[go: up one dir, main page]

WO2014122786A1 - 車両重心状態判定装置および車両挙動制御システム - Google Patents

車両重心状態判定装置および車両挙動制御システム Download PDF

Info

Publication number
WO2014122786A1
WO2014122786A1 PCT/JP2013/053144 JP2013053144W WO2014122786A1 WO 2014122786 A1 WO2014122786 A1 WO 2014122786A1 JP 2013053144 W JP2013053144 W JP 2013053144W WO 2014122786 A1 WO2014122786 A1 WO 2014122786A1
Authority
WO
WIPO (PCT)
Prior art keywords
rear wheel
brake pressure
vehicle
wheel axle
axle weight
Prior art date
Application number
PCT/JP2013/053144
Other languages
English (en)
French (fr)
Inventor
智之 小塚
加藤 秀樹
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2013/053144 priority Critical patent/WO2014122786A1/ja
Priority to DE112013006626.2T priority patent/DE112013006626T5/de
Priority to US14/652,276 priority patent/US9376119B2/en
Priority to CN201380071498.4A priority patent/CN104955689B/zh
Priority to JP2014560622A priority patent/JP5850186B2/ja
Publication of WO2014122786A1 publication Critical patent/WO2014122786A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS
    • B60T8/1766Proportioning of brake forces according to vehicle axle loads, e.g. front to rear of vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • B60W2040/1307Load distribution on each wheel suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight
    • B60W2040/1315Location of the centre of gravity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/18Braking system
    • B60W2510/182Brake pressure, e.g. of fluid or between pad and disc

