WO2014119564A1 - セラミック電子部品およびその製造方法 - Google Patents
セラミック電子部品およびその製造方法 Download PDFInfo
- Publication number
- WO2014119564A1 WO2014119564A1 PCT/JP2014/051826 JP2014051826W WO2014119564A1 WO 2014119564 A1 WO2014119564 A1 WO 2014119564A1 JP 2014051826 W JP2014051826 W JP 2014051826W WO 2014119564 A1 WO2014119564 A1 WO 2014119564A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- ceramic
- ceramic element
- coating film
- electronic component
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/54—Electroplating of non-metallic surfaces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G2/00—Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
- H01G2/12—Protection against corrosion
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/1601—Process or apparatus
- C23C18/1633—Process of electroless plating
- C23C18/1635—Composition of the substrate
- C23C18/1639—Substrates other than metallic, e.g. inorganic or organic or non-conductive
- C23C18/1641—Organic substrates, e.g. resin, plastic
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1851—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
- C23C18/1872—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
- C23C18/1875—Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
- C23C18/1882—Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/54—Electroplating of non-metallic surfaces
- C25D5/56—Electroplating of non-metallic surfaces of plastics
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
- H01C17/02—Apparatus or processes specially adapted for manufacturing resistors adapted for manufacturing resistors with envelope or housing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/003—Thick film resistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/02—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/04—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/10—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/10—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
- H01C7/1006—Thick film varistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/10—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
- H01C7/102—Varistor boundary, e.g. surface layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/23—Corrosion protection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2804—Printed windings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G2/00—Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
- H01G2/10—Housing; Encapsulation
- H01G2/103—Sealings, e.g. for lead-in wires; Covers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/224—Housing; Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2804—Printed windings
- H01F2027/2809—Printed windings on stacked layers
Definitions
- the present invention relates to a ceramic electronic component and a manufacturing method thereof.
- Ceramics used in electronic components tend to be vulnerable to chemical erosion due to acid and alkali due to improvements in the functions of electronic components, and the mechanical strength of the ceramic itself may be reduced. is there.
- the ceramic element surface it is possible to prevent moisture, plating solution, flux, etc. from entering the inside of the electronic component, and deterioration of the reliability of the electronic component, or electrical characteristics due to plating deposition on the internal electrode Deterioration can be prevented.
- Patent Document 1 when the ceramic element surface of the electronic component is coated with glass, a firing step is required, and the manufacturing cost becomes expensive. Further, since the glass coating is applied (applied) to the entire surface of the electronic component, a film cannot be selectively formed only on the ceramic element surface. That is, since a film is also formed on the surface of the external electrode, a problem occurs in continuity and mountability. Therefore, a process of forming a glass coating film on the entire surface of the electronic component before forming the external electrode and removing the glass coating film on the end surface of the electronic component forming the external electrode is required, which increases the manufacturing cost.
- the external electrode Although it is possible to form the external electrode without performing the step of removing the glass coating film, a part of the constituent elements of the glass coating film on the interface in contact with the external electrode may be formed inside the external electrode during firing. To spread. However, in this case, it is necessary to adjust the glass coating film to an appropriate thickness, and management during mass production becomes complicated.
- Patent Document 2 when the ceramic element surface of an electronic component is coated with a resin, the resin coating is applied (applied) to the entire surface of the electronic component as in the case of glass coating. Therefore, it is impossible to selectively form a film only on the surface of the ceramic element. Therefore, a process of forming a resin coating film on the entire surface of the electronic component before forming the external electrode and removing the resin coating film on the end surface of the electronic component on which the external electrode is to be formed becomes necessary, which increases the manufacturing cost.
- an object of the present invention is to provide a ceramic electronic component capable of selectively forming a coating film only on the surface of the ceramic element of the ceramic electronic component, and a method for manufacturing the same.
- the present invention A ceramic electronic component comprising a ceramic element, and a coating film and an electrode provided on the surface of the ceramic element,
- the ceramic electronic component is characterized in that the coating film contains a resin and a cationic element among constituent elements of the ceramic element.
- a cationic element is contained in the coating film in a state of being dissolved and precipitated from the ceramic element.
- the constituent elements of the ceramic element include at least one of Ba, Ti, Ca, Zr, Fe, Ni, Cu, Zn, Mn, Co, Al, and Si.
- a plating film may be formed on the external electrode.
- the coating film contains a resin and a cationic element among the constituent elements of the ceramic element, and the coating film is selectively formed only on the ceramic element surface of the electronic component.
- the ceramic electronic component of the present invention preferably has a resin thermal decomposition temperature of 240 ° C. or higher.
- the resin preferably contains at least one of an epoxy resin, a polyimide resin, a silicone resin, a polyamideimide resin, a polyether ether ketone resin, and a fluorine resin. Thereby, the ceramic electronic component has high heat resistance.
- the ceramic electronic component of the present invention is preferably that in which the coating film is crosslinked by heating. Thereby, a coating film can be formed in a short time.
- the present invention also provides: A ceramic electronic component comprising a ceramic element, and a coating film and an electrode provided on the surface of the ceramic element,
- the coating film is formed on the surface of the ceramic element by applying a resin-containing solution having a function of ionizing the constituent elements of the ceramic element by etching the surface of the ceramic element,
- the coating film is a ceramic electronic component characterized by containing a cationic element and a resin among constituent elements of the ceramic element ionized and deposited from the ceramic element.
- the present invention also provides: A method for producing a ceramic electronic component comprising a ceramic element, and a coating film and an electrode provided on the surface of the ceramic element, A resin-containing solution having a function of ionizing constituent elements of the ceramic element by etching the surface of the ceramic element is applied to the surface of the ceramic element, and a cationic element among the constituent elements of the ceramic element that is ionized and precipitated from the ceramic element A method of manufacturing a ceramic electronic component comprising forming a coating film containing a resin on a surface of a ceramic element.
