[go: up one dir, main page]

WO2014178654A1 - Semiconductor light emitting diode, method for manufacturing semiconductor light emitting diode, and backlight unit comprising semiconductor light emitting diode - Google Patents

Semiconductor light emitting diode, method for manufacturing semiconductor light emitting diode, and backlight unit comprising semiconductor light emitting diode Download PDF

Info

Publication number
WO2014178654A1
WO2014178654A1 PCT/KR2014/003865 KR2014003865W WO2014178654A1 WO 2014178654 A1 WO2014178654 A1 WO 2014178654A1 KR 2014003865 W KR2014003865 W KR 2014003865W WO 2014178654 A1 WO2014178654 A1 WO 2014178654A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting device
semiconductor light
metal substrate
electrode
Prior art date
Application number
PCT/KR2014/003865
Other languages
French (fr)
Korean (ko)
Inventor
안상정
Original Assignee
주식회사 세미콘라이트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130048112A external-priority patent/KR101455813B1/en
Priority claimed from KR1020130066531A external-priority patent/KR101506291B1/en
Application filed by 주식회사 세미콘라이트 filed Critical 주식회사 세미콘라이트
Publication of WO2014178654A1 publication Critical patent/WO2014178654A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/857Interconnections, e.g. lead-frames, bond wires or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/036Manufacture or treatment of packages
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/852Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/855Optical field-shaping means, e.g. lenses
    • H10H20/856Reflecting means