Definitions

  • the present invention relates to a vehicle center-of-gravity state determination device, a vehicle behavior control system, and a vehicle center-of-gravity state determination method that determine the center of gravity state of a vehicle.
  • VSC Vehicle Stability Control
  • control is performed assuming that the center of gravity of the vehicle, which is one of the parameters for determining the control amount, is constant. Has been done.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a vehicle center-of-gravity state determination device, a vehicle behavior control system, and a vehicle center-of-gravity state determination method that can determine the center-of-gravity position state in the vehicle width direction.
  • a vehicle center-of-gravity state determination device includes a rear-wheel brake pressure changing unit that changes the rear-wheel brake pressure according to the rear wheel axle weight, and a front-wheel brake pressure.
  • Front wheel brake pressure detecting means rear wheel brake pressure detecting means for detecting the brake pressure of the rear wheel downstream of the rear wheel brake pressure changing means, and the detected front and rear brake pressures during braking.
  • a rear wheel axle weight estimating means for estimating a rear wheel axle weight based on the relationship and a rear wheel axle weight characteristic of the rear wheel brake pressure changing means, and a vehicle center of gravity state in a vehicle width direction based on the estimated rear wheel axle weight.
  • a vehicle center-of-gravity state determining means for determining, wherein the rear wheel axle weight estimating means determines the rear wheel axle weight when braking is performed in at least two states of straight traveling, right turning or left turning. The Characterized in that it estimated.
  • the vehicle center-of-gravity state in the vehicle width direction is a shift amount of the vehicle center-of-gravity position in the vehicle width direction
  • the rear wheel axle weight estimation unit is configured to perform left turn and right turn.
  • the rear wheel axle weights when braking is performed in this state are estimated as the first rear wheel axle weight and the second rear wheel axle weight, respectively, and are based on the first rear wheel axle weight and the second rear wheel axle weight. It is preferable to estimate the shift amount of the vehicle center of gravity position in the vehicle width direction.
  • a vehicle behavior control system is a vehicle behavior control system that controls the behavior of a vehicle by controlling at least a braking force based on the vehicle gravity center state determination device and the vehicle gravity center state in the vehicle width direction. And a device.
  • the vehicle center-of-gravity state determination method includes a procedure for changing the rear wheel brake pressure according to the rear wheel axle weight, a procedure for detecting the brake pressure of the front wheel, and a brake at the rear wheel according to the rear wheel axle weight.
  • a procedure for detecting the brake pressure of the rear wheel downstream of the rear wheel brake pressure changing means for changing the pressure, the relationship between the detected front and rear brake pressures during braking, and the rear wheel brake pressure changing means Including a procedure for estimating the rear wheel axle weight based on the wheel axle weight characteristics, and a procedure for determining a vehicle center of gravity state in the vehicle width direction based on the estimated rear wheel axle weight. It is estimated that braking is performed in at least two states during a right turn or a left turn.
  • the vehicle center-of-gravity state determination device and the vehicle center-of-gravity state determination method according to the present invention have an effect that the vehicle center-of-gravity state in the vehicle width direction can be determined with a simple configuration.
  • the vehicle behavior control system according to the present invention can control the vehicle behavior based on the detected vehicle center of gravity state in the vehicle width direction, even if the vehicle center of gravity state in the vehicle width direction changes, There is an effect that the vehicle behavior can be controlled.
  • FIG. 1 is a diagram illustrating a configuration example of a vehicle including the vehicle center-of-gravity state determination device according to the first embodiment.
  • FIG. 2 is a diagram illustrating a relationship among front wheel brake pressure, rear wheel brake pressure, and load capacity.
  • FIG. 3 is a flowchart of the vehicle center-of-gravity state determination method of the vehicle center-of-gravity state determination device according to the first embodiment.
  • FIG. 4 is a diagram showing the relationship among front wheel brake pressure, rear wheel brake pressure, and rear wheel axle load when loaded in the center.
  • FIG. 5 is a diagram illustrating a relationship among front wheel brake pressure, rear wheel brake pressure, and rear wheel axle load when left-side loaded.
  • FIG. 6 is a diagram illustrating a relationship among front wheel brake pressure, rear wheel brake pressure, and rear wheel axle load when the right side is loaded.
  • FIG. 7 is a flowchart of the vehicle behavior control method of the vehicle behavior control system according to the second embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a vehicle including a vehicle center-of-gravity state determination device according to an embodiment.
  • FIG. 2 is a diagram illustrating a relationship among front wheel brake pressure, rear wheel brake pressure, and load capacity.
  • FIG. 3 is a flowchart of the vehicle center-of-gravity state determination method of the vehicle center-of-gravity state determination device according to the embodiment.
  • FIG. 4 is a diagram showing the relationship among front wheel brake pressure, rear wheel brake pressure, and rear wheel axle load when loaded in the center.
  • FIG. 5 is a diagram illustrating a relationship among front wheel brake pressure, rear wheel brake pressure, and rear wheel axle load when left-side loaded.
  • FIG. 6 is a diagram illustrating a relationship among front wheel brake pressure, rear wheel brake pressure, and rear wheel axle load when the right side is loaded.
  • a loading platform 11 is provided at the rear of the vehicle, and the vehicle center-of-gravity state determination device 1 is provided on a loading vehicle 10 such as a truck, a van, a cargo, or a dump truck that can load a load 12 on the loading platform 11.
  • a loading vehicle 10 such as a truck, a van, a cargo, or a dump truck that can load a load 12 on the loading platform 11.
  • the present invention is not limited to this, and is applicable to any vehicle provided with rear wheel brake pressure changing means for changing the brake pressure at the rear wheel according to the rear wheel axle weight described later. can do.
  • “left and right” coincide with the left and right in the vehicle width direction of the loaded vehicle 10 when viewed in the forward direction.
  • the vehicle center-of-gravity state determination device 1 includes an LSPV 26, a front wheel brake pressure sensor 27, a rear wheel brake pressure sensor 28, and an ECU 3 included in the braking device 2.
  • the braking device 2 generates a braking force on the loaded vehicle 10 and is described as a hydraulic braking device in the present embodiment, but is not limited thereto, and is not limited to this. Any of the devices may be used. Master cylinder 21, brake actuator 22, left and right front wheel pipes 23L and 23R, left and right rear wheel pipes 24L and 24R, and wheel cylinders 25FL, 25FR provided corresponding to wheels 13FL, 13FR, 13RL, 13RR, respectively. 25RL, 25RR, LSPV 26, front wheel brake pressure sensor 27, rear wheel brake pressure sensor 28, and a brake ECU (not shown).
  • the master cylinder 21 generates a hydraulic pressure according to the driver's operation of the brake pedal, and the generated hydraulic pressure is applied to the wheel cylinders 25FR to 25RL via the left and right front wheel pipes 23R and 23L and the left and right rear wheel pipes 24R and 24L.
  • the master cylinder 21 is provided with a master cylinder pressure sensor 21a that detects the hydraulic pressure, that is, the master cylinder pressure Pm, and outputs the detected master cylinder pressure Pm to the electrically connected brake ECU and ECU 3.
  • the hydraulic pressure may be generated directly by the pedaling force generated by the operation of the brake pedal, or the hydraulic pressure may be indirectly generated according to the operation amount of the brake pedal.
  • the brake actuator 22 individually generates braking force generated in each wheel 13FR to 13RL, such as VSC (Vehicle Stability Control) control that is side slip suppression control by the ECU 3 and ABS (Antilock Brake System) control that is brake lock suppression control by the brake ECU. (Left and right front wheels 13FL, 13FR and left and right rear wheels 13RL, 13RR, right front and rear wheels 13FR, 13RR, left front and rear wheels 13FL, 13RL, left front wheel right rear wheels 13FL, 13RR and right front wheel left rear wheel 13FR, 13RL) or independently Can be adjusted.
  • the brake actuator 22 is provided between the master cylinder 21 and each of the wheel cylinders 25FL to 25RR.
  • the left front wheel pipe 23L is provided with the left front wheel side wheel cylinder 25FL
  • the right front wheel pipe 23R is provided with the right front wheel side wheel cylinder.
  • 25FR is connected to the wheel cylinder 25RL on the left rear wheel side by the left rear wheel pipe 24L, and to the wheel cylinder 25RR on the right rear wheel side by the right rear wheel pipe 24R.
  • the brake actuator 22 includes an oil pump (not shown), an oil reservoir, and various valves (fluid holding valve, pressure reducing valve, etc.), and the cylinder pressure Ps that is the pressure of each wheel cylinder 25FL to 25RR is applied as a braking force as described above. Can be controlled individually or independently.
  • the brake actuator 22 has a predetermined braking force distribution between the left and right front wheels 13FL and 13FR and the left and right rear wheels 13RL and 13RR in a normal state, that is, in a state where braking force control such as VSC control and ABS control is not performed.
  • the front wheel brake pressure Pf (the left and right front wheel side cylinder pressure Ps) is supplied to the left and right front wheel side wheel cylinders 25FL and 25FR, and the left and right rear wheel side wheel cylinders 25RR and 25RL are rear wheel brake pressure Pr ( The cylinder pressure Ps) on the left and right rear wheels can be supplied.
  • Each wheel cylinder 25FL to 25RR is a hydraulic actuator for driving a braking mechanism that generates a braking force provided to each wheel 13FL to 13RR.
  • the braking mechanism is, for example, a disk brake mechanism including a disk rotor and a brake pad, a drum brake mechanism, or the like.
  • An LSPV (Load-Sensing Proportioning Valve) 26 is a rear wheel brake pressure changing means, and changes the rear wheel brake pressure Pr according to the rear wheel axle load WR, that is, between the left and right front wheels 13FL and 13FR and the left and right rear wheels 13RL and 13RR.
  • the braking force distribution is changed according to the rear wheel axle load WR.
  • the LSPV 26 is provided between the brake actuator 22 and the wheel cylinders 25RL and 25RR on the rear wheel side, and changes the rear wheel brake pressure Pr by controlling the flow rate in the left and right rear wheel pipes 24L and 24R. .
  • the rear wheel load of the loaded vehicle 10 is changed, and the distance between the left and right rear wheels 13 RL and 13 RR and the loading platform 11 is not loaded on the loading platform 11. It will shrink compared to. Note that even if a crew member gets on the driver's seat or the passenger seat on the loaded vehicle 10, the front wheel load changes, but the rear wheel load does not change substantially.
  • the LSPV 26 is provided, for example, between a vehicle body (not shown) and a rear axle, and based on a change in the distance between the vehicle body and the rear axle according to the load of the load 12 loaded on the loading platform 11, that is, based on a change in the rear wheel load,
  • the rear wheel brake pressure Pr is changed by controlling the flow rate in the left and right rear wheel pipes 24L, 24R.
  • the LSPV 26 has a constant change in the rear wheel brake pressure Pr with respect to the front wheel brake pressure Pf until the front wheel brake pressure Pf reaches an arbitrary change point corresponding to the load L from the generation of the brake pressure ( (Brake pressure distribution before and after the previous term).
  • the LSPV 26 is set so that when the front wheel brake pressure Pf exceeds an arbitrary change point corresponding to the load capacity L, the distribution is different from the previous period front / rear brake pressure distribution (late front / rear brake distribution).
  • the rear and rear brake pressure distribution is set such that the change amount of the rear wheel brake pressure Pr is smaller than the front and rear brake pressure distribution with respect to the change amount of the front wheel brake pressure Pf. This is because in the braking state when the master cylinder pressure Pm is large, that is, when the driver strongly presses the brake pedal, the ground contact pressure with the road surface of the left and right front wheels 13FL and 13FR increases due to the braking force, and the left and right rear wheels 13RL and 13RR.
  • the LSPV 26 sets the front-rear brake pressure distribution so that the rear-wheel brake pressure Pr becomes smaller in the rear-period front-rear brake pressure distribution, thereby suppressing the occurrence of slipping of the left and right rear wheels 13RL, 13RR.
  • the LSPV 26 may be provided at any one of the center, the left side, and the right side in the vehicle width direction. In this embodiment, it is provided at the center (substantially the center).
  • the left and right rear wheels 13RL and 13RR and the loading platform 11 when the roll is generated by turning left and right are compared with the case where the LSPV 26 is provided at the center in the vehicle width direction. Therefore, the estimated change in braking of the rear wheel axle load WR can be increased.
  • the front wheel brake pressure sensor 27 is a front wheel brake pressure detection means for detecting the front wheel brake pressure Pf.
  • the front wheel brake pressure sensor 27 is provided in the middle of the left front wheel pipe 23L, and detects the cylinder pressure Ps of the wheel cylinder 25FL on the left front wheel side as the front wheel brake pressure Pf.
  • the detected front wheel brake pressure Pf is output to the brake ECU and the ECU 3.
  • the front wheel brake pressure sensor 27 may be provided in the middle of the right front wheel pipe 23R, or is built in the brake actuator 22 in advance, and the cylinder pressure Ps of one or both of the wheel cylinders 25FL and 25FR on the left and right front wheels is used. It may be detected.
  • the rear wheel brake pressure sensor 28 is a rear wheel brake pressure detecting means for detecting the rear wheel brake pressure Pr.
