WO2014155439A1 - 脆性亀裂伝播停止特性に優れた大入熱溶接用高強度鋼板およびその製造方法 - Google Patents
脆性亀裂伝播停止特性に優れた大入熱溶接用高強度鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2014155439A1 WO2014155439A1 PCT/JP2013/006308 JP2013006308W WO2014155439A1 WO 2014155439 A1 WO2014155439 A1 WO 2014155439A1 JP 2013006308 W JP2013006308 W JP 2013006308W WO 2014155439 A1 WO2014155439 A1 WO 2014155439A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plate thickness
- less
- surface layer
- brittle crack
- plane
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 110
- 239000010959 steel Substances 0.000 title claims abstract description 110
- 238000003466 welding Methods 0.000 title claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title description 23
- 239000002344 surface layer Substances 0.000 claims abstract description 56
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 34
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 230000007704 transition Effects 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 238000005096 rolling process Methods 0.000 claims description 45
- 230000010354 integration Effects 0.000 claims description 36
- 239000000463 material Substances 0.000 claims description 35
- 230000009467 reduction Effects 0.000 claims description 32
- 229910001566 austenite Inorganic materials 0.000 claims description 30
- 238000001816 cooling Methods 0.000 claims description 30
- 238000001953 recrystallisation Methods 0.000 claims description 25
- 230000001186 cumulative effect Effects 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 229910052791 calcium Inorganic materials 0.000 claims description 8
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- 238000005496 tempering Methods 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052750 molybdenum Inorganic materials 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 238000012360 testing method Methods 0.000 description 28
- 230000000694 effects Effects 0.000 description 25
- 239000013078 crystal Substances 0.000 description 14
- 238000005098 hot rolling Methods 0.000 description 10
- 230000009466 transformation Effects 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 241000612118 Samolus valerandi Species 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 238000009863 impact test Methods 0.000 description 4
- 239000003949 liquefied natural gas Substances 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 229910001563 bainite Inorganic materials 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/05—Grain orientation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Definitions
- the present invention relates to a high-strength thick steel plate for high-heat input ⁇ welding excellent in brittle crack propagation arrestability and a method for producing the same, particularly for ships. And a suitable plate thickness of 50 mm or more.
- Ni steel As a means of improving the brittle crack propagation stopping characteristics of steel materials, a method of increasing the Ni content has been conventionally known. In a liquefied natural gas (LNG) storage tank, 9% Ni steel is commercially available. Used on a scale.
- LNG liquefied natural gas
- TMCP Thermo-Mechanical Control Process
- Patent Document 1 a steel material in which the structure of the plate thickness surface layer portion is ultrafine (ultra-fine-grained-steel) is proposed in Patent Document 1.
- Patent Document 1 focuses on the fact that shear lips (plastic deformation region shear-lips) generated in the steel sheet thickness surface layer when brittle cracks propagate are effective in improving brittle crack propagation stopping characteristics.
- shear lips plastic deformation region shear-lips generated in the steel sheet thickness surface layer when brittle cracks propagate are effective in improving brittle crack propagation stopping characteristics.
- Patent Document 1 discloses that the sheet thickness surface layer portion is cooled to an Ar3 transformation point or less by controlled cooling after hot rolling, and then the controlled cooling is stopped to remove the sheet thickness surface layer portion. The process of recuperate more than the transformation point is repeated one or more times. During this time, the steel material is subjected to reduction, and it is repeatedly transformed or processed and recrystallized, and the ultrathin ferrite structure ( ferrite structure) or bainite structure is described.
- both surface portions of the steel material have a circle-equivalent average grain. size): 5 ⁇ m or less
- aspect ratio of aspect ratio: a layer having 50% or more of a ferrite structure having two or more ferrite grains, and suppressing variation in ferrite grain size is important.
- a method for suppressing variation it is described that local recrystallization phenomenon is suppressed by setting a maximum rolling reduction per pass during finish rolling to 12% or less.
- Patent Document 3 attention is paid not only to the refinement of ferrite crystal grains but also to subgrains formed in ferrite crystal grains, and a technique on the extension of TMCP that improves brittle crack propagation stop characteristics. Is described.
- a) rolling conditions for securing fine ferrite crystal grains without requiring complicated temperature control such as cooling and recuperation of the steel sheet surface layer (b) Rolling conditions for generating a fine ferrite structure in a portion of 5% or more of the steel sheet thickness, (c) Dislocation introduced by machining (rolling) and development of texture in the fine ferrite by thermal energy
- the brittle crack propagation stop property is improved by rolling conditions for rearrangement to form subgrains and (d) cooling conditions for suppressing coarsening of the formed fine ferrite crystal grains and fine subgrain grains.
- Patent Document 4 discloses that the (110) plane X intensity ratio (X-ray plane intensity ratio in the (110) plane showing a texture developing degree) is 2 or more by controlled rolling and the equivalent circle diameter (diameter equivalent). To a circle in the crystal grains) It is described that the brittle fracture resistance is improved by making coarse grains of 20 ⁇ m or more 10% or less.
- Patent Document 5 is characterized in that, as a welded structural steel having excellent brittle crack propagation stopping performance in a joint part, the (100) plane X-ray plane strength ratio in the rolled surface inside the plate thickness is 1.5 or more. Steel sheet is disclosed, and it is described that excellent brittle crack propagation stopping characteristics can be obtained by the deviation of the angle between the stress load direction and the crack propagation direction due to the texture development.
- Japanese Patent Publication No. 7-100814 JP 2002-256375 A Japanese Patent No. 3467767 Japanese Patent No. 3548349 Japanese Patent No. 2659661 Japanese Patent No. 3546308
- Non-Patent Document 1 evaluates the brittle crack propagation stopping performance of a steel plate having a thickness of 65 mm, and reports the result that the brittle crack does not stop in the large-scale brittle crack propagation stopping test of the base material.
- the Kca value at the use temperature of ⁇ 10 ° C. (hereinafter also referred to as Kca ( ⁇ 10 ° C.)) satisfies 3000 N / mm 3/2 .
- Kca ( ⁇ 10 ° C.) satisfies 3000 N / mm 3/2 .
- the steel sheet having a thickness of about 50 mm is the main target of the steel sheets having excellent brittle crack propagation stopping characteristics described in Patent Documents 1 to 5 described above.
- Patent Documents 1 to 5 When the techniques described in Patent Documents 1 to 5 are applied to a thick material exceeding 50 mm, it is unclear whether the predetermined characteristics can be obtained, and the characteristics against crack propagation in the plate thickness direction necessary for the hull structure are completely different. Not verified.
- the welding work requires high efficiency such as submerged arc welding, electrogas welding, electroslag welding, etc.
- Heat input welding is applied.
- the structure of the weld heat-affected zone (HeatffAffected; Zone; HAZ) becomes coarse, so that the toughness of the weld heat-affected zone decreases.
- steel materials for high heat input welding have already been developed and put to practical use.
- Patent Document 6 by controlling TiN precipitated in steel, it prevents coarsening of the weld heat affected zone structure and promotes intragranular ferrite transformation by dispersion of ferrite forming nuclei.
- a technique for increasing the toughness of the weld heat affected zone is disclosed.
- the toughness of the weld heat-affected zone of the high heat input weld zone is excellent, the brittle crack propagation stop property is not taken into consideration, and those satisfying both properties have not been obtained.
- the present invention is for high heat input welding with excellent brittle crack propagation stopping characteristics that can be stably produced by an industrially simple process that optimizes steel components and rolling conditions and controls the texture in the thickness direction.
- An object is to provide a high-strength steel sheet and a method for producing the same.
- FIGS. 1A and 1B schematically show an example in which the crack 3 that has entered from the notch 2 of the standard ESSO test piece 1 stops propagating at the tip shape 4 in the base material 5.
