WO2014158043A1 - Method for recovery of rhenium from nickel-containing superalloys - Google Patents
Method for recovery of rhenium from nickel-containing superalloys Download PDFInfo
- Publication number
- WO2014158043A1 WO2014158043A1 PCT/RU2013/000245 RU2013000245W WO2014158043A1 WO 2014158043 A1 WO2014158043 A1 WO 2014158043A1 RU 2013000245 W RU2013000245 W RU 2013000245W WO 2014158043 A1 WO2014158043 A1 WO 2014158043A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solution
- rhenium
- waste
- nickel
- concentration
- Prior art date
Links
- 229910052702 rhenium Inorganic materials 0.000 title claims abstract description 52
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 title claims abstract description 52
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 32
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 22
- 229910000601 superalloy Inorganic materials 0.000 title claims abstract description 14
- 238000011084 recovery Methods 0.000 title abstract description 4
- 239000002699 waste material Substances 0.000 claims abstract description 29
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 22
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 22
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000007800 oxidant agent Substances 0.000 claims abstract description 15
- 238000000605 extraction Methods 0.000 claims abstract description 13
- 239000007787 solid Substances 0.000 claims abstract description 13
- 238000001179 sorption measurement Methods 0.000 claims abstract description 11
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 9
- 239000010941 cobalt Substances 0.000 claims abstract description 9
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 9
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000002253 acid Substances 0.000 claims abstract description 8
- 239000000460 chlorine Substances 0.000 claims abstract description 8
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 239000000126 substance Substances 0.000 claims abstract 2
- 239000000243 solution Substances 0.000 claims description 36
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 4
- 239000012670 alkaline solution Substances 0.000 claims description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 4
- 239000012141 concentrate Substances 0.000 claims description 4
- 238000000909 electrodialysis Methods 0.000 claims description 4
- 238000001556 precipitation Methods 0.000 claims description 4
- 238000003795 desorption Methods 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims description 3
- 150000007513 acids Chemical class 0.000 claims description 2
- 239000003957 anion exchange resin Substances 0.000 claims description 2
- 239000007791 liquid phase Substances 0.000 claims description 2
- -1 oxygen salts chlorine acids Chemical class 0.000 claims description 2
- 238000011069 regeneration method Methods 0.000 abstract description 6
- 230000008929 regeneration Effects 0.000 abstract description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical class [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 3
- 239000001301 oxygen Substances 0.000 abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 abstract description 3
- 150000003839 salts Chemical class 0.000 abstract description 2
- 239000001117 sulphuric acid Substances 0.000 abstract 2
- 235000011149 sulphuric acid Nutrition 0.000 abstract 2
- 150000001804 chlorine Chemical class 0.000 abstract 1
- 238000004090 dissolution Methods 0.000 description 10
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical group [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- 239000002918 waste heat Substances 0.000 description 3
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 2
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical class O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 239000005708 Sodium hypochlorite Substances 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000033116 oxidation-reduction process Effects 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical group C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000010814 metallic waste Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000010413 mother solution Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
- C22B7/007—Wet processes by acid leaching
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B61/00—Obtaining metals not elsewhere provided for in this subclass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the invention relates to the regeneration of secondary metal raw materials, in particular, to the processing of waste heat-resistant nickel superalloys containing rhenium.
- nickel alloys contain nickel, cobalt, tungsten, rhenium, tantalum and niobium. Chromium, molybdenum, and aluminum additives are also possible.
- Pyrometallurgical, electrochemical and hydrometallurgical methods can be used to extract valuable components from waste from heat-resistant alloys.
- Hydrometallurgical processing of waste heat-resistant alloys, based on reagent dissolution, is less energy-consuming and simpler in hardware design.
- the closest to the proposed method for the extraction of rhenium from waste heat-resistant alloys is described in patent RU 2412267, 2011.
- the method includes treating the waste with sulfuric acid at elevated temperature and supplying hydrogen peroxide to a solution of leaching of rhenium, nickel and cobalt and concentration in the insoluble residue of tungsten, niobium and tantalum, separation of the solution from the insoluble residue, extraction of rhenium from the leach solution with secondary aliphatic alcohol, washing the extract and reextracting rhenium with an alkaline solution a thief.
- Peroxide feed hydrogen is carried out after the main part of nickel and cobalt is transferred into the solution and it is maintained while maintaining the oxidation-reduction potential in the range of 0.50- 0.75 V relative to the saturated silver chloride electrode, and rhenium is extracted, the extract is washed, and rhenium is re-extracted 2-5 steps.
- metals including those contained in the waste residue after dissolution of the bulk (15-35% nickel and 10-30% cobalt)
- hydrogen is precipitated with sulfuric acid.
- the oxygen escaping during decomposition of hydrogen peroxide added to the waste residue can lead to the formation of explosive explosive gas, which should be attributed to the disadvantages of the process.
- the present invention is aimed at achieving a technical result, which consists in reducing the consumption of an oxidizing agent, in increasing the safety of the method due to the diversity in time and space of operations accompanied by the evolution of hydrogen and oxygen.
- the proposed method also allows complex use of other valuable components of superalloys.
- Waste nickel-containing superalloys can be generated by grinding and polishing parts with abrasive tools.
- the waste is a powder consisting of metal particles and abrasive materials. Before starting the proposed regeneration method, it is desirable to separate such waste from non-metallic components.
- waste is relatively large pieces, scraps, shavings, etc., it is advisable to grind it to a powdery state before processing.