  • the rear wheel brake pressure sensor 28 is provided between the LSPV 26 and the wheel cylinder 25RR on the right front wheel side after the right rear wheel pipe 24R. That is, the rear wheel brake pressure sensor 28 is downstream of the LSPV 26 (the brake actuator 22 and the master cylinder 21 that are upstream of the LSPV 26, that is, the side that supplies the hydraulic pressure that is opposite to the side where the hydraulic pressure is generated. )
  • the rear wheel brake pressure sensor 28 detects the rear wheel brake pressure Pr changed by the LSPV 26.
  • ECU (Electronic Control Unit) 3 is a control device and determines the vehicle center of gravity state in the vehicle width direction.
  • the ECU 3 functions as a rear wheel axle weight estimation unit and a vehicle center-of-gravity state determination unit.
  • the ECU 3 estimates the rear wheel axle load WR based on the relationship between the detected front and rear brake pressures during braking and the rear wheel axle weight characteristics of the LSPV 26.
  • the ECU 3 is determined in advance based on the load amount L based on the relationship between the detected front and rear brake pressures during braking, the rear axle weight characteristics of the LSPV 26, and the specifications of the loaded vehicle 10.
  • the rear wheel axle weight WR is determined based on the rear wheel axle weight at the time of loading.
  • the ECU 3 estimates the load amount L from the relationship between the detected front wheel brake pressure Pf and the rear wheel brake pressure Pr, that is, the front-rear brake pressure distribution, in particular, the rear-stage front-rear brake pressure distribution, and the estimated load amount L is not loaded.
  • the rear wheel axle weight WR is estimated by adding the rear wheel axle weight at the time. This is because the rear wheel load at the time of no loading is added to the load characteristic of the LSPV 26 (relation between the late front / rear brake pressure distribution and the load amount L) in which the front / rear brake pressure distribution is mechanically determined according to the load amount L. It is based on wheel axle weight characteristics.
  • the ECU 3 brakes when the loaded vehicle 10 is braked in a straight traveling state, during straight braking, when the loaded vehicle 10 is braked in a left turning state when braking, or when the loaded vehicle 10 is in a right turning state.
  • the rear wheel axle load WR at the time of at least two brakings at the time of right-turn braking, which is a case where the vehicle is to be rotated, is estimated. That is, the ECU 3 estimates the rear wheel axle load WR at the time of braking in which the vehicle traveling state is different.
  • the rear wheel axle load WR at the time of braking changes according to the loading position of the load 12 in the vehicle width direction. This is because when the loaded vehicle 10 turns left and right, a roll is generated unlike when the vehicle is traveling straight.
  • the load on the inner turning wheel decreases according to the turning direction, and the load on the outer turning wheel increases.
  • the loads on the left front and rear wheels 13FL and 13RL are decreased, and the loads on the right front and rear wheels 13FR and 13RR are increased.
  • the loads on the right front and rear wheels 13FR and 13RR are decreased, and the loads on the right front and rear wheels 13FL and 13RL are increased.
  • the amount of change in the load varies according to the width-direction gravity center position Gx, which is the gravity center position in the vehicle width direction of the loaded vehicle 10, the turning speed, and the turning radius.
  • the lift of the loading platform 11 occurs at the center.
  • the sinking of the turntable 11 on the outer turning wheel side due to an increase in the load on the turning outer ring is small, and there is almost no lift on the turning inner ring side of the turntable 11 due to a decrease in the load on the turning inner ring.
  • the loading platform 11 sinks.
  • the LSPV 26 is provided at the center (substantially in the center) during the straight braking, there is almost no influence of the center of gravity position Gx in the width direction due to the loading position of the load 12 in the vehicle width direction.
  • the estimated rear wheel axle load WRS is substantially constant.
  • the ECU 3 determines the center of gravity state of the vehicle in the vehicle width direction based on the estimated rear wheel axle weight.
  • the ECU 3 is in a left-right single-load state that is a vehicle center-of-gravity state in the vehicle width direction based on at least two of the estimated straight rear wheel axle weight WRS, left turning rear axle weight WRL, and right turning rear axle weight WRR. It is determined whether or not there is.
  • ECU3 for example, the difference between the straight wheel load WRS and the left turn rear wheel load WRL, the difference between the straight wheel load WRS and the right turn rear wheel load WRR, or the left turn rear wheel load WRL and the right turn
  • the single load state is determined based on the difference between the wheel load and the wheel load WRR.
  • the single load state may be determined based on the plus / minus and the magnitude of the left turn rear wheel axle load WRL and the right turn rear wheel axle load WRR relative to the straight rear wheel axle load WRS. For example, when determining the vehicle center of gravity state in the vehicle width direction based on the difference (WRL-WRR) between the left-turning rear axle weight WRL and the right-turning rear axle weight WRR, if the difference is 0 (substantially 0), the center loading If the value is negative, it is determined that the load is on the left side, and if the value is positive, it is determined that the load is on the right side.
  • the hardware configuration of the ECU 3 mainly includes a CPU (Central Processing Unit) that performs arithmetic processing, a memory for storing programs and information (RAM such as SRAM, ROM (Read Only Memory) such as EEPROM), an input / output interface, and the like. Since it is the same as the ECU mounted on the known loading vehicle 10, detailed description is omitted.
  • the ECU 3 also includes a driving device 4 that applies a driving force or a braking force to the loaded vehicle 10 such as an engine or a motor mounted on the loaded vehicle 10, the above-described braking device 2, and a steering device 5 such as an EPS (Electric Power Steering).
  • EPS Electronic Power Steering
  • the loaded vehicle 10 which are electrically connected to various sensors provided on the loaded vehicle 10 such as an accelerator pedal sensor and a brake pedal sensor (not shown), such as information from the devices 2, 4 and 5, such as front wheel brake pressure Pf, rear wheel brake
  • information from the devices 2, 4 and 5 such as front wheel brake pressure Pf, rear wheel brake
  • the pressure Pr, the driving force F, and the like can be acquired, and the traveling state of the loaded vehicle 10 such as the acceleration A, the traveling request of the loaded vehicle 10 and the braking request of the driver can be acquired as vehicle information from various sensors.
  • the ECU 3, the sensors such as the front wheel brake pressure sensor 27 and the rear wheel brake pressure sensor 28, and the devices 2, 4, and 5 are electrically connected by a communication system represented by a CAN communication system, for example. .
  • the ECU 3 repeatedly executes the vehicle center-of-gravity state determination method every preset control cycle.
  • the ECU 3 calculates the total vehicle weight Wm (step ST11).
  • the ECU 3 calculates the total vehicle weight Wm based on the longitudinal acceleration Afr of the driving force F and acceleration A of the loaded vehicle 10 acquired by the ECU 3.
  • Loading on the loading platform 11 by subtracting the vehicle weight W and the occupant weight (the value obtained by multiplying the number of occupants calculated by a seat sensor not shown) by the specifications of the loaded vehicle 10 from the total vehicle weight Wm.
  • the actual loaded amount L can be calculated.
  • the ECU 3 estimates the straight rear wheel axle weight WRS, which is the rear wheel axle weight WR at the time of straight braking (step ST12).
  • the ECU 3 determines the front wheel brake pressure Pf and the rear wheel brake pressure Pr when the front wheel brake pressure Pf is generated in which the rear wheel axle weight characteristic of the LSPV 26 based on the calculated load L is the latter period front and rear brake pressure distribution.
  • the straight rear wheel axle load WRS is estimated based on the rear wheel axle load characteristic of the LSPV 26.
  • the ECU 3 determines whether the rear wheel axle weight characteristic of the LSPV 26 based on the calculated load L is larger than a change point at which the front-rear front-rear brake pressure distribution changes to the rear-rear front-rear brake pressure distribution during straight-ahead braking. It is determined whether or not Pfx is generated, and if it is determined that front wheel brake pressure Pf greater than the change point is generated, the current front wheel brake pressure Pf and rear wheel brake pressure Pr are detected, and the straight axle wheel load is determined. Estimate WRS.
  • the predetermined front wheel brake pressure Pfx is considered to change with respect to the straight rear wheel axle load WRS of the left and right turning rear wheel axle weights WRL and WRR, and the front wheels at the changing points based on the calculated load L are considered.
  • a value slightly larger than the brake pressure Pf is preferable.
  • the ECU 3 estimates the left turn rear wheel axle load WRL that is the rear wheel axle load WR during left turn braking (step ST13).
  • the ECU 3 determines whether or not the detected front wheel brake pressure Pf is equal to or higher than a predetermined front wheel brake pressure Pfx during left turn braking, and determines that the detected value is equal to or higher than the predetermined front wheel brake pressure Pfx.
  • the front wheel brake pressure Pf and the rear wheel brake pressure Pr are detected, and the left turn rear wheel axle load WRL is estimated based on the detected front wheel brake pressure Pf, rear wheel brake pressure Pr, and the rear wheel axle load characteristic of the LSPV 26.
  • the ECU 3 estimates a right-turning rear wheel axle weight WRR that is a rear-wheel axle weight WR at the time of right-turn braking (step ST14).
  • the ECU 3 determines whether or not the detected front wheel brake pressure Pf is greater than or equal to a predetermined front wheel brake pressure Pfx during right turn braking, and determines that it is greater than or equal to a predetermined front wheel brake pressure Pfx.
  • the current front wheel brake pressure Pf and the rear wheel brake pressure Pr are detected, and the left turn rear wheel axle load WRR is estimated based on the detected front wheel brake pressure Pf, rear wheel brake pressure Pr, and the rear wheel axle load characteristic of the LSPV 26.
  • the speed and the turning radius are the same (including substantially the same) conditions.
  • the ECU 3 detects a one-sided load state based on the estimated straight rear wheel axle load WRS, left turn rear wheel axle load WRL, and right turn rear wheel axle load WRR (step ST15).
  • the ECU 3 determines whether or not the vehicle is in a single load state based on at least two of the estimated straight traveling rear wheel axle weight WRS, left turning rear wheel axle weight WRL, and right turning rear wheel axle weight WRR. For example, if the difference is 0 (almost 0), the ECU 3 performs the center loading, and if the difference is a negative value, the left loading is the left loading, the left wheel loading WRR and the right turning wheel weight WRR (WRL ⁇ WRR). If it is a positive value, it is determined that the load is on the right side.
  • the front and rear brake pressures Pf detected when braking is performed in at least two states of straight traveling, right turning, or left turning.
  • Pr, and the rear wheel axle weight WRSA, WRR, WRL based on the rear wheel axle weight characteristics of the LSPV 26, respectively, and the vehicle center of gravity state in the vehicle width direction based on the estimated rear wheel axle weights WRS, WRR, WRL Therefore, the single-load state can be determined based on the characteristics of the existing apparatus mounted on the loaded vehicle 10. Therefore, the single load state can be determined with a simple configuration, and the driver can be alerted and the vehicle behavior control based on the single load state can be performed.
  • FIG. 7 is a flowchart of the vehicle behavior control method of the vehicle behavior control system according to the second embodiment.
  • the basic configuration of the vehicle behavior control system according to the second embodiment includes the vehicle center-of-gravity state determination device 1 according to the first embodiment, the vehicle behavior control device, and in this embodiment, the braking device 2 that controls at least the braking force.
  • the drive device 4 and the steering device 5 are included.
  • ECU3 functions as vehicle behavior control means. That is, the ECU 3 controls the vehicle behavior by controlling at least the braking force by the braking device 2 based on the state of the center of gravity of the vehicle in the vehicle width direction, in this embodiment, the shift amount X.
  • vehicle behavior control include VSC control and ABS control. Since the vehicle behavior control on the left is already known, the description thereof is omitted in this embodiment.
  • the ECU 3 calculates the total vehicle weight Wm (step ST21), estimates a straight rear wheel axle weight WRS (step ST22), and estimates a left-turn rear wheel axle weight WRL (step ST23). ), The right wheel rear wheel axle load WRR is estimated (step ST24).
  • the ECU 3 estimates the deviation amount X of the center of gravity position in the vehicle width direction from the estimated straight rear wheel axle weight WRS, left turning rear axle weight WRL, and right turning rear axle weight WRR (step ST25).
  • the ECU 3 estimates the deviation amount X based on at least two of the estimated straight traveling rear wheel axle weight WRS, left turning rear wheel axle weight WRL, and right turning rear wheel axle weight WRR.
  • the ECU 3 determines the difference (WRL-WRR) between the left turning rear wheel axle weight WRL as the first rear wheel axle weight and the right turning rear wheel axle weight WRR as the second rear wheel axle weight, and the total vehicle weight Wm.
  • the ECU 3 performs vehicle behavior control based on the estimated deviation amount X (step ST26).
  • the ECU 3 performs the vehicle behavior control using the estimated deviation amount X as one of the input parameters for performing the vehicle behavior control. That is, when the ECU 3 is in a loading state that is determined to be a single cargo state, the vehicle behavior control is performed according to the degree of the single cargo state.
  • vehicle behavior control is performed based on the vehicle center of gravity state in the vehicle width direction estimated by the vehicle center of gravity state determination device 1, and in this embodiment, the deviation amount X.
  • the vehicle behavior control can be implemented.
  • the vehicle behavior control that takes into account the deviation amount X can prevent the lift of the loaded vehicle 10 that may occur at the time of turning in a single load state at an early stage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Regulating Braking Force (AREA)

