[go: up one dir, main page]

WO2014141569A1 - 自動変速機の制御装置 - Google Patents

自動変速機の制御装置 Download PDF

Info

Publication number
WO2014141569A1
WO2014141569A1 PCT/JP2013/085102 JP2013085102W WO2014141569A1 WO 2014141569 A1 WO2014141569 A1 WO 2014141569A1 JP 2013085102 W JP2013085102 W JP 2013085102W WO 2014141569 A1 WO2014141569 A1 WO 2014141569A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
clutch
automatic transmission
engagement clutch
engagement
Prior art date
Application number
PCT/JP2013/085102
Other languages
English (en)
French (fr)
Inventor
良平 豊田
月▲崎▼ 敦史
日比 利文
金子 豊
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201380074677.3A priority Critical patent/CN105008769A/zh
Priority to EP13877918.6A priority patent/EP2975301A4/en
Priority to JP2015505244A priority patent/JPWO2014141569A1/ja
Priority to US14/769,253 priority patent/US20150375750A1/en
Publication of WO2014141569A1 publication Critical patent/WO2014141569A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0437Smoothing ratio shift by using electrical signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/16Inhibiting or initiating shift during unfavourable conditions, e.g. preventing forward reverse shift at high vehicle speed, preventing engine over speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2306/00Shifting
    • F16H2306/24Interruption of shift, e.g. if new shift is initiated during ongoing previous shift