- the resin means a resin that is adjusted to have a polar group such as a carboxyl group or an amino group, and can be dissolved or dispersed in an aqueous solvent as an organic substance or a composite of an organic substance and an inorganic substance. To do.
- the coating film may be formed on the surface of the ceramic element after the external electrode is formed on the ceramic element.
- the external electrode may be formed on the ceramic element after the coating film is formed on the surface of the ceramic element.
- the coating film may be formed on the surface of the ceramic element after the external electrode is formed on the ceramic element and the surface of the external electrode is plated.
- the resin-containing solution of the present invention is obtained by dispersing a resin in an aqueous solvent, and has a component that etches (dissolves) the ceramic, and a component that causes the dissolved ceramic ions to react with the resin component.
- the resin-containing solution etches (dissolves) the surface of the ceramic element to ionize the constituent elements of the ceramic element.
- the resin component dissolved (dispersed) in the resin-containing solution reacts with a cationic element among the constituent elements of the ionized ceramic element, whereby the charge of the resin component is neutralized.
- the resin component settles together with the cationic elements among the constituent elements of the ceramic element.
- the anionic resin component stably dispersed in the aqueous solvent reacts with a cationic element among the constituent elements of the ceramic element, so that it becomes unstable and settles on the surface of the ceramic element.
- the reaction product is immobilized on the surface of the ceramic element.
- the etching reaction hardly occurs in the external electrode, there are few constituent elements of the ionized ceramic element, and the reaction with the resin-containing solution does not occur. Therefore, the coating film is selectively deposited only on the surface of the ceramic element. Since the resin reactant immobilized on the surface of the ceramic element is in a gel state and is in close contact with the surface of the ceramic element, it is possible to wash away the excessively attached resin-containing solution through a water washing step after treatment with the resin-containing solution. it can.
- the coating film can be selectively formed only on the ceramic element surface. Therefore, it is possible to obtain a ceramic electronic component that is inexpensive to manufacture. Further, since the coating film is formed by a chemical action, it can be applied to a ceramic electronic component having an electrode having a complicated shape or fine structure. Further, since the surface of the ceramic element is dissolved by the etching component contained in the resin-containing solution, a coating film is formed on the surface of the ceramic element where the surface is dissolved. When the surface of the ceramic element is dissolved, the surface unevenness increases and the adhesion with the coating film is improved.
- Ceramic electronic component An embodiment of a ceramic electronic component and a method for manufacturing the same according to the present invention will be described. 1. Ceramic electronic component The ceramic electronic component according to the present invention will be described using a varistor as an example.
- FIG. 1 is a cross-sectional view showing a varistor 10 which is a ceramic electronic component according to the present invention.
- the varistor 10 includes a substantially rectangular parallelepiped ceramic element 1, external electrodes 6 a and 6 b formed on the left and right ends of the ceramic element 1, and a coating film 8 formed so as to cover four side surfaces of the ceramic element 1. It is equipped with.
- the ceramic element body 1 is a laminated body in which a plurality of ceramic layers 2 and a plurality of pairs of internal electrodes 4a and 4b facing each other with the ceramic layer 2 interposed therebetween are stacked in the thickness direction.
- the ceramic layer 2 is made of a ceramic material in which Bi 2 O 3 is present as a second phase at the grain boundary of the sintered body of ZnO crystal particles in which Mn, Co, Sn, and Cr are solid solution.
- the end of the internal electrode 4a is drawn out to the left end surface of the ceramic element 1 and is electrically connected to the external electrode 6a.
- the end portion of the internal electrode 4b is drawn out to the right end surface of the ceramic element 1 and is electrically connected to the external electrode 6b.
- the varistor function is exhibited in the part which internal electrode 4a, 4b has opposed.
- the internal electrodes 4a and 4b are made of Ag, Cu, Ni, Pd, or an alloy of these metals.
- the outer electrodes 6a and 6b have plating films 7a and 7b formed on their surfaces, respectively.
- the plating films 7a and 7b protect the external electrodes 6a and 6b and improve the solderability of the external electrodes 6a and 6b.
- a coating film 8 is formed on the surface of the ceramic element 1 in a region other than the external electrodes 6a and 6b.
- the coating film 8 contains a resin and a cationic element among the constituent elements of the ceramic element 1.
- the cationic element is a part in which the ceramic layer 2 of the ceramic element 1 is dissolved and deposited. More specifically, the cationic elements among the constituent elements of the ceramic element 1 are dissolved from the ZnO, Bi 2 O 3 , MnO, Co 2 O 3 , SnO 2 , Cr 2 O 3, etc. of the ceramic layer 2. Zn, Bi, Mn, Co, Sn, Cr, and the like precipitated in this manner.
- the resin contained in the coating film 8 is a polyvinylidene chloride resin, an acrylic resin, an epoxy resin, a polyimide resin, a silicone resin, a polyamideimide resin, a polyether ether ketone resin, a fluorine resin, or the like. is there. Since the varistor 10 usually undergoes a mounting process using solder, the coating film 8 preferably has high heat resistance (240 ° C. or higher). Therefore, a resin having a thermal decomposition temperature of 240 ° C. or higher is preferable.
- the heat resistance is the relationship of (polyvinylidene chloride resin, acrylic resin) ⁇ epoxy resin ⁇ (polyimide resin, polyamideimide resin, polyetheretherketone resin, silicone resin, fluorine resin). become.
- the coating film 8 includes a resin and a cationic element among the constituent elements of the ceramic element 1, and the coating film 8 is selectively applied only to the ceramic element surface of the varistor 10. Can be formed. Therefore, the varistor 10 with low manufacturing cost can be obtained.
- FIG. 2 is a flowchart showing a method for manufacturing the varistor 10.