Abstract

 後輪軸重に応じて後輪ブレーキ圧Prを変更するLSPV26と、前輪のブレーキ圧Pfを検出する前輪ブレーキ圧センサ27と、LSPV26よりも下流側における後輪のブレーキ圧Prを検出する後輪ブレーキ圧センサ28と、制動時における検出された前後のブレーキ圧Pf,Prの関係と、LSPV26の後輪軸重特性とに基づいて後輪軸重WRを推定し、推定された後輪軸重WRに基づいて車両幅方向における車両重心状態を判定するECU3とを備える。ECU3は、直進時、右旋回時あるいは左旋回時の少なくとも2つの状態で制動が行われた場合の後輪軸重WRをそれぞれ推定する。

Description

車両重心状態判定装置および車両挙動制御システム
 本発明は、車両の重心状態を判定する車両重心状態判定装置、車両挙動制御システムおよび車両重心状態判定方法に関する。
 VSC(Vehicle Stability Control)などの少なくとも制動力を制御することで車両の挙動を制御する車両挙動制御では、制御量を決定するパラメータの1つである車両の重心は一定であると想定して制御が行われている。ところで、車両には、軽積載と定積載とで荷重が大きく変化し、重心位置が車両前後に変化する積載車がある。このような積載車では、重心位置が一定であると想定して車両挙動制御を行っても、十分な制御性能を発揮できない可能性がある。
 従来、軽積載と定積載とで荷重が変化することで、重心位置が車両前後に変化することを考慮して制動力制御を行うものがある。例えば、特許文献1に示すように、後輪制動力が軽積載時の前後理想制動力配分における後輪制動力に到達したときに後輪のスリップ状態となっていないときには、後輪制動力の配分比を大きくする制動力制御を行うものがある。
特開2010-284990号公報
 しかしながら、積載車では、荷物を車両前後方向のみならず車両幅方向の任意の位置に載置することができる。このため、重心位置は、積載物の位置に応じて車両前後方向および車両幅方向に変化する。上記制動力制御を含む車両挙動制御においては、車両幅方向における重心位置を考慮した制御が要望される。
 本発明は、上記に鑑みてなされたものであって、車両幅方向における重心位置状態を判定することができる車両重心状態判定装置、車両挙動制御システム、車両重心状態判定方法を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る車両重心状態判定装置は、後輪軸重に応じて後輪ブレーキ圧を変更する後輪ブレーキ圧変更手段と、前輪のブレーキ圧を検出する前輪ブレーキ圧検出手段と、前記後輪ブレーキ圧変更手段よりも下流側における前記後輪のブレーキ圧を検出する後輪ブレーキ圧検出手段と、制動時における検出された前後のブレーキ圧の関係と、前記後輪ブレーキ圧変更手段の後輪軸重特性とに基づいて後輪軸重を推定する後輪軸重推定手段と、前記推定された後輪軸重に基づいて車両幅方向における車両重心状態を判定する車両重心状態判定手段と、を備え、前記後輪軸重推定手段は、直進時、右旋回時あるいは左旋回時の少なくとも2つの状態で制動が行われた場合の前記後輪軸重をそれぞれ推定することを特徴とする。
 また、上記車両重心状態判定装置において、前記車両幅方向における車両重心状態は、前記車両幅方向における車両重心位置のずれ量であり、前記後輪軸重推定手段は、左旋回時および右旋回時の状態で制動が行われた場合の前記後輪軸重をそれぞれ第1の後輪軸重および第2の後輪軸重として推定し、前記第1の後輪軸重および前記第2の後輪軸重に基づいて前記車両幅方向における車両重心位置のずれ量を推定することが好ましい。
 また、本発明に係る車両挙動制御システムは、上記車両重心状態判定装置と、前記車両幅方向における車両重心状態に基づいて、少なくとも制動力を制御することで、車両の挙動を制御する車両挙動制御装置と、を備えることを特徴する。
 また、本発明に係る車両重心状態判定方法は、後輪軸重に応じて後輪ブレーキ圧を変更する手順と、前輪のブレーキ圧を検出する手順と、前記後輪軸重に応じて後輪におけるブレーキ圧を変更する後輪ブレーキ圧変更手段よりも下流側における前記後輪のブレーキ圧を検出する手順と、制動時における検出された前後のブレーキ圧の関係と、前記後輪ブレーキ圧変更手段の後輪軸重特性とに基づいて後輪軸重を推定する手順と、前記推定された後輪軸重に基づいて車両幅方向における車両重心状態を判定する手順と、を含み、前記後輪軸重は、直進時、右旋回時あるいは左旋回時の少なくとも2つの状態で制動が行われた場合に推定されることを特徴とする。
 本発明に係る車両重心状態判定装置および車両重心状態判定方法は、簡単な構成で車両幅方向における車両重心状態を判定することができるという効果を奏する。また、本発明に係る車両挙動制御システムは、検出された車両幅方向における車両重心状態に基づいて車両挙動を制御することができるので、車両幅方向における車両重心状態が変化しても、適切に車両挙動を制御することができるという効果を奏する。
図1は、実施形態1に係る車両重心状態判定装置を備える車両の構成例を示す図である。 図2は、前輪ブレーキ圧と後輪ブレーキ圧と積載量との関係を示す図である。 図3は、実施形態1に係る車両重心状態判定装置の車両重心状態判定方法のフロー図である。 図4は、中央積載時における前輪ブレーキ圧と後輪ブレーキ圧と後輪軸重との関係を示す図である。 図5は、左側積載時における前輪ブレーキ圧と後輪ブレーキ圧と後輪軸重との関係を示す図である。 図6は、右側積載時における前輪ブレーキ圧と後輪ブレーキ圧と後輪軸重との関係を示す図である。 図7は、実施形態2に係る車両挙動制御システムの車両挙動制御方法のフロー図である。
 本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成の種々の省略、置換又は変更を行うことができる。
  〔実施形態1〕
 実施形態1に係る車両重心状態判定装置1について説明する。図1は、実施形態に係る車両重心状態判定装置を備える車両の構成例を示す図である。図2は、前輪ブレーキ圧と後輪ブレーキ圧と積載量との関係を示す図である。図3は、実施形態に係る車両重心状態判定装置の車両重心状態判定方法のフロー図である。図4は、中央積載時における前輪ブレーキ圧と後輪ブレーキ圧と後輪軸重との関係を示す図である。図5は、左側積載時における前輪ブレーキ圧と後輪ブレーキ圧と後輪軸重との関係を示す図である。図6は、右側積載時における前輪ブレーキ圧と後輪ブレーキ圧と後輪軸重との関係を示す図である。
 ここで、本実施形態では、車両後方に荷台11が設けられ、荷台11に積載物12を積載可能なトラック、バン、カーゴ、ダンプなどの積載車10に車両重心状態判定装置1が設けられている場合について説明するが、これに限定されるものではなく、後述する後輪軸重に応じて後輪におけるブレーキ圧を変更する後輪ブレーキ圧変更手段を備える車両であればいずれの車両にも適用することができる。なお、以下の説明における「左右」は、積載車10の前進方向視における車両幅方向の左右と一致する。
 車両重心状態判定装置1は、制動装置2に含まれるLSPV26、前輪ブレーキ圧センサ27および後輪ブレーキ圧センサ28と、ECU3とを含んで構成されている。
 制動装置2は、積載車10に制動力を発生させるものであり、本実施形態では、油圧式制動装置として説明するが、これに限定されるものではなく空気・油圧式制動装置、空気式制動装置のいずれかであってもよい。マスターシリンダ21と、ブレーキアクチュエータ22と、左右前輪配管23L,23Rと、左右後輪配管24L,24Rと、各車輪13FL,13FR,13RL,13RRにそれぞれ対応して設けられたホイールシリンダ25FL,25FR,25RL,25RRと、LSPV26と、前輪ブレーキ圧センサ27と、後輪ブレーキ圧センサ28と、図示しないブレーキECUとを含んで構成されている。
 マスターシリンダ21は、運転者のブレーキペダルの操作に応じた液圧を発生させ、発生した液圧を左右前輪配管23R,23Lおよび左右後輪配管24R,24Lを介して各ホイールシリンダ25FR~25RLに供給するものである。マスターシリンダ21には、液圧、すなわちマスターシリンダ圧Pmを検出するマスターシリンダ圧センサ21aが設けられており、検出されたマスターシリンダ圧Pmを電気的に接続されたブレーキECUおよびECU3に出力する。ブレーキペダルの操作で発生する踏力により直接的に液圧を発生してもよいし、ブレーキペダルの操作量に応じて間接的に液圧を発生させてもよい。
 ブレーキアクチュエータ22は、ECU3による横滑り抑制制御であるVSC(Vehicle Stability Control)制御やブレーキECUによるブレーキロック抑制制御であるABS(Antilock Brake System)制御などの各車輪13FR~13RLに発生する制動力を個別(左右前輪13FL,13FRおよび左右後輪13RL,13RR、右前後輪13FR,13RRおよび左前後輪13FL,13RL、左前輪右後輪13FL,13RRおよび右前輪左後輪13FR,13RL)に、または独立して調整することができるものである。ブレーキアクチュエータ22は、マスターシリンダ21と各ホイールシリンダ25FL~25RRとの間に設けられるものであり、左前輪配管23Lにより左前輪側のホイールシリンダ25FLと、右前輪配管23Rにより右前輪側のホイールシリンダ25FRと、左後輪配管24Lにより左後輪側のホイールシリンダ25RLと、右後輪配管24Rにより右後輪側のホイールシリンダ25RRと接続されている。ブレーキアクチュエータ22は、図示しないオイルポンプ、オイルリザーバー、各種弁(流体保持弁、減圧弁など)を含んで構成され、各ホイールシリンダ25FL~25RRの圧力であるシリンダ圧Psを上述のように制動力を個別にまたは独立して調整するために制御することができるものである。ここで、ブレーキアクチュエータ22は、通常時、すなわちVSC制御やABS制御などの制動力制御が実施されていない状態において、左右前輪13FL,13FRと左右後輪13RL,13RRとの制動力配分が所定の配分となるように、左右前輪側のホイールシリンダ25FL,25FRに前輪ブレーキ圧Pf(左右前輪側のシリンダ圧Ps)を供給し、左右後輪側のホイールシリンダ25RR,25RLに後輪ブレーキ圧Pr(左右後輪側のシリンダ圧Ps)を供給することができる。