Definitions

  • the present invention relates to an automatic transmission control device including an automatic transmission having an engagement clutch, and a shift controller that performs shift control of the automatic transmission.
  • an automatic transmission control device that includes a stepped automatic transmission having a dog clutch that is fastened at a low speed and a friction clutch that is fastened as a speed change element, and that shifts between the dog clutch and the friction clutch.
  • a stepped automatic transmission having a dog clutch that is fastened at a low speed and a friction clutch that is fastened as a speed change element, and that shifts between the dog clutch and the friction clutch.
  • the present invention has been made paying attention to the above problems, and is a control device for an automatic transmission that can promptly respond to a new shift request for engaging an engagement clutch generated during shift control for releasing the engagement clutch.
  • the purpose is to provide.
  • a control device for an automatic transmission according to the present invention in a drive system of a vehicle, and includes an automatic transmission having an engagement clutch as a shift element, and a shift controller that performs shift control of the automatic transmission. And. Then, the shift controller performs a second shift request for engaging the engagement clutch before determining completion of the release of the engagement clutch during the shift control for releasing the engagement clutch according to the first shift request. If there is, the shift control according to the second shift request is executed.
  • Shift control by the second shift request is executed by the controller. That is, if it is before the completion of disengagement of the engagement clutch is determined, the shift control by the first shift request is interrupted, and the second shift request for engaging the engagement clutch is executed. For this reason, the second shift request generated after the first shift request can be satisfied quickly. As a result, it is possible to promptly respond to a new shift request for engaging the engagement clutch generated during the shift control for releasing the engagement clutch.
  • FIG. 1 is an overall system configuration diagram illustrating a drive system configuration and a control system configuration of an electric vehicle (an example of a vehicle) to which a control device according to a first embodiment is applied.
  • FIG. 3 is a control block diagram illustrating a detailed configuration of a shift control system according to the first embodiment.
  • It is explanatory drawing which shows the principal part cross section of the engagement clutch of Example 1.
  • FIG. It is explanatory drawing which shows operation
  • FIG. 3 is a flowchart illustrating a flow of a shift control process executed by the shift controller according to the first embodiment. It is a shift map figure which shows an example of the upshift line and downshift line of an automatic transmission used with the transmission controller of Example 1. In the control device of the first embodiment, even if there is a 2 ⁇ 1 shift request during the 1 ⁇ 2 shift control, the automatic transmission output rotational speed, the automatic transmission output torque, the motor rotational speed, It is a time chart which shows each characteristic of motor torque, engagement clutch transmission torque, friction clutch transmission torque, engagement clutch sleeve position, and friction clutch slider position.
  • FIG. 5 is a time chart showing characteristics of motor torque, engagement clutch transmission torque, friction clutch transmission torque, engagement clutch sleeve position, and friction clutch slider position.
  • 6 is a flowchart illustrating a flow of a shift control process executed by a shift controller according to a second embodiment.
  • Example 1 First, the configuration will be described.
  • the configuration of the automatic transmission control device mounted on the electric vehicle (an example of a vehicle) in the first embodiment is divided into “overall system configuration”, “detailed configuration of transmission control system”, and “transmission control processing configuration”. To do.
  • FIG. 1 shows a drive system configuration and a control system configuration of an electric vehicle to which the control device of the first embodiment is applied.
  • the overall system configuration will be described below with reference to FIG.
  • the drive system configuration of the electric vehicle includes a motor generator MG, an automatic transmission 3, and drive wheels 14.
  • the motor generator MG is used as a drive motor during power running, and is used as a generator during regeneration, and its motor shaft is connected to the transmission input shaft 6 of the automatic transmission 3.
  • the automatic transmission 3 is a constantly meshing stepped transmission that transmits power by one of two gear pairs having different gear ratios, and has a high gear stage (high speed stage) with a small reduction ratio and a low gear stage with a large reduction ratio. Two-speed transmission having (low speed) is used.
  • the automatic transmission 3 includes a low-side transmission mechanism 8 that realizes a low gear stage and a high-side transmission mechanism 9 that realizes a high gear stage.
  • the transmission input shaft 6 and the transmission output shaft 7 are arranged in parallel.
  • the low-side transmission mechanism 8 is for selecting a low-side transmission path, and is disposed on the transmission output shaft 7.
  • the low-side transmission mechanism 8 is engaged and engaged with the transmission output shaft 7 so that the low-speed gear pair 80 (gear 81, gear 82) is drivingly coupled between the transmission input / output shafts 6 and 7.
  • This is constituted by an engagement clutch 83 (meshing clutch) that performs the release.
  • the low-speed gear pair 80 includes a gear 81 rotatably supported on the transmission output shaft 7 and a gear 82 that meshes with the gear 81 and rotates together with the transmission input shaft 6.
  • the high-side transmission mechanism 9 is for selecting a high-side transmission path and is disposed on the transmission input shaft 6.
  • the high-side speed change mechanism 9 is configured so that the high-speed gear pair 90 (gear 91, gear 92) is frictionally engaged with the transmission input shaft 6 so that the transmission input / output shafts 6 and 7 are coupled to each other.
  • the friction clutch 93 that opens is configured.
  • the high speed gear pair includes a gear 91 rotatably supported on the transmission input shaft 6 and a gear 92 that meshes with the gear 91 and rotates together with the transmission output shaft 7.
  • the transmission output shaft 7 fixes a gear 11 and drives and couples a differential gear device 13 to the transmission output shaft 7 via a final drive gear set including the gear 11 and a gear 12 meshing with the gear 11. .
  • the motor power of the motor generator MG reaching the transmission output shaft 7 passes through the final drive gear set (gears 11 and 12) and the differential gear device 13 and the left and right drive wheels 14 (in FIG. 1, one drive wheel is shown). Only shown).
  • the control system configuration of the electric vehicle includes a shift controller 21, a vehicle speed sensor 22, an accelerator opening sensor 23, a brake stroke sensor 24, a longitudinal acceleration sensor 25, a slider position sensor 26, and a sleeve position sensor 27.
  • a motor controller 28, a brake controller 29, an integrated controller 30, and a CAN communication line 31 are provided.
  • the shift controller (transmission controller) 21 is configured to release the friction and release the engagement clutch 83 when the up-shift to the high gear stage is performed with the engagement clutch 83 engaged and the friction clutch 93 opened. Replacement control by friction engagement of the clutch 93 is performed. When the downshift to the low gear stage is performed with the engagement clutch 83 disengaged and the friction clutch 93 selected with the high gear stage for friction engagement, the replacement is performed by engaging the engagement clutch 83 and releasing the friction clutch 93. Carry out control. That is, in the up shift, the engagement clutch 83 that is a mesh clutch serves as a disengagement element, and in the down shift, the engagement clutch 83 that is a mesh clutch serves as a fastening element.
  • FIG. 2 shows a detailed configuration of the shift control system of the first embodiment. The detailed configuration of the shift control system will be described below with reference to FIG.
  • the shift control system of the electric vehicle control system includes an engagement clutch 83, a friction clutch 93, a motor generator MG, a hydraulic brake 15, a shift controller 21, And an integrated controller 30. That is, the engagement clutch 83 and the friction clutch 93 are configured to perform shift control of upshift / downshift according to a command from the shift controller 21. In addition, the motor generator MG and the hydraulic brake 15 are configured to perform regenerative cooperative brake control according to a command from the integrated controller 30.
  • the engagement clutch 83 is a clutch by synchro engagement and includes a clutch gear 84 provided on the gear 81, a clutch hub 85 coupled to the transmission output shaft 7, and a coupling sleeve 86 ( (See FIG. 1). Then, the coupling sleeve 86 is stroke driven by the first electric actuator 41 shown in FIG. 2 to engage / disengage the engagement.
  • the coupling sleeve 86 including the first electric actuator 41 corresponds to the “engagement clutch actuator” recited in the claims. Engagement engagement and release of the engagement clutch 83 are determined by the position of the coupling sleeve 86.
  • the shift controller 21 reads the value of the sleeve position sensor 27, and supplies a current to the first electric actuator 41 so that the sleeve position becomes the fastening position or the open position, for example, a position by PID control. Servo system).
  • the gear 81 is drivingly connected to the transmission output shaft 7. .
  • the gear 81 is shifted when it is in the non-engagement position (open position) with one of the clutch gear 84 and the outer peripheral clutch teeth of the clutch hub 85. Disconnect from the machine output shaft 7.
  • the coupling sleeve 86 is supported so as to be movable in the axial direction which is the left-right direction in FIG. 3A while maintaining a state where it is engaged with a spline portion (not shown) formed on the outer periphery of the clutch hub 85 (see FIG. 1). Has been. Then, the axial movement of the coupling sleeve 86 is performed by driving the first electric actuator 41 (see FIG. 2).
  • the clutch gear 84 has a spline portion 84a that can mesh with a spline portion 86a formed on the inner periphery of the coupling sleeve 86 on the outer periphery. Further, a synchronizer ring 87 is attached to the clutch gear 84 on the outer periphery of the tapered cone portion 84b so as to be movable in the axial direction.
  • the synchronizer ring 87 has a spline portion 87a that can mesh with the spline portion 86a of the coupling sleeve 86 on the outer periphery. Further, the synchronizer ring 87 is configured to be relatively movable in the rotational direction with respect to the key 88 provided on the coupling sleeve 86 by a gap formed by the key groove 87c (see FIG. 3B and the like).
  • the coupling sleeve 86 is moved in the axial direction in the direction close to the clutch gear 84 together with the key 88 by the first electric actuator 41 (see FIG. 2) as shown in FIG. It is made to contact the cone part 84b.
  • both chamfer portions 87b and 86b come into contact as shown in FIG. 3C.
  • the synchronizer ring 87 further pushes the cone portion 84b to generate a friction torque, and the synchronizer ring 87, the coupling sleeve 86, and the clutch gear 84 are synchronized.
  • the friction is provided between the gear 81 and the clutch hub 85 and is generated as the coupling sleeve 86 is moved in the axial direction, and is generated as the engagement side of the engagement clutch 83 is moved relative to the output side.
  • the input side and output side are rotated synchronously by force. That is, the clutch gear 84, the coupling sleeve 86, and the synchronizer ring 87 constitute a synchronization mechanism.
  • the coupling sleeve 86 When the engagement clutch 83 is released from the engaged engagement state, the coupling sleeve 86 is axially moved away from the clutch gear 84 together with the key 88 by the first electric actuator 41 (see FIG. 2). Move. At this time, the spline portion 86 a of the coupling sleeve 86 is pulled out from the spline portion 87 a of the synchronizer ring 87.
  • the friction clutch 93 includes a driven plate 94 that rotates together with the gear 91 and a drive plate 95 that rotates together with the transmission input shaft 6 (see FIG. 1). Then, the second electric actuator 42 drives the slider 96 that applies a pressing force to the plates 94 and 95, thereby engaging / releasing the friction.
  • the transmission torque capacity of the friction clutch 93 is determined by the position of the slider 96.
  • the slider 96 is a screw mechanism, and a mechanism for holding the position when the input of the second electric actuator 42 is 0 (zero). It has become.
  • the speed change controller 21 reads the value of the slider position sensor 26 and supplies a current to the second electric actuator 42 so as to obtain a slider position where a desired transmission torque capacity can be obtained (for example, a position by PID control).
  • a desired transmission torque capacity for example, a position by PID control).
  • Servo system The friction clutch 93 rotates integrally with the transmission input shaft 6 to drive-couple the gear 91 to the transmission input shaft 6 when frictionally engaged, and when disengaged, the gear 91 and the transmission input shaft 6 drive connection is disconnected.
  • the motor generator MG is subjected to power running control or regenerative control by a motor controller 28 that receives a command output from the integrated controller 30. That is, when the motor controller 28 inputs a motor torque command, the motor generator MG is controlled in power running. When motor controller 28 inputs a regenerative torque command, motor generator MG is regeneratively controlled.
  • the hydraulic brake 15 applies a hydraulic braking force to the drive wheel 14 by the brake fluid supplied via the brake pedal 16 ⁇ the electric booster 17 ⁇ the master cylinder 18 ⁇ the brake hydraulic actuator 19.
  • the hydraulic brake 15 controls the brake hydraulic pressure by outputting a drive command corresponding to the sharing of the hydraulic braking force to the electric booster 17.
  • the regenerative cooperative brake control is to achieve the required braking force (or the required deceleration) calculated based on the brake stroke amount BST from the brake stroke sensor 24 by sharing the regenerative braking force and the hydraulic braking force. Refers to control.
  • the regenerative braking force is determined based on the maximum regenerative torque possible at that time, and the remainder obtained by subtracting the regenerative braking force from the required braking force is shared by the hydraulic braking force.
  • the shift controller 21 receives information from the vehicle speed sensor 22, the accelerator opening sensor 23, the brake stroke sensor 24, the longitudinal acceleration sensor 25, and the like, and controls the shift of the automatic transmission 3 using, for example, a shift map shown in FIG. (Upshift, downshift) is executed.
  • FIG. 4 shows a flow of a shift control process executed by the shift controller according to the first embodiment.
  • each step representing the shift control processing configuration will be described with reference to FIG.
  • step S1 whether an up shift request (first shift request) to the high gear stage for releasing the engagement clutch 83 has occurred in a state where the low gear stage to which the engagement clutch 83 is engaged is selected. Judge whether or not. If YES (there is an upshift request), the process proceeds to step S2, and if NO (no upshift request is requested), step S1 is repeated.
  • the upshift request is made when the operating point determined by the vehicle speed VSP and the required motor torque crosses the upshift line due to, for example, an increase in the vehicle speed VSP in the shift map (FIG. 5) used in the shift controller 21. appear.
  • the vehicle speed VSP is detected by the vehicle speed sensor 22.
  • the required motor torque is calculated based on the accelerator opening APO detected by the accelerator opening sensor 23 or the brake stroke amount BST detected by the brake stroke sensor 24.
  • step S2 following the determination that there is an upshift request in step S1, execution of upshift control is started, and the process proceeds to step S3.
  • the changeover control is started in which the engagement clutch 83 is changed from engagement to release and the friction clutch 93 is changed from release to engagement.
  • step S3 following the determination that the upshift control is started in step S2, it is determined whether or not a downshift request (second shift request) to the low gear stage for engaging and engaging the engagement clutch 83 has occurred. To do. If YES (downshift request is present), the process proceeds to step S4. If NO (downshift request is not requested), the process proceeds to step S5.
  • the downshift request is generated when the operating point determined by the vehicle speed and the required motor torque crosses the downshift line due to, for example, the driver's accelerator depression in the shift map (FIG. 5) used in the shift controller 21.
  • step S4 following the determination that there is a downshift request in step S3, it is determined whether or not the stroke position of the coupling sleeve 86 of the engagement clutch 83 when the downshift request has occurred exceeds a preset threshold position. To do. If YES (stroke position> threshold position), the process proceeds to step S5. If NO (stroke position ⁇ threshold position), the process proceeds to step S6.
  • the “threshold position” is a position at which it is possible to determine the completion of disengagement of the engagement clutch 83. Specifically, when the coupling sleeve 86 is pulled out from the synchronizer ring 87, the chamfer portion 86b of the coupling sleeve 86 is obtained.
  • the chamfer portion 87b of the synchronizer ring 87 is in a contacted state.
  • the state in which both chamfer portions 86b and 87b are in full contact is defined as the threshold position.
  • the stroke position of the coupling sleeve 86 is detected by the sleeve position sensor 27.
  • step S5 following the determination that there is no downshift request in step S3, or the determination that the stroke position> the threshold position in step S4, it is determined that the disengagement control of the engagement clutch 83 has been completed, and the output determination is made in step S3
  • the up-shift control started in step S2 is continued and ignored, and the up-shift control is terminated and the process proceeds to the end.
  • the upshift control is completed, if it can be determined from the position of the operating point on the shift map that the downshift request is generated, the downshift control is immediately executed.
  • step S6 following the determination that stroke position ⁇ threshold position in step S4, assuming that the disengagement control of the engagement clutch 83 has not been completed, the upshift control started in step S2 is interrupted, and a new shift request is made. Downshift control based on a certain downshift request is executed. Then, the downshift control is terminated and the process proceeds to the end.
  • the shift controller 21 inputs the vehicle speed from the vehicle speed sensor 22, the accelerator opening APO from the accelerator opening sensor 23, and the brake stroke amount BST from the brake stroke sensor 24. Based on the input information and the shift map illustrated in FIG. 5, the shift control of the automatic transmission 3 is performed as described below.
  • the thick solid line connects the maximum motor driving torque line obtained by connecting the maximum motor driving torque value of the motor generator MG for each vehicle speed and the maximum motor regenerating torque value of the motor generator MG for each vehicle speed.
  • the maximum motor regenerative torque line obtained is shown, and the area surrounded by these is the practical area.
  • an upshift line indicated by a one-dot chain line (Low ⁇ High) and a downshift line indicated by a broken line (High ⁇ Low ) Is set.
  • the upshift line (Low ⁇ High) is set on the higher vehicle speed side by the hysteresis than the downshift line (High ⁇ Low).
