向に少し離れ、第2接続部147は緩やかに湾曲している。チューブ121の上端は第1出口部135及び第2出口部145の軸方向にねじっている。   The second tank member 142 is disposed at the upper ends of the downstream core 110 and the upstream core 120, and the second inlet 143 communicated with the first tube 111 of the other core 114, and the tube 121 of the one core 123. A second outlet portion 145 communicated with the second outlet portion 145, and a U-shaped second connecting portion 147 connecting the second inlet portion 143 and the second outlet portion 145. The second inlet portion 143 and the second outlet portion 145 are slightly separated from each other in the direction perpendicular to the axis, and the second connecting portion 147 is gently curved. The upper end of the tube 121 is twisted in the axial direction of the first outlet part 135 and the second outlet part 145.

軸直角方向で、第1出口部135が短い第1入口部133及び第2入口部143と長い第2出口部145とで両側から挟まれている。軸方向で、短い第1入口部133と短い第2入口部143とが同一軸線上にあり、端部同士が対向している。長い第2出口部145の長さは短い第1入口部133の長さと第2入口部の長さとの合計程度であり、第1出口部135の長さは第1入口部133又は第2入口部143の長さと第2出口部135の長さとの平均程度である
(作用効果)
図8,図9において、冷媒は下流側コア110の左半分113のチューブ111内を上向きに流れる。チューブ111の上端において第1タンク部材132の第1入口部133に流入し第1接続部137をUターンし第1出口部135に流れる。その後、上流側コア120の右半分126のチューブ121を下降する。
In the direction perpendicular to the axis, the first outlet portion 135 is sandwiched between the short first inlet portion 133 and the second inlet portion 143 and the long second outlet portion 145 from both sides. In the axial direction, the short first inlet portion 133 and the short second inlet portion 143 are on the same axis, and the ends face each other. The length of the long second outlet part 145 is about the sum of the length of the short first inlet part 133 and the length of the second inlet part, and the length of the first outlet part 135 is the first inlet part 133 or the second inlet part. It is an average degree of the length of the part 143 and the length of the 2nd exit part 135. (Operation effect)
8 and 9, the refrigerant flows upward in the tube 111 in the left half 113 of the downstream core 110. At the upper end of the tube 111, it flows into the first inlet portion 133 of the first tank member 132, makes a U-turn at the first connection portion 137, and flows to the first outlet portion 135. Thereafter, the tube 121 in the right half 126 of the upstream core 120 is lowered.

これと同時に、下流側コア110の右半分116に供給される冷媒は右半分116のチューブ111内を上向きに流れ、上端において第2タンク部材142の第2入口部143に流入し第2接続部147をUターンして第2出口部145に流れる。その後、上流側コア120の左半分123のチューブ121を下降する。   At the same time, the refrigerant supplied to the right half 116 of the downstream core 110 flows upward in the tube 111 of the right half 116, flows into the second inlet 143 of the second tank member 142 at the upper end, and enters the second connection portion. 147 makes a U-turn and flows to the second outlet 145. Thereafter, the tube 121 in the left half 123 of the upstream core 120 is lowered.

第2実施例によれば、基本的に第1実施例と同様の効果が得られる。加えて、第1タンク部材142の接続部147及び第2タンク部材152の接続部157はともにU字形状を持つので、その製作が容易である。また、軸直角方向で、第1出口部135を第1入口部133及び第2入口部143と第2出口部145との間に配置したので、この方向の寸法を小さくできる。   According to the second embodiment, basically the same effect as the first embodiment can be obtained. In addition, since the connecting portion 147 of the first tank member 142 and the connecting portion 157 of the second tank member 152 have both U shapes, the manufacture thereof is easy. Further, since the first outlet portion 135 is disposed between the first inlet portion 133 and the second inlet portion 143 and the second outlet portion 145 in the direction perpendicular to the axis, the dimension in this direction can be reduced.

