WO2014157491A1 - プラズマ溶射装置 - Google Patents
プラズマ溶射装置 Download PDFInfo
- Publication number
- WO2014157491A1 WO2014157491A1 PCT/JP2014/058794 JP2014058794W WO2014157491A1 WO 2014157491 A1 WO2014157491 A1 WO 2014157491A1 JP 2014058794 W JP2014058794 W JP 2014058794W WO 2014157491 A1 WO2014157491 A1 WO 2014157491A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sub
- main
- plasma
- torch
- electrode
- Prior art date
Links
- 238000007750 plasma spraying Methods 0.000 title claims abstract description 69
- 239000000463 material Substances 0.000 claims abstract description 111
- 239000007921 spray Substances 0.000 claims abstract description 66
- 239000012212 insulator Substances 0.000 claims description 38
- 239000002184 metal Substances 0.000 claims description 12
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 238000005507 spraying Methods 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 2
- 238000010276 construction Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 115
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 24
- 239000011261 inert gas Substances 0.000 description 22
- 229910052786 argon Inorganic materials 0.000 description 12
- 239000002131 composite material Substances 0.000 description 9
- 239000001307 helium Substances 0.000 description 7
- 229910052734 helium Inorganic materials 0.000 description 7
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 7
- 239000007769 metal material Substances 0.000 description 6
- 239000000155 melt Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/16—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
- B05B7/22—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
- B05B7/222—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/42—Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder or liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/34—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/16—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
- B05B7/22—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
- B05B7/222—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
- B05B7/224—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material having originally the shape of a wire, rod or the like
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3425—Melting or consuming electrodes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/44—Plasma torches using an arc using more than one torch
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3436—Hollow cathodes with internal coolant flow
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3478—Geometrical details
Definitions
- the present invention can supply a thermal spray material to the axial center of the plasma formed on the central axis of the main torch electrode by the electrodes of the main torch and the sub torch, and the inner wall of the opening in the mantle of the main torch.
- the present invention relates to a plasma spraying apparatus capable of suppressing adhesion of a thermal spray material to the surface.
- the thermal spray material may adhere to the inner wall of the opening in the outer shell of the main torch and cause the opening to be blocked.
- the present invention has been made in view of the above-mentioned problems, and the thermal spray material can be supplied to the axial center of the plasma formed on the central axis of the main torch electrode by the main torch and sub torch electrodes, And it aims at providing the plasma spraying apparatus which can suppress that a spraying material adheres to the inner wall of the opening part in the mantle of a main torch.
- the present inventors have provided a gas introduction part at the inlet of the opening in the outer shell of the main torch or a tapered part between the opening and the insulator, and introduced the gas. As a result, it was found that the sprayed material could be prevented from adhering to the inner wall of the opening in the outer shell of the main torch, and the present invention was completed.
- the present invention (1) Insulating the first electrode having the spray material discharge hole at the center of the tip of the central axis, the first mantle surrounding the first electrode, the first electrode and the first mantle, A main torch comprising: a first insulator having a first plasma gas inlet; A second electrode, a second mantle surrounding the second electrode, a second insulator that insulates the second electrode and the second mantle and has a second plasma gas inlet.
- the first mantle includes an opening, and a tapered portion provided between the opening and the first insulator, The plasma spraying apparatus, wherein the first mantle includes a gas introduction part for introducing a gas to an inlet side of the opening and / or to the tapered part; (2) The plasma spraying apparatus according to (1), wherein the first electrode is an anode and the second electrode is a cathode; (3) The opening includes a third insulator in the center, The plasma spraying apparatus according to (2), wherein the sub-torch is provided on the outlet side of the third insulator of the opening; (4) The plasma spraying apparatus according to (1)
- a plasma spraying apparatus according to claim 1; (10) The gas introduction hole of the first mantle spouts so that the inert gas has a velocity component in the circumferential direction with respect to the central axis so that the inert gas becomes a swirling flow inside the opening and the tapered portion.
- a plasma spraying apparatus according to any one of the above (3) to (8), wherein the plasma spraying apparatus is provided with a gas ejection hole to be formed; (11)
- the first mantle is composed of a porous metal, and gas introduced from the outside is ejected only through the hole in the porous metal in the inner direction of the first mantle.
- the plasma spraying apparatus according to any one of (3) to (8), characterized in that a part is configured; Etc.
- the spray material can be supplied to the axial center of the plasma formed on the central axis of the main torch electrode by the electrodes of the main torch and the sub-torch, and the opening in the mantle of the main torch Therefore, it is possible to provide a plasma spraying apparatus that can suppress the spraying material from adhering to the inner wall.
- FIG. 3 is a diagram illustrating a cross-section taken along line III-III ′ of FIG. 1 as an embodiment of the present invention. It is a figure which shows schematic structure of the twin cathode type plasma spraying apparatus 100b demonstrated as other one Embodiment of this invention. It is a figure which shows schematic structure of the integrated plasma spraying apparatus 100c of the main torch and subtorch demonstrated as other one Embodiment of this invention. It is a figure which shows schematic structure of the mantle demonstrated as preferable one Embodiment of this invention.
- a composite torch type plasma spraying apparatus including a main torch and a sub torch will be described as the plasma spraying apparatus of the present invention.
- the electrode in the main torch is a main anode (anode)
- the electrode in the sub torch is a sub electrode
- a composite torch type plasma spraying apparatus 100a that is a cathode will be described.
- a plasma spraying apparatus including a main torch and a sub torch is a composite in which an electrode in the main torch is a main cathode and an electrode in the sub torch is a sub anode.
- a torch type plasma spraying apparatus may be used.
- FIG. 1 shows a schematic configuration of a composite torch type plasma spraying apparatus 100a described as an embodiment of the present invention.
- the main torch 1 includes a main anode 3, a main mantle 4 surrounding the main anode 3, an insulator 27 that insulates the main anode 3 and the main mantle 4, and the like.
- the main anode 3 is formed of a material having excellent electrical conductivity, for example, a metal such as copper.
- the main anode 3 includes a material feeding pipe 19 having a spray material discharge hole at the center of the tip of the central axis. The main anode 3 is held concentrically by the main mantle 4 and the insulator 27.
- the main mantle 4 includes an opening (nozzle portion) 4a at the tip, and a tapered portion 4b provided between the opening 4a and the insulator 27.
- the taper portion 4b is provided with a gas introduction hole 4c that introduces an inert gas or the like to form a swirling gas flow.
- the insulator 27 has a main plasma gas inlet 5 for introducing the main plasma gas 6 and a swirl flow forming means 50 for the introduced main plasma gas 6.