  • the operating point when driving with the accelerator pedal depressed, the operating point is determined based on the required motor driving torque, which is the required motor torque obtained from the accelerator opening APO, and the vehicle speed VSP.
  • the operating point is determined based on the required motor regeneration torque, which is the required motor torque obtained from the brake stroke amount BST, and the vehicle speed VSP.
  • the operating point it is suitable for the current operating state depending on whether the operating point is in the low-side gear region or the operating point is in the high-side gear region on the shift map of FIG.
  • the target gear stage (low gear stage or high gear stage) is obtained.
  • the engagement clutch 83 is brought into the engaged engagement state, and the low gear speed selection state in which the friction clutch 93 is released is brought into the selected state. If the obtained target shift speed is the high gear speed, the friction clutch 93 is set to the friction engagement state and the engagement gear 83 is set to the disengagement state.
  • the target gear stage is switched to the high gear stage.
  • the target shift stage is switched to the low gear stage when the operating point in the practical range crosses the downshift line (High ⁇ Low) and enters the low gear stage. Then, an upshift request or a downshift request is output by switching the target shift stage, and a shift control (upshift control or downshift control) based on the shift request is executed.
  • the upshift control in which the automatic transmission 3 is shifted from the low gear stage to the high gear stage is a reshuffling shift in which the engagement clutch 83 in the engagement engagement state is released and the friction clutch 93 in the release state is frictionally engaged. Is done.
  • the downshift control for shifting the automatic transmission 3 from the high gear stage to the low gear stage is performed by a changeover shift in which the engagement clutch 83 in the released state is engaged and engaged, and the friction clutch 93 in the frictionally engaged state is opened. .
  • FIG. 6 shows the automatic transmission output rotational speed, the automatic transmission output torque, and the automatic transmission output torque when the 1 ⁇ 2 shift is continued even if there is a 2 ⁇ 1 shift request during the 1 ⁇ 2 shift control. It is a time chart which shows each characteristic of motor rotation speed, motor torque, engagement clutch transmission torque, friction clutch transmission torque, engagement clutch sleeve position, and friction clutch slider position.
  • FIG. 6 shows the upshift continuation action when a downshift request is generated during an upshift.
  • An upshift request (first shift request) is output. Accordingly, the process proceeds from step S1 to step S2 in the flowchart shown in FIG. 4, and the execution of the upshift control is started.
  • the slider 96 of the friction clutch 93 which is the engagement side element, is driven by the second electric actuator 42.
  • the slider 96 is clogged. That is, the slider 96 gradually moves from the open position to the fastening position.
  • the transmission torque of the friction clutch 93 starts to increase, and the motor generator MG is torque-controlled to increase the motor torque that is the input torque to the automatic transmission 3.
  • the transmission torque of the engagement clutch 83 that is the disengagement side element is a difference between the input torque (motor torque) to the automatic transmission 3 and the transmission torque of the friction clutch 93, and therefore gradually decreases.
  • a release command for releasing the engagement clutch 83 is output.
  • the release command is output from the speed change controller 21 to the first electric actuator 41 via the first position servo controller 51. Further, the release command is a time for the coupling sleeve 86 of the engagement clutch 83 to reach the release position in accordance with the timing at which the input torque (motor torque) to the automatic transmission 3 and the transmission torque of the friction clutch 93 coincide. It is obtained by calculating backward from (time t6).
  • the coupling sleeve 86 of the engagement clutch 83 starts moving from the engagement position toward the release position.
  • the coupling sleeve 86 is in a threshold position where it can be determined that the engagement clutch 83 has been released, that is, the chamfer portion 86b of the coupling sleeve 86 and the chamfer portion 87b of the synchronizer ring 87 are in full contact. Reaching the state. Thereby, it is determined that the engagement clutch 83 has been released.
  • step S3 when the operating point crosses the downshift line (High ⁇ Low) and enters the Low gear region, the downshift request (second shift request) is output.
  • time t5 it is already determined that the engagement clutch 83 has been released. Therefore, in the flowchart of FIG. 4, the process proceeds from step S3 to step S4 to step S5, and the upshift control is continued.
  • the release operation of the engagement clutch 83 continues, and at time t6, the coupling sleeve 86 reaches the release position, and the engagement clutch 83 is completely released. Thereby, the motor torque and the friction clutch transmission torque coincide with each other, and the engagement clutch transmission torque becomes zero. Then, the rotational speed control of motor generator MG is started. At this time, the slider 96 of the friction clutch 93 stops at a position where the friction clutch 93 maintains the slip engagement state.
  • the downshift that causes the engagement clutch 83 to be engaged is determined after the completion of the release of the engagement clutch 83 is determined. If there is a request, the upshift control by the upshift request is continued. Therefore, during the upshift control, the engagement clutch 83 is prevented from being engaged from the state in which the release completion is determined, and an unreasonable torque acts on the coupling sleeve 86 and the synchronizer ring 87. Can be prevented. Thereby, wear of the engagement clutch 83 can be reduced and durability can be prevented from being impaired.
  • FIG. 7 shows the automatic transmission output rotation speed / automatic transmission output torque when the 2 ⁇ 1 shift is executed in response to the 2 ⁇ 1 shift request during the 1 ⁇ 2 shift control in the control device of the first embodiment. It is a time chart showing characteristics of motor rotation speed, motor torque, engagement clutch transmission torque, friction clutch transmission torque, engagement clutch sleeve position, and friction clutch slider position.
  • FIG. 7 shows the downshift execution operation when the downshift request is generated during the upshift.
  • the operating point in the usable area crosses the upshift line (Low ⁇ High) and enters the High side gear stage area.
  • An upshift request (first shift request) is output. Accordingly, the process proceeds from step S1 to step S2 in the flowchart shown in FIG. 4, and the execution of the upshift control is started.
  • the slider 96 of the friction clutch 93 which is the engagement side element, is driven by the second electric actuator 42.
  • the slider 96 is clogged. That is, the slider 96 gradually moves from the open position to the fastening position.
  • the transmission torque of the friction clutch 93 starts to increase, and the motor generator MG is torque-controlled to increase the motor torque that is the input torque to the automatic transmission 3.
  • the transmission torque of the engagement clutch 83 that is the disengagement side element is a difference between the input torque (motor torque) to the automatic transmission 3 and the transmission torque of the friction clutch 93, and therefore gradually decreases.
  • step S6 the upshift control is interrupted and the downshift control is executed. That is, the automatic transmission 3 returns to the low gear stage selection state. Thereby, immediately after the output of the downshift request, an engagement command for engaging the engagement clutch 83 is output, and at time t15, the coupling sleeve 86 of the engagement clutch 83 moves from the current position toward the engagement position. Start. Thereafter, the coupling clutch 86 reaches the engagement position at the time t16, and the engagement clutch 83 is again fully engaged.
  • the slider 96 of the friction clutch 93 starts to move toward the release position from the time t ⁇ when the downshift request is output, and the transmission torque of the friction clutch 93 starts to decrease.
  • Motor generator MG is torque-controlled to reduce motor torque that is input torque to automatic transmission 3.
  • the transmission torque of the engagement clutch 83 is a difference between the input torque (motor torque) to the automatic transmission 3 and the transmission torque of the friction clutch 93, and thus gradually increases.
  • the downshift for engaging the engagement clutch 83 before determining the completion of the release of the engagement clutch 83 is determined.
  • the upshift control is stopped and the downshift control based on the downshift request is executed. Therefore, even during the upshift control, the engagement clutch 83 is not released, and the low gear stage can be immediately returned to the selected state.
  • a downshift request generated by a driver request can be satisfied quickly, and a newly generated shift request can be answered promptly.
  • the engagement clutch 83 does not complete the disengagement, and the state where the engagement can be determined is maintained. Thereby, it is possible to prevent an excessive torque from acting on the engagement clutch 83, reduce wear of the engagement clutch 83, and prevent the durability from being impaired.
  • the coupling sleeve 86 has a threshold position at which it is possible to determine the completion of disengagement of the engagement clutch 83, that is, the chamfer portion 86b of the coupling sleeve 86 and the chamfer portion 87b of the synchronizer ring 87.
  • the contact state is reached, it is determined that the engagement clutch 83 has been released. That is, in the first embodiment, completion of disengagement of the engagement clutch 83 is determined when the position of the coupling sleeve 86 exceeds a preset threshold position.
  • An automatic transmission control device that is provided in a drive system of a vehicle and includes an automatic transmission 3 having an engagement clutch 83 as a transmission element, and a shift controller 21 that performs shift control of the automatic transmission 3.
  • the shift controller 21 determines the completion of disengagement of the engagement clutch 83 during the shift control (up shift control) for releasing the engagement clutch 83 according to the first shift request (up shift request).
  • the shift control (down shift control) according to the second shift request (down shift request) is executed. Thereby, it is possible to promptly respond to a new shift request (down shift request) generated during the shift control (up shift control) for releasing the engagement clutch 83. Further, after the release of the engagement clutch 83 is completed, it is possible to prevent the torque from acting on the engagement clutch 83 and reduce the wear.
  • the engagement clutch 83 is controlled to be engaged / released by stroking the engagement clutch actuator (coupling sleeve 86).
  • the shift controller 21 determines completion of disengagement of the engagement clutch 83 when the stroke position of the engagement clutch actuator (coupling sleeve 86) exceeds a preset threshold (threshold position). .
  • Example 2 The second embodiment is an example in which the determination of the completion of disengagement of the engagement clutch is configured differently from the first embodiment.
  • FIG. 8 is a flowchart showing the flow of a shift control process executed by the shift controller according to the second embodiment.
  • the control apparatus of the automatic transmission of Example 2 is demonstrated.
  • symbol is attached
  • step S24 following the determination that there is a downshift request in step S3, it is determined whether or not the differential rotational speed in the engagement clutch 83 when the downshift request is generated exceeds a preset threshold rotational speed. If YES (differential rotational speed> threshold differential rotational speed), the process proceeds to step S5. If NO (differential rotational speed ⁇ threshold differential rotational speed), the process proceeds to step S6.
  • the “threshold difference rotational speed” is a differential rotational speed at which the completion of disengagement of the engagement clutch 83 can be determined.
  • the coupling sleeve 86 is pulled out from the synchronizer ring 87, the coupling sleeve 86 is extracted.
  • the number of times that the relative rotation of the synchronizer ring 87 is recognized is defined as the threshold difference rotational speed.
  • the differential rotational speed of the engagement clutch 83 is obtained from the difference between the motor rotational speed that is the input rotational speed of the automatic transmission 3 and the automatic transmission output rotational speed.
  • the completion of disengagement of the engagement clutch 83 is determined based on the differential rotation speed in the engagement clutch 83 when the differential rotation speed exceeds a preset threshold differential rotation speed.
  • the sleeve position sensor 27 for detecting the position of the coupling sleeve 86 can be dispensed with.
  • the shift controller 21 determines the completion of disengagement of the engagement clutch 83 when the differential rotation speed in the engagement clutch 83 exceeds a preset threshold value (threshold differential rotation speed). Thereby, in addition to the effect of (1), the sleeve position sensor 27 for detecting the position of the coupling sleeve 86 of the engagement clutch 83 can be made unnecessary.
  • the third embodiment is an example in which the friction clutch transmission torque when the upshift control is continued even when there is a downshift request is configured differently from the first embodiment.
  • FIG. 9 shows the automatic transmission output rotational speed, the automatic transmission output torque, and the automatic transmission output torque when the 1 ⁇ 2 shift is continued even if there is a 2 ⁇ 1 shift request during the 1 ⁇ 2 shift control in the control device of the third embodiment. It is a time chart which shows each characteristic of motor rotation speed, motor torque, engagement clutch transmission torque, friction clutch transmission torque, engagement clutch sleeve position, and friction clutch slider position.
  • the control apparatus of the automatic transmission of Example 3 is demonstrated.
  • the engagement clutch 83 is engaged. Even if there is a downshift request to be made, the upshift control by the upshift request is continued. Moreover, the friction clutch transmission torque after the down shift request is made is made larger than the friction clutch transmission torque when the down shift request is not made.
  • the transmission torque of the friction clutch 93 starts to increase and the motor generator MG is torque-controlled to increase the motor torque that is the input torque to the automatic transmission 3. Further, the transmission torque of the engagement clutch 83 that is the disengagement side element gradually decreases.
  • a release command for releasing the engagement clutch 83 is output, and at time t34, the coupling sleeve 86 of the engagement clutch 83 is moved from the engagement position. Start moving towards the open position. At time t35, when the coupling sleeve 86 reaches a threshold position where it can be determined that the engagement clutch 83 has been released, it is determined that the engagement clutch 83 has been released.
  • the releasing operation of the engagement clutch 83 continues, and at time t36, the coupling sleeve 86 reaches the release position, and the engagement clutch 83 is completely released. Thereby, the motor torque and the friction clutch transmission torque coincide with each other, and the engagement clutch transmission torque becomes zero. Then, the rotational speed control of motor generator MG is started. At this time, the slider 96 of the friction clutch 93 stops at a position where the friction clutch 93 maintains the slip engagement state, as in the first embodiment, for example, when the downshift request is not output during the shift (see FIG. 6).
  • Example 3 the slider 96 of the friction clutch 93 does not stop at the position where the friction clutch 93 maintains the slip engagement state, but continues to move to the position where the friction clutch 93 becomes the complete engagement state. That is, the friction clutch transmission torque continues to increase after time t36, and becomes larger than when the downshift request is not output during the shift. At time t37, when the friction clutch 93 is completely engaged, the friction clutch transmission torque matches the motor torque, the upshift control is terminated, and the high gear stage is selected.
  • the time from when the engagement clutch 83 is released until the friction clutch 93 is engaged (from time t36 to time t37). Is the engagement clutch when the friction clutch 93 is fully engaged after maintaining the friction clutch transmission torque so that the friction clutch 93 stops at the position where the slip engagement state is maintained, as in the first embodiment, for example. It becomes shorter than the time from opening 83 to fastening the friction clutch 93 (time from time t6 to time t8; see FIG. 6). As a result, the time from when the upshift request is output until the upshift control is completed can be shortened compared to when the downshift request is not issued during the shift control.
  • the downshift request output is predicted immediately after the upshift control. Therefore, it is necessary to finish the upshift control in a short time and prepare for the next shift request. Therefore, it is advantageous for controlling the operation of the automatic transmission 3 after the upshift control is completed by increasing the friction clutch transmission torque larger than when the downshift request is not output, thereby ending the upshift control in a short time. become.
  • the automatic transmission 3 includes the engagement clutch 83, and a friction clutch 93 that is replaced with the engagement clutch 83, and 93.
  • the speed change controller 21 of the friction clutch 93 when the speed change control (up speed change control) is continued by the first speed change request (up speed change request) even when the second speed change request (down speed change request) is present.
  • the transmission torque is greater than the transmission torque of the friction clutch 93 during the shift control (up shift control) by the first shift request (up shift request) when there is no second shift request (down shift request). It was set as the structure enlarged.
  • the upshift control can be completed in a short time, and the operation control of the automatic transmission 3 after the upshift control is completed can be advantageous. it can.
  • control device for the automatic transmission according to the present invention has been described based on the first to third embodiments.
  • specific configuration is not limited to these embodiments, and each claim in the claims is described. Design changes and additions are permitted without departing from the spirit of the invention according to the paragraph.
  • the automatic transmission may be an automatic transmission having an engagement clutch, and may be a transmission having only an engagement clutch as a transmission element, or a transmission having two or more speed stages. May be.
  • the present invention is not limited to this.
  • the coupling sleeve 86 is pulled out from the synchronizer ring 87, if both the chamfer portions 86b and 87b are in contact with each other, it may be determined that the engagement clutch 83 has been released. Good.
  • the sleeve position that is a criterion for determining the completion of opening can be set arbitrarily.
  • control device for an automatic transmission according to the present invention is applied to an electric vehicle having a motor generator MG as a drive source.
  • the control device of the present invention can also be applied to a hybrid vehicle having a drive source including an engine and a motor generator.
  • a hybrid vehicle having an engine and two motor generators as a drive source as shown in FIG. 10, an engine 1, a power generation motor generator MG1, and a power distribution device 2 are added to the drive system of the first embodiment. It may be good.
  • the control device of the present invention can also be applied to an electric vehicle such as a normal engine-driven vehicle or a fuel cell vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Transmission Device (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