- a method for recovering rhenium from waste nickel-containing superalloys involves treating the waste with hydrochloric acid, possibly mixed with sulfuric acid, transferring nickel and cobalt to solution (I), if the latter is present in the superalloy, and obtaining a solid residue (I). Then, the resulting solution (I) is separated off, and the solid residue is treated with (I) an oxidizing agent with rhenium being transferred into solution (II).
- the oxidizing agent may be hydrogen peroxide, chlorine, salts of perchloric acid, and sulfuric acids (preferably the first two oxidizing agents).
- the solution (II) is separated from the insoluble residue (I).
- Rhenium is isolated from solution (I) by sorption on a weakly basic anion exchange resin and subsequent desorption by an alkaline solution, preferably an ammonia solution.
- rhenium can be isolated by electrodialysis and / or precipitation, while the eluate can be pre-evaporated.
- the mother liquors after precipitation and / or electrodialysis can also be sent for sorption purification.
- Nickel concentrate is precipitated from solution (I), in which a small amount of rhenium may be present, and the remaining liquid phase is sent to sorption extraction of rhenium.
- the insoluble residue (II) can be treated with an alkaline reagent and tungsten concentrate and solid tantalum can be obtained in solution (III). niobium concentrate.
- oxygen-free hydrochloric acid which does not have oxidizing properties, reduces the likelihood of rhenium entering the solution during dissolution of the initial sections in comparison with the prototype where sulfuric acid is used.
- the supply of hydrogen peroxide while maintaining the redox potential in the range of 0.50-0.75 V with respect to the saturated silver chloride electrode makes it possible to control the redox process in the healing solution, to avoid the supply of excess oxidizing agent, and thereby optimize its consumption. Maintaining the redox potential below 0.5 V leads to a deficiency of the oxidizing agent in the reaction mixture and a decrease in the extraction of rhenium into the solution, and maintaining the potential above 0.75 V leads to an excess of oxidizing agent in the reaction mixture and its increased consumption with almost unchanged extracting rhenium.
- Sorption purification of the mother solutions of precipitation and / or electrodialysis which also leads to an increase in the capacity of the sorbent and the displacement of impurities at the sorption stage, helps to improve the quality of the obtained marketable rhenium product.
- Example 1 To 100 g of powdered nickel-based superalloys containing 1.1% rhenium and 58% nickel, 120 ml of hydrochloric acid with a concentration of 12 mol / L was added and dissolved at 90 ° C for 3 hours. After the completion of the process, the solution decanted, the phases were separated. 20 ml of hydrogen peroxide with a concentration of 38% was added to the residue and the dissolution process was carried out for 2 hours while maintaining oxidation-reduction potential in the range of 0.50 - 0.75 V relative to the saturated silver chloride electrode. Upon completion of dissolution, the phases were separated, and the resulting solution was sent to sorption by weakly basic ion exchanger under dynamic conditions.
- Rhenium was desorbed by an ammonia solution with a concentration of 8%, while the concentration of rhenium in the eluate was 12 g / L. After evaporation of the solution and its crystallization, 1.0 g of ammonium perrenate in terms of rhenium was obtained. The rhenium recovery rate was 91%.
- the treatment of the solid residue was carried out using chlorine as an oxidizing agent.
- a solution of gaseous chlorine at a volume ratio of residue (I) to the solution (1: 30) and maintaining the concentration of dissolved chlorine at 6 g / l at a temperature of 22 ° C.
- the contact time was 3 hours.
- Further regeneration stages were carried out as in Example 1, using an ammonia solution (6%) as eluent.
- the concentration of rhenium in the eluate was 12 g / l. 1.05 g of ammonium perrenate was recalculated to rhenium.
- the degree of extraction was 95.5%.
- Example 2 After the starting material was dissolved and the solution was separated, as in Example 1, the solid residue was treated with a sodium hypochlorite solution under the following conditions: sodium hypochlorite concentration was 5%, contact time 2.5 h, temperature 20 ° C. Further regeneration steps were carried out as in Example 1. The concentration of rhenium in the eluate was 12 g / L. 0.99 g of ammonium perrenate, calculated as rhenium, was isolated. The degree of recovery was 89.9%.
- Example 1 To 180 g of powdered nickel-based superalloys containing 0.8% rhenium and 55% nickel, a mixture of hydrochloric and sulfuric acids was added at a concentration of hydrochloric acid of 4 mol / L, and a concentration of sulfuric acid of 3 mol / L. The volumetric ratio of hydrochloric and sulfuric acids was 1: 1, and the ratio by weight of the mixture of acids to the waste of the supersolid was 18: 1. Dissolution was carried out at a temperature of 78-80 ° C. After the dissolution and phase separation process was completed, the solid residue was treated with a sodium chlorate solution under the following conditions: the concentration of sodium chlorate was 6%, the contact time was 3 hours, and the temperature was 20 ° C. Further stages of regeneration were carried out as in Example 1. The concentration of rhenium in the eluate was 10 g / L. 1.3 g of ammonium perrenate in terms of rhenium was isolated. The degree of extraction was 90.6%.
- the given examples confirm the achievement of intensification of the process of dissolution of metal waste from heat-resistant nickel alloy containing rhenium. At the same time, harmful gaseous gaps are minimized due to optimization of the technological mode, selected methods and reagents.