Definitions

  • the present invention relates to a semiconductor light emitting device, a method for manufacturing a semiconductor light emitting device, and a backlight unit including a semiconductor light emitting device.
  • the present invention relates to a semiconductor light emitting device and a method of manufacturing the semiconductor light emitting device that can be applied to the unit, and a backlight unit of a side view type.
  • the liquid crystal display device is a display device having various advantages such as small size, light weight, and low power consumption, and is used for various applications such as a liquid crystal display device for a mobile communication terminal, a monitor for a notebook PC, a monitor for a desktop PC, and a large flat panel TV.
  • 1 is a view schematically showing a liquid crystal display device having a conventional top view backlight unit.
  • 2 is a schematic view of a liquid crystal display device having a conventional side view backlight unit.
  • the liquid crystal display device includes a liquid crystal panel 10 and a backlight unit 30. Since the liquid crystal panel 10 included in the liquid crystal display device is mostly composed of a light receiving element that displays an image by controlling the amount of light coming from the outside, the liquid crystal display device is used to irradiate light to the liquid crystal panel 10. The backlight unit 30 is required.
  • the backlight unit 30 provides light to the liquid crystal panel 10, and the provided light passes through the liquid crystal panel 10.
  • the liquid crystal panel 10 implements an image by adjusting the light transmittance.
  • the backlight unit 30 may include a light source assembly 35 and may be classified into a top view method and a side view method according to the arrangement of the light source assembly 40.
  • a light source assembly 35 including a circuit board 31 and a plurality of light sources 33 is disposed on a rear surface of the liquid crystal panel 10, and a plurality of light sources 33 are provided.
  • the light emitted from the? Is provided to the front liquid crystal panel 10 directly through the diffusion plate 25.
  • a light source assembly 35 including a circuit board 31 and a plurality of light sources 33 is disposed on a side of the light guide plate 45 for guiding light, and a liquid crystal panel.
  • the light guide plate 45 disposed on the rear surface of the light source 10 provides light in a manner of guiding light entering the side surface of the light guide plate 45 toward the liquid crystal panel 10 forwardly.
  • the side view method has various advantages such as better light uniformity, longer endurance life, and an advantage in making the liquid crystal display device thinner.
  • an electro luminescence (EL), a cold cathode fluorescent lamp (CCFL), a hot cathode fluorescent lamp (HCFL), a semiconductor light emitting device, or the like may be used.
  • semiconductor light emitting devices have advantages of low power consumption and excellent luminous efficiency, and are increasingly used as they are suitable for miniaturization and slimming of information and communication devices.
  • a thinner liquid crystal display device is required according to a slimming trend, and a light source assembly of a side view type that uses a semiconductor light emitting device as a light source, which is advantageous for slimming the liquid crystal display device, is mainly used. It is used.
  • a liquid crystal display device having a slimmer structure is realized by using a semiconductor light emitting device as a light source and configuring a light source assembly in a side view method, there is still a need for a slimmer liquid crystal display device.
  • a light source assembly having a thickness of 1 mm or less and further 0.5 mm or less.
  • the 3 is a view illustrating an example of a conventional side view backlight unit, and the light source assembly 35 is disposed to face the side surface 41 of the light guide plate 45 and the light guide plate 45. It is provided with a light source 33 is fixed to the circuit board 31 to emit light toward the side of.
  • the light source 33 is configured in the form of a semiconductor light emitting device package and includes a housing 37 including a semiconductor light emitting device chip 34 and a cavity 36 for receiving the semiconductor light emitting device chip 34.
  • the width of the circuit board 31 should be smaller than the required thickness of the light source assembly 35 and the dimension of either the width or length of the semiconductor light emitting device chip 34 is at least 0.2 mm. In this case, it will be appreciated that it is not easy to implement the light source assembly 35 having such a structure with a thickness of about 1 mm.
  • FIG. 4 is a view illustrating another example of a conventional side view backlight unit, wherein the light source assembly 35 is laid down to be perpendicular to the side 41 of the light guide plate 45, and a circuit board.
  • a light source 33 fixed above and a reflector 38 for reflecting the light emitted from the light source 33 toward the side surface 41 of the light guide plate 45 are provided.
  • the light source 33 is provided in the form of a semiconductor light emitting device chip. This structure removes the constraints caused by the width of the circuit board 31 by laying the circuit board 31 on its side, and uses the thickness of the semiconductor light emitting device chip used as the light source to be smaller than the horizontal and vertical dimensions. It is intended to make the assembly 35 thin.
  • the emission surface of the light source 33 in the form of a semiconductor light emitting device chip is perpendicular to the side surface 41 of the light guide plate 45, the light emitted from the semiconductor light emitting device chip is transferred to the side surface 41 of the light guide plate 45.
  • a reflector 38 is a factor of increasing the thickness of the light source assembly 35, and thus there is a limit in forming a thin light source assembly 35 having such a structure.
  • a gap and a first conductive portion disposed to face each other with a gap therebetween and electrically separated by the gap And a second substrate, the metal substrate being formed in a hexahedron shape having an upper surface, a lower surface, a front surface, a rear surface, a left surface, and a right surface;
  • a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, an active layer interposed between the first semiconductor layer and the second semiconductor layer and generating light by recombination of electrons and holes
  • a semiconductor light emitting device chip having a first electrode electrically connected to the first semiconductor layer and a second electrode electrically connected to the second semiconductor layer, the semiconductor light emitting device chip being fixed to an upper surface of the metal substrate;
  • a reflector formed to surround a semiconductor light emitting device chip on an upper surface of the metal substrate;
  • an encapsulation portion formed to cover an upper surface of the reflective portion and an upper surface of
  • the first conductive portion and the second conductive portion, and the first conductive portion and the second conductive portion are formed between the first conductive portion and the second conductive portion.
  • a backlight unit includes: a light guide plate configured to guide light incident on one side to an upper surface; A circuit board lying on one side of the light guide plate; And a gap, and a hexahedron shape having a first conductive part and a second conductive part disposed to face side surfaces with the gap interposed therebetween and electrically separated by the gap, and having an upper surface, a lower surface, a front surface, a rear surface, a left surface, and a right surface.
  • a metal substrate formed between the first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, and a first semiconductor layer and a second semiconductor layer interposed therebetween to recombine electrons and holes.
  • a semiconductor light emitting device chip comprising: an active layer for generating light by using light, a first electrode electrically connected to the first semiconductor layer, and a second electrode electrically connected to the second semiconductor layer, and fixed to an upper surface of the metal substrate;
  • a metal substrate including a reflector formed to surround a circumference of the semiconductor light emitting device chip on an upper surface of the substrate, and an encapsulation formed to cover an upper surface of the reflector and a top surface of the semiconductor light emitting device chip;
  • the first or second conductive part facing the upper surface of the circuit board is fixed to the upper surface of the circuit board so that the front or rear surface of the substrate is laid so as to face the upper surface of the circuit board and the upper surface of the metal substrate faces one side of the light guide plate.
  • a backlight unit comprising a; semiconductor light emitting device electrically connected to a circuit board through each front or rear surface.
  • a backlight unit includes: a light guide plate configured to guide light incident on one side to an upper surface; A circuit board lying on one side of the light guide plate; And a first conductive part and a second conductive part disposed to face side surfaces with a gap and a gap therebetween, and electrically separated by the gap, and having a top surface, a bottom surface, a front surface, a rear surface, a left side surface, and a right side surface.
  • An encapsulation part is formed on the upper surface side of the substrate to cover the semiconductor light emitting device chip.
  • the front or rear surface of the metal substrate is laid down to face the upper surface of the circuit board, and the upper surface of the metal substrate is illustrated.
  • a backlight unit comprising:
  • FIG. 1 is a view schematically showing a liquid crystal display device having a conventional top view backlight unit
  • FIG. 2 is a schematic view of a liquid crystal display device having a conventional side view backlight unit
  • FIG. 3 is a view illustrating an example of a conventional side view backlight unit
  • FIG. 4 is a view showing another example of a conventional side view backlight unit
  • FIG. 5 illustrates an example of a semiconductor light emitting device according to the present disclosure
  • FIG. 6 is a cross-sectional view illustrating the semiconductor light emitting device of FIG. 5;
  • FIG. 7 illustrates another example of a semiconductor light emitting device according to the present disclosure
  • FIG. 8 is a view showing another example of a semiconductor light emitting device according to the present disclosure.
  • FIG. 9 to 15 are views illustrating an example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
  • 16 is a view illustrating an example of a backlight unit including a semiconductor light emitting device according to the present disclosure
  • FIG. 17 is a plan view illustrating a main part of the backlight unit of FIG. 16;
  • FIG. 18 is a cross-sectional view taken along the line A-A of FIG. 17;
  • FIG. 19 is a view showing another example of a semiconductor light emitting device configuring a backlight unit according to the present disclosure.
  • FIG. 20 illustrates another example of a semiconductor light emitting device constituting the backlight unit according to the present disclosure.
  • FIG. 5 is a diagram illustrating an example of a semiconductor light emitting device according to the present disclosure
  • FIG. 6 is a cross-sectional view illustrating the semiconductor light emitting device of FIG. 5.
  • the semiconductor light emitting device 150 includes a metal substrate 155, a semiconductor light emitting device chip 165, a reflector 170, and an encapsulation 175.
  • the metal substrate 155 includes a first conductive portion 151 and a second conductive portion 152 that face side surfaces with the gap 153 and the gap 153 interposed therebetween.
  • the first conductive portion 151 and the second conductive portion 152 are electrically insulated by the gap 153.
  • the metal substrate 155 is formed in a hexahedral shape having an upper surface 154, a lower surface 156, a front surface 157, a rear surface 158, a left surface 159, and a right surface 161.
  • the metal substrate 155 is not required, but the dimension (or distance) z between the upper surface 154 and the lower surface 156 than the dimension (or distance) y between the front surface 157 and the rear surface 158. Is larger.
  • the semiconductor light emitting device chip 165 may include a first semiconductor layer having a first conductivity (eg, n-type), a second semiconductor layer having a second conductivity (eg, p-type) different from the first conductivity, and a first semiconductor layer.
  • An active layer interposed between the second semiconductor layers and generating light by recombination of electrons and holes, a first electrode 171 electrically connected to the first semiconductor layer, and a second electrode electrically connected to the second semiconductor layer 172 is provided.
  • the semiconductor light emitting device chip 165 is provided in a flip chip form. Therefore, the semiconductor light emitting device chip 165 is disposed such that the first electrode 171 and the second electrode 172 are disposed below the upper surface 154 of the metal substrate 155. On the top surface 154 of the metal substrate 155, the first electrode 171 is bonded to the first conductive portion 151, and the second electrode 172 is bonded to the second conductive portion 152.
  • the semiconductor light emitting device chip 165 is formed in an elongated shape having a long side a and a short side b.
  • the semiconductor light emitting device chip 165 is disposed on the top surface 154 of the metal substrate 155 such that the long side a extends in the left and right directions x of the metal substrate 155.
  • the dimension y between the front surface 157 and the rear surface 158 of the metal substrate 155 may be thin enough to be close to the short side length b of the semiconductor light emitting device chip 165. That is, a semiconductor light emitting device 150 may be provided having a dimension y between a front surface and a back surface that is thin enough to approach the short side length b of the semiconductor light emitting device chip 165.
  • the reflector 170 may include a white resin having high reflection efficiency.
  • the reflector 170 is formed to surround the semiconductor light emitting device chip 165 on the top surface 154 of the metal substrate 155.
  • the reflector 170 reflects the light emitted from the side surface of the semiconductor light emitting device chip 165 so that the light generated in the active layer is emitted only through the top surface of the semiconductor light emitting device chip 165. Therefore, the light emitted from the semiconductor light emitting device chip 165 has directivity toward the upper surface side.
  • 6 illustrates an example in which the upper surface of the reflector 170 and the upper surface of the semiconductor light emitting device chip 165 have the same height, the upper surface of the reflector 170 is higher than the upper surface of the semiconductor light emitting device chip 165. It may be formed or may be formed lower than the upper surface of the semiconductor light emitting device chip 165.
  • the encapsulation part 175 includes a resin of a transparent material and a phosphor, and is formed to cover the upper surface of the semiconductor light emitting device chip 165 and the upper surface of the reflector 170.
  • Peripheral surfaces of the reflector 170 and the encapsulation 175 front surface 181, rear surface 182, left side surface 183, right side surface 184) and the peripheral surface of the metal substrate 155 (front surface 157) ,
  • the back surface 158, the left surface 159, the right surface 161 is formed as a continuous surface, and is also a cut surface formed by a cutting process.
  • FIG. 7 is a view illustrating another example of the semiconductor light emitting device according to the present disclosure, and a filler 147 may be provided in the gap 153 of the metal substrate 155.
  • the gap 153 may be completely filled with the filler 147 or may be partially filled.
  • Filler 147 should be made of an insulating material.
  • Filler 147 may contain phosphors.
  • the filler 147 may contain a white resin together with or in place of the phosphor. Due to the filler 147, the reflection efficiency of the semiconductor light emitting device 150 may be improved.
  • FIG. 8 is a view illustrating another example of a semiconductor light emitting device according to the present disclosure, in which the semiconductor light emitting device chip 165 is bonded to a metal material positioned below the first electrode 171 and the second electrode 172, respectively.
  • Pads 141 and 142 may be provided.
  • the semiconductor light emitting device chip 165 may be bonded to the top surface 154 of the metal substrate 155 by a Jewish bonding method. Therefore, in the completed semiconductor light emitting device 150, a bonding pad 141 is positioned between the first electrode 171 and the first conductive portion 151 of the metal substrate 155, and the second electrode 172 and the metal The bonding pads 142 are positioned between the second conductive portions 152 of the substrate 155.
  • 9 to 15 are diagrams showing an example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.
  • a metal plate 155 ′ is prepared as a part of the metal substrate 155.
  • the plate 155 ' includes a plurality of grooves 153', so that the upper surface 154 'of the plate 155 is divided into a plurality of regions. Divided.
  • one side of the groove 153 ′ is the first conductive portion and the other side is the second conductive portion based on the groove 153 ′.
  • the groove 153 ′ may be formed to have a predetermined depth through a wet etching method or a dry etching method, or a mechanical cutting method using a blade or a wire.
  • the material of the plate 155 ′ is not particularly limited as long as it is a conductive metal or a conductive semiconductor, and materials such as W, Mo, Ni, Al, Zn, Ti, Cu, Si, and the like and an alloy form including at least one of them And, considering the electrical conductivity, thermal conductivity, reflectance, soldering properties, etc., Cu or Cu-based alloys are suitable examples.
  • a plurality of semiconductor light emitting device chips 165 are fixed along the grooves 153 ', as illustrated in FIGS. 9 and 10.
  • the semiconductor light emitting device chip 165 is positioned over the groove 153 ′.
  • the first electrode 171 is formed on the top surface 154 'of the plate 155' on the left side of the groove 153 'based on the groove 153'.
  • the second electrode 172 is bonded to the upper surface 154 ′ of the plate 155 ′ on the right side of the groove 153 ′.
  • Such bonding may be performed using Ag paste, or various methods already known in the semiconductor light emitting device art may be used.
  • the reflector 170 ′ is dispensed on the entire upper surface 154 ′ of the plate 155 ′ so as to cover all the semiconductor light emitting device chips 165, and the reflector 170 ′.
  • the reflector 170 ′ may include a liquid white resin having high reflection efficiency.
  • the reflector 170 ′ is dispensed to a level slightly higher than the height of the top surface of the semiconductor light emitting device chip 165 so that the spaces between the semiconductor light emitting device chips 165 are filled with space. Therefore, all of the peripheral surfaces of the semiconductor light emitting device chip 165 are covered with the reflector 170 ′.
  • the reflective agent 170 ′ hardened to the height of the upper surface of the semiconductor light emitting device chip 165 may be partially removed to expose the upper surface of the semiconductor light emitting device chip 165.
  • Removal of the cured reflector 170 ' may be removed using a mechanical method such as brushing, lapping, polishing or CMP.
  • a mechanical method such as brushing, lapping, polishing or CMP.
  • the white resin can be easily removed because the hardness is relatively low even when cured.
  • the upper surface of the reflector 170 and the upper surface of the semiconductor light emitting device chip 165 have the same height.
  • the sealing agent 175 ' is dispensed so that the upper surface of all the semiconductor light emitting element chips 165 and the reflecting agent may be covered, and this sealing agent 175' is hardened.
  • the encapsulant 175 ' may include a liquid transparent resin material such as silicon and the like.
  • the lower portion of the plate 155 ′ is partially removed so that the groove 153 ′ provided in the plate 155 ′ is exposed to the lower surface 156 side of the plate 155 ′. That is, the plate 155 ′ is polished and / or wrapped on the lower surface 156 ′ so that the groove 153 ′ is exposed to the lower surface 156 ′ of the plate 155 ′.
  • the groove 153 ' is exposed to the lower surface 156' of the plate 155 'and is opened, two portions of the plate 155' facing the side with one groove 153 'interposed therebetween Are electrically insulated from each other.
  • the cured reflector 170 ′, the encapsulant 175 ′, and the plate 155 ′ are cut together along the predetermined boundary B of the semiconductor light emitting device on a plane to separate the semiconductors.
  • the light emitting element 150 is completed.
  • the semiconductor light emitting device chip 165 is fixed to the upper surface of the plate 155 'and covered with the reflector 170' and the encapsulant 175 ', and the lower portion of the plate 155'. Is partially removed to expose the grooves 153 'and then cut along the boundaries of the individual semiconductor light emitting devices to form the metal substrate 155.
  • the groove 153 ′ is a gap 153 of the metal substrate 155, and two portions facing the side surface with the gap 153 interposed therebetween have a first conductive portion 151 and a second portion of the metal substrate 155. It becomes the conductive part 152.
  • the reflector 170 'and the encapsulant 175' are cut together with the plate 155 'to form the reflector 170 and the encapsulation 175 of the individual semiconductor light emitting device.
  • the cutting of the plate 155 ', the reflector 170' and the encapsulant 175 ' is performed at the same time, and thus, as shown in FIG. 5, the reflector 170 and the encapsulation ( 175 circumferential surface (front surface 181, rear surface 182, left side surface 183, right side surface 184) and circumferential surface of front surface of metal substrate 10 ′ (front surface 157, rear surface 158, left side surface 159 and the right side 161 form a continuous surface formed of a cut surface.
  • the semiconductor light emitting device 150 is manufactured to have a dimension y between the thin front surface 157 and the rear surface 158 proximate the short side length b of the semiconductor light emitting device chip 165. can do.
  • 16 is a diagram illustrating an example of a backlight unit including a semiconductor light emitting device according to the present disclosure.
  • the backlight unit includes a light guide plate 110, a circuit board 130, and a semiconductor light emitting device 150.
  • the light guide plate 110 guides the light incident on one side 111 to the top surface 113. Light emitted from the upper surface 113 of the light guide plate 110 is provided to the liquid crystal panel 10 (see FIG. 2).
  • the circuit board 130 is disposed in parallel with the light guide plate 110 on one side 111 side of the light guide plate 110, and the semiconductor light emitting device 150 is laid on the upper surface 131 of the circuit board 130.
  • the light exit surface 149 is fixed to face the side surface 111 of the light guide plate 110 to form the light source assembly 120.
  • the dimension y between the front surface 157 and the rear surface 158 of the semiconductor light emitting device 150 is shown. Is an important factor for determining the thickness of the light source assembly 120, it is appropriate to be within the range of 50um to 1000um. This is because when the dimension y between the front surface 157 and the rear surface 158 is 50um or less, it is not easy to design an efficient chip, and when it is 1000um or more, the existing technology can be sufficiently realized. In addition, the dimension z between the upper surface 154 and the lower surface 156 of the semiconductor light emitting device 150 is appropriately within the range of 100um to 2000um.
  • FIG. 17 is a plan view illustrating a main part of the backlight unit of FIG. 16, and FIG. 18 is a cross-sectional view taken along a line A-A of FIG. 17.
  • the circuit board 130 is disposed to lie in parallel with the light guide plate 110 on one side 111 side of the light guide plate 110.
  • the semiconductor light emitting device 150 may include a front surface 157 or a rear surface 158 of the metal substrate 155 lying down to face the top surface 131 of the circuit board 130, and the top surface 154 of the metal substrate 155 may be disposed.
  • the upper surface 131 of the circuit board 130 is fixed to face one side 111 of the light guide plate 110. Therefore, the light exit surface 149 of the semiconductor light emitting device 150 faces the side surface 111 of the light guide plate 110.
  • the first conductive portion may be disposed on the front surface 157 or the rear surface 158 of the metal substrate 155 facing the upper surface 131 of the circuit board 130 instead of the bottom surface 156 of the metal substrate 155.
  • the 151 and the second conductive portion 152 are electrically connected to the circuit board 130, respectively.
  • the metal substrate 155 has a dimension z between the upper surface 154 and the lower surface 156 larger than the dimension y between the front surface 157 and the rear surface 158, the front surface of the metal substrate 155 A sufficient contact area can be secured between the first conductive portion 151 and the second conductive portion 152 and the upper surface 131 of the circuit board 130 at the 157 or the rear surface 158, such as soldering or the like. When bonding in a manner, the reliability of the coupling between the semiconductor light emitting device 150 and the circuit board 130 may be improved.
  • the circuit board 130 is disposed to lie in parallel with the light guide plate 110, and the semiconductor light emitting device 150 is thin between the front and rear surfaces such that the semiconductor light emitting device 150 is close to the short side length b of the semiconductor light emitting device chip 165.
  • the semiconductor light emitting device 150 is laid down and fixed so that the front surface 157 or the rear surface 158 of the metal substrate 155 contacts the upper surface 131 of the circuit board 130.
  • the thickness T of the light source assembly 120 to be slimmed is equal to the thickness t of the circuit board 130. It corresponds to the sum of the dimension y between the front surface 157 and the rear surface 158 of the light emitting device 150.
  • the dimension y between the front surface 157 and the rear surface 158 of the semiconductor light emitting device 150 surrounds the short side length b of the semiconductor light emitting device chip 165 and the circumference of the semiconductor light emitting device chip 165.
  • the circuit board 130 may not only be formed very thin but also have a limited effect on the thickness T of the light source assembly 120 as it is laid down.
  • the front surface of the metal substrate 155 includes a reflector 170 which reflects light emitted from the side surface of the semiconductor light emitting device 150 to emit light having high directivity through the light exit surface 149. And having a very thin semiconductor light emitting device 50 corresponding to the dimension y between the 157 and the back surface 158, and placing the semiconductor light emitting device 150 on the upper surface 131 of the circuit board 130. do. Accordingly, a light source assembly 120 having a significantly thin thickness, that is, a significantly thin backlight unit suitable for the slimming trend of the liquid crystal display device may be provided.
  • FIG. 19 is a view illustrating another example of a semiconductor light emitting device constituting the backlight unit according to the present disclosure, wherein the semiconductor light emitting device chip 165 is positioned below the first electrode 171 and the second electrode 172, respectively.
  • Bonding pads 141 and 142 may be provided. By using the bonding pads 141 and 142, the semiconductor light emitting device chip 165 may be bonded to the upper surface 154 of the metal substrate 155 by a Jewish bonding method. Therefore, in the completed semiconductor light emitting device 150, a bonding pad 141 is positioned between the first electrode 171 and the first conductive portion 151 of the metal substrate 155, and the second electrode 172 and the metal The bonding pads 142 are positioned between the second conductive portions 152 of the substrate 155.
  • FIG. 20 is a view illustrating another example of a semiconductor light emitting device constituting the backlight unit according to the present disclosure.
  • a lateral chip is used as the semiconductor light emitting device chip 165.
  • the semiconductor light emitting device chip 165 is disposed such that the first electrode 171 and the second electrode 172 are positioned above.
  • the semiconductor light emitting device chip 165 is positioned over the gap 153.
  • the first electrode 171 is connected to the upper surface of the first conductive portion 151 by wire bonding
  • the second electrode 172 is connected to the upper surface of the second conductive portion 152 by wire bonding. Accordingly, in the completed semiconductor light emitting device, the first electrode 171 is electrically connected to the first conductive portion 151 by the wire 176, and the second electrode 172 is second by the wire 177. It is electrically connected to the conductive portion 152.
  • the semiconductor light emitting device chip 165 may be disposed so as not to span the gap 153.
  • the semiconductor light emitting device chip 165 is different from the first conductive part 151 and the second conductive part 152, except that the first electrode 171 is connected to the wire 176.
  • the first conductive portion 151 is electrically connected to each other, and the second electrode 172 is electrically connected to the second conductive portion 152 by the wire 177.
  • a semiconductor light emitting chip in the form of a vertical chip may also be used.
  • the semiconductor light emitting device chip is positioned on the first conductive part 151 or the second conductive part 152, and one electrode positioned below the semiconductor light emitting device chip is the first conductive part 151 and the second conductive part.
  • the other electrode which is directly bonded to one of the portions 152 and positioned on the semiconductor light emitting device chip is bonded to the other of the first conductive portion 151 and the second conductive portion 152 by a wire bonding method. .
  • a semiconductor light emitting element characterized in that the metal substrate has a larger dimension between the upper and lower surfaces than the dimension between the front and rear surfaces.
  • a semiconductor light emitting element chip having a long side and a short side, the semiconductor light emitting element characterized in that the long side is placed on the upper surface of the metal substrate so as to extend in the left and right direction of the metal substrate.
  • a semiconductor light emitting element characterized in that a filler is provided in the gap.
  • a semiconductor light emitting element characterized in that the circumferential surfaces (front, rear, left and right surfaces) of the metal substrate, the circumferential surface of the reflecting portion and the circumferential surface of the encapsulation portion are continuously connected.
  • the semiconductor light emitting device chip is disposed on the metal substrate such that the first electrode and the second electrode are located below, the first electrode is bonded to the upper surface of the first conductive portion, and the second electrode is bonded to the upper surface of the second conductive portion.
  • a semiconductor light emitting device characterized in that.
  • a method for manufacturing a semiconductor light emitting device characterized in that the filler is provided in the groove.
  • a backlight unit characterized in that the metal substrate has a larger dimension between the upper and lower surfaces than the dimension between the front and rear surfaces.
  • a backlight unit comprising a semiconductor light emitting device chip having a long side and a short side, and placed on an upper surface of the metal substrate so that the long side extends in the left and right directions of the metal substrate.
  • the backlight unit characterized in that the filler is provided in the gap.
  • a backlight unit wherein the filler contains phosphors.
  • a backlight unit characterized in that the circumferential surfaces (front, rear, left and right surfaces) of the metal substrate and the circumferential surfaces of the encapsulation portion are continuously connected.
  • a backlight unit wherein the circumferential surfaces (front, rear, left and right surfaces) of the metal substrate and the circumferential surfaces of the encapsulation portion are cut surfaces.
  • a backlight unit wherein the semiconductor light emitting element chip is positioned across the gap.
  • the semiconductor light emitting device chip is disposed on the metal substrate such that the first electrode and the second electrode are located below, the first electrode is bonded to the upper surface of the first conductive portion, and the second electrode is bonded to the upper surface of the second conductive portion.
  • Backlight unit characterized in that the.
  • a backlight unit wherein the semiconductor light emitting device chip has bonding bonding pads positioned under the first electrode and the second electrode, respectively, and is bonded to the metal substrate by a Jewish bonding method.
  • the semiconductor light emitting device chip is disposed on the metal substrate such that the first electrode and the second electrode are positioned on the upper portion, and the first electrode and the second electrode are electrically connected to the first conductive portion and the second conductive portion by wires, respectively.
  • Backlight unit characterized in that connected.
  • a backlight unit wherein the encapsulation portion contains a phosphor.
  • a semiconductor light emitting device having a thin thickness can be provided.
  • a semiconductor light emitting device having a thin thickness while having a reflector reflecting light emitted to a side surface of the semiconductor light emitting device chip.
  • a thin liquid crystal display device may be provided through a thin backlight unit.
  • a thin thickness side view type backlight unit may be provided through a thin thickness light source assembly.
  • a thin liquid crystal display device may be provided through a thin backlight unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Led Device Packages (AREA)
  • Planar Illumination Modules (AREA)

Abstract

The present disclosure relates to a semiconductor light emitting diode, a method for manufacturing the light emitting diode, and a backlight unit comprising the semiconductor light emitting diode, the semiconductor light emitting diode comprising: a metal substrate; a semiconductor light emitting diode chip comprising a first electrode electrically connected to a first semiconductor layer and a second electrode electrically connected to a second semiconductor layer, and fixed to the upper surface of the metal substrate; a reflective portion formed so as to surround the periphery of the semiconductor light emitting diode chip from on top of the upper surface of the metal substrate; and an encapsulation portion formed so as to cover the upper surface of the reflective portion and the upper surface of the semiconductor light emitting diode chip.

