WO2014174707A1 - Packaged green tea beverage and production method therefor - Google Patents
Packaged green tea beverage and production method therefor Download PDFInfo
- Publication number
- WO2014174707A1 WO2014174707A1 PCT/JP2013/079705 JP2013079705W WO2014174707A1 WO 2014174707 A1 WO2014174707 A1 WO 2014174707A1 JP 2013079705 W JP2013079705 W JP 2013079705W WO 2014174707 A1 WO2014174707 A1 WO 2014174707A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- green tea
- ppm
- concentration
- tea beverage
- tea leaf
- Prior art date
Links
- 244000269722 Thea sinensis Species 0.000 title claims abstract description 254
- 235000009569 green tea Nutrition 0.000 title claims abstract description 140
- 235000013361 beverage Nutrition 0.000 title claims abstract description 120
- 238000004519 manufacturing process Methods 0.000 title description 6
- 235000013616 tea Nutrition 0.000 claims abstract description 115
- ADRVNXBAWSRFAJ-UHFFFAOYSA-N catechin Natural products OC1Cc2cc(O)cc(O)c2OC1c3ccc(O)c(O)c3 ADRVNXBAWSRFAJ-UHFFFAOYSA-N 0.000 claims abstract description 67
- 235000005487 catechin Nutrition 0.000 claims abstract description 67
- 235000000346 sugar Nutrition 0.000 claims abstract description 67
- 230000001603 reducing effect Effects 0.000 claims abstract description 50
- 239000000284 extract Substances 0.000 claims abstract description 49
- 235000013325 dietary fiber Nutrition 0.000 claims abstract description 43
- 229930091371 Fructose Natural products 0.000 claims abstract description 31
- 239000005715 Fructose Substances 0.000 claims abstract description 31
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 claims abstract description 31
- 150000001765 catechin Chemical class 0.000 claims abstract description 30
- 239000002245 particle Substances 0.000 claims abstract description 26
- 230000001186 cumulative effect Effects 0.000 claims abstract description 20
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 33
- PFTAWBLQPZVEMU-DZGCQCFKSA-N (+)-catechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-DZGCQCFKSA-N 0.000 claims description 27
- 229950001002 cianidanol Drugs 0.000 claims description 27
- 150000002016 disaccharides Chemical class 0.000 claims description 23
- 150000002772 monosaccharides Chemical class 0.000 claims description 23
- 235000019640 taste Nutrition 0.000 claims description 19
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 claims description 18
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 claims description 18
- 229960001948 caffeine Drugs 0.000 claims description 18
- 150000001720 carbohydrates Chemical class 0.000 claims description 18
- -1 gallate catechins Chemical class 0.000 claims description 12
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 claims description 9
- 235000019658 bitter taste Nutrition 0.000 abstract description 4
- 229940098324 green tea leaf extract Drugs 0.000 description 75
- 239000011259 mixed solution Substances 0.000 description 69
- 239000000047 product Substances 0.000 description 63
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 60
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 48
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 47
- 239000007788 liquid Substances 0.000 description 43
- 238000002156 mixing Methods 0.000 description 35
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 30
- 229930003268 Vitamin C Natural products 0.000 description 30
- 235000019154 vitamin C Nutrition 0.000 description 30
- 239000011718 vitamin C Substances 0.000 description 30
- 230000000052 comparative effect Effects 0.000 description 28
- 229920003023 plastic Polymers 0.000 description 25
- 235000017557 sodium bicarbonate Nutrition 0.000 description 24
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 24
- 239000000243 solution Substances 0.000 description 23
- 239000000126 substance Substances 0.000 description 22
- 239000004375 Dextrin Substances 0.000 description 21
- 229920001353 Dextrin Polymers 0.000 description 21
- 235000019425 dextrin Nutrition 0.000 description 21
- 238000000605 extraction Methods 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- XMOCLSLCDHWDHP-IUODEOHRSA-N epi-Gallocatechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@H]2O)=CC(O)=C(O)C(O)=C1 XMOCLSLCDHWDHP-IUODEOHRSA-N 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 11
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 10
- 230000035622 drinking Effects 0.000 description 10
- 238000004128 high performance liquid chromatography Methods 0.000 description 9
- WMBWREPUVVBILR-UHFFFAOYSA-N GCG Natural products C=1C(O)=C(O)C(O)=CC=1C1OC2=CC(O)=CC(O)=C2CC1OC(=O)C1=CC(O)=C(O)C(O)=C1 WMBWREPUVVBILR-UHFFFAOYSA-N 0.000 description 8
- 239000003205 fragrance Substances 0.000 description 8
- LSHVYAFMTMFKBA-UHFFFAOYSA-N ECG Natural products C=1C=C(O)C(O)=CC=1C1OC2=CC(O)=CC(O)=C2CC1OC(=O)C1=CC(O)=C(O)C(O)=C1 LSHVYAFMTMFKBA-UHFFFAOYSA-N 0.000 description 7
- WMBWREPUVVBILR-WIYYLYMNSA-N (-)-Epigallocatechin-3-o-gallate Chemical compound O([C@@H]1CC2=C(O)C=C(C=C2O[C@@H]1C=1C=C(O)C(O)=C(O)C=1)O)C(=O)C1=CC(O)=C(O)C(O)=C1 WMBWREPUVVBILR-WIYYLYMNSA-N 0.000 description 6
- LSHVYAFMTMFKBA-TZIWHRDSSA-N (-)-epicatechin-3-O-gallate Chemical compound O([C@@H]1CC2=C(O)C=C(C=C2O[C@@H]1C=1C=C(O)C(O)=CC=1)O)C(=O)C1=CC(O)=C(O)C(O)=C1 LSHVYAFMTMFKBA-TZIWHRDSSA-N 0.000 description 6
- XMOCLSLCDHWDHP-UHFFFAOYSA-N L-Epigallocatechin Natural products OC1CC2=C(O)C=C(O)C=C2OC1C1=CC(O)=C(O)C(O)=C1 XMOCLSLCDHWDHP-UHFFFAOYSA-N 0.000 description 6
- 239000004677 Nylon Substances 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- DZYNKLUGCOSVKS-UHFFFAOYSA-N epigallocatechin Natural products OC1Cc2cc(O)cc(O)c2OC1c3cc(O)c(O)c(O)c3 DZYNKLUGCOSVKS-UHFFFAOYSA-N 0.000 description 6
- 229940030275 epigallocatechin gallate Drugs 0.000 description 6
- 230000005484 gravity Effects 0.000 description 6
- 229920001778 nylon Polymers 0.000 description 6
- 235000012734 epicatechin Nutrition 0.000 description 5
- 239000000706 filtrate Substances 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 230000001953 sensory effect Effects 0.000 description 5
- LSHVYAFMTMFKBA-PZJWPPBQSA-N (+)-catechin-3-O-gallate Chemical compound O([C@H]1CC2=C(O)C=C(C=C2O[C@@H]1C=1C=C(O)C(O)=CC=1)O)C(=O)C1=CC(O)=C(O)C(O)=C1 LSHVYAFMTMFKBA-PZJWPPBQSA-N 0.000 description 4
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 4
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 4
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 235000019606 astringent taste Nutrition 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000000796 flavoring agent Substances 0.000 description 4
- 235000019634 flavors Nutrition 0.000 description 4
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000010257 thawing Methods 0.000 description 4
- PFTAWBLQPZVEMU-ZFWWWQNUSA-N (+)-epicatechin Natural products C1([C@@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-ZFWWWQNUSA-N 0.000 description 3
- PFTAWBLQPZVEMU-UKRRQHHQSA-N (-)-epicatechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-UKRRQHHQSA-N 0.000 description 3
- WMBWREPUVVBILR-NQIIRXRSSA-N (-)-gallocatechin gallate Chemical compound O([C@@H]1CC2=C(O)C=C(C=C2O[C@H]1C=1C=C(O)C(O)=C(O)C=1)O)C(=O)C1=CC(O)=C(O)C(O)=C1 WMBWREPUVVBILR-NQIIRXRSSA-N 0.000 description 3
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical group C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- LPTRNLNOHUVQMS-UHFFFAOYSA-N epicatechin Natural products Cc1cc(O)cc2OC(C(O)Cc12)c1ccc(O)c(O)c1 LPTRNLNOHUVQMS-UHFFFAOYSA-N 0.000 description 3
- LVJJFMLUMNSUFN-UHFFFAOYSA-N gallocatechin gallate Natural products C1=C(O)C=C2OC(C=3C=C(O)C(O)=CC=3)C(O)CC2=C1OC(=O)C1=CC(O)=C(O)C(O)=C1 LVJJFMLUMNSUFN-UHFFFAOYSA-N 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- XMOCLSLCDHWDHP-DOMZBBRYSA-N (-)-gallocatechin Chemical compound C1([C@@H]2OC3=CC(O)=CC(O)=C3C[C@H]2O)=CC(O)=C(O)C(O)=C1 XMOCLSLCDHWDHP-DOMZBBRYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 2
- 239000005792 Geraniol Substances 0.000 description 2
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 229920001429 chelating resin Polymers 0.000 description 2
- 235000009508 confectionery Nutrition 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 229940113087 geraniol Drugs 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000005374 membrane filtration Methods 0.000 description 2
- 238000001471 micro-filtration Methods 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XMOCLSLCDHWDHP-SWLSCSKDSA-N (+)-Epigallocatechin Natural products C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC(O)=C(O)C(O)=C1 XMOCLSLCDHWDHP-SWLSCSKDSA-N 0.000 description 1
- XDIYNQZUNSSENW-UUBOPVPUSA-N (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanal Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O XDIYNQZUNSSENW-UUBOPVPUSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- DBTMGCOVALSLOR-UHFFFAOYSA-N 32-alpha-galactosyl-3-alpha-galactosyl-galactose Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(OC2C(C(CO)OC(O)C2O)O)OC(CO)C1O DBTMGCOVALSLOR-UHFFFAOYSA-N 0.000 description 1
- 239000004380 Cholic acid Substances 0.000 description 1
- RXVWSYJTUUKTEA-UHFFFAOYSA-N D-maltotriose Natural products OC1C(O)C(OC(C(O)CO)C(O)C(O)C=O)OC(CO)C1OC1C(O)C(O)C(O)C(CO)O1 RXVWSYJTUUKTEA-UHFFFAOYSA-N 0.000 description 1
- 206010013911 Dysgeusia Diseases 0.000 description 1
- 235000010254 Jasminum officinale Nutrition 0.000 description 1
- 240000005385 Jasminum sambac Species 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 238000007696 Kjeldahl method Methods 0.000 description 1
- 235000005135 Micromeria juliana Nutrition 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- MUPFEKGTMRGPLJ-RMMQSMQOSA-N Raffinose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 MUPFEKGTMRGPLJ-RMMQSMQOSA-N 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 240000002114 Satureja hortensis Species 0.000 description 1
- 235000007315 Satureja hortensis Nutrition 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- UQZIYBXSHAGNOE-USOSMYMVSA-N Stachyose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](CO[C@@H]2[C@@H](O)[C@@H](O)[C@@H](O)[C@H](CO)O2)O1 UQZIYBXSHAGNOE-USOSMYMVSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- MUPFEKGTMRGPLJ-UHFFFAOYSA-N UNPD196149 Natural products OC1C(O)C(CO)OC1(CO)OC1C(O)C(O)C(O)C(COC2C(C(O)C(O)C(CO)O2)O)O1 MUPFEKGTMRGPLJ-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 235000021329 brown rice Nutrition 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 108091007734 digestive enzymes Proteins 0.000 description 1
- 102000038379 digestive enzymes Human genes 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000006345 epimerization reaction Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000000892 gravimetry Methods 0.000 description 1
- 229940094952 green tea extract Drugs 0.000 description 1
- 235000020688 green tea extract Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 125000000468 ketone group Chemical group 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- FYGDTMLNYKFZSV-UHFFFAOYSA-N mannotriose Natural products OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(OC2C(OC(O)C(O)C2O)CO)C(O)C1O FYGDTMLNYKFZSV-UHFFFAOYSA-N 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- MUPFEKGTMRGPLJ-ZQSKZDJDSA-N raffinose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O2)O)O1 MUPFEKGTMRGPLJ-ZQSKZDJDSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- UQZIYBXSHAGNOE-XNSRJBNMSA-N stachyose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO[C@@H]3[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O3)O)O2)O)O1 UQZIYBXSHAGNOE-XNSRJBNMSA-N 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 108010075550 termamyl Proteins 0.000 description 1
- 150000004072 triols Chemical group 0.000 description 1
- 150000004043 trisaccharides Chemical class 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- FYGDTMLNYKFZSV-BYLHFPJWSA-N β-1,4-galactotrioside Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@H](CO)O[C@@H](O[C@@H]2[C@@H](O[C@@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-BYLHFPJWSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23F—COFFEE; TEA; THEIR SUBSTITUTES; MANUFACTURE, PREPARATION, OR INFUSION THEREOF
- A23F3/00—Tea; Tea substitutes; Preparations thereof
- A23F3/16—Tea extraction; Tea extracts; Treating tea extract; Making instant tea
- A23F3/163—Liquid or semi-liquid tea extract preparations, e.g. gels or liquid extracts in solid capsules
Definitions
- the present invention relates to a packaged green tea beverage that can feel incense and a method for producing the same.
- green tea beverages are generally drunk widely, the drinking scenes of green tea beverages are diversified and are being drunk in various scenes and temperature states. For example, during the hot summer season, consumers are increasingly buying and drinking frozen green tea beverages.
- Container-packed green tea beverages (frozen drinking container-packed green tea beverages) that are frozen for use, unlike container-packed beverages that have been refrigerated, have had technical problems related to containers, such as the container bursting due to the expansion of the content liquid.
- a prescription design that makes the internal solution difficult to swell has existed as a new technical problem.
- the frozen beverage-packed green tea beverage has a different drinking scene from the refrigerated container-packed green tea beverage. For example, if it is a refrigerated green tea beverage, it is not impossible to drink it at a stretch, but since a frozen green tea beverage is frozen, it cannot be physically swallowed at a stretch.
- frozen tea-packed green tea beverages thaw as they gradually warm up over time, but frozen tea extract tends to dissolve from high-concentration parts, so tea extraction depends on the timing of drinking. Another problem was that the concentration of the liquid and the balance between taste and aroma were likely to change gradually.
- Patent Document 1 discloses that a saccharide concentration obtained by combining a monosaccharide concentration and a disaccharide concentration is 100 ppm to 300 ppm, and the ratio of the disaccharide concentration to the monosaccharide concentration (disaccharide / monosaccharide) is 10.
- a green tea beverage is disclosed that has a strong incense (bright fragrance), a light taste, and a refreshing aftertaste that can be drunk deliciously even in a cold state. ing.
- Patent Document 2 discloses that the concentration of a saccharide including a monosaccharide and a disaccharide is 150 ppm to 500 ppm, and the ratio of the concentration of the disaccharide to the concentration of the monosaccharide (disaccharide / monosaccharide) is 2.0 to 8.0, the ratio of the concentration of electron-localized catechin to the concentration of saccharide (electron-localized catechin / saccharide) is 1.8 to 4.0, and the content ratio of furfural to geraniol (furfural / geraniol) is By providing a green tea beverage packaged in a range of 0.5 to 3.0, the fragrance spreads in the mouth and the reverberation remains, and the taste is rich and dense, and even in the cold state A new packaged green tea beverage is disclosed.
- Patent Documents 1 and 2 are not researched and developed by paying attention to the balance between the sense of concentration and the taste and fragrance that change depending on the degree of dissolution.
- the technical problem of developing the technology has not been recognized, and there have been few specific proposals for a method for solving the technical problem.
- An object of the present invention is to provide a packaged green tea beverage that can be enjoyed in the same level of concentration, balance of taste and aroma not only when frozen but also when drinking without freezing, and a method for producing the same.