- the (110) planes are accumulated parallel to the rolling direction, and the rolling direction or plate It is effective to perform texture control so that cracks extending in the width direction are deflected obliquely from the rolling direction or the sheet width direction, respectively. 4). Furthermore, by setting the cumulative reduction ratio in the state where the central portion of the plate thickness is in the austenite recrystallization temperature range to 20% or more and the average reduction rate per pass to 5.0% or less, To refine the organization. Thereafter, by setting the cumulative reduction ratio in the state where the central portion of the plate thickness is in the austenite non-recrystallization temperature range to 40% or more and the average reduction rate per pass to 7.0% or more, Toughness and texture can be developed, and the above-described structure can be realized. 5.
- the composite sulfides of TiN, CaS and MnS are finely divided to suppress grain growth when exposed to high temperature by welding, and in the subsequent cooling process It is effective to promote internal transformation and refine the heat affected zone structure at room temperature.
- the present invention has been made by further study based on the obtained knowledge. That is, the present invention 1.
- Steel composition is mass%, C: 0.03-0.15%, Si: 0.50% or less, Mn: 1.0-2.0%, P: 0.030% or less, S: 0.00.
- the balance is Fe and inevitable impurities
- the metal structure is mainly ferrite, It has a texture in which the degree of integration of the RD // (110) plane in the plate thickness surface layer portion is 1.3 or more and the degree of integration of the RD // (110) plane in the plate thickness center portion is 1.8 or more.
- the Charpy fracture surface transition temperature vTrs in the surface layer portion and the central portion of the plate thickness is -50 ° C. or lower.
- High strength steel sheet for excellent high heat input welding to brittle crack propagation stopping characteristics 0 ⁇ (Ca ⁇ (0.18 + 130 ⁇ Ca) ⁇ O) /1.25/S ⁇ 0.8 (1) However, in Formula (1), Ca, O, and S are made into content (mass%). 2.
- the Charpy fracture surface transition temperature and the degree of integration of the RD // (110) plane at the plate thickness surface layer portion and the plate thickness center portion satisfy the following formula (2), and are excellent in brittle crack propagation stop characteristics as described in 1. High strength steel plate for large heat input welding.
- vTrs (surface layer) + 1.9 ⁇ vTrs (1 / 2t) ⁇ 6 ⁇ I RD // (110) [surface layer] ⁇ 84 ⁇ I RD // (110) [1 / 2t] ⁇ ⁇ 350 (2 )
- vTrs (surface layer) Charpy fracture surface transition temperature (° C) of the plate thickness surface layer
- vTrs (1 / 2t) Charpy fracture surface transition temperature (° C) at the center of the plate thickness (t / 2)
- t is a plate thickness (mm).
- the steel composition is further mass%, Nb: 0.003 to 0.050%, Cu: 0.5% or less, Ni: 1.0% or less, Cr: 0.5% or less, Mo: 0.5 % Or less, W: 0.4% or less, V: 0.2% or less, B: 0.0003 to 0.0030% or less High strength steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics. 4).
- the steel composition further comprises one or more of Mg: 0.0005 to 0.0050%, Zr: 0.001 to 0.020%, REM: 0.001 to 0.020% by mass%.
- the high-strength steel sheet for high heat input welding having excellent brittle crack propagation stopping characteristics according to any one of 1 to 3, characterized by containing.
- the steel material having the composition according to any one of 5.1, 3 or 4 is heated to a temperature of 900 to 1150 ° C., and the cumulative reduction ratio in the austenite recrystallization temperature range and the austenite non-recrystallization temperature range is measured.
- rolling is performed so that the cumulative reduction rate is 20% or more and the average reduction rate per pass is 5.0% or less.
- a method for producing a high-strength steel sheet for high heat input welding excellent in brittle crack propagation stopping characteristics characterized by cooling to 600 ° C. or lower at a cooling rate of 4.0 ° C./s or higher. 6. After cooling to 600 ° C. or lower, further comprising a step of tempering to a temperature of AC 1 point or less, the high strength steel sheet for high heat input welding having excellent brittle crack propagation stopping characteristics according to 5 Production method.
- the present invention it is possible to obtain a high-strength steel sheet for high heat input welding and a method for producing the same, in which the texture is appropriately controlled in the thickness direction and the brittle crack propagation stopping property is excellent.
- Applying the present invention to a steel plate having a plate thickness of 50 mm or more, preferably more than 50 mm, more preferably 55 mm or more, and even more preferably 60 mm or more is more significant than the steel according to the prior art. It is effective because it demonstrates its properties. And, for example, in the shipbuilding field, it contributes to improving the safety of ships by applying the present invention to hatch side combing and deck members in the structure of large container ships and bulk carrier strong deck parts. .
- FIG. 1 is a diagram schematically showing a fracture surface form of a standard ESSO test of a thick steel plate having a thickness of more than 50 mm, (a) is a view of the test piece observed from the plane side, and (b) is a fracture of the test piece. It is a figure which shows a surface.
- C 0.03-0.15%
- C is an element that improves the strength of steel, and in the present invention, it is necessary to contain 0.03% or more in order to ensure a desired strength. On the other hand, if it exceeds 0.15%, the weldability is deteriorated and the toughness is also adversely affected. Therefore, C is 0.03 to 0.15%. Preferably it is 0.05 to 0.15%.
- Si 0.50% or less Si is effective as a deoxidizing element and as a steel strengthening element. However, if the content is less than 0.01%, the effect may not be achieved. On the other hand, if it exceeds 0.50%, not only the surface properties of the steel are impaired, but also the toughness deteriorates. Therefore, the added amount is 0.50% or less. Preferably, it is 0.01 to 0.40% of range.
- Mn 1.0 to 2.0% Mn is added as a strengthening element. If it is less than 1.0%, the effect is not sufficient. On the other hand, if it exceeds 2.0%, the toughness of the welded portion is deteriorated. Therefore, Mn is set to 1.0 to 2.0%. Preferably, it is in the range of 1.1 to 1.8%.
- P 0.030% or less P is an impurity that is inevitably mixed.
- P exceeds 0.030%, the toughness of the base material and the welded portion is reduced. For this reason, the upper limit is made 0.030%.
- S 0.0005 to 0.0040% S is required to be 0.0005% or more in order to produce the required CaS or MnS. On the other hand, if it exceeds 0.0040%, the toughness of the base material is deteriorated. Therefore, S is set to 0.0005 to 0.0040%.
- Al acts as a deoxidizing agent, and for this purpose, a content of 0.005% or more is required. However, when it contains exceeding 0.10%, while reducing toughness, when welding, the toughness of a weld metal part will be reduced. For this reason, Al is specified in the range of 0.005 to 0.10%. The content is preferably 0.005 to 0.08%, more preferably 0.02 to 0.06%.
- Ti can form nitrides, carbides, or carbonitrides by adding a small amount, suppress austenite coarsening in the weld heat affected zone, and / or promote ferrite transformation as a ferrite transformation nucleus. This has the effect of refining the crystal grains and improving the base material toughness. The effect is obtained by adding 0.004% or more. However, the content exceeding 0.030% reduces the toughness of the base material and the weld heat affected zone due to the coarsening of the TiN particles. Therefore, Ti is set in the range of 0.004 to 0.030%. Preferably, it is 0.006 to 0.028% of range.
- N 0.0036 to 0.0075%
- N is an element necessary for securing the necessary amount of TiN. If it is less than 0.0036%, a sufficient amount of TiN cannot be obtained, and the weld toughness deteriorates. If it exceeds 0.0075%, TiN re-dissolves when subjected to a welding heat cycle, and excessively formed solute N is generated, resulting in a significant deterioration in toughness. Therefore, N is set to 0.0036 to 0.0075%. Preferably, it is in the range of 0.0037 to 0.0068%.
- Ca 0.0005 to 0.0030%
- Ca is an element having an effect of improving toughness by fixing S. In order to exhibit such an effect, it is necessary to contain 0.0005% or more of Ca. However, the effect is saturated even if the content exceeds 0.0030%. Therefore, in the present invention, Ca is limited to the range of 0.0005 to 0.0030%.