Description

반도체 발광소자, 반도체 발광소자의 제조방법 및 반도체 발광소자를 포함하는 백라이트 유닛Back light unit including semiconductor light emitting device, method for manufacturing semiconductor light emitting device and semiconductor light emitting device

본 발명은 반도체 발광소자, 반도체 발광소자의 제조방법 및 반도체 발광소자를 포함하는 백라이트 유닛(SEMICONDUCTOR LIGHT EMITTING DEVICE, MANUFACTURING METHOD OF THE SAME AND BACKLIGHT UNIT COMPRISING THE SAME)에 관한 것으로, 특히 사이드 뷰 방식의 백라이트 유닛에 적용될 수 있는 반도체 발광소자 및 반도체 발광소자의 제조방법, 그리고 사이드 뷰 방식의 백라이트 유닛에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device, a method for manufacturing a semiconductor light emitting device, and a backlight unit including a semiconductor light emitting device. The present invention relates to a semiconductor light emitting device and a method of manufacturing the semiconductor light emitting device that can be applied to the unit, and a backlight unit of a side view type.

여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art). This section provides background information related to the present disclosure which is not necessarily prior art.

액정표시장치는 소형, 경량화 및 저소비전력 등 여러 장점을 갖는 디스플레이 장치로서, 이동통신단말기용 액정표시장치, 노트북 PC용 모니터, 데스크탑 PC용 모니터 뿐만 아니라 및 대형 평판 TV 등 다양한 용도로 사용되고 있다.The liquid crystal display device is a display device having various advantages such as small size, light weight, and low power consumption, and is used for various applications such as a liquid crystal display device for a mobile communication terminal, a monitor for a notebook PC, a monitor for a desktop PC, and a large flat panel TV.

도 1은 종래의 탑 뷰 방식의 백라이트 유닛을 구비한 액정표시장치를 개략적으로 나타낸 도면이다. 도 2는 종래의 사이드 뷰 방식의 백라이트 유닛을 구비한 액정표시장치를 개략적으로 나타낸 도면이다. 1 is a view schematically showing a liquid crystal display device having a conventional top view backlight unit. 2 is a schematic view of a liquid crystal display device having a conventional side view backlight unit.

액정표시장치는 액정패널(10)과 백라이트 유닛(30)을 포함한다. 액정표시장치에 포함되는 액정패널(10)은 대부분은 외부에서 들어오는 빛의 양을 조절하여 화상을 표시하는 수광성 소자로 구성되기 때문에, 액정표시장치는 액정패널(10)에 광을 조사하기 위한 백라이트 유닛(30)을 필요로 한다. The liquid crystal display device includes a liquid crystal panel 10 and a backlight unit 30. Since the liquid crystal panel 10 included in the liquid crystal display device is mostly composed of a light receiving element that displays an image by controlling the amount of light coming from the outside, the liquid crystal display device is used to irradiate light to the liquid crystal panel 10. The backlight unit 30 is required.

백라이트 유닛(30)은 액정패널(10)에 광을 제공하고, 제공된 광은 액정패널(10)을 투과하게 된다. 이때, 액정패널(10)은 빛의 투과율을 조절하여 화상을 구현하게 된다. 백라이트 유닛(30)은 광원 어셈블리(35)를 포함하며, 광원 어셈블리(40)의 배치형태에 따라 탑 뷰(top view) 방식과 사이드 뷰(side view) 방식으로 구분될 수 있다. The backlight unit 30 provides light to the liquid crystal panel 10, and the provided light passes through the liquid crystal panel 10. In this case, the liquid crystal panel 10 implements an image by adjusting the light transmittance. The backlight unit 30 may include a light source assembly 35 and may be classified into a top view method and a side view method according to the arrangement of the light source assembly 40.

도 1에 나타낸 것과 같이, 탑 뷰 방식의 경우, 회로기판(31)과 다수의 광원(33)을 포함하는 광원 어셈블리(35)가 액정패널(10)의 배면에 배치되고, 다수의 광원(33)으로부터 발광된 빛이 확산판(25)을 거쳐 직접적으로 전방의 액정패널(10)로 제공된다. 도 2에 나타낸 것과 같이, 사이드 뷰 방식의 경우, 회로기판(31)과 다수의 광원(33)을 포함하는 광원 어셈블리(35)가 빛을 안내하는 도광판(45)의 측면에 배치되고, 액정패널(10)의 배면에 배치되는 도광판(45)이 도광판(45)의 측면으로 들어온 빛을 액정패널(10)을 향해 전방으로 가이드하는 방식으로 광을 제공한다. 사이드 뷰 방식은 탑 뷰 방식에 비해 빛의 균일성이 좋고, 내구 수명이 길며, 액정표시장치를 얇게 구성하는데 유리한 등 여러 장점을 가진다. As shown in FIG. 1, in the top view system, a light source assembly 35 including a circuit board 31 and a plurality of light sources 33 is disposed on a rear surface of the liquid crystal panel 10, and a plurality of light sources 33 are provided. The light emitted from the? Is provided to the front liquid crystal panel 10 directly through the diffusion plate 25. As shown in FIG. 2, in the side view method, a light source assembly 35 including a circuit board 31 and a plurality of light sources 33 is disposed on a side of the light guide plate 45 for guiding light, and a liquid crystal panel. The light guide plate 45 disposed on the rear surface of the light source 10 provides light in a manner of guiding light entering the side surface of the light guide plate 45 toward the liquid crystal panel 10 forwardly. Compared to the top view method, the side view method has various advantages such as better light uniformity, longer endurance life, and an advantage in making the liquid crystal display device thinner.

광원 어셈블리에 사용되는 광원으로는 EL(electro luminescence), CCFL(cold cathode fluorescent lamp), HCFL(hot cathode fluorescent lamp), 반도체 발광소자 등이 사용될 수 있다. 이 중 반도체 발광소자는 소비전력이 낮으며 발광 효율이 뛰어난 장점을 가지고, 정보통신기기의 소형화, 슬림화 추세에 따라 적합함에 따라, 점차 사용이 증가하고 있다. As a light source used in the light source assembly, an electro luminescence (EL), a cold cathode fluorescent lamp (CCFL), a hot cathode fluorescent lamp (HCFL), a semiconductor light emitting device, or the like may be used. Among them, semiconductor light emitting devices have advantages of low power consumption and excellent luminous efficiency, and are increasingly used as they are suitable for miniaturization and slimming of information and communication devices.

특히, 휴대폰 등과 같은 이동통신 단말기의 경우, 슬림화 추세에 따라 더욱 얇은 두께의 액정표시장치가 요구됨에 따라, 액정표시장치의 슬림화에 유리한 반도체 발광소자를 광원으로 사용하는 사이드 뷰 방식의 광원 어셈블리가 주로 사용되고 있다. In particular, in the case of a mobile communication terminal such as a mobile phone, a thinner liquid crystal display device is required according to a slimming trend, and a light source assembly of a side view type that uses a semiconductor light emitting device as a light source, which is advantageous for slimming the liquid crystal display device, is mainly used. It is used.

반도체 발광소자를 광원으로 사용하고 사이드 뷰 방식으로 광원 어셈블리를 구성하여 상당히 슬림화된 액정표시장치가 구현되고 있지만, 더욱 슬림한 액정표시장치에 대한 요구가 여전히 존재한다. 이러한 요구를 충족시키기 위해, 1mm 이하, 나아가 0.5mm 이하의 두께의 광원 어셈블리가 필요한 실정이다. Although a liquid crystal display device having a slimmer structure is realized by using a semiconductor light emitting device as a light source and configuring a light source assembly in a side view method, there is still a need for a slimmer liquid crystal display device. In order to meet this demand, there is a need for a light source assembly having a thickness of 1 mm or less and further 0.5 mm or less.

도 3은 종래의 사이드 뷰 방식의 백라이트 유닛의 일 예를 나타낸 도면으로서, 광원 어셈블리(35)는 도광판(45)의 측면(41)과 마주하도록 세워서 배치되는 회로기판(31) 및 도광판(45)의 측면을 향해 빛을 발하도록 회로기판(31)에 고정되는 광원(33)을 구비한다. 광원(33)은 반도체 발광소자 패키지 형태로 구성되어, 반도체 발광소자 칩(34) 및 반도체 발광소자 칩(34)을 수용하는 캐비티(36)를 구비하는 하우징(37)을 포함한다. 이러한 구조에서, 회로기판(31)의 폭이 광원 어셈블리(35)의 요구되는 두께보다 작아야 한다는 점과 반도체 발광소자 칩(34)의 가로와 세로 중 어느 하나의 치수가 적어도 0.2mm 정도인 것을 고려하면, 이와 같은 구조의 광원 어셈블리(35)를 1mm 정도의 두께로 구현하는 것도 쉽지 않다는 것을 알 수 있을 것이다. 3 is a view illustrating an example of a conventional side view backlight unit, and the light source assembly 35 is disposed to face the side surface 41 of the light guide plate 45 and the light guide plate 45. It is provided with a light source 33 is fixed to the circuit board 31 to emit light toward the side of. The light source 33 is configured in the form of a semiconductor light emitting device package and includes a housing 37 including a semiconductor light emitting device chip 34 and a cavity 36 for receiving the semiconductor light emitting device chip 34. In this structure, the width of the circuit board 31 should be smaller than the required thickness of the light source assembly 35 and the dimension of either the width or length of the semiconductor light emitting device chip 34 is at least 0.2 mm. In this case, it will be appreciated that it is not easy to implement the light source assembly 35 having such a structure with a thickness of about 1 mm.

도 4는 종래의 사이드 뷰 방식의 백라이트 유닛의 다른 일 예를 나타낸 도면으로서, 광원 어셈블리(35)는 도광판(45)의 측면(41)과 수직을 이루도록 눕혀서 배치되는 회로기판(31), 회로기판(31)에 위에 고정되는 광원(33), 및 광원(33)에서 출사된 빛이 도광판(45)의 측면(41)을 향해 입사하도록 반사시키는 반사체(38)를 구비한다. 광원(33)은 반도체 발광소자 칩 형태로 구비된다. 이러한 구조는, 회로기판(31)을 눕혀서 배치함에 따라 회로기판(31)의 폭에 의한 제약을 배제하고, 광원으로 사용되는 반도체 발광소자 칩의 두께가 가로 및 세로 치수보다 작은 것을 이용하여, 광원 어셈블리(35)를 얇게 구성하고자 한 것이다. 그러나, 반도체 발광소자 칩 형태의 광원(33)의 출사면이 도광판(45)의 측면(41)과 수직으로 놓임에 따라, 반도체 발광소자 칩에서 출사된 빛을 도광판(45)의 측면(41)으로 가이드 하기 위한 반사체(38)가 필요하다. 이러한 반사체(38)는 광원 어셈블리(35)의 두께를 증가시키는 요인이 되며, 따라서 이와 같은 구조의 광원 어셈블리(35)를 얇게 구성하는 것에도 한계가 있는 실정이다.4 is a view illustrating another example of a conventional side view backlight unit, wherein the light source assembly 35 is laid down to be perpendicular to the side 41 of the light guide plate 45, and a circuit board. A light source 33 fixed above and a reflector 38 for reflecting the light emitted from the light source 33 toward the side surface 41 of the light guide plate 45 are provided. The light source 33 is provided in the form of a semiconductor light emitting device chip. This structure removes the constraints caused by the width of the circuit board 31 by laying the circuit board 31 on its side, and uses the thickness of the semiconductor light emitting device chip used as the light source to be smaller than the horizontal and vertical dimensions. It is intended to make the assembly 35 thin. However, as the emission surface of the light source 33 in the form of a semiconductor light emitting device chip is perpendicular to the side surface 41 of the light guide plate 45, the light emitted from the semiconductor light emitting device chip is transferred to the side surface 41 of the light guide plate 45. There is a need for a reflector 38 to guide. Such a reflector 38 is a factor of increasing the thickness of the light source assembly 35, and thus there is a limit in forming a thin light source assembly 35 having such a structure.

이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.This is described later in the section titled 'Details of the Invention.'

여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all, provided that this is a summary of the disclosure. of its features).

본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 반도체 발광소자에 있어서, 틈, 및 틈을 사이에 두고 측면을 마주하도록 배치되며 틈에 의해 전기적으로 분리되는 제1 도전부와 제2 도전부를 포함하며, 상면, 하면, 전면, 후면, 좌측면 및 우측면을 가지는 육면체 형태로 형성되는 금속 기판; 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층, 제1 반도체층에 전기적으로 연결되는 제1 전극, 및 제2 반도체층에 전기적으로 연결되는 제2 전극을 구비하며, 금속 기판의 상면에 고정되는 반도체 발광소자 칩; 금속 기판의 상면 위에서 반도체 발광소자 칩의 둘레를 둘러싸도록 형성되는 반사부; 및 반사부의 상면 및 반도체 발광소자 칩의 상면을 덮도록 형성되는 봉지부;를 포함하는 것을 특징으로 하는 반도체 발광소자가 제공된다.According to one aspect of the present disclosure, in a semiconductor light emitting device, a gap and a first conductive portion disposed to face each other with a gap therebetween and electrically separated by the gap And a second substrate, the metal substrate being formed in a hexahedron shape having an upper surface, a lower surface, a front surface, a rear surface, a left surface, and a right surface; A first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, an active layer interposed between the first semiconductor layer and the second semiconductor layer and generating light by recombination of electrons and holes A semiconductor light emitting device chip having a first electrode electrically connected to the first semiconductor layer and a second electrode electrically connected to the second semiconductor layer, the semiconductor light emitting device chip being fixed to an upper surface of the metal substrate; A reflector formed to surround a semiconductor light emitting device chip on an upper surface of the metal substrate; And an encapsulation portion formed to cover an upper surface of the reflective portion and an upper surface of the semiconductor light emitting device chip.

본 개시에 따른 다른 일 태양에 의하면, 반도체 발광소자를 제조하는 방법에 있어서, 제1 도전부와 제2 도전부, 및 제1 도전부와 제2 도전부 사이에 형성되어 제1 도전부와 제2 도전부를 분리하는 홈을 포함하는 플레이트를 준비하는 단계; 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층, 제1 반도체층에 전기적으로 연결되는 제1 전극, 및 제2 반도체층에 전기적으로 연결되는 제2 전극을 구비하는 반도체 발광소자 칩을 플레이트의 상면에 고정하는 단계; 반도체 발광소자 칩을 반사제로 덮는 단계; 반사제를 경화시킨 후, 반도체 발광소자 칩의 상면이 노출되도록 반도체 발광소자 칩의 상면 높이에 맞춰 반사제를 부분적으로 제거하는 단계; 반사제의 상면 및 반도체 발광소자 칩의 상면을 봉지제로 덮는 단계; 홈이 플레이트의 하면 측으로 노출되도록 플레이트의 하부를 부분적으로 제거하는 단계; 및 반도체 발광소자의 예정된 경계를 따라 플레이트와 봉지제를 함께 절단하는 단계;를 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법이 제공된다. According to another aspect of the present disclosure, in a method of manufacturing a semiconductor light emitting device, the first conductive portion and the second conductive portion, and the first conductive portion and the second conductive portion are formed between the first conductive portion and the second conductive portion. Preparing a plate including a groove separating the two conductive portions; A first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, an active layer interposed between the first semiconductor layer and the second semiconductor layer and generating light by recombination of electrons and holes Fixing a semiconductor light emitting device chip having a first electrode electrically connected to the first semiconductor layer, and a second electrode electrically connected to the second semiconductor layer on an upper surface of the plate; Covering the semiconductor light emitting device chip with a reflecting agent; After curing the reflector, partially removing the reflector in accordance with the height of the upper surface of the semiconductor light emitting device chip to expose the upper surface of the semiconductor light emitting device chip; Covering an upper surface of the reflector and an upper surface of the semiconductor light emitting device chip with an encapsulant; Partially removing the lower part of the plate such that the groove is exposed toward the lower surface of the plate; And cutting the plate and the encapsulant together along a predetermined boundary of the semiconductor light emitting device.