- the inventors of the present invention have adjusted the particle size (D90) of 90 cumulative mass% in the tea extract to 2 to 50 ⁇ m, and the ratio of fructose to acidity and the total value of gallate catechins ( (Fructose / acidity + gallate catechins) is adjusted to 0.01 to 0.08, and the ratio of dietary fiber to the total of reducing sugar and non-reducing sugar (dietary fiber / (reducing sugar + non-reducing sugar)
- the inventors have found that the above technical problem can be solved by adjusting to 0.1 to 200, and have completed the present invention.
- the 90 cumulative mass% particle size (D90) in the tea extract is 2 ⁇ m to 50 ⁇ m, and the ratio of fructose to acidity and the total value of gallate catechins (fructose / acidity + gallate catechins) ) Is 0.01 to 0.08, and the ratio of dietary fiber to the total value of reducing sugar and non-reducing sugar (dietary fiber / (reducing sugar + non-reducing sugar) is 0.1 to 200)
- Containerized green tea drink (2) The packaged green tea beverage according to (1) above, wherein the saccharide concentration, which is a combination of the monosaccharide concentration and the disaccharide concentration, is 87 ppm to 380 ppm, (3)
- the disaccharide concentration weight ratio (disaccharide / monosaccharide + disaccharide) in the saccharide concentration that combines the monosaccharide concentration and the disaccharide concentration is 0.69 to 0.92.
- the particle size (D90) of 90 cumulative mass% in the tea extract is adjusted to 2 ⁇ m to 50 ⁇ m, and the ratio of fructose to acidity and the total value of gallate type catechins (fructose / acidity + gallate type catechin) ) Is adjusted to 0.01 to 0.08, and the ratio of dietary fiber to the total of reducing sugar and non-reducing sugar (dietary fiber / (reducing sugar + non-reducing sugar) is adjusted to 0.1 to 200.
- a method for maintaining the quality of a green tea beverage in a container About.
- the frozen green tea beverage can keep being well-balanced with a sense of concentration and a good balance of taste and aroma, which tend to change as time elapses, and can be suitably drunk in any state.
- a packaged green tea beverage is obtained.
- the green tea beverage of the present invention has a 90 cumulative mass% particle size (D90) in the tea extract of 2 ⁇ m to 50 ⁇ m, and the ratio of fructose to acidity and the total value of gallate catechins (fructose / acidity + Gallate type catechins) is 0.01 to 0.08, and the ratio of dietary fiber to the total of reducing sugar and non-reducing sugar (dietary fiber / (reducing sugar + non-reducing sugar) is 0.1 to 200) It is characterized by being.
- D90 cumulative mass% particle size
- the container-packed green tea beverage of the present invention is a beverage obtained by filling a container with a liquid mainly composed of an extract obtained by extracting green tea.
- the container-packed green tea beverage consists only of an extract obtained by extracting green tea. Disperse a liquid, a liquid obtained by diluting the liquid extract, a liquid obtained by mixing liquid extracts, a liquid obtained by adding an additive to any one of the liquids, or a liquid obtained by drying any liquid. The liquid which becomes.
- the “main component” includes the meaning of allowing other components to be contained within a range that does not interfere with the function of the main component.
- the extract or extract obtained by extracting green tea has a solid content concentration of 50% by mass or more, particularly 70% by mass or more in the beverage. Among these, it is particularly preferable to occupy 80% by mass or more (including 100%).
- the raw tea leaves of the green tea beverage in the present invention do not particularly limit the type of green tea.
- steamed tea, sencha, gyokuro, matcha, sayha, ball green tea, kettle roasted tea, Chinese green tea, and the like are broadly included, and those in which two or more of these are blended are also included.
- the particle size (D90) of 90 cumulative mass% of the green tea beverage in the present invention is preferably 2 ⁇ m to 50 ⁇ m, more preferably 2 ⁇ m to 45 ⁇ m, still more preferably 3 ⁇ m to 40 ⁇ m, and 3 ⁇ m to 30 ⁇ m. Most preferably.
- the particle size (D90) of 90 cumulative mass% of green tea beverage is less than 2 ⁇ m, it is slightly refreshing with a smooth texture in the half-thawed state, but the taste becomes too light and full in the full-thawed state. It becomes difficult to feel astringency.
- the particle size (D90) of 90 cumulative mass% of green tea drink exceeds 50 ⁇ m, you can feel a sense of density by touching the tongue in the fully thawed state, but in the half-thawed state, you feel a lot of coarse particles and feel rough and strong. It also makes it difficult to feel sweetness.
- the 90 cumulative mass% particle diameter (D90) in the green tea beverage can be adjusted by subjecting the raw material to drying (fired) processing or filtering the extract.
- the filtration include ultrafiltration, microfiltration, microfiltration, reverse osmosis membrane filtration, electrodialysis, membrane filtration such as biofunctional membrane, and filter cake filtration using a porous medium.
- the particle diameter (D90) of 90 cumulative mass% of a green tea drink can be measured, for example with a commercially available laser diffraction type particle size distribution measuring apparatus.
- sugar acidity ratio ( Sugar acidity ratio )
- sugar acidity ratio fructose concentration (ppm) / acidity (ppm)
- acidity is a value obtained by adding the concentration (ppm) of gallate catechins, which are astringent components, to the acidity (ppm) obtained by converting the vitamin C concentration (ppm) into citric acid. It is calculated by.
- Acidity (ppm) vitamin C content (ppm) ⁇ 0.365 + gallate catechin content (ppm)
- the sugar acidity ratio of the green tea beverage in the present invention is preferably 0.01 to 0.1, and more preferably 0.011 to 0.096. If the sugar acidity ratio of green tea drink is adjusted to the above range, combined with other adjustment factors such as 90 cumulative mass% particle size (D90), the frozen green tea drink is half-thawed and fully thawed In any case, it is possible to keep a good balance between the feeling of concentration and the taste and fragrance.
- D90 cumulative mass% particle size
- the type of raw tea, tea season, selection of production area and extraction conditions It can be carried out by adjusting the amount of vitamin C added.
- the sourness of the green tea beverage in the present invention is not particularly limited, but is preferably 600 ppm to 840 ppm.
- fructose concentration it is possible to adjust the drying (fire) processing and extraction of tea leaves as appropriate.
- the dry (fired) processing of tea leaves is strengthened, fructose is decomposed and reduced, and when extracted at a high temperature for a long time, fructose is decomposed and reduced.
- the fructose concentration can be adjusted according to the dry (fired) conditions of the tea leaves and the extraction conditions.
- it is also possible to adjust by adding fructose but because there is a possibility that the original flavor balance of the green tea beverage may be lost, in addition to adjusting the conditions for obtaining the tea extract without adding fructose, It is preferable to adjust by mixing tea extracts or adding tea extract.
- the gallate catechins is a generic term for epicatechin gallate (ECg), epigallocatechin gallate (EGCg), catechin gallate (Cg), and gallocatechin gallate (GCg).
- the amount of gallate-type catechins can be increased by increasing the blending ratio of raw tea leaves that are late in the tea season (for example, “Regarding Variation of Tea Leaf Chemical Components by Environment (Part 2)”, "Agriculturalization", Vol. 27), and the amount of gallate catechins can be adjusted by adjusting the extraction conditions for obtaining tea extracts and the mixing ratio of the obtained multiple types of extracts. .
- gallate type catechins or tea extract or tea concentrate containing the gallate type catechins separately, but there is a possibility that the original flavor balance of the green tea beverage may be lost. It is preferable to adjust the conditions for obtaining the tea extract without adding a kind, or by mixing the tea extracts or adding the tea extract.
- vitamin C it can also adjust in consideration of the amount of vitamin C added to a green tea drink other than adjusting the amount of vitamin C in raw material tea leaves.
- Fructose is a carbohydrate represented by the general formula C 6 H 12 O 6 and is a kind of monosaccharide also called fructose.
- the fructose concentration of the green tea beverage of the present invention is preferably 0.6 to 43 ppm, more preferably 4 to 35 ppm, and most preferably 4.013 to 34.008 ppm.
- the amount of dietary fiber of the green tea beverage includes the amount of dietary fiber (enzyme-weight method) obtained by an enzyme-weight method for detecting insoluble dietary fiber derived from natural products and water-soluble dietary fiber, and from artificial products and difficulties. It means the total value with the amount of dietary fiber (enzyme-HPLC method) obtained by the enzyme-HPLC method for detecting water-soluble dietary fiber such as digestible dextrin.
- dietary fiber (total) (g / 100 g) is obtained by summing dietary fiber (enzyme-weight method) (g / 100 g) and dietary fiber (enzyme-HPLC method) (g / 100 g).
- the amount of dietary fiber in the present invention is calculated by obtaining and converting the obtained value to ppm.
- the dietary fiber content (total) of the green tea beverage in the present invention is preferably 1 to 50000 ppm, more preferably 3 to 48000 ppm, still more preferably 5 to 47000 ppm, and 10 to 46000 ppm. Even more preferred is 20 to 45200 ppm.
- the reducing sugar is a sugar that exhibits reducing properties and forms an aldehyde group and a ketone group in a basic solution.
- the reducing sugar referred to in the present invention is glucose (glucose), fructose (fructose), cellobiose, maltose ( Maltose).
- the non-reducing sugar is a sugar that does not exhibit reducibility, and the non-reducing sugar in the present invention indicates sucrose, stachyose, or raffinose.
- the content of reducing sugar and non-reducing sugar in the green tea beverage of the present invention is preferably 30 to 500 ppm, more preferably 50 to 400 ppm, still more preferably 70 to 380 ppm, 105 ⁇ 343 ppm is most preferred.
- the (dietary fiber / (reducing sugar + non-reducing sugar)) of the green tea beverage in the present invention is preferably 0.1 to 200, more preferably 0.12 to 197, and 0.13 to 195. Even more preferably, it is most preferably from 0.14 to 191.
- the dietary fiber in (dietary fiber / (reducing sugar + non-reducing sugar)) is the total amount of dietary fiber (enzyme-weight method) and dietary fiber (enzyme-HPLC method). ) Calculate based on the value.
- the dietary fiber / (reducing sugar + non-reducing sugar) of the green tea beverage in the present invention is adjusted to the above range, it is frozen in combination with other adjusting elements such as 90 cumulative mass% particle diameter (D90). Regardless of whether the green tea beverage is half-thawed or fully thawed, it is possible to keep a good balance between the feeling of concentration and the taste and aroma.
- a monosaccharide is a carbohydrate represented by the general formula C 6 (H 2 O) 6 and does not become a simpler sugar by hydrolysis, and the monosaccharide as referred to in the present invention is glucose (glucose) or fructose. (Fructose).
- the concentration of monosaccharides in the green tea beverage of the present invention is preferably 7 to 120 ppm, more preferably 11 to 100 ppm, still more preferably 15 to 80 ppm, and most preferably 18 to 70 ppm.
- the concentration of monosaccharides in a container-packed green tea beverage is less than 7 ppm, it is not preferable in that the thickness of the green tea beverage is insufficient, and if it exceeds 120 ppm, it is not preferable in that the savory fragrance becomes weak.
- a disaccharide is a carbohydrate represented by the general formula C 12 (H 2 O) 11 and produces a monosaccharide by hydrolysis.
- the disaccharide as referred to in the present invention includes sucrose, cellobiose, maltose ( Maltose).
- the concentration of disaccharides in the green tea beverage of the present invention is preferably 80 ppm to 260 ppm, more preferably 80 ppm to 230 ppm, further preferably 90 ppm to 200 ppm, and most preferably 90 ppm to 180 ppm.
- the “saccharide concentration obtained by adding the monosaccharide concentration and the disaccharide concentration” is the sum of the monosaccharide concentration and the disaccharide concentration.
- the “sugar concentration combining the monosaccharide concentration and the disaccharide concentration” of the green tea beverage of the present invention is preferably 87 ppm to 380 ppm, more preferably 91 ppm to 320 ppm, further preferably 105 ppm to 280 ppm, more preferably 108 ppm to Most preferred is 250 ppm.
- the concentration of catechins in the green tea beverage of the present invention is preferably 280 ppm to 600 ppm, more preferably 290 ppm to 580 ppm, further preferably 310 ppm to 550 ppm, and most preferably 330 ppm to 500 ppm.
- sweet incense is emphasized, but the fresh aroma is too weak, or it is not preferable in terms of affecting the balance, such as insufficient concentration, and exceeds 600 ppm
- fresh incense is emphasized, but sweet incense is too weak, and bitter astringency and egg taste are emphasized too much, which is not preferable in that it affects the balance.
- the total catechins are catechin (C), gallocatechin (GC), catechin gallate (Cg), gallocatechin gallate (GCg), epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECg) ) And epigallocatechin gallate (EGCg), and the total catechins mean the total value of eight catechin concentrations.
- the total catechin concentration may be adjusted under the extraction conditions.
- the catechins in the green tea beverage of the present invention may contain “epimeric catechins”, that is, ( ⁇ ) EC, ( ⁇ ) EGC, ( ⁇ ) ECg, ( ⁇ ) EGCg, and “non-epimeric catechins”, (-) C, (-) GC, (-) Cg, (-) GCg may be included.
- “Non-epimeric catechins” can be obtained by heat treatment at about 80 ° C. or higher to promote thermal isomerization (epimerization).
- the “ratio of non-epi form catechins to epi form catechins (non-epi form catechins / epi form catechins)” in the green tea beverage of the present invention is preferably 0.4 to 10.0, preferably 0.5 to 3. 0 is more preferable, and 0.6 to 1.5 is most preferable.
- the concentration of electron-localized catechin in the green tea beverage of the present invention is preferably 250 ppm to 550 ppm, more preferably 260 ppm to 530 ppm, further preferably 280 ppm to 500 ppm, and most preferably 300 ppm to 450 ppm.
- the “electron-localized catechin” as used in the present invention is a catechin that has a triol structure (a structure in which three OH groups are adjacent to a benzene ring) and is considered to easily localize charges when ionized.
- epigallocatechin gallate ECCg
- epigallocatechin ECC
- epicatechin gallate ECG
- gallocatechin gallate GCg
- gallocatechin GC
- catechin gallate Cg
- Ratio of electron-localized catechin concentration to saccharide concentration (electron-localized catechin / saccharide) The “ratio of electron-localized catechin concentration to saccharide concentration (electron-localized catechin / saccharide)” in the green tea beverage of the present invention is preferably 1.6 to 3.4, more preferably 1.8 to 3.2. 2.0 to 3.0 is more preferable.
- extraction conditions are possible, but catechin increases the extraction rate at high temperature, but the saccharide is easily decomposed at high temperature, so the extraction time Is preferably shorter.
- the caffeine concentration in the green tea beverage of the present invention is preferably less than 200 ppm, more preferably 0 ppm to 150 ppm, still more preferably 0 ppm to 120 ppm, still more preferably 0 ppm to 100 ppm, still more preferably 0 ppm to 40 ppm, ⁇ 30 ppm is most preferred.
- the caffeine concentration of the container-packed green tea beverage exceeds 200 ppm, the caffeine-derived bitterness is not preferable in that it affects the balance between the fragrance and the bitterness.
- an adsorbent such as activated carbon or white clay may act on the extract to adsorb and remove caffeine.
- Ratio of total catechin concentration to caffeine concentration (total catechin / caffeine) The “ratio of total catechins concentration to caffeine concentration (total catechin / caffeine)” in the present invention is preferably 1.4 to 660, more preferably 2.0 to 350, and 4.0 to 200. Most preferred. If the ratio of the total catechin concentration to the caffeine concentration of the packaged green tea beverage (total catechin / caffeine) is less than 1.4, it is not preferable because the bitterness is too conspicuous with respect to the thickness / concentration and the balance is lost. Above the range, the astringency tends to stand out with respect to the thickness and concentration, which is not preferable.
- the ratio of the total catechin concentration to the caffeine concentration within the above range it can be adjusted by the above-described caffeine reduction treatment, the amount of tea leaves, and the extraction temperature.