- O 0.0040% or less O is contained in the steel as an unavoidable impurity and precipitates as an oxide during solidification, thereby reducing the cleanliness of the steel. For this reason, in the present invention, it is desirable to reduce O as much as possible. In particular, when the O content exceeds 0.0040%, CaO inclusions are coarsened and the base material toughness is lowered. For this reason, O is made into 0.0040% or less.
- the above is a preferable basic component composition in the present invention.
- Nb 0.003 to 0.050%
- Nb precipitates as NbC during ferrite transformation or reheating, and contributes to increasing the strength.
- it has the effect of expanding the non-recrystallization temperature range in rolling in the austenite region, and contributes to the refinement of ferrite and bainite, which is also effective in improving toughness.
- the content is preferably 0.003% or more.
- the upper limit is preferably made 0.050%. More preferably, it is in the range of 0.005 to 0.040%.
- Cu, Ni, Cr, Mo, W Cu, Ni, Cr, Mo, and W are all elements that enhance the hardenability of steel. While contributing directly to the strength increase after rolling, it can be added to improve functions such as toughness, high-temperature strength, and weather resistance. Since these effects are exhibited when contained in an amount of 0.01% or more, when it is contained, the content is preferably 0.01% or more. However, when it contains excessively, toughness and weldability will deteriorate, when containing, upper limit is 0.5% for Cu, 1.0% for Ni, 0.5% for Cr, and 0.5% for Mo. % And W are preferably 0.4%.
- V 0.2% or less
- V is an element that improves the strength of steel by precipitation strengthening as V (C, N), and may be contained by 0.001% or more in order to exert this effect. However, when it contains exceeding 0.2%, toughness will be reduced. Therefore, when V is contained, the content is preferably 0.2% or less, and more preferably in the range of 0.001 to 0.10%.
- B 0.0003 to 0.0030%
- B is an element that enhances the hardenability of steel in a small amount. In order to exert this effect, 0.0003% or more may be contained. However, if it exceeds 0.0030%, the toughness of the welded portion is lowered. Therefore, when B is contained, the content is preferably 0.0030% or less. More preferably, it is in the range of 0.0003 to 0.0026%.
- Mg 0.0005 to 0.0050% Since Mg is an element having an effect of improving toughness due to dispersion of oxides, it may be added as necessary. Since this effect is exhibited by containing 0.0005% or more, when it is contained, the content is preferably 0.0005% or more. However, even if the content exceeds 0.0050%, the effect is saturated. Therefore, when adding Mg, the addition amount is preferably 0.0005 to 0.0050%.
- Zr 0.001 to 0.020%
- Zr has an effect of forming an oxide in steel and dispersing the oxide to refine the structure of the heat affected zone and improve the toughness. Even if added, the effect of the present invention is impaired. Therefore, it may be added as necessary. Since this effect is exhibited by containing 0.001% or more, when it is contained, the content is preferably 0.001% or more. However, if added excessively, the effect is saturated, and further, coarse inclusions are formed and the toughness of the base material is deteriorated. Therefore, when added, the upper limit of the addition amount is preferably 0.020%. .
- REM 0.001 to 0.020% REM has an effect of forming an oxide in steel and dispersing the oxide to refine the structure of the heat affected zone of the weld and improve the toughness. Even if added, the effect of the present invention is impaired. Therefore, it may be added as necessary. Since this effect is exhibited by containing 0.001% or more, when it is contained, the content is preferably 0.001% or more. However, if added excessively, the effect is saturated, and further, coarse inclusions are formed and the toughness of the base material is deteriorated. Therefore, when added, the upper limit of the addition amount is preferably 0.020%. .
- the present invention in order to crystallize Ca as CaS, it is necessary to reduce the amount of O having strong binding force with Ca before adding Ca, and the residual oxygen amount before adding Ca is 0.0050%.
- the following is preferable.
- a method for reducing the amount of residual oxygen a method such as enhancing degassing or introducing a deoxidizer can be employed.
- the balance other than the above components is Fe and inevitable impurities.
- the present invention it is possible to improve the crack propagation stop characteristics for cracks that propagate in the horizontal direction (in-plane direction of the steel sheet) such as the rolling direction or the direction perpendicular to the rolling direction.
- the toughness at the plate thickness surface layer portion and the central portion and the degree of integration of the RD // (110) surface are appropriately defined.
- the Charpy fracture surface transition temperature vTrs at the plate thickness surface layer portion and the plate thickness center portion is defined as ⁇ 50 ° C. or less as the toughness at the plate thickness surface layer portion and the center portion.
- the cleavage plane is accumulated obliquely with respect to the main crack direction, and fine crack branching is generated.
- the crack propagation stop performance is improved.
- Kca (-10 ° C) ⁇ 6000 N / mm which is a target for securing structural safety, with a thick material exceeding 50 mm thick that has been used for hull outer plates such as recent container ships and bulk carriers.
- the degree of integration of the RD // (110) plane in the plate thickness surface layer portion is 1.3 or more, preferably 1.6 or more, and RD // (( The degree of integration on the (110) plane needs to be 1.8 or more, preferably 2.0 or more.
- the integration degree of the RD // (110) plane in the plate thickness surface layer part is 1.3 or more, preferably 1.6 or more, and the integration degree of the RD // (110) plane in the center part of the plate thickness. 1.8 or more, preferably 2.0 or more.
- the integration degree of the RD // (110) plane in the plate thickness surface layer portion and the integration degree of the RD // (110) plane in the plate thickness center portion are both 4.0 or less.
- the degree of integration of the RD // (110) plane in the plate thickness surface layer portion or the plate thickness center portion indicates the following.
- a sample having a plate thickness of 1 mm is taken from the plate thickness surface layer portion or the plate thickness central portion, and a test piece for X-ray diffraction is prepared by mechanical polishing and electrolytic polishing of a plane parallel to the plate surface.
- the surface closest to the outermost surface is polished.
- an X-ray diffraction measurement was performed using an X-ray diffractometer using a Mo ray source, and (200), (110) and (211) positive electrode dot diagrams were obtained and obtained.
- a three-dimensional crystal orientation density function is calculated from the positive electrode dot diagram by the Bunge method.
- the integrated value is obtained by integrating the values of the three-dimensional crystal orientation density function of the orientation, and the value obtained by dividing the integrated value by the number of the integrated orientations is referred to as the degree of integration of the RD // (110) plane.
- the Charpy fracture surface transition temperature and the RD // (110) plane integration degree of the plate thickness surface layer portion and plate thickness center portion satisfy the following formula (2): Is preferred. vTrs (surface layer) + 1.9 ⁇ vTrs (1 / 2t) ⁇ 6 ⁇ I RD // (110) [surface layer] ⁇ 84 ⁇ I RD // (110) [1 / 2t] ⁇ ⁇ 350 (2 )
- vTrs (surface layer) Charpy fracture surface transition temperature (° C.) of the surface layer portion of the plate thickness
- vTrs (1 / 2t) Charpy fracture surface transition temperature (° C.) at the center of the plate thickness I RD // (110) [surface layer] : Degree of integration of RD // (110) plane of plate thickness surface layer portion I RD // (110) [1 / 2t] : RD // (110) of plate thickness center portion
- the metal structure is mainly composed of ferrite.
- the fact that the metal structure is mainly composed of ferrite is that the area fraction of the ferrite phase is 60% or more of the whole. The remainder is allowed if bainite, martensite (including island martensite), pearlite, etc. are 40% or less in total area fraction.
- the target toughness can be obtained, but transformation occurs when transforming from austenite to ferrite after rolling. Since sufficient time exists, the resulting texture becomes random, and the degree of integration of the RD // (110) plane is 1.3 or more, preferably 1.6 or more in the target plate thickness surface layer portion.
- the degree of integration of the RD // (110) plane at the central portion of the plate thickness cannot be achieved to 1.8 or more, preferably 2.0 or more.