본 개시에 따른 또 다른 일 태양에 의하면, 백라이트 유닛에 있어서, 일측면으로 입사한 광을 상면으로 출사하도록 가이드하는 도광판; 도광판의 일측면 측에 눕혀서 배치되는 회로 기판; 및 틈, 및 틈을 사이에 두고 측면을 마주하도록 배치되며 틈에 의해 전기적으로 분리되는 제1 도전부와 제2 도전부를 포함하며, 상면, 하면, 전면, 후면, 좌측면 및 우측면을 가지는 육면체 형태로 형성되는 금속 기판, 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층, 제1 반도체층에 전기적으로 연결되는 제1 전극, 및 제2 반도체층에 전기적으로 연결되는 제2 전극을 구비하며, 금속 기판의 상면에 고정되는 반도체 발광소자 칩, 금속 기판의 상면 위에서 반도체 발광소자 칩의 둘레를 둘러싸도록 형성되는 반사부, 및 반사부의 상면 및 반도체 발광소자 칩의 상면을 덮도록 형성되는 봉지부를 포함하며, 금속 기판의 전면 또는 후면이 회로기판의 상면과 마주하도록 눕혀지고 금속 기판의 상면이 도광판의 일측면을 향하도록 회로기판의 상면에 고정되며, 회로기판의 상면과 마주하는 제1 도전부와 제2 도전부 각각의 전면 또는 후면을 통해 회로기판과 전기적으로 연결되는 반도체 발광소자;를 포함하는 것을 특징으로 하는 백라이트 유닛이 제공된다.According to another aspect of the present disclosure, a backlight unit includes: a light guide plate configured to guide light incident on one side to an upper surface; A circuit board lying on one side of the light guide plate; And a gap, and a hexahedron shape having a first conductive part and a second conductive part disposed to face side surfaces with the gap interposed therebetween and electrically separated by the gap, and having an upper surface, a lower surface, a front surface, a rear surface, a left surface, and a right surface. A metal substrate formed between the first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, and a first semiconductor layer and a second semiconductor layer interposed therebetween to recombine electrons and holes. A semiconductor light emitting device chip comprising: an active layer for generating light by using light, a first electrode electrically connected to the first semiconductor layer, and a second electrode electrically connected to the second semiconductor layer, and fixed to an upper surface of the metal substrate; A metal substrate including a reflector formed to surround a circumference of the semiconductor light emitting device chip on an upper surface of the substrate, and an encapsulation formed to cover an upper surface of the reflector and a top surface of the semiconductor light emitting device chip; The first or second conductive part facing the upper surface of the circuit board is fixed to the upper surface of the circuit board so that the front or rear surface of the substrate is laid so as to face the upper surface of the circuit board and the upper surface of the metal substrate faces one side of the light guide plate. Provided is a backlight unit comprising a; semiconductor light emitting device electrically connected to a circuit board through each front or rear surface.

본 개시에 따른 또 다른 일 태양에 의하면, 백라이트 유닛에 있어서, 일측면으로 입사한 광을 상면으로 출사하도록 가이드하는 도광판; 도광판의 일측면 측에 눕혀서 배치되는 회로 기판; 및 틈 및 틈을 사이에 두고 측면을 마주하도록 배치되며 틈에 의해 전기적으로 분리되는 제1 도전부와 제2 도전부를 포함하며, 상면, 하면, 전면, 후면, 좌측면 및 우측면을 가지는 육면체 형태로 형성되는 금속 기판, 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층, 제1 반도체층에 전기적으로 연결되는 제1 전극, 및 제2 반도체층에 전기적으로 연결되는 제2 전극을 구비하며, 금속 기판의 상면에 고정되는 반도체 발광소자 칩, 및 금속 기판의 상면 측에서 반도체 발광소자 칩을 덮도록 형성되는 봉지부를 포함하며, 금속 기판의 전면 또는 후면이 회로기판의 상면과 마주하도록 눕혀지고 금속 기판의 상면이 도광판의 일측면을 향하도록 회로기판의 상면에 고정되며, 회로기판의 상면과 마주하는 제1 도전부와 제2 도전부 각각의 전면 또는 후면을 통해 회로기판과 전기적으로 연결되는 반도체 발광소자;를 포함하는 것을 특징으로 하는 백라이트 유닛이 제공된다. According to another aspect of the present disclosure, a backlight unit includes: a light guide plate configured to guide light incident on one side to an upper surface; A circuit board lying on one side of the light guide plate; And a first conductive part and a second conductive part disposed to face side surfaces with a gap and a gap therebetween, and electrically separated by the gap, and having a top surface, a bottom surface, a front surface, a rear surface, a left side surface, and a right side surface. A metal substrate to be formed, a first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, interposed between the first semiconductor layer and the second semiconductor layer, and using recombination of electrons and holes A semiconductor light emitting device chip having an active layer for generating light, a first electrode electrically connected to a first semiconductor layer, and a second electrode electrically connected to a second semiconductor layer, and fixed to an upper surface of a metal substrate, and a metal An encapsulation part is formed on the upper surface side of the substrate to cover the semiconductor light emitting device chip. The front or rear surface of the metal substrate is laid down to face the upper surface of the circuit board, and the upper surface of the metal substrate is illustrated. A semiconductor light emitting device fixed to an upper surface of the circuit board so as to face one side of the board and electrically connected to the circuit board through front or rear surfaces of the first and second conductive parts facing the upper surface of the circuit board; Provided is a backlight unit comprising:

이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.This is described later in the section titled 'Details of the Invention.'

도 1은 종래의 탑 뷰 방식의 백라이트 유닛을 구비한 액정표시장치를 개략적으로 나타낸 도면,1 is a view schematically showing a liquid crystal display device having a conventional top view backlight unit;

도 2는 종래의 사이드 뷰 방식의 백라이트 유닛을 구비한 액정표시장치를 개략적으로 나타낸 도면,2 is a schematic view of a liquid crystal display device having a conventional side view backlight unit;

도 3은 종래의 사이드 뷰 방식의 백라이트 유닛의 일 예를 나타낸 도면,3 is a view illustrating an example of a conventional side view backlight unit;

도 4는 종래의 사이드 뷰 방식의 백라이트 유닛의 다른 일 예를 나타낸 도면,4 is a view showing another example of a conventional side view backlight unit;

도 5는 본 개시에 따른 반도체 발광소자의 일 예를 나타낸 도면, 5 illustrates an example of a semiconductor light emitting device according to the present disclosure;

도 6은 도 5의 반도체 발광소자를 나타낸 단면도,6 is a cross-sectional view illustrating the semiconductor light emitting device of FIG. 5;

도 7은 본 개시에 따른 반도체 발광소자의 다른 일 예를 나타낸 도면,7 illustrates another example of a semiconductor light emitting device according to the present disclosure;

도 8은 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 나타낸 도면,8 is a view showing another example of a semiconductor light emitting device according to the present disclosure;

도 9 내지 도 15는 본 개시에 따른 반도체 발광소자를 제조하는 방법의 일 예를 나타내는 도면,9 to 15 are views illustrating an example of a method of manufacturing a semiconductor light emitting device according to the present disclosure;

도 16은 본 개시에 따른 반도체 발광소자를 포함하는 백라이트 유닛의 일 예를 나타낸 도면,16 is a view illustrating an example of a backlight unit including a semiconductor light emitting device according to the present disclosure;

도 17은 도 16의 백라이트 유닛의 주요 부분을 도시한 평면도, 17 is a plan view illustrating a main part of the backlight unit of FIG. 16;

도 18은 도 17의 A-A선 단면도,18 is a cross-sectional view taken along the line A-A of FIG. 17;

도 19는 본 개시에 따른 백라이트 유닛을 구성하는 반도체 발광소자의 또 다른 일 예를 나타낸 도면,19 is a view showing another example of a semiconductor light emitting device configuring a backlight unit according to the present disclosure;

도 20은 본 개시에 따른 백라이트 유닛을 구성하는 반도체 발광소자의 또 다른 일 예를 나타낸 도면.20 illustrates another example of a semiconductor light emitting device constituting the backlight unit according to the present disclosure.

이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)). The present disclosure will now be described in detail with reference to the accompanying drawing (s).

도 5는 본 개시에 따른 반도체 발광소자의 일 예를 나타낸 도면이고, 도 6은 도 5의 반도체 발광소자를 나타낸 단면도이다. 5 is a diagram illustrating an example of a semiconductor light emitting device according to the present disclosure, and FIG. 6 is a cross-sectional view illustrating the semiconductor light emitting device of FIG. 5.

반도체 발광소자(150)는 금속 기판(155), 반도체 발광소자 칩(165), 반사부(170) 및 봉지부(175)를 구비한다. The semiconductor light emitting device 150 includes a metal substrate 155, a semiconductor light emitting device chip 165, a reflector 170, and an encapsulation 175.

금속 기판(155)은, 틈(153) 및 틈(153)을 사이에 두고 측면을 마주하는 제1 도전부(151)와 제2 도전부(152)를 구비한다. 금속 기판(155)에서, 제1 도전부(151)와 제2 도전부(152)는 틈(153)에 의해 전기적으로 절연된다. 금속 기판(155)은 상면(154), 하면(156), 전면(157), 후면(158), 좌측면(159) 및 우측면(161)을 가지는 육면체 형태로 형성된다. 금속 기판(155)은, 필수적인 것은 아니지만, 전면(157)과 후면(158) 사이의 치수(또는 거리)(y)보다 상면(154)과 하면(156) 사이의 치수(또는 거리)(z)가 더 큰 것이 바람직하다. The metal substrate 155 includes a first conductive portion 151 and a second conductive portion 152 that face side surfaces with the gap 153 and the gap 153 interposed therebetween. In the metal substrate 155, the first conductive portion 151 and the second conductive portion 152 are electrically insulated by the gap 153. The metal substrate 155 is formed in a hexahedral shape having an upper surface 154, a lower surface 156, a front surface 157, a rear surface 158, a left surface 159, and a right surface 161. The metal substrate 155 is not required, but the dimension (or distance) z between the upper surface 154 and the lower surface 156 than the dimension (or distance) y between the front surface 157 and the rear surface 158. Is larger.

반도체 발광소자 칩(165)은 제1 도전성(예: n형)을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성(예: p형)을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층, 제1 반도체층에 전기적으로 연결되는 제1 전극(171), 및 제2 반도체층에 전기적으로 연결되는 제2 전극(172)을 구비한다. 반도체 발광소자 칩(165)은 플립 칩 형태로 제공된다. 따라서, 반도체 발광소자 칩(165)은 제1 전극(171) 및 제2 전극(172)이 하부에 위치하여 금속 기판(155)의 상면(154)과 마주하도록 배치된다. 금속 기판(155)의 상면(154)에서, 제1 전극(171)은 제1 도전부(151)와 접합되고, 제2 전극(172)은 제2 도전부(152)와 접합된다.The semiconductor light emitting device chip 165 may include a first semiconductor layer having a first conductivity (eg, n-type), a second semiconductor layer having a second conductivity (eg, p-type) different from the first conductivity, and a first semiconductor layer. An active layer interposed between the second semiconductor layers and generating light by recombination of electrons and holes, a first electrode 171 electrically connected to the first semiconductor layer, and a second electrode electrically connected to the second semiconductor layer 172 is provided. The semiconductor light emitting device chip 165 is provided in a flip chip form. Therefore, the semiconductor light emitting device chip 165 is disposed such that the first electrode 171 and the second electrode 172 are disposed below the upper surface 154 of the metal substrate 155. On the top surface 154 of the metal substrate 155, the first electrode 171 is bonded to the first conductive portion 151, and the second electrode 172 is bonded to the second conductive portion 152.

반도체 발광소자 칩(165)은 장변(a)과 단변(b)을 가지는 길쭉한 형태로 형성된다. 반도체 발광소자 칩(165)은 장변(a)이 금속 기판(155)의 좌우방향(x)으로 연장되도록 금속 기판(155)의 상면(154)에 놓인다. 금속 기판(155)의 전면(157)과 후면(158) 사이의 치수(y)는 반도체 발광소자 칩(165)의 단변 길이(b)에 근접할 정도로 얇게 형성될 수 있다. 즉, 반도체 발광소자 칩(165)의 단변 길이(b)에 근접할 정도로 얇은 전면과 후면 사이의 치수(y)를 가지는 반도체 발광소자(150)가 제공될 수 있다. The semiconductor light emitting device chip 165 is formed in an elongated shape having a long side a and a short side b. The semiconductor light emitting device chip 165 is disposed on the top surface 154 of the metal substrate 155 such that the long side a extends in the left and right directions x of the metal substrate 155. The dimension y between the front surface 157 and the rear surface 158 of the metal substrate 155 may be thin enough to be close to the short side length b of the semiconductor light emitting device chip 165. That is, a semiconductor light emitting device 150 may be provided having a dimension y between a front surface and a back surface that is thin enough to approach the short side length b of the semiconductor light emitting device chip 165.

반사부(170)는 반사효율이 높은 백색수지를 포함할 수 있다. 반사부(170)는 금속 기판(155)의 상면(154) 위에서 반도체 발광소자 칩(165)의 둘레를 둘러싸도록 형성된다. 이와 같은 반사부(170)는 반도체 발광소자 칩(165) 둘레의 측면으로 나오는 빛을 반사하여, 활성층에서 생성된 빛이 반도체 발광소자 칩(165)의 상면을 통해서만 출사되도록 한다. 따라서, 반도체 발광소자 칩(165)에서 출사되는 빛은 상면 측을 향하는 지향성을 갖게 된다. 한편, 도 6은 반사부(170)의 상면과 반도체 발광소자 칩(165)의 상면이 같은 높이를 가지는 예가 도시되었지만, 반사부(170)의 상면은 반도체 발광소자 칩(165)의 상면보다 높게 형성될 수도 있고 반도체 발광소자 칩(165)의 상면보다 낮게 형성될 수도 있다. The reflector 170 may include a white resin having high reflection efficiency. The reflector 170 is formed to surround the semiconductor light emitting device chip 165 on the top surface 154 of the metal substrate 155. The reflector 170 reflects the light emitted from the side surface of the semiconductor light emitting device chip 165 so that the light generated in the active layer is emitted only through the top surface of the semiconductor light emitting device chip 165. Therefore, the light emitted from the semiconductor light emitting device chip 165 has directivity toward the upper surface side. 6 illustrates an example in which the upper surface of the reflector 170 and the upper surface of the semiconductor light emitting device chip 165 have the same height, the upper surface of the reflector 170 is higher than the upper surface of the semiconductor light emitting device chip 165. It may be formed or may be formed lower than the upper surface of the semiconductor light emitting device chip 165.