- the main plasma gas 6 is introduced into the gas annular chamber 51, passes through the four swirl flow forming holes 52, and passes through the inner wall 53 (between the inner wall 53 and the main anode 3) of the insulator 27. It flows toward the opening 4a of the main mantle 4 so as to turn in the space.
- one or a plurality of the swirl flow forming holes 52 may be disposed, and when a plurality of the swirl flow forming holes 52 are disposed, the swirl flow forming holes 52 may be evenly disposed around the central axis. preferable.
- the positive terminal of the main power source 7 is connected to the main anode 3, and the negative terminal of the main power source 7 is connected to the main mantle 4 via the switch means 8.
- the sub torch 2 includes a sub cathode (sub torch starting electrode) 10, a sub jacket 11 surrounding the sub cathode 10, an insulator 28 that insulates the sub cathode 10 and the sub jacket 11, and the like.
- the axis, that is, the central axis of the sub-cathode 10 is arranged so as to intersect the central axis of the main torch 1, that is, the central axis of the main anode 3, in front of the main anode 3 and the sub-cathode 10.
- the sub-cathode 10 is made of a material having a high melting point, such as tungsten.
- the sub cathode 10 is held concentrically by the sub jacket 11 and the insulator 28.
- the auxiliary mantle 11 has a hole 11a at the tip.
- the insulator 28 has a sub-plasma gas inlet 12 for introducing the sub-plasma gas 13 and a swirl flow forming means 50 similar to the insulator 27 of the main torch 1.
- the positive terminal of the sub power supply 14 is connected to the sub jacket 11, the negative terminal of the sub power supply 14 is connected to the sub cathode 10 via the switch means 15, and the negative terminal of the main power supply 7 via the switch means 9. Connected to.
- a method for plasma spraying a thermal spray material for example, a conductive material such as metal, an insulating material such as ceramic, etc., the same applies hereinafter
- An inert gas that can be turned into plasma such as argon or helium, is introduced into the main torch 1 from the main plasma gas inlet 5 as a main plasma gas 6 to form a swirling flow of the main plasma gas 6.
- a high frequency voltage is applied between the main anode 3 and the main mantle 4 by the main power source 7 with the switch means 9 opened and the switch means 8 closed.
- a main plasma arc 16 is formed from the tip of the main anode 3 toward the opening 4 a of the main mantle 4, whereby the main plasma gas 6 is heated and becomes plasma from the opening 4 a of the main mantle 4. Released.
- an inert gas that can be turned into plasma such as argon or helium
- a secondary plasma gas 13 is introduced as a secondary plasma gas 13 from the secondary plasma gas inlet 12 into the secondary torch 2 to form a swirling flow of the secondary plasma gas 13.
- a high-frequency voltage is applied between the sub-cathode 10 and the sub-mantle 11 by the sub-power supply 14 with the switch means 15 closed.
- a sub-plasma arc 17 is formed from the tip 10a of the sub-cathode 10 toward the hole 11a of the sub-mantle 24, whereby the sub-plasma gas 13 is heated and becomes plasma and is emitted from the hole 11a of the sub-mantle 11. Is done.
- the switch means 9 Since the central axis of the main anode 3 and the central axis of the sub-cathode 10 intersect outside the main torch 1 and the sub-torch 2 in front of the main anode 3 and the sub-cathode 10, the switch means 9 is closed, and the switch means 8, When 15 is opened, a conductive path is formed by the hairpin-shaped plasma 18 from the tip 10 a of the sub-cathode 10 to the anode point of the main anode 3.
- the structure of the main torch 1 and the main plasma gas 6 to be supplied, and the structure of the sub torch 2 and the amount of the sub plasma gas 13 to be supplied to the sub torch 2 are appropriately set as shown in FIG.
- the plasma flame 23 can be formed substantially coaxially with the main torch 1.
- the thermal spray material 20 discharged from the material feed pipe 19 through the thermal spray material discharge hole is supplied to the axial center of the plasma 18 formed on the central axis of the main anode 3 by the main anode 3 and the sub-cathode 10. It is melted by the plasma flame 23.
- an inert gas or the like for example, argon gas or the like
- Inert gas, active gas such as air or oxygen gas
- the plasma can be stably and uniformly focused in the space inside the mantle, and at the same time, even at sites away from the inert gas ejection holes, such as the inner wall of the opening 4a and the tip of the tapered portion 4b in the main mantle 4.
- the thermal spray material 20 can be prevented from adhering.
- the thermal spray material 20 can be efficiently melted.
- the gas introduction hole 4 c is provided in the tapered portion 4 b of the main mantle 4, but it may be provided on the inlet side of the opening 4 a of the main mantle 4, or the taper of the main mantle 4. You may provide in the entrance side of the part 4b and the opening part 4a, respectively.
- the main mantle 4 is made of a porous metal so as to form a gas flow for preventing adhesion of the sprayed material over the entire surface of the mantle. The gas supplied from the gas inlet 4d provided in the main mantle 4 through the fine holes in the porous metal material M, as shown by the arrows in FIG. You may make it eject only to.
- the melt 21 in which the thermal spray material 20 is melted advances toward the base material 25 together with the plasma flame 23. Just before the base material 25, only the plasma 18 is separated by the plasma separation means 22 provided on the connecting pipe 26, and the melt 21 is sprayed onto the base material 25, so that the coating 24 of the dense thermal spray material 20 with few pores is formed. It can be formed efficiently.
- a plasma spraying apparatus of the present invention a plasma spraying apparatus including a main torch and two sub-torches will be described.
- the electrode in the main torch is a main anode (anode)
- the electrode in the sub torch is a sub cathode (cathode).
- the twin cathode type plasma spraying apparatus 100b will be described.
- a plasma spraying apparatus including a main torch and two sub torches is a twin anode in which the electrode in the main torch is the main cathode and the electrode in the sub torch is the sub anode.
- a type plasma spraying apparatus may be used.
- FIG. 2 shows a schematic configuration of a twin cathode type plasma spraying apparatus 100b described as another embodiment of the present invention.
- the configuration of the main torch 1 and the sub torch 2 included in the twin cathode type plasma spraying apparatus 100b is the same as that of the main torch 1 and the sub torch 2 in the composite torch type plasma spraying apparatus 100a, and thus the description thereof is omitted here.
- the positive terminal of the main power supply 7 is connected to the sub jacket 11 via the main anode 3 and the switch means 55, and the negative terminal of the main power supply 7 is connected to the main jacket 4 via the switch means 8.