- step S1 a ceramic material in which Bi 2 O 3 is present as a second phase at the grain boundary of the sintered body of ZnO crystal particles in which Mn, Co, Sn, and Cr are dissolved, an organic binder, a dispersant, and a plasticizer Etc. are added to produce a sheet forming slurry.
- step S2 the sheet forming slurry is formed into a sheet shape by a doctor blade method to form a rectangular ceramic green sheet.
- step S3 an internal electrode paste containing Ag is applied on the ceramic green sheet by a screen printing method to form an electrode paste film to be the internal electrodes 4a and 4b.
- step S4 a plurality of ceramic green sheets on which the electrode paste film is formed are laminated and pressure-bonded so that the drawing directions of the end portions of the electrode paste film are alternated.
- the multilayer ceramic green sheet is cut into dimensions to be the individual ceramic elements 1 to form a plurality of unfired ceramic elements 1.
- step S5 the unfired ceramic element 1 is debindered at a temperature of 400 to 500 ° C. Thereafter, the unfired ceramic element 1 is fired at a temperature of 900 to 1000 ° C. for 2 hours to obtain a sintered ceramic element 1.
- the ceramic green sheet and the electrode paste film are simultaneously fired, the ceramic green sheet becomes the ceramic layer 2, and the electrode paste film becomes the internal electrodes 4a and 4b.
- the ceramic element 1 is applied with a resin-containing solution by a dipping method or by spin coating.
- the resin-containing solution has a function of etching the surface of the ceramic element 1 to ionize the constituent elements of the ceramic element 1 and includes a resin component dissolved or dispersed in an aqueous solvent.
- the resin-containing solution contains a neutralizing agent for dissolving or dispersing the resin component and a surfactant for reacting with a cationic element among the constituent elements of the ceramic element dissolved as necessary.
- the ceramic element 1 is washed with a polar solvent such as pure water as necessary.
- the resin-containing solution etches (dissolves) the surface of the ceramic element 1 to ionize the constituent elements of the ceramic element 1.
- the etching (dissolution) effect of the resin-containing solution is that the main component is ZnO, so that the etching (dissolution) is performed only with the constituent components of the resin-containing solution without adding an etching promoting component such as halogen. Can cause a reaction. That is, the etching (dissolution) reaction proceeds by setting the pH of the resin-containing solution to a pH region (pH ⁇ 5, pH> 11) where Zn is stably present as ions.
- the resin component dissolved (dispersed) in the resin-containing solution reacts with a cationic element among the constituent elements of the ionized ceramic element 1 to neutralize the charge of the resin component.
- the resin component settles together with the cationic elements among the constituent elements of the ceramic element 1 and selectively precipitates only on the surface of the ceramic element. Therefore, a cationic element among the constituent elements of the ceramic element 1 dissolved and ionized is taken into the deposited resin component.
- the resin component does not deposit on the portion where the external electrodes 6a and 6b are formed.
- the resin component may slightly extend on the surfaces of the external electrodes 6a and 6b. This is a state in which the precipitation reaction does not proceed on the surfaces of the external electrodes 6a and 6b, but the resin component deposited on the surface of the ceramic element slightly extends toward the external electrodes 6a and 6b. It is seen.
- Resins contained in the resin-containing solution are polyvinylidene chloride resins, acrylic resins, epoxy resins, polyimide resins, silicone resins, polyamideimide resins, polyether ether ketone resins, fluorine resins, etc. Basically, any resin may be used as long as it is a resin that is precipitated by this treatment.
- a coating film 8 containing a cationic element and a resin among the constituent elements of the ceramic element 1 that are ionized and deposited from the ceramic element 1 is formed on the surface of the ceramic element. Thereafter, the coating film 8 is heated.
- the heat treatment is for accelerating the crosslinking reaction between the resin components of the precipitated resin-containing solution, and the heating conditions differ depending on the type of the resin component. In general, the crosslinking reaction is likely to proceed at a high temperature. However, when the temperature is too high, the decomposition reaction of the resin component becomes large. Therefore, it is necessary to set an optimal temperature and time according to the resin component.
- step S8 the plating films 7a and 7b are formed on the external electrodes 6a and 6b by electrolytic or electroless plating.
- the plating films 7a and 7b employ, for example, a double structure composed of a lower Ni plating film and an upper Sn plating film.
- FIG. 3 is an enlarged cross-sectional view of a portion where the external electrode 6b is formed by the manufacturing method [Method 1].
- the coating film 8 can be selectively formed only on the ceramic element surface. Accordingly, the varistor 10 having a low manufacturing cost can be manufactured with high productivity. Further, since the coating film 8 is formed by a chemical action, it can be applied to the varistor 10 having the external electrodes 6a and 6b having complicated shapes and fine structures.
- step S9 the ceramic element 1 is applied with a resin-containing solution by a dipping method or by spin coating.
- the resin-containing solution ionizes the constituent elements of the ceramic element 1 by etching (dissolving) the surface of the ceramic element 1.
- the resin component dissolved (dispersed) in the resin-containing solution reacts with a cationic element among the constituent elements of the ionized ceramic element 1 to neutralize the charge of the resin component.
- the resin component settles together with the cationic elements among the constituent elements of the ceramic element 1 and precipitates on almost the entire surface of the ceramic element 1.
- a cationic element among the constituent elements of the ceramic element 1 dissolved and ionized is taken into the deposited resin component.
- the ceramic element 1 is washed with a polar solvent such as pure water as necessary.
- a coating film 8 containing a cationic element and a resin among the constituent elements of the ceramic element 1 that are ionized and deposited from the ceramic element 1 is formed on substantially the entire surface of the ceramic element 1. Thereafter, the coating film 8 is heated. At this time, the coating film 8 is not formed on the lead portions of the internal electrodes 4a and 4b exposed at the left and right end faces of the ceramic element 1.