- the method according to the invention is relatively simple and can be implemented using standard equipment.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
The invention relates to regeneration of waste from refractory nickel superalloys containing rhenium. The method for recovery of components from the waste from nickel-containing superalloys comprises: treating the waste with hydrochloric acid thus transferring nickel and cobalt into solution (I) and producing a solid residue (I); separating the solution (I) produced; treating the solid residue (I) with an oxidizing agent thus transferring rhenium into solution (II); separating solution (II) from insoluble residue (II); and a sorption extraction of rhenium from solution (II). The oxidizing agent is selected from a group of substances, which includes hydrogen peroxide, chlorine and salts of oxygen-containing chlorine acids. Preferably the method is carried out at a hydrochloric acid concentration of 5-7 mole/l, at a ratio of the acid to the waste of (1-40):1 by volume, and a temperature of 70-90ºC. It is also possible to treat the waste with a mixture of hydrochloric acid and sulphuric acid at a hydrochloric acid concentration of 2-7 mole/l and a sulphuric acid concentration of 2-4 mole/l, and at a ratio of the acid mixture to the waste of (1-40):1, and a temperature of 70-90ºC.
Description
СПОСОБ РЕГЕНЕРАЦИИ РЕНИЯ ИЗ ОТХОДОВ НИКЕЛЬСОДЕРЖАЩИХ СУПЕР- СПЛАВОВ Изобретение относится к регенерации вторичного металлического сырья, в частно- сти к переработке отходов жаропрочных никелевых суперсплавов, содержащих рений. METHOD FOR REGENERATING RHENIUM FROM WASTE OF NICKEL-CONTAINING SUPER ALLOYS The invention relates to the regeneration of secondary metal raw materials, in particular, to the processing of waste heat-resistant nickel superalloys containing rhenium.
Одним из наиболее распространенных видов такого рода материалов являются от- ходы многокомпонентных авиационных жаропрочных никелевых сплавов. Как правило, в состав этих сплавов входят никель, кобальт, вольфрам, рений, тантал и ниобий. Возможны также добавки хрома, молибдена, алюминия. One of the most common types of such materials is waste from multicomponent aviation heat-resistant nickel alloys. As a rule, these alloys contain nickel, cobalt, tungsten, rhenium, tantalum and niobium. Chromium, molybdenum, and aluminum additives are also possible.
Для извлечения ценных компонентов из отходов жаропрочных сплавов могут быть использованы пирометаллургические, электрохимические и гидрометаллургические мето- ды. Гидрометаллургическая переработка отходов жаропрочных сплавов, основанная на реагентном растворении, является менее энергозатратной и более простой по аппаратур- ному оформлению. Pyrometallurgical, electrochemical and hydrometallurgical methods can be used to extract valuable components from waste from heat-resistant alloys. Hydrometallurgical processing of waste heat-resistant alloys, based on reagent dissolution, is less energy-consuming and simpler in hardware design.
Известен способ извлечения рения из отходов ренийсодержащих суперсплавов (па- тент US 8038764, 2011 г.), предусматривающий воздействие на хлопьевидные отходы сильноокислительной среды и перевод рения в летучий оксид. Недостатками этого спосо- ба являются относительно невысокая степень извлечения рения и потеря других ценных компонентов сплава. A known method for the extraction of rhenium from waste of rhenium-containing superalloys (patent US 8038764, 2011), providing for the impact on flocculent waste highly oxidizing environment and the conversion of rhenium into a volatile oxide. The disadvantages of this method are the relatively low degree of rhenium extraction and the loss of other valuable alloy components.
Известен также способ извлечения рения из отходов ренийсодержащих суперспла- вов (опубликованная международная заявка WO 2010/102391), в котором рений переводят в форму перрената при обработке смесью соляной и азотной кислот при температуре 30- 80°С. Далее перренат отделяют с раствором от нерастворимого осадка. Недостатком этого способа является использование азотной кислоты, которое приводит к выделению токсич- ных оксидов азота. Кроме того, присутствие нитрат-ионов затрудняет сорбционное извле- чение рения из получаемого раствора, а необходимость нейтрализации азотнокислого элюата аммиаком ведет к загрязнению рениевокислого аммония нитратом аммония. There is also known a method for extracting rhenium from wastes of rhenium-containing superalloys (published international application WO 2010/102391), in which rhenium is converted to perrenate form when treated with a mixture of hydrochloric and nitric acids at a temperature of 30-80 ° C. Next, perrenate is separated with the solution from the insoluble precipitate. The disadvantage of this method is the use of nitric acid, which leads to the release of toxic nitrogen oxides. In addition, the presence of nitrate ions complicates the sorption extraction of rhenium from the resulting solution, and the need to neutralize ammonium nitrate eluate leads to the pollution of rhenium acid ammonium with ammonium nitrate.