- the positive terminal of the sub torch 2 from the sub power source 42 is connected to the sub jacket 11 via the switch means 45, and the negative terminal of the sub torch 2 from the sub power source 42 is connected to the sub cathode 10 via the switch means 46. And is connected to the negative terminal of the main power supply 7 through the switch means 9.
- another sub torch 39 is disposed at a position facing the sub torch 2 with respect to the central axis of the main torch.
- the sub torch 39 includes a sub cathode (sub torch starting electrode) 40, a sub jacket 41 surrounding the sub cathode 40, an insulator 47 that insulates the sub cathode 40 and the sub jacket 41, and the like.
- the axis that is, the central axis of the sub-cathode 40, is arranged so as to intersect the central axis of the main torch 1, that is, the central axis of the main anode 3, in front of the main anode 3 and the sub-cathode 40.
- the sub-cathode 40 is formed of a material having a high melting point, such as tungsten.
- the sub cathode 40 is held concentrically by the sub jacket 41 and the insulator 48.
- the auxiliary mantle 41 is provided with a hole 41a at the tip.
- the insulator 47 has a sub-plasma gas inlet 48 for introducing the sub-plasma gas 49 and a swirl flow forming means 50 similar to the insulator 27 of the main torch 1.
- the positive terminal of the sub torch 39 from the sub power source 42 is connected to the sub jacket 41 via the switch means 44, and the negative terminal of the sub torch 39 from the sub power source 14 is connected to the sub cathode 40 via the switch means 43. In addition, it is connected to the negative terminal of the main power supply 7 through the switch means 9 and 46.
- An inert gas that can be turned into plasma such as argon or helium, is introduced into the main torch 1 from the main plasma gas inlet 5 as a main plasma gas 6 to form a swirling flow of the main plasma gas 6.
- a high frequency voltage is applied between the main anode 3 and the main mantle 4 by the main power source 7 with the switch means 9 opened and the switch means 8 closed.
- a main plasma arc 16 is formed from the tip of the main anode 3 toward the opening 4 a of the main mantle 4, whereby the main plasma gas 6 is heated and becomes plasma from the opening 4 a of the main mantle 4. Released.
- an inert gas that can be turned into plasma such as argon or helium
- a secondary plasma gas 13 is introduced as a secondary plasma gas 13 from the secondary plasma gas inlet 12 into the secondary torch 2 to form a swirling flow of the secondary plasma gas 13.
- a high frequency voltage is applied between the sub cathode 10 and the sub jacket 11 by the sub power source 42 with the switch units 43 and 44 opened and the switch units 45 and 46 closed.
- a sub-plasma arc 17 is formed from the tip 10a of the sub-cathode 10 toward the hole 11a of the sub-mantle 24, whereby the sub-plasma gas 13 is heated and becomes plasma and is emitted from the hole 11a of the sub-mantle 11. Is done.
- the switch means 9 is closed after the switch means 9 is closed.
- a conductive path is formed by the hairpin-shaped plasma 18 from the tip 10a of the sub-cathode 10 to the anode point of the main anode 3.
- an inert gas that can be turned into plasma such as argon or helium
- a secondary plasma gas 49 into the secondary torch 39 is introduced as a secondary plasma gas 49 into the secondary torch 39 from the secondary plasma gas inlet 48 to form a swirling flow of the secondary plasma gas 49.
- a high frequency voltage is applied between the sub cathode 40 and the sub jacket 41 by the sub power source 42 with the switch means 43 and 44 closed.
- a sub-plasma arc 56 is formed from the tip 40a of the sub-cathode 40 toward the hole 41a of the sub-cannula 41, whereby the sub-plasma gas 49 is heated and becomes plasma and is emitted from the hole 41a of the sub-clutch 41. Is done.
- the main axis 3 and the sub-cathode 40 intersect the outside of the main torch 1 and the sub-torch 39 in front of the main anode 3 and the sub-cathode 40, the main axis 3 and the sub-cathode 40 are emitted from the holes 41 a of the sub-mantle 41
- the plasma intersects the hairpin-shaped plasma 18 extending from the tip 10 a of the sub-cathode 10 to the anode point of the main anode 3.
- the switch means 44 and 70 are opened after the switch means 45 and 55 are closed, the T-shaped plasma 18 extending from the tip portions 10a and 40a of the sub-cathodes 10 and 40 to the anode point of the main anode 3 is used.
- a conductive path is formed, and a plasma flame 23 is formed on the same axis as the main torch 1.
- the thermal spray material 20 discharged from the material feed pipe 19 through the thermal spray material discharge hole is supplied to the axial center of the plasma 18 formed on the central axis of the main anode 3 by the main anode 3 and the sub-cathode 10. It is melted by the plasma flame 23.
- gas for example, an inert gas such as argon gas
- the gas introduction hole 4c provided in the tapered portion 4b of the main mantle 4.
- the gas introduction hole 4 c is provided in the tapered portion 4 b of the main mantle 4, but it may be provided on the inlet side of the opening 4 a of the main mantle 4, or the taper of the main mantle 4. You may provide in the entrance side of the part 4b and the opening part 4a, respectively.
- the main mantle 4 is made of the porous metal material M so that a gas flow for preventing spraying material adhesion is formed on the entire inner surface of the mantle.
- the gas supplied from the gas inlet 4d provided in the gas may be ejected only in the inner direction of the main mantle 4 through the fine holes in the porous metal material M.
- the melt 21 in which the thermal spray material 20 is melted advances toward the base material 25 together with the plasma flame 23. Just before the base material 25, only the plasma 18 is separated by the plasma separation means 22 provided on the connecting pipe 26, and the melt 21 is sprayed onto the base material 25, so that the coating 24 of the dense thermal spray material 20 with few pores is formed. It can be formed efficiently.
- two sub-torches are provided in plasma spraying apparatus 100b, but three or more sub-torches may be provided.
- these auxiliary torches are arranged so that their central axes intersect the front of the main anode 3 and one point of the central axis outside the main torch 1. It is more preferable that they are arranged uniformly on the outer periphery of a circle that is perpendicular to the central axis with the intersecting point as the center.
- the sub-torches are arranged so that the central axis of each sub-torch intersects the central axis of the main torch 1 perpendicularly at the intersection point. It is preferable.
- one or a plurality of electrically insulated floating electrodes may be provided on the distal end side of the opening 4a of the main mantle 4 in the plasma plasma spraying apparatuses 100a and 100b described above.
- an inert gas for example, argon gas
- an active gas for example, air or oxygen
- the thermal spray material 20 can be prevented from adhering to the inner wall of the opening 4a on the upstream side of the floating electrode, the thermal pinch effect can be enhanced, and higher temperature plasma can be formed.