<変形例>
(1)図10に第2実施例の変形例を示す。この変形例は第2実施例と比べて、タンク部材150が渦巻き状の一本のパイプ部材から成る点が異なる。詳述すると、タンク部材150は、外周側の第1直線部155、内周側の第2直線部165及び両者をつなぐ第3直線部160を含む。三つの直線部155,160及び165は互いに接触し平行である。
<Modification>
(1) FIG. 10 shows a modification of the second embodiment. This modification is different from the second embodiment in that the tank member 150 is formed of a single spiral pipe member. More specifically, the tank member 150 includes a first straight portion 155 on the outer peripheral side, a second straight portion 165 on the inner peripheral side, and a third straight portion 160 that connects the two. The three straight portions 155, 160 and 165 are in contact with each other and are parallel.

第1直線部155は上流側に位置しその左半分に第2出口部156を有し、第3直線部165は下流側に位置し左半分の第1入口部161と右半分の第2入口部162とを有し、第3直線部165は第1出口部166を有する。第1直線部155と第3直線部160とがU字形状の接続部171で接続され、第3直線部160と第2直線部165とがU字形状の接続部172で接続されている。   The first straight part 155 is located on the upstream side and has a second outlet part 156 on the left half, and the third straight part 165 is located on the downstream side and the first inlet part 161 on the left half and the second inlet on the right half. And the third straight part 165 has a first outlet part 166. The first straight portion 155 and the third straight portion 160 are connected by a U-shaped connecting portion 171, and the third straight portion 160 and the second straight portion 165 are connected by a U-shaped connecting portion 172.

第2出口部156及び第1出口部166の構成は第2実施例と同じである。これに対して、第1入口部161及び第2入口部162が連続した第2直線部160の左半分及び右半分に形成され、両者間にセパレータ163が介在されている構成が異なる。   The configurations of the second outlet portion 156 and the first outlet portion 166 are the same as those of the second embodiment. In contrast, the first inlet 161 and the second inlet 162 are formed in the left half and the right half of the continuous second straight line 160, and the separator 163 is interposed between them.

この変形例によれば、第2実施例の効果に加えて、タンク部材150の一本のパイプで製作できるので、部品点数が少なくできる効果が得られる。   According to this modification, in addition to the effect of the second embodiment, the tank member 150 can be manufactured with a single pipe, so that the effect of reducing the number of parts can be obtained.

(2)なお、上記第2実施例では別々に配置されていた下流側コア110の左半分113のチューブと右半分116のチューブとを、図11に示すように一体化したコア180としても良い。このようにすれば、下流側コアの剛性が向上し、冷媒の通過音が更に抑制できる。   (2) In addition, it is good also as the core 180 which integrated the tube of the left half 113 of the downstream core 110 and the tube of the right half 116 which were arrange | positioned separately in the said 2nd Example, as shown in FIG. . If it does in this way, the rigidity of a downstream side core will improve and the passage sound of a refrigerant can be controlled further.

本発明の実施例が適用される車両用空調システムの説明図である。It is explanatory drawing of the vehicle air conditioning system to which the Example of this invention is applied. 本発明の第1実施例を示す斜視図である。1 is a perspective view showing a first embodiment of the present invention. 図2の要部拡大図である。It is a principal part enlarged view of FIG. (a)は上方タンク部材の製法説明図、(b)は(a)のクロス部の横断面図である。(A) is explanatory drawing of the manufacturing method of an upper tank member, (b) is a cross-sectional view of the cross part of (a). 第1実施例のコアのチューブの変形例を示す斜視図である。It is a perspective view which shows the modification of the tube of the core of 1st Example. 同じく第2変形例を示す斜視図である。It is a perspective view which similarly shows the 2nd modification. 第1実施例の上方タンク部材の変形例を示す斜視図である。It is a perspective view which shows the modification of the upper tank member of 1st Example. 本発明の第2実施例の第1コア及び第2コアのチューブ上端を示す斜視図である。It is a perspective view which shows the tube upper end of the 1st core and 2nd core of 2nd Example of this invention. 同じくタンク部材を示す斜視図である。It is a perspective view which similarly shows a tank member. 第2実施例のタンク部材の変形例を示す斜視図である。It is a perspective view which shows the modification of the tank member of 2nd Example. 第2実施例のコアの変形例を示す斜視図である。It is a perspective view which shows the modification of the core of 2nd Example. 本発明の基本概念を示す斜視図である。It is a perspective view which shows the basic concept of this invention. 従来の蒸発器を示す斜視図である。It is a perspective view which shows the conventional evaporator.