- the balance of green tea drinks may be lost, so in addition to adjusting the conditions for obtaining tea extract, mixing tea extracts or extracting tea It is preferable to adjust by adding a product.
- the degree of transparency is an index indicating the degree of light blue turbidity of a green tea beverage.
- the transparency of a green tea beverage is preferably 2 to 12 degrees, more preferably 3 to 12 degrees, and most preferably 4 to 12 degrees. preferable.
- the degree of transparency is measured in accordance with JIS (Japanese Industrial Standards) K0102, 9 method, specifically, a glass cylinder with a lower mouth that is graduated every 10 mm. Fill the fluorometer with a marking plate with a double cross on the bottom, fill the sample solution, see through the bottom from the top, and remove the sample from the bottom until the double cross on the marking plate can be clearly identified for the first time. The scale of the water surface is read when it is quickly drained. In the present invention, this is repeated twice, the average value is obtained, and the degree of transparency is expressed in degrees (10 mm is 1 degree).
- the green tea beverage of the present invention preferably has a pH of 6.0 to 6.5 at 20 ° C.
- the container-packed green tea beverage preferably has a pH of 6.0 to 6.4, more preferably 6.1 to 6.3.
- Measurement method of each component As a method for measuring each component, a known method can be appropriately used. For example, the following measurement methods can be used.
- Dietary fiber was calculated by adding up the values measured by the following enzyme-gravimetric method and enzyme-HPLC method.
- Enzyme-weight method Collect 5 g of test beverage (including concentrated if necessary) in two 500 ml tall beakers, add 0.08 mol / L phosphate buffer (pH 6.0) to 50 ml, and add Termamyl (120 L, Novozymes) 0.1 ml) was added, incubated in a boiling water bath by shaking for about 30 minutes, and then allowed to cool. 2.
- the pH is adjusted to 7.5 ⁇ 0.1 with 10 ml of 0.275 mol / L sodium hydroxide solution, and 0.1 ml of protease (P-5380, Sigma) solution (50 mg / ml phosphate buffer) is added. After incubation by shaking at 60 ° C. for 30 minutes, the mixture was allowed to cool. 3. Subsequently, the pH is adjusted to 4.3 ⁇ 0.3 with 10 ml of 0.325 mol / L hydrochloric acid, 0.1 ml of aminoglucosidase (A-9913, manufactured by Sigma) is added and incubated at 60 ° C. for 30 minutes with shaking. , Allowed to cool. 4).
- the volume was increased to 4 volumes of 95% ethanol (60 ° C.), allowed to stand at room temperature for 1 hour, and the generated precipitate was filtered with a 2G2 glass filter (a filter layer formed in advance with 1 g of celite). Suction filtration was performed to separate the residue and the filtrate (the filtrate was used for the enzyme-HPLC method). 5.
- the residue was washed 3 times with 20 ml of 78% ethanol, 2 times or more with 10 ml of 95% ethanol, 2 times or more with 10 ml of acetone, and if necessary with diethyl ether (the washing solution was used in the enzyme-HPLC method as with the filtrate). And dried at 105 ° C. overnight. 6).
- dietary fiber g / 100 g was determined by enzyme-HPLC method.
- catechins can be measured by known methods, for example, they can be measured by a calibration curve method using a high performance liquid chromatogram (HPLC) or the like. .
- HPLC high performance liquid chromatogram
- the tea leaf raw material is selected and the conditions for drying (fired) processing and extraction of the tea leaf are adjusted as appropriate, so that the particle size (D90) of 90 cumulative mass% in the tea extract is 2 ⁇ m. It can be produced by adjusting to ⁇ 50 ⁇ m and adjusting the sugar acidity ratio to 0.12 to 0.43.
- tea leaves are dried (fired) at 250 ° C to 305 ° C, and the tea leaves are extracted at a slightly high temperature in a short time, and the conventional common green tea extract, that is, the rough leaves are extracted at a high temperature in a short time.
- This container-packed green tea beverage can be produced by preparing an extract and blending them in appropriate proportions.
- this container-packed green tea drink can be manufactured by carrying out the centrifugation process which adjusted the conditions of the extract suitably. Moreover, this container-packed green tea drink can be manufactured by carrying out the centrifugation process which adjusted the conditions appropriately for the pulverized tea leaf turbid liquid, and mixing with an extract in a suitable ratio. However, it is not limited to such a manufacturing method.
- Green tea leaf extract A Extract green tea leaves (Yabukita seed, Kagoshima Nibancha, Aracha) 20 g with 700 mL of hot water (85 ° C) for 5 minutes 30 seconds, then centrifuge (Westphalia SA1 continuous centrifuge) was used for processing at a flow rate of 300 L / hr, a rotational speed of 10,000 rpm, and a centrifugal sedimentation area ( ⁇ ) of 1000 m 2 , and the volume was made up to 700 mL with water to obtain a green tea leaf extract A.
- Green tea leaf extract B Extracted 14 g of green tea leaves (Yabukita seed, Ichibancha deep-boiled tea from Shizuoka Prefecture) for 4 minutes with 700 mL of hot water (75 ° C) after fired at 305 ° C for 8 minutes with a rotary drum-type firer. Extraction of green tea leaves was carried out using a centrifuge (SA1 continuous centrifuge manufactured by Westphalia) at a flow rate of 300 L / hr, a rotation speed of 10000 rpm, a centrifugal sedimentation area ( ⁇ ) of 1000 m 2 and made up to 700 mL with water. Liquid B was obtained.
- SA1 continuous centrifuge manufactured by Westphalia
- crushed tea C for turbid liquid 200 kg of green tea leaves (Yabukita seed, Ichibancha from Kyoto Prefecture, rough tea) were put into a ball mill (BM-400 manufactured by Makino Co., Ltd.) and pulverized to obtain crushed tea C for turbid liquid.
- BM-400 manufactured by Makino Co., Ltd.
- crushed tea leaf turbid liquid A Disperse 0.72 g of pulverized tea C for turbid liquid in 300 mL of water with a high-speed homogenizer, filter by gravity with an 80 ⁇ m sieve sieve (made of nylon), and make up to 1400 mL with water to pulverize tea leaf turbid liquid A Got.
- the transparency of the crushed tea leaf turbidity liquid A was 1.2 degrees.
- crushed tea leaf turbid liquid B Disperse 0.41 g of pulverized tea C for turbid liquid in 300 mL of water with a high-speed homogenizer, filter by gravity with a sieve for opening 50 ⁇ m (made of nylon), and make up to 1400 mL with water to pulverize tea leaf turbid liquid B Got.
- the transparency of this ground tea leaf turbidity liquid B was 2.3 degrees.
- crushed tea leaf turbid liquid C Disperse 0.57 g of crushed tea C for turbid liquid in 300 mL of water with a high-speed homogenizer, filter by gravity with a 40 ⁇ m sieve sieve (made of nylon), and make up to 700 mL with water to make crushed tea leaf turbid C Got.
- the transparency of the ground tea leaf turbidity liquid C was 1.2 degrees.
- crushed tea leaf turbid liquid D Disperse 1.56 g of crushed tea C for turbid liquid in 300 mL of water with a high-speed homogenizer, filter by gravity with a sieve for opening 30 ⁇ m (made of nylon), and make up to 1400 mL with water to pulverize tea leaf turbid liquid D Got.
- the transparency of the ground tea leaf turbidity liquid D was 2.0 degrees.
- crushed tea leaf turbid liquid E Disperse 1.56 g of crushed tea D for turbid liquid in 300 mL of water with a high-speed homogenizer, filter by gravity with a 3 ⁇ m sieve sieve (made of nylon), and make up to 1400 mL with water to make crushed tea leaf turbid E Got.
- the transparency of this ground tea leaf turbidity liquid E was 2.1 degrees.
- crushed tea leaf turbid liquid F Disperse 200 g of crushed tea D for turbid liquid in 600 mL of water with a high-speed homogenizer, filter by gravity using a 1 ⁇ m sieve sieve (made of nylon), and make up to 1400 mL with water to obtain crushed tea leaf turbid liquid F. It was. The transparency of the ground tea leaf turbid liquid F was 1.2 degrees.
- Comparative product 1 700 mL of green tea leaf extract A and B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) 700 mL and ground tea leaf turbid solution C 170 mL have a target transparency of 14.0 degrees Vitamin C was blended so that the final concentration would be 35.0 mg%.
- Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water.
- the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C.
- a stuffed green tea beverage (Comparative Product 1) was obtained.
- Comparative product 2 700 mL of green tea leaf extract A and B mixture (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) 700 mL and crushed tea leaf turbid C700 mL have a target transparency of 2.0 degrees Vitamin C was blended so that the final concentration was 35.0 mg%, and 10 g of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (Comparative Product 2) was obtained.
- Comparative product 3 700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) 700 mL and ground tea leaf turbid solution F400 mL have a target transparency of 6.0 degrees Vitamin C was blended so that the final concentration was 35.0 mg%, and 260 mg of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (Comparative Product 3) was obtained.
- Comparative product 4 700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) and 700 mL of ground tea leaf turbid solution A 250 mL have a target transparency of 6.0 degrees.
- Vitamin C was blended so that the final concentration was 35.0 mg%, and 260 mg of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended.
- Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water.
- the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C.
- a stuffed green tea beverage (Comparative Product 4) was obtained.
- Comparative product 5 700 mL of green tea leaf extract A and B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) 700 mL and ground tea leaf turbid solution A 170 mL have a target transparency of 14.0 degrees Vitamin C was blended so that the final concentration would be 35.0 mg%.
- Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water.
- the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C.
- a stuffed green tea beverage (Comparative Product 5) was obtained.
- Comparative product 6 700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) 700 mL and crushed tea leaf turbid solution A 700 mL have a target transparency of 2.0 degrees Vitamin C was blended so that the final concentration was 35.0 mg%, and 10 g of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (Comparative Product 6) was obtained.
- B mixed solution green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80
- Comparative product 7 700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) 700 mL, and crushed tea leaf turbid solution F 1200 mL target transparency is 2.0 degrees Vitamin C was blended so that the final concentration was 35.0 mg%, and 10 g of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (Comparative Product 7) was obtained.
- B mixed solution green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80
- Comparative product 8 700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 0: 100) 700 mL and ground tea leaf turbid C400 mL have a target transparency of 6.0 degrees Vitamin C was blended so that the final concentration would be 65.4 mg%, and 260 mg of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (Comparative Product 8) was obtained.
- B mixed solution green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 0: 100
- Comparative product 9 700 mL of green tea leaf extract A and B mixture (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 0: 100) 700 mL and crushed tea leaf turbid C700 mL have a target transparency of 2.0 degrees Vitamin C was blended so that the final concentration was 65.4 mg%, and 40 g of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (Comparative Product 9) was obtained.
- Comparative product 10 700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 50:50) 700 mL and ground tea leaf turbid C400 mL have a target transparency of 6.0 degrees Vitamin C was blended so that the final concentration would be 18.0 mg%, and 260 mg of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (Comparative Product 10) was obtained.
- B mixed solution green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 50:50
- Comparative product 11 700 mL of green tea leaf extract A and B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 50:50) 700 mL and ground tea leaf turbid solution C 170 mL have a target transparency of 14.0 degrees Vitamin C was blended so that the final concentration would be 18.0 mg%.
- Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water.
- the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C.
- a stuffed green tea beverage (Comparative Product 11) was obtained.
- Evaluation method For all of the implemented products 1 to 13 and the comparative products 1 to 11, 10 professional panelists had the appearance of the frozen state, sensory evaluation after 4 hours (3 ° C) after opening (sensory evaluation 1), and opening The sensory evaluation (sensory evaluation 2) was performed after 8 hours later (18 ° C), and each sample was evaluated in four stages (1 to 4 points), and the average value was calculated. “ ⁇ ” (4 points), “ ⁇ ” (3 points), “ ⁇ ” (2 points), “ ⁇ ” (1 point), respectively.
- the evaluation items in each sensory evaluation were Fukumi incense, taste reverberation, thickness, taste, and throat.
- the evaluation in the frozen state (0% thawing rate), the half-thawed state (50% thawing rate), and the total thawing state (100% thawing rate) are all above average and good and stable there were. That is, the quality of the product of the present invention did not fluctuate greatly in the course of the frozen beverage gradually becoming wet and reaching the fully thawed state.
- the comparative products 1 to 11 are not preferable in appearance from the frozen state (comparative products 4 and 5) or have a problem in quality in the semi-thawed state (comparative products 1 and 4 to 9). 11), in addition to the problem of quality in all thawed states (comparative products 2, 3, 6 to 11), the overall evaluation was inferior to the products of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Tea And Coffee (AREA)
Abstract
Description
(1) 茶抽出液中の90積算質量%の粒子径(D90)が2μm~50μmであり、果糖と酸味度及びガレート型カテキン類の合計値との比率(果糖/酸味度+ガレート型カテキン類)が0.01~0.08であり、食物繊維と還元糖及び非還元糖の合計値との比率(食物繊維/(還元糖+非還元糖)が0.1~200であることを特徴とする容器詰緑茶飲料、
(2) 単糖の濃度と二糖の濃度とを合わせた糖類濃度が87ppm~380ppmであることを特徴とする上記(1)記載の容器詰緑茶飲料、
(3) 単糖の濃度と二糖の濃度とを合わせた糖類濃度における二糖の濃度の重量比率(二糖/単糖+二糖)が、0.69~0.92であることを特徴とする上記(1)又は(2)に記載の容器詰緑茶飲料、
(4) 酸味度の合計値が、600ppm~840ppmであることを特徴とする上記(1)~(3)のいずれかに記載の容器詰緑茶飲料、
(5) 電子局在カテキン濃度が250ppm~550ppmであることを特徴とする上記(1)~(4)のいずれかに記載の容器詰緑茶飲料、
(6) カフェイン濃度が200ppm未満であることを特徴とする上記(1)~(5)のいずれかに記載の容器詰緑茶飲料、
(7) 平均粒子径が1μm以上の粒子を含有することを特徴とする上記(1)~(6)のいずれかに記載の容器詰緑茶飲料、
(8) 透視度が2度~12度であることを特徴とする上記(1)~(7)のいずれかに記載の容器詰緑茶飲料、
(9) 茶抽出液中の90積算質量%の粒子径(D90)を2μm~50μmに調整する工程と、果糖と酸味度及びガレート型カテキン類の合計値との比率(果糖/酸味度+ガレート型カテキン類)を0.01~0.08に調整する工程と、食物繊維と還元糖及び非還元糖の合計値との比率(食物繊維/(還元糖+非還元糖)を0.1~200に調整する工程とを含むことを特徴とする容器詰緑茶飲料の製造方法、
(10) 茶抽出液中の90積算質量%の粒子径(D90)を2μm~50μmに調整し、且つ糖酸味度比を0.12~0.43に調整することを特徴とする緑茶飲料の呈味改善方法、
(11) 茶抽出液中の90積算質量%の粒子径(D90)を2μm~50μmに調整し、果糖と酸味度及びガレート型カテキン類の合計値との比率(果糖/酸味度+ガレート型カテキン類)を0.01~0.08に調整し、食物繊維と還元糖及び非還元糖の合計値との比率(食物繊維/(還元糖+非還元糖)を0.1~200に調整することを特徴とする容器詰緑茶飲料の品質保持方法、
に関する。 That is, the present invention
(1) The 90 cumulative mass% particle size (D90) in the tea extract is 2 μm to 50 μm, and the ratio of fructose to acidity and the total value of gallate catechins (fructose / acidity + gallate catechins) ) Is 0.01 to 0.08, and the ratio of dietary fiber to the total value of reducing sugar and non-reducing sugar (dietary fiber / (reducing sugar + non-reducing sugar) is 0.1 to 200) Containerized green tea drink,
(2) The packaged green tea beverage according to (1) above, wherein the saccharide concentration, which is a combination of the monosaccharide concentration and the disaccharide concentration, is 87 ppm to 380 ppm,
(3) The disaccharide concentration weight ratio (disaccharide / monosaccharide + disaccharide) in the saccharide concentration that combines the monosaccharide concentration and the disaccharide concentration is 0.69 to 0.92. The container-packed green tea drink according to (1) or (2) above,
(4) The packaged green tea beverage according to any one of (1) to (3) above, wherein the total acidity is 600 ppm to 840 ppm,
(5) The packaged green tea beverage according to any one of (1) to (4) above, wherein the concentration of electron-localized catechin is 250 ppm to 550 ppm,
(6) The packaged green tea beverage according to any one of (1) to (5) above, wherein the caffeine concentration is less than 200 ppm,
(7) The packaged green tea beverage according to any one of (1) to (6) above, which contains particles having an average particle size of 1 μm or more,
(8) The packaged green tea drink according to any one of (1) to (7) above, wherein the transparency is 2 to 12 degrees,
(9) The ratio of the step of adjusting the 90 cumulative mass% particle size (D90) in the tea extract to 2-50 μm and the total value of fructose, acidity and gallate type catechins (fructose / acidity + gallate) Type catechins) adjusted to 0.01 to 0.08, and the ratio of dietary fiber to the total value of reducing sugar and non-reducing sugar (dietary fiber / (reducing sugar + non-reducing sugar) is 0.1 to A method of producing a containerized green tea beverage, comprising a step of adjusting to 200,
(10) A green tea beverage characterized in that a 90 cumulative mass% particle size (D90) in a tea extract is adjusted to 2 to 50 μm and a sugar acidity ratio is adjusted to 0.12 to 0.43. Taste improvement method,
(11) The particle size (D90) of 90 cumulative mass% in the tea extract is adjusted to 2 μm to 50 μm, and the ratio of fructose to acidity and the total value of gallate type catechins (fructose / acidity + gallate type catechin) ) Is adjusted to 0.01 to 0.08, and the ratio of dietary fiber to the total of reducing sugar and non-reducing sugar (dietary fiber / (reducing sugar + non-reducing sugar) is adjusted to 0.1 to 200. A method for maintaining the quality of a green tea beverage in a container,
About.