봉지부(175)는 투명재질의 수지와 형광체를 포함하며, 반도체 발광소자 칩(165)의 상면과 반사부(170)의 상면을 덮도록 형성된다. 반사부(170)와 봉지부(175)의 둘레면(전면(181), 후면(182), 좌측면(183), 우측면(184)) 및 금속 기판(155)의 둘레면(전면(157), 후면(158), 좌측면(159), 우측면(161))은 연속면으로 형성되며, 절단공정에 의해 형성되는 절단면이기도 하다. The encapsulation part 175 includes a resin of a transparent material and a phosphor, and is formed to cover the upper surface of the semiconductor light emitting device chip 165 and the upper surface of the reflector 170. Peripheral surfaces of the reflector 170 and the encapsulation 175 (front surface 181, rear surface 182, left side surface 183, right side surface 184) and the peripheral surface of the metal substrate 155 (front surface 157) , The back surface 158, the left surface 159, the right surface 161 is formed as a continuous surface, and is also a cut surface formed by a cutting process.

도 7은 본 개시에 따른 반도체 발광소자의 다른 일 예를 나타낸 도면으로서, 금속 기판(155)의 틈(153) 내부에 충진제(147)가 구비될 수 있다. 틈(153)은 완전히 충진제(147)로 채워질 수도 있고, 일부만 채워질 수도 있다. 충진제(147)는 절연 재료로 이루어져야 한다. 충진제(147)는 형광체를 함유할 수 있다. 한편, 충진제(147)는 형광체와 함께 또는 형광체를 대신하여 백색 수지를 함유할 수도 있다. 이러한 충진제(147)로 인해, 반도체 발광소자(150)의 반사효율이 향상될 수 있다. FIG. 7 is a view illustrating another example of the semiconductor light emitting device according to the present disclosure, and a filler 147 may be provided in the gap 153 of the metal substrate 155. The gap 153 may be completely filled with the filler 147 or may be partially filled. Filler 147 should be made of an insulating material. Filler 147 may contain phosphors. On the other hand, the filler 147 may contain a white resin together with or in place of the phosphor. Due to the filler 147, the reflection efficiency of the semiconductor light emitting device 150 may be improved.

도 8은 본 개시에 따른 반도체 발광소자의 또 다른 일 예를 나타낸 도면으로서, 반도체 발광소자 칩(165)은 제1 전극(171) 및 제2 전극(172) 아래에 각각 위치하는 금속 재질의 본딩 패드(141,142)를 구비할 수 있다. 이러한 본딩 패드(141,142)를 이용하여, 반도체 발광소자 칩(165)은 유태틱 본딩 방식으로 금속 기판(155)의 상면(154)에 접합될 수 있다. 따라서, 완성된 반도체 발광소자(150)에서, 제1 전극(171)과 금속 기판(155)의 제1 도전부(151) 사이에 본딩 패드(141)가 위치하고, 제2 전극(172)과 금속 기판(155)의 제2 도전부(152) 사이에 본딩 패드(142)가 위치하게 된다. 8 is a view illustrating another example of a semiconductor light emitting device according to the present disclosure, in which the semiconductor light emitting device chip 165 is bonded to a metal material positioned below the first electrode 171 and the second electrode 172, respectively. Pads 141 and 142 may be provided. Using the bonding pads 141 and 142, the semiconductor light emitting device chip 165 may be bonded to the top surface 154 of the metal substrate 155 by a Jewish bonding method. Therefore, in the completed semiconductor light emitting device 150, a bonding pad 141 is positioned between the first electrode 171 and the first conductive portion 151 of the metal substrate 155, and the second electrode 172 and the metal The bonding pads 142 are positioned between the second conductive portions 152 of the substrate 155.

이하, 본 개시에 따른 반도체 발광소자의 제조방법에 대해 설명한다. Hereinafter, a method of manufacturing a semiconductor light emitting device according to the present disclosure will be described.

도 9 내지 도 15는 본 개시에 따른 반도체 발광소자를 제조하는 방법의 일 예를 나타내는 도면이다. 9 to 15 are diagrams showing an example of a method of manufacturing a semiconductor light emitting device according to the present disclosure.

도 9에 나타낸 것과 같이, 금속 기판(155)을 이루는 부분으로서, 금속 재질의 플레이트(155')를 준비한다. 다수의 반도체 발광소자(150)를 한 번의 공정에서 제조하기 위해, 플레이트(155')는 복수의 홈(153')을 구비하며, 따라서 플레이트(155)의 상면(154')은 다수의 영역으로 분할된다. 플레이트(155')에서, 홈(153')을 기준으로 홈(153')의 일측은 제1 도전부가 되고 반대측은 제2 도전부가 된다. 홈(153')은 습식 식각 또는 건식 식각을 통한 제거방식이나, 블레이드 또는 와이어를 사용한 기계적 절단방식을 통해 일정 깊이를 가지도록 형성될 수 있다. 플레이트(155')의 재질은 도전성 금속 또는 전도성 반도체라면 특별한 제한이 없으며, 이러한 재료로 W, Mo, Ni, Al, Zn, Ti, Cu, Si 등과 같은 재료 및 이들 중 적어도 하나를 포함하는 합금 형태를 들 수 있고, 전기 전도성, 열 전도성, 반사율, 납땜특성 등을 고려했을 때, Cu 또는 Cu 계열의 합금을 적합한 예로 들 수 있다. As shown in FIG. 9, a metal plate 155 ′ is prepared as a part of the metal substrate 155. In order to manufacture the plurality of semiconductor light emitting devices 150 in one process, the plate 155 'includes a plurality of grooves 153', so that the upper surface 154 'of the plate 155 is divided into a plurality of regions. Divided. In the plate 155 ′, one side of the groove 153 ′ is the first conductive portion and the other side is the second conductive portion based on the groove 153 ′. The groove 153 ′ may be formed to have a predetermined depth through a wet etching method or a dry etching method, or a mechanical cutting method using a blade or a wire. The material of the plate 155 ′ is not particularly limited as long as it is a conductive metal or a conductive semiconductor, and materials such as W, Mo, Ni, Al, Zn, Ti, Cu, Si, and the like and an alloy form including at least one of them And, considering the electrical conductivity, thermal conductivity, reflectance, soldering properties, etc., Cu or Cu-based alloys are suitable examples.

이와 같이 준비된 플레이트(155') 위에, 도 9 및 도 10에 나타낸 것과 같이, 홈(153')을 따라 다수의 반도체 발광소자 칩(165)을 고정한다. 반도체 발광소자 칩(165)은 홈(153')에 걸쳐서 위치하게 된다. 구체적으로, 플레이트(155')의 상면(154')에서, 홈(153')을 기준으로, 제1 전극(171)은 홈(153') 좌측의 플레이트(155') 상면(154')에 접합되고, 제2 전극(172)은 홈(153') 우측의 플레이트(155') 상면(154')에 접합된다. 이러한 접합은 Ag 페이스트를 이용하여 수행되거나, 반도체 발광소자 분야에 이미 알려진 다양한 방법이 사용될 수 있다. 9 and 10, a plurality of semiconductor light emitting device chips 165 are fixed along the grooves 153 ', as illustrated in FIGS. 9 and 10. The semiconductor light emitting device chip 165 is positioned over the groove 153 ′. Specifically, on the top surface 154 'of the plate 155', the first electrode 171 is formed on the top surface 154 'of the plate 155' on the left side of the groove 153 'based on the groove 153'. The second electrode 172 is bonded to the upper surface 154 ′ of the plate 155 ′ on the right side of the groove 153 ′. Such bonding may be performed using Ag paste, or various methods already known in the semiconductor light emitting device art may be used.

이어서, 도 11에 나타낸 것과 같이, 모든 반도체 발광소자 칩(165)을 덮도록 플레이트(155')의 상면(154') 전체에 반사제(170')를 디스펜싱하고, 이 반사제(170')를 경화시킨다. 반사제(170')는 반사효율이 높은 액상의 백색수지를 포함할 수 있다. 반사제(170')는 반도체 발광소자 칩(165) 사이의 공간들이 빈틈없이 채워지도록 반도체 발광소자 칩(165)의 상면 높이보다 약간 높은 정도로 디스펜싱된다. 따라서, 반도체 발광소자 칩(165)의 둘레면이 모두 반사제(170')로 덮이게 된다. Next, as shown in FIG. 11, the reflector 170 ′ is dispensed on the entire upper surface 154 ′ of the plate 155 ′ so as to cover all the semiconductor light emitting device chips 165, and the reflector 170 ′. ) Harden. The reflector 170 ′ may include a liquid white resin having high reflection efficiency. The reflector 170 ′ is dispensed to a level slightly higher than the height of the top surface of the semiconductor light emitting device chip 165 so that the spaces between the semiconductor light emitting device chips 165 are filled with space. Therefore, all of the peripheral surfaces of the semiconductor light emitting device chip 165 are covered with the reflector 170 ′.

이후, 도 12에 나타낸 것과 같이, 반도체 발광소자 칩(165)의 상면이 노출되도록 반도체 발광소자 칩(165)의 상면 높이에 맞춰 경화된 반사제(170')를 부분적으로 제거한다. 경화된 반사제(170')의 제거는 브러싱(Brushing), 래핑(lapping), 폴리싱(polishing) 또는 CMP 등과 같은 기계적인 방법을 이용하여 제거할 수 있다. 이와 같은 기계적인 방법을 통한 제거공정에서, 경도가 매우 높은 사파이어와 달리 백색수지의 경우 경화되더라도 경도가 상대적으로 낮아서 손쉽게 제거할 수 있다. 이때, 반사제(170)의 상면과 반도체 발광소자 칩(165)의 상면은 동일한 높이를 갖게 된다. Thereafter, as illustrated in FIG. 12, the reflective agent 170 ′ hardened to the height of the upper surface of the semiconductor light emitting device chip 165 may be partially removed to expose the upper surface of the semiconductor light emitting device chip 165. Removal of the cured reflector 170 'may be removed using a mechanical method such as brushing, lapping, polishing or CMP. In the removal process through such a mechanical method, unlike sapphire having a very high hardness, the white resin can be easily removed because the hardness is relatively low even when cured. At this time, the upper surface of the reflector 170 and the upper surface of the semiconductor light emitting device chip 165 have the same height.

다음으로, 도 13에 나타낸 것과 같이, 모든 반도체 발광소자 칩(165)의 상면과 반사제의 상면을 덮도록 봉지제(175')를 디스펜싱하고, 이 봉지제(175')를 경화시킨다. 봉지제(175')는 실리콘 등과 같은 액상의 투명한 수지 재료와 형광체를 포함할 수 있다. Next, as shown in FIG. 13, the sealing agent 175 'is dispensed so that the upper surface of all the semiconductor light emitting element chips 165 and the reflecting agent may be covered, and this sealing agent 175' is hardened. The encapsulant 175 'may include a liquid transparent resin material such as silicon and the like.

이어서, 도 14에 나타낸 것과 같이, 플레이트(155')에 구비된 홈(153')이 플레이트(155')의 하면(156) 측으로 노출되도록 플레이트(155')의 하부를 부분적으로 제거한다. 즉, 플레이트(155')를 하면(156') 측에서 연마 및/또는 랩핑하여, 홈(153')이 플레이트(155')의 하면(156') 측으로 노출되도록 한다. 이와 같이 홈(153')이 플레이트(155')의 하면(156') 측으로 노출되어 개방됨에 따라, 하나의 홈(153')을 사이에 두고 측면을 마주하는 플레이트(155')의 두 부분은 서로 전기적으로 절연된다. Subsequently, as shown in FIG. 14, the lower portion of the plate 155 ′ is partially removed so that the groove 153 ′ provided in the plate 155 ′ is exposed to the lower surface 156 side of the plate 155 ′. That is, the plate 155 ′ is polished and / or wrapped on the lower surface 156 ′ so that the groove 153 ′ is exposed to the lower surface 156 ′ of the plate 155 ′. As the groove 153 'is exposed to the lower surface 156' of the plate 155 'and is opened, two portions of the plate 155' facing the side with one groove 153 'interposed therebetween Are electrically insulated from each other.

이후, 도 15에 나타낸 것과 같이, 평면상에서 반도체 발광소자의 예정된 경계(B)를 따라 경화된 반사제(170')와 봉지제(175') 및 플레이트(155')를 함께 절단하여, 개별적인 반도체 발광소자(150)로 완성된다. Thereafter, as shown in FIG. 15, the cured reflector 170 ′, the encapsulant 175 ′, and the plate 155 ′ are cut together along the predetermined boundary B of the semiconductor light emitting device on a plane to separate the semiconductors. The light emitting element 150 is completed.

이상과 같은 방법을 통해, 반도체 발광소자 칩(165)을 플레이트(155')의 상면에 고정하고 반사제(170')와 봉지제(175')로 덮은 상태에서, 플레이트(155')의 하부를 부분적으로 제거하여 홈(153')이 노출되도록 한 다음, 개별적인 반도체 발광소자의 경계를 따라 절단함으로써 금속 기판(155)이 형성된다. 홈(153')은 금속 기판(155)의 틈(153)이 되고, 틈(153)을 사이에 두고 측면을 마주하는 두 부분이 금속 기판(155)의 제1 도전부(151) 및 제2 도전부(152)가 된다. 또한, 플레이트(155')와 함께 반사제(170') 및 봉지제(175')를 절단함으로써 개별 반도체 발광소자의 반사부(170) 및 봉지부(175)가 형성된다. Through the above method, the semiconductor light emitting device chip 165 is fixed to the upper surface of the plate 155 'and covered with the reflector 170' and the encapsulant 175 ', and the lower portion of the plate 155'. Is partially removed to expose the grooves 153 'and then cut along the boundaries of the individual semiconductor light emitting devices to form the metal substrate 155. The groove 153 ′ is a gap 153 of the metal substrate 155, and two portions facing the side surface with the gap 153 interposed therebetween have a first conductive portion 151 and a second portion of the metal substrate 155. It becomes the conductive part 152. In addition, the reflector 170 'and the encapsulant 175' are cut together with the plate 155 'to form the reflector 170 and the encapsulation 175 of the individual semiconductor light emitting device.

플레이트(155'), 반사제(170') 및 봉지제(175')의 절단은 동시에 수행되며, 따라서, 도 5에 나타낸 것과 같이, 이러한 절단에 의해 형성되는 반사부(170) 및 봉지부(175)의 둘레면(전면(181), 후면(182), 좌측면(183), 우측면(184))과 금속 기판(10')의 둘레면(전면(157), 후면(158), 좌측면(159), 우측면(161))은 절단면으로 된 연속면을 형성하게 된다. The cutting of the plate 155 ', the reflector 170' and the encapsulant 175 'is performed at the same time, and thus, as shown in FIG. 5, the reflector 170 and the encapsulation ( 175 circumferential surface (front surface 181, rear surface 182, left side surface 183, right side surface 184) and circumferential surface of front surface of metal substrate 10 ′ (front surface 157, rear surface 158, left side surface 159 and the right side 161 form a continuous surface formed of a cut surface.

이상과 같은 방법으로 제조함으로써, 반도체 발광소자 칩(165)의 단변 길이(b)에 근접하는 얇은 전면(157)과 후면(158) 사이의 치수(y)를 갖도록 반도체 발광소자(150)를 제조할 수 있다. By manufacturing in the above manner, the semiconductor light emitting device 150 is manufactured to have a dimension y between the thin front surface 157 and the rear surface 158 proximate the short side length b of the semiconductor light emitting device chip 165. can do.