- the degree of integration of the RD // (110) plane is 1.3 or more, preferably 1.6 or more in the plate thickness surface layer portion even in the structure mainly composed of ferrite.
- the degree of integration of the RD // (110) plane at the center of the plate thickness can be 1.8 or more, preferably 2.0 or more.
- the heating temperature, hot rolling conditions, cooling conditions, etc. of the steel material As manufacturing conditions, it is preferable to prescribe the heating temperature, hot rolling conditions, cooling conditions, etc. of the steel material.
- hot rolling in addition to the total cumulative rolling reduction in the austenite recrystallization temperature range and the austenite non-recrystallization temperature range, the case where the center of the plate thickness is in the austenite recrystallization temperature range, It is preferable to define the cumulative reduction rate and the average reduction rate per pass for each of the cases in the temperature range. By defining these, desired characteristics can be obtained with respect to the Charpy fracture surface transition temperature vTrs and the degree of integration of the RD // (110) plane at the surface thickness portion and the thickness center portion of the thick steel plate.
- molten steel having the above composition is melted in a converter or the like, and is made into a steel material (slab) by continuous casting or the like.
- the heating temperature is preferably 900 to 1150 ° C.
- a more preferable heating temperature range is 1000 to 1100 ° C. from the viewpoint of toughness.
- the degree of integration of the RD // (110) plane is 1.3 or more, preferably 1.6 or more, and RD at the center of the plate thickness in the plate thickness surface layer portion targeted in the present invention. // (110) plane integration degree of 1.8 or more, preferably 2.0 or more cannot be achieved.
- the degree of integration of the RD // (110) plane in the plate thickness surface layer portion even in the structure mainly composed of ferrite. Is 1.3 or more, preferably 1.6 or more, and the degree of integration of the RD // (110) plane at the central portion of the plate thickness is 1.8 or more, preferably 2.0 or more.
- the rolling is performed so that the cumulative reduction rate is 20% or more and the average reduction rate per pass is 5.0% or less. Is preferred.
- austenite is refined and the finally obtained metal structure is also refined to improve toughness.
- the average rolling reduction per pass in this temperature range to 5.0% or less, strain can be introduced particularly in the vicinity of the surface layer of the steel material.
- the degree of integration of the RD // (110) plane in the plate thickness surface layer portion can be made 1.3 or more, preferably 1.6 or more, and the plate thickness surface layer portion is further finely divided. The toughness improving effect is obtained.
- the cumulative reduction ratio is 40% or more and the average reduction ratio per pass is 7.0% or more in a state where the temperature at the center of the plate thickness is in the austenite non-recrystallization temperature range.
- the cumulative reduction ratio in this temperature range is 40% or more, the texture at the center of the sheet thickness is sufficiently developed, and the average reduction ratio per pass is set to 7.0% or more.
- the integration degree of the central RD // (110) plane can be 1.8 or more, preferably 2.0 or more.
- the cumulative rolling reduction is 65% or more as a whole by combining the austenite recrystallization temperature range and the austenite non-recrystallization temperature range.
- the austenite recrystallization temperature range and the austenite non-recrystallization temperature range can be grasped by conducting a preliminary experiment in which the steel having the component composition is given a heat / working history with varying conditions.
- end temperature of hot rolling is not particularly limited. From the viewpoint of rolling efficiency, it is preferable to terminate in the austenite non-recrystallization temperature range.
- the rolled steel sheet is cooled to 600 ° C. or lower at a cooling rate of 4.0 ° C./s or higher.
- a cooling rate of 4.0 ° C./s or higher.
- the cooling rate is less than 4.0 ° C./s, the structure becomes coarse, and the target toughness cannot be obtained.
- the cooling stop temperature is set to 600 ° C. or less, the progress of recrystallization can be avoided, and the desired texture obtained by hot rolling and subsequent cooling can be maintained.
- the cooling stop temperature is higher than 600 ° C., recrystallization proceeds even after the cooling stop and a desired texture cannot be obtained.
- cooling rate and cooling stop temperature be the temperature of the plate
- the temperature at the center of the plate thickness is obtained by simulation calculation or the like from the plate thickness, surface temperature, cooling conditions, and the like.
- the temperature at the center of the plate thickness of the steel sheet is obtained by calculating the temperature distribution in the plate thickness direction using the difference method.
- Tempering temperature as follows C1 points A steel plate average temperature, by carrying out the tempering treatment, it is possible not impair the desired tissue obtained by rolling and cooling.
- the AC1 point (° C.) is obtained by the following equation.
- a C1 point 751-26.6C + 17.6Si-11.6Mn-169Al-23Cu-23Ni + 24.1Cr + 22.5Mo + 233Nb-39.7V-5.7Ti-895B
- each element symbol is the content (% by mass) in steel, and 0 if not contained.
- the average temperature of the steel sheet can also be obtained by simulation calculation or the like from the sheet thickness, surface temperature, cooling conditions, etc., similarly to the temperature at the center of the sheet thickness.
- Molten steel (steel symbols A to R) of each composition shown in Table 1 is melted in a converter and made into a steel material (slab 250 mm thick) by a continuous casting method. After hot rolling to a plate thickness of 50 to 80 mm, cooling is performed. No. 1-30 test steels were obtained. Some were tempered after cooling. Table 2 shows hot rolling conditions, cooling conditions, and tempering conditions.
- ⁇ 14 JIS14A test piece was collected from 1/4 part of the plate thickness so that the longitudinal direction of the test piece was perpendicular to the rolling direction, a tensile test was performed, and the yield point (YS), Tensile strength (TS) was measured.
- the JIS No. 4 impact test piece was measured on the longitudinal axis of the test piece from the surface thickness layer portion and the plate thickness center portion (hereinafter, the plate thickness center portion may be referred to as 1/2 t portion). Samples were taken so that the direction was parallel to the rolling direction, and a Charpy impact test was performed to determine the fracture surface transition temperature (vTrs).
- the fracture surface transition temperature vTrs
- the surface closest to the surface is set to a depth of 1 mm from the steel plate surface.
- test steel sheet was grooved (groove angle 20 °), and a commercially available wire for low temperature steel electrogas arc welding was used.
- a joint was prepared by electrogas welding (EGW) at 750 kJ / cm).
- EGW electrogas welding
- HAZ toughness was measured by using a Charpy impact test piece with a notch in the bond portion at the 1 mm position on the front and back surfaces in the plate thickness direction. Absorption energy at a test temperature of ⁇ 20 ° C .: vE ⁇ 20 ° C. (average value of three) )
- the degree of integration of the RD // (110) plane at the plate thickness surface layer portion and the plate thickness center portion was determined as follows. First, a sample having a plate thickness of 1 mm is taken from the plate thickness surface layer portion or the plate thickness central portion, and a test piece for X-ray diffraction is prepared by mechanical polishing and electrolytic polishing of a plane parallel to the plate surface. In the case of the plate thickness surface layer portion, the surface closest to the outermost surface is polished. Using this test piece, an X-ray diffraction measurement was performed using an X-ray diffractometer using a Mo ray source, and (200), (110) and (211) positive electrode dot diagrams were obtained and obtained.
- a three-dimensional crystal orientation density function is calculated from the positive electrode dot diagram by the Bunge method.
- the integrated value is obtained by integrating the values of the three-dimensional crystal orientation density function of the orientation to be obtained, and a value obtained by dividing the integrated value by the number of the integrated orientations is defined as the degree of integration of the RD // (110) plane.
- Table 3 shows the results of these tests.
- Kca ⁇ 10 ° C.
- vE-20 ° C. showed an excellent value of 125 J or more.