Наиболее близкий к предлагаемому способ извлечения рения из отходов жаро- прочных сплавов описан в патенте RU 2412267, 2011 г. Способ включает обработку отхо- дов серной кислотой при повышенной температуре и подаче пероксида водорода с пере- водом в раствор выщелачивания рения, никеля и кобальта и концентрированием в нерас- творимом остатке вольфрама, ниобия и тантала, отделение раствора от нерастворимого остатка, экстракцию рения из раствора выщелачивания вторичным алифатическим спир- том, промывку экстракта и реэкстракцию рения щелочным раствором. Подачу пероксида
водорода осуществляют после перевода в раствор основной части никеля и кобальта и ве- дут ее при поддержании окислительно-восстановительного потенциала в интервале 0,50- 0,75 В относительно насыщенного хлорсеребряного электрода, а экстракцию рения, про- мывку экстракта и реэкстракцию рения ведут на 2-5 ступенях. При взаимодействии ме- таллов, в том числе, содержащихся в остатке отходов после растворения основной массы (15-35% никеля и 10-30% кобальта), с серной кислотой происходит вьщеление водорода. Вьщеление же кислорода при разложении пероксида водорода, добавляемого к остатку отходов, может привести к образованию взрывоопасного гремучего газа, что следует от- нести к недостаткам процесса. The closest to the proposed method for the extraction of rhenium from waste heat-resistant alloys is described in patent RU 2412267, 2011. The method includes treating the waste with sulfuric acid at elevated temperature and supplying hydrogen peroxide to a solution of leaching of rhenium, nickel and cobalt and concentration in the insoluble residue of tungsten, niobium and tantalum, separation of the solution from the insoluble residue, extraction of rhenium from the leach solution with secondary aliphatic alcohol, washing the extract and reextracting rhenium with an alkaline solution a thief. Peroxide feed hydrogen is carried out after the main part of nickel and cobalt is transferred into the solution and it is maintained while maintaining the oxidation-reduction potential in the range of 0.50- 0.75 V relative to the saturated silver chloride electrode, and rhenium is extracted, the extract is washed, and rhenium is re-extracted 2-5 steps. In the interaction of metals, including those contained in the waste residue after dissolution of the bulk (15-35% nickel and 10-30% cobalt), hydrogen is precipitated with sulfuric acid. The oxygen escaping during decomposition of hydrogen peroxide added to the waste residue can lead to the formation of explosive explosive gas, which should be attributed to the disadvantages of the process.
Настоящее изобретение направлено на достижение технического результата, за- ключающегося в уменьшении расхода окислителя, в повышении безопасности способа за счет разнесения во времени и пространстве операций, сопровождающихся выделением водорода и кислорода. Предложенный способ также позволяет комплексно использовать другие ценные компоненты суперсплавов. The present invention is aimed at achieving a technical result, which consists in reducing the consumption of an oxidizing agent, in increasing the safety of the method due to the diversity in time and space of operations accompanied by the evolution of hydrogen and oxygen. The proposed method also allows complex use of other valuable components of superalloys.
Отходы никельсодержащих суперсплавов могут образовываться при шлифовке и полировке деталей абразивными инструментами. В этом случае отходы представляют со- бой порошок, состоящий из частиц металла и абразивных материалов. Перед началом предлагаемого способа регенерации такие отходы желательно отделить от неметалличе- ских компонентов. Waste nickel-containing superalloys can be generated by grinding and polishing parts with abrasive tools. In this case, the waste is a powder consisting of metal particles and abrasive materials. Before starting the proposed regeneration method, it is desirable to separate such waste from non-metallic components.
Если отходы представляют собой относительно крупные куски, обрезки, стружку и т. п., их перед началом переработки желательно измельчить до порошкообразного состоя- ния. If the waste is relatively large pieces, scraps, shavings, etc., it is advisable to grind it to a powdery state before processing.
Способ регенерации рения из отходов никельсодержащих суперсплавов включает обработку отходов соляной кислотой, возможно в смеси с серной кислотой, с переводом в раствор (I) никеля и кобальта, если последний присутствует в суперсплаве, и получением твердого остатка (I). Далее образовавшийся раствор (I) отделяют, а твердый остаток обра- батывают (I) окислителем с переводом в раствор (II) рения. Окислителем может служить пероксид водорода, хлор, соли хлорноватой кислоты, надсерные кислоты (предпочтитель- но первые два окислителя). Раствор (II) отделяют от нерастворимого остатка (И). Из рас- твора (И) рений выделяют сорбцией на слабоосновном анионите и последующей десорб- цией щелочным раствором, предпочтительно раствором аммиака. A method for recovering rhenium from waste nickel-containing superalloys involves treating the waste with hydrochloric acid, possibly mixed with sulfuric acid, transferring nickel and cobalt to solution (I), if the latter is present in the superalloy, and obtaining a solid residue (I). Then, the resulting solution (I) is separated off, and the solid residue is treated with (I) an oxidizing agent with rhenium being transferred into solution (II). The oxidizing agent may be hydrogen peroxide, chlorine, salts of perchloric acid, and sulfuric acids (preferably the first two oxidizing agents). The solution (II) is separated from the insoluble residue (I). Rhenium is isolated from solution (I) by sorption on a weakly basic anion exchange resin and subsequent desorption by an alkaline solution, preferably an ammonia solution.
Из элюата после стадии десорбции рений можно выделять электродиализом и/или осаждением, при этом элюат можно предварительно упарить. Маточные растворы после осаждения и/или электродиализа также могут быть направлены на сорбционную перечи- стку.
Из раствора (I), в котором может присутствовать небольшое количество рения, осаждают никелевый концентрат, а оставшуюся жидкую фазу направляют на сорбционное извлечение рения, Нерастворимый остаток (II) можно обработать щелочным реагентом и получить в растворе (III) вольфрамовый концентрат и твердый тантал-ниобиевый концентрат. From the eluate after the desorption step, rhenium can be isolated by electrodialysis and / or precipitation, while the eluate can be pre-evaporated. The mother liquors after precipitation and / or electrodialysis can also be sent for sorption purification. Nickel concentrate is precipitated from solution (I), in which a small amount of rhenium may be present, and the remaining liquid phase is sent to sorption extraction of rhenium. The insoluble residue (II) can be treated with an alkaline reagent and tungsten concentrate and solid tantalum can be obtained in solution (III). niobium concentrate.