係合クラッチを開放させる変速制御中に生じた係合クラッチを締結させる新たな変速要求に速やかに応えることができる自動変速機の制御装置を提供すること。 変速要素として係合クラッチ(83)を有する自動変速機(3)と、該自動変速機(3)の変速制御を行う変速コントローラ(21)と、を備えた自動変速機の制御装置において、変速コントローラ(21)は、アップ変速要求による係合クラッチ(83)を開放させるアップ変速制御の途中、係合クラッチ(83)の開放完了を判断する前に、係合クラッチ(83)を締結させるダウン変速要求があったときには、このダウン変速要求によるダウン変速制御を実行する構成とした。

Description

自動変速機の制御装置
 本発明は、係合クラッチを有する自動変速機と、この自動変速機の変速制御を行う変速コントローラと、を備えた自動変速機の制御装置に関する発明である。
 従来、変速要素として低速段で締結するドグクラッチと高速段で締結する摩擦クラッチを持つ有段の自動変速機を備え、ドグクラッチと摩擦クラッチを架け替え変速する自動変速機の制御装置が知られている(例えば、特許文献1参照)。
特開2010-202124号公報
 ところで、従来の自動変速機の制御装置において、ドグクラッチを開放させる変速制御中、つまり低速段から高速段への変速制御中に、ドライバーの要求駆動力が増加すること等によりドグクラッチを締結させる低速段への変速要求が新たに発生することがあった。
 このとき、ドグクラッチを開放させる高速段への変速制御を継続し、変速制御終了後にドグクラッチを締結させる低速段への変速制御を行うと、新たに発生した低速段への変速要求に速やかに応えることができないという問題が発生してしまう。
 本発明は、上記問題に着目してなされたもので、係合クラッチを開放させる変速制御中に生じた係合クラッチを締結させる新たな変速要求に速やかに応えることができる自動変速機の制御装置を提供することを目的とする。
 上記目的を達成するため、本発明の自動変速機の制御装置は、車両の駆動系に設けられ、変速要素として係合クラッチを有する自動変速機と、該自動変速機の変速制御を行う変速コントローラと、を備えている。
 そして、前記変速コントローラは、第1の変速要求による前記係合クラッチを開放させる変速制御の途中、前記係合クラッチの開放完了を判断する前に、前記係合クラッチを締結させる第2の変速要求があったときには、前記第2の変速要求による変速制御を実行する。
 本願発明では、第1の変速要求による係合クラッチを開放させる変速制御の途中、係合クラッチの開放完了を判断する前に、係合クラッチを締結させる第2の変速要求があったときには、変速コントローラにより、第2の変速要求による変速制御が実行される。
 すなわち、係合クラッチの開放完了が判断される前であれば、第1の変速要求による変速制御を中断し、係合クラッチを締結させる第2の変速要求を実行する。このため、第1の変速要求後に生じた第2の変速要求を速やかに満たすことができる。
 この結果、係合クラッチを開放させる変速制御中に生じた係合クラッチを締結させる新たな変速要求に速やかに応えることができる。
実施例1の制御装置が適用された電気自動車(車両の一例)の駆動系構成と制御系構成を示す全体システム構成図である。 実施例1の変速制御系の詳細構成を示す制御ブロック図である。 実施例1の係合クラッチの要部断面を示す説明図である。 実施例1の係合クラッチの動作を示す説明図であり、締結初期の回転同期初期状態を示す。 実施例1の係合クラッチの動作を示す説明図であり、回転同期途中を示す。 実施例1の係合クラッチの動作を示す説明図であり、回転同期終了時を示す。 実施例1の変速コントローラにて実行される変速制御処理の流れを示すフローチャートである。 実施例1の変速コントローラで用いられる自動変速機のアップシフト線とダウンシフト線の一例を示す変速マップ図である。 実施例1の制御装置において、1→2変速制御中に2→1変速要求があっても1→2変速を継続した際の自動変速機出力回転数・自動変速機出力トルク・モータ回転数・モータトルク・係合クラッチ伝達トルク・摩擦クラッチ伝達トルク・係合クラッチスリーブ位置・摩擦クラッチスライダ位置の各特性を示すタイムチャートである。 実施例1の制御装置において、1→2変速制御中に2→1変速要求があったことで2→1変速を実行した際の自動変速機出力回転数・自動変速機出力トルク・モータ回転数・モータトルク・係合クラッチ伝達トルク・摩擦クラッチ伝達トルク・係合クラッチスリーブ位置・摩擦クラッチスライダ位置の各特性を示すタイムチャートである。 実施例2の変速コントローラにて実行される変速制御処理の流れを示すフローチャートである。 実施例3の制御装置において、1→2変速制御中に2→1変速要求があっても1→2変速を継続した際の自動変速機出力回転数・自動変速機出力トルク・モータ回転数・モータトルク・係合クラッチ伝達トルク・摩擦クラッチ伝達トルク・係合クラッチスリーブ位置・摩擦クラッチスライダ位置の各特性を示すタイムチャートである。 本発明の制御装置が適用可能なハイブリッド車(車両の他例)の駆動系構成の一例を示す図である。
 以下、本発明の自動変速機の制御装置を実施するための形態を、図面に示す実施例1~実施例3に基づいて説明する。
 (実施例1)
 まず、構成を説明する。
 実施例1における電気自動車(車両の一例)に搭載された自動変速機の制御装置の構成を、「全体システム構成」、「変速制御系の詳細構成」、「変速制御処理構成」に分けて説明する。
 [全体システム構成]
 図1は、実施例1の制御装置が適用された電気自動車の駆動系構成と制御系構成を示す。以下、図1に基づき、全体システム構成を説明する。
 前記電気自動車の駆動系構成としては、図1に示すように、モータジェネレータMGと、自動変速機3と、駆動輪14と、を備えている。
 前記モータジェネレータMGは、力行時に駆動モータとして用いられ、回生時にジェネレータとして用いられ、そのモータ軸が自動変速機3の変速機入力軸6に接続される。
 前記自動変速機3は、変速比の異なる2つのギア対のいずれかで動力を伝達する常時噛み合い式有段変速機であり、減速比の小さなハイギア段(高速段)と減速比の大きなローギア段(低速段)を有する2段変速としている。この自動変速機3は、ローギア段を実現するロー側変速機構8及びハイギア段を実現するハイ側変速機構9により構成される。ここで、変速機入力軸6及び変速機出力軸7は、それぞれ平行に配置される。
 前記ロー側変速機構8は、ロー側伝動経路を選択するためのもので、変速機出力軸7上に配置されている。このロー側変速機構8は、低速段ギア対80(ギア81,ギア82)が、変速機入出力軸6,7間を駆動結合するように、変速機出力軸7に対するギア81の係合締結/開放を行う係合クラッチ83(噛合いクラッチ)により構成する。ここで、低速段ギア対80は、変速機出力軸7上に回転自在に支持したギア81と、該ギア81と噛み合い、変速機入力軸6と共に回転するギア82と、から構成される。
 前記ハイ側変速機構9は、ハイ側伝動経路を選択するためのもので、変速機入力軸6上に配置されている。このハイ側変速機構9は、高速段ギア対90(ギア91,ギア92)が、変速機入出力軸6,7間を駆動結合するように、変速機入力軸6に対するギア91の摩擦締結/開放を行う摩擦クラッチ93により構成する。ここで、高速段ギア対は、変速機入力軸6上に回転自在に支持したギア91と、ギア91に噛み合い、変速機出力軸7と共に回転するギア92と、から構成される。
 前記変速機出力軸7は、ギア11を固定し、このギア11と、これに噛合するギア12とからなるファイナルドライブギア組を介して、ディファレンシャルギア装置13を変速機出力軸7に駆動結合する。これにより、変速機出力軸7に達したモータジェネレータMGのモータ動力がファイナルドライブギア組(ギア11,12)及びディファレンシャルギア装置13を経て左右の駆動輪14(なお、図1では一方の駆動輪のみを示した)に伝達されるようにする。
 前記電気自動車の制御系構成としては、図1に示すように、変速コントローラ21、車速センサ22、アクセル開度センサ23、ブレーキストロークセンサ24、前後加速度センサ25、スライダ位置センサ26、スリーブ位置センサ27等を備えている。これに加え、モータコントローラ28と、ブレーキコントローラ29と、統合コントローラ30と、CAN通信線31と、を備えている。
 前記変速コントローラ(変速コントローラ)21は、係合クラッチ83が係合締結で摩擦クラッチ93が開放のローギア段が選択されている状態でハイギア段へアップ変速する際、係合クラッチ83の開放と摩擦クラッチ93の摩擦締結による架け替え制御を遂行する。
また、係合クラッチ83が開放で摩擦クラッチ93が摩擦締結のハイギア段が選択されている状態でローギア段へダウン変速する際、係合クラッチ83の係合締結と摩擦クラッチ93の開放による架け替え制御を遂行する。すなわち、アップ変速では、噛合いクラッチである係合クラッチ83が開放要素になり、ダウン変速では、噛合いクラッチである係合クラッチ83が締結要素になる。
 [変速制御系の詳細構成]
 図2は、実施例1の変速制御系の詳細構成を示す。以下、図2に基づき、変速制御系の詳細構成を説明する。
 前記電気自動車の制御系のうち変速制御系の構成としては、図2に示すように、係合クラッチ83と、摩擦クラッチ93と、モータジェネレータMGと、液圧ブレーキ15と、変速コントローラ21と、統合コントローラ30と、を備えている。つまり、係合クラッチ83と摩擦クラッチ93は、変速コントローラ21からの指令によりアップ変速/ダウン変速の変速制御を行う構成としている。また、モータジェネレータMGと液圧ブレーキ15は、統合コントローラ30からの指令により回生協調ブレーキ制御を行う構成としている。
 前記係合クラッチ83は、シンクロ式の係合締結によるクラッチであり、ギア81に設けたクラッチギア84と、変速機出力軸7に結合したクラッチハブ85と、カップリングスリーブ86と、を有する(図1を参照)。そして、図2に示す第1電動アクチュエータ41によりカップリングスリーブ86をストローク駆動させることで、係合締結/開放する。なお、第1電動アクチュエータ41を含めたカップリングスリーブ86が、請求項に記載の「係合クラッチ用アクチュエータ」に相当する。
この係合クラッチ83の係合締結と開放は、カップリングスリーブ86の位置によって決まる。そこで、変速コントローラ21は、スリーブ位置センサ27の値を読み込み、スリーブ位置が締結位置又は開放位置になるように第1電動アクチュエータ41に電流を与える第1位置サーボコントローラ51(例えば、PID制御による位置サーボ系)を備えている。
そして、カップリングスリーブ86が、クラッチギア84及びクラッチハブ85の外周クラッチ歯の双方に噛合した図1に示す噛み合い位置(締結位置)にあるとき、ギア81を変速機出力軸7に駆動連結する。一方、カップリングスリーブ86が、図1に示す位置から軸線方向へ変位することでクラッチギア84及びクラッチハブ85の外周クラッチ歯の一方と非噛み合い位置(開放位置)にあるとき、ギア81を変速機出力軸7から切り離す。 
 さらに、図3A~図3Dに基づいて、係合クラッチ83の同期機構について説明を加える。
  前記カップリングスリーブ86は、クラッチハブ85(図1参照)の外周に形成されたスプライン部(図示省略)に噛み合った状態を維持しながら、図3Aにおいて左右方向である軸方向に移動可能に支持されている。そして、カップリングスリーブ86の軸方向の移動は、第1電動アクチュエータ41(図2参照)の駆動により成される。