- the value of Kca ( ⁇ 10 ° C.) is 6000 N / Mm 3/2 and / or the absorbed energy of the weld heat affected zone: vE-20 ° C. was less than 100 J, so it was inferior to the examples of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Arc Welding In General (AREA)
Abstract
Description
1.板厚50mmを超える厚鋼板について、標準ESSO試験の破面を詳細に調査した結果、図1(b)に示すような破面形態となる場合に、脆性亀裂の幅が小さくなるのに伴い亀裂先端部の応力拡大係数が小さくなり、その結果、鋼板のアレスト性能が高くなる。図1(a)(b)は標準ESSO試験片1のノッチ2から突入した亀裂3が母材5において先端形状4で伝播を停止した例を模式的に示す。
2.上記の様な破面形態を得るためには、板厚表層部と板厚中央部のアレスト性能を向上させる必要がある。板厚表層部と板厚中央部のアレスト性能を向上させる方法として、板厚表層部および板厚中央部の靭性を向上させることが有効である。しかし、板厚50mmを超えるような厚鋼板では冷却速度や圧下率等に制限があり、板厚中央部の靭性を向上させるには限界が存在する。
3.靭性向上の他にアレスト性能を向上させる手法としては、板厚中央部の集合組織を制御することが有効であり、特に圧延方向に対して平行に(110)面を集積させ、圧延方向あるいは板幅方向に進展する亀裂をそれぞれ圧延方向あるいは板幅方向から斜めに逸らすように集合組織制御を行うことが有効である。
4.さらに、板厚中央部がオーステナイト再結晶温度域にある状態での累積圧下率を20%以上、かつ、1パス当りの平均圧下率を5.0%以下とすることによって、板厚表層部の組織の微細化を図る。その後、板厚中央部がオーステナイト未再結晶温度域にある状態での累積圧下率を40%以上、かつ、1パス当りの平均圧下率を7.0%以上とすることにより、板厚中央部の靭性および集合組織を発達させることができ、上述の組織を実現できる。
5.大入熱溶接部の靭性を向上する手法として、TiN,CaSとMnSの複合硫化物を微細に分裂させ、溶接によって高温に曝された際の粒成長を抑制、且つ、その後の冷却過程で粒内変態を促進して室温での熱影響部組織を微細化することが有効である。
1.鋼組成が、質量%で、C:0.03~0.15%、Si:0.50%以下、Mn:1.0~2.0%、P:0.030%以下、S:0.0005~0.0040%、Al:0.005~0.10%、Ti:0.004~0.030%、N:0.0036~0.0075%以下、Ca:0.0005~0.0030%、O:0.0040%以下を含み、かつ、Ca、O、Sの各含有量は、下式(1)を満たし、残部がFeおよび不可避的不純物で、金属組織がフェライト主体であり、板厚表層部におけるRD//(110)面の集積度が1.3以上、板厚中央部におけるRD//(110)面の集積度が1.8以上の集合組織を有し、板厚表層部および板厚中央部におけるシャルピー破面遷移温度vTrsが-50℃以下であることを特徴とする脆性亀裂伝播停止特性に優れた大入熱溶接用高強度鋼板。
0<(Ca-(0.18+130×Ca)×O)/1.25/S≦0.8・・・(1)
ただし、式(1)において、Ca、O、Sは含有量(質量%)とする。
2.板厚表層部および板厚中央部のシャルピー破面遷移温度およびRD//(110)面の集積度が、下記(2)式を満たすことを特徴とする1記載の脆性亀裂伝播停止特性に優れた大入熱溶接用高強度鋼板。
vTrs(表層)+1.9×vTrs(1/2t)-6×IRD//(110)[表層]-84×IRD//(110)[1/2t]≦-350・・・(2)
ただし、式(2)において、
vTrs(表層):板厚表層部のシャルピー破面遷移温度 (℃)
vTrs(1/2t):板厚中央部(t/2)のシャルピー破面遷移温度 (℃)
IRD//(110)[表層]:板厚表層部のRD//(110)面の集積度
IRD//(110)[1/2t]:板厚中央部(t/2)のRD//(110)面の集積度
とする。なお、tは板厚(mm)である。
3.鋼組成が、更に、質量%で、Nb:0.003~0.050%、Cu:0.5%以下、Ni:1.0%以下、Cr:0.5%以下、Mo:0.5%以下、W:0.4%以下、V:0.2%以下、B:0.0003~0.0030%以下の1種または2種以上を含有することを特徴とする1または2に記載の脆性亀裂伝播停止特性に優れた大入熱溶接用高強度鋼板。
4.鋼組成が、更に、質量%で、Mg:0.0005~0.0050%、Zr:0.001~0.020%、REM:0.001~0.020%の1種または2種以上を含有することを特徴とする1乃至3のいずれか一つに記載の脆性亀裂伝播停止特性に優れた大入熱溶接用高強度鋼板。
5.1、3または4のいずれか一つに記載の組成を有する鋼素材を、900~1150℃の温度に加熱し、オーステナイト再結晶温度域とオーステナイト未再結晶温度域での累積圧下率の合計を65%以上、板厚中央部がオーステナイト再結晶温度域にある状態において、累積圧下率を20%以上、かつ、1パス当りの平均圧下率を5.0%以下とする圧延を実施し、次いで、板厚中央部がオーステナイト未再結晶温度域にある状態において、累積圧下率を40%以上、かつ、1パス当りの平均圧下率を7.0%以上とする圧延を行い、その後、4.0℃/s以上の冷却速度にて600℃以下まで冷却することを特徴とする脆性亀裂伝播停止特性に優れた大入熱溶接用高強度鋼板の製造方法。
6.600℃以下まで冷却した後、さらに、AC1点以下の温度に焼戻す工程を有することを特徴とする5に記載の脆性亀裂伝播停止特性に優れた大入熱溶接用高強度鋼板の製造方法。
以下、本発明における好ましい化学成分について説明する。説明において、%は質量%とする。
Cは鋼の強度を向上する元素であり、本発明では、所望の強度を確保するためには0.03%以上の含有を必要とする。一方、0.15%を超えると、溶接性が劣化するばかりか靭性にも悪影響がある。このため、Cは、0.03~0.15%とする。好ましくは0.05~0.15%である。
Siは脱酸元素として、また、鋼の強化元素として有効である。しかし、0.01%未満の含有量ではその効果がない場合がある。一方、0.50%を超えると鋼の表面性状を損なうばかりか靭性が劣化する。従ってその添加量を0.50%以下とする。好ましくは、0.01~0.40%の範囲である。
Mnは、強化元素として添加する。1.0%より少ないとその効果が十分でない。一方、2.0%を超えると溶接部の靱性を劣化させる。このため、Mnは1.0~2.0%とする。好ましくは、1.1~1.8%の範囲である。
Pは、不可避的に混入する不純物であり、0.030%を超えると、母材および溶接部の靭性を低下させる。このため、上限を0.030%とする。
Sは、所要のCaSあるいはMnSを生成するために0.0005%以上必要である。一方、0.0040%を超えると、母材の靭性を劣化させる。このため、Sは0.0005~0.0040%とする。
Alは、脱酸剤として作用し、このためには0.005%以上の含有を必要とする。しかし、0.10%を超えて含有すると、靭性を低下させるとともに、溶接した場合に、溶接金属部の靭性を低下させる。このため、Alは、0.005~0.10%の範囲に規定する。好ましくは0.005~0.08%、さらに、好ましくは、0.02~0.06%である。
Tiは微量の添加により、窒化物、炭化物、あるいは炭窒化物を形成し、溶接熱影響部でのオーステナイトの粗大化を抑制することにより、および/または、フェライト変態核としてフェライト変態を促進することにより、結晶粒を微細化して母材靭性を向上させる効果を有する。その効果は0.004%以上の添加によって得られる。しかし、0.030%を超える含有は、TiN粒子の粗大化により、母材および溶接熱影響部の靭性を低下させる。このため、Tiは、0.004~0.030%の範囲にする。好ましくは、0.006~0.028%の範囲である。
Nは、TiNの必要量を確保する上で必要な元素である。0.0036%未満では十分なTiN量が得られず、溶接部靭性が劣化する。0.0075%を超えると、溶接熱サイクルを受けた際にTiNが再固溶して固溶Nが過剰に生成して靭性が著しく劣化する。このため、Nは0.0036~0.0075%とする。好ましくは、0.0037~0.0068%の範囲である。
Caは、Sの固定による靭性改善効果を有する元素である。このような効果を発揮させるにはCaを0.0005%以上含有する必要がある。しかし、0.0030%を超えて含有しても効果が飽和する。このため、本発明では、Caは0.0005~0.0030%の範囲に限定する。
Oは不可避的不純物として鋼中に含有され、凝固時に酸化物となって析出し、鋼の清浄度を低下させる。このため、本発明ではできるだけOを低減することが望ましい。特に、O含有量が0.0040%を超えるとCaO系介在物が粗大化して母材靭性を低下させてしまう。このため、Oは0.0040%以下とする。
0<(Ca-(0.18+130×Ca)×O)/1.25/S≦0.8・・・(1)
ただし、式(1)において、Ca、O、Sは含有量(質量%)とする。