Осуществление подачи одного из преимущественно используемых окислителей - пероксида водорода после перевода в раствор основной части никеля и кобальта и отделе- ния их от остатка обеспечивает снижение расхода пероксида водорода за счет уменьшения объема раствора, необходимого для растворения остатка (I). Кроме того, разнесение во времени и пространстве кислотного растворения никеля и кобальта, сопровождающегося выделением водорода, и извлечения рения под действием пероксида водорода способст- вует не только повышению безопасности способа, но и отсутствию перехода вольфрама на стадии растворения отходов в кислоте, что приводит к уменьшению потерь последнего. Filing one of the predominantly used oxidizing agents, hydrogen peroxide, after transferring the main part of nickel and cobalt to the solution and separating them from the residue, reduces the consumption of hydrogen peroxide by reducing the volume of solution required to dissolve the residue (I). In addition, the separation in time and space of the acid dissolution of nickel and cobalt, accompanied by the evolution of hydrogen, and the extraction of rhenium under the influence of hydrogen peroxide not only improves the safety of the process, but also the absence of tungsten transition at the stage of dissolution of waste in acid, which losses of the latter.
Использование бескислородной хлористоводородной кислоты, не обладающей окислительными свойствами, снижает вероятность перехода рения в раствор при раство- рении исходных шлифов по сравнению с прототипом, где используется серная кислота. The use of oxygen-free hydrochloric acid, which does not have oxidizing properties, reduces the likelihood of rhenium entering the solution during dissolution of the initial sections in comparison with the prototype where sulfuric acid is used.
Подача пероксида водорода при поддержании окислительно-восстановительного потенциала в интервале 0,50-0,75 В относительно насыщенного хлорсеребряного электро- да позволяет контролировать окислительно-восстановительный процесс в растворе вьпце- лачивания, избежать подачи избытка окислителя и тем самым оптимизировать его расход. Поддержание окислительно-восстановительного потенциала ниже 0,5 В ведет к недостат- ку окислителя в реакционной смеси и снижению извлечения рения в раствор, а поддержа- ние потенциала выше 0,75 В приводит к избытку окислителя в реакционной смеси и его повышенному расходу при практически неизменном извлечении рения. The supply of hydrogen peroxide while maintaining the redox potential in the range of 0.50-0.75 V with respect to the saturated silver chloride electrode makes it possible to control the redox process in the healing solution, to avoid the supply of excess oxidizing agent, and thereby optimize its consumption. Maintaining the redox potential below 0.5 V leads to a deficiency of the oxidizing agent in the reaction mixture and a decrease in the extraction of rhenium into the solution, and maintaining the potential above 0.75 V leads to an excess of oxidizing agent in the reaction mixture and its increased consumption with almost unchanged extracting rhenium.
Сорбционная перечистка маточных растворов осаждения и/или электродиализа, приводящая также к увеличению емкости сорбента и вытеснению примесей на стадии сорбции, способствует повышению качества получаемого товарного продукта рения. Sorption purification of the mother solutions of precipitation and / or electrodialysis, which also leads to an increase in the capacity of the sorbent and the displacement of impurities at the sorption stage, helps to improve the quality of the obtained marketable rhenium product.
Примеры осуществления способа: Examples of the method:
Пример 1. Example 1
Пример. К 100 г порошкообразных суперсплавов на основе никеля, содержащих 1,1% рения и 58% никеля, добавили 120 мл соляной кислоты с концентрацией 12 моль/л и провели растворение при температуре 90 °С в течение 3 ч. После окончания процесса рас- твор декантировали, фазы разделили. К остатку добавили 20 мл пероксида водорода с концентрацией 38 % и проводили процесс растворения в течение 2 ч при поддержании
окислительно-восстановительного потенциала в интервале 0,50 - 0,75 В относительно на- сыщенного хлорсеребряного электрода. По окончании растворения остатка фазы раздели- ли, и полученный раствор направили на сорбцию слабоосновным ионитом в динамиче- ских условиях. Десорбцию рения осуществляли раствором аммиака с концентрацией 8 %, при этом концентрация рения в элюате составила 12 г/л. После упаривания раствора и его кристаллизации было получено 1,0 г перрената аммония в пересчете на рений. Степень извлечения рения составила 91 %. Example. To 100 g of powdered nickel-based superalloys containing 1.1% rhenium and 58% nickel, 120 ml of hydrochloric acid with a concentration of 12 mol / L was added and dissolved at 90 ° C for 3 hours. After the completion of the process, the solution decanted, the phases were separated. 20 ml of hydrogen peroxide with a concentration of 38% was added to the residue and the dissolution process was carried out for 2 hours while maintaining oxidation-reduction potential in the range of 0.50 - 0.75 V relative to the saturated silver chloride electrode. Upon completion of dissolution, the phases were separated, and the resulting solution was sent to sorption by weakly basic ion exchanger under dynamic conditions. Rhenium was desorbed by an ammonia solution with a concentration of 8%, while the concentration of rhenium in the eluate was 12 g / L. After evaporation of the solution and its crystallization, 1.0 g of ammonium perrenate in terms of rhenium was obtained. The rhenium recovery rate was 91%.