 各ホイールシリンダ25FL~25RRは、各車輪13FL~13RRにそれぞれ設けられた制動力を発生する制動機構を駆動するための液圧式のアクチュエータである。制動機構は、例えば、ディスクロータとブレーキパッドで構成されるディスクブレーキ機構や、ドラムブレーキ機構などである。
 LSPV(Load-Sensing Proportioning Valve)26は、後輪ブレーキ圧変更手段であり、後輪軸重WRに応じて後輪ブレーキ圧Prを変更、すなわち左右前輪13FL,13FRと左右後輪13RL,13RRとの制動力配分を後輪軸重WRに応じて変更するものである。LSPV26は、ブレーキアクチュエータ22と後輪側のホイールシリンダ25RL,25RRとの間に設けられており、左右後輪配管24L,24Rにおける流量を制御することで後輪ブレーキ圧Prを変更するものである。ここで、荷台11に積載物12を積載すると、積載車10の後輪荷重が変化するとともに、左右後輪13RL,13RRと荷台11との距離が荷台11に積載物12が積載されていない状態と比較して縮むことになる。なお、積載車10に運転席や助手席に搭乗員が乗っても、前輪荷重は変化するが後輪荷重はほぼ変化しないものである。LSPV26は、例えば、図示しない車体とリヤアクスルとの間に設けられ、荷台11に積載された積載物12の荷重に応じた車体とリヤアクスルとの距離の変化、すなわち後輪荷重の変化に基づいて、左右後輪配管24L,24Rにおける流量を制御することで、後輪ブレーキ圧Prを変更する。LSPV26は、図2に示すように、ブレーキ圧の発生から前輪ブレーキ圧Pfが積載量Lに応じた任意の変化点となるまでは、前輪ブレーキ圧Pfに対する後輪ブレーキ圧Prの変化が一定(前期前後ブレーキ圧配分)となるように設定されている。また、LSPV26は、前輪ブレーキ圧Pfが積載量Lに応じた任意の変化点を超えると、前期前後ブレーキ圧配分とは異なる配分(後期前後ブレーキ配分)となるように設定されている。後期前後ブレーキ圧配分は、前輪ブレーキ圧Pfの変化量に対して後輪ブレーキ圧Prの変化量が前期前後ブレーキ圧配分に比較して小さくなるように設定される。これは、マスターシリンダ圧Pmが大きい、すなわち運転者が強くブレーキペダルを踏んだ際の制動状態では、制動力により左右前輪13FL,13FRの路面との接地圧が高くなり、左右後輪13RL,13RRの路面との接地圧が低くなるため、前期前後ブレーキ圧配分では左右後輪13RL,13RRがスリップする虞がある。従って、LSPV26は、後期前後ブレーキ圧配分では、後輪ブレーキ圧Prが小さくなるような前後ブレーキ圧配分に設定することで、左右後輪13RL,13RRのスリップの発生を抑制する。なお、積載量Lに応じた任意の変化点における前輪ブレーキ圧Pfは積載量Lの増加、例えば、軽積載(L=min)、定積載の50%(L=0.5)、定積債の75%(L=0.75)、定積債(L=max=1))と増加するに伴い増加するが、前輪ブレーキ圧Pfの変化量に対して後輪ブレーキ圧Prの変化量は積載量Lに関わらず一定である。LSPV26は、車両幅方向において中央、左側、右側のいずれかに設けられていてもよい。本実施形態では、中央(ほぼ中央)に設けられている。なお、LSPV26が左側、右側に設けられている場合は、車両幅方向において中央に設けられている場合と比較して、左右旋回によりロールが発生した際の左右後輪13RL,13RRと荷台11との距離が大きくなので、推定される後輪軸重WRの制動時における変化を大きくすることができる。
 前輪ブレーキ圧センサ27は、前輪ブレーキ圧検出手段であり、前輪ブレーキ圧Pfを検出するものである。前輪ブレーキ圧センサ27は、本実施形態では、図1に示すように、左前輪配管23Lの途中に設けられており、左前輪側のホイールシリンダ25FLのシリンダ圧Psを前輪ブレーキ圧Pfとして検出し、検出された前輪ブレーキ圧PfをブレーキECUおよびECU3に出力する。なお、前輪ブレーキ圧センサ27は、右前輪配管23Rの途中に設けられてもよいし、ブレーキアクチュエータ22に予め内臓され、左右前輪側のホイールシリンダ25FL,25FRのいずれかあるいは両方のシリンダ圧Psを検出するものであってもよい。
 後輪ブレーキ圧センサ28は、後輪ブレーキ圧検出手段であり、後輪ブレーキ圧Prを検出するものである。ここで、後輪ブレーキ圧センサ28は、右後輪配管24Rのち、LSPV26と右前輪側のホイールシリンダ25RRとの間に設けられている。つまり、後輪ブレーキ圧センサ28は、LSPV26よりも下流側(LSPV26よりも上流側であるブレーキアクチュエータ22およびマスターシリンダ21側、すなわち液圧が発生する側と反対側である液圧を供給する側)に設けられ、LSPV26よりも下流側における後輪ブレーキ圧Prを検出するものである。後輪ブレーキ圧センサ28は、LSPV26により変化した後輪ブレーキ圧Prを検出するものである。
 ECU(Electronic Control Unit)3は、制御装置であり、車両幅方向における車両重心状態を判定するものである。ECU3は、後輪軸重推定手段、車両重心状態判定手段として機能する。
 ECU3は、制動時における検出された前後のブレーキ圧の関係と、LSPV26の後輪軸重特性とに基づいて後輪軸重WRを推定する。ECU3は、本実施形態では、制動時における検出された前後のブレーキ圧の関係と、LSPV26の後輪軸重特性とに基づいた積載量Lと、積載車10の諸元で予め決定されている無積載時における後輪軸重とに基づいて後輪軸重WRとする。ECU3は、検出された前輪ブレーキ圧Pfおよび後輪ブレーキ圧Prとの関係、すなわち前後ブレーキ圧配分、特に後期前後ブレーキ圧配分から積載量Lを推定し、推定された積載量Lに、無積載時における後輪軸重を加えて後輪軸重WRを推定する。これは、積載量Lに応じて前後ブレーキ圧配分が機械的に決定されるLSPV26の荷重特性(後期前後ブレーキ圧配分と積載量Lとの関係)に無積載時における後輪荷重を加えた後輪軸重特性に基づいたものである。また、ECU3は、積載車10が直進走行状態において制動する場合である直進制動時、積載車10が左旋回状態において制動する場合である左旋回制動時、積載車10が右旋回状態において制動する場合である右旋回制動時の少なくとも2つの制動時における後輪軸重WRを推定する。つまり、ECU3は、車両走行状態が異なる制動時における後輪軸重WRを推定する。
 ここで、制動時における後輪軸重WRは、積載物12の車両幅方向における積載位置に応じて変化する。これは、積載車10が左右旋回を行うと、直進時とは異なりロールが発生するためである。積載車10にロールが発生すると、旋回方向に応じて旋回内輪の荷重が減少し、旋回外輪の荷重が増加する。例えば、左旋回では、左前後輪13FL,13RLの荷重が減少し、右前後輪13FR,13RRの荷重が増加する。一方、右旋回では、右前後輪13FR,13RRの荷重が減少し、右前後輪13FL,13RLの荷重が増加する。この荷重の変化量は、積載車10の車両幅方向における重心位置である幅方向重心位置Gx、旋回速度、旋回半径に応じて変化する。
 例えば、旋回速度、旋回半径が一定で、積載物12が車両幅方向において中央部(ほぼ中央部も含む)に積載されている中央積載時においては、図4に示すように、直進制動時における後輪軸重WRである直進後輪軸重WRSに対して、左旋回制動時における後輪軸重WRである左旋回後輪軸重WRLおよび右旋回制動時における後輪軸重WRである右旋回後輪軸重WRRが若干小さくなる。これは、中央積載時では、左右旋回のいずれにおいてロールが発生しても幅方向重心位置Gxの影響は小さいが、旋回外輪の荷重増加による荷台11の旋回外輪側の沈み込みが大きく、旋回内輪の荷重減少による荷台11の旋回内輪側の浮き上がりが小さくなり、車両幅方向における中央では荷台11の若干の沈み込みが発生するためである。
 また、旋回速度、旋回半径が一定で、積載物12が車両幅方向において中央部に対して左側に積載されている左側積載時においては、図5に示すように、直進後輪軸重WRSに対して、左旋回後輪軸重WRLが小さくなり、右旋回後輪軸重WRRが大きくなる。これは、左側積載時では、幅方向重心位置Gxが左側であるために直進時においてすでに荷台11の左側が沈み込んでいる。従って、左旋回においてロールが発生すると、旋回外輪の荷重増加による荷台11の旋回外輪側の沈み込みが小さく、旋回内輪の荷重減少による荷台11の旋回内輪側の浮き上がりがほぼなく、車両幅方向における中央では荷台11の沈み込みが発生するためである。右旋回においてロールが発生すると、旋回外輪の荷重増加による荷台11の旋回外輪側の沈み込みがほぼなく、旋回内輪の荷重減少による荷台11の旋回内輪側の浮き上がりが大きく、車両幅方向における中央では荷台11の浮き上がりが発生するためである。
 また、旋回速度、旋回半径が一定で、積載物12が車両幅方向において中央部に対して右側に積載されている右側積載時においては、図6に示すように、直進後輪軸重WRSに対して、左旋回後輪軸重WRLが大きくなり、右旋回後輪軸重WRRが小さくなる。これは、右側積載時では、幅方向重心位置Gxが右側であるために直進時においてすでに荷台11の右側が沈み込んでいる。従って、左旋回においてロールが発生すると、旋回外輪の荷重増加による荷台11の旋回外輪側の沈み込みがほぼなく、旋回内輪の荷重減少による荷台11の旋回内輪側の浮き上がりが大きい、車両幅方向における中央では荷台11の浮き上がりが発生するためである。右旋回においてロールが発生すると、旋回外輪の荷重増加による荷台11の旋回外輪側の沈み込みが小さく、旋回内輪の荷重減少による荷台11の旋回内輪側の浮き上がりがほぼなく、車両幅方向における中央では荷台11の沈み込みが発生するためである。ここで、直進制動時においては、LSPV26が中央(ほぼ中央)に設けられているため、積載物12の車両幅方向における積載位置による幅方向重心位置Gxの影響がほぼないため、直進制動時において推定される後輪軸重WRSはほぼ一定である。