- step S10 external electrode paste is applied to both ends of the ceramic element 1 in step S10. Thereafter, the ceramic element 1 is baked with an external electrode paste at a temperature at which the coating film 8 is not thermally decomposed to form external electrodes 6a and 6b electrically connected to the internal electrodes 4a and 4b, respectively.
- step S11 the plating films 7a and 7b are formed on the external electrodes 6a and 6b by electrolytic or electroless plating.
- FIG. 4 is an enlarged cross-sectional view of a portion where the external electrode 6b is formed by the manufacturing method [Method 2].
- step S13 the plating films 7a and 7b are formed on the external electrodes 6a and 6b by electrolytic or electroless plating.
- the ceramic element 1 is applied with a resin-containing solution by a dipping method or by spin coating.
- the resin-containing solution ionizes the constituent elements of the ceramic element 1 by etching (dissolving) the surface of the ceramic element 1.
- the resin component dissolved (dispersed) in the resin-containing solution reacts with a cationic element among the constituent elements of the ionized ceramic element 1 to neutralize the charge of the resin component.
- the resin component settles together with the cationic elements among the constituent elements of the ceramic element 1 and selectively precipitates only on the surface of the ceramic element. Therefore, a cationic element among the constituent elements of the ceramic element 1 dissolved and ionized is taken into the deposited resin component.
- the resin component does not deposit on the portion where the external electrodes 6a and 6b are formed.
- the ceramic element 1 is washed with a polar solvent such as pure water as necessary.
- FIG. 5 is an enlarged cross-sectional view of a portion where the external electrode 6b is formed by the manufacturing method [Method 3].
- multilayer ceramic capacitors multilayer coils, PTC thermistors, NTC thermistors, and LTCC substrates will be described as examples of ceramic electronic components according to the present invention other than varistors.
- the multilayer ceramic capacitor which is a ceramic electronic component according to the present invention has the same structure as the varistor 10 shown in FIG.
- a coating film is formed on the surface of the ceramic element in a region other than the external electrode.
- the coating film contains a resin and a cationic element among the constituent elements of the ceramic element, and is selectively formed only on the ceramic element surface of the multilayer ceramic capacitor.
- the ceramic layer constituting the ceramic element is composed of Pb (Mg, Nb) O 3 —PbTiO 3 —Pb (Cu, W) —ZnO—MnO 2 as a main component and Li 2 O—BaO—B as a reduction inhibitor. It is made of a ceramic material mixed with 2 O 3 —SiO 2 or a ceramic material mainly composed of CaZrO 3 —CaTiO 3 . Accordingly, among the constituent elements of the ceramic element contained in the coating film, the cationic elements are Pb (Mg, Nb) O 3 —PbTiO 3 —Pb (Cu, W) —ZnO—MnO 2 , Li of the ceramic layer.
- the resin contained in the coating film is polyvinylidene chloride resin, acrylic resin, epoxy resin, polyimide resin, silicone resin, polyamideimide resin, polyether ether ketone resin. And fluorine resin.
- Multilayer Coil A multilayer coil, which is a ceramic electronic component according to the present invention, has the same structure as a well-known multilayer coil, and a detailed description thereof will be omitted.
- a coating film is formed on the surface of the ceramic element other than the external electrodes.
- the coating film contains a resin and a cationic element among the constituent elements of the ceramic element, and is selectively formed only on the ceramic element surface of the laminated coil.
- the ceramic layer constituting the ceramic element is made of a magnetic ceramic material such as Cu—Zn ferrite or Ni—Zn ferrite. Therefore, among the constituent elements of the ceramic element contained in the coating film, the cationic elements are dissolved and precipitated from the Cu—Zn-based ferrite, Ni—Zn-based ferrite, etc. of the ceramic layer, respectively, Sr, Sn, Fe, Ni, Cu, Zn, Mn, Co and the like.
- the resin contained in the coating film is polyvinylidene chloride resin, acrylic resin, epoxy resin, polyimide resin, silicone resin, polyamideimide resin, polyether ether ketone resin. And fluorine resin.
- a coating film is formed on the ceramic element surface in a region other than the external electrode.
- the coating film contains a resin and a cationic element among the constituent elements of the ceramic element, and is selectively formed only on the ceramic element surfaces of the PTC thermistor and the NTC thermistor.
- the ceramic layer constituting the ceramic element of the PTC thermistor includes, for example, BaTiO 3 as a main component, Y 2 O 3 as a semiconducting agent, SiO 2 and Al 2 O 3 as a curing agent, and a property improving agent.
- BaTiO 3 as a main component
- Y 2 O 3 as a semiconducting agent
- SiO 2 and Al 2 O 3 as a curing agent
- a property improving agent Of MnO 2 and mixed ceramic materials. Therefore, the cationic elements among the constituent elements of the ceramic element contained in the coating film of the PTC thermistor are dissolved from the BaTiO 3 , Y 2 O 3 , SiO 2 , Al 2 O 3 and MnO 2 of the ceramic layer, respectively. Ba, Ti, Y, Si, Mn, and the like precipitated.
- the ceramic layer constituting the ceramic element of the NTC thermistor is made of a ceramic material in which, for example, Mn 3 O 4 , NiO, Co 2 O 3 or the like is mixed. Accordingly, among the constituent elements of the ceramic element included in the coating film of the NTC thermistor, the cationic elements are dissolved and precipitated from Mn 3 O 4 , NiO, Co 2 O 3 and the like of the ceramic layer, respectively. , Co, etc.
- the resin contained in the coating film is polyvinylidene chloride resin, acrylic resin, epoxy resin, polyimide resin, silicone resin, polyamideimide resin, polyether ether ketone resin. And fluorine resin.
- FIG. 6 is a cross-sectional view showing an LTCC substrate 30 which is a ceramic electronic component according to the present invention.