符号の説明Explanation of symbols

20:蒸発器 25:冷媒供給・排出部材
26:冷媒供給通路 28:冷媒排出通路
30:第1コア 32:第1チューブ
33a:幅方向一側 33b:幅方向他側
35:第2コア 37:第1チューブ
38a:幅方向一側 38b:幅方向他側
40:上方タンク部材 42:第1上方タンク部材
43:第1入口部 45:第1出口部
47:第1クロス部 52:第2上方タンク部材
53:第2入口部 55:第2出口部
57:第2クロス部
20: Evaporator 25: Refrigerant supply / discharge member 26: Refrigerant supply passage 28: Refrigerant discharge passage 30: First core 32: First tube 33a: One side in the width direction 33b: Other side in the width direction 35: Second core 37: First tube 38a: One side in the width direction 38b: The other side in the width direction 40: Upper tank member 42: First upper tank member 43: First inlet portion 45: First outlet portion 47: First cross portion 52: Second upper portion Tank member 53: second inlet portion 55: second outlet portion 57: second cross portion

Claims (17)

複数の第1チューブ(32)が隔設されて成る第1コア(30)と、
前記第1コアと並置され、複数の第2チューブ(37)が隔設されて成る第2コア(35)と、
前記第1コア及び前記第2コアの長さ方向一端に配置され、前記第1チューブに連通された冷媒供給通路(26)及び前記第2チューブに連通された冷媒排出通路(28)を有する冷媒供給・排出部材(25)と、
前記第1コア及び前記第2コアの長さ方向他端に配置され、前記第1コアの幅方向一側(33a)と該第2コアの幅方向他側(38b)とを連通する第1タンク部材と、
前記第1コア及び前記第2コアの長さ方向他端に配置され、該第1コアの幅方向他側(33b)と該第2コアの幅方向一側(38a)とを連通する第2タンク部材と、から成り、
前記第1タンク部材と前記第2タンク部材とはX字状に配置され、前記第1コアの幅方向一側を流れた冷媒が前記第1タンク部材を介して前記第2コアの幅方向他側に流れ、該第1コアの幅方向他側を流れた冷媒が該第2タンク部材を介して該第2コアの幅方向一側に流れることを特徴とする冷媒蒸発器。
A first core (30) formed by separating a plurality of first tubes (32);
A second core (35) juxtaposed with the first core, wherein a plurality of second tubes (37) are spaced apart;
A refrigerant that is disposed at one end in the longitudinal direction of the first core and the second core and has a refrigerant supply passage (26) communicated with the first tube and a refrigerant discharge passage (28) communicated with the second tube. A supply / discharge member (25);
The first core is disposed at the other end in the length direction of the first core and the second core, and communicates with the width direction one side (33a) of the first core and the width direction other side (38b) of the second core. A tank member;
The second core is disposed at the other end in the length direction of the first core and the second core, and communicates with the width direction other side (33b) of the first core and the width direction one side (38a) of the second core. A tank member,
The first tank member and the second tank member are arranged in an X shape, and the refrigerant that has flowed through one side in the width direction of the first core passes through the first tank member in the width direction of the second core, etc. The refrigerant evaporator is characterized in that the refrigerant flowing to the side and flowing on the other side in the width direction of the first core flows to one side in the width direction of the second core via the second tank member.
前記第1タンク部材(42)は管状で、前記第1コアの幅方向一側の前記第1チューブに連通された第1入口部(43)、前記第2コアの幅方向他側の前記第2チューブに連通された第1出口部(45)、及び該第1コアと該第2コアとの間を斜断するとともに該第1入口部と該第1出口部とを接続する第1クロス部(47)とを含み、
前記第2タンク部材(52)は管状で、前記第1コアの幅方向他側の前記第1チューブに連通された第2入口部(53)、前記第2コアの幅方向一側の前記第2チューブに連通された第2出口部(55)、及び該第1コアと該第2コアとの間を斜断するとともに前記第1クロス部と交差し該第2入口部と該第2出口部とを接続する第2クロス部(57)とを含む、請求項1に記載の冷媒蒸発器。
The first tank member (42) is tubular, and includes a first inlet portion (43) communicating with the first tube on one side in the width direction of the first core, and the first port on the other side in the width direction of the second core. A first outlet (45) communicating with the two tubes, and a first cross that obliquely cuts between the first core and the second core and connects the first inlet and the first outlet. Part (47),