Пример 2. Example 2
После растворения исходного материала и отделения раствора, как в предыдущем примере, обработку твердого остатка проводили с использованием хлора в качестве окис- лителя. К твердому остатку (I) добавили раствор газообразного хлора при объемном от- ношении остатка (I) к раствору (1 : 30) и поддержании концентрации растворенного хлора 6 г/л при температуре 22 °С. Время контакта - 3 ч. Дальнейшие стадии регенерации осу- ществляли как в примере 1, используя в качестве элюента раствор аммиака (6 %). Концен- трация рения в элюате составила 12 г/л. Было выделено 1,05 г перрената аммония в пере- счете на рений. Степень извлечения составила 95,5%. After dissolving the starting material and separating the solution, as in the previous example, the treatment of the solid residue was carried out using chlorine as an oxidizing agent. To the solid residue (I) was added a solution of gaseous chlorine at a volume ratio of residue (I) to the solution (1: 30) and maintaining the concentration of dissolved chlorine at 6 g / l at a temperature of 22 ° C. The contact time was 3 hours. Further regeneration stages were carried out as in Example 1, using an ammonia solution (6%) as eluent. The concentration of rhenium in the eluate was 12 g / l. 1.05 g of ammonium perrenate was recalculated to rhenium. The degree of extraction was 95.5%.
Пример 3. Example 3
После растворения исходного материала и отделения раствора, как в примере 1, обработку твердого остатка проводили раствором гипохлорита натрия при следующих ус- ловиях: концентрация гипохлорита натрия составляла 5%, время контакта - 2,5 ч, темпе- ратура - 20 °С. Дальнейшие стадии регенерации осуществляли как в примере 1. Концен- трация рения в элюате составила 12 г/л. Было выделено 0,99 г перрената аммония в пере- счете на рений. Степень извлечения составила 89,9 %. After the starting material was dissolved and the solution was separated, as in Example 1, the solid residue was treated with a sodium hypochlorite solution under the following conditions: sodium hypochlorite concentration was 5%, contact time 2.5 h, temperature 20 ° C. Further regeneration steps were carried out as in Example 1. The concentration of rhenium in the eluate was 12 g / L. 0.99 g of ammonium perrenate, calculated as rhenium, was isolated. The degree of recovery was 89.9%.
Пример 4. Example 4
Пример. К 180 г порошкообразных суперсплавов на основе никеля, содержащих 0,8 % рения и 55 % никеля, добавили смесь соляной и серной кислот при концентрации соля- ной кислоты 4 моль/л, концентрации серной кислоты 3 моль/л. Объемное соотношение соляной и серной кислот составило 1 :1, а отношение по массе смеси кислот к отходам су- персплавов 18:1. Растворение проводили при температуре 78-80°С. После окончания про- цесса растворения и разделения фаз твердый остаток обработали раствором хлората на- трия при следующих условиях: концентрация хлората натрия составляла 6%, время кон- такта - 3 ч, температура - 20 °С. Дальнейшие стадии регенерации осуществляли как в
примере 1. Концентрация рения в элюате составила 10 г/л. Было выделено 1,3 г перрената аммония в пересчете на рений. Степень извлечения составила 90,6 %. Example. To 180 g of powdered nickel-based superalloys containing 0.8% rhenium and 55% nickel, a mixture of hydrochloric and sulfuric acids was added at a concentration of hydrochloric acid of 4 mol / L, and a concentration of sulfuric acid of 3 mol / L. The volumetric ratio of hydrochloric and sulfuric acids was 1: 1, and the ratio by weight of the mixture of acids to the waste of the supersolid was 18: 1. Dissolution was carried out at a temperature of 78-80 ° C. After the dissolution and phase separation process was completed, the solid residue was treated with a sodium chlorate solution under the following conditions: the concentration of sodium chlorate was 6%, the contact time was 3 hours, and the temperature was 20 ° C. Further stages of regeneration were carried out as in Example 1. The concentration of rhenium in the eluate was 10 g / L. 1.3 g of ammonium perrenate in terms of rhenium was isolated. The degree of extraction was 90.6%.
Приведенные примеры подтверждают достижение интенсификации процесса рас- творения металлических отходов жаропрочного никелевого сплава, содержащего рений. При этом минимизируются вредные газовьщеления за счет оптимизации технологическо- го режима, выбранных методов и реагентов. The given examples confirm the achievement of intensification of the process of dissolution of metal waste from heat-resistant nickel alloy containing rhenium. At the same time, harmful gaseous gaps are minimized due to optimization of the technological mode, selected methods and reagents.
Способ согласно изобретению относительно прост и может быть реализован с при- влечением стандартного оборудования.
The method according to the invention is relatively simple and can be implemented using standard equipment.
Claims
1. Способ регенерации компонентов из отходов никельсодержащих суперсплавов, включающий обработку отходов соляной кислотой с переводом в раствор (I) никеля и ко- бальта и получением твердого остатка (I), отделение образующегося раствора (I), обра- ботку твердого остатка (I) окислителем с переводом в раствор (II) рения, отделение рас- твора (II) от нерастворимого остатка (II) и сорбционное извлечение рения из раствора (II), причем окислитель выбирают из группы веществ, в которую входят пероксид водорода, хлор, соли кислородных кислот хлора. 1. A method of recovering components from waste nickel-containing superalloys, comprising treating the waste with hydrochloric acid to transfer nickel and cobalt into solution (I) and obtain a solid residue (I), separating the resulting solution (I), treating the solid residue (I) an oxidizing agent with rhenium being transferred into solution (II), separation of the solution (II) from the insoluble residue (II) and sorption extraction of rhenium from solution (II), the oxidizing agent being selected from the group of substances that include hydrogen peroxide, chlorine, oxygen salts chlorine acids.