- the LTCC substrate 30 includes a ceramic element 21, through-hole electrodes 26 a, 26 b and 26 c formed on the ceramic element 21, and a coating film 28 formed so as to cover the ceramic element 21.
- the ceramic element 21 is a laminate in which a plurality of ceramic layers 22 and a plurality of internal circuit electrode layers 24a and 24b are stacked in the thickness direction.
- the through-hole electrodes 26a, 26b, and 26c electrically connect the internal circuit electrode layers 24a and 24b to the front and back surfaces of the ceramic element 1.
- the ceramic layer 22 is made of an LTCC ceramic material (for example, crystallized glass mixed with Al 2 O 3 , ZrSiO 4, etc.).
- the plated film is formed on the surface of the through-hole electrodes 26a, 26b, and 26c as necessary.
- a coating film 28 is formed on the surface of the ceramic element 21 in a region other than the through-hole electrodes 26a, 26b, and 26c.
- the coating film 28 contains a resin and a cationic element among the constituent elements of the ceramic element 21.
- the cationic element is a part of the ceramic layer 22 that is dissolved and precipitated. More specifically, the cationic elements among the constituent elements of the ceramic element 21 are Si, Al, B, Ca, and the like, which are each dissolved and precipitated from the LTCC ceramic material of the ceramic layer 22.
- the resin contained in the coating film is polyvinylidene chloride resin, acrylic resin, epoxy resin, polyimide resin, silicone resin, polyamideimide resin, polyether ether ketone resin. And fluorine resin.
- the coating film 28 contains a resin and a cationic element among the constituent elements of the ceramic element 21, and selectively coats only on the ceramic element surface of the LTCC substrate 30. A film 28 can be formed. Therefore, the LTCC substrate 30 with a low manufacturing cost can be obtained.
- Ceramic electronic components (varistors, multilayer ceramic capacitors, multilayer coils, PTC thermistors, NTC thermistors, LTCC substrates) of the examples and comparative examples were fabricated and evaluated for characteristics.
- the resin-containing solution a commercially available latex in which a resin component is dispersed in an aqueous solvent and an etching promoting component and a surfactant added as necessary is used.
- Example 7 The resin-containing solution of Example 7 was added to polyvinylidene chloride resin (trade name: Saran Latex L232A (manufactured by Asahi Kasei Chemicals)) as a resin component at a concentration of 1 vol% after adding 10% sulfuric acid as an etching promoting component. What adjusted pH to 3.0 with the potassium hydroxide solution was used.
- polyvinylidene chloride resin trade name: Saran Latex L232A (manufactured by Asahi Kasei Chemicals)
- Example 8 For the resin-containing solution of Example 8, an unadjusted product of polyvinylidene chloride resin (trade name: Saran Latex L232A (manufactured by Asahi Kasei Chemicals)) as a resin component was used (pH is 2.0).
- the resin-containing solution of Example 9 was prepared by adding sulfuric acid as an etching accelerating component to a silicone-based resin (trade name: X-51-1318 (manufactured by Shin-Etsu Chemical Co., Ltd.)) as a resin component to adjust the pH to 3.0. What was adjusted to was used.
- a silicone-based resin trade name: X-51-1318 (manufactured by Shin-Etsu Chemical Co., Ltd.)
- Example 10 sulfuric acid as an etching accelerating component was added to a silicone resin (trade name: X-51-1318 (manufactured by Shin-Etsu Chemical Co., Ltd.)) as a resin component, and the pH was adjusted to 3.0. What was adjusted to was used. To this was added 1 vol% Newlex (registered trademark, manufactured by NOF Corporation) as a surfactant. The resin-containing solution was adjusted to have a solid content concentration of 10%.
- a silicone resin trade name: X-51-1318 (manufactured by Shin-Etsu Chemical Co., Ltd.)
- the resin-containing solution was adjusted to have a solid content concentration of 10%.
- the resin-containing solution of Example 11 was prepared by adding hydrochloric acid as an etching accelerating component to acrylic resin (trade name: Nipol LX814A (manufactured by Zeon Corporation)) and adjusting the pH to 4.0.
- the resin-containing solution of Example 12 was prepared by adding hydrochloric acid as an etching accelerating component to acrylic resin (trade name: Nipol LX814A (manufactured by Zeon Corporation)) and adjusting the pH to 4.0. To this was added 1 vol% Newlex (registered trademark, manufactured by NOF Corporation) as a surfactant. The resin-containing solution was adjusted to have a solid content concentration of 10%.
- the resin-containing solution of Example 13 was prepared by adding nitric acid as an etching promoting component to an acrylic resin (trade name: Nipol LX814A (manufactured by Zeon Corporation)) and adjusting the pH to 4.0.
- the resin-containing solution of Example 14 was prepared by adding nitric acid as an etching promoting component to acrylic resin (trade name: Nipol LX814A (manufactured by Zeon Corporation)) and adjusting the pH to 4.0. To this was added 1 vol% Newlex (registered trademark, manufactured by NOF Corporation) as a surfactant. The resin-containing solution was adjusted to have a solid content concentration of 10%.
- the coating film 8 was formed on the surface of the ceramic element 1 by immersing the ceramic element 1 in a resin-containing solution at room temperature for 3 minutes, washing with pure water, and performing heat treatment at 80 to 150 ° C. for 30 minutes.
- Examples 15 to 39 As shown in Table 1, multilayer ceramic capacitors (Examples 15, 20, 25, 30, 35) in which a coating film was provided on the surface of each ceramic element by the method of [Method 1] of the above embodiment. , Laminated coils (Examples 16, 21, 26, 31, 36), PTC thermistors (Examples 17, 22, 27, 32, 37), NTC thermistors (Examples 18, 23, 28, 33, 38), LTCC Substrates (Examples 19, 24, 29, 34, 39) were produced.