Ca、O、およびSは、式(1)の関係を満足するように含有させる必要がある。この場合には、CaS上にMnSが析出した複合硫化物の形態となる。この複合硫化物がフェライト変態の核として機能するので、溶接熱影響部の組織が微細化され、溶接熱影響部の靭性が向上する。(Ca-(0.18+130×Ca)×O)/1.25/Sの値が0以下であると、CaSが晶出しないためにSはMnS単独の形態で析出する。このMnSは鋼板製造時の圧延で伸長されて母材靭性低下を引き起こすとともに、本発明の主眼である溶接熱影響部でMnSが溶融するために微細分散が達成されない。一方、(Ca-(0.18+130×Ca)×O)/1.25/Sの値が0.8を超えると、SがほとんどCaによって固定され、フェライト生成核として作用するMnSがCaS上に析出しないため、十分な靭性向上が達成されない。(Ca-(0.18+130×Ca)×O)/1.25/Sの値の好ましい範囲は、0.10~0.8%である。
Nbは、NbCとしてフェライト変態時あるいは再加熱時に析出し、高強度化に寄与する。また、オーステナイト域の圧延において未再結晶温度域を拡大させる効果をもち、フェライトおよびベイナイトの細粒化に寄与するので、靭性の改善にも有効である。その効果はNbを0.003%以上含有することにより発揮されるので、含有させる場合には、0.003%以上とすることが好ましい。しかしながら、0.050%を超えて添加すると、粗大なNbCが析出し、逆に靭性の低下を招くので、含有させる場合には、その上限を0.050%とするのが好ましい。より好ましくは、0.005~0.040%の範囲である。
Cu、Ni、Cr、Mo、Wはいずれも鋼の焼入れ性を高める元素である。圧延後の強度アップに直接寄与するとともに、靭性、高温強度、あるいは耐候性などの機能向上のために添加することができる。これらの効果は0.01%以上含有することにより発揮されるので、含有させる場合には、0.01%以上とすることが好ましい。しかしながら、過度に含有すると靭性や溶接性が劣化するため、含有させる場合には、それぞれ上限をCuは0.5%、Niは1.0%、Crは0.5%、Moは0.5%、Wは0.4%とすることが好ましい。
Vは、V(C、N)として析出強化により、鋼の強度を向上する元素であり、この効果を発揮させるために0.001%以上含有させてもよい。しかし、0.2%を超えて含有すると、靭性を低下させる。このため、Vを含有させる場合には、0.2%以下とすることが好ましく、0.001~0.10%の範囲とすることがより好ましい。
Bは微量で鋼の焼き入れ性を高める元素である。この効果を発揮させるために0.0003%以上含有させてもよい。しかし、0.0030%を超えて含有すると溶接部の靭性を低下させるので、Bを含有させる場合には0.0030%以下とすることが好ましい。より好ましくは、0.0003~0.0026%の範囲である。
Mgは、酸化物の分散による靱性改善効果を有する元素であるので、必要に応じて添加してもよい。この効果は0.0005%以上含有することにより発揮されるので、含有させる場合には、0.0005%以上とすることが好ましい。しかし、0.0050%を超えて含有しても効果が飽和するので、Mgを添加する場合には、添加量を0.0005~0.0050%とするのが好ましい。
Zrは、鋼中で酸化物を形成して、その酸化物が分散することにより溶接熱影響部の組織を微細化し靭性を向上させる効果を有し、添加しても本発明の効果が損なわれることはないので必要に応じて添加してもよい。この効果は0.001%以上含有することにより発揮されるので、含有させる場合には、0.001%以上とすることが好ましい。しかし、過度に添加すると、効果が飽和し、さらに、粗大な介在物を形成し母材の靭性を劣化させるので、添加する場合には、添加量の上限を0.020%とするのが好ましい。
REMは、鋼中で酸化物を形成して、その酸化物が分散することにより溶接熱影響部の組織を微細化し靭性を向上させる効果を有し、添加しても本発明の効果が損なわれることはないので必要に応じて添加してもよい。この効果は0.001%以上含有することにより発揮されるので、含有させる場合には、0.001%以上とすることが好ましい。しかし、過度に添加すると、効果が飽和し、さらに、粗大な介在物を形成し母材の靭性を劣化させるので、添加する場合には、添加量の上限を0.020%とするのが好ましい。
本発明では、圧延方向または圧延直角方向など水平方向(鋼板の面内方向)に進展する亀裂に対して亀裂伝播停止特性を向上させることのできる図1の破面形態を得るために、板厚表層部および中央部での靭性とRD//(110)面の集積度とを、適宜規定する。
vTrs(表層)+1.9×vTrs(1/2t)-6×IRD//(110)[表層]-84×IRD//(110)[1/2t]≦-350・・・(2)
ただし、式(2)において
vTrs(表層):板厚表層部のシャルピー破面遷移温度(℃)
vTrs(1/2t):板厚中央部のシャルピー破面遷移温度(℃)
IRD//(110)[表層]:板厚表層部のRD//(110)面の集積度
IRD//(110)[1/2t]:板厚中央部のRD//(110)面の集積度
とする。なお、tは板厚(mm)である。
本発明において、金属組織がフェライト主体であるものとする。ここで、本発明において、金属組織がフェライト主体であるとは、フェライト相の面積分率が全体の60%以上であることとする。残部は、ベイナイト、マルテンサイト(島状マルテンサイトを含む)、パーライトなどが合計の面積分率で40%以下であれば許容される。
以下、本発明における好ましい製造条件について説明する。
AC1点=751-26.6C+17.6Si-11.6Mn-169Al-23Cu-23Ni+24.1Cr+22.5Mo+233Nb-39.7V-5.7Ti-895B
上記式において、各元素記号は鋼中含有量(質量%)であり、含有しない場合は0とする。
2 ノッチ
3 亀裂
4 先端形状
5 母材
Claims (6)
- 鋼組成が、質量%で、C:0.03~0.15%、Si:0.50%以下、Mn:1.0~2.0%、P:0.030%以下、S:0.0005~0.0040%、Al:0.005~0.10%、Ti:0.004~0.030%、N:0.0036~0.0075%以下、Ca:0.0005~0.0030%、O:0.0040%以下を含み、かつ、Ca、O、Sの各含有量は、下式(1)を満たし、残部がFeおよび不可避的不純物で、金属組織がフェライト主体であり、板厚表層部におけるRD//(110)面の集積度が1.3以上、板厚中央部におけるRD//(110)面の集積度が1.8以上の集合組織を有し、板厚表層部および板厚中央部におけるシャルピー破面遷移温度vTrsが-50℃以下であることを特徴とする脆性亀裂伝播停止特性に優れた大入熱溶接用高強度鋼板。
0<(Ca-(0.18+130×Ca)×O)/1.25/S≦0.8・・・(1)
ただし、式(1)において、Ca、O、Sは含有量(質量%)とする。 - 板厚表層部および板厚中央部のシャルピー破面遷移温度およびRD//(110)面の集積度が、下記(2)式を満たすことを特徴とする請求項1記載の脆性亀裂伝播停止特性に優れた大入熱溶接用高強度鋼板。
vTrs(表層)+1.9×vTrs(1/2t)-6×IRD//(110)[表層]-84×IRD//(110)[1/2t]≦-350・・・(2)
ただし、式(2)において、
vTrs(表層):板厚表層部のシャルピー破面遷移温度(℃)
vTrs(1/2t):板厚中央部(t/2)のシャルピー破面遷移温度(℃)
IRD//(110)[表層]:板厚表層部のRD//(110)面の集積度
IRD//(110)[1/2t]:板厚中央部(t/2)のRD//(110)面の集積度
とする。なお、tは板厚(mm)である。 - 鋼組成が、更に、質量%で、Nb:0.003~0.050%、Cu:0.5%以下、Ni:1.0%以下、Cr:0.5%以下、Mo:0.5%以下、W:0.4%以下、V:0.2%以下、B:0.0003~0.0030%の1種または2種以上を含有することを特徴とする請求項1または2に記載の脆性亀裂伝播停止特性に優れた大入熱溶接用高強度鋼板。
- 鋼組成が、更に、質量%で、Mg:0.0005~0.0050%、Zr:0.001~0.020%、REM:0.001~0.020%の1種または2種以上を含有することを特徴とする請求項1乃至3のいずれか一つに記載の脆性亀裂伝播停止特性に優れた大入熱溶接用高強度鋼板。
- 請求項1、3または4のいずれか一つに記載の組成を有する鋼素材を、900~1150℃の温度に加熱し、オーステナイト再結晶温度域とオーステナイト未再結晶温度域での累積圧下率の合計を65%以上、板厚中央部がオーステナイト再結晶温度域にある状態において、累積圧下率を20%以上、かつ、1パス当りの平均圧下率を5.0%以下とする圧延を実施し、
次いで、板厚中央部がオーステナイト未再結晶温度域にある状態において、累積圧下率を40%以上、かつ、1パス当りの平均圧下率を7.0%以上とする圧延を行い、その後、4.0℃/s以上の冷却速度にて600℃以下まで冷却することを特徴とする脆性亀裂伝播停止特性に優れた大入熱溶接用高強度鋼板の製造方法。 - 600℃以下まで冷却した後、さらに、AC1点以下の温度に焼戻す工程を有することを特徴とする請求項5に記載の脆性亀裂伝播停止特性に優れた大入熱溶接用高強度鋼板の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157025128A KR101984531B1 (ko) | 2013-03-26 | 2013-10-24 | 취성 균열 전파 정지 특성과 대입열 용접 특성이 우수한 대입열 용접용 고강도 강판과 그의 제조 방법 |
BR112015021658A BR112015021658A2 (pt) | 2013-03-26 | 2013-10-24 | placa de aço espessa de alta resistência com capacidade de interrupção de trinca frágil superior para soldagem de entrada de alto calor e método para fabricar a mesma |