2. Способ по п.1, отличающийся тем, что обработку отходов ведут при концентра- ции соляной кислоты 5-7 моль/л, при объемном соотношении кислоты к отходам (1- 40): 1, и температуре 70-90°С. 2. The method according to claim 1, characterized in that the waste is treated at a hydrochloric acid concentration of 5-7 mol / l, with a volume ratio of acid to waste (1-40): 1, and a temperature of 70-90 ° C.
3. Способ по п.1, отличающийся тем, что обработку отходов ведут смесью соляной и серной кислот при концентрации соляной кислоты 2-7 моль/л, концентрации серной ки- слоты 2-4 моль/л и соотношении смеси кислот к отходам (1-40):1 и температуре 70-90°С. 3. The method according to claim 1, characterized in that the waste is treated with a mixture of hydrochloric and sulfuric acids at a concentration of hydrochloric acid of 2-7 mol / l, a concentration of sulfuric acid of 2-4 mol / l and the ratio of the mixture of acids to waste (1 -40): 1 and a temperature of 70-90 ° C.
4. Способ по п.п. 2 или 3, отличающийся тем, что в качестве окислителя использу- ют пероксид водорода при его отношении к твердому остатку (I) (1-10): 1 и поддержании окислительно-восстановительного потенциала в интервале 0,50-0,75 В относительно на- сыщенного хлорсеребряного электрода. 4. The method according to p. 2 or 3, characterized in that hydrogen peroxide is used as an oxidizing agent with its ratio to the solid residue (I) (1-10): 1 and maintaining the redox potential in the range of 0.50-0.75 V relative to - saturated silver chloride electrode.
5. Способ по п.п. 2 или 3, отличающийся тем, что к твердому остатку (I) добавляют раствор, содержащий в качестве окислителя газообразный хлор при объемном отношении остатка (I) к раствору (1 : 10 50) и поддержании концентрации растворенного хлора 5-7 г/л. 5. The method according to p. 2 or 3, characterized in that to the solid residue (I) is added a solution containing gaseous chlorine as an oxidizing agent with a volume ratio of residue (I) to the solution (1: 10 50) and maintaining the concentration of dissolved chlorine 5-7 g / l.
6. Способ по п. 1, отличающийся тем, что сорбцию рения осуществляют слабоос- новным анионитом, а десорбцию рения с него щелочным раствором. 6. The method according to claim 1, characterized in that the sorption of rhenium is carried out by a weakly basic anion exchange resin, and the desorption of rhenium from it with an alkaline solution.
7. Способ по п. 6, отличающийся тем, что в качестве щелочного раствора исполь- зуют раствор аммиака. 7. The method according to claim 6, characterized in that an ammonia solution is used as the alkaline solution.
8. Способ по п. 6, отличающийся тем, что из элюата выделяют рений электродиали- зом и/или осаждением. 8. The method according to claim 6, characterized in that rhenium is isolated from the eluate by electrodialysis and / or precipitation.
9. Способ по п. 8, отличающийся тем, что элюат предварительно упаривают. 9. The method according to p. 8, characterized in that the eluate is pre-evaporated.
10. Способ по п. 1, отличающийся тем, что из раствора (I) осаждают никелевый концентрат, а оставшуюся жидкую фазу направляют на сорбционное извлечение рения вместе с раствором (II).
10. The method according to p. 1, characterized in that nickel concentrate is precipitated from solution (I), and the remaining liquid phase is sent to sorption extraction of rhenium together with solution (II).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/RU2013/000245 WO2014158043A1 (en) | 2013-03-26 | 2013-03-26 | Method for recovery of rhenium from nickel-containing superalloys |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/RU2013/000245 WO2014158043A1 (en) | 2013-03-26 | 2013-03-26 | Method for recovery of rhenium from nickel-containing superalloys |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014158043A1 true WO2014158043A1 (en) | 2014-10-02 |
Family
ID=51624873
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2013/000245 WO2014158043A1 (en) | 2013-03-26 | 2013-03-26 | Method for recovery of rhenium from nickel-containing superalloys |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014158043A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017075015A1 (en) | 2015-10-26 | 2017-05-04 | Techemet, Llc | A method for platinum recovery from materials containing rhenium and platinum metals |
CN106676267A (en) * | 2017-03-28 | 2017-05-17 | 青岛阿库卡稀有金属有限公司 | Method for removing anions from rhenium-contained feed liquid |
CN111304446A (en) * | 2020-03-31 | 2020-06-19 | 中国科学院金属研究所 | A method for comprehensive utilization of superalloy waste by staged leaching |
CN111621654A (en) * | 2020-05-09 | 2020-09-04 | 中国石油天然气集团有限公司 | Rhenium-removing trapping agent and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU839095A1 (en) * | 1978-04-17 | 1989-06-23 | Институт геохимии и аналитической химии им.В.И.Вернадского | Method of extracting rhenium |
RU2003127374A (en) * | 2003-09-09 | 2005-03-27 | Открытое акционерное общество "Горно-металлургическа компани "Норильский никель" (RU) | METHOD FOR COMPREHENSIVE PROCESSING OF DEACTIVATED PLATINUM-RHENIUM CATALYSTS |
RU2313589C2 (en) * | 2001-11-14 | 2007-12-27 | Х. К. Штарк Гмбх | Valuable metal extraction process from super-alloys |