- the resin-containing solutions of Examples 15 to 19 were prepared by adding sulfuric acid as an etching promoting component to an acrylic resin (trade name: Nipol LX814A (manufactured by Zeon Japan)) as a resin component to adjust the pH to 3.0. What was adjusted to was used.
- an acrylic resin trade name: Nipol LX814A (manufactured by Zeon Japan)
- the resin-containing solutions of Examples 30 to 34 were prepared by adding sulfuric acid as an etching accelerating component to a silicone resin (trade name: POLON-MF-56 (manufactured by Shin-Etsu Chemical Co., Ltd.)) as a resin component. Was adjusted to 3.0. To this was added 5 vol% Newlex (registered trademark, NOF Corporation) as a surfactant. The resin-containing solution was adjusted to have a solid content concentration of 10%.
- the coating film was formed on the surface of the ceramic element by immersing the ceramic element in a resin-containing solution at room temperature for 10 minutes, washing with pure water, and performing heat treatment at 80 to 150 ° C. for 30 minutes.
- (B) Plating property The plating property was judged by visual inspection after electrolytic Ni plating and electrolytic Sn plating. Evaluation of the plating property includes evaluating that the coating film is not formed on the external electrode. When the entire surface of the external electrode was electrolytically plated, it was rated as “ ⁇ ”. When the electrolytic plating was not attached to at least a part of the surface of the external electrode, “x” was given.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Thermistors And Varistors (AREA)
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Details Of Resistors (AREA)
Abstract
Description
セラミック素子と、セラミック素子表面に設けられたコーティング膜および電極と、を備えたセラミック電子部品であって、
コーティング膜が、樹脂と、セラミック素子の構成元素のうちカチオン性の元素と、を含んでいること、を特徴とする、セラミック電子部品である。
セラミック素子と、セラミック素子表面に設けられたコーティング膜および電極と、を備えたセラミック電子部品であって、
コーティング膜は、セラミック素子表面をエッチングしてセラミック素子の構成元素をイオン化する機能を有する樹脂含有溶液を、セラミック素子表面に付与することによって、セラミック素子表面に形成され、
コーティング膜は、セラミック素子からイオン化されて析出したセラミック素子の構成元素のうちカチオン性の元素と樹脂とを含むこと、を特徴とする、セラミック電子部品である。
セラミック素子と、セラミック素子表面に設けられたコーティング膜および電極と、を備えたセラミック電子部品の製造方法であって、
セラミック素子表面をエッチングしてセラミック素子の構成元素をイオン化する機能を有する樹脂含有溶液を、セラミック素子表面に付与し、セラミック素子からイオン化されて析出したセラミック素子の構成元素のうちカチオン性の元素と樹脂とを含むコーティング膜を、セラミック素子表面に形成すること、を特徴とする、セラミック電子部品の製造方法である。
本発明では、樹脂含有溶液が、セラミック素子表面をエッチングして(溶解して)セラミック素子の構成元素をイオン化する。そして、樹脂含有溶液に溶解(分散)している樹脂成分が、イオン化したセラミック素子の構成元素のうちカチオン性の元素と反応することによって、樹脂成分の電荷が中和される。その結果、樹脂成分が、セラミック素子の構成元素のうちカチオン性の元素と共に沈降する。
具体的には、水系の溶媒に安定に分散しているアニオン性の樹脂成分がセラミック素子の構成元素のうちカチオン性の元素と反応することで、不安定化してセラミック素子表面に沈降する。
セラミック素子表面に固定化した樹脂反応物はゲル状態であり、セラミック素子表面に密着しているため、樹脂含有溶液による処理後に水洗工程を経ることで、余分に付着した樹脂含有溶液を洗い流すことができる。
また、樹脂含有溶液に含まれるエッチング成分によってセラミック素子表面の溶解が起こるため、表面が溶解したセラミック素子表面上にコーティング膜が形成されることになる。セラミック素子表面が溶解されると、表面凹凸が大きくなり、コーティング膜との密着力が向上する。
1.セラミック電子部品
本発明に係るセラミック電子部品について、バリスタを例にして説明する。
次に、本発明に係るセラミック電子部品の製造方法を、バリスタ10を例にして説明する。図2は、バリスタ10の製造方法を示すフローチャートである。
[方法1]の製造方法の場合は、工程S6で、焼結したセラミック素子1の両端部に、外部電極ペースト(AgPd合金ペースト)が塗布される。その後、焼結したセラミック素子1は、900℃の温度で外部電極ペーストが焼き付けられ、内部電極4a,4bにそれぞれ電気的に接続された外部電極6a,6bが形成される。
また、[方法2]の製造方法の場合は、工程S9で、セラミック素子1は、樹脂含有溶液が浸漬法により付与され、もしくは、スピンコーティングにより塗布される。樹脂含有溶液は、セラミック素子1の表面をエッチングして(溶解して)セラミック素子1の構成元素をイオン化する。そして、樹脂含有溶液に溶解(分散)している樹脂成分が、イオン化したセラミック素子1の構成元素のうちカチオン性の元素と反応することによって、樹脂成分の電荷が中和される。その結果、樹脂成分が、セラミック素子1の構成元素のうちカチオン性の元素と共に沈降し、セラミック素子1の略全表面に析出する。従って、析出した樹脂成分には、溶解してイオン化したセラミック素子1の構成元素のうちカチオン性の元素が取り込まれている。なお、樹脂含有溶液が付与された後、セラミック素子1は、必要に応じて純水などの極性溶媒により洗浄される。