JP2013549633A JP5598617B1 (ja) | 2013-03-26 | 2013-10-24 | 脆性亀裂伝播停止特性に優れた大入熱溶接用高強度厚鋼板およびその製造方法 |
CN201380075179.0A CN105102651B (zh) | 2013-03-26 | 2013-10-24 | 脆性裂纹传播停止特性优良的大线能量焊接用高强度钢板及其制造方法 |
KR1020177028477A KR20170117235A (ko) | 2013-03-26 | 2013-10-24 | 취성 균열 전파 정지 특성과 대입열 용접 특성이 우수한 대입열 용접용 고강도 강판과 그의 제조 방법 |
PH12015501681A PH12015501681A1 (en) | 2013-03-26 | 2015-07-29 | High strength thick steel plate with superior brittle crack arrestability for high heat input welding and method for manufacturing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-064105 | 2013-03-26 | ||
JP2013064105 | 2013-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014155439A1 true WO2014155439A1 (ja) | 2014-10-02 |
Family
ID=51622538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/006308 WO2014155439A1 (ja) | 2013-03-26 | 2013-10-24 | 脆性亀裂伝播停止特性に優れた大入熱溶接用高強度鋼板およびその製造方法 |
Country Status (7)
Country | Link |
---|---|
JP (1) | JP5598617B1 (ja) |
KR (2) | KR101984531B1 (ja) |
CN (1) | CN105102651B (ja) |
BR (1) | BR112015021658A2 (ja) |
PH (1) | PH12015501681A1 (ja) |
TW (1) | TWI500774B (ja) |
WO (1) | WO2014155439A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104694850A (zh) * | 2015-03-12 | 2015-06-10 | 东北大学 | 一种止裂性能优异的厚钢板及其制造方法 |
JP6274375B1 (ja) * | 2016-08-09 | 2018-02-07 | Jfeスチール株式会社 | 高強度厚鋼板およびその製造方法 |
WO2018030171A1 (ja) * | 2016-08-09 | 2018-02-15 | Jfeスチール株式会社 | 高強度厚鋼板およびその製造方法 |
US11112493B2 (en) | 2018-01-12 | 2021-09-07 | Samsung Electronics Co., Ltd. | LiDAR system and method of driving the same |
JP2023014929A (ja) * | 2021-07-19 | 2023-01-31 | Jfeスチール株式会社 | 鋼板およびその製造方法 |
WO2023233853A1 (ja) * | 2022-06-01 | 2023-12-07 | Jfeスチール株式会社 | 大入熱溶接用鋼板およびその製造方法 |
JP7663699B2 (ja) | 2021-02-09 | 2025-04-16 | バオシャン アイアン アンド スティール カンパニー リミテッド | 耐衝突破壊性船体構造用鋼およびその製造方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101964247B1 (ko) * | 2015-03-12 | 2019-04-01 | 제이에프이 스틸 가부시키가이샤 | 고강도 극후 강판 및 그의 제조 방법 |
JP6338022B2 (ja) * | 2016-02-24 | 2018-06-06 | Jfeスチール株式会社 | 脆性き裂伝播停止特性に優れた高強度極厚鋼板およびその製造方法 |
KR20230159634A (ko) * | 2018-12-07 | 2023-11-21 | 제이에프이 스틸 가부시키가이샤 | 강판 및 그 제조 방법 |
CN110343957B (zh) * | 2019-07-22 | 2021-06-15 | 盐城市联鑫钢铁有限公司 | 一种高强度耐火耐腐蚀建筑用钢及其制造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009072559A1 (ja) * | 2007-12-06 | 2009-06-11 | Nippon Steel Corporation | 脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板 |
JP2010106310A (ja) * | 2008-10-29 | 2010-05-13 | Kobe Steel Ltd | 脆性亀裂伝播停止特性に優れた厚鋼板 |
JP2010202938A (ja) * | 2009-03-04 | 2010-09-16 | Kobe Steel Ltd | 脆性亀裂伝播停止特性に優れた厚鋼板 |
JP2010209433A (ja) * | 2009-03-11 | 2010-09-24 | Kobe Steel Ltd | 溶接熱影響部の靭性および母材疲労特性に優れた鋼材およびその製造方法 |
JP2010242119A (ja) * | 2009-04-01 | 2010-10-28 | Kobe Steel Ltd | 脆性亀裂伝播停止特性および疲労亀裂進展抑制特性に優れた厚鋼板 |
JP2011006772A (ja) * | 2009-05-22 | 2011-01-13 | Jfe Steel Corp | 大入熱溶接用鋼材 |
JP2011127220A (ja) * | 2009-11-18 | 2011-06-30 | Kobe Steel Ltd | 溶接熱影響部の靱性に優れた鋼材の製造方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS546308A (en) | 1977-06-16 | 1979-01-18 | Ishikawajima Harima Heavy Ind | Pedestal in steel |
JPS548349A (en) | 1977-06-22 | 1979-01-22 | Mitsubishi Electric Corp | Elevator door device |
JP2659661B2 (ja) | 1993-01-06 | 1997-09-30 | 新日本製鐵株式会社 | 継手部の脆性破壊伝播停止性能の優れた溶接用構造用鋼とその製造方法 |
JPH07100814A (ja) | 1993-10-04 | 1995-04-18 | Sekisui Chem Co Ltd | セメント成形品の製造方法 |
JP3467767B2 (ja) | 1998-03-13 | 2003-11-17 | Jfeスチール株式会社 | 脆性亀裂伝播停止特性に優れた鋼材およびその製造方法 |
JP4077167B2 (ja) | 2001-02-28 | 2008-04-16 | 株式会社神戸製鋼所 | アレスト特性に優れた鋼板およびその製法 |
JP5284015B2 (ja) * | 2008-09-04 | 2013-09-11 | 株式会社神戸製鋼所 | 脆性亀裂伝播停止特性に優れた厚鋼板 |
CA2714894C (en) * | 2008-10-27 | 2012-11-13 | Nippon Steel Corporation | Fire-resistant steel material superior in weld heat affected zone reheat embrittlement resistance and low temperature toughness and method of production of same |
JP5434145B2 (ja) * | 2009-03-04 | 2014-03-05 | Jfeスチール株式会社 | 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法 |
JP5477578B2 (ja) * | 2010-04-01 | 2014-04-23 | 新日鐵住金株式会社 | 脆性き裂伝播停止特性に優れた厚手高強度鋼板及びその製造方法 |
CN102373371B (zh) * | 2010-08-25 | 2013-10-30 | 宝山钢铁股份有限公司 | 一种提高厚钢板大线能量焊接性能的方法 |
JP5304924B2 (ja) * | 2011-12-27 | 2013-10-02 | Jfeスチール株式会社 | 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法 |
CN102605247B (zh) * | 2012-03-09 | 2014-06-04 | 宝山钢铁股份有限公司 | 一种大线能量焊接厚钢板及其制造方法 |