The second tank member (52) is tubular and has a second inlet portion (53) communicated with the first tube on the other side in the width direction of the first core, and the second tank member (52) on the one side in the width direction of the second core. A second outlet portion (55) communicated with the two tubes, and a cross section between the first core and the second core and intersecting the first cross portion, and the second inlet portion and the second outlet. The refrigerant evaporator according to claim 1, further comprising a second cross part (57) connecting the parts.
前記第1クロス部及び前記第2クロス部は前記第1コア及び前記第2コアの幅方向で中央に位置し、幅に対して高さが小さい長円形状を持つている請求項2に記載の冷媒蒸発器。   The said 1st cross part and the said 2nd cross part are located in the center in the width direction of the said 1st core and the said 2nd core, and have an ellipse shape with small height with respect to a width | variety. Refrigerant evaporator. 前記第1タンク部材及び前記第2タンク部材は、引き抜き加工により又はプレス加工された二枚の板部材の接合により製作されたものである請求項3に記載の冷媒蒸発器。   The refrigerant evaporator according to claim 3, wherein the first tank member and the second tank member are manufactured by drawing or joining two pressed plate members. 前記第1コアの複数の前記第1チューブ及び前記第2コアの複数の前記第2チューブは互いに分離され、それぞれの一端で前記第1タンク部材及び前記第2タンク部材に連通されている請求項2に記載の冷媒蒸発器。   The plurality of first tubes of the first core and the plurality of second tubes of the second core are separated from each other and communicated with the first tank member and the second tank member at respective one ends. 2. The refrigerant evaporator according to 2. 前記第1コアの複数の前記第1チューブは複数のチューブ群から成り、各該チューブ群のチューブは相互に接続され、各該チューブ群の一端が前記第1タンク部材に連通され、
前記第2コアの複数の前記第2チューブは複数のチューブ群から成り、各該チューブ群のチューブは相互に接続され、各該チューブ群の一端が前記第2タンク部材に連通されている請求項2に記載の冷媒蒸発器。
The plurality of first tubes of the first core is composed of a plurality of tube groups, the tubes of each tube group are connected to each other, and one end of each tube group is communicated with the first tank member,
The plurality of second tubes of the second core includes a plurality of tube groups, the tubes of the tube groups are connected to each other, and one end of each of the tube groups is in communication with the second tank member. 2. The refrigerant evaporator according to 2.
第1チューブの一端及び第2チューブの一端は第1タンク部材及び第2タンクの軸方向にねじられている請求項2に記載の冷媒蒸発器。   The refrigerant evaporator according to claim 2, wherein one end of the first tube and one end of the second tube are twisted in the axial direction of the first tank member and the second tank. 前記冷媒供給・排出部材が下方に、前記第1タンク及び前記第2タンクが上方となるように設置され、風の流れ方向において前記第1コアが下流側に、前記第2コア部材が上流側に位置している請求項2に記載の冷媒蒸発器。   The refrigerant supply / discharge member is disposed below and the first tank and the second tank are disposed above, and the first core is located on the downstream side and the second core member is located on the upstream side in the wind flow direction. The refrigerant evaporator according to claim 2, which is located in 複数の第1チューブ(111)が隔設されて成り、その幅方向で整列した第1幅方向一側コア部(113)と第1幅方向他側コア部(116)とを含む第1コア(110)と、
複数の第2チューブ(121)が隔設されて成り、その厚さ方向で前記第1幅方向一側コア部から離れた第2幅方向一側コア部(123)と、厚さ方向で前記第1幅方向他側コア部に近接した第2幅方向他側コア部(126)とを含む第2コア(120)と、
前記第1コア及び前記第2コア部材の長さ方向一端に配置され、前記第1チューブに連通された冷媒供給通路及び前記第2チューブに連通された冷媒排出通路を有する冷媒供給・排出部材と、