도 16은 본 개시에 따른 반도체 발광소자를 포함하는 백라이트 유닛의 일 예를 나타낸 도면이다. 16 is a diagram illustrating an example of a backlight unit including a semiconductor light emitting device according to the present disclosure.

본 개시에 따른 백라이트 유닛은, 도 16에 나타낸 것과 같이, 도광판(110), 회로 기판(130) 및 반도체 발광소자(150)를 포함한다. As illustrated in FIG. 16, the backlight unit according to the present disclosure includes a light guide plate 110, a circuit board 130, and a semiconductor light emitting device 150.

도광판(110)은 일측면(111)으로 입사한 광을 상면(113)으로 출사하도록 가이드한다. 도광판(110)의 상면(113)에서 출사된 광은 액정패널(10: 도 2 참조)에 제공된다. The light guide plate 110 guides the light incident on one side 111 to the top surface 113. Light emitted from the upper surface 113 of the light guide plate 110 is provided to the liquid crystal panel 10 (see FIG. 2).

회로 기판(130)은 도광판(110)의 일측면(111) 측에 도광판(110)과 평행하게 눕혀서 배치되고, 이와 같은 회로 기판(130)의 상면(131)에 반도체 발광소자(150)가 눕혀진 상태에서 광출사면(149)이 도광판(110)의 측면(111)을 향하도록 고정되어, 광원 어셈블리(120)를 이루게 된다. The circuit board 130 is disposed in parallel with the light guide plate 110 on one side 111 side of the light guide plate 110, and the semiconductor light emitting device 150 is laid on the upper surface 131 of the circuit board 130. In the extended state, the light exit surface 149 is fixed to face the side surface 111 of the light guide plate 110 to form the light source assembly 120.

구체적으로, 반도체 발광소자(150)가 회로 기판(130)에 고정되어 광원 어셈블리(120)를 이루었을 때, 반도체 발광소자(150)의 전면(157)과 후면(158) 사이의 치수(y)는, 광원 어셈블리(120)의 두께를 결정하는 중요 인자로서, 50um 내지 1000um 범위 이내인 것이 적당하다. 전면(157)과 후면(158) 사이의 치수(y)가 50um 이하인 경우에는 효율적인 칩의 설계가 쉽지 않으며, 1000um 이상인 경우에는 기존의 기술로도 충분히 실현할 수 있기 때문이다. 또한, 반도체 발광소자(150)의 상면(154)과 하면(156) 사이의 치수(z)는 100um 내지 2000um 범위 이내인 것이 적당하다. 상면(154)과 하면(156) 사이의 치수(z)가 100um 이하인 경우에는 반도체 발광소자(150)를 회로 기판(130)에 고정하기 어려우며, 2000um 이상의 경우에는 절단이 매우 어려워질 수 있기 때문이다. Specifically, when the semiconductor light emitting device 150 is fixed to the circuit board 130 to form the light source assembly 120, the dimension y between the front surface 157 and the rear surface 158 of the semiconductor light emitting device 150 is shown. Is an important factor for determining the thickness of the light source assembly 120, it is appropriate to be within the range of 50um to 1000um. This is because when the dimension y between the front surface 157 and the rear surface 158 is 50um or less, it is not easy to design an efficient chip, and when it is 1000um or more, the existing technology can be sufficiently realized. In addition, the dimension z between the upper surface 154 and the lower surface 156 of the semiconductor light emitting device 150 is appropriately within the range of 100um to 2000um. This is because when the dimension z between the upper surface 154 and the lower surface 156 is 100 μm or less, it is difficult to fix the semiconductor light emitting device 150 to the circuit board 130, and in the case of 2000 μm or more, cutting may be very difficult. .

도 17은 도 16의 백라이트 유닛의 주요 부분을 도시한 평면도이고, 도 18은 도 17의 A-A선 단면도이다. 17 is a plan view illustrating a main part of the backlight unit of FIG. 16, and FIG. 18 is a cross-sectional view taken along a line A-A of FIG. 17.

회로 기판(130)은 도광판(110)의 일측면(111) 측에 도광판(110)과 평행하게 눕혀서 배치된다. The circuit board 130 is disposed to lie in parallel with the light guide plate 110 on one side 111 side of the light guide plate 110.

반도체 발광소자(150)는, 금속 기판(155)의 전면(157) 또는 후면(158)이 회로 기판(130)의 상면(131)과 마주하도록 눕혀지고 금속 기판(155)의 상면(154)이 도광판(110)의 일측면(111)을 향하도록, 회로 기판(130)의 상면(131)에 고정된다. 따라서, 반도체 발광소자(150)의 광출사면(149)이 도광판(110)의 측면(111)을 향하게 된다. 그리고, 금속 기판(155)의 하면(156) 측이 아니라, 회로 기판(130)의 상면(131)과 마주하는 금속 기판(155)의 전면(157) 또는 후면(158) 측에서 제1 도전부(151)와 제2 도전부(152)가 각각 회로 기판(130)과 전기적으로 연결된다. 금속 기판(155)이 상면(154)과 하면(156) 사이의 치수(z)가 전면(157)과 후면(158) 사이의 치수(y)보다 크게 형성될 경우, 금속 기판(155)의 전면(157) 또는 후면(158)에서 제1 도전부(151) 및 제2 도전부(152)와 회로 기판(130)의 상면(131) 사이에 충분한 접촉면적을 확보할 수 있고, 따라서 납땜 등과 같은 방식으로 접합할 때, 반도체 발광소자(150)와 회로 기판(130) 간의 결합의 신뢰성을 향상시킬 수 있다. The semiconductor light emitting device 150 may include a front surface 157 or a rear surface 158 of the metal substrate 155 lying down to face the top surface 131 of the circuit board 130, and the top surface 154 of the metal substrate 155 may be disposed. The upper surface 131 of the circuit board 130 is fixed to face one side 111 of the light guide plate 110. Therefore, the light exit surface 149 of the semiconductor light emitting device 150 faces the side surface 111 of the light guide plate 110. In addition, the first conductive portion may be disposed on the front surface 157 or the rear surface 158 of the metal substrate 155 facing the upper surface 131 of the circuit board 130 instead of the bottom surface 156 of the metal substrate 155. The 151 and the second conductive portion 152 are electrically connected to the circuit board 130, respectively. When the metal substrate 155 has a dimension z between the upper surface 154 and the lower surface 156 larger than the dimension y between the front surface 157 and the rear surface 158, the front surface of the metal substrate 155 A sufficient contact area can be secured between the first conductive portion 151 and the second conductive portion 152 and the upper surface 131 of the circuit board 130 at the 157 or the rear surface 158, such as soldering or the like. When bonding in a manner, the reliability of the coupling between the semiconductor light emitting device 150 and the circuit board 130 may be improved.

상기한 바와 같이 회로 기판(130)이 도광판(110)과 평행하게 눕혀서 배치되고, 반도체 발광소자(150)가 반도체 발광소자 칩(165)의 단변 길이(b)에 근접할 정도로 얇은 전면과 후면 사이의 치수(y)를 가지며, 반도체 발광소자(150)가 금속 기판(155)의 전면(157) 또는 후면(158)이 회로 기판(130)의 상면(131)과 접촉하도록 눕혀져서 고정된다. As described above, the circuit board 130 is disposed to lie in parallel with the light guide plate 110, and the semiconductor light emitting device 150 is thin between the front and rear surfaces such that the semiconductor light emitting device 150 is close to the short side length b of the semiconductor light emitting device chip 165. The semiconductor light emitting device 150 is laid down and fixed so that the front surface 157 or the rear surface 158 of the metal substrate 155 contacts the upper surface 131 of the circuit board 130.

회로 기판(130)과 반도체 발광소자(150)로 구성되는 광원 어셈블리(120)에서, 슬림화의 대상이 되는 광원 어셈블리(120)의 두께(T)는 회로 기판(130)의 두께(t)에 반도체 발광소자(150)의 전면(157)과 후면(158) 사이의 치수(y)를 더한 값에 해당한다. 또한, 반도체 발광소자(150)의 전면(157)과 후면(158) 사이의 치수(y)는 반도체 발광소자 칩(165)의 단변 길이(b)와 반도체 발광소자 칩(165)의 둘레를 둘러싸는 반사부(170)의 두께를 더한 값에 해당한다. 회로 기판(130)은 매우 얇게 형성될 수 있을 뿐만 아니라 눕혀져 배치됨에 따라 광원 어셈블리(120)의 두께(T)에 미치는 영향은 매우 제한적이다. 그리고, 반도체 발광소자(150)의 측면으로 출사되는 빛을 반사시켜 광출사면(149)을 통해 지향성이 높은 빛을 출사시킬 수 있도록 하는 반사부(170)를 포함하면서도 금속 기판(155) 전면(157)과 후면(158) 사이의 치수(y)에 대응하는 매우 얇은 반도체 발광소자(50)를 갖는 제공하고, 이러한 반도체 발광소자(150)를 회로 기판(130)의 상면(131) 위에 눕혀서 배치한다. 따라서, 액정표시장치의 슬림화 추세에 적합한 현저히 얇은 두께의 광원 어셈블리(120), 즉 현저히 얇은 백라이트 유닛을 제공할 수 있다. In the light source assembly 120 including the circuit board 130 and the semiconductor light emitting device 150, the thickness T of the light source assembly 120 to be slimmed is equal to the thickness t of the circuit board 130. It corresponds to the sum of the dimension y between the front surface 157 and the rear surface 158 of the light emitting device 150. In addition, the dimension y between the front surface 157 and the rear surface 158 of the semiconductor light emitting device 150 surrounds the short side length b of the semiconductor light emitting device chip 165 and the circumference of the semiconductor light emitting device chip 165. Corresponds to a value obtained by adding the thickness of the reflector 170. The circuit board 130 may not only be formed very thin but also have a limited effect on the thickness T of the light source assembly 120 as it is laid down. The front surface of the metal substrate 155 includes a reflector 170 which reflects light emitted from the side surface of the semiconductor light emitting device 150 to emit light having high directivity through the light exit surface 149. And having a very thin semiconductor light emitting device 50 corresponding to the dimension y between the 157 and the back surface 158, and placing the semiconductor light emitting device 150 on the upper surface 131 of the circuit board 130. do. Accordingly, a light source assembly 120 having a significantly thin thickness, that is, a significantly thin backlight unit suitable for the slimming trend of the liquid crystal display device may be provided.

도 19는 본 개시에 따른 백라이트 유닛을 구성하는 반도체 발광소자의 또 다른 일 예를 나타낸 도면으로서, 반도체 발광소자 칩(165)은 제1 전극(171) 및 제2 전극(172) 아래에 각각 위치하는 금속 재질의 본딩 패드(141,142)를 구비할 수 있다. 이러한 본딩 패드(141,142)를 이용하여, 반도체 발광소자 칩(165)은 유태틱 본딩 방식으로 금속 기판(155)의 상면(154)에 접합될 수도 있다. 따라서, 완성된 반도체 발광소자(150)에서, 제1 전극(171)과 금속 기판(155)의 제1 도전부(151) 사이에 본딩 패드(141)가 위치하고, 제2 전극(172)과 금속 기판(155)의 제2 도전부(152) 사이에 본딩 패드(142)가 위치하게 된다. 19 is a view illustrating another example of a semiconductor light emitting device constituting the backlight unit according to the present disclosure, wherein the semiconductor light emitting device chip 165 is positioned below the first electrode 171 and the second electrode 172, respectively. Bonding pads 141 and 142 may be provided. By using the bonding pads 141 and 142, the semiconductor light emitting device chip 165 may be bonded to the upper surface 154 of the metal substrate 155 by a Jewish bonding method. Therefore, in the completed semiconductor light emitting device 150, a bonding pad 141 is positioned between the first electrode 171 and the first conductive portion 151 of the metal substrate 155, and the second electrode 172 and the metal The bonding pads 142 are positioned between the second conductive portions 152 of the substrate 155.

도 20은 본 개시에 따른 백라이트 유닛을 구성하는 반도체 발광소자의 또 다른 일 예를 나타낸 도면으로서, 반도체 발광소자 칩(165)으로 레터럴 칩이 사용되었다. 반도체 발광소자 칩(165)은 제1 전극(171) 및 제2 전극(172)이 상부에 위치하도록 배치된다. 반도체 발광소자 칩(165)은 틈(153)에 걸쳐서 위치하게 된다. 제1 전극(171)은 제1 도전부(151)의 상면에 와이어 본딩 방식으로 연결되고, 제2 전극(172)은 제2 도전부(152)의 상면에 와이어 본딩 방식으로 연결된다. 따라서, 완성된 반도체 발광소자에서, 제1 전극(171)은 와이어(176)에 의해 제1 도전부(151)에 전기적으로 연결되고, 제2 전극(172)은 와이어(177)에 의해 제2 도전부(152)에 전기적으로 연결된다. FIG. 20 is a view illustrating another example of a semiconductor light emitting device constituting the backlight unit according to the present disclosure. A lateral chip is used as the semiconductor light emitting device chip 165. The semiconductor light emitting device chip 165 is disposed such that the first electrode 171 and the second electrode 172 are positioned above. The semiconductor light emitting device chip 165 is positioned over the gap 153. The first electrode 171 is connected to the upper surface of the first conductive portion 151 by wire bonding, and the second electrode 172 is connected to the upper surface of the second conductive portion 152 by wire bonding. Accordingly, in the completed semiconductor light emitting device, the first electrode 171 is electrically connected to the first conductive portion 151 by the wire 176, and the second electrode 172 is second by the wire 177. It is electrically connected to the conductive portion 152.

한편, 별도로 도시하지는 않지만, 반도체 발광소자 칩(165)은 틈(153)에 걸치지 않도록 배치될 수 있다. 이 경우, 반도체 발광소자 칩(165)은 제1 도전부(151) 및 제2 도전부(152) 중 어느 하나의 위에 위치하게 된다는 것만 다를 뿐, 제1 전극(171)이 와이어(176)에 의해 제1 도전부(151)에 전기적으로 연결되고, 제2 전극(172)이 와이어(177)에 의해 제2 도전부(152)에 전기적으로 연결되는 것은 동일하다. Meanwhile, although not separately illustrated, the semiconductor light emitting device chip 165 may be disposed so as not to span the gap 153. In this case, the semiconductor light emitting device chip 165 is different from the first conductive part 151 and the second conductive part 152, except that the first electrode 171 is connected to the wire 176. The first conductive portion 151 is electrically connected to each other, and the second electrode 172 is electrically connected to the second conductive portion 152 by the wire 177.

다른 한편, 별도로 도시하지는 않지만, 버티컬 칩 형태의 반도체 발광소자 칩 또한 사용될 수 있다. 이 경우, 반도체 발광소자 칩은 제1 도전부(151) 또는 제2 도전부(152) 위에 위치하고, 반도체 발광소자 칩의 아래에 위치하는 하나의 전극은 제1 도전부(151) 및 제2 도전부(152) 중 어느 하나에 직접 접합되고, 반도체 발광소자 칩의 위에 위치하는 다른 하나의 전극은 제1 도전부(151) 및 제2 도전부(152) 중 나머지 하나에 와이어 본딩 방식으로 접합된다. On the other hand, although not separately shown, a semiconductor light emitting chip in the form of a vertical chip may also be used. In this case, the semiconductor light emitting device chip is positioned on the first conductive part 151 or the second conductive part 152, and one electrode positioned below the semiconductor light emitting device chip is the first conductive part 151 and the second conductive part. The other electrode which is directly bonded to one of the portions 152 and positioned on the semiconductor light emitting device chip is bonded to the other of the first conductive portion 151 and the second conductive portion 152 by a wire bonding method. .