-
2013
- 2013-10-24 CN CN201380075179.0A patent/CN105102651B/zh active Active
- 2013-10-24 WO PCT/JP2013/006308 patent/WO2014155439A1/ja active Application Filing
- 2013-10-24 KR KR1020157025128A patent/KR101984531B1/ko active Active
- 2013-10-24 BR BR112015021658A patent/BR112015021658A2/pt not_active Application Discontinuation
- 2013-10-24 JP JP2013549633A patent/JP5598617B1/ja active Active
- 2013-10-24 KR KR1020177028477A patent/KR20170117235A/ko not_active Abandoned
-
2014
- 2014-03-24 TW TW103110890A patent/TWI500774B/zh active
-
2015
- 2015-07-29 PH PH12015501681A patent/PH12015501681A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009072559A1 (ja) * | 2007-12-06 | 2009-06-11 | Nippon Steel Corporation | 脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板の製造方法、及び、脆性破壊伝播停止特性と大入熱溶接熱影響部靭性に優れた厚手高強度鋼板 |
JP2010106310A (ja) * | 2008-10-29 | 2010-05-13 | Kobe Steel Ltd | 脆性亀裂伝播停止特性に優れた厚鋼板 |
JP2010202938A (ja) * | 2009-03-04 | 2010-09-16 | Kobe Steel Ltd | 脆性亀裂伝播停止特性に優れた厚鋼板 |
JP2010209433A (ja) * | 2009-03-11 | 2010-09-24 | Kobe Steel Ltd | 溶接熱影響部の靭性および母材疲労特性に優れた鋼材およびその製造方法 |
JP2010242119A (ja) * | 2009-04-01 | 2010-10-28 | Kobe Steel Ltd | 脆性亀裂伝播停止特性および疲労亀裂進展抑制特性に優れた厚鋼板 |
JP2011006772A (ja) * | 2009-05-22 | 2011-01-13 | Jfe Steel Corp | 大入熱溶接用鋼材 |
JP2011127220A (ja) * | 2009-11-18 | 2011-06-30 | Kobe Steel Ltd | 溶接熱影響部の靱性に優れた鋼材の製造方法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104694850A (zh) * | 2015-03-12 | 2015-06-10 | 东北大学 | 一种止裂性能优异的厚钢板及其制造方法 |
JP6274375B1 (ja) * | 2016-08-09 | 2018-02-07 | Jfeスチール株式会社 | 高強度厚鋼板およびその製造方法 |
WO2018030171A1 (ja) * | 2016-08-09 | 2018-02-15 | Jfeスチール株式会社 | 高強度厚鋼板およびその製造方法 |
US11112493B2 (en) | 2018-01-12 | 2021-09-07 | Samsung Electronics Co., Ltd. | LiDAR system and method of driving the same |
JP7663699B2 (ja) | 2021-02-09 | 2025-04-16 | バオシャン アイアン アンド スティール カンパニー リミテッド | 耐衝突破壊性船体構造用鋼およびその製造方法 |
JP2023014929A (ja) * | 2021-07-19 | 2023-01-31 | Jfeスチール株式会社 | 鋼板およびその製造方法 |
JP7548148B2 (ja) | 2021-07-19 | 2024-09-10 | Jfeスチール株式会社 | 鋼板およびその製造方法 |
WO2023233853A1 (ja) * | 2022-06-01 | 2023-12-07 | Jfeスチール株式会社 | 大入熱溶接用鋼板およびその製造方法 |
JP7444339B1 (ja) | 2022-06-01 | 2024-03-06 | Jfeスチール株式会社 | 大入熱溶接用鋼板およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20170117235A (ko) | 2017-10-20 |
CN105102651A (zh) | 2015-11-25 |
TW201502282A (zh) | 2015-01-16 |
BR112015021658A2 (pt) | 2017-07-18 |
CN105102651B (zh) | 2018-01-05 |
PH12015501681A1 (en) | 2015-10-19 |
TWI500774B (zh) | 2015-09-21 |
KR101984531B1 (ko) | 2019-05-31 |
JPWO2014155439A1 (ja) | 2017-02-16 |
JP5598617B1 (ja) | 2014-10-01 |
KR20150119281A (ko) | 2015-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5598617B1 (ja) | 脆性亀裂伝播停止特性に優れた大入熱溶接用高強度厚鋼板およびその製造方法 | |
JP5598618B1 (ja) | 脆性亀裂伝播停止特性に優れた大入熱溶接用高強度厚鋼板およびその製造方法 | |
JP5304925B2 (ja) | 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法 | |
JP6536514B2 (ja) | 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法 | |
JP5146198B2 (ja) | 大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法 | |
WO2013099179A1 (ja) | 脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法 | |
JP5900312B2 (ja) | 大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法 | |
JP5304924B2 (ja) | 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法 | |
JP2010202931A (ja) | 脆性亀裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法 | |
WO2016143345A1 (ja) | 高強度極厚鋼板およびその製造方法 | |
JP5812193B2 (ja) | 脆性き裂伝播停止特性に優れた構造用高強度厚鋼板およびその製造方法 | |
JP6477743B2 (ja) | 脆性き裂伝播停止特性および溶接熱影響部靭性に優れた高強度極厚鋼板およびその製造方法 | |
JP5146043B2 (ja) | 大入熱溶接部の靭性および脆性き裂伝播停止特性に優れた高強度厚鋼板およびその製造方法 | |
JP6338022B2 (ja) | 脆性き裂伝播停止特性に優れた高強度極厚鋼板およびその製造方法 | |
JP5838801B2 (ja) | 厚鋼板及び厚鋼板の製造方法 | |
JP6274375B1 (ja) | 高強度厚鋼板およびその製造方法 | |
KR102193527B1 (ko) | 고강도 후강판 및 그의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201380075179.0 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2013549633 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13879815 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20157025128 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112015021658 Country of ref document: BR |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13879815 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 112015021658 Country of ref document: BR Kind code of ref document: A2 Effective date: 20150904 |