本発明の容器詰緑茶飲料は、緑茶を抽出して得られた抽出液を主成分とする液体を容器に充填してなる飲料であり、例えば緑茶を抽出して得られた抽出液のみからなる液体、或いは当該抽出液を希釈した液体、或いは抽出液どうしを混合した液体、或いはこれら前記何れかの液体に添加物を加えた液体、或いはこれら前記何れかの液体を乾燥したものを分散させてなる液体などを挙げることができる。 ( Green tea drink )
The container-packed green tea beverage of the present invention is a beverage obtained by filling a container with a liquid mainly composed of an extract obtained by extracting green tea. For example, the container-packed green tea beverage consists only of an extract obtained by extracting green tea. Disperse a liquid, a liquid obtained by diluting the liquid extract, a liquid obtained by mixing liquid extracts, a liquid obtained by adding an additive to any one of the liquids, or a liquid obtained by drying any liquid. The liquid which becomes.
本発明における緑茶飲料の原料茶葉は、緑茶の種類を特に制限するものではない。例えば蒸し茶、煎茶、玉露、抹茶、番茶、玉緑茶、釜炒り茶、中国緑茶など、不発酵茶に分類される茶を広く包含し、これら2種類以上をブレンドしたものも包含する。また、玄米などの穀物、ジャスミンなどのフレーバー等を添加してもよい。 ( Tea leaf ingredients )
The raw tea leaves of the green tea beverage in the present invention do not particularly limit the type of green tea. For example, steamed tea, sencha, gyokuro, matcha, bancha, ball green tea, kettle roasted tea, Chinese green tea, and the like are broadly included, and those in which two or more of these are blended are also included. Moreover, you may add grains, such as brown rice, and flavors, such as jasmine.
本発明における緑茶飲料の90積算質量%の粒子径(D90)は、2μm~50μmであるのが好ましく、2μm~45μmであるのがより好ましく、3μm~40μmであるのがさらに好ましく、3μm~30μmであるのが最も好ましい。緑茶飲料の90積算質量%の粒子径(D90)が2μm未満であると、半解凍の状態ではなめらかな舌触りでややさっぱりとしているものの、全解凍の状態では味が淡白になり過ぎて滋味にも影響し渋みを感じづらくなる。緑茶飲料の90積算質量%の粒子径(D90)が50μmを超えると、全解凍の状態では舌触りにより濃度感を感じることができるものの、半解凍の状態では粗大粒子が多くざらつきを強く感じ、滋味にも影響して甘みを感じづらくなる。
緑茶飲料における90積算質量%の粒子径(D90)を上記範囲に調整するには、原料に乾燥(火入)加工を施すことや抽出液を濾過することなどにより調整することができる。濾過としては、限外濾過、微細濾過、精密濾過、逆浸透膜濾過、電気透析、生物機能性膜などの膜濾過、多孔質媒体を用いた濾滓濾過などを挙げることができる。中でも生産性と粒子径調整の観点から、シリカ分を多く含んだ濾剤又は珪藻土などの多孔質媒体のどちらか一方又は両方を用いた濾滓濾過によって調整することが好ましい。
なお、緑茶飲料の90積算質量%の粒子径(D90)は、例えば市販のレーザー回析式粒度分布測定装置等により測定することができる。 ( 90 cumulative mass% particle size (D90) )
The particle size (D90) of 90 cumulative mass% of the green tea beverage in the present invention is preferably 2 μm to 50 μm, more preferably 2 μm to 45 μm, still more preferably 3 μm to 40 μm, and 3 μm to 30 μm. Most preferably. When the particle size (D90) of 90 cumulative mass% of green tea beverage is less than 2 μm, it is slightly refreshing with a smooth texture in the half-thawed state, but the taste becomes too light and full in the full-thawed state. It becomes difficult to feel astringency. When the particle size (D90) of 90 cumulative mass% of green tea drink exceeds 50 μm, you can feel a sense of density by touching the tongue in the fully thawed state, but in the half-thawed state, you feel a lot of coarse particles and feel rough and strong. It also makes it difficult to feel sweetness.
In order to adjust the 90 cumulative mass% particle diameter (D90) in the green tea beverage to the above range, it can be adjusted by subjecting the raw material to drying (fired) processing or filtering the extract. Examples of the filtration include ultrafiltration, microfiltration, microfiltration, reverse osmosis membrane filtration, electrodialysis, membrane filtration such as biofunctional membrane, and filter cake filtration using a porous medium. Among these, from the viewpoint of productivity and particle diameter adjustment, it is preferable to adjust by filtration using a filter medium containing a large amount of silica or a porous medium such as diatomaceous earth or both.
In addition, the particle diameter (D90) of 90 cumulative mass% of a green tea drink can be measured, for example with a commercially available laser diffraction type particle size distribution measuring apparatus.
本発明において「糖酸味度比」とは、酸味度に対する、果糖濃度(ppm)であらわされる。
・糖酸味度比=果糖濃度(ppm)/酸味度(ppm)
なお、「酸味度」とは、ビタミンC濃度(ppm)をクエン酸換算した酸度(ppm)に、渋味成分であるガレート型カテキン類の濃度(ppm)を加算した値であり、次の式により求められる。
・酸味度(ppm)=ビタミンC量(ppm)×0.365+ガレート型カテキン類量(ppm) ( Sugar acidity ratio )
In the present invention, the “sugar sourness ratio” is expressed as the fructose concentration (ppm) with respect to the sourness.
・ Sugar acidity ratio = fructose concentration (ppm) / acidity (ppm)
The “acidity” is a value obtained by adding the concentration (ppm) of gallate catechins, which are astringent components, to the acidity (ppm) obtained by converting the vitamin C concentration (ppm) into citric acid. It is calculated by.
・ Acidity (ppm) = vitamin C content (ppm) × 0.365 + gallate catechin content (ppm)
また、本発明における緑茶飲料の酸味度は、特に限定されないが、600ppm~840ppmであるのが好ましい。 In order to adjust the sugar acidity ratio in the green tea beverage to the above range, in addition to the above-mentioned raw tea processing method and extraction liquid filtration method, etc., the type of raw tea, tea season, selection of production area and extraction conditions It can be carried out by adjusting the amount of vitamin C added.
The sourness of the green tea beverage in the present invention is not particularly limited, but is preferably 600 ppm to 840 ppm.
この際、果糖を添加して調整することも可能であるが、緑茶飲料本来の香味バランスが崩れるおそれがあるため、果糖を添加することなく、茶抽出液を得るための条件を調整する他、茶抽出液どうしの混合、或いは茶抽出物の添加などによって調整するのが好ましい。 In order to adjust the fructose concentration to the above range, it is possible to adjust the drying (fire) processing and extraction of tea leaves as appropriate. For example, when the dry (fired) processing of tea leaves is strengthened, fructose is decomposed and reduced, and when extracted at a high temperature for a long time, fructose is decomposed and reduced. However, the fructose concentration can be adjusted according to the dry (fired) conditions of the tea leaves and the extraction conditions.
At this time, it is also possible to adjust by adding fructose, but because there is a possibility that the original flavor balance of the green tea beverage may be lost, in addition to adjusting the conditions for obtaining the tea extract without adding fructose, It is preferable to adjust by mixing tea extracts or adding tea extract.
この際、ガレート型カテキン類又はこれを含有する茶抽出物や茶濃縮物を別途に添加して調整することも可能であるが、緑茶飲料本来の香味バランスが崩れるおそれがあるため、ガレート型カテキン類を添加することなく、茶抽出液を得るための条件を調整する他、茶抽出液どうしの混合、或いは茶抽出物の添加などによって調整するのが好ましい。 In the present invention, the gallate catechins is a generic term for epicatechin gallate (ECg), epigallocatechin gallate (EGCg), catechin gallate (Cg), and gallocatechin gallate (GCg). Regarding the amount of gallate-type catechins, for example, the amount of gallate-type catechins can be increased by increasing the blending ratio of raw tea leaves that are late in the tea season (for example, “Regarding Variation of Tea Leaf Chemical Components by Environment (Part 2)”, "Agriculturalization", Vol. 27), and the amount of gallate catechins can be adjusted by adjusting the extraction conditions for obtaining tea extracts and the mixing ratio of the obtained multiple types of extracts. .
At this time, it is also possible to add gallate type catechins or tea extract or tea concentrate containing the gallate type catechins separately, but there is a possibility that the original flavor balance of the green tea beverage may be lost. It is preferable to adjust the conditions for obtaining the tea extract without adding a kind, or by mixing the tea extracts or adding the tea extract.
果糖は、一般式C6H12O6で表される炭水化物であり、フルクトースともよばれる単糖の1種である。本発明の緑茶飲料の果糖の濃度は、0.6~43ppmであるのが好ましく、4~35ppmがより好ましく、4.013~34.008ppmが最も好ましい。 ( Fructose )
Fructose is a carbohydrate represented by the general formula C 6 H 12 O 6 and is a kind of monosaccharide also called fructose. The fructose concentration of the green tea beverage of the present invention is preferably 0.6 to 43 ppm, more preferably 4 to 35 ppm, and most preferably 4.013 to 34.008 ppm.
食物繊維とは、人の消化酵素によって消化されない、食物に含まれる難消化性成分の総称である。
本発明における緑茶飲料の食物繊維量は、天然物由来の不溶性食物繊維と水溶性食物繊維とを検出する酵素-重量法により得られる食物繊維量(酵素-重量法)と、人工物由来や難消化性デキストリンなどの水溶性食物繊維を検出する酵素-HPLC法により得られる食物繊維量(酵素-HPLC法)との合算値を意味する。より具体的には、食物繊維(酵素-重量法)(g/100g)と食物繊維(酵素-HPLC法)(g/100g)とを合計することにより食物繊維(合算)(g/100g)を求め、得られた値をppm換算することにより、本発明における食物繊維量を算出する。
本発明における緑茶飲料の食物繊維量(合算)は、1~50000ppmであるのが好ましく、3~48000ppmであるのがより好ましく、5~47000ppmであるのがさらに好ましく、10~46000ppmであるのがよりさらに好ましく、20~45200ppmであるのが最も好ましい。 ( Dietary fiber )
Dietary fiber is a general term for indigestible components contained in food that are not digested by human digestive enzymes.
In the present invention, the amount of dietary fiber of the green tea beverage includes the amount of dietary fiber (enzyme-weight method) obtained by an enzyme-weight method for detecting insoluble dietary fiber derived from natural products and water-soluble dietary fiber, and from artificial products and difficulties. It means the total value with the amount of dietary fiber (enzyme-HPLC method) obtained by the enzyme-HPLC method for detecting water-soluble dietary fiber such as digestible dextrin. More specifically, dietary fiber (total) (g / 100 g) is obtained by summing dietary fiber (enzyme-weight method) (g / 100 g) and dietary fiber (enzyme-HPLC method) (g / 100 g). The amount of dietary fiber in the present invention is calculated by obtaining and converting the obtained value to ppm.
The dietary fiber content (total) of the green tea beverage in the present invention is preferably 1 to 50000 ppm, more preferably 3 to 48000 ppm, still more preferably 5 to 47000 ppm, and 10 to 46000 ppm. Even more preferred is 20 to 45200 ppm.
還元糖とは、還元性を示し、塩基性溶液中でアルデヒド基とケトン基とを形成する糖であり、本発明でいう還元糖は、グルコース(ブドウ糖)、フルクトース(果糖)、セロビオース、マルトース(麦芽糖)を示すものである。
また、非還元糖とは、還元性を示さない糖であり、本発明でいう非還元糖は、スクロース(蔗糖)、スタキオース、ラフィノースを示すものである。
本発明の緑茶飲料における還元糖量と非還元糖量との含有量は、30~500ppmであるのが好ましく、50~400ppmであるのがより好ましく、70~380ppmであるのがさらに好ましく、105~343ppmが最も好ましい。 ( Reducing sugar / Non-reducing sugar )
The reducing sugar is a sugar that exhibits reducing properties and forms an aldehyde group and a ketone group in a basic solution. The reducing sugar referred to in the present invention is glucose (glucose), fructose (fructose), cellobiose, maltose ( Maltose).
The non-reducing sugar is a sugar that does not exhibit reducibility, and the non-reducing sugar in the present invention indicates sucrose, stachyose, or raffinose.
The content of reducing sugar and non-reducing sugar in the green tea beverage of the present invention is preferably 30 to 500 ppm, more preferably 50 to 400 ppm, still more preferably 70 to 380 ppm, 105 ˜343 ppm is most preferred.
本発明における緑茶飲料の(食物繊維/(還元糖+非還元糖))は、0.1~200であるのが好ましく、0.12~197であるのがより好ましく、0.13~195であるのがよりさらに好ましく、0.14~191であるのが最も好ましい。
なお、(食物繊維/(還元糖+非還元糖))における食物繊維は、食物繊維量(酵素-重量法)と食物繊維量(酵素-HPLC法)との合計値である食物繊維量(合算)値に基づき算出する。
本発明における緑茶飲料の食物繊維/(還元糖+非還元糖)を上記範囲に調整すれば、90積算質量%の粒子径(D90)等の他の調整要素と相俟って、凍結させた緑茶飲料が半解凍した場合と全解凍した場合とのいずれであっても、濃度感や味と香りのバランスを良好に保ち続けることができる。 ( Dietary fiber (total) / (reducing sugar + non-reducing sugar) )
The (dietary fiber / (reducing sugar + non-reducing sugar)) of the green tea beverage in the present invention is preferably 0.1 to 200, more preferably 0.12 to 197, and 0.13 to 195. Even more preferably, it is most preferably from 0.14 to 191.
The dietary fiber in (dietary fiber / (reducing sugar + non-reducing sugar)) is the total amount of dietary fiber (enzyme-weight method) and dietary fiber (enzyme-HPLC method). ) Calculate based on the value.