 また、ECU3は、推定された後輪軸重に基づいて車両幅方向における車両重心状態を判定する。ECU3は、推定された直進後輪軸重WRS、左旋回後輪軸重WRLおよび右旋回後輪軸重WRRの少なくとも2つに基づいて車両幅方向における車両重心状態である左右どちらかの片荷状態であるか否かを判定する。ECU3は、例えば、直進後輪軸重WRSと左旋回後輪軸重WRLとの差分、直進後輪軸重WRSと右旋回後輪軸重WRRとの差分、あるいは左旋回後輪軸重WRLと右旋回後輪軸重WRRとの差分のプラスマイナスおよび大きさによって片荷状態を判定する。また、直進後輪軸重WRSに対する左旋回後輪軸重WRLおよび右旋回後輪軸重WRRのプラスマイナスおよび大きさによって片荷状態を判定してもよい。例えば、左旋回後輪軸重WRLと右旋回後輪軸重WRRとの差分(WRL-WRR)により車両幅方向における車両重心状態を判定する場合は、差分が0(ほぼ0)であれば中央積載、マイナス値であれば左側積載、プラス値であれば右側積載であると判定する。
 ECU3のハード構成は、主に演算処理を行うCPU(Central Processing Unit)、プログラムや情報を格納するメモリ(SRAMなどのRAM、EEPROMなどのROM(Read Only Memory))、入出力インターフェースなどから構成され、既知の積載車10に搭載されるECUと同様であるため、詳細な説明は省略する。また、ECU3は、積載車10に搭載されたエンジンやモータなどの積載車10に駆動力あるいは制動力を作用させる駆動装置4、上述の制動装置2、EPS(Electric Power Steering)などの操舵装置5、図示しないアクセルペダルセンサ、ブレーキペダルセンサなどの積載車10に設けられた各種センサと電気的に接続されており、各装置2,4,5からの情報、例えば前輪ブレーキ圧Pf、後輪ブレーキ圧Pr、駆動力Fなどを取得し、各種センサなどから積載車10の走行状態、例えば加速度Aや運転者の積載車10の走行要求、制動要求などを車両情報として取得することができる。ここで、ECU3と、前輪ブレーキ圧センサ27、後輪ブレーキ圧センサ28などのセンサ、各装置2,4,5とは、例えばCAN通信システムに代表される通信システムにより電気的に接続されている。
 次に、実施形態1に係る車両重心状態判定装置による車両重心状態判定方法について説明する。ここで、ECU3は、予め設定された制御周期毎に車両重心状態判定方法を繰り返し実行するものである。
 まず、ECU3は、図3に示すように、車両総重量Wmを算出する(ステップST11)。ここでは、ECU3は、ECU3が取得した積載車10の駆動力Fおよび加速度Aのうち前後加速度Afrに基づいて車両総重量Wmを算出する。車両総重量Wmから積載車10の諸元で設定されている車両重量Wおよび乗員重量(図示しない座席センサにより算出された乗員人数に所定体重をかけた値)を引くことで、荷台11に積載された実際の積載量Lを算出することができる。
 次に、ECU3は、直進制動時の後輪軸重WRである直進後輪軸重WRSを推定する(ステップST12)。ここでは、ECU3は、上記算出された積載量Lに基づいたLSPV26の後輪軸重特性が後期前後ブレーキ圧力配分となる前輪ブレーキ圧Pfが発生した際の前輪ブレーキ圧Pfと後輪ブレーキ圧Prと、LSPV26の後輪軸重特性に基づいて直進後輪軸重WRSを推定する。つまり、ECU3は、直進制動時において、上記算出された積載量Lに基づいたLSPV26の後輪軸重特性が前期前後ブレーキ圧配分から後期前後ブレーキ圧力配分に変わる変化点よりも大きい所定の前輪ブレーキ圧Pfxが発生しているか否かを判定し、変化点よりも大きい前輪ブレーキ圧Pfが発生していると判定すると、現在の前輪ブレーキ圧Pfおよび後輪ブレーキ圧Prを検出し、直進後輪軸重WRSを推定する。ここで、所定の前輪ブレーキ圧Pfxとは、左右旋回後輪軸重WRL,WRRの直進後輪軸重WRSに対して変化することを考慮して、算出された積載量Lに基づいた変化点における前輪ブレーキ圧Pfよりも若干大きな値とすることが好ましい。
 次に、ECU3は、左旋回制動時の後輪軸重WRである左旋回後輪軸重WRLを推定する(ステップST13)。ここでは、ECU3は、左旋回制動時において、検出された前輪ブレーキ圧Pfが所定の前輪ブレーキ圧Pfx以上であるか否かを判定し、所定の前輪ブレーキ圧Pfx以上であると判定すると、現在の前輪ブレーキ圧Pfおよび後輪ブレーキ圧Prを検出し、検出された前輪ブレーキ圧Pfと後輪ブレーキ圧Prと、LSPV26の後輪軸重特性に基づいて左旋回後輪軸重WRLを推定する。
 次に、ECU3は、右旋回制動時の後輪軸重WRである右旋回後輪軸重WRRを推定する(ステップST14)。ここでは、ECU3は、右旋回制動時において、検出された前輪ブレーキ圧Pfが所定の前輪ブレーキ圧Pfx以上であるか否かを判定し、所定の前輪ブレーキ圧Pfx以上であると判定すると、現在の前輪ブレーキ圧Pfおよび後輪ブレーキ圧Prを検出し、検出された前輪ブレーキ圧Pfと後輪ブレーキ圧Prと、LSPV26の後輪軸重特性に基づいて左旋回後輪軸重WRRを推定する。なお、直進後輪軸重WRS、左旋回後輪軸重WRL、左旋回後輪軸重WRRを推定する際は、左右後輪13RL,13RRの荷重が変化する要因のうち、幅方向重心位置Gx以外の旋回速度、旋回半径が同じ(ほぼ同じを含む)条件であることが好ましい。
 次に、ECU3は、推定された直進後輪軸重WRS、左旋回後輪軸重WRL、右旋回後輪軸重WRRに基づいて片荷状態を検出する(ステップST15)。ここでは、ECU3は、推定された直進後輪軸重WRS、左旋回後輪軸重WRLおよび右旋回後輪軸重WRRの少なくとも2つに基づいて片荷状態であるか否かを判定する。例えば、ECU3は、左旋回後輪軸重WRLと右旋回後輪軸重WRRとの差分(WRL-WRR)により、差分が0(ほぼ0)であれば中央積載、マイナス値であれば左側積載、プラス値であれば右側積載であると判定する。
 以上のように、本実施形態に係る車両重心状態判定装置1では、直進時、右旋回時あるいは左旋回時の少なくとも2つの状態で制動が行われた場合において検出された前後のブレーキ圧Pf,Prの関係と、LSPV26の後輪軸重特性とに基づいてそれぞれ後輪軸重WRSA,WRR,WRLを推定し、推定された後輪軸重WRS,WRR,WRLに基づいて車両幅方向における車両重心状態である片荷状態を判定するので、積載車10に搭載されている既存の装置の特性に基づいて片荷状態を判定することができる。従って、簡単な構成で片荷状態を判定することができ、運転者への注意喚起や、片荷状態であることに基づいた車両挙動制御を行うことができる。
  〔実施形態2〕
 次に、実施形態2に係る車両挙動制御システムについて説明する。図7は、実施形態2に係る車両挙動制御システムの車両挙動制御方法のフロー図である。実施形態2に係る車両挙動制御システムの基本的構成は、実施形態1に係る車両重心状態判定装置1に、車両挙動制御装置、本実施形態では、少なくとも制動力を制御する制動装置2を含む、駆動装置4、操舵装置5などが含まれて構成されている。
 ECU3は、車両挙動制御手段として機能する。つまり、ECU3は、車両幅方向における車両重心状態、本実施形態ではずれ量Xに基づいて、少なくとも制動装置2により制動力を制御することで、車両挙動を制御する。車両挙動制御としては、VSC制御やABS制御などがある。左記の車両挙動制御は、すでに公知であるため、本実施形態では説明を省略する。
 次に、実施形態2に係る車両挙動制御システムによる車両挙動制御方法について説明する。なお、実施形態2に係る車両挙動制御システムによる車両挙動制御方法のうち、上記実施形態1に係る車両重心状態判定装置による車両重心状態判定方法と同様の手順は、説明を省略あるいは簡略化する。
 まず、ECU3は、図7に示すように、車両総重量Wmを算出し(ステップST21)、直進後輪軸重WRSを推定し(ステップST22)し、左旋回後輪軸重WRLを推定し(ステップST23)、右旋回後輪軸重WRRを推定する(ステップST24)。
 次に、ECU3は、推定された直進後輪軸重WRS、左旋回後輪軸重WRL、右旋回後輪軸重WRRに車両幅方向における重心位置のずれ量Xを推定する(ステップST25)。ここでは、ECU3は、推定された直進後輪軸重WRS、左旋回後輪軸重WRLおよび右旋回後輪軸重WRRの少なくとも2つに基づいてずれ量Xを推定する。例えば、ECU3は、第1の後輪軸重である左旋回後輪軸重WRLと第2の後輪軸重である右旋回後輪軸重WRRとの差分(WRL-WRR)と、車両総重量Wmとに基づいてずれ量Xを推定する。ここで、ずれ量Xは、車両幅方向の中心に対する距離であってもよいし、距離に起因する指標であってもよい。指標としては、例えば、車両幅方向の中心に対して左右に離れるに伴い増加するように設定された複数のレベルであってもよい。なお、ずれ量Xの推定は、推定された直進後輪軸重WRS、左旋回後輪軸重WRLおよび右旋回後輪軸重WRRの少なくとも2つの差分と、車両総重量Wmと、旋回速度および旋回半径に関係する速度V、操舵角δ、横加速度Gc、ヨーレートRなどとの関係をマップでECU3が予め記憶しておき、推定された後輪軸重WRの差分に基づいて行っても良い。この場合は、ずれ量を推定するための時間を短縮することができ、応答性の高い車両挙動制御を実現することができる。
 次に、ECU3は、推定されたずれ量Xに基づいて車両挙動制御を実施する(ステップST26)。ここでは、ECU3は、車両挙動制御を実施するための入力パラメータの1つとして推定されたずれ量Xを用い、車両挙動制御を実施する。つまり、ECU3は、片荷状態と判定されるような積載状態である場合に、その片荷状態の程度に応じて車両挙動制御を実施することとなる。
 以上のように、本実施形態に係る車両挙動システムでは、車両重心状態判定装置1により推定された車両幅方向における車両重心状態、本実施形態ではずれ量Xに基づいて車両挙動制御を実施するため、車両挙動制御の実施時に片荷状態の場合や、車両挙動制御の実施中に積載物が移動して片荷状態となった場合など、幅方向重心位置Gxが変化した場合においても、適切に車両挙動制御を実施することができる。特に、ずれ量Xを加味した車両挙動制御により、片荷状態の旋回時に発生する虞がある積載車10の浮き上がりを早期に抑制することができる。
 1 車両重心状態判定装置
 2 制動装置
 21 マスターシリンダ
 22 ブレーキアクチュエータ
 23L,23R 左右前輪配管
 24L,24R 左右後輪配管
 25FL~25RR ホイールシリンダ
 26 LSPV
 27 前輪ブレーキ圧センサ
 28 後輪ブレーキ圧センサ
 3 ECU
 4 駆動装置
 5 操舵装置
 10 積載車
 11 荷台
 12 積載物
 13FL~13RR 車輪