- one or a plurality of electrically insulated floating electrodes may be provided on the distal end side of the openings (portions 11a and 41a) of the sub jackets 11 and 41, or a floating electrode may be provided.
- a hole for introducing a gas may be further provided in the part, and an inert gas (for example, argon gas) or an active gas (for example, air or oxygen) may be introduced.
- an inert gas for example, argon gas
- an active gas for example, air or oxygen
- an integrated plasma spraying apparatus of a main torch and a sub-torch in which a sub-torch is provided on the exit side of the opening in the outer shell of the main torch will be described.
- the electrode in the main torch is a main anode (anode)
- the electrode in the sub torch is a sub cathode (cathode).
- An integrated plasma spray apparatus 100c will be described.
- An integrated plasma spray apparatus of a main torch and a sub torch is an integrated plasma spray apparatus in which an electrode in the main torch is a main cathode and an electrode in the sub torch is a sub anode. It may be.
- FIG. 3 shows a schematic configuration of an integrated plasma spray apparatus 100c described as another embodiment of the present invention.
- the main torch 1 includes a main anode 3, a main mantle 4 surrounding the main anode 3, an insulator 27 that insulates the main anode 3 and the main mantle 4, and the like.
- the main anode 3 is formed of a material having excellent electrical conductivity, for example, a metal such as copper.
- the main anode 3 includes a material feeding pipe 19 having a spray material discharge hole at the center of the tip of the central axis. The main anode 3 is held concentrically by the main mantle 4 and the insulator 27.
- the main mantle 4 is provided with an opening (nozzle part) 4 a at the tip, and a tapered part 4 b provided between the opening 4 a and the insulator 27.
- An electrically insulating insulator 60 is provided in the opening 4a, and an inert gas introduction hole 4c that introduces an inert gas to form a swirling gas flow is provided downstream of the opening 4a. It has been.
- a sub torch 2 is provided upstream of the opening 4a.
- the main mantle 4 is made of a porous metal so that a gas flow for preventing spraying material adhesion is formed on the entire inner surface of the mantle instead of providing the gas ejection holes 4c for forming the swirl flow.
- the gas that is made of the material M and that is supplied from the gas introduction port 4d provided in the main mantle 4 may be ejected only in the inner direction of the main mantle 4 through the fine holes in the porous metal material M.
- the sub torch 2 includes a sub cathode (sub torch starting electrode) 10, a sub jacket 11 surrounding the sub cathode 10, an insulator 28 that insulates the sub cathode 10 and the sub jacket 11, and the like.
- the axis, that is, the central axis of the sub-cathode 10 is arranged so as to intersect the central axis of the main torch 1, that is, the central axis of the main anode 3, in front of the main anode 3 and the sub-cathode 10.
- the sub-cathode 10 is formed of a material having a high melting point, such as tungsten.
- the sub cathode 10 is held concentrically by the sub jacket 11 and the insulator 28.
- the auxiliary mantle 11 has a hole at the tip.
- the insulator 28 has a sub-plasma gas inlet 12 for introducing the sub-plasma gas 13 and a swirl flow forming means 50 similar to the insulator 27 of the main torch 1.
- the insulator 27 has a main plasma gas inlet 5 for introducing the main plasma gas 6 and a swirl flow forming means 50 for the main plasma gas 6.
- the positive terminal of the main power supply 7 is connected to the main anode 3, and the negative terminal of the main power supply 7 is connected to the tapered portion 4 b of the main jacket 4 via the switch means 8.
- the positive terminal of the sub power supply 14 is connected to the sub jacket 11, the negative terminal of the sub power supply 14 is connected to the sub cathode 10 via the switch means 15, and the negative terminal of the main power supply 7 via the switch means 9. Connected to.
- An inert gas that can be turned into plasma such as argon or helium, is introduced into the main torch 1 from the main plasma gas inlet 5 as a main plasma gas 6 to form a swirling flow of the main plasma gas 6.
- a high frequency voltage is applied between the main anode 3 and the tapered portion 4 b of the main mantle 4 by the main power source 7.
- a main plasma arc is formed from the front end of the main anode 3 toward the opening 4a of the main mantle 4 so that the main plasma gas 6 is heated.
- an inert gas that can be turned into plasma such as argon or helium
- a secondary plasma gas 13 is introduced as a secondary plasma gas 13 from the secondary plasma gas inlet 12 into the secondary torch 2 to form a swirling flow of the secondary plasma gas 13.
- a high-frequency voltage is applied between the sub-cathode 10 and the sub-mantle 11 by the sub-power supply 14 with the switch means 15 closed.
- a sub-plasma arc is formed from the tip 10a of the sub-cathode 10 toward the hole 11a of the sub-mantle jacket 24, whereby the sub-plasma gas 13 is heated.
- the structure of the main torch 1 and the main plasma gas 6 supplied, and the structure of the sub-torch 2 and the amount of the sub-plasma gas 13 supplied to the sub-torch 2 are appropriately set as shown in FIG.
- the plasma flame 23 can be formed substantially coaxially with the main torch 1.
- the thermal spray material 20 discharged from the material feed pipe 19 through the thermal spray material discharge hole is supplied to the axial center of the plasma formed on the central axis of the main anode 3 by the main anode 3 and the sub-cathode 10, and the plasma flame 23 is melted.
- the sub-torch 2 is embedded in the upstream (tip) of the insulator 60 of the main mantle 4 of the main torch 1 to confine the plasma arc in the main torch 1 and enhance the thermal pinch effect, The plasma arc input can be increased.
- gas for example, an inert gas such as argon gas, air, etc.
- an active gas such as oxygen gas
- the thermal spray material 20 can be efficiently melted.
- the melt in which the thermal spray material 20 is melted is sprayed onto the base material 25, and a dense coating of the thermal spray material 20 with few pores is efficiently formed.
- the gas introduction hole 4c is provided on the inlet side of the opening 4a of the main mantle 4.
- the gas introduction hole 4c may be provided on the tapered portion 4b of the main mantle 4 or the taper of the main mantle 4. You may provide in the entrance side of the part 4b and the opening part 4a, respectively.
- the main mantle 4 is made of the porous metal material M so as to form a gas flow for preventing the spraying material from adhering to the entire inner surface of the mantle.
- the gas supplied from the gas inlet 4d provided in the main mantle 4 may be jetted only in the inner direction of the main mantle 4 through the fine holes in the porous metal material M.
- FIG. 6 to 8 are schematic configuration diagrams of the front end portion of the main anode 3 described as a preferred embodiment of the present invention.