When the dietary fiber / (reducing sugar + non-reducing sugar) of the green tea beverage in the present invention is adjusted to the above range, it is frozen in combination with other adjusting elements such as 90 cumulative mass% particle diameter (D90). Regardless of whether the green tea beverage is half-thawed or fully thawed, it is possible to keep a good balance between the feeling of concentration and the taste and aroma.
単糖は、一般式C6(H2O)6で表される炭水化物であり、加水分解によりそれ以上簡単な糖にならないものであり、本発明でいう単糖は、グルコース(ブドウ糖)、フルクトース(果糖)を示すものである。
本発明の緑茶飲料の単糖の濃度は、7~120ppmであるのが好ましく、11~100ppmがより好ましく、15~80ppmがさらに好ましく、18~70ppmが最も好ましい。容器詰緑茶飲料の単糖の濃度が7ppmを下回ると緑茶飲料における厚みが不足してしまう点で好ましくなく、120ppmを上回るとふくみ香が弱くなってしまう点で好ましくない。 ( Monosaccharide )
A monosaccharide is a carbohydrate represented by the general formula C 6 (H 2 O) 6 and does not become a simpler sugar by hydrolysis, and the monosaccharide as referred to in the present invention is glucose (glucose) or fructose. (Fructose).
The concentration of monosaccharides in the green tea beverage of the present invention is preferably 7 to 120 ppm, more preferably 11 to 100 ppm, still more preferably 15 to 80 ppm, and most preferably 18 to 70 ppm. If the concentration of monosaccharides in a container-packed green tea beverage is less than 7 ppm, it is not preferable in that the thickness of the green tea beverage is insufficient, and if it exceeds 120 ppm, it is not preferable in that the savory fragrance becomes weak.
二糖は、一般式C12(H2O)11で表される炭水化物であり、加水分解により単糖を生じるものであり、本発明でいう二糖は、スクロース(蔗糖)、セロビオース、マルトース(麦芽糖)を示すものである。
本発明の緑茶飲料の二糖の濃度は、80ppm~260ppmであるのが好ましく、80ppm~230ppmがより好ましく、90ppm~200ppmがさらに好ましく、90ppm~180ppmが最も好ましい。 ( Disaccharide )
A disaccharide is a carbohydrate represented by the general formula C 12 (H 2 O) 11 and produces a monosaccharide by hydrolysis. The disaccharide as referred to in the present invention includes sucrose, cellobiose, maltose ( Maltose).
The concentration of disaccharides in the green tea beverage of the present invention is preferably 80 ppm to 260 ppm, more preferably 80 ppm to 230 ppm, further preferably 90 ppm to 200 ppm, and most preferably 90 ppm to 180 ppm.
本発明における「単糖の濃度と二糖の濃度とを合わせた糖類濃度」とは、前記単糖の濃度と前記二糖の濃度とを合計したものである。
本発明の緑茶飲料の「単糖の濃度と二糖の濃度とを合わせた糖類濃度」は、87ppm~380ppmであるのが好ましく、91ppm~320ppmがより好ましく、105ppm~280ppmがさらに好ましく、108ppm~250ppmが最も好ましい。 ( Sugar concentration )
In the present invention, the “saccharide concentration obtained by adding the monosaccharide concentration and the disaccharide concentration” is the sum of the monosaccharide concentration and the disaccharide concentration.
The “sugar concentration combining the monosaccharide concentration and the disaccharide concentration” of the green tea beverage of the present invention is preferably 87 ppm to 380 ppm, more preferably 91 ppm to 320 ppm, further preferably 105 ppm to 280 ppm, more preferably 108 ppm to Most preferred is 250 ppm.
本発明の緑茶飲料におけるカテキン類濃度は、280ppm~600ppmであるのが好ましく、290ppm~580ppmがより好ましく、310ppm~550ppmがさらに好ましく、330ppm~500ppmが最も好ましい。容器詰緑茶飲料のカテキン類濃度が280ppmを下回ると甘い火香は強調されるものの新鮮香が弱く過ぎたり、濃度感が十分に得られないなどバランスに影響を与える点で好ましくなく、600ppmを上回ると新鮮香は強調されるものの甘い火香が逆に弱く過ぎたり、苦渋味やエグ味が強調され過ぎてバランスに影響を与える点で好ましくない。
この際、総カテキン類とは、カテキン(C)、ガロカテキン(GC)、カテキンガレート(Cg)、ガロカテキンガレート(GCg)、エピカテキン(EC)、エピガロカテキン(EGC)、エピカテキンガレート(ECg)及びエピガロカテキンガレート(EGCg)の合計8種の意味であり、総カテキン類とは8種類のカテキン濃度の合計値の意味である。
総カテキン類濃度を上記範囲に調整するには、抽出条件で調整するようにすればよい。
この際、カテキン類を添加して調整することも可能であるが、緑茶飲料のバランスが崩れるおそれがあるため、茶抽出液を得るための条件を調整するほか、茶抽出液どうしの混合、或いは茶抽出物の添加などによって調整するのが好ましい。 ( Catechin concentration )
The concentration of catechins in the green tea beverage of the present invention is preferably 280 ppm to 600 ppm, more preferably 290 ppm to 580 ppm, further preferably 310 ppm to 550 ppm, and most preferably 330 ppm to 500 ppm. If the concentration of catechins in a packaged green tea beverage is less than 280 ppm, sweet incense is emphasized, but the fresh aroma is too weak, or it is not preferable in terms of affecting the balance, such as insufficient concentration, and exceeds 600 ppm On the other hand, fresh incense is emphasized, but sweet incense is too weak, and bitter astringency and egg taste are emphasized too much, which is not preferable in that it affects the balance.
In this case, the total catechins are catechin (C), gallocatechin (GC), catechin gallate (Cg), gallocatechin gallate (GCg), epicatechin (EC), epigallocatechin (EGC), epicatechin gallate (ECg) ) And epigallocatechin gallate (EGCg), and the total catechins mean the total value of eight catechin concentrations.
In order to adjust the total catechin concentration to the above range, it may be adjusted under the extraction conditions.
At this time, it is also possible to adjust by adding catechins, but since the balance of the green tea beverage may be lost, in addition to adjusting the conditions for obtaining a tea extract, mixing tea extracts, or It is preferable to adjust by adding tea extract or the like.
本発明の緑茶飲料におけるカテキン類は、「エピ体カテキン類」すなわち(-)EC、(-)EGC、(-)ECg、(-)EGCgを含んでいてよく、「非エピ体カテキン類」すなわち(-)C、(-)GC、(-)Cg、(-)GCgを含んでいてよい。「非エピ体カテキン類」は、約80℃以上で加熱処理して熱異性化(エピマ-化)を促すことにより得ることができる。本発明の緑茶飲料における「エピ体カテキン類に対する非エピ体カテキン類の比率(非エピ体カテキン類/エピ体カテキン類)」は、0.4~10.0が好ましく、0.5~3.0がさらに好ましく、0.6~1.5が最も好ましい。 ( Epi catechins / non-epi catechins )
The catechins in the green tea beverage of the present invention may contain “epimeric catechins”, that is, (−) EC, (−) EGC, (−) ECg, (−) EGCg, and “non-epimeric catechins”, (-) C, (-) GC, (-) Cg, (-) GCg may be included. “Non-epimeric catechins” can be obtained by heat treatment at about 80 ° C. or higher to promote thermal isomerization (epimerization). The “ratio of non-epi form catechins to epi form catechins (non-epi form catechins / epi form catechins)” in the green tea beverage of the present invention is preferably 0.4 to 10.0, preferably 0.5 to 3. 0 is more preferable, and 0.6 to 1.5 is most preferable.
本発明の緑茶飲料における電子局在カテキン濃度は、250ppm~550ppmであるのが好ましく、260ppm~530ppmがより好ましく、280ppm~500ppmがさらに好ましく、300ppm~450ppmが最も好ましい。
本発明でいう「電子局在カテキン」とは、トリオール構造(ベンゼン環にOH基が3基隣り合う構造)を有し、イオン化したときに電荷の局在が起こりやすいと考えられるカテキンであり、具体的には、エピガロカテキンガレート(EGCg)、エピガロカテキン(EGC)、エピカテキンガレート(ECg)、ガロカテキンガレート(GCg)、ガロカテキン(GC)、カテキンガレート(Cg)などがある。
電子局在カテキン濃度を上記範囲に調整するには、抽出条件で調整すればよいが、抽出時間や温度で変化しやすいため、温度が高すぎたり、抽出時間が長すぎたりするのは、飲料の香気保持の面からも好ましくない。この際、電子局在カテキンを添加して調整することも可能であるが、緑茶飲料のバランスが崩れるおそれがあるため、茶抽出液を得るための条件を調整するほか、茶抽出液どうしの混合、或いは茶抽出物の添加などによって調整するのが好ましい。 ( Electron localized catechin concentration )
The concentration of electron-localized catechin in the green tea beverage of the present invention is preferably 250 ppm to 550 ppm, more preferably 260 ppm to 530 ppm, further preferably 280 ppm to 500 ppm, and most preferably 300 ppm to 450 ppm.
The “electron-localized catechin” as used in the present invention is a catechin that has a triol structure (a structure in which three OH groups are adjacent to a benzene ring) and is considered to easily localize charges when ionized. Specifically, there are epigallocatechin gallate (EGCg), epigallocatechin (EGC), epicatechin gallate (ECg), gallocatechin gallate (GCg), gallocatechin (GC), catechin gallate (Cg) and the like.
In order to adjust the electron localized catechin concentration to the above range, it is only necessary to adjust the extraction conditions. However, since it easily changes depending on the extraction time and temperature, the temperature is too high or the extraction time is too long. It is not preferable also from the surface of fragrance maintenance. At this time, it is also possible to adjust by adding electron localized catechins, but since the balance of green tea beverage may be lost, the conditions for obtaining the tea extract are adjusted, and the tea extracts are mixed. Or it is preferable to adjust by adding a tea extract or the like.
本発明の緑茶飲料における「糖類濃度に対する電子局在カテキン濃度の比率(電子局在カテキン/糖類)」は1.6~3.4であるのが好ましく、1.8~3.2がより好ましく、2.0~3.0がさらに好ましい。
糖類濃度に対する電子局在カテキン濃度の比率を上記範囲に調整するには、抽出条件で可能であるが、カテキンは高温での抽出率が高まるが、高温状態により糖類は分解しやすい為、抽出時間は短いほうが好ましい。この際、電子局在カテキン及び糖類を添加して調整することも可能であるが、緑茶飲料のバランスが崩れるおそれがあるため、茶抽出液を得るための条件を調整するほか、茶抽出液どうしの混合、或いは茶抽出物の添加などによって調整するのが好ましい。 ( Ratio of electron-localized catechin concentration to saccharide concentration (electron-localized catechin / saccharide) )
The “ratio of electron-localized catechin concentration to saccharide concentration (electron-localized catechin / saccharide)” in the green tea beverage of the present invention is preferably 1.6 to 3.4, more preferably 1.8 to 3.2. 2.0 to 3.0 is more preferable.
To adjust the ratio of the electron-localized catechin concentration to the saccharide concentration within the above range, extraction conditions are possible, but catechin increases the extraction rate at high temperature, but the saccharide is easily decomposed at high temperature, so the extraction time Is preferably shorter. At this time, it is possible to adjust by adding electron-localized catechins and saccharides, but since the balance of the green tea beverage may be lost, the conditions for obtaining the tea extract are adjusted. It is preferable to adjust by mixing the above or by adding a tea extract.
本発明の緑茶飲料におけるカフェイン濃度は、200ppm未満であるのが好ましく、0ppm~150ppmがより好ましく、0ppm~120ppmがさらに好ましく、0ppm~100ppmがさらにまた好ましく、0ppm~40ppmがよりさらに好ましく、0~30ppmが最も好ましい。容器詰緑茶飲料のカフェイン濃度が200ppmを上回ると、カフェイン由来の苦味が香りの感じ方と苦味とのバランスに影響を与える点で好ましくない。
カフェイン濃度を上記範囲に調整するには、茶葉に熱湯を吹き付けたり、茶葉を熱湯に浸漬させたりして茶葉中のカフェインを溶出させ、その茶葉を用いて茶抽出液を作製し、これら茶抽出液どうしを混合して調整すればよい。また、抽出液に活性炭や白土等の吸着剤を作用させてカフェインを吸着除去してもよい。 ( Caffeine concentration )
The caffeine concentration in the green tea beverage of the present invention is preferably less than 200 ppm, more preferably 0 ppm to 150 ppm, still more preferably 0 ppm to 120 ppm, still more preferably 0 ppm to 100 ppm, still more preferably 0 ppm to 40 ppm, ˜30 ppm is most preferred. When the caffeine concentration of the container-packed green tea beverage exceeds 200 ppm, the caffeine-derived bitterness is not preferable in that it affects the balance between the fragrance and the bitterness.
In order to adjust the caffeine concentration to the above range, spray hot water on tea leaves or immerse tea leaves in hot water to elute caffeine in tea leaves, and make tea extract using the tea leaves. What is necessary is just to mix and adjust tea extract. Further, an adsorbent such as activated carbon or white clay may act on the extract to adsorb and remove caffeine.
本発明における「カフェイン濃度に対する総カテキン類濃度の比率(総カテキン/カフェイン)」は、1.4~660であるのが好ましく、2.0~350がより好ましく、4.0~200が最も好ましい。容器詰緑茶飲料のカフェイン濃度に対する総カテキン類濃度の比率(総カテキン/カフェイン)が1.4を下回ると厚み・濃度感に対して苦味が際立ち過ぎてバランスを崩す点で好ましくなく、660を上回ると厚み・濃度感に対して渋味が際立ち過ぎてバランスを崩す点で好ましくない。
カフェイン濃度に対する総カテキン類濃度の比率を上記範囲に調整するには、上記したカフェイン低減処理、茶葉量、抽出温度により調整できる。総カテキン類を添加して調整することも可能であるが、緑茶飲料のバランスが崩れるおそれがあるため、茶抽出液を得るための条件を調整するほか、茶抽出液どうしの混合、或いは茶抽出物の添加などによって調整するのが好ましい。 ( Ratio of total catechin concentration to caffeine concentration (total catechin / caffeine) )
The “ratio of total catechins concentration to caffeine concentration (total catechin / caffeine)” in the present invention is preferably 1.4 to 660, more preferably 2.0 to 350, and 4.0 to 200. Most preferred. If the ratio of the total catechin concentration to the caffeine concentration of the packaged green tea beverage (total catechin / caffeine) is less than 1.4, it is not preferable because the bitterness is too conspicuous with respect to the thickness / concentration and the balance is lost. Above the range, the astringency tends to stand out with respect to the thickness and concentration, which is not preferable.
In order to adjust the ratio of the total catechin concentration to the caffeine concentration within the above range, it can be adjusted by the above-described caffeine reduction treatment, the amount of tea leaves, and the extraction temperature. Although it is possible to adjust by adding total catechins, the balance of green tea drinks may be lost, so in addition to adjusting the conditions for obtaining tea extract, mixing tea extracts or extracting tea It is preferable to adjust by adding a product.
本発明において透視度とは緑茶飲料の水色の濁り度合を示す指標であり、本発明における緑茶飲料の透視度は2~12度が好ましく、3~12度がより好ましく、4~12度が最も好ましい。
本発明において透視度とは、JIS(日本工業規格)K0102の9の方法に準拠して測定するものであり、具体的には、10mmごとに目盛を施した下口付きのガラス製のシリンダーであって底部に二重十字を記した標識板を備えた透視度計に試料液を満たし、上部から底部を透視し、標識板の二重十字が初めて明らかに識別できるまで、下口から試料を速やかに流出させたときの水面の目盛を読むものである。本発明においては、これを2回繰り返し、平均値を求め、透視度として度(10mmを1度)で表すものとする。 ( Transparency )
In the present invention, the degree of transparency is an index indicating the degree of light blue turbidity of a green tea beverage. In the present invention, the transparency of a green tea beverage is preferably 2 to 12 degrees, more preferably 3 to 12 degrees, and most preferably 4 to 12 degrees. preferable.