前記第1コア及び前記第2コアの長さ方向他端に配置され、前記第1幅方向一側コア部と前記第2幅方向他側コア部とを連通するとともに、前記第1幅方向他側コア部と前記第2幅方向一側コア部とを連通するタンク部材(130)と、から成り、
前記第1幅方向一側コア部を流れた冷媒が前記タンク部材を介して前記第2幅方向他側コア部に流れ、前記第1幅方向他側コア部を流れた冷媒が該タンク部材を介して前記第2幅方向一側コア部に流れることを特徴とする冷媒蒸発器。
A first core including a first width direction one side core portion (113) and a first width direction other side core portion (116) which are formed by separating a plurality of first tubes (111) and are aligned in the width direction. (110),
A plurality of second tubes (121) are provided to be spaced apart from each other, the second width direction one side core portion (123) separated from the first width direction one side core portion in the thickness direction, and the thickness direction in the thickness direction. A second core (120) including a second width direction other side core portion (126) adjacent to the first width direction other side core portion;
A refrigerant supply / discharge member disposed at one end in the longitudinal direction of the first core and the second core member, and having a refrigerant supply passage communicated with the first tube and a refrigerant discharge passage communicated with the second tube; ,
The first core and the second core are arranged at the other end in the length direction and communicate with the first width direction one side core portion and the second width direction other side core portion, and the first width direction other side. A tank member (130) communicating the side core part and the second width direction one side core part,
The refrigerant that has flowed through the first width direction one core portion flows to the second width direction other core portion via the tank member, and the refrigerant that has flowed through the first width direction other core portion is the tank member. The refrigerant evaporator flows through the second width direction one-side core portion.
前記タンク部材は、前記第1幅方向一側コア部に連通された第1入口部(133)、その軸直角方向で該第1入口部に近接し前記第2幅方向他側コア部に連通された第1出口部(135)、及び該第1入口部と該第1出口部とを接続する第1接続部(137)を有するU字形状の第1タンク部材(132)と、
前記第1幅方向他側コア部に連通された第2入口部(143)、その軸直角方向で該第2入口部から少し離れ前記第2幅方向一側コア部に連通された第2出口部(145)、及び該第2入口部と該第2出口部とを接続する第2接続部(147)を有するU字形状の前記第2タンク部材(142)と、を含む請求項9に記載の冷媒蒸発器。
The tank member is connected to the first inlet portion (133) communicated with the first width direction one side core portion, and close to the first inlet portion in a direction perpendicular to the axis thereof and communicated with the second width direction other side core portion. A U-shaped first tank member (132) having a first outlet part (135) and a first connection part (137) connecting the first inlet part and the first outlet part;
A second inlet part (143) communicated with the first widthwise other side core part, a second outlet communicated with the second widthwise one side core part at a distance from the second inlet part in a direction perpendicular to the axis. And a U-shaped second tank member (142) having a second connection part (147) for connecting the second inlet part and the second outlet part. The refrigerant evaporator as described.