이하, 본 개시의 다양한 실시 형태에 대하여 설명한다.Hereinafter, various embodiments of the present disclosure will be described.

(1) 금속 기판은 전면과 후면 사이의 치수보다 상면과 하면 사이의 치수가 더 큰 것을 특징으로 하는 반도체 발광소자. (1) A semiconductor light emitting element, characterized in that the metal substrate has a larger dimension between the upper and lower surfaces than the dimension between the front and rear surfaces.

(2) 반도체 발광소자 칩은 장변과 단변을 구비하며, 장변이 금속 기판의 좌우방향으로 연장되도록 금속 기판 상면에 놓이는 것을 특징으로 하는 반도체 발광소자. (2) A semiconductor light emitting element chip having a long side and a short side, the semiconductor light emitting element characterized in that the long side is placed on the upper surface of the metal substrate so as to extend in the left and right direction of the metal substrate.

(3) 반사부가 백색수지를 함유하는 것을 특징으로 하는 반도체 발광소자. (3) A semiconductor light emitting element, wherein the reflecting portion contains white resin.

(4) 충진제가 틈 내부에 구비되는 것을 특징으로 하는 반도체 발광소자. (4) A semiconductor light emitting element, characterized in that a filler is provided in the gap.

(5) 금속 기판의 둘레면(전면, 후면, 좌측면 및 우측면), 반사부의 둘레면 및 봉지부의 둘레면이 연속적으로 이어지는 것을 특징으로 하는 반도체 발광소자. (5) A semiconductor light emitting element, characterized in that the circumferential surfaces (front, rear, left and right surfaces) of the metal substrate, the circumferential surface of the reflecting portion and the circumferential surface of the encapsulation portion are continuously connected.

(6) 금속 기판의 둘레면(전면, 후면, 좌측면 및 우측면), 반사부의 둘레면 및 봉지부의 둘레면은 절단면인 것을 특징으로 하는 반도체 발광소자. (6) The semiconductor light emitting element, wherein the peripheral surfaces (front, rear, left and right surfaces) of the metal substrate, the peripheral surface of the reflecting portion and the peripheral surface of the encapsulation portion are cut surfaces.

(7) 반도체 발광소자 칩은 제1 전극 및 제2 전극이 하부에 위치하도록 금속 기판 위에 배치되며, 제1 전극은 제1 도전부의 상면에 접합되고, 제2 전극은 제2 도전부의 상면에 접합되는 것을 특징으로 하는 반도체 발광소자. (7) The semiconductor light emitting device chip is disposed on the metal substrate such that the first electrode and the second electrode are located below, the first electrode is bonded to the upper surface of the first conductive portion, and the second electrode is bonded to the upper surface of the second conductive portion. A semiconductor light emitting device, characterized in that.

(8) 플레이트를 준비하는 단계에서, 홈 내부에 충진제가 구비되는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.(8) In the step of preparing a plate, a method for manufacturing a semiconductor light emitting device, characterized in that the filler is provided in the groove.

(9) 금속 기판은 전면과 후면 사이의 치수보다 상면과 하면 사이의 치수가 더 큰 것을 특징으로 하는 백라이트 유닛. (9) A backlight unit, characterized in that the metal substrate has a larger dimension between the upper and lower surfaces than the dimension between the front and rear surfaces.

(10) 반도체 발광소자 칩은 장변과 단변을 구비하며, 장변이 금속 기판의 좌우방향으로 연장되도록 금속 기판 상면에 놓이는 것을 특징으로 하는 백라이트 유닛. (10) A backlight unit comprising a semiconductor light emitting device chip having a long side and a short side, and placed on an upper surface of the metal substrate so that the long side extends in the left and right directions of the metal substrate.

(11) 틈 내부에 충진제가 구비되는 것을 특징으로 하는 백라이트 유닛. (11) The backlight unit, characterized in that the filler is provided in the gap.

(12) 충진제가 형광체를 함유하는 것을 특징으로 하는 백라이트 유닛. (12) A backlight unit, wherein the filler contains phosphors.

(13) 금속 기판의 둘레면(전면, 후면, 좌측면 및 우측면)과 봉지부의 둘레면이 연속적으로 이어지는 것을 특징으로 하는 백라이트 유닛. (13) A backlight unit, characterized in that the circumferential surfaces (front, rear, left and right surfaces) of the metal substrate and the circumferential surfaces of the encapsulation portion are continuously connected.

(14) 금속 기판의 둘레면(전면, 후면, 좌측면 및 우측면) 및 봉지부의 둘레면은 절단면인 것을 특징으로 하는 백라이트 유닛. (14) A backlight unit, wherein the circumferential surfaces (front, rear, left and right surfaces) of the metal substrate and the circumferential surfaces of the encapsulation portion are cut surfaces.

(15) 반도체 발광소자 칩은 틈에 걸쳐서 위치하는 것을 특징으로 하는 백라이트 유닛. (15) A backlight unit, wherein the semiconductor light emitting element chip is positioned across the gap.

(16) 반도체 발광소자 칩은 제1 전극 및 제2 전극이 하부에 위치하도록 금속 기판 위에 배치되며, 제1 전극은 제1 도전부의 상면에 접합되고, 제2 전극은 제2 도전부의 상면에 접합되는 것을 특징으로 하는 백라이트 유닛. (16) The semiconductor light emitting device chip is disposed on the metal substrate such that the first electrode and the second electrode are located below, the first electrode is bonded to the upper surface of the first conductive portion, and the second electrode is bonded to the upper surface of the second conductive portion. Backlight unit, characterized in that the.

(17) 반도체 발광소자 칩은 제1 전극 및 제2 전극 아래에 각각 위치하는 본딩 본딩 패드를 구비하여, 유태틱 본딩 방식으로 금속 기판에 접합되는 것을 특징으로 하는 백라이트 유닛. (17) A backlight unit, wherein the semiconductor light emitting device chip has bonding bonding pads positioned under the first electrode and the second electrode, respectively, and is bonded to the metal substrate by a Jewish bonding method.

(18) 반도체 발광소자 칩은 제1 전극 및 제2 전극이 상부에 위치하도록 금속 기판 위에 배치되며, 제1 전극 및 제2 전극은 각각 와이어에 의해 제1 도전부 및 제2 도전부와 전기적으로 연결되는 것을 특징으로 하는 백라이트 유닛. (18) The semiconductor light emitting device chip is disposed on the metal substrate such that the first electrode and the second electrode are positioned on the upper portion, and the first electrode and the second electrode are electrically connected to the first conductive portion and the second conductive portion by wires, respectively. Backlight unit, characterized in that connected.

(19) 봉지부가 형광체를 함유하는 것을 특징으로 하는 백라이트 유닛.(19) A backlight unit, wherein the encapsulation portion contains a phosphor.

본 개시에 따른 하나의 반도체 발광소자에 의하면, 얇은 두께의 반도체 발광소자를 제공할 수 있다. According to one semiconductor light emitting device according to the present disclosure, a semiconductor light emitting device having a thin thickness can be provided.

본 개시에 따른 다른 하나의 반도체 발광소자에 의하면, 출사되는 빛의 지향성이 우수한 반도체 발광소자를 제공할 수 있다. According to another semiconductor light emitting device according to the present disclosure, it is possible to provide a semiconductor light emitting device having excellent directivity of emitted light.

본 개시에 따른 하나의 반도체 발광소자 제조방법에 의하면, 반사부가 일체화된 반도체 발광소자를 제공할 수 있다. According to one semiconductor light emitting device manufacturing method according to the present disclosure, it is possible to provide a semiconductor light emitting device in which a reflecting unit is integrated.

본 개시에 따른 다른 하나의 반도체 발광소자 제조방법에 의하면, 반도체 발광소자 칩의 측면으로 출사되는 광을 반사하는 반사부를 구비하면서도 얇은 두께를 가지는 반도체 발광소자를 제공할 수 있다. According to another method of manufacturing a semiconductor light emitting device according to the present disclosure, it is possible to provide a semiconductor light emitting device having a thin thickness while having a reflector reflecting light emitted to a side surface of the semiconductor light emitting device chip.

본 개시에 따른 다른 하나의 백라이트 유닛에 의하면, 얇은 두께의 백라이트 유닛을 통해 얇은 두께의 액정표시장치를 제공할 수 있다. According to another backlight unit according to the present disclosure, a thin liquid crystal display device may be provided through a thin backlight unit.

본 개시에 따른 또 다른 하나의 백라이트 유닛에 의하면, 광원 어셈블리를 구성하는 반도체 발광소자와 회로 기판 간의 결합의 신뢰성을 향상시킬 수 있다. According to another backlight unit according to the present disclosure, it is possible to improve the reliability of the coupling between the semiconductor light emitting element constituting the light source assembly and the circuit board.

본 개시에 따른 하나의 백라이트 유닛에 의하면, 얇은 두께의 광원 어셈블리를 통해 얇은 두께의 사이드 뷰 방식의 백라이트 유닛을 제공할 수 있다. According to one backlight unit according to the present disclosure, a thin thickness side view type backlight unit may be provided through a thin thickness light source assembly.

본 개시에 따른 다른 하나의 백라이트 유닛에 의하면, 얇은 두께의 백라이트 유닛을 통해 얇은 두께의 액정표시장치를 제공할 수 있다. According to another backlight unit according to the present disclosure, a thin liquid crystal display device may be provided through a thin backlight unit.

본 개시에 따른 다른 하나의 백라이트 유닛에 의하면, 광원 어셈블리를 구성하는 반도체 발광소자와 회로 기판 간의 결합의 신뢰성을 향상시킬 수 있다.According to another backlight unit according to the present disclosure, it is possible to improve the reliability of coupling between the semiconductor light emitting element constituting the light source assembly and the circuit board.

Claims (23)