また、[方法3]の製造方法の場合は、工程S12で、セラミック素子1の両端部に、外部電極ペーストが塗布される。その後、セラミック素子1は、900℃の温度で外部電極ペーストが焼き付けられ、内部電極4a,4bにそれぞれ電気的に接続された外部電極6a,6bが形成される。
本発明に係るセラミック電子部品である積層セラミックコンデンサは、図1に示した前記バリスタ10と同様の構造を有しているため、その詳細な説明を省略する。
本発明に係るセラミック電子部品である積層コイルは、周知の積層コイルと同様の構造を有しているため、その詳細な説明を省略する。
本発明に係るセラミック電子部品であるPTCサーミスタおよびNTCサーミスタは、周知のサーミスタと同様の構造を有しているため、その詳細な説明を省略する。
図6は、本発明に係るセラミック電子部品であるLTCC基板30を示す断面図である。LTCC基板30は、セラミック素子21と、セラミック素子21に形成されたスルーホール電極26a,26b,26cと、セラミック素子21を覆うように形成されているコーティング膜28と、を備えている。
実施例および比較例の各セラミック電子部品(バリスタ、積層セラミックコンデンサ、積層コイル、PTCサーミスタ、NTCサーミスタ、LTCC基板)が作製され、特性評価が行われた。
(a)実施例1~実施例14
表1に示すように、前記実施の形態の[方法1]の製造方法によって、コーティング膜8をセラミック素子1の表面に設けたバリスタ10を作製した。
表1に示すように、前記実施の形態の[方法1]の製造方法によって、コーティング膜をそれぞれのセラミック素子の表面に設けた、積層セラミックコンデンサ(実施例15、20、25、30、35)、積層コイル(実施例16、21、26、31、36)、PTCサーミスタ(実施例17、22、27、32、37)、NTCサーミスタ(実施例18、23、28、33、38)、LTCC基板(実施例19、24、29、34、39)が作製された。
表1に示すように、セラミック素子の表面にコーティング膜が形成されていないバリスタ(比較例1)、積層セラミックコンデンサ(比較例2)、積層コイル(比較例3)、PTCサーミスタ(比較例4)、NTCサーミスタ(比較例5)、LTCC基板(比較例6)が作製された。
作製された実施例1~39および比較例1~6の各セラミック電子部品に対して、以下の特性評価が行なわれた。
セラミック素子部の表面(外部電極以外の領域であって、コーティング膜の表面を含む)の電解めっき析出性は、電解Niめっきおよび電解Snめっき後の外観目視検査によって判断した。セラミック素子部の表面に電解めっきが析出していない場合は「○」とした。セラミック素子部の表面に島状の電解めっきが析出している場合、もしくは、外部電極端部から突起状の電解めっきがセラミック素子側に延在して析出している場合は「△」とした。セラミック素子部の全表面に電解めっきが析出している場合は「×」とした。
めっき付き性は、電解Niめっきおよび電解Snめっき後の外観目視検査によって判断した。このめっき付き性の評価は、外部電極にはコーティング膜が形成されていないことを評価することも含まれている。外部電極の全表面に電解めっきが付いている場合は「○」とした。外部電極の表面の少なくとも一部に電解めっきが付いていない場合「×」とした。
表1は実施例1~39および比較例1~6の特性評価の結果を示す。
2 セラミック層
4a,4b 内部電極
6a,6b 外部電極
8 コーティング膜
10 バリスタ
21 セラミック素子
22 セラミック層
24a,24b 内部回路電極層
26a,26b,26c スルーホール電極
28 コーティング膜
30 LTCC基板
Claims (12)
- セラミック素子と、前記セラミック素子表面に設けられたコーティング膜および電極と、を備えたセラミック電子部品であって、
前記コーティング膜が、樹脂と、前記セラミック素子の構成元素のうちカチオン性の元素と、を含んでいること、を特徴とする、セラミック電子部品。 - 前記セラミック素子の構成元素は、Ba、Ti、Ca、Zr、Fe、Ni、Cu、Zn、Mn、Co、Al、Siのうち少なくとも1種を含むこと、を特徴とする、請求項1に記載のセラミック電子部品。
- 前記樹脂の熱分解温度が240℃以上であること、を特徴とする、請求項1または請求項2に記載のセラミック電子部品。
- 前記樹脂が、エポキシ系樹脂、ポリイミド系樹脂、シリコーン系樹脂、ポリアミドイミド系樹脂、ポリエーテルエーテルケトン系樹脂、フッ素系樹脂のうち少なくとも1種を含むこと、を特徴とする、請求項1~請求項3のいずれかに記載のセラミック電子部品。
- 前記コーティング膜が加熱により架橋したものであること、を特徴とする、請求項1~請求項4のいずれかに記載のセラミック電子部品。
- 前記電極にめっき皮膜が形成されていること、を特徴とする、請求項1~請求項5のいずれかに記載のセラミック電子部品。
- セラミック素子と、前記セラミック素子表面に設けられたコーティング膜および電極と、を備えたセラミック電子部品であって、
前記コーティング膜は、前記セラミック素子表面をエッチングして前記セラミック素子の構成元素をイオン化する機能を有する樹脂含有溶液を、前記セラミック素子表面に付与することによって、前記セラミック素子表面に形成され、
前記コーティング膜は、前記セラミック素子からイオン化されて析出したセラミック素子の構成元素のうちカチオン性の元素と樹脂とを含むこと、を特徴とする、セラミック電子部品。 - セラミック素子と、前記セラミック素子表面に設けられたコーティング膜および電極と、を備えたセラミック電子部品の製造方法であって、
前記セラミック素子表面をエッチングして前記セラミック素子の構成元素をイオン化する機能を有する樹脂含有溶液を、前記セラミック素子表面に付与する工程と、
前記セラミック素子からイオン化されて析出したセラミック素子の構成元素のうちカチオン性の元素と樹脂とを含むコーティング膜を、セラミック素子表面に形成する工程を有する、セラミック電子部品の製造方法。 - 前記樹脂含有溶液が前記セラミック素子表面に付与された後、洗浄される工程を有する、請求項8に記載のセラミック電子部品の製造方法。
- 前記電極が前記セラミック素子に形成された後に、前記コーティング膜が前記セラミック素子表面に形成されること、を特徴とする、請求項8または請求項9に記載のセラミック電子部品の製造方法。
- 前記コーティング膜が前記セラミック素子表面に形成された後に、前記電極が前記セラミック素子に形成されること、を特徴とする、請求項8または請求項9に記載のセラミック電子部品の製造方法。
- 前記電極が前記セラミック素子に形成され、かつ、前記電極の表面にめっき処理がされた後に、前記コーティング膜が前記セラミック素子表面に形成されること、を特徴とする、請求項8または請求項9に記載のセラミック電子部品の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020157023057A KR101721630B1 (ko) | 2013-01-29 | 2014-01-28 | 세라믹 전자 부품 및 그 제조 방법 |
JP2014559689A JP6015779B2 (ja) | 2013-01-29 | 2014-01-28 | セラミック電子部品およびその製造方法 |
CN201480006360.0A CN104969307B (zh) | 2013-01-29 | 2014-01-28 | 陶瓷电子部件及其制造方法 |