その軸方向で前記第1入口部と前記第2入口部とは整列し、その軸直角方向で該第1入口部及び該第2入口部と前記第2出口部との間に前記第1出口部が位置している請求項10に記載の冷媒蒸発器。   The first inlet and the second inlet are aligned in the axial direction, and the first outlet and the first outlet are between the first inlet and the second inlet and the second outlet in the direction perpendicular to the axis. The refrigerant evaporator according to claim 10, wherein the portion is located. 前記第1コアの第1幅方向一側コア部と第1幅方向他側コア部とは一体を成し、前記第2コアの第2幅方向一側コア部と第2幅方向他側コア部とは一体を成している請求項11に記載の冷媒蒸発器。   The first width direction one side core portion and the first width direction other side core portion of the first core are integrated, and the second width direction one side core portion and the second width direction other side core of the second core are integrated. The refrigerant evaporator according to claim 11, which is integral with the unit. 前記第1チューブ及び前記第2チューブの一端は、前記第1タンク部材及び前記第2タンク部材の軸方向にねじられている請求項9に記載の冷媒蒸発器。   The refrigerant evaporator according to claim 9, wherein one ends of the first tube and the second tube are twisted in an axial direction of the first tank member and the second tank member. 前記タンク部材は渦巻き状の一本の管部材から成り外周側の第1直線部(155)、内周側の第2直線部(165)、及び該第1直線部と該第2直線部との間の第3直線部(160)とを含み、該第1直線部が前記第2幅方向一側コア部に連通された第2出口部(156)を有し、該第2直線部が前記第2幅方向他側コア部に連通された第1出口部(166)を有し、該第3直線部が前記第1幅方向一側コア部に連通された第1入口部(161)及び前記第1幅方向他側コア部に連通された第2入口部(162)を有する請求項9に記載の冷媒蒸発器。   The tank member is formed of a single spiral tube member, the first straight portion (155) on the outer peripheral side, the second straight portion (165) on the inner peripheral side, and the first straight portion and the second straight portion. A first straight portion having a second outlet portion (156) communicated with the second widthwise one-side core portion, wherein the second straight portion is A first inlet portion (161) having a first outlet portion (166) communicated with the second widthwise other side core portion, wherein the third straight portion is communicated with the first widthwise one side core portion. The refrigerant evaporator according to claim 9, further comprising a second inlet portion (162) communicated with the first width-direction other-side core portion. 前記第1コアの第1幅方向一側コア部と第1幅方向他側コア部とは一体を成し、前記第2コアの第2幅方向一側コア部と第2幅方向他側コア部とは一体を成している請求項14に記載の冷媒蒸発器。   The first width direction one side core portion and the first width direction other side core portion of the first core are integrated, and the second width direction one side core portion and the second width direction other side core of the second core are integrated. The refrigerant evaporator according to claim 14, which is integral with the unit. 前記第1チューブ及び前記第2チューブの一端は、前記第1タンク部材及び前記第2タンク部材の軸方向にねじられている請求項14に記載の冷媒蒸発器。   The refrigerant evaporator according to claim 14, wherein one ends of the first tube and the second tube are twisted in an axial direction of the first tank member and the second tank member. 前記冷媒供給・排出部材が下方に、前記第1タンク及び前記第2タンクが上方となるように設置され、風の流れ方向において前記第1コアが下流側で、前記第2コア部材が上流側に位置している請求項10又は14に記載の冷媒蒸発器。   The refrigerant supply / discharge member is disposed below and the first tank and the second tank are disposed above, and the first core is on the downstream side and the second core member is on the upstream side in the wind flow direction. The refrigerant evaporator according to claim 10 or 14, wherein
JP2004209993A 2004-07-16 2004-07-16 Refrigerant evaporator Pending JP2006029697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004209993A JP2006029697A (en) 2004-07-16 2004-07-16 Refrigerant evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004209993A JP2006029697A (en) 2004-07-16 2004-07-16 Refrigerant evaporator