- the main anode 3 is provided with a cooling passage 3 ⁇ / b> A for circulating the cooling water W between the outer peripheral surface of the main anode 3 and the material feeding pipe 19.
- the front end surface 3f of the main anode 3 is formed in an inwardly protruding shape (for example, an inwardly protruding frustoconical shape) on the central axis, and a material feeding tube is provided at the center of the end surface 3f of the main anode 3
- the spraying material discharge hole 19P which is the exit of 19 is arrange
- the spray material 20 fed from the material feed pipe 19 has a position of the anode point 3 ⁇ / b> P of the main anode 3 closer to the cathode spot than a position of the spray material discharge hole 19 ⁇ / b> P of the material feed pipe 19.
- the thermal spray material 20 and the anode point of the plasma (plasma arc) 18 do not interfere when supplying the thermal spray material 20.
- the thermal spray material 20 can be supplied to the high temperature portion of the plasma 18 and can be almost completely melted.
- the spraying material 20 to be supplied a powder such as a conductive material such as metal or an insulating material such as ceramics can be used.
- the material feeding tube 19 is preferably made of a material such as ceramic having heat resistance and insulation.
- the structure of the tip of the main anode 3 is particularly as long as the anode point 3P is positioned on the outer peripheral side of the spraying material discharge hole 19P and arranged so as not to interfere with the spraying material discharge hole 19P. It is not limited. Further, as shown in FIG. 7, the tip portion of the main anode 3 is located at a position where the spray material discharge hole 19P and the anode point 3P do not interfere with each other, for example, the spray material discharge hole 19P and the anode point 3P on the tip surface 3f. It is preferable to provide one or a plurality of gas ejection holes 31 penetrating from the outer peripheral surface at positions in between to prevent adhesion of the thermal spray material. Further, as shown in FIG.
- the front end portion of the main anode 3 is formed in a truncated cone shape, and the thermal spray material discharge hole 19P and the anode point 3P in the front end surface 3f interfere with the gas ejection hole 31, respectively. More preferably, it is provided so as to penetrate from the outer peripheral surface at a position where there is no problem.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Chemical & Material Sciences (AREA)
- Electromagnetism (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Nozzles (AREA)
- Coating By Spraying Or Casting (AREA)
- Plasma Technology (AREA)
Abstract
Description
本発明は、上記課題に鑑みてなされたものであり、主トーチ及び副トーチの電極により、主トーチの電極の中心軸上に形成されるプラズマの軸中心に溶射材料を供給することができ、かつ、主トーチの外套における開口部の内壁に溶射材料が付着するのを抑制できるプラズマ溶射装置を提供することを目的とする。
(1) 中心軸の先端中央に溶射材料吐出孔を有する第1の電極と、前記第1の電極を囲む第1の外套と、前記第1の電極と前記第1の外套とを絶縁し、第1のプラズマガス導入口を有する第1の絶縁体と、を備える主トーチと、
第2の電極と、前記第2の電極を囲む第2の外套と、前記第2の電極と前記第2の外套とを絶縁し、第2のプラズマガス導入口を有する第2の絶縁体と、を備え、中心軸が前記主トーチの中心軸と交差する副トーチと、
を備え、
前記第1の電極と前記第2の電極により、前記第1の電極の中心軸上に形成されるプラズマの軸中心に、前記溶射材料吐出孔から供給された溶射材料を溶融し、溶融した前記溶射材料を基材に吹き付けることにより前記溶射材料の被膜を形成するプラズマ溶射装置において、
前記第1の外套は、開口部と、前記開口部と前記第1の絶縁体との間に設けられたテーパー部とを備え、
前記第1の外套は、前記開口部の入口側及び/又は前記テーパー部に、ガスを導入するガス導入部を備えることを特徴とするプラズマ溶射装置;
(2) 前記第1の電極が陽極であり、前記第2の電極が陰極であることを特徴とする上記(1)に記載のプラズマ溶射装置;
(3) 前記開口部は、中央に第3の絶縁体を備え、
前記副トーチは、前記開口部の前記第3の絶縁体より出口側に設けられていることを特徴とする上記(2)に記載のプラズマ溶射装置;
(4) 前記主トーチと前記副トーチは、プラズマアークが外部で形成されるように配置されていることを特徴とする上記(2)に記載のプラズマ溶射装置;
(5) 前記副トーチを複数備え、
複数の前記副トーチは、複数の前記副トーチの中心軸が、前記主トーチの外部において、前記主トーチの中心軸の一点でそれぞれ交差するように配置されていることを特徴とする上記(4)に記載のプラズマ溶射装置;
(6) 前記第1の電極の陽極点と、前記溶射材料吐出孔とが互いに干渉することのない構造とすることを特徴とする上記(3)~(5)のいずれかに記載のプラズマ溶射装置;
(7) 前記第1の電極の先端面が内側に突の円錐台状に形成されていることを特徴とする上記(3)~(5)のいずれかに記載のプラズマ溶射装置;
(8) 前記第1の電極の先端に溶射材料の付着を防止するためのガス噴出孔を設けることを特徴とする上記(3)~(7)のいずれかに記載のプラズマ溶射装置などである。