In the present invention, the degree of transparency is measured in accordance with JIS (Japanese Industrial Standards) K0102, 9 method, specifically, a glass cylinder with a lower mouth that is graduated every 10 mm. Fill the fluorometer with a marking plate with a double cross on the bottom, fill the sample solution, see through the bottom from the top, and remove the sample from the bottom until the double cross on the marking plate can be clearly identified for the first time. The scale of the water surface is read when it is quickly drained. In the present invention, this is repeated twice, the average value is obtained, and the degree of transparency is expressed in degrees (10 mm is 1 degree).
本発明の緑茶飲料のpHは、20℃で6.0~6.5であることが好ましい。本容器詰緑茶飲料のpHは6.0~6.4であるのがより好ましく、中でも特に6.1~6.3であるのがさらに好ましい。 ( PH )
The green tea beverage of the present invention preferably has a pH of 6.0 to 6.5 at 20 ° C. The container-packed green tea beverage preferably has a pH of 6.0 to 6.4, more preferably 6.1 to 6.3.
各成分の測定方法は、公知の方法を適宜用いることができるが、例えば、以下記載の測定方法を用いることができる。 ( Measurement method of each component )
As a method for measuring each component, a known method can be appropriately used. For example, the following measurement methods can be used.
還元糖、非還元糖、単糖、二糖はHPLC糖分析装置(Dionex社製)を以下の条件で操作し、検量線法により定量して測定した。
カラム:Dionex社製Carbopack PA1 φ4.6×250mm
カラム温度:30℃
移動相:A相 200mM NaOH
:B相 1000mM Sodium Acetate
:C相 超純水
流速:1.0mL/min
注入量:50μL
検出:Dionex社製ED50 金電極 ( Measurement method of reducing sugar, non-reducing sugar, monosaccharide, disaccharide )
Reducing sugars, non-reducing sugars, monosaccharides, and disaccharides were measured by operating a HPLC sugar analyzer (manufactured by Dionex) under the following conditions and quantified by a calibration curve method.
Column: Dionex Carbopack PA1 φ4.6 × 250mm
Column temperature: 30 ° C
Mobile phase: Phase A 200 mM NaOH
: Phase B 1000mM Sodium Acetate
: Phase C ultrapure water flow rate: 1.0mL / min
Injection volume: 50μL
Detection: Dionex ED50 gold electrode
食物繊維は次の酵素-重量法および酵素-HPLC法により測定した数値を合計し算出した。
○ 酵素-重量法
1.試験飲料(必要に応じて濃縮したものを含む)5gを500ml容トールビーカー2個に採取し、0.08mol/Lリン酸緩衝液(pH6.0)を加え50mlとし、ターマミル(120L、Novozymes社製)0.1mlを加え、沸騰水浴中で約30分間振とうしてインキュベートした後、放冷した。
2.次に、0.275mol/L水酸化ナトリウム溶液10mlでpH7.5±0.1に調整し、プロテアーゼ(P-5380、Sigma社製)溶液(50mg/mlリン酸緩衝液)0.1mlを加え60℃、30分間振とうしてインキュベートした後、放冷した。
3.続いて、0.325mol/L塩酸10mlでpH4.3±0.3に調整し、アミノグルコシダーゼ(A-9913、Sigma社製)0.1mlを加え60℃、30分間振とうしてインキュベートした後、放冷した。
4.次に95%エタノール(60℃)4倍容にメスアップし、室温で1時間放置した後、発生した沈澱を2G2のガラスフィルター(あらかじめ1gのセライトで濾過層を形成してあるもの)にて吸引濾過し、残留物とろ液に分離した(ろ液は酵素-HPLC法に使用した)。
5.この残留物を78%エタノール20mlで3回、95%エタノール10mlで2回以上、アセトン10mlで2回以上、必要に応じてジエチルエーテルで洗浄した後(洗浄液はろ液同様、酵素-HPLC法に使用した)、105℃、1夜乾燥した。
6.サンプル2点を恒量測定(R1、R2)し、タンパク質(P)をケルダール法、係数6.25で求めた後、525℃、5時間で灰化して灰分(A)(%)を測定した。
以上の操作で得られた数値を使用して、酵素-重量法による食物繊維(g/100g)を求めた。
酵素-重量法による食物繊維(g/100g)=(R×(1-(P+A)/2)-B)/S×100
R:残留物の重量(平均値、(R1+R2)/2、mg)
P:残留物中のタンパク質(%)
A:残留物中の灰分(%)
S:試料採取量(平均値、mg)
B:ブランク(mg)
B=r×(1-(p+a)/100)
R:ブランク残留物の重量(平均値、mg)
p:ブランク残留物中のタンパク質(%)
a:ブランク残留物中の灰分(%)
○ 酵素-HPLC法
1.上記ろ液と洗浄液を混合し、グリセリン(内部標準物質)を添加し、エタノール分をエバポレートした。
2.次に水で100mlに定容し、50ml採取した後、以下の条件でカラムクロマトグラフィーにより脱塩した。
カラム:ガラス管、20φmm×300mm
充填剤:イオン交換樹脂(アンバーライトIRA-67型(OH型)とアンバーライト200CT(H型)(オルガノ製)を1:1の容量比で混合したもの)、50ml
溶離液:水、150ml
流量:50ml/h
3.次に、カラム溶出液をエバポレート(濃縮)し、水で10mlに定容し、0.45μmメンブランフィルターでろ過した。
4.次に、ろ液を以下の条件でHPLCにより食物繊維相当ピーク(マルトトリオース(三糖類)と同じかそれよりも早く溶出されるピーク群)およびグリセリンの面積(PFおよびPG)を測定した。以上の操作で得られた数値を使用して、酵素-HPLC法による食物繊維(g/100g)を求めた。
酵素-重量法による食物繊維(g/100g)=PF/PG×f×G/S×100
PF:HPLC法における食物繊維相当ピークの面積
PG:HPLC法におけるグリセリンピークの面積
f:使用HPLC条件におけるグリセリンとブドウ糖のピーク感度比(0.821)
G:グリセリン添加量(mg)
S:試料採取量(mg)
濃縮を行った試験飲料については、濃縮倍率により換算した数値を求めた。 ( Measuring method of dietary fiber )
Dietary fiber was calculated by adding up the values measured by the following enzyme-gravimetric method and enzyme-HPLC method.
○ Enzyme-weight method Collect 5 g of test beverage (including concentrated if necessary) in two 500 ml tall beakers, add 0.08 mol / L phosphate buffer (pH 6.0) to 50 ml, and add Termamyl (120 L, Novozymes) 0.1 ml) was added, incubated in a boiling water bath by shaking for about 30 minutes, and then allowed to cool.
2. Next, the pH is adjusted to 7.5 ± 0.1 with 10 ml of 0.275 mol / L sodium hydroxide solution, and 0.1 ml of protease (P-5380, Sigma) solution (50 mg / ml phosphate buffer) is added. After incubation by shaking at 60 ° C. for 30 minutes, the mixture was allowed to cool.
3. Subsequently, the pH is adjusted to 4.3 ± 0.3 with 10 ml of 0.325 mol / L hydrochloric acid, 0.1 ml of aminoglucosidase (A-9913, manufactured by Sigma) is added and incubated at 60 ° C. for 30 minutes with shaking. , Allowed to cool.
4). Next, the volume was increased to 4 volumes of 95% ethanol (60 ° C.), allowed to stand at room temperature for 1 hour, and the generated precipitate was filtered with a 2G2 glass filter (a filter layer formed in advance with 1 g of celite). Suction filtration was performed to separate the residue and the filtrate (the filtrate was used for the enzyme-HPLC method).
5. The residue was washed 3 times with 20 ml of 78% ethanol, 2 times or more with 10 ml of 95% ethanol, 2 times or more with 10 ml of acetone, and if necessary with diethyl ether (the washing solution was used in the enzyme-HPLC method as with the filtrate). And dried at 105 ° C. overnight.
6). Two samples were subjected to constant weight measurement (R1, R2), and protein (P) was obtained by Kjeldahl method with a coefficient of 6.25, then incinerated at 525 ° C. for 5 hours to measure ash content (A) (%).
Using the values obtained by the above operation, dietary fiber (g / 100 g) was determined by the enzyme-weight method.
Enzyme-gravimetric dietary fiber (g / 100g) = (R x (1- (P + A) / 2) -B) / S x 100
R: weight of residue (average value, (R1 + R2) / 2, mg)
P: Protein in residue (%)
A: Ash in residue (%)
S: Sampling amount (average value, mg)
B: Blank (mg)
B = r × (1- (p + a) / 100)
R: Weight of blank residue (average value, mg)
p: protein in blank residue (%)
a: Ash content in blank residue (%)
○ Enzyme-HPLC method The filtrate and the washing solution were mixed, glycerin (internal standard substance) was added, and the ethanol content was evaporated.
2. Next, the volume was adjusted to 100 ml with water, 50 ml was collected, and then desalted by column chromatography under the following conditions.
Column: Glass tube, 20φmm × 300mm
Filler: ion exchange resin (Amberlite IRA-67 type (OH type) and Amberlite 200CT (H type) (manufactured by Organo) mixed at a volume ratio of 1: 1), 50 ml
Eluent: Water, 150ml
Flow rate: 50ml / h
3. Next, the column eluate was evaporated (concentrated), adjusted to 10 ml with water, and filtered through a 0.45 μm membrane filter.
4). Next, the filtrate was measured for the peak corresponding to dietary fiber (peak group eluted at the same time or earlier than maltotriose (trisaccharide)) and the area of glycerin (PF and PG) under the following conditions. Using the values obtained by the above operation, dietary fiber (g / 100 g) was determined by enzyme-HPLC method.
Dietary fiber by enzyme-gravimetry (g / 100g) = PF / PG x f x G / S x 100
PF: Area of dietary fiber equivalent peak in HPLC method
PG: Area of glycerin peak in HPLC method
f: Peak sensitivity ratio between glycerin and glucose under the HPLC conditions used (0.821)
G: Amount of glycerin added (mg)
S: Sampling amount (mg)
About the test drink which concentrated, the numerical value converted by the concentration rate was calculated | required.
本発明の緑茶飲料を充填する容器は、特に限定するものではなく、例えばプラスチック製ボトル(所謂ペットボトル)、スチール、アルミなどの金属缶、ビン、紙容器などを用いることができ、特に、ペットボトルなどの透明容器等を好ましく用いることができる。 ( Container )
The container filled with the green tea beverage of the present invention is not particularly limited, and for example, plastic bottles (so-called PET bottles), metal cans such as steel and aluminum, bottles, paper containers and the like can be used. A transparent container such as a bottle can be preferably used.
本発明の緑茶飲料は、例えば、茶葉原料の選定と共に、茶葉の乾燥(火入)加工や抽出の条件を適宜調整して、茶抽出液中の90積算質量%の粒子径(D90)を2μm~50μmに調整し、且つ糖酸味度比を0.12~0.43に調整することにより製造することができる。例えば、茶葉を250℃~305℃で乾燥(火入)加工し、その茶葉をやや高温短時間で抽出した抽出液と、従来一般的な緑茶抽出液、すなわち荒葉を高温短時間で抽出した抽出液とを用意し、これらを適宜割合で配合することにより、本容器詰緑茶飲料を製造することができる。また、抽出液を適宜条件調整した遠心分離処理することにより、本容器詰緑茶飲料を製造することができる。また、粉砕茶葉混濁液を適宜条件調整した遠心分離処理し、抽出液と適宜割合で混合することにより本容器詰緑茶飲料を製造することができる。但し、このような製造方法に限定されるものではない。 ( Manufacturing method )
In the green tea beverage of the present invention, for example, the tea leaf raw material is selected and the conditions for drying (fired) processing and extraction of the tea leaf are adjusted as appropriate, so that the particle size (D90) of 90 cumulative mass% in the tea extract is 2 μm. It can be produced by adjusting to ˜50 μm and adjusting the sugar acidity ratio to 0.12 to 0.43. For example, tea leaves are dried (fired) at 250 ° C to 305 ° C, and the tea leaves are extracted at a slightly high temperature in a short time, and the conventional common green tea extract, that is, the rough leaves are extracted at a high temperature in a short time. This container-packed green tea beverage can be produced by preparing an extract and blending them in appropriate proportions. Moreover, this container-packed green tea drink can be manufactured by carrying out the centrifugation process which adjusted the conditions of the extract suitably. Moreover, this container-packed green tea drink can be manufactured by carrying out the centrifugation process which adjusted the conditions appropriately for the pulverized tea leaf turbid liquid, and mixing with an extract in a suitable ratio. However, it is not limited to such a manufacturing method.
抽出液用緑茶葉(やぶきた種、鹿児島県産二番茶、荒茶)20gを700mLの熱水(85℃)で5分30秒間抽出後、遠心分離機(ウエストファリア社製SA1連続遠心分離機)を用いて流速300L/hr、回転数10000rpm、遠心沈降面積(Σ)1000m2で処理し、水で700mLにメスアップすることにより緑茶葉抽出液Aを得た。 ( Green tea leaf extract A )
Extract green tea leaves (Yabukita seed, Kagoshima Nibancha, Aracha) 20 g with 700 mL of hot water (85 ° C) for 5 minutes 30 seconds, then centrifuge (Westphalia SA1 continuous centrifuge) Was used for processing at a flow rate of 300 L / hr, a rotational speed of 10,000 rpm, and a centrifugal sedimentation area (Σ) of 1000 m 2 , and the volume was made up to 700 mL with water to obtain a green tea leaf extract A.
回転ドラム型火入機にて305℃で8分間火入加工した抽出液用緑茶葉(やぶきた種、静岡県産一番茶深蒸し)14gを700mLの熱水(75℃)で4分間抽出後、遠心分離機(ウエストファリア社製SA1連続遠心分離機)を用いて流速300L/hr、回転数10000rpm、遠心沈降面積(Σ)1000m2で処理し、水で700mLにメスアップすることにより緑茶葉抽出液Bを得た。 ( Green tea leaf extract B )
Extracted 14 g of green tea leaves (Yabukita seed, Ichibancha deep-boiled tea from Shizuoka Prefecture) for 4 minutes with 700 mL of hot water (75 ° C) after fired at 305 ° C for 8 minutes with a rotary drum-type firer. Extraction of green tea leaves was carried out using a centrifuge (SA1 continuous centrifuge manufactured by Westphalia) at a flow rate of 300 L / hr, a rotation speed of 10000 rpm, a centrifugal sedimentation area (Σ) of 1000 m 2 and made up to 700 mL with water. Liquid B was obtained.
緑茶葉(やぶきた種、京都府産一番茶、荒茶)200kgを、ボールミル粉砕(マキノ社製BM-400)に投入して粉砕処理することにより混濁液用粉砕茶Cを得た。 ( Crushed tea C for turbid liquid )
200 kg of green tea leaves (Yabukita seed, Ichibancha from Kyoto Prefecture, rough tea) were put into a ball mill (BM-400 manufactured by Makino Co., Ltd.) and pulverized to obtain crushed tea C for turbid liquid.
緑茶葉(やぶきた種、京都府産一番茶、荒茶)を、処理量10kg/時間、吐出圧力0.9MPaの条件によりジェットミル粉砕(日本乾溜工業社製437型)することにより、混濁液用粉砕茶Dを得た。 ( Crushed tea D for turbid liquid )
By pulverizing green tea leaves (Yabukita seeds, Ichibancha from Kyoto Prefecture, rough tea) under the conditions of a throughput of 10 kg / hour and a discharge pressure of 0.9 MPa, a turbid liquid is obtained. A ground tea D was obtained.