Publications (1)

Publication Number Publication Date
JP2006029697A true JP2006029697A (en) 2006-02-02

Family

ID=35896275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004209993A Pending JP2006029697A (en) 2004-07-16 2004-07-16 Refrigerant evaporator

Country Status (1)

Country Link
JP (1) JP2006029697A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132826A1 (en) * 2012-03-06 2013-09-12 株式会社デンソー Coolant evaporator
WO2014006897A1 (en) * 2012-07-04 2014-01-09 株式会社デンソー Refrigerant evaporator
WO2014068842A1 (en) * 2012-10-31 2014-05-08 株式会社デンソー Refrigerant evaporation device
WO2014181550A1 (en) * 2013-05-10 2014-11-13 株式会社デンソー Refrigerant evaporator
WO2014181547A1 (en) * 2013-05-10 2014-11-13 株式会社デンソー Refrigerant evaporator
WO2014181546A1 (en) * 2013-05-10 2014-11-13 株式会社デンソー Refrigerant evaporator
JP2014219176A (en) * 2013-05-10 2014-11-20 株式会社デンソー Refrigerant evaporator
WO2014188690A1 (en) * 2013-05-24 2014-11-27 株式会社デンソー Refrigerant evaporator
WO2014188689A1 (en) * 2013-05-20 2014-11-27 株式会社デンソー Refrigerant evaporator
JP2014228161A (en) * 2013-05-20 2014-12-08 株式会社デンソー Refrigerant evaporator
JP2015021665A (en) * 2013-07-18 2015-02-02 株式会社デンソー Refrigerant evaporator
CN104508419A (en) * 2012-09-19 2015-04-08 三菱重工汽车空调系统株式会社 Heat exchanger
JP2015111017A (en) * 2013-12-06 2015-06-18 株式会社デンソー Refrigerant evaporator
JP2017032262A (en) * 2015-02-27 2017-02-09 株式会社デンソー Refrigerant evaporator
JP2017067430A (en) * 2015-10-01 2017-04-06 株式会社デンソー Cold storage heat exchanger
WO2017057174A1 (en) * 2015-10-01 2017-04-06 株式会社デンソー Cold storage heat exchanger