(9) 前記外套のガス導入部は,前記開口部の入口側及び/又は前記テーパー部に、ガスを導入するガス噴出孔を設けることを特徴とする上記(3)~(8)のいずれかに記載のプラズマ溶射装置;
(10) 前記第1の外套のガス導入孔は、不活性ガスが前記開口部及び前記テーパー部の内部で旋回流となるよう、中心軸に対して円周方向の速度成分をもつように噴出されるガス噴出孔を備えることを特徴とする上記(3)~(8)のいずれかに記載のプラズマ溶射装置;
(11) 前記第1の外套は多孔質金属により構成され、外部より導入されたガスが、前記多孔質金属内の孔を通して、前記第1の外套の内部方向にのみ噴出されることによりガス導入部が構成されていることを特徴とする (3)~(8)のいずれかに記載のプラズマ溶射装置;
などである。
主陽極3は、電気伝導率に優れた材料、例えば、銅などの金属により形成されている。主陽極3は、中心軸の先端中央に溶射材料吐出孔を有する材料送入管19を備える。主陽極3は、主外套4と、絶縁体27によって同心に保持されている。
副陰極10は、融点が高い材料、例えば、タングステンなどの材料により形成されている。副陰極10は、副外套11と、絶縁体28によって同心に保持されている。
アルゴン、ヘリウムなどのプラズマ化が可能な不活性ガスを主プラズマガス6として、主プラズマガス導入口5から主トーチ1内に導入し、主プラズマガス6の旋回流を形成させる。また、スイッチ手段9を開き、スイッチ手段8を閉じた状態で、主電源7により主陽極3と主外套4との間に高周波電圧を印加する。その結果、主陽極3の先端から主外套4の開口部4aの方に向かう主プラズマアーク16が形成され、これにより主プラズマガス6が加熱され、プラズマとなって主外套4の開口部4aから放出される。
また、溶射材料20の付着を防止することができるので、溶射材料20を効率よく溶融することができる。なお、本実施の形態においては、ガス導入孔4cを主外套4のテーパー部4bに設けることとしているが、主外套4の開口部4aの入口側に設けてもよいし、主外套4のテーパー部4b及び開口部4aの入口側にそれぞれ設けてもよい。
また、旋回流を形成するためのガス噴出孔4cを設ける代わりに、図5に示すように、溶射材料付着防止のためのガス流を外套内部全面に形成するよう、主外套4を多孔質金属材料Mにより構成し、主外套4に設けたガス導入口4dから供給されたガスを、多孔質金属材料M内の微細孔を通して、同図中に矢印で示すように、主外套4の内部方向にのみ噴出させるようにしてもよい。
なお、主電源7の正端子は、主陽極3及びスイッチ手段55を介して副外套11に接続され、主電源7の負端子はスイッチ手段8を介して主外套4に接続される。また、副電源42からの副トーチ2の正端子は、スイッチ手段45を介して副外套11に接続され、副電源42からの副トーチ2の負端子は、スイッチ手段46を介して副陰極10に接続され、また、スイッチ手段9を介して主電源7の負端子に接続される。
副陰極40は、融点が高い材料、例えば、タングステンなどの材料により形成されている。副陰極40は、副外套41と、絶縁体48によって同心に保持されている。
アルゴン、ヘリウムなどのプラズマ化が可能な不活性ガスを主プラズマガス6として、主プラズマガス導入口5から主トーチ1内に導入し、主プラズマガス6の旋回流を形成させる。また、スイッチ手段9を開き、スイッチ手段8を閉じた状態で、主電源7により主陽極3と主外套4との間に高周波電圧を印加する。その結果、主陽極3の先端から主外套4の開口部4aの方に向かう主プラズマアーク16が形成され、これにより主プラズマガス6が加熱され、プラズマとなって主外套4の開口部4aから放出される。
また、上述のように、ガス噴出孔4cを設ける代わりに、溶射材料付着防止のためのガス流を外套内部全面に形成するよう、主外套4を多孔質金属材料Mにより構成し、主外套4に設けたガス導入口4dから供給されたガスを、多孔質金属材料M内の微細孔を通して、主外套4の内部方向にのみ噴出させるようにしてもよい。
主陽極3は、電気伝導率に優れた材料、例えば、銅などの金属により形成されている。主陽極3は、中心軸の先端中央に溶射材料吐出孔を有する材料送入管19を備える。主陽極3は、主外套4と、絶縁体27によって同心に保持されている。
また、上記実施形態と同様に、旋回流を形成するためのガス噴出孔4cを設ける代わりに、溶射材料付着防止のためのガス流を外套内部全面に形成するよう、主外套4を多孔質金属材料Mにより構成し、主外套4に設けたガス導入口4dから供給されたガスを、多孔質金属材料M内の微細孔を通して、主外套4の内部方向にのみ噴出させるようにしてもよい。
副陰極10は、融点が高い材料、例えば、タングステンなどの材料により形成されている。副陰極10は、副外套11と、絶縁体28によって同心に保持されている。
絶縁体27は、主プラズマガス6を導入する主プラズマガス導入口5と、主プラズマガス6の旋回流形成手段50を有している。
副電源14の正端子は、副外套11に接続され、副電源14の負端子は、スイッチ手段15を介して副陰極10に接続され、また、スイッチ手段9を介して主電源7の負端子に接続される。
アルゴン、ヘリウムなどのプラズマ化が可能な不活性ガスを主プラズマガス6として、主プラズマガス導入口5から主トーチ1内に導入し、主プラズマガス6の旋回流を形成させる。また、スイッチ手段9を開き、スイッチ手段8を閉じた状態で、主電源7により主陽極3と主外套4のテーパー部4bとの間に高周波電圧を印加する。その結果、主陽極3の先端から主外套4の開口部4aの方に向かう主プラズマアークが形成され、これにより主プラズマガス6が加熱される。
また、上記のように、旋回流を形成するためのガス噴出孔4cを設ける代わりに、溶射材料付着防止のためのガス流を外套内部全面に形成するよう、主外套4を多孔質金属材料Mにより構成し、主外套4に設けたガス導入口4dから供給されたガスを、多孔質金属材料M内の微細孔を通して、主外套4の内部方向にのみ噴出させるようにしてもよい。
図6に示すように、主陽極3には、主陽極3の外周面と材料送入管19との間に、冷却水Wを循環させる冷却通路3Aが設けられている。
主陽極3の先端面3fは、中心軸上に内側に突の形状(例えば、内側に突の円錐台状など)に形成されており、主陽極3の先端面3fの中央に材料送入管19の出口である溶射材料吐出孔19Pが配置され、主陽極3の先端外周の突出部(先端の縁)が陽極点3Pとなる。
Claims (11)
- 中心軸の先端中央に溶射材料吐出孔を有する第1の電極と、前記第1の電極を囲む第1の外套と、前記第1の電極と前記第1の外套とを絶縁し、第1のプラズマガス導入口を有する第1の絶縁体と、を備える主トーチと、
第2の電極と、前記第2の電極を囲む第2の外套と、前記第2の電極と前記第2の外套とを絶縁し、第2のプラズマガス導入口を有する第2の絶縁体と、を備え、中心軸が前記主トーチの中心軸と交差する副トーチと、
を備え、
前記第1の電極と前記第2の電極により、前記第1の電極の中心軸上に形成されるプラズマの軸中心に、前記溶射材料吐出孔から供給された溶射材料を溶融し、溶融した前記溶射材料を基材に吹き付けることにより前記溶射材料の被膜を形成するプラズマ溶射装置において、
前記第1の外套は、開口部と、前記開口部と前記第1の絶縁体との間に設けられたテーパー部とを備え、
前記第1の外套は、前記開口部の入口側及び/又は前記テーパー部に、ガスを導入するガス導入部を備えることを特徴とするプラズマ溶射装置。 - 前記第1の電極が陽極であり、前記第2の電極が陰極であることを特徴とする請求項1に記載のプラズマ溶射装置。
- 前記開口部は、中央に第3の絶縁体を備え、
前記副トーチは、前記開口部の前記第3の絶縁体より出口側に設けられていることを特徴とする請求項2に記載のプラズマ溶射装置。 - 前記主トーチと前記副トーチは、プラズマアークが外部で形成されるように配置されていることを特徴とする請求項2に記載のプラズマ溶射装置。
- 前記副トーチを複数備え、
複数の前記副トーチは、複数の前記副トーチの中心軸が、前記主トーチの外部において、前記主トーチの中心軸の一点でそれぞれ交差するように配置されていることを特徴とする請求項4に記載のプラズマ溶射装置。 - 前記第1の電極の陽極点と、前記溶射材料吐出孔とが互いに干渉することのない構造とすることを特徴とする請求項3~5のいずれかに記載のプラズマ溶射装置。
- 前記第1の電極の先端面が中心軸上に内側に突の形状に形成されていることを特徴とする請求項3~5のいずれかに記載のプラズマ溶射装置。
- 前記第1の電極の先端に溶射材料の付着を防止するためのガス噴出孔を設けることを特徴とする請求項3~7のいずれかに記載のプラズマ溶射装置。
- 前記第1の外套のガス導入部は,前記開口部の入口側及び/又は前記テーパー部に、ガスを導入するガス噴出孔を備えることを特徴とする請求項1~8のいずれかに記載のプラズマ溶射装置