US14/805,525 US9997293B2 (en) | 2013-01-29 | 2015-07-22 | Ceramic electronic component and manufacturing method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013014482 | 2013-01-29 | ||
JP2013-014482 | 2013-01-29 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/805,525 Continuation US9997293B2 (en) | 2013-01-29 | 2015-07-22 | Ceramic electronic component and manufacturing method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014119564A1 true WO2014119564A1 (ja) | 2014-08-07 |
Family
ID=51262278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/051826 WO2014119564A1 (ja) | 2013-01-29 | 2014-01-28 | セラミック電子部品およびその製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9997293B2 (ja) |
JP (1) | JP6015779B2 (ja) |
KR (1) | KR101721630B1 (ja) |
CN (1) | CN104969307B (ja) |
WO (1) | WO2014119564A1 (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016013643A1 (ja) * | 2014-07-25 | 2016-01-28 | 株式会社村田製作所 | 電子部品及びその製造方法 |
WO2016017511A1 (ja) * | 2014-07-28 | 2016-02-04 | 株式会社村田製作所 | 電子部品及びその製造方法 |
JP2016031988A (ja) * | 2014-07-28 | 2016-03-07 | 株式会社村田製作所 | セラミック電子部品およびその製造方法 |
JP2016031989A (ja) * | 2014-07-28 | 2016-03-07 | 株式会社村田製作所 | セラミック電子部品 |
JP2016031992A (ja) * | 2014-07-28 | 2016-03-07 | 株式会社村田製作所 | セラミック電子部品およびその製造方法 |
JP2016139789A (ja) * | 2015-01-27 | 2016-08-04 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | パワーインダクタ及びその製造方法 |
US20160233029A1 (en) * | 2015-02-06 | 2016-08-11 | Samsung Electro-Mechanics Co., Ltd. | Multilayer ceramic electronic component and method of manufacturing the same |
CN105938754A (zh) * | 2015-03-04 | 2016-09-14 | 株式会社村田制作所 | 电子部件以及电子部件的制造方法 |
CN105989987A (zh) * | 2015-03-19 | 2016-10-05 | 株式会社村田制作所 | 电子部件及其制造方法 |
JP2016178282A (ja) * | 2015-03-19 | 2016-10-06 | 株式会社村田製作所 | 電子部品およびその製造方法 |
KR20170134186A (ko) * | 2016-05-26 | 2017-12-06 | 다이요 유덴 가부시키가이샤 | 적층 세라믹 콘덴서 |
US20180082789A1 (en) * | 2016-09-20 | 2018-03-22 | Murata Manufacturing Co., Ltd. | Multilayer ceramic electronic component and manufacturing method therefor |
US10431365B2 (en) | 2015-03-04 | 2019-10-01 | Murata Manufacturing Co., Ltd. | Electronic component and method for manufacturing electronic component |
CN110610807A (zh) * | 2018-06-15 | 2019-12-24 | 三星电机株式会社 | 电容器组件 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102052596B1 (ko) * | 2014-06-25 | 2019-12-06 | 삼성전기주식회사 | 칩형 코일 부품 및 그 제조방법 |
CN106574875B (zh) * | 2014-07-31 | 2019-11-05 | 株式会社村田制作所 | 温度检测装置以及电子设备 |
KR101607027B1 (ko) * | 2014-11-19 | 2016-03-28 | 삼성전기주식회사 | 칩 전자 부품 및 칩 전자 부품의 실장 기판 |
US10580567B2 (en) * | 2016-07-26 | 2020-03-03 | Samsung Electro-Mechanics Co., Ltd. | Coil component and method of manufacturing the same |
JP2020061391A (ja) * | 2016-12-27 | 2020-04-16 | 株式会社村田製作所 | 電子部品への被覆素材の選択的被覆方法および電子部品の製造方法 |
JP2018182210A (ja) | 2017-04-19 | 2018-11-15 | 株式会社村田製作所 | コイル部品 |
WO2020018651A1 (en) | 2018-07-18 | 2020-01-23 | Avx Corporation | Varistor passivation layer and method of making the same |
KR102068805B1 (ko) * | 2018-09-06 | 2020-01-22 | 삼성전기주식회사 | 세라믹 전자 부품 |
KR102115521B1 (ko) * | 2018-09-13 | 2020-05-26 | 삼성전기주식회사 | 적층형 커패시터 |
KR102101932B1 (ko) * | 2018-10-02 | 2020-04-20 | 삼성전기주식회사 | 적층 세라믹 전자부품 |
KR102254876B1 (ko) * | 2019-06-03 | 2021-05-24 | 삼성전기주식회사 | 적층 세라믹 전자 부품 및 그 실장 기판 |
KR20220100720A (ko) * | 2019-12-04 | 2022-07-15 | 더블유.엘. 고어 앤드 어소시에이트스, 인코포레이티