 前記クラッチギア84は、外周に、カップリングスリーブ86の内周に形成されたスプライン部86aと噛み合い可能なスプライン部84aが形成されている。さらに、このクラッチギア84には、テーパ状のコーン部84bの外周に、軸方向に移動可能にシンクロナイザリング87が装着されている。
 前記シンクロナイザリング87は、外周に、カップリングスリーブ86のスプライン部86aと噛み合い可能なスプライン部87aが形成されている。また、シンクロナイザリング87は、カップリングスリーブ86に設けられたキー88に対して、キー溝87c(図3B等参照)による隙間の分だけ、回転方向に相対移動可能に構成されている。
 次に、係合クラッチ83において、開放状態から係合締結するときの同期機構による同期動作を説明する。
  前記係合クラッチ83では、開放状態から係合締結する場合、カップリングスリーブ86によって、シンクロナイザリング87をクラッチギア84に近接するように軸方向に押圧する。これにより、シンクロナイザリング87とコーン部84bとの間に摩擦力が生じ、この摩擦力によりカップリングスリーブ86とクラッチギア84とが同期回転して係合締結される。
  すなわち、前記カップリングスリーブ86を、第1電動アクチュエータ41(図2参照)により、図3Aに示すように、キー88と共に、クラッチギア84に近接する方向へ軸方向に移動させ、シンクロナイザリング87をコーン部84bに接触させる。
 シンクロナイザリング87がコーン部84bに接触したとき、両者の間には相対回転が生じているため、シンクロナイザリング87は、図3Bに示すキー溝87cの隙間分だけ回動する。これにより、シンクロナイザリング87のスプライン部87aのチャンファ部87bと、カップリングスリーブ86のスプライン部86aのチャンファ部86bとが、図3Bに示すように、軸方向で向き合ったインデックス状態となる。
 このインデックス状態からさらにカップリングスリーブ86をクラッチギア84側に移動させると、図3Cに示すように、両チャンファ部87b,86bが接触する。これにより、シンクロナイザリング87がコーン部84bをさらに押して摩擦トルクが発生し、シンクロナイザリング87及びカップリングスリーブ86と、クラッチギア84と、の同期が行われる。
 この回転同期が成立すると、シンクロナイザリング87とコーン部84bとの間の摩擦トルクが消滅し、カップリングスリーブ86がさらに軸方向に移動する。これにより、カップリングスリーブ86のスプライン部86aが、シンクロナイザリング87を押し分け、図3Dに示すように、クラッチギア84のスプライン部84aと噛み合い、係合クラッチ83は係合締結状態となる。
 以上のように、ギア81とクラッチハブ85との間に設けられ、カップリングスリーブ86の軸方向の移動に伴って、係合クラッチ83の入力側と出力側との相対移動に伴って生じる摩擦力により入力側と出力側とを同期回転させる。すなわち、クラッチギア84、カップリングスリーブ86、シンクロナイザリング87が同期機構を構成する。
 なお、係合クラッチ83において、係合締結状態から開放するときには、カップリングスリーブ86を、第1電動アクチュエータ41(図2参照)により、キー88と共に、クラッチギア84から離間する方向へ軸方向に移動させる。このとき、カップリングスリーブ86のスプライン部86aは、シンクロナイザリング87のスプライン部87aから引き抜かれていくこととなる。
 そして、スプライン部86aがシンクロナイザリング87のスプライン部87aから引き抜かれると、クラッチギア84、シンクロナイザリング87、カップリングスリーブ86との同期状態が解消される。これと同時に、シンクロナイザリング87が回転し、チャンファ部87bとカップリングスリーブ86のチャンファ部86bが、接触した状態になる。
 そして、さらにカップリングスリーブ86をクラッチギア84から離間する方向に移動させると、両チャンファ部87b,86bの接触が解消される。これにより、カップリングスリーブ86のスプライン部86aが、シンクロナイザリング87から完全に離れ、係合クラッチ83は開放状態となる。
 前記摩擦クラッチ93は、ギア91と共に回転するドリブンプレート94と、変速機入力軸6と共に回転するドライブプレート95と、を有する(図1を参照)。そして、第2電動アクチュエータ42により両プレート94,95に押付け力を与えるスライダ96を駆動することで摩擦締結/開放する。
この摩擦クラッチ93の伝達トルク容量は、スライダ96の位置によって決まり、また、スライダ96はネジ機構となっており、第2電動アクチュエータ42の入力が0(ゼロ)のとき、位置を保持する機構となっている。変速コントローラ21は、スライダ位置センサ26の値を読み込み、所望の伝達トルク容量が得られるスライダ位置になるように第2電動アクチュエータ42に電流を与える第2位置サーボコントローラ52(例えば、PID制御による位置サーボ系)を備えている。
そして、摩擦クラッチ93は、変速機入力軸6と一体に回転し、摩擦締結しているときギア91を変速機入力軸6に駆動連結し、開放しているとき、ギア91と変速機入力軸6の駆動連結を切り離す。
 前記モータジェネレータMGは、統合コントローラ30から出力される指令を入力するモータコントローラ28によって力行制御又は回生制御される。つまり、モータコントローラ28がモータトルク指令を入力すると、モータジェネレータMGが力行制御される。また、モータコントローラ28が回生トルク指令を入力すると、モータジェネレータMGが回生制御される。
 前記液圧ブレーキ15は、ブレーキペダル16→電動ブースタ17→マスタシリンダ18→ブレーキ液圧アクチュエータ19を経由して供給されるブレーキ液により駆動輪14に液圧制動力を与える。この液圧ブレーキ15は、回生協調ブレーキ制御時、ブレーキコントローラ29がブレーキ液圧指令を入力すると、液圧制動力の分担に応じた駆動指令を電動ブースタ17に出力することでブレーキ液圧が制御される。ここで、回生協調ブレーキ制御とは、ブレーキストロークセンサ24からのブレーキストローク量BSTに基づいて算出した要求制動力(あるいは、要求減速度)を、回生制動力と液圧制動力との分担により達成する制御をいう。基本的には、電費性能を高めるため、そのとき可能な最大回生トルクに基づき回生制動力を決め、要求制動力から回生制動力を差し引いた残りを液圧制動力で分担する。
 前記変速コントローラ21は、車速センサ22やアクセル開度センサ23やブレーキストロークセンサ24や前後加速度センサ25等からの情報を入力し、例えば図5に示す変速マップを用いて自動変速機3の変速制御(アップ変速、ダウン変速)を実行する。
 [変速制御処理構成]
 図4は、実施例1の変速コントローラにて実行される変速制御処理の流れを示す。以下、図4に基づき、変速制御処理構成をあらわす各ステップについて説明する。
 ステップS1では、係合クラッチ83が係合締結しているローギア段が選択されている状態で、係合クラッチ83を開放させるハイギア段へのアップ変速要求(第1の変速要求)が発生したか否かを判断する。YES(アップ変速要求あり)の場合はステップS2へ進み、NO(アップ変速要求なし)の場合はステップS1を繰り返す。
ここで、アップ変速要求は、変速コントローラ21において用いる変速マップ(図5)において、車速VSPと要求モータトルクで決まる運転点が、例えば車速VSPが上昇すること等によりアップ変速線を横切ったときに発生する。
なお、車速VSPは車速センサ22により検出する。また、要求モータトルクは、アクセル開度センサ23により検出されたアクセル開度APO又はブレーキストロークセンサ24により検出されたブレーキストローク量BSTに基づいて算出する。
 ステップS2では、ステップS1でのアップ変速要求ありとの判断に続き、アップ変速制御の実行が開始され、ステップS3へ進む。
このアップ変速制御により、係合クラッチ83を締結→開放とし、摩擦クラッチ93を開放→締結へとする架け替え制御が開始される。
 ステップS3では、ステップS2でのアップ変速制御の開始との判断に続き、係合クラッチ83を係合締結させるローギア段へのダウン変速要求(第2の変速要求)が発生したか否かを判断する。YES(ダウン変速要求あり)の場合はステップS4へ進み、NO(ダウン変速要求なし)の場合はステップS5へ進む。
ここで、ダウン変速要求は、変速コントローラ21において用いる変速マップ(図5)において、車速と要求モータトルクで決まる運転点が、例えばドライバーのアクセル踏み込み等によりダウン変速線を横切ったときに発生する。
 ステップS4では、ステップS3でのダウン変速要求ありとの判断に続き、ダウン変速要求発生時の係合クラッチ83のカップリングスリーブ86のストローク位置が、予め設定した閾値位置を超えたか否かを判断する。YES(ストローク位置>閾値位置)の場合はステップS5へ進み、NO(ストローク位置≦閾値位置)の場合はステップS6へ進む。
ここで、「閾値位置」は、係合クラッチ83の開放完了を判断できる位置であり、具体的には、シンクロナイザリング87からカップリングスリーブ86が引き抜かれることで、カップリングスリーブ86のチャンファ部86bと、シンクロナイザリング87のチャンファ部87bが接触した状態となっている位置である。ここでは、両チャンファ部86b,87bが全面的に接触している状態を閾値位置とする。なお、カップリングスリーブ86のストローク位置は、スリーブ位置センサ27によって検出される。
 ステップS5では、ステップS3でのダウン変速要求なしとの判断、又は、ステップS4でのストローク位置>閾値位置との判断に続き、係合クラッチ83の開放制御が完了したとして、ステップS3で出力判断されたダウン変速要求を無視して、ステップS2で開始したアップ変速制御を継続して実行し、このアップ変速制御を終了させてエンドへ進む。
なお、アップ変速制御が終了した時点で、変速マップ上の運転点の位置等からダウン変速要求の発生が判断できれば、直ちにダウン変速制御が実行される。
 ステップS6では、ステップS4でのストローク位置≦閾値位置との判断に続き、係合クラッチ83の開放制御が完了していないとして、ステップS2で開始したアップ変速制御を中断し、新たな変速要求であるダウン変速要求に基づくダウン変速制御を実行する。そして、このダウン変速制御を終了させてエンドへ進む。
 次に、作用を説明する。
 実施例1の自動変速機の制御装置における作用を、「通常の変速制御作用」、「アップ変速中のダウン変速要求発生時におけるアップ変速継続作用」、「アップ変速中のダウン変速要求発生時におけるダウン変速実行作用」に分けて説明する。
 [通常の変速制御作用]
 変速コントローラ21は、車速センサ22からの車速と、アクセル開度センサ23からのアクセル開度APOと、ブレーキストロークセンサ24からのブレーキストローク量BSTと、を入力する。そして、これら入力情報と、図5に例示する変速マップに基づいて、以下に述べるように、自動変速機3の変速制御を行う。
 図5の変速マップにおいて、太い実線は、車速ごとのモータジェネレータMGの最大モータ駆動トルク値を結んで得られる最大モータ駆動トルク線と、車速ごとのモータジェネレータMGの最大モータ回生トルク値を結んで得られる最大モータ回生トルク線を示し、これらにより囲まれた領域が実用可能領域である。