- 前記第1の外套のガス導入部は、ガスが前記開口部及び前記テーパー部の内部で旋回流となるよう、中心軸に対して円周方向の速度成分をもつように噴出されるガス噴出孔を備えることを特徴とする請求項1~8のいずれかに記載のプラズマ溶射装置。
- 前記第1の外套は多孔質金属により構成され、外部より導入されたガスが、前記多孔質金属内の孔を通して、前記第1の外套の内部方向にのみ噴出されることにより前記ガス導入部が構成されていることを特徴とする請求項1~8のいずれかに記載のプラズマ溶射装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/780,225 US9802212B2 (en) | 2013-03-28 | 2014-03-27 | Plasma spraying apparatus |
EP14772681.4A EP2979767A4 (en) | 2013-03-28 | 2014-03-27 | plasma spraying |
CN201480018567.XA CN105209175A (zh) | 2013-03-28 | 2014-03-27 | 等离子喷涂装置 |
KR1020157030954A KR20150133849A (ko) | 2013-03-28 | 2014-03-27 | 플라즈마 용사 장치 |
JP2015508681A JP6059337B2 (ja) | 2013-03-28 | 2014-03-27 | プラズマ溶射装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013069945 | 2013-03-28 | ||
JP2013-069945 | 2013-03-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014157491A1 true WO2014157491A1 (ja) | 2014-10-02 |
Family
ID=51624453
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/058794 WO2014157491A1 (ja) | 2013-03-28 | 2014-03-27 | プラズマ溶射装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9802212B2 (ja) |
EP (1) | EP2979767A4 (ja) |
JP (1) | JP6059337B2 (ja) |
KR (1) | KR20150133849A (ja) |
CN (1) | CN105209175A (ja) |
WO (1) | WO2014157491A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3012342A1 (de) * | 2014-10-24 | 2016-04-27 | MAHLE International GmbH | Thermisches spritzverfahren und vorrichtung dafür |
CN105722295A (zh) * | 2016-03-11 | 2016-06-29 | 沈阳工业大学 | 一种三阴极等离子喷枪 |
JP2019021708A (ja) * | 2017-07-13 | 2019-02-07 | 東京エレクトロン株式会社 | プラズマ処理装置用部品の溶射方法及びプラズマ処理装置用部品 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6545053B2 (ja) * | 2015-03-30 | 2019-07-17 | 東京エレクトロン株式会社 | 処理装置および処理方法、ならびにガスクラスター発生装置および発生方法 |
WO2016158054A1 (ja) * | 2015-03-30 | 2016-10-06 | 東京エレクトロン株式会社 | 処理装置および処理方法、ならびにガスクラスター発生装置および発生方法 |
KR101696872B1 (ko) | 2016-08-26 | 2017-01-17 | 동양엠더블유주식회사 | 플라즈마 용사 시스템의 플라즈마건 장치 및 이를 구비한 플라즈마 용사 시스템 |
CN106282894A (zh) * | 2016-09-29 | 2017-01-04 | 成都真火科技有限公司 | 一种等离子喷涂设备 |
US20190300999A1 (en) * | 2018-04-02 | 2019-10-03 | Tokyo Electron Limited | Method of forming metallic film |
KR102648559B1 (ko) | 2018-09-12 | 2024-03-19 | 삼성디스플레이 주식회사 | 액정 표시패널 및 이를 포함하는 액정 표시장치 |
KR20200040366A (ko) | 2018-10-10 | 2020-04-20 | 곽현만 | 텅스텐 전극 |
JP7332169B2 (ja) * | 2018-11-02 | 2023-08-23 | 学校法人日本大学 | 磁化プラズモイド射出装置 |
WO2022125912A1 (en) * | 2020-12-10 | 2022-06-16 | Fuse Energy Technologies Corp. | Plasma injection and confinement systems and methods |
CN112899608B (zh) * | 2021-02-24 | 2024-07-30 | 郑州轻工业大学 | 一种双叠加涂层的制备方法及制备装置 |
DE102021120826A1 (de) * | 2021-08-10 | 2023-02-16 | Muegge Gmbh | Verfahren zur Erzeugung einer Plasmaflamme und Plasmaerzeugungsvorrichtung |
KR20250053401A (ko) | 2023-10-13 | 2025-04-22 | 곽현만 | 플라즈마 용사 건 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5113473B2 (ja) * | 1971-11-19 | 1976-04-28 | ||
JPS61259778A (ja) * | 1985-05-13 | 1986-11-18 | Onoda Cement Co Ltd | 複ト−チ型プラズマ溶射方法及びその装置 |
JPS62130777A (ja) * | 1985-12-02 | 1987-06-13 | Nippon Steel Corp | 放電を利用する加工用ト−チ |
JPS6391160A (ja) * | 1986-10-06 | 1988-04-21 | Nippon Sharyo Seizo Kaisha Ltd | プラズマ溶射銃 |
JPH0279400A (ja) * | 1988-09-14 | 1990-03-19 | Babcock Hitachi Kk | 高周波プラズマリアクタ |
JP2004082024A (ja) * | 2002-08-28 | 2004-03-18 | Suzuki Motor Corp | 内部供給方式溶射装置 |
JP3733461B2 (ja) | 2001-01-31 | 2006-01-11 | 中国電力株式会社 | 複合トーチ型プラズマ発生方法及び装置 |
JP2009195883A (ja) * | 2008-02-25 | 2009-09-03 | Nissan Motor Co Ltd | 溶射ガン装置及び溶射ガン装置における金属粉排出方法 |
JP2010110669A (ja) | 2008-11-04 | 2010-05-20 | Nihon Ceratec Co Ltd | プラズマ溶射装置 |
US20100314467A1 (en) * | 2005-01-26 | 2010-12-16 | Volvo Aero Corporation | Thermal spraying method and device |
JP4804854B2 (ja) | 2005-09-28 | 2011-11-02 | 中国電力株式会社 | 複合トーチ型プラズマ溶射装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03150341A (ja) | 1989-11-07 | 1991-06-26 | Onoda Cement Co Ltd | 複合トーチ型プラズマ発生装置とその装置を用いたプラズマ発生方法 |