반도체 발광소자에 있어서, In a semiconductor light emitting device, 틈, 및 틈을 사이에 두고 측면을 마주하도록 배치되며 틈에 의해 전기적으로 분리되는 제1 도전부와 제2 도전부를 포함하며, 상면, 하면, 전면, 후면, 좌측면 및 우측면을 가지는 육면체 형태로 형성되는 금속 기판;It is arranged in the form of a cube having a top, a bottom, a front, a back, a left side and a right side, including a gap, and a first conductive portion and a second conductive portion disposed to face the side with the gap therebetween and electrically separated by the gap. A metal substrate formed; 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층, 제1 반도체층에 전기적으로 연결되는 제1 전극, 및 제2 반도체층에 전기적으로 연결되는 제2 전극을 구비하며, 금속 기판의 상면에 고정되는 반도체 발광소자 칩; A first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, an active layer interposed between the first semiconductor layer and the second semiconductor layer and generating light by recombination of electrons and holes A semiconductor light emitting device chip having a first electrode electrically connected to the first semiconductor layer and a second electrode electrically connected to the second semiconductor layer, the semiconductor light emitting device chip being fixed to an upper surface of the metal substrate; 금속 기판의 상면 위에서 반도체 발광소자 칩의 둘레를 둘러싸도록 형성되는 반사부; 및 A reflector formed to surround a semiconductor light emitting device chip on an upper surface of the metal substrate; And 반사부의 상면 및 반도체 발광소자 칩의 상면을 덮도록 형성되는 봉지부;를 포함하는 것을 특징으로 하는 반도체 발광소자. And an encapsulation portion formed to cover the upper surface of the reflecting portion and the upper surface of the semiconductor light emitting device chip. 청구항 1에 있어서, The method according to claim 1, 금속 기판은 전면과 후면 사이의 치수보다 상면과 하면 사이의 치수가 더 큰 것을 특징으로 하는 반도체 발광소자. The metal substrate is a semiconductor light emitting device, characterized in that the dimension between the upper surface and the lower surface than the dimension between the front and rear surfaces. 청구항 1에 있어서, The method according to claim 1, 반도체 발광소자 칩은 장변과 단변을 구비하며, 장변이 금속 기판의 좌우방향으로 연장되도록 금속 기판 상면에 놓이는 것을 특징으로 하는 반도체 발광소자. A semiconductor light emitting device chip has a long side and a short side, the semiconductor light emitting device, characterized in that the long side is placed on the upper surface of the metal substrate so as to extend in the left and right direction of the metal substrate. 청구항 1에 있어서,The method according to claim 1, 반사부가 백색수지를 함유하는 것을 특징으로 하는 반도체 발광소자. A semiconductor light emitting element, wherein the reflecting portion contains white resin. 청구항 1에 있어서,The method according to claim 1, 충진제가 틈 내부에 구비되는 것을 특징으로 하는 반도체 발광소자. A semiconductor light emitting device, characterized in that the filler is provided in the gap. 청구항 1에 있어서, The method according to claim 1, 금속 기판의 둘레면(전면, 후면, 좌측면 및 우측면), 반사부의 둘레면 및 봉지부의 둘레면이 연속적으로 이어지는 것을 특징으로 하는 반도체 발광소자. A circumferential surface (front, rear, left and right sides) of the metal substrate, the circumferential surface of the reflecting portion and the circumferential surface of the encapsulation portion are successively connected. 청구항 6에 있어서, The method according to claim 6, 금속 기판의 둘레면(전면, 후면, 좌측면 및 우측면), 반사부의 둘레면 및 봉지부의 둘레면은 절단면인 것을 특징으로 하는 반도체 발광소자. A circumferential surface (front, rear, left and right sides) of the metal substrate, the circumferential surface of the reflecting portion and the circumferential surface of the encapsulation portion are cut surfaces. 청구항 1에 있어서, The method according to claim 1, 반도체 발광소자 칩은 제1 전극 및 제2 전극이 하부에 위치하도록 금속 기판 위에 배치되며, The semiconductor light emitting device chip is disposed on the metal substrate such that the first electrode and the second electrode are located below. 제1 전극은 제1 도전부의 상면에 접합되고, The first electrode is bonded to the upper surface of the first conductive portion, 제2 전극은 제2 도전부의 상면에 접합되는 것을 특징으로 하는 반도체 발광소자. The second electrode is bonded to the upper surface of the second conductive portion, the semiconductor light emitting device. 반도체 발광소자를 제조하는 방법에 있어서, In the method of manufacturing a semiconductor light emitting device, 제1 도전부와 제2 도전부, 및 제1 도전부와 제2 도전부 사이에 형성되어 제1 도전부와 제2 도전부를 분리하는 홈을 포함하는 플레이트를 준비하는 단계;Preparing a plate including a first conductive portion and a second conductive portion, and a groove formed between the first conductive portion and the second conductive portion to separate the first conductive portion and the second conductive portion; 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층, 제1 반도체층에 전기적으로 연결되는 제1 전극, 및 제2 반도체층에 전기적으로 연결되는 제2 전극을 구비하는 반도체 발광소자 칩을 플레이트의 상면에 고정하는 단계; A first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, an active layer interposed between the first semiconductor layer and the second semiconductor layer and generating light by recombination of electrons and holes Fixing a semiconductor light emitting device chip having a first electrode electrically connected to the first semiconductor layer, and a second electrode electrically connected to the second semiconductor layer on an upper surface of the plate; 반도체 발광소자 칩을 반사제로 덮는 단계; Covering the semiconductor light emitting device chip with a reflecting agent; 반사제를 경화시킨 후, 반도체 발광소자 칩의 상면이 노출되도록 반도체 발광소자 칩의 상면 높이에 맞춰 반사제를 부분적으로 제거하는 단계; After curing the reflector, partially removing the reflector in accordance with the height of the upper surface of the semiconductor light emitting device chip to expose the upper surface of the semiconductor light emitting device chip; 반사제의 상면 및 반도체 발광소자 칩의 상면을 봉지제로 덮는 단계; Covering an upper surface of the reflector and an upper surface of the semiconductor light emitting device chip with an encapsulant; 홈이 플레이트의 하면 측으로 노출되도록 플레이트의 하부를 부분적으로 제거하는 단계; 및 Partially removing the lower part of the plate such that the groove is exposed toward the lower surface of the plate; And 반도체 발광소자의 예정된 경계를 따라 플레이트와 봉지제를 함께 절단하는 단계;를 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.Cutting the plate and the encapsulant together along a predetermined boundary of the semiconductor light emitting device. 청구항 9에 있어서,The method according to claim 9, 플레이트를 준비하는 단계에서, 홈 내부에 충진제가 구비되는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.In the step of preparing a plate, a method for manufacturing a semiconductor light emitting device, characterized in that the filler is provided in the groove. 백라이트 유닛에 있어서, In the backlight unit, 일측면으로 입사한 광을 상면으로 출사하도록 가이드하는 도광판; A light guide plate for guiding light incident on one side to the upper surface; 도광판의 일측면 측에 눕혀서 배치되는 회로 기판; 및 A circuit board lying on one side of the light guide plate; And 틈 및 틈을 사이에 두고 측면을 마주하도록 배치되며 틈에 의해 전기적으로 분리되는 제1 도전부와 제2 도전부를 포함하며, 상면, 하면, 전면, 후면, 좌측면 및 우측면을 가지는 육면체 형태로 형성되는 금속 기판,Arranged to face the side with a gap and a gap therebetween, and comprises a first conductive portion and a second conductive portion electrically separated by the gap, and formed in a hexahedron shape having an upper surface, a lower surface, a front surface, a rear surface, a left surface and a right surface. Metal substrate, 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층, 제1 반도체층에 전기적으로 연결되는 제1 전극, 및 제2 반도체층에 전기적으로 연결되는 제2 전극을 구비하며, 금속 기판의 상면에 고정되는 반도체 발광소자 칩, 및 A first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, an active layer interposed between the first semiconductor layer and the second semiconductor layer and generating light by recombination of electrons and holes A semiconductor light emitting device chip having a first electrode electrically connected to the first semiconductor layer, and a second electrode electrically connected to the second semiconductor layer, and fixed to an upper surface of the metal substrate; 금속 기판의 상면 측에서 반도체 발광소자 칩을 덮도록 형성되는 봉지부를 포함하며, An encapsulation part is formed on the upper surface side of the metal substrate to cover the semiconductor light emitting device chip. 금속 기판의 전면 또는 후면이 회로기판의 상면과 마주하도록 눕혀지고 금속 기판의 상면이 도광판의 일측면을 향하도록 회로기판의 상면에 고정되며, 회로기판의 상면과 마주하는 제1 도전부와 제2 도전부 각각의 전면 또는 후면을 통해 회로기판과 전기적으로 연결되는 반도체 발광소자;를 포함하는 것을 특징으로 하는 백라이트 유닛. The first and second conductive parts facing the upper surface of the circuit board are fixed to the upper surface of the circuit board so that the front or rear surface of the metal substrate faces the upper surface of the circuit board and the upper surface of the metal substrate faces one side of the light guide plate. And a semiconductor light emitting device electrically connected to the circuit board through the front surface or the rear surface of each conductive portion. 청구항 11에 있어서, The method according to claim 11, 금속 기판은 전면과 후면 사이의 치수보다 상면과 하면 사이의 치수가 더 큰 것을 특징으로 하는 백라이트 유닛. And the metal substrate has a larger dimension between the upper and lower surfaces than the dimension between the front and rear surfaces. 청구항 11에 있어서, The method according to claim 11, 반도체 발광소자 칩은 장변과 단변을 구비하며, 장변이 금속 기판의 좌우방향으로 연장되도록 금속 기판 상면에 놓이는 것을 특징으로 하는 백라이트 유닛. The semiconductor light emitting device chip has a long side and a short side, and the backlight unit is placed on the upper surface of the metal substrate so that the long side extends in the left and right directions of the metal substrate. 청구항 11에 있어서,The method according to claim 11, 충진제가 틈 내부에 구비되는 것을 특징으로 하는 백라이트 유닛. A backlight unit, characterized in that the filler is provided in the gap. 청구항 14에 있어서,The method according to claim 14, 충진제가 형광체를 함유하는 것을 특징으로 하는 백라이트 유닛. A backlight unit, wherein the filler contains phosphors. 청구항 11에 있어서,The method according to claim 11, 금속 기판의 둘레면(전면, 후면, 좌측면 및 우측면)과 봉지부의 둘레면이 연속적으로 이어지는 것을 특징으로 하는 백라이트 유닛. A backlight unit, characterized in that the circumferential surfaces (front, rear, left and right surfaces) of the metal substrate and the circumferential surfaces of the encapsulation portion are continuously connected. 청구항 16에 있어서,The method according to claim 16, 금속 기판의 둘레면(전면, 후면, 좌측면 및 우측면) 및 봉지부의 둘레면은 절단면인 것을 특징으로 하는 백라이트 유닛. A circumferential surface (front, back, left and right sides) of the metal substrate and the circumferential surface of the encapsulation portion are backlit surfaces. 청구항 11에 있어서, The method according to claim 11, 반도체 발광소자 칩은 틈에 걸쳐서 위치하는 것을 특징으로 하는 백라이트 유닛. The semiconductor light emitting device chip is positioned over the gap. 청구항 11에 있어서, The method according to claim 11, 반도체 발광소자 칩은 제1 전극 및 제2 전극이 하부에 위치하도록 금속 기판 위에 배치되며, The semiconductor light emitting device chip is disposed on the metal substrate such that the first electrode and the second electrode are located below. 제1 전극은 제1 도전부의 상면에 접합되고, The first electrode is bonded to the upper surface of the first conductive portion, 제2 전극은 제2 도전부의 상면에 접합되는 것을 특징으로 하는 백라이트 유닛. The second electrode is bonded to the upper surface of the second conductive portion, the backlight unit. 청구항 19에 있어서,The method according to claim 19, 반도체 발광소자 칩은 제1 전극 및 제2 전극 아래에 각각 위치하는 본딩 본딩 패드를 구비하여, 유태틱 본딩 방식으로 금속 기판에 접합되는 것을 특징으로 하는 백라이트 유닛. The semiconductor light emitting device chip includes a bonding bonding pad disposed under the first electrode and the second electrode, respectively, and is bonded to the metal substrate by a Jewish bonding method. 청구항 11에 있어서,The method according to claim 11, 반도체 발광소자 칩은 제1 전극 및 제2 전극이 상부에 위치하도록 금속 기판 위에 배치되며, The semiconductor light emitting device chip is disposed on the metal substrate such that the first electrode and the second electrode are located thereon. 제1 전극 및 제2 전극은 각각 와이어에 의해 제1 도전부 및 제2 도전부와 전기적으로 연결되는 것을 특징으로 하는 백라이트 유닛. The first electrode and the second electrode are respectively electrically connected to the first conductive portion and the second conductive portion by a wire. 청구항 11에 있어서,The method according to claim 11, 봉지부가 형광체를 함유하는 것을 특징으로 하는 백라이트 유닛.A backlight unit, wherein the encapsulation portion contains a phosphor. 백라이트 유닛에 있어서, In the backlight unit, 일측면으로 입사한 광을 상면으로 출사하도록 가이드하는 도광판; A light guide plate for guiding light incident on one side to the upper surface; 도광판의 일측면 측에 눕혀서 배치되는 회로 기판; 및 A circuit board lying on one side of the light guide plate; And 틈, 및 틈을 사이에 두고 측면을 마주하도록 배치되며 틈에 의해 전기적으로 분리되는 제1 도전부와 제2 도전부를 포함하며, 상면, 하면, 전면, 후면, 좌측면 및 우측면을 가지는 육면체 형태로 형성되는 금속 기판,It is arranged in the form of a hexahedron having a top, a bottom, a front, a back, a left side and a right side, including a gap, and a first conductive portion and a second conductive portion disposed to face the side with the gap therebetween and electrically separated by the gap. Metal substrate formed, 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 이용해 빛을 생성하는 활성층, 제1 반도체층에 전기적으로 연결되는 제1 전극, 및 제2 반도체층에 전기적으로 연결되는 제2 전극을 구비하며, 금속 기판의 상면에 고정되는 반도체 발광소자 칩, A first semiconductor layer having a first conductivity, a second semiconductor layer having a second conductivity different from the first conductivity, an active layer interposed between the first semiconductor layer and the second semiconductor layer and generating light by recombination of electrons and holes A semiconductor light emitting device chip having a first electrode electrically connected to the first semiconductor layer and a second electrode electrically connected to the second semiconductor layer, the semiconductor light emitting device chip being fixed to an upper surface of the metal substrate; 금속 기판의 상면 위에서 반도체 발광소자 칩의 둘레를 둘러싸도록 형성되는 반사부, 및 A reflector formed to surround the semiconductor light emitting device chip on the upper surface of the metal substrate; 반사부의 상면 및 반도체 발광소자 칩의 상면을 덮도록 형성되는 봉지부를 포함하며,An encapsulation portion formed to cover an upper surface of the reflecting portion and an upper surface of the semiconductor light emitting device chip; 금속 기판의 전면 또는 후면이 회로기판의 상면과 마주하도록 눕혀지고 금속 기판의 상면이 도광판의 일측면을 향하도록 회로기판의 상면에 고정되며, 회로기판의 상면과 마주하는 제1 도전부와 제2 도전부 각각의 전면 또는 후면을 통해 회로기판과 전기적으로 연결되는 반도체 발광소자;를 포함하는 것을 특징으로 하는 백라이트 유닛.The first and second conductive parts facing the upper surface of the circuit board are fixed to the upper surface of the circuit board so that the front or rear surface of the metal substrate faces the upper surface of the circuit board and the upper surface of the metal substrate faces one side of the light guide plate. And a semiconductor light emitting device electrically connected to the circuit board through the front surface or the rear surface of each conductive portion.
PCT/KR2014/003865 2013-04-30 2014-04-30 Semiconductor light emitting diode, method for manufacturing semiconductor light emitting diode, and backlight unit comprising semiconductor light emitting diode WO2014178654A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020130048112A KR101455813B1 (en) 2013-04-30 2013-04-30 Backlight unit
KR10-2013-0048112 2013-04-30
KR10-2013-0066531 2013-06-11
KR1020130066531A KR101506291B1 (en) 2013-06-11 2013-06-11 Semiconductor light emitting device, manufacturing method of the same and backlight unit comprising the same

Publications (1)

Publication Number Publication Date
WO2014178654A1 true WO2014178654A1 (en) 2014-11-06

Family

ID=51843704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/003865 WO2014178654A1 (en) 2013-04-30 2014-04-30 Semiconductor light emitting diode, method for manufacturing semiconductor light emitting diode, and backlight unit comprising semiconductor light emitting diode

Country Status (1)

Country Link
WO (1) WO2014178654A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3382754A1 (en) * 2017-03-31 2018-10-03 InnoLux Corporation Display device
KR20180111555A (en) * 2017-03-31 2018-10-11 이노럭스 코포레이션 Display device
US10686158B2 (en) 2017-03-31 2020-06-16 Innolux Corporation Display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839122B1 (en) * 2006-12-21 2008-06-20 서울반도체 주식회사 A side emitting type LED lamp, a manufacturing method thereof, and a light emitting device including the LED lamp
KR20100003000A (en) * 2008-06-30 2010-01-07 서울반도체 주식회사 Light emitting diode package having multi-face lead terminal and lead frame structure for surface mount thereof
KR101101134B1 (en) * 2008-07-03 2012-01-05 삼성엘이디 주식회사 LED unit and a backlight unit including the LED package
KR20130021300A (en) * 2011-08-22 2013-03-05 엘지이노텍 주식회사 Light emitting device, light emitting device package, and light unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100839122B1 (en) * 2006-12-21 2008-06-20 서울반도체 주식회사 A side emitting type LED lamp, a manufacturing method thereof, and a light emitting device including the LED lamp
KR20100003000A (en) * 2008-06-30 2010-01-07 서울반도체 주식회사 Light emitting diode package having multi-face lead terminal and lead frame structure for surface mount thereof
KR101101134B1 (en) * 2008-07-03 2012-01-05 삼성엘이디 주식회사 LED unit and a backlight unit including the LED package
KR20130021300A (en) * 2011-08-22 2013-03-05 엘지이노텍 주식회사 Light emitting device, light emitting device package, and light unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3382754A1 (en) * 2017-03-31 2018-10-03 InnoLux Corporation Display device
KR20180111555A (en) * 2017-03-31 2018-10-11 이노럭스 코포레이션 Display device
US10686158B2 (en) 2017-03-31 2020-06-16 Innolux Corporation Display device
KR102588970B1 (en) * 2017-03-31 2023-10-12 이노럭스 코포레이션 Display device

Similar Documents

Publication Publication Date Title
US11444008B2 (en) Semiconductor light emitting device and method for manufacturing the same
JP4753431B2 (en) Light emitting diode
CN104868030B (en) Luminescent device
CN102194980B (en) Light emitting diode package and lighting system including the same
JP5906038B2 (en) Light emitting element
EP3961706A1 (en) Illumination device
WO2012108636A2 (en) Light emitting device having wavelength converting layer
CN112928196B (en) Display panel, manufacturing method thereof and display device
WO2014157905A1 (en) Light-emitting element package
WO2015064883A1 (en) Light source module and backlight unit having the same
US20120241773A1 (en) Led bar module with good heat dissipation efficiency
WO2014182104A1 (en) Light source module and backlight unit having same
JPWO2008078791A1 (en) Method for manufacturing light emitting device
CN103366647B (en) LED display unit module
WO2014178654A1 (en) Semiconductor light emitting diode, method for manufacturing semiconductor light emitting diode, and backlight unit comprising semiconductor light emitting diode
TW200926441A (en) LED chip package structure generating a high-efficiency light-emitting effect via rough surfaces and method for manufacturing the same
KR20120014416A (en) Light emitting device and lighting system having same
TW201123413A (en) A light emission module with high-efficiency light emission and high-efficiency heat dissipation and applications thereof
CN203433750U (en) LED display unit module
CN116722084A (en) Flip LED chip, LED packaging module and display device
TW200926439A (en) LED chip package structure with a high-efficiency light-emitting effect
CN101996959A (en) Chip packaging structure capable of realizing electrical connection without routing and manufacturing method thereof
KR101114151B1 (en) Light emitting device and lighting system having same
KR101125437B1 (en) Light emitting device and lighing system
KR101506291B1 (en) Semiconductor light emitting device, manufacturing method of the same and backlight unit comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14792294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14792294

Country of ref document: EP

Kind code of ref document: A1