RU2421532C1 (en) * | 2010-04-05 | 2011-06-20 | Открытое акционерное общество "Красноярский завод цветных металлов имени В.Н. Гулидова" (ОАО "Красцветмет") | Procedure for extraction of rhenium from dead catalyst on supporters out of aluminium oxide containing platinum metals and rhenium |
RU2010116311A (en) * | 2010-04-23 | 2011-10-27 | Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева Сибирского отделения РАН (RU) | METHOD FOR RHINES REMOVAL AND CLEANING FROM SOLUTIONS FROM PROCESSING OF HEAT-RESISTANT ALLOYS |
US20120058029A1 (en) * | 2009-03-13 | 2012-03-08 | Neo Performance Materials Limited | Rhenium recovery |
-
2013
- 2013-03-26 WO PCT/RU2013/000245 patent/WO2014158043A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU839095A1 (en) * | 1978-04-17 | 1989-06-23 | Институт геохимии и аналитической химии им.В.И.Вернадского | Method of extracting rhenium |
RU2313589C2 (en) * | 2001-11-14 | 2007-12-27 | Х. К. Штарк Гмбх | Valuable metal extraction process from super-alloys |
RU2003127374A (en) * | 2003-09-09 | 2005-03-27 | Открытое акционерное общество "Горно-металлургическа компани "Норильский никель" (RU) | METHOD FOR COMPREHENSIVE PROCESSING OF DEACTIVATED PLATINUM-RHENIUM CATALYSTS |
US20120058029A1 (en) * | 2009-03-13 | 2012-03-08 | Neo Performance Materials Limited | Rhenium recovery |
RU2421532C1 (en) * | 2010-04-05 | 2011-06-20 | Открытое акционерное общество "Красноярский завод цветных металлов имени В.Н. Гулидова" (ОАО "Красцветмет") | Procedure for extraction of rhenium from dead catalyst on supporters out of aluminium oxide containing platinum metals and rhenium |
RU2010116311A (en) * | 2010-04-23 | 2011-10-27 | Учреждение Российской академии наук Институт неорганической химии им. А.В. Николаева Сибирского отделения РАН (RU) | METHOD FOR RHINES REMOVAL AND CLEANING FROM SOLUTIONS FROM PROCESSING OF HEAT-RESISTANT ALLOYS |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017075015A1 (en) | 2015-10-26 | 2017-05-04 | Techemet, Llc | A method for platinum recovery from materials containing rhenium and platinum metals |
US9702021B2 (en) | 2015-10-26 | 2017-07-11 | Techemet, Llc | Method for platinum recovery from materials containing rhenium and platinum metals |
US9708690B2 (en) | 2015-10-26 | 2017-07-18 | Techemet, Llc | Method for platinum recovery from materials containing rhenium and platinum metals |
DE112016004897T5 (en) | 2015-10-26 | 2018-07-05 | Techemet, Llc | Process for platinum recovery from materials containing rhenium and platinum metals |
CN106676267A (en) * | 2017-03-28 | 2017-05-17 | 青岛阿库卡稀有金属有限公司 | Method for removing anions from rhenium-contained feed liquid |
CN111304446A (en) * | 2020-03-31 | 2020-06-19 | 中国科学院金属研究所 | A method for comprehensive utilization of superalloy waste by staged leaching |
CN111621654A (en) * | 2020-05-09 | 2020-09-04 | 中国石油天然气集团有限公司 | Rhenium-removing trapping agent and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Anderson et al. | Extractive metallurgy of rhenium: a review | |
EP3093354B1 (en) | Scandium recovery method | |
EP3904546B1 (en) | Process for recovering components from alkaline batteries | |
JP5967284B2 (en) | Recovery method of high purity scandium | |
JP4715627B2 (en) | Method for recovering platinum group element from ion exchange resin adsorbed platinum group element | |
JPH09217132A (en) | Method for recovering useful elements from rare earth-iron alloys | |
Nicol et al. | Platinum Group Metals Recovery Using Secondary Raw Materials (PLATIRUS): project overview with a focus on processing spent autocatalyst: novel PGM recycling technologies ready for demonstration at next scale | |
AU2015310078A1 (en) | Method for separating scandium | |
JP2018111858A (en) | Method for producing scandium oxide | |
JP7016463B2 (en) | How to collect tellurium | |
AU2019331801B2 (en) | Method for producing nickel sulfate compound | |
AU2017369090B2 (en) | Ion exchange processing method, and scandium recovery method | |
WO2014158043A1 (en) | Method for recovery of rhenium from nickel-containing superalloys | |
CN102296180B (en) | Method for separating tungsten, molybdenum and bismuth in bismuth sulfide ore concentrate | |
JP6319362B2 (en) | Scandium recovery method | |
US8956582B2 (en) | Rhenium recovery | |
CN102781841B (en) | The preparation method of ammonium tungstate aqueous solution | |
CN105980303A (en) | Purification of tungsten carbide compositions | |
Kasikov et al. | Processing of deactivated platinum-rhenium catalysts | |
JP2011195935A (en) | Method for separating and recovering platinum group element | |
JP2012233225A (en) | Method for recovering platinum and palladium | |
WO2021059940A1 (en) | Method for recovering scandium, and ion exchange method | |
JP2021188080A (en) | Manufacturing method of cadmium hydroxide | |
RU2412267C1 (en) | Procedure for extraction of rhenium from metal waste of nickel containing heat resistant alloys | |
JP6206358B2 (en) | Scandium recovery method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13880521 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13880521 Country of ref document: EP Kind code of ref document: A1 |