FR2922406A1 (fr) * | 2007-10-12 | 2009-04-17 | Commissariat Energie Atomique | Dispositif d'injection de charge liquide a melanger/convertir au sein d'un dard plasma ou d'un flux gazeux |
CN201579141U (zh) * | 2009-10-19 | 2010-09-15 | 李志军 | 一种内置枪针清粉系统的喷粉枪 |
-
2014
- 2014-03-27 US US14/780,225 patent/US9802212B2/en active Active
- 2014-03-27 CN CN201480018567.XA patent/CN105209175A/zh active Pending
- 2014-03-27 JP JP2015508681A patent/JP6059337B2/ja not_active Expired - Fee Related
- 2014-03-27 WO PCT/JP2014/058794 patent/WO2014157491A1/ja active Application Filing
- 2014-03-27 KR KR1020157030954A patent/KR20150133849A/ko not_active Ceased
- 2014-03-27 EP EP14772681.4A patent/EP2979767A4/en not_active Withdrawn
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5113473B2 (ja) * | 1971-11-19 | 1976-04-28 | ||
JPS61259778A (ja) * | 1985-05-13 | 1986-11-18 | Onoda Cement Co Ltd | 複ト−チ型プラズマ溶射方法及びその装置 |
JPS62130777A (ja) * | 1985-12-02 | 1987-06-13 | Nippon Steel Corp | 放電を利用する加工用ト−チ |
JPS6391160A (ja) * | 1986-10-06 | 1988-04-21 | Nippon Sharyo Seizo Kaisha Ltd | プラズマ溶射銃 |
JPH0279400A (ja) * | 1988-09-14 | 1990-03-19 | Babcock Hitachi Kk | 高周波プラズマリアクタ |
JP3733461B2 (ja) | 2001-01-31 | 2006-01-11 | 中国電力株式会社 | 複合トーチ型プラズマ発生方法及び装置 |
JP2004082024A (ja) * | 2002-08-28 | 2004-03-18 | Suzuki Motor Corp | 内部供給方式溶射装置 |
US20100314467A1 (en) * | 2005-01-26 | 2010-12-16 | Volvo Aero Corporation | Thermal spraying method and device |
JP4804854B2 (ja) | 2005-09-28 | 2011-11-02 | 中国電力株式会社 | 複合トーチ型プラズマ溶射装置 |
JP2009195883A (ja) * | 2008-02-25 | 2009-09-03 | Nissan Motor Co Ltd | 溶射ガン装置及び溶射ガン装置における金属粉排出方法 |
JP2010110669A (ja) | 2008-11-04 | 2010-05-20 | Nihon Ceratec Co Ltd | プラズマ溶射装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2979767A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3012342A1 (de) * | 2014-10-24 | 2016-04-27 | MAHLE International GmbH | Thermisches spritzverfahren und vorrichtung dafür |
CN105722295A (zh) * | 2016-03-11 | 2016-06-29 | 沈阳工业大学 | 一种三阴极等离子喷枪 |
JP2019021708A (ja) * | 2017-07-13 | 2019-02-07 | 東京エレクトロン株式会社 | プラズマ処理装置用部品の溶射方法及びプラズマ処理装置用部品 |
JP7224096B2 (ja) | 2017-07-13 | 2023-02-17 | 東京エレクトロン株式会社 | プラズマ処理装置用部品の溶射方法及びプラズマ処理装置用部品 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2014157491A1 (ja) | 2017-02-16 |
EP2979767A4 (en) | 2016-12-07 |
EP2979767A1 (en) | 2016-02-03 |
JP6059337B2 (ja) | 2017-01-11 |
KR20150133849A (ko) | 2015-11-30 |
US9802212B2 (en) | 2017-10-31 |
CN105209175A (zh) | 2015-12-30 |
US20160074887A1 (en) | 2016-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6059337B2 (ja) | プラズマ溶射装置 | |
KR101517318B1 (ko) | 액시얼 피드형 플라즈마 용사장치 | |
CN112024885A (zh) | 一种等离子弧喷头及具有其的等离子发生装置和三维打印设备 | |
JP4664679B2 (ja) | プラズマ溶射装置 | |
CN102369065A (zh) | 等离子导线转移弧热喷涂装置 | |
JPH07107876B2 (ja) | プラズマ発生装置及びプラズマ発生方法 | |
JP3733461B2 (ja) | 複合トーチ型プラズマ発生方法及び装置 | |
JP5515277B2 (ja) | プラズマ溶射装置 | |
KR101933941B1 (ko) | 냉각효율상승 및 균일 플라즈마 발생에 의한 플라즈마 건 장치 | |
JP2016043287A (ja) | プラズマ溶射装置およびプラズマ溶射方法 | |
US9000322B2 (en) | Method for starting and stopping a plasma arc torch | |
JP2016143533A (ja) | プラズマ溶射装置 | |
JP3028709B2 (ja) | プラズマ溶射装置 | |
JP5091801B2 (ja) | 複合トーチ型プラズマ発生装置 | |
JP6111477B2 (ja) | プラズマ溶射装置 | |
WO2015147127A1 (ja) | プラズマ溶射装置 | |
JP4804854B2 (ja) | 複合トーチ型プラズマ溶射装置 | |
US9704694B2 (en) | Gas cooled plasma spraying device | |
JPH05339699A (ja) | プラズマ溶射方法 | |
JPH08167497A (ja) | プラズマ溶射トーチ | |
JPH10180448A (ja) | プラズマトーチ | |
JP2000160317A (ja) | プラズマ溶射装置 | |
JPH07142192A (ja) | プラズマ溶射装置 | |
JPH07110983B2 (ja) | プラズマ溶射方法及びその装置 | |
JP2013101787A (ja) | プラズマ発生装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2014772681 Country of ref document: EP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14772681 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015508681 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157030954 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14780225 Country of ref document: US |