0.72gの混濁液用粉砕茶Cを300mLの水に高速ホモジナイザーで分散し、目開80μm試験用ふるい(ナイロン製)で自重濾過し、水で1400mLにメスアップすることにより粉砕茶葉混濁液Aを得た。この粉砕茶葉混濁液Aの透視度は1.2度であった。 ( Crushed tea leaf turbid liquid A )
Disperse 0.72 g of pulverized tea C for turbid liquid in 300 mL of water with a high-speed homogenizer, filter by gravity with an 80 μm sieve sieve (made of nylon), and make up to 1400 mL with water to pulverize tea leaf turbid liquid A Got. The transparency of the crushed tea leaf turbidity liquid A was 1.2 degrees.
0.41gの混濁液用粉砕茶Cを300mLの水に高速ホモジナイザーで分散し、目開50μm試験用ふるい(ナイロン製)で自重濾過し、水で1400mLにメスアップすることにより粉砕茶葉混濁液Bを得た。この粉砕茶葉混濁液Bの透視度は2.3度であった。 ( Crushed tea leaf turbid liquid B )
Disperse 0.41 g of pulverized tea C for turbid liquid in 300 mL of water with a high-speed homogenizer, filter by gravity with a sieve for opening 50 μm (made of nylon), and make up to 1400 mL with water to pulverize tea leaf turbid liquid B Got. The transparency of this ground tea leaf turbidity liquid B was 2.3 degrees.
0.57gの混濁液用粉砕茶Cを300mLの水に高速ホモジナイザーで分散し、目開40μm試験用ふるい(ナイロン製)で自重濾過し、水で700mLにメスアップすることにより粉砕茶葉混濁液Cを得た。この粉砕茶葉混濁液Cの透視度は1.2度であった。 ( Crushed tea leaf turbid liquid C )
Disperse 0.57 g of crushed tea C for turbid liquid in 300 mL of water with a high-speed homogenizer, filter by gravity with a 40 μm sieve sieve (made of nylon), and make up to 700 mL with water to make crushed tea leaf turbid C Got. The transparency of the ground tea leaf turbidity liquid C was 1.2 degrees.
1.56gの混濁液用粉砕茶Cを300mLの水に高速ホモジナイザーで分散し、目開30μm試験用ふるい(ナイロン製)で自重濾過し、水で1400mLにメスアップすることにより粉砕茶葉混濁液Dを得た。この粉砕茶葉混濁液Dの透視度は2.0度であった。 ( Crushed tea leaf turbid liquid D )
Disperse 1.56 g of crushed tea C for turbid liquid in 300 mL of water with a high-speed homogenizer, filter by gravity with a sieve for opening 30 μm (made of nylon), and make up to 1400 mL with water to pulverize tea leaf turbid liquid D Got. The transparency of the ground tea leaf turbidity liquid D was 2.0 degrees.
1.56gの混濁液用粉砕茶Dを300mLの水に高速ホモジナイザーで分散し、目開3μm試験用ふるい(ナイロン製)で自重濾過し、水で1400mLにメスアップすることにより粉砕茶葉混濁液Eを得た。この粉砕茶葉混濁液Eの透視度は2.1度であった。 ( Crushed tea leaf turbid liquid E )
Disperse 1.56 g of crushed tea D for turbid liquid in 300 mL of water with a high-speed homogenizer, filter by gravity with a 3 μm sieve sieve (made of nylon), and make up to 1400 mL with water to make crushed tea leaf turbid E Got. The transparency of this ground tea leaf turbidity liquid E was 2.1 degrees.
200gの混濁液用粉砕茶Dを600mLの水に高速ホモジナイザーで分散し、目開1μm試験用ふるい(ナイロン製)で自重濾過し、水で1400mLにメスアップすることにより粉砕茶葉混濁液Fを得た。この粉砕茶葉混濁液Fの透視度は1.2度であった。 ( Crushed tea leaf turbid liquid F )
Disperse 200 g of crushed tea D for turbid liquid in 600 mL of water with a high-speed homogenizer, filter by gravity using a 1 μm sieve sieve (made of nylon), and make up to 1400 mL with water to obtain crushed tea leaf turbid liquid F. It was. The transparency of the ground tea leaf turbid liquid F was 1.2 degrees.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が20:80)700mL、および粉砕茶葉混濁液D1000mLを目標透視度が6.0度となるよう配合し、最終濃度が35.0mg%となるようにビタミンCを配合し、難消化性デキストリン(松谷化学工業社製ファイバーソル2)を260mg配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(実施品1)を得た。 ( Product 1 )
700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) 700 mL and ground tea leaf turbid solution D1000 mL have a target transparency of 6.0 degrees Vitamin C was blended so that the final concentration was 35.0 mg%, and 260 mg of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (work product 1) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が20:80)700mL、および粉砕茶葉混濁液D1200mLを目標透視度が4.0度となるよう配合し、最終濃度が35.0mg%となるようにビタミンCを配合し、難消化性デキストリン(松谷化学工業社製ファイバーソル2)を44g配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(実施品2)を得た。 ( Product 2 )
700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) 700 mL and ground tea leaf turbid solution D 1200 mL have a target transparency of 4.0 degrees Vitamin C was blended so that the final concentration was 35.0 mg%, and 44 g of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (work product 2) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が20:80)700mL、および粉砕茶葉混濁液D250mLを目標透視度が12.0度となるよう配合し、最終濃度が35.0mg%となるようにビタミンCを配合し、難消化性デキストリン(松谷化学工業社製ファイバーソル2)を40mg配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(実施品3)を得た。 ( Product 3 )
700 mL of green tea leaf extract A and B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) 700 mL and crushed tea leaf turbid solution D 250 mL have a target transparency of 12.0 degrees Vitamin C was blended so that the final concentration would be 35.0 mg%, and 40 mg of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (practical product 3) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が20:80)700mL、および粉砕茶葉混濁液E1000mLを目標透視度が6.0度となるよう配合し、最終濃度が35.0mg%となるようにビタミンCを配合し、難消化性デキストリン(松谷化学工業社製ファイバーソル2)を260mg配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(実施品4)を得た。 ( Product 4 )
700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) 700 mL and ground tea leaf turbid E1000 mL have a target transparency of 6.0 degrees Vitamin C was blended so that the final concentration was 35.0 mg%, and 260 mg of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (practical product 4) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が20:80)700mL、および粉砕茶葉混濁液B1000mLを目標透視度が6.0度となるよう配合し、最終濃度が35.0mg%となるようにビタミンCを配合し、難消化性デキストリン(松谷化学工業社製ファイバーソル2)を260mg配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(実施品5)を得た。 ( Product 5 )
700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) 700 mL and ground tea leaf turbid solution B 1000 mL have a target transparency of 6.0 degrees Vitamin C was blended so that the final concentration was 35.0 mg%, and 260 mg of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A green tea beverage (practical product 5) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が20:80)700mL、および粉砕茶葉混濁液B250mLを目標透視度が12.0度となるよう配合し、最終濃度が35.0mg%となるようにビタミンCを配合し、難消化性デキストリン(松谷化学工業社製ファイバーソル2)を40mg配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(実施品6)を得た。 ( Product 6 )
700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) 700 mL and crushed tea leaf turbid solution B 250 mL have a target transparency of 12.0 degrees Vitamin C was blended so that the final concentration would be 35.0 mg%, and 40 mg of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A green tea beverage (practical product 6) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が20:80)700mL、および粉砕茶葉混濁液B1200mLを目標透視度が4.0度となるよう配合し、最終濃度が35.0mg%となるようにビタミンCを配合し、難消化性デキストリン(松谷化学工業社製ファイバーソル2)を44g配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(実施品7)を得た。 ( Product 7 )
700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) and 700 mL of crushed tea leaf turbid solution B have a target transparency of 4.0 degrees. Vitamin C was blended so that the final concentration was 35.0 mg%, and 44 g of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A green tea beverage (practical product 7) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が20:80)700mL、および粉砕茶葉混濁液E800mLを目標透視度が4.0度となるよう配合し、最終濃度が35.0mg%となるようにビタミンCを配合し、難消化性デキストリン(松谷化学工業社製ファイバーソル2)を44g配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(実施品8)を得た。 ( Product 8 )
700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) and 700 mL of ground tea leaf turbid E800 mL have a target transparency of 4.0 degrees. Vitamin C was blended so that the final concentration was 35.0 mg%, and 44 g of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (practical product 8) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が4:96)700mL、および粉砕茶葉混濁液D1000mLを目標透視度が6.0度となるよう配合し、最終濃度が55.0mg%となるようにビタミンCを配合し、難消化性デキストリン(松谷化学工業社製ファイバーソル2)を260mg配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(実施品9)を得た。 ( Product 9 )
700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 4:96) and 700 mL of ground tea leaf turbid solution D1000 mL have a target transparency of 6.0 degrees. Vitamin C was blended so that the final concentration was 55.0 mg%, and 260 mg of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (practical product 9) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が4:96)700mL、および粉砕茶葉混濁液D1200mLを目標透視度が4.0度となるよう配合し、最終濃度が55.0mg%となるようにビタミンCを配合し、難消化性デキストリン(松谷化学工業社製ファイバーソル2)を44g配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(実施品10)を得た。 ( Product 10 )
700 mL of green tea leaf extract A and B mixture (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) 4:96) and 1200 mL of crushed tea leaf turbid solution D have a target transparency of 4.0 degrees. Vitamin C was blended so that the final concentration was 55.0 mg%, and 44 g of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A green tea beverage (practical product 10) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が40:60)700mL、および粉砕茶葉混濁液D1000mLを目標透視度が6.0度となるよう配合し、最終濃度が25.0mg%となるようにビタミンCを配合し、難消化性デキストリン(松谷化学工業社製ファイバーソル2)を260mg配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(実施品11)を得た。 ( Product 11 )
700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 40:60) 700 mL and ground tea leaf turbid solution D1000 mL have a target transparency of 6.0 degrees Vitamin C was blended so that the final concentration was 25.0 mg%, and 260 mg of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (work product 11) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が40:60)700mL、および粉砕茶葉混濁液D250mL目標透視度が6.0度となるよう配合し、最終濃度が25.0mg%となるようにビタミンCを配合し、難消化性デキストリン(松谷化学工業社製ファイバーソル2)を40mg配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(実施品12)を得た。 ( Product 12 )
700 mL of green tea leaf extract A and B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 40:60) and crushed tea leaf turbid solution D250 mL target transparency is 6.0 degrees. Vitamin C was blended so that the final concentration was 25.0 mg%, and 40 mg of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (practical product 12) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が40:60)700mL、および粉砕茶葉混濁液D1000mLを目標透視度が6.0度となるよう配合し、最終濃度が34mg%となるようにビタミンCを配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(実施品13)を得た。 ( Product 13 )
700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 40:60) 700 mL and ground tea leaf turbid solution D1000 mL have a target transparency of 6.0 degrees Vitamin C was blended so that the final concentration was 34 mg%. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (practical product 13) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が20:80)700mL、および粉砕茶葉混濁液C170mLを目標透視度が14.0度となるよう配合し、最終濃度が35.0mg%となるようにビタミンCを配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(比較品1)を得た。 ( Comparative product 1 )
700 mL of green tea leaf extract A and B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) 700 mL and ground tea leaf turbid solution C 170 mL have a target transparency of 14.0 degrees Vitamin C was blended so that the final concentration would be 35.0 mg%. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (Comparative Product 1) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が20:80)700mL、および粉砕茶葉混濁液C700mLを目標透視度が2.0度となるよう配合し、最終濃度が35.0mg%となるようにビタミンCを配合し、難消化性デキストリン(松谷化学工業社製ファイバーソル2)を10g配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(比較品2)を得た。 ( Comparative product 2 )
700 mL of green tea leaf extract A and B mixture (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) 700 mL and crushed tea leaf turbid C700 mL have a target transparency of 2.0 degrees Vitamin C was blended so that the final concentration was 35.0 mg%, and 10 g of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (Comparative Product 2) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が20:80)700mL、および粉砕茶葉混濁液F400mLを目標透視度が6.0度となるよう配合し、最終濃度が35.0mg%となるようにビタミンCを配合し、難消化性デキストリン(松谷化学工業社製ファイバーソル2)を260mg配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(比較品3)を得た。 ( Comparative product 3 )
700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) 700 mL and ground tea leaf turbid solution F400 mL have a target transparency of 6.0 degrees Vitamin C was blended so that the final concentration was 35.0 mg%, and 260 mg of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (Comparative Product 3) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が20:80)700mL、および粉砕茶葉混濁液A250mLを目標透視度が6.0度となるよう配合し、最終濃度が35.0mg%となるようにビタミンCを配合し、難消化性デキストリン(松谷化学工業社製ファイバーソル2)を260mg配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(比較品4)を得た。 ( Comparative product 4 )
700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) and 700 mL of ground tea leaf turbid solution A 250 mL have a target transparency of 6.0 degrees. Vitamin C was blended so that the final concentration was 35.0 mg%, and 260 mg of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (Comparative Product 4) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が20:80)700mL、および粉砕茶葉混濁液A170mLを目標透視度が14.0度となるよう配合し、最終濃度が35.0mg%となるようにビタミンCを配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(比較品5)を得た。 ( Comparative product 5 )
700 mL of green tea leaf extract A and B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) 700 mL and ground tea leaf turbid solution A 170 mL have a target transparency of 14.0 degrees Vitamin C was blended so that the final concentration would be 35.0 mg%. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (Comparative Product 5) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が20:80)700mL、および粉砕茶葉混濁液A700mLを目標透視度が2.0度となるよう配合し、最終濃度が35.0mg%となるようにビタミンCを配合し、難消化性デキストリン(松谷化学工業社製ファイバーソル2)を10g配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(比較品6)を得た。 ( Comparative product 6 )
700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) 700 mL and crushed tea leaf turbid solution A 700 mL have a target transparency of 2.0 degrees Vitamin C was blended so that the final concentration was 35.0 mg%, and 10 g of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (Comparative Product 6) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が20:80)700mL、および粉砕茶葉混濁液F1200mL目標透視度が2.0度となるよう配合し、最終濃度が35.0mg%となるようにビタミンCを配合し、難消化性デキストリン(松谷化学工業社製ファイバーソル2)を10g配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(比較品7)を得た。 ( Comparative product 7 )
700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 20:80) 700 mL, and crushed tea leaf turbid solution F 1200 mL target transparency is 2.0 degrees Vitamin C was blended so that the final concentration was 35.0 mg%, and 10 g of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (Comparative Product 7) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が0:100)700mL、および粉砕茶葉混濁液C400mLを目標透視度が6.0度となるよう配合し、最終濃度が65.4mg%となるようにビタミンCを配合し、難消化性デキストリン(松谷化学工業社製ファイバーソル2)を260mg配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(比較品8)を得た。 ( Comparative product 8 )
700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 0: 100) 700 mL and ground tea leaf turbid C400 mL have a target transparency of 6.0 degrees Vitamin C was blended so that the final concentration would be 65.4 mg%, and 260 mg of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (Comparative Product 8) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が0:100)700mL、および粉砕茶葉混濁液C700mLを目標透視度が2.0度となるよう配合し、最終濃度が65.4mg%となるようにビタミンCを配合し、難消化性デキストリン(松谷化学工業社製ファイバーソル2)を40g配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(比較品9)を得た。 ( Comparative product 9 )
700 mL of green tea leaf extract A and B mixture (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 0: 100) 700 mL and crushed tea leaf turbid C700 mL have a target transparency of 2.0 degrees Vitamin C was blended so that the final concentration was 65.4 mg%, and 40 g of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (Comparative Product 9) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が50:50)700mL、および粉砕茶葉混濁液C400mLを目標透視度が6.0度となるよう配合し、最終濃度が18.0mg%となるようにビタミンCを配合し、難消化性デキストリン(松谷化学工業社製ファイバーソル2)を260mg配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(比較品10)を得た。 ( Comparative product 10 )
700 mL of green tea leaf extract A, B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 50:50) 700 mL and ground tea leaf turbid C400 mL have a target transparency of 6.0 degrees Vitamin C was blended so that the final concentration would be 18.0 mg%, and 260 mg of indigestible dextrin (Fibersol 2 manufactured by Matsutani Chemical Industry Co., Ltd.) was blended. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (Comparative Product 10) was obtained.