 この実用可能領域内に、自動変速機3の変速機損失及びモータジェネレータMGのモータ損失を考慮して、一点鎖線で示すアップシフト線(Low→High)及び破線で示すダウンシフト線(High→Low)を設定する。なお、アップシフト線(Low→High)は、ダウンシフト線(High→Low)よりも、ヒステリシス分だけ高車速側に設定する。
 そして、変速コントローラ21において、アクセルペダルが踏み込まれているドライブ走行時は、アクセル開度APOから求めた要求モータトルクである要求モータ駆動トルクと、車速VSPにより運転点を決定する。一方、ブレーキペダルが踏み込まれている制動時には、ブレーキストローク量BSTから求めた要求モータトルクである要求モータ回生トルクと、車速VSPにより運転点を決定する。運転点を決定すると、図5の変速マップ上で、運転点がLow側変速段領域に存在するか、又は、運転点がHigh側変速段領域に存在するかによって、現在の運転状態に好適な目標変速段(ローギア段又はハイギア段)を求める。
 次に、求めた目標変速段がローギア段であれば、係合クラッチ83を係合締結状態とし、摩擦クラッチ93を開放状態とするローギア段の選択状態にする。また、求めた目標変速段がハイギア段であれば、摩擦クラッチ93を摩擦締結状態とし、係合クラッチ83を開放状態とするハイギア段の選択状態にする。
 さらに、ローギア段の選択状態のとき、実用可能領域内の運転点がアップシフト線(Low→High)を横切ってHigh側変速段領域に入ると、目標変速段をハイギア段に切り替える。一方、ハイギア段の選択状態である場合、実用可能領域内の運転点がダウンシフト線(High→Low)を横切ってロー側変速段領域に入ると、目標変速段をローギア段に切り替える。
そして、目標変速段の切り替えによりアップ変速要求又はダウン変速要求が出力され、変速要求に基づく変速制御(アップ変速制御又はダウン変速制御)が実行される。
 通常変速制御において、自動変速機3をローギア段からハイギア段へ移行させるアップ変速制御は、係合締結状態の係合クラッチ83を開放し、開放状態の摩擦クラッチ93を摩擦締結するという架け替え変速により行われる。一方、自動変速機3をハイギア段からローギア段へ移行させるダウン変速制御は、開放状態の係合クラッチ83を係合締結し、摩擦締結状態の摩擦クラッチ93を開放するという架け替え変速により行われる。
 [アップ変速中のダウン変速要求発生時におけるアップ変速継続作用]
 図6は、実施例1の制御装置において、1→2変速制御中に2→1変速要求があっても1→2変速を継続した際の自動変速機出力回転数・自動変速機出力トルク・モータ回転数・モータトルク・係合クラッチ伝達トルク・摩擦クラッチ伝達トルク・係合クラッチスリーブ位置・摩擦クラッチスライダ位置の各特性を示すタイムチャートである。以下、図6に基づいて、アップ変速中のダウン変速要求発生時におけるアップ変速継続作用を説明する。
 図6に示すタイムチャートにおける時刻t1において、ローギア段の選択状態での走行中、実用可能領域内の運転点がアップシフト線(Low→High)を横切ってHigh側変速段領域に入ることで、アップ変速要求(第1の変速要求)が出力される。
これにより、図4に示すフローチャートにおいてステップS1→ステップS2へと進み、アップ変速制御の実行が開始され、まず、締結側要素である摩擦クラッチ93のスライダ96が第2電動アクチュエータ42によって駆動されて、スライダ96のがた詰が行われる。つまり、スライダ96は、開放位置から次第に締結位置へと移動する。
 時刻t2において、スライダ96のがた詰が終了すると、摩擦クラッチ93の伝達トルクが増加し始めると共に、モータジェネレータMGがトルク制御され、自動変速機3への入力トルクであるモータトルクを増加する。ここで、開放側要素である係合クラッチ83の伝達トルクは、自動変速機3への入力トルク(モータトルク)と、摩擦クラッチ93の伝達トルクとの差分となるため、徐々に減少する。
 そして、摩擦クラッチ93の伝達トルクを増加している途中の時刻t3において、係合クラッチ83を開放させる開放指令が出力される。なお、この開放指令は、変速コントローラ21から第1位置サーボコントローラ51を介して第1電動アクチュエータ41へと出力される。また、この開放指令は、自動変速機3への入力トルク(モータトルク)と、摩擦クラッチ93の伝達トルクが一致するタイミングに合わせて、係合クラッチ83のカップリングスリーブ86が開放位置に達する時間(時刻t6)から逆算して求められる。
 時刻t4において、係合クラッチ83のカップリングスリーブ86が、締結位置から開放位置に向かって移動を開始する。そして、時刻t5において、カップリングスリーブ86が、係合クラッチ83の開放完了を判断できる閾値位置、つまり、カップリングスリーブ86のチャンファ部86bと、シンクロナイザリング87のチャンファ部87bとが全面的に接触している状態に達する。これにより、係合クラッチ83の開放完了が判断される。
 その後、時刻tαにおいて、運転点がダウンシフト線(High→Low)を横切ってLow側変速段領域に入ることで、ダウン変速要求(第2の変速要求)が出力される。しかしながら、この時刻tαの時点では、すでに係合クラッチ83の開放完了が判断されている(時刻t5)。このため、図4のフローチャートにおいて、ステップS3→ステップS4→ステップS5へと進み、アップ変速制御が継続される。
 すなわち、係合クラッチ83の開放動作は継続し、時刻t6において、カップリングスリーブ86は開放位置に達し、係合クラッチ83は完全に開放する。これにより、モータトルクと摩擦クラッチ伝達トルクが一致し、係合クラッチ伝達トルクはゼロになる。そして、モータジェネレータMGの回転数制御が開始される。なお、このとき、摩擦クラッチ93のスライダ96は、摩擦クラッチ93がスリップ締結状態を維持する位置で停止する。
 時刻t7においてモータ回転数がアップ変速後の目標回転数に一致したら、摩擦クラッチ93のスライダ96を締結方向に駆動し、時刻t8において摩擦クラッチ93が完全締結したらアップ変速制御が終了し、ハイギア段が選択された状態になる。
 このように、実施例1の制御装置では、アップ変速要求による係合クラッチ83を開放させる変速制御の途中、係合クラッチ83の開放完了を判断した後に、この係合クラッチ83を締結させるダウン変速要求があった場合には、アップ変速要求によるアップ変速制御を継続する。
そのため、アップ変速制御の途中で、開放完了を判断された状態から係合クラッチ83が締結状態になることが防止され、カップリングスリーブ86やシンクロナイザリング87に対して無理なトルクが作用することを防止できる。これにより、係合クラッチ83の摩耗を低減して、耐久性が損なわれることを防止できる。
 [アップ変速中のダウン変速要求発生時におけるダウン変速実行作用]
 図7は、実施例1の制御装置において、1→2変速制御中に2→1変速要求があったことで2→1変速を実行した際の自動変速機出力回転数・自動変速機出力トルク・モータ回転数・モータトルク・係合クラッチ伝達トルク・摩擦クラッチ伝達トルク・係合クラッチスリーブ位置・摩擦クラッチスライダ位置の各特性を示すタイムチャートである。以下、図7に基づいて、アップ変速中のダウン変速要求発生時におけるダウン変速実行作用を説明する。
 図7に示すタイムチャートにおける時刻t11において、ローギア段の選択状態での走行中、実用可能領域内の運転点がアップシフト線(Low→High)を横切ってHigh側変速段領域に入ることで、アップ変速要求(第1の変速要求)が出力される。
これにより、図4に示すフローチャートにおいてステップS1→ステップS2へと進み、アップ変速制御の実行が開始され、まず、締結側要素である摩擦クラッチ93のスライダ96が第2電動アクチュエータ42によって駆動されて、スライダ96のがた詰が行われる。つまり、スライダ96は、開放位置から次第に締結位置へと移動する。
 時刻t12において、スライダ96のがた詰が終了すると、摩擦クラッチ93の伝達トルクが増加し始めると共に、モータジェネレータMGがトルク制御され、自動変速機3への入力トルクであるモータトルクを増加する。ここで、開放側要素である係合クラッチ83の伝達トルクは、自動変速機3への入力トルク(モータトルク)と、摩擦クラッチ93の伝達トルクとの差分となるため、徐々に減少する。
 そして、摩擦クラッチ93の伝達トルクを増加している途中の時刻t13において、係合クラッチ83を開放させる開放指令が出力され、時刻t14において、係合クラッチ83のカップリングスリーブ86が、締結位置から開放位置に向かって移動を開始する。その後、時刻tβにおいて、運転点がダウンシフト線(High→Low)を横切ってLow側変速段領域に入ることで、ダウン変速要求(第2の変速要求)が出力される。
 ここで、ダウン変速要求が出力された時刻tβは、カップリングスリーブ86の位置が係合クラッチ83の開放完了を判断する閾値位置に達する前であるため、図4のフローチャートにおいて、ステップS3→ステップS4→ステップS6へと進む。これにより、アップ変速制御が中断され、ダウン変速制御が実行される。つまり、自動変速機3はローギア段の選択状態へと戻ることとなる。
これにより、ダウン変速要求の出力直後に、係合クラッチ83を締結させる締結指令が出力され、時刻t15において、係合クラッチ83のカップリングスリーブ86が、現在の位置から締結位置に向かって移動を開始する。その後、この係合クラッチ83は、時刻t16においてカップリングスリーブ86が締結位置に達し、再び完全締結状態になる。
 一方、摩擦クラッチ93のスライダ96は、ダウン変速要求が出力された時刻tβから開放位置に向かって移動を開始し、摩擦クラッチ93の伝達トルクは低減し始める。また、モータジェネレータMGはトルク制御され、自動変速機3への入力トルクであるモータトルクを低減する。なお、係合クラッチ83の伝達トルクは、自動変速機3への入力トルク(モータトルク)と、摩擦クラッチ93の伝達トルクとの差分となるため、徐々に増加する。
 そして、時刻t17において、摩擦クラッチ93のスライダ96が開放位置に達したら、摩擦クラッチ伝達トルクはゼロになり、モータトルクと係合クラッチ83の伝達トルクが一致する。これにより、ダウン変速制御が終了し、ローギア段が選択された状態になる。
 このように、実施例1の制御装置では、アップ変速要求による係合クラッチ83を開放させる変速制御の途中、係合クラッチ83の開放完了を判断する前に、この係合クラッチ83を締結させるダウン変速要求があった場合には、アップ変速制御を中止し、ダウン変速要求によるダウン変速制御を実行する。
そのため、アップ変速制御の途中であっても、係合クラッチ83の開放がなされず、直ちにローギア段を選択した状態に戻すことができる。これにより、例えばドライバー要求によって生じたダウン変速要求を速やかに満足することができ、新たに生じた変速要求に速やかに答えることができる。また、係合クラッチ83は開放完了せず、係合締結を判断できる状態が維持される。これにより、係合クラッチ83に無理なトルクが作用することが防止でき、係合クラッチ83の摩耗を低減して、耐久性が損なわれることを防止できる。
 しかも、実施例1の制御装置では、カップリングスリーブ86が、係合クラッチ83の開放完了を判断できる閾値位置、つまり、カップリングスリーブ86のチャンファ部86bと、シンクロナイザリング87のチャンファ部87bとが全面的に接触している状態に達したら、係合クラッチ83の開放完了が判断される。
すなわち、この実施例1では、係合クラッチ83の開放完了を、カップリングスリーブ86の位置が予め設定した閾値位置を超えたときに判断する。