Claims (4)

  1.  後輪軸重に応じて後輪ブレーキ圧を変更する後輪ブレーキ圧変更手段と、
     前輪のブレーキ圧を検出する前輪ブレーキ圧検出手段と、
     前記後輪ブレーキ圧変更手段よりも下流側における前記後輪のブレーキ圧を検出する後輪ブレーキ圧検出手段と、
     制動時における検出された前後のブレーキ圧の関係と、前記後輪ブレーキ圧変更手段の後輪軸重特性とに基づいて後輪軸重を推定する後輪軸重推定手段と、
     前記推定された後輪軸重に基づいて車両幅方向における車両重心状態を判定する車両重心状態判定手段と、
     を備え、
     前記後輪軸重推定手段は、直進時、右旋回時あるいは左旋回時の少なくとも2つの状態で制動が行われた場合の前記後輪軸重をそれぞれ推定することを特徴とする車両重心状態判定装置。
  2.  前記請求項1に記載の車両重心状態判定装置において、
     前記車両幅方向における車両重心状態は、前記車両幅方向における車両重心位置のずれ量であり、
     前記後輪軸重推定手段は、左旋回時および右旋回時の状態で制動が行われた場合の前記後輪軸重をそれぞれ第1の後輪軸重および第2の後輪軸重として推定し、
     前記第1の後輪軸重および前記第2の後輪軸重に基づいて前記車両幅方向における車両重心位置のずれ量を推定する車両重心状態判定装置。
  3.  前記請求項1または2に記載の車両重心状態判定装置と、
     前記車両幅方向における車両重心状態に基づいて、少なくとも制動力を制御することで、車両の挙動を制御する車両挙動制御装置と、
     を備えることを特徴とする車両挙動制御システム。
  4.  後輪軸重に応じて後輪ブレーキ圧を変更する手順と、
     前輪のブレーキ圧を検出する手順と、
     前記後輪軸重に応じて後輪におけるブレーキ圧を変更する後輪ブレーキ圧変更手段よりも下流側における前記後輪のブレーキ圧を検出する手順と、
     制動時における検出された前後のブレーキ圧の関係と、前記後輪ブレーキ圧変更手段の後輪軸重特性とに基づいて後輪軸重を推定する手順と、
     前記推定された後輪軸重に基づいて車両幅方向における車両重心状態を判定する手順と、
     を含み、
     前記後輪軸重は、直進時、右旋回時あるいは左旋回時の少なくとも2つの状態で制動が行われた場合に推定されることを特徴とする車両重心状態判定方法。
PCT/JP2013/053144 2013-02-08 2013-02-08 車両重心状態判定装置および車両挙動制御システム WO2014122786A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/053144 WO2014122786A1 (ja) 2013-02-08 2013-02-08 車両重心状態判定装置および車両挙動制御システム
DE112013006626.2T DE112013006626T5 (de) 2013-02-08 2013-02-08 Vorrichtung zur Bestimmung des Zustands eines Fahrzeugschwerpunkts und Fahrzeugverhaltenssteuersystem
US14/652,276 US9376119B2 (en) 2013-02-08 2013-02-08 Vehicle-center-of-gravity condition determining apparatus and vehicle behavior control system
CN201380071498.4A CN104955689B (zh) 2013-02-08 2013-02-08 车辆重心状态判定装置及车辆运行情况控制系统
JP2014560622A JP5850186B2 (ja) 2013-02-08 2013-02-08 車両重心状態判定装置および車両挙動制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/053144 WO2014122786A1 (ja) 2013-02-08 2013-02-08 車両重心状態判定装置および車両挙動制御システム