緑茶葉抽出液A、B混合液(緑茶葉抽出液A:緑茶葉抽出液Bの配合割合(重量比)が50:50)700mL、および粉砕茶葉混濁液C170mLを目標透視度が14.0度となるよう配合し、最終濃度が18.0mg%となるようにビタミンCを配合した。得られた混合液に重曹を加えてpH調整を行い、純水を用いて2000mLにメスアップした。次に、得られた混合液をUHT殺菌(135℃、30秒)し、プレート内で85℃に冷却してから透明プラスチック容器(PETボトル)に充填し、直ちに20℃まで冷却することにより容器詰緑茶飲料(比較品11)を得た。 ( Comparative product 11 )
700 mL of green tea leaf extract A and B mixed solution (green tea leaf extract A: green tea leaf extract B blending ratio (weight ratio) is 50:50) 700 mL and ground tea leaf turbid solution C 170 mL have a target transparency of 14.0 degrees Vitamin C was blended so that the final concentration would be 18.0 mg%. Sodium bicarbonate was added to the obtained mixed solution to adjust pH, and the volume was increased to 2000 mL using pure water. Next, the obtained mixed solution is UHT sterilized (135 ° C., 30 seconds), cooled to 85 ° C. in a plate, filled into a transparent plastic container (PET bottle), and immediately cooled to 20 ° C. A stuffed green tea beverage (Comparative Product 11) was obtained.
実施品1~13及び比較品1~11の全てについて、専門のパネリスト10人が、冷凍状態の外観と、開封後4時間経過した後(3℃)の官能評価(官能評価1)と、開封後に8時間経過した後(18℃)の官能評価(官能評価2)を実施し、それぞれのサンプルについて4段階評価(1~4点)をしてその平均値を算出し、良好な評価の順にそれぞれ「◎」(4点)、「○」(3点)、「△」(2点)、「×」(1点)とした。なお、それぞれの官能評価における評価項目は、ふくみ香、味の余韻、厚み、滋味、喉ごしとした。
また、実施品1~13及び比較品1~11の全てについて、それぞれのサンプルを20℃で1か月間静置した後の外観ついて、上記と同様の方法により評価した。
さらに、ふくみ香、味の余韻、厚み、滋味、喉ごし、外観などを含めた製品としての容器詰緑茶飲料の適性を、上記と同様の方法により評価することにより「総合評価」をした。
実施品1~13及び比較品1~11の配合割合(重量)、各成分の測定結果及び各サンプルの評価結果を以下の表に示す。 ( Evaluation method )
For all of the implemented products 1 to 13 and the comparative products 1 to 11, 10 professional panelists had the appearance of the frozen state, sensory evaluation after 4 hours (3 ° C) after opening (sensory evaluation 1), and opening The sensory evaluation (sensory evaluation 2) was performed after 8 hours later (18 ° C), and each sample was evaluated in four stages (1 to 4 points), and the average value was calculated. “◎” (4 points), “◯” (3 points), “Δ” (2 points), “×” (1 point), respectively. In addition, the evaluation items in each sensory evaluation were Fukumi incense, taste reverberation, thickness, taste, and throat.
In addition, the appearance of each of Examples 1 to 13 and Comparative products 1 to 11 after standing for 1 month at 20 ° C. was evaluated by the same method as described above.
Furthermore, “comprehensive evaluation” was carried out by evaluating the suitability of the packaged green tea beverage as a product including the scent, flavor, taste, taste, throat, and appearance by the same method as described above.
The blending ratio (weight) of the implementation products 1 to 13 and the comparison products 1 to 11, the measurement results of each component, and the evaluation results of each sample are shown in the following table.
本発明品1~13については、凍結状態(解凍率0%)、半解凍状態(解凍率50%)、全解凍状態(解凍率100%)における評価はいずれも平均以上と良好且つ安定的であった。すなわち本発明品は、凍結飲料が徐々にぬるまって全解凍状態に至るまでの経過において品質が大きく変動することがなかった。
これに対して、比較品1~11については、凍結状態からそもそも外観が好ましいものではなかったり(比較品4,5)、半解凍状態における品質に問題があったり(比較品1,4~9,11)、全解凍状態における品質に問題があったり(比較品2,3,6~11)することに加えて、本発明品と比較して総合評価においても劣るものであった。 ( Discussion )
For the products 1 to 13 of the present invention, the evaluation in the frozen state (0% thawing rate), the half-thawed state (50% thawing rate), and the total thawing state (100% thawing rate) are all above average and good and stable there were. That is, the quality of the product of the present invention did not fluctuate greatly in the course of the frozen beverage gradually becoming wet and reaching the fully thawed state.
On the other hand, the comparative products 1 to 11 are not preferable in appearance from the frozen state (comparative products 4 and 5) or have a problem in quality in the semi-thawed state (comparative products 1 and 4 to 9). 11), in addition to the problem of quality in all thawed states (comparative products 2, 3, 6 to 11), the overall evaluation was inferior to the products of the present invention.
Claims (11)
- 茶抽出液中の90積算質量%の粒子径が2μm~50μmであり、酸味度及びガレート型カテキン類の合計値に対する果糖の質量比率が0.01~0.08であり、還元糖及び非還元糖の合計値に対する食物繊維の質量比率が0.1~200であることを特徴とする容器詰緑茶飲料。 The particle size of 90 cumulative mass% in the tea extract is 2 μm to 50 μm, the mass ratio of fructose to the total value of acidity and gallate catechins is 0.01 to 0.08, reducing sugar and non-reducing A packaged green tea beverage characterized in that the mass ratio of dietary fiber to the total value of sugar is 0.1 to 200.
- 単糖の濃度と二糖の濃度とを合わせた糖類濃度が87ppm~380ppmであることを特徴とする請求項1記載の容器詰緑茶飲料。 The container-packed green tea beverage according to claim 1, wherein the sugar concentration of the monosaccharide concentration and the disaccharide concentration is 87 ppm to 380 ppm.
- 単糖の濃度と二糖の濃度とを合わせた糖類濃度に対する二糖の濃度の質量比率が、0.69~0.92であることを特徴とする請求項1又は2に記載の容器詰緑茶飲料。 The container-packed green tea according to claim 1 or 2, wherein the mass ratio of the disaccharide concentration to the saccharide concentration obtained by adding the monosaccharide concentration and the disaccharide concentration is 0.69 to 0.92. Beverages.
- 酸味度の合計値が、600ppm~840ppmであることを特徴とする請求項1~3のいずれかに記載の容器詰緑茶飲料。 The packaged green tea beverage according to any one of claims 1 to 3, wherein the total acidity is 600 ppm to 840 ppm.
- 電子局在カテキン濃度が250ppm~550ppmであることを特徴とする請求項1~4のいずれかに記載の容器詰緑茶飲料。 The packaged green tea beverage according to any one of claims 1 to 4, wherein the concentration of electron-localized catechin is 250 ppm to 550 ppm.
- カフェイン濃度が200ppm未満であることを特徴とする請求項1~5のいずれかに記載の容器詰緑茶飲料。 The packaged green tea beverage according to any one of claims 1 to 5, wherein the caffeine concentration is less than 200 ppm.
- 平均粒子径が1μm以上の粒子を含有することを特徴とする請求項1~6のいずれかに記載の容器詰緑茶飲料。 The packaged green tea beverage according to any one of claims 1 to 6, comprising particles having an average particle size of 1 µm or more.
- 透視度が2度~12度であることを特徴とする請求項1~7のいずれかに記載の容器詰緑茶飲料。 The packaged green tea beverage according to any one of claims 1 to 7, wherein the transparency is 2 to 12 degrees.
- 茶抽出液中の90積算質量%の粒子径を2μm~50μmに調整する工程と、酸味度及びガレート型カテキン類の合計値に対する果糖の質量比率を0.01~0.08に調整する工程と、食物繊維と還元糖及び非還元糖の合計値との質量比率を0.1~200に調整する工程とを含むことを特徴とする容器詰緑茶飲料の製造方法。 A step of adjusting the particle diameter of 90 cumulative mass% in the tea extract to 2 μm to 50 μm, a step of adjusting the mass ratio of fructose to the total value of acidity and gallate catechins to 0.01 to 0.08, And a step of adjusting the mass ratio of the dietary fiber and the total value of reducing sugar and non-reducing sugar to 0.1 to 200.
- 茶抽出液中の90積算質量%の粒子径を2μm~50μmに調整し、且つ糖酸味度比を0.12~0.43に調整することを特徴とする緑茶飲料の呈味改善方法。 A method for improving the taste of a green tea beverage, comprising adjusting a particle size of 90 cumulative mass% in a tea extract to 2 to 50 μm and adjusting a sugar acidity ratio to 0.12 to 0.43.
- 茶抽出液中の90積算質量%の粒子径を2μm~50μmに調整し、果糖と酸味度及びガレート型カテキン類の合計値との質量比率を0.01~0.08に調整し、食物繊維と還元糖及び非還元糖の合計値との質量比率を0.1~200に調整することを特徴とする容器詰緑茶飲料の品質保持方法。 The particle size of 90 cumulative mass% in the tea extract is adjusted to 2 μm to 50 μm, and the mass ratio of fructose to acidity and the total value of gallate type catechins is adjusted to 0.01 to 0.08, and dietary fiber A method for maintaining the quality of a packaged green tea beverage, characterized in that the mass ratio of the total sugar and reducing sugar and non-reducing sugar is adjusted to 0.1 to 200.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013094351A JP5534272B1 (en) | 2013-04-26 | 2013-04-26 | Containerized green tea beverage and method for producing the same |
JP2013-094351 | 2013-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014174707A1 true WO2014174707A1 (en) | 2014-10-30 |
Family
ID=51175894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/079705 WO2014174707A1 (en) | 2013-04-26 | 2013-11-01 | Packaged green tea beverage and production method therefor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5534272B1 (en) |
TW (1) | TW201440658A (en) |
WO (1) | WO2014174707A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5679614B1 (en) * | 2014-08-12 | 2015-03-04 | 株式会社 伊藤園 | Containerized green tea beverage, method for producing the same, and method for improving concentration feeling of containerized green tea beverage |
JP5679615B1 (en) * | 2014-08-14 | 2015-03-04 | 株式会社 伊藤園 | Tea beverage, method for producing the same, and method for adjusting sweet and astringent taste of containered green tea beverage |
JP6482859B2 (en) * | 2014-12-24 | 2019-03-13 | キリン株式会社 | Tea drink and method for producing the same |
JP6449731B2 (en) * | 2015-07-03 | 2019-01-09 | 株式会社 伊藤園 | Method for producing dietary fiber-containing cereal tea beverage and method for inhibiting deterioration of properties |
JP7022599B2 (en) * | 2017-01-20 | 2022-02-18 | サントリーホールディングス株式会社 | Green tea beverage containing crushed tea leaves |
JP7505893B2 (en) | 2020-02-19 | 2024-06-25 | ポッカサッポロフード&ビバレッジ株式会社 | Green tea beverage |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10234301A (en) * | 1997-02-27 | 1998-09-08 | Meiji Seika Kaisha Ltd | Green tea beverage |
JPH11276074A (en) * | 1998-03-31 | 1999-10-12 | Freunt Ind Co Ltd | Tea beverage using fine powder tea and method for producing the same |
JP2004129670A (en) * | 2003-10-31 | 2004-04-30 | Kao Corp | Bottled tea-based drink |
JP2009065871A (en) * | 2007-09-11 | 2009-04-02 | Suntory Ltd | Tea extract and method for producing the same |
JP2010045994A (en) * | 2008-08-20 | 2010-03-04 | Kao Corp | Packed tea drink |
JP2011155876A (en) * | 2010-01-29 | 2011-08-18 | Ito En Ltd | Packaged green-tea beverage |
WO2012029131A1 (en) * | 2010-08-31 | 2012-03-08 | 株式会社伊藤園 | Container-packed green tea drink and process for producing the same |
WO2012029132A1 (en) * | 2010-08-31 | 2012-03-08 | 株式会社伊藤園 | Packaged green tea drink and method for producing same |
JP2012130314A (en) * | 2010-12-22 | 2012-07-12 | Kirin Beverage Corp | Packaged tea beverage enriched in flavor and taste and production method thereof |
JP2012183063A (en) * | 2011-02-14 | 2012-09-27 | Suntory Holdings Ltd | Quercetin glycoside-containing bottled beverage |
-
2013
- 2013-04-26 JP JP2013094351A patent/JP5534272B1/en active Active
- 2013-11-01 WO PCT/JP2013/079705 patent/WO2014174707A1/en active Application Filing
- 2013-11-04 TW TW102139906A patent/TW201440658A/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10234301A (en) * | 1997-02-27 | 1998-09-08 | Meiji Seika Kaisha Ltd | Green tea beverage |
JPH11276074A (en) * | 1998-03-31 | 1999-10-12 | Freunt Ind Co Ltd | Tea beverage using fine powder tea and method for producing the same |
JP2004129670A (en) * | 2003-10-31 | 2004-04-30 | Kao Corp | Bottled tea-based drink |
JP2009065871A (en) * | 2007-09-11 | 2009-04-02 | Suntory Ltd | Tea extract and method for producing the same |
JP2010045994A (en) * | 2008-08-20 | 2010-03-04 | Kao Corp | Packed tea drink |
JP2011155876A (en) * | 2010-01-29 | 2011-08-18 | Ito En Ltd | Packaged green-tea beverage |
WO2012029131A1 (en) * | 2010-08-31 | 2012-03-08 | 株式会社伊藤園 | Container-packed green tea drink and process for producing the same |
WO2012029132A1 (en) * | 2010-08-31 | 2012-03-08 | 株式会社伊藤園 | Packaged green tea drink and method for producing same |
JP2012130314A (en) * | 2010-12-22 | 2012-07-12 | Kirin Beverage Corp | Packaged tea beverage enriched in flavor and taste and production method thereof |
JP2012183063A (en) * | 2011-02-14 | 2012-09-27 | Suntory Holdings Ltd | Quercetin glycoside-containing bottled beverage |
Also Published As
Publication number | Publication date |
---|---|
JP2014212760A (en) | 2014-11-17 |
TW201440658A (en) | 2014-11-01 |
JP5534272B1 (en) | 2014-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI394535B (en) | Container packaging of green tea drinks | |
CN102036569B (en) | Taste-improving agent and tea drink containing same | |
TWI444143B (en) | Green tea beverage and its manufacturing method | |
JP5534272B1 (en) | Containerized green tea beverage and method for producing the same | |
JP4843118B2 (en) | Containerized green tea beverage | |
JP5118164B2 (en) | Containerized green tea beverage | |
JP4880798B2 (en) | Container-packed Hojicha drink | |
EP2826381B1 (en) | Beverage containing tea-leaf pectin | |
JP5118163B2 (en) | Containerized green tea beverage | |
JP5439566B1 (en) | Containerized green tea beverage and method for producing the same | |
JP5452748B1 (en) | Containerized green tea beverage and method for producing the same | |
JP5086380B2 (en) | Container-packed Hojicha drink | |
JP5469223B1 (en) | Containerized green tea beverage and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13883330 Country of ref document: EP Kind code of ref document: A1 |
|
WPC | Withdrawal of priority claims after completion of the technical preparations for international publication |
Ref document number: 2013-094351 Country of ref document: JP Date of ref document: 20150512 Free format text: WITHDRAWN AFTER TECHNICAL PREPARATION FINISHED |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13883330 Country of ref document: EP Kind code of ref document: A1 |