 そのため、カップリングスリーブ86を移動させる第1電動アクチュエータ41の押付力が不明であっても、係合クラッチ83の開放完了を精度よく判断することができる。
 次に、効果を説明する。
 実施例1の自動変速機の制御装置にあっては、下記に列挙する効果を得ることができる。
(1) 車両の駆動系に設けられ、変速要素として係合クラッチ83を有する自動変速機3と、該自動変速機3の変速制御を行う変速コントローラ21と、を備えた自動変速機の制御装置において、
 前記変速コントローラ21は、第1の変速要求(アップ変速要求)による前記係合クラッチ83を開放させる変速制御(アップ変速制御)の途中、前記係合クラッチ83の開放完了を判断する前に、前記係合クラッチ83を締結させる第2の変速要求(ダウン変速要求)があったときには、
 前記第2の変速要求(ダウン変速要求)による変速制御(ダウン変速制御)を実行する構成とした。
 これにより、係合クラッチ83を開放させる変速制御(アップ変速制御)中に生じた新たな変速要求(ダウン変速要求)に速やかに応えることができる。また、係合クラッチ83の開放が完了した後では、係合クラッチ83に無理にトルクが作用することを防止して、摩耗を低減することができる。
(2) 前記係合クラッチ83は、係合クラッチ用アクチュエータ(カップリングスリーブ86)をストロークさせることによって締結/開放が制御され、
 前記変速コントローラ21は、前記係合クラッチ83の開放完了を、前記係合クラッチ用アクチュエータ(カップリングスリーブ86)のストローク位置が予め設定した閾値(閾値位置)を超えたときに判断する構成とした。
 これにより、(1)の効果に加え、カップリングスリーブ86を移動させる第1電動アクチュエータ41の押付力が不明であっても、係合クラッチ83の開放完了を精度よく判断することができる。
 (実施例2)
 実施例2は、係合クラッチの開放完了の判断を、実施例1とは異なる構成とした例である。
 図8は、実施例2の変速コントローラにて実行される変速制御処理の流れを示すフローチャートである。以下、図8に基づき、実施例2の自動変速機の制御装置を説明する。なお、実施例1と同等のステップについては、同一の符号を付し、詳細な説明を省略する。
 図8に示すステップS3において、ダウン変速要求ありと判断されると、ステップS24へと進む。このステップS24では、ステップS3でのダウン変速要求ありとの判断に続き、ダウン変速要求発生時の係合クラッチ83における差回転数が、予め設定した閾値回転数を超えたか否かを判断する。YES(差回転数>閾値差回転数)の場合はステップS5へ進み、NO(差回転数≦閾値差回転数)の場合はステップS6へ進む。
ここで、「閾値差回転数」は、係合クラッチ83の開放完了を判断できる差回転数であり、具体的には、シンクロナイザリング87からカップリングスリーブ86が引き抜かれることで、カップリングスリーブ86とシンクロナイザリング87とが相対回転したことを認められる回数を閾値差回転数とする。なお、係合クラッチ83の差回転数は、自動変速機3の入力回転数であるモータ回転数と、自動変速機出力回転数との差から求められる。
 このように、係合クラッチ83の開放完了を、係合クラッチ83における差回転数に基づき、この差回転数が予め設定した閾値差回転数を超えた時に判断することで、係合クラッチ83のカップリングスリーブ86の位置を検出するスリーブ位置センサ27を不要とすることができる。
 次に、効果を説明する。
 実施例2の自動変速機の制御装置にあっては、下記に挙げる効果を得ることができる。
 (3) 前記変速コントローラ21は、前記係合クラッチ83の開放完了を、前記係合クラッチ83における差回転数が予め設定した閾値(閾値差回転数)を超えたときに判断する構成とした。
 これにより、(1)の効果に加え、係合クラッチ83のカップリングスリーブ86の位置を検出するスリーブ位置センサ27が不要とすることができる。
 (実施例3)
 実施例3は、ダウン変速要求があってもアップ変速制御を継続した際の摩擦クラッチ伝達トルクを、実施例1とは異なる構成とした例である。
 図9は、実施例3の制御装置において、1→2変速制御中に2→1変速要求があっても1→2変速を継続した際の自動変速機出力回転数・自動変速機出力トルク・モータ回転数・モータトルク・係合クラッチ伝達トルク・摩擦クラッチ伝達トルク・係合クラッチスリーブ位置・摩擦クラッチスライダ位置の各特性を示すタイムチャートである。以下、図9に基づき、実施例3の自動変速機の制御装置を説明する。
 実施例3の制御装置では、図9に示すように、アップ変速要求による係合クラッチ83を開放させる変速制御の途中、係合クラッチ83の開放完了を判断した後に、この係合クラッチ83を締結させるダウン変速要求があっても、アップ変速要求によるアップ変速制御を継続する。しかも、ダウン変速要求がなされた後の摩擦クラッチ伝達トルクを、ダウン変速要求がなされていないときの摩擦クラッチ伝達トルクよりも大きくする。
 すなわち、図9に示すタイムチャートにおける時刻t31において、アップ変速要求(第1の変速要求)が出力されると、アップ変速制御の実行が開始され、まず、締結側要素である摩擦クラッチ93のスライダ96が第2電動アクチュエータ42によって駆動されて、スライダ96のがた詰が行われる。
 時刻t32において、スライダ96のがた詰が終了すると、摩擦クラッチ93の伝達トルクが増加し始めると共に、モータジェネレータMGがトルク制御され、自動変速機3への入力トルクであるモータトルクを増加する。また、開放側要素である係合クラッチ83の伝達トルクは徐々に減少する。
 そして、摩擦クラッチ93の伝達トルクを増加している途中の時刻t33において、係合クラッチ83を開放させる開放指令が出力され、時刻t34において、係合クラッチ83のカップリングスリーブ86が、締結位置から開放位置に向かって移動を開始する。そして、時刻t35において、カップリングスリーブ86が、係合クラッチ83の開放完了を判断できる閾値位置に達することで、係合クラッチ83の開放完了が判断される。
 その後時刻tαにおいて、ダウン変速要求(第2の変速要求)が出力されても、この時刻tαの時点では、すでに係合クラッチ83の開放完了が判断されているので、アップ変速制御が継続される。
 そして、係合クラッチ83の開放動作は継続し、時刻t36において、カップリングスリーブ86は開放位置に達し、係合クラッチ83は完全に開放する。これにより、モータトルクと摩擦クラッチ伝達トルクが一致し、係合クラッチ伝達トルクはゼロになる。そして、モータジェネレータMGの回転数制御が開始される。このとき、摩擦クラッチ93のスライダ96は、変速途中でダウン変速要求が出力されていない場合には、例えば実施例1のように、摩擦クラッチ93がスリップ締結状態を維持する位置で停止する(図6参照)。
これに対し、実施例3では、摩擦クラッチ93のスライダ96は、摩擦クラッチ93がスリップ締結状態を維持する位置で停止せず、完全締結状態になる位置まで移動し続ける。つまり、摩擦クラッチ伝達トルクは時刻t36以降も増加を続け、変速途中でダウン変速要求が出力されていない場合よりも大きくなる。
 そして、時刻t37において、摩擦クラッチ93が完全締結したら、摩擦クラッチ伝達トルクとモータトルクが一致してアップ変速制御が終了し、ハイギア段が選択された状態になる。
 このように、ダウン変速要求が出力されていない場合よりも摩擦クラッチ伝達トルクを大きくすることで、係合クラッチ83を開放してから摩擦クラッチ93を締結するまでの時間(時刻t36から時刻t37までの時間)は、例えば実施例1のように、摩擦クラッチ93がスリップ締結状態を維持する位置で停止するように摩擦クラッチ伝達トルクを維持した後に摩擦クラッチ93を完全締結させたときの係合クラッチ83を開放してから摩擦クラッチ93を締結するまでの時間(時刻t6から時刻t8までの時間;図6参照)よりも短くなる。これにより、アップ変速要求が出力されてからアップ変速制御が終了するまでの時間を、変速制御の途中でダウン変速要求が出されていない場合よりも短縮することができる。
 なお、アップ変速制御中にダウン変速要求が出力された場合は、アップ変速制御後、直ちにダウン変速要求の出力が予測される。そのため、アップ変速制御を短時間で終了し、次の変速要求に備える必要がある。したがって、ダウン変速要求が出力されていない場合よりも摩擦クラッチ伝達トルクを大きくすることで、アップ変速制御を短時間で終了させることは、アップ変速制御終了後の自動変速機3の動作制御に有利になる。
 次に、効果を説明する。
 実施例3の自動変速機の制御装置にあっては、下記に挙げる効果を得ることができる。
 (4) 前記自動変速機3は、前記係合クラッチ83と、前記係合クラッチ83と架け替え変速される摩擦クラッチと93を有し、
 前記変速コントローラ21は、前記第2の変速要求(ダウン変速要求)があっても前記第1の変速要求(アップ変速要求)による変速制御(アップ変速制御)を継続した場合の前記摩擦クラッチ93の伝達トルクを、前記第2の変速要求(ダウン変速要求)がなかったときの前記第1の変速要求(アップ変速要求)による変速制御(アップ変速制御)中の前記摩擦クラッチ93の伝達トルクよりも大きくする構成とした。
 これにより、(1)~(3)のいずれかの効果に加え、アップ変速制御を短時間で終了させることができ、アップ変速制御終了後の自動変速機3の動作制御を有利にすることができる。
 以上、本発明の自動変速機の制御装置を実施例1~実施例3に基づき説明してきたが、具体的な構成については、これらの実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 上記各実施例では、自動変速機として、係合クラッチ83と摩擦クラッチ93を有し、ハイギア段とローギア段の2速変速段による変速機の例を示した。しかし、自動変速機としては、係合クラッチを有する自動変速機であればよく、変速要素として係合クラッチのみを有する変速機であったり、2速変速段以上の変速段を有する変速機であってもよい。
 実施例1では、係合クラッチ83の開放完了を、シンクロナイザリング87からカップリングスリーブ86を引き抜いた際に、カップリングスリーブ86のチャンファ部86bと、シンクロナイザリング87のチャンファ部87bとが全面的に接触している状態を超えたときに判断する例を示した。しかしながら、これに限らず、例えば、シンクロナイザリング87からカップリングスリーブ86を引き抜いた際に、両チャンファ部86b,87bがわずかでも接触した状態になったら係合クラッチ83の開放完了を判断してもよい。開放完了の判断基準となるスリーブ位置は、任意に設定することができる。
 上記各実施例では、本発明の自動変速機の制御装置を、駆動源にモータジェネレータMGを備えた電気自動車に適用する例を示した。しかし、本発明の制御装置は、駆動源にエンジンとモータジェネレータを備えたハイブリッド車両に適用することもできる。例えば、駆動源にエンジンと2つのモータジェネレータを備えたハイブリッド車両としては、図10に示すように、実施例1の駆動系に、エンジン1、発電用モータジェネレータMG1、動力分配装置2を加えたものとしても良い。さらに、本発明の制御装置は、通常のエンジン駆動車や、燃料電池車等の電動車両にも適用することができる。
関連出願の相互参照
 本出願は、2013年3月13日に日本国特許庁に出願された特願2013-50716に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。