Publications (1)

Publication Number Publication Date
WO2014122786A1 true WO2014122786A1 (ja) 2014-08-14

Family

ID=51299397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/053144 WO2014122786A1 (ja) 2013-02-08 2013-02-08 車両重心状態判定装置および車両挙動制御システム

Country Status (5)

Country Link
US (1) US9376119B2 (ja)
JP (1) JP5850186B2 (ja)
CN (1) CN104955689B (ja)
DE (1) DE112013006626T5 (ja)
WO (1) WO2014122786A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168733A1 (ja) * 2021-02-08 2022-08-11 株式会社Ihi 重心位置判定装置及び方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105473352B (zh) * 2013-09-20 2017-10-27 株式会社小松制作所 轮胎管理系统和轮胎管理方法
FR3014192B1 (fr) * 2013-12-03 2015-12-25 Renault Sas Procede et dispositif d'estimation de l'intervalle dans lequel se situe la masse totale d'un vehicule automobile
JP6478743B2 (ja) * 2015-03-23 2019-03-06 本田技研工業株式会社 移動体
JP6450267B2 (ja) 2015-06-23 2019-01-09 本田技研工業株式会社 移動体
US10272890B2 (en) * 2017-06-07 2019-04-30 Bendix Commercial Vehicle Systems Llc Pneumatic panic brake assist
DE102017212225B4 (de) * 2017-07-18 2021-07-08 Ford Global Technologies, Llc Abschätzung von auf eine Hinterachse eines Kraftfahrzeugs einwirkenden Lasten
DE102017220860A1 (de) * 2017-09-28 2019-03-28 Continental Teves Ag & Co. Ohg Verfahren zur Ermittlung der Lage des Schwerpunkts eines Fahrzeugs
SG11202110876VA (en) * 2019-04-03 2021-11-29 Ihi Corp Weight estimation system
US11685531B1 (en) * 2019-10-30 2023-06-27 Intermotive, Inc. Seat occupancy sensing with analog sensors
JP7647637B2 (ja) * 2022-03-14 2025-03-18 トヨタ自動車株式会社 車両、運動マネージャ、および、運動要求補正方法
CN114620014B (zh) * 2022-04-08 2022-12-20 广东皓耘科技有限公司 一种速度控制方法、装置、农业设备及速度控制机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090044A (ja) * 1996-09-16 1998-04-10 Isuzu Motors Ltd 車両の軸荷重検出装置
WO2008062867A1 (fr) * 2006-11-22 2008-05-29 National University Corporation Tokyo University Of Marine Science And Technology Dispositif de détection de centre de gravité, de prédiction de vitesse critique pour retournement latéral et de prédiction de poids de cargaison
WO2010116542A1 (ja) * 2009-04-10 2010-10-14 トヨタ自動車株式会社 車両の重量関連物理量推定装置及び制御装置
JP2012020726A (ja) * 2010-06-15 2012-02-02 Yamato Scale Co Ltd 安全運転補助情報提供装置
JP2012136182A (ja) * 2010-12-27 2012-07-19 Hino Motors Ltd 重心位置推定装置、車両、および重心位置推定方法、並びにプログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3910209A1 (de) * 1989-03-30 1990-10-04 Bosch Gmbh Robert Antiblockierregelsystem
JP3456835B2 (ja) * 1996-06-10 2003-10-14 日信工業株式会社 車両のアンチロックブレーキ制御装置
JPH10167036A (ja) * 1996-12-10 1998-06-23 Unisia Jecs Corp 車両運動制御装置
EP1364848B1 (en) * 2002-05-22 2006-04-05 Nissan Motor Company, Limited Vehicle dynamics control system for a four-wheel-drive vehicle
JP4084248B2 (ja) * 2003-07-08 2008-04-30 トヨタ自動車株式会社 車輌の挙動制御装置
JP4361385B2 (ja) * 2004-01-30 2009-11-11 本田技研工業株式会社 自動二輪車のブレーキ装置
JP4503305B2 (ja) * 2004-01-30 2010-07-14 本田技研工業株式会社 自動二輪車の連動ブレーキ装置
JP2006117067A (ja) 2004-10-20 2006-05-11 Toyota Motor Corp 車両挙動制御装置
JP2010284990A (ja) 2009-06-09 2010-12-24 Toyota Motor Corp 車両の制動力制御装置
US9002611B2 (en) * 2012-12-21 2015-04-07 Nissin Kogyo Co., Ltd. Vehicular brake hydraulic pressure control apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090044A (ja) * 1996-09-16 1998-04-10 Isuzu Motors Ltd 車両の軸荷重検出装置
WO2008062867A1 (fr) * 2006-11-22 2008-05-29 National University Corporation Tokyo University Of Marine Science And Technology Dispositif de détection de centre de gravité, de prédiction de vitesse critique pour retournement latéral et de prédiction de poids de cargaison
WO2010116542A1 (ja) * 2009-04-10 2010-10-14 トヨタ自動車株式会社 車両の重量関連物理量推定装置及び制御装置
JP2012020726A (ja) * 2010-06-15 2012-02-02 Yamato Scale Co Ltd 安全運転補助情報提供装置
JP2012136182A (ja) * 2010-12-27 2012-07-19 Hino Motors Ltd 重心位置推定装置、車両、および重心位置推定方法、並びにプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168733A1 (ja) * 2021-02-08 2022-08-11 株式会社Ihi 重心位置判定装置及び方法
JP7485099B2 (ja) 2021-02-08 2024-05-16 株式会社Ihi 重心位置判定装置及び方法

Also Published As

Publication number Publication date
US20150367857A1 (en) 2015-12-24
JPWO2014122786A1 (ja) 2017-01-26
JP5850186B2 (ja) 2016-02-03
DE112013006626T5 (de) 2015-10-22
CN104955689B (zh) 2017-05-10
US9376119B2 (en) 2016-06-28
CN104955689A (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
JP5850186B2 (ja) 車両重心状態判定装置および車両挙動制御システム
US8764124B2 (en) Brake control apparatus
CN102753408B (zh) 车辆的行为控制装置
JP5471078B2 (ja) 車両運動制御装置
CN101795908A (zh) 车辆行为控制设备
KR20120126071A (ko) 브레이킹 및 드라이빙 동작들로 드라이빙 역학에 영향을 미치는 방법 및 브레이킹 시스템
US8676463B2 (en) Travel controlling apparatus of vehicle
US11260839B2 (en) Brake control apparatus for vehicle
US7118184B2 (en) Roll-over suppressing control apparatus for a vehicle
JP5958643B2 (ja) 車両の基準運動状態量の演算方法
JP2010188801A (ja) 車両の重心位置推定装置
CN108025709B (zh) 机动车牵引力控制系统和方法
JP2009065793A (ja) 電動車両
US12151663B2 (en) Braking control device
JP5083357B2 (ja) 車両運動制御装置
US9789861B2 (en) Braking force control system for vehicle
JP2005271821A (ja) 車両の挙動制御装置
JP2010284990A (ja) 車両の制動力制御装置
JP2010184642A (ja) 車両制動装置
JP2011219010A (ja) 制動力制御装置
JP5209589B2 (ja) 車両用ブレーキ液圧制御装置
JP4457590B2 (ja) 車両用ブレーキシステム
JP5176732B2 (ja) 車両運動制御システム
JP5067001B2 (ja) 車両用制動制御装置
JP5850664B2 (ja) 前後加速度推定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13874496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560622

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14652276

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120130066262

Country of ref document: DE

Ref document number: 112013006626

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13874496

Country of ref document: EP

Kind code of ref document: A1