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104160234A (en) * 2012-03-06 2014-11-19 株式会社电装 Coolant evaporator
JP2013185723A (en) * 2012-03-06 2013-09-19 Denso Corp Refrigerant evaporator
US9631841B2 (en) 2012-03-06 2017-04-25 Denso Corporation Refrigerant evaporator
CN104160234B (en) * 2012-03-06 2016-08-24 株式会社电装 Refrigerant evaporator
WO2013132826A1 (en) * 2012-03-06 2013-09-12 株式会社デンソー Coolant evaporator
WO2014006897A1 (en) * 2012-07-04 2014-01-09 株式会社デンソー Refrigerant evaporator
CN104508419A (en) * 2012-09-19 2015-04-08 三菱重工汽车空调系统株式会社 Heat exchanger
US9995513B2 (en) 2012-10-31 2018-06-12 Denso Corporation Refrigerant evaporator
JP2014089012A (en) * 2012-10-31 2014-05-15 Denso Corp Refrigerant evaporator
WO2014068842A1 (en) * 2012-10-31 2014-05-08 株式会社デンソー Refrigerant evaporation device
CN104769383A (en) * 2012-10-31 2015-07-08 株式会社电装 Refrigerant evaporation device
WO2014181547A1 (en) * 2013-05-10 2014-11-13 株式会社デンソー Refrigerant evaporator
JP2014219176A (en) * 2013-05-10 2014-11-20 株式会社デンソー Refrigerant evaporator
JP2014219174A (en) * 2013-05-10 2014-11-20 株式会社デンソー Refrigerant evaporator
US10168084B2 (en) 2013-05-10 2019-01-01 Denso Corporation Refrigerant evaporator
WO2014181546A1 (en) * 2013-05-10 2014-11-13 株式会社デンソー Refrigerant evaporator
US9951996B2 (en) 2013-05-10 2018-04-24 Denso Corporation Refrigerant evaporator
WO2014181550A1 (en) * 2013-05-10 2014-11-13 株式会社デンソー Refrigerant evaporator
CN105190201A (en) * 2013-05-10 2015-12-23 株式会社电装 Refrigerant evaporator
US10161659B2 (en) 2013-05-20 2018-12-25 Denso Corporation Refrigerant evaporator
JP2014228161A (en) * 2013-05-20 2014-12-08 株式会社デンソー Refrigerant evaporator
WO2014188689A1 (en) * 2013-05-20 2014-11-27 株式会社デンソー Refrigerant evaporator
CN105229394A (en) * 2013-05-20 2016-01-06 株式会社电装 Refrigerant evaporator
US10107532B2 (en) 2013-05-24 2018-10-23 Denso Corporation Refrigerant evaporator having a tank external refrigerant space
JP2014228234A (en) * 2013-05-24 2014-12-08 株式会社デンソー Refrigerant evaporator
WO2014188690A1 (en) * 2013-05-24 2014-11-27 株式会社デンソー Refrigerant evaporator
JP2015021665A (en) * 2013-07-18 2015-02-02 株式会社デンソー Refrigerant evaporator
JP2015111017A (en) * 2013-12-06 2015-06-18 株式会社デンソー Refrigerant evaporator
JP2017032262A (en) * 2015-02-27 2017-02-09 株式会社デンソー Refrigerant evaporator
WO2017057174A1 (en) * 2015-10-01 2017-04-06 株式会社デンソー Cold storage heat exchanger
CN108139173A (en) * 2015-10-01 2018-06-08 株式会社电装 cold-storage heat exchanger
JP2017067430A (en) * 2015-10-01 2017-04-06 株式会社デンソー Cold storage heat exchanger
CN108139173B (en) * 2015-10-01 2020-03-24 株式会社电装 Cold storage heat exchanger
US10696128B2 (en) 2015-10-01 2020-06-30 Denso Corporation Cold storage heat exchanger
DE112016004451B4 (en) 2015-10-01 2022-06-02 Denso Corporation cold storage heat exchanger

Similar Documents

Publication Publication Date Title
US7398820B2 (en) Evaporator
US8302673B2 (en) Parallel flow evaporator with spiral inlet manifold
US6827139B2 (en) Heat exchanger for exchanging heat between internal fluid and external fluid and manufacturing method thereof
JP4554144B2 (en) Evaporator
US8550153B2 (en) Heat exchanger and method of operating the same
JP2006029697A (en) Refrigerant evaporator
JP5142109B2 (en) Evaporator
JP4211998B2 (en) Heat exchanger plate
EP3290851B1 (en) Layered header, heat exchanger, and air conditioner
US7044205B2 (en) Layered heat exchangers
US5099913A (en) Tubular plate pass for heat exchanger with high volume gas expansion side
US8167028B2 (en) Heat exchanger fin with planar crests and troughs having slits
US20110132585A1 (en) Heat exchanger tube configuration for improved flow distribution
US20040134645A1 (en) Layered heat exchangers
US6431264B2 (en) Heat exchanger with fluid-phase change
US6814135B2 (en) Stacked-type evaporator
JPH10325645A (en) Refrigerant evaporator
EP2982924A1 (en) Heat exchanger
JP2008224213A (en) Evaporator
JP2004125352A (en) Heat exchanger
JP2006105581A (en) Laminated heat exchanger
CN107208948A (en) Refrigerant evaporator
JP2002350002A (en) Condenser
JP2007040605A (en) Heat exchanger for multistage compression type refrigeration cycle device
JP2006112732A (en) Small diameter heat transfer tube unit of small diameter tube heat exchanger