Claims (4)

  1.  車両の駆動系に設けられ、変速要素として係合クラッチを有する自動変速機と、該自動変速機の変速制御を行う変速コントローラと、を備えた自動変速機の制御装置において、
     前記変速コントローラは、第1の変速要求による前記係合クラッチを開放させる変速制御の途中、前記係合クラッチの開放完了を判断する前に、前記係合クラッチを締結させる第2の変速要求があったときには、前記第2の変速要求による変速制御を実行する
     ことを特徴とする自動変速機の制御装置。
  2.  請求項1に記載された自動変速機の制御装置において、
     前記係合クラッチは、係合クラッチ用アクチュエータをストロークさせることによって締結/開放が制御され、
     前記変速コントローラは、前記係合クラッチの開放完了を、前記係合クラッチ用アクチュエータのストローク位置が予め設定した閾値を超えたときに判断する
     ことを特徴とする自動変速機の制御装置。
  3.  請求項1に記載された自動変速機の制御装置において、
     前記変速コントローラは、前記係合クラッチの開放完了を、前記係合クラッチにおける差回転数が予め設定した閾値を超えたときに判断する
     ことを特徴とする自動変速機の制御装置。
  4.  請求項1から請求項3のいずれか一項に記載された自動変速機の制御装置において、
     前記自動変速機は、前記係合クラッチと、前記係合クラッチと架け替え変速される摩擦クラッチとを有し、
     前記変速コントローラは、前記第2の変速要求があっても前記第1の変速要求による変速制御を継続した場合の前記摩擦クラッチの伝達トルクを、前記第2の変速要求がなかったときの前記第1の変速要求による変速制御中の前記摩擦クラッチの伝達トルクよりも大きくする
     ことを特徴とする自動変速機の制御装置。
PCT/JP2013/085102 2013-03-13 2013-12-27 自動変速機の制御装置 WO2014141569A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380074677.3A CN105008769A (zh) 2013-03-13 2013-12-27 自动变速机的控制装置
EP13877918.6A EP2975301A4 (en) 2013-03-13 2013-12-27 AUTOMATIC TRANSMISSION CONTROL DEVICE
JP2015505244A JPWO2014141569A1 (ja) 2013-03-13 2013-12-27 自動変速機の制御装置
US14/769,253 US20150375750A1 (en) 2013-03-13 2013-12-27 Automatic transmission control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-050716 2013-03-13
JP2013050716 2013-03-13

Publications (1)

Publication Number Publication Date
WO2014141569A1 true WO2014141569A1 (ja) 2014-09-18

Family

ID=51536254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085102 WO2014141569A1 (ja) 2013-03-13 2013-12-27 自動変速機の制御装置

Country Status (5)

Country Link
US (1) US20150375750A1 (ja)
EP (1) EP2975301A4 (ja)
JP (1) JPWO2014141569A1 (ja)
CN (1) CN105008769A (ja)
WO (1) WO2014141569A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9874278B2 (en) * 2013-03-13 2018-01-23 Nissan Motor Co., Ltd. Automatic transmission control device
DE102017205662A1 (de) * 2017-04-04 2018-10-04 Zf Friedrichshafen Ag Antriebsstrang für ein Fahrzeug
WO2019152065A1 (en) 2018-02-02 2019-08-08 Dana Automotive Systems Group, Llc Electric drive axle with multi-speed gearbox
EP3537009A1 (en) * 2018-03-08 2019-09-11 Dana Belgium N.V. Method of determining at least one shift parameter of a vehicle transmission
CN108528185B (zh) * 2018-06-07 2024-01-19 精进电动科技股份有限公司 一种纵置多档位电驱动动力总成
US12209658B2 (en) * 2022-12-27 2025-01-28 Dana Belgium N.V. Electric power shift transmission and power shift method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343069A (ja) * 2000-03-31 2001-12-14 Isuzu Motors Ltd 車両の自動変速装置
JP2008069948A (ja) * 2006-09-15 2008-03-27 Toyota Motor Corp 自動変速機の変速制御装置
JP2010202124A (ja) 2009-03-05 2010-09-16 Nissan Motor Co Ltd 電動車両の制御装置
JP2012041999A (ja) * 2010-08-20 2012-03-01 Aisin Aw Co Ltd 変速制御装置
JP2013002577A (ja) * 2011-06-17 2013-01-07 Nissan Motor Co Ltd 自動変速機の変速制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4041810A (en) * 1976-02-17 1977-08-16 General Motors Corporation Transmission shift control device system
GB9415965D0 (en) * 1994-08-06 1994-09-28 Eaton Corp Continuous selection control for semi-automatic mechanical transmission
DE69616127T2 (de) * 1995-04-03 2002-03-07 Honda Giken Kogyo K.K., Tokio/Tokyo Schaltsteuereinrichtung für Automatikgetriebe
DE19915892B4 (de) * 1998-04-09 2008-11-06 Nissan Motor Co., Ltd., Yokohama Schaltvorrichtung für ein Automatikgetriebe
DE60234362D1 (de) * 2001-09-28 2009-12-24 Jatco Ltd Gangschaltvorrichtung für automatisches getriebe
JP2005076680A (ja) * 2003-08-28 2005-03-24 Fuso Engineering Corp 自動変速機の変速制御装置及び変速制御方法
JP4375010B2 (ja) * 2003-12-12 2009-12-02 株式会社日立製作所 自動車の制御装置、及び、その駆動力伝達装置
JP4169029B2 (ja) * 2005-11-22 2008-10-22 トヨタ自動車株式会社 車両用自動変速機の変速制御装置
JP4285570B2 (ja) * 2007-09-11 2009-06-24 トヨタ自動車株式会社 車両の制御装置
US9394952B2 (en) * 2008-05-01 2016-07-19 Allison Transmission, Inc. Method and apparatus for clutch pressure control
US8050835B2 (en) * 2008-05-01 2011-11-01 Allison Transmission, Inc. Method and apparatus for clutch pressure control
US8762018B2 (en) * 2008-05-01 2014-06-24 Allison Transmission, Inc. Method and apparatus for clutch pressure control
JP5058068B2 (ja) * 2008-05-20 2012-10-24 ヤマハ発動機株式会社 変速機構の制御装置、制御方法及び原動機付き車両の制御方法
JP4630355B2 (ja) * 2008-06-19 2011-02-09 ジヤトコ株式会社 自動変速機の変速制御装置
DE102009045507A1 (de) * 2009-10-09 2011-04-14 Zf Friedrichshafen Ag Verfahren zum Betätigen einer Getriebevorrichtung eines Fahrzeugantriebsstranges
JP5669428B2 (ja) * 2010-04-26 2015-02-12 トヨタ自動車株式会社 車両用同期噛合式変速機の制御装置
JP5727034B2 (ja) * 2011-11-18 2015-06-03 ジヤトコ株式会社 自動変速機の制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001343069A (ja) * 2000-03-31 2001-12-14 Isuzu Motors Ltd 車両の自動変速装置
JP2008069948A (ja) * 2006-09-15 2008-03-27 Toyota Motor Corp 自動変速機の変速制御装置
JP2010202124A (ja) 2009-03-05 2010-09-16 Nissan Motor Co Ltd 電動車両の制御装置
JP2012041999A (ja) * 2010-08-20 2012-03-01 Aisin Aw Co Ltd 変速制御装置
JP2013002577A (ja) * 2011-06-17 2013-01-07 Nissan Motor Co Ltd 自動変速機の変速制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2975301A4

Also Published As

Publication number Publication date
US20150375750A1 (en) 2015-12-31
JPWO2014141569A1 (ja) 2017-02-16
EP2975301A1 (en) 2016-01-20
CN105008769A (zh) 2015-10-28
EP2975301A4 (en) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2014141569A1 (ja) 自動変速機の制御装置
JP5920487B2 (ja) 電動車両の変速制御装置
US9695933B2 (en) Automatic transmission control device
JP5896078B2 (ja) 電動車両の変速制御装置
JP5854156B2 (ja) 電動車両の変速制御装置
JP2010241394A (ja) 車両の動力伝達制御装置
JP6069121B2 (ja) 車両の駆動制御装置
JP5930117B2 (ja) 自動変速機の制御装置
JP6070294B2 (ja) 車両の変速制御装置
WO2014136364A1 (ja) 車両の変速制御装置
WO2022118896A1 (ja) 車両用駆動装置
JP6209834B2 (ja) 自動変速機の制御装置
JP6089802B2 (ja) 車両の変速制御装置
JP6414499B2 (ja) 車両用駆動装置の制御装置
JP2022087708A (ja) 車両用駆動装置
JP2014125087A (ja) 自動変速機の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015505244

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013877918

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013877918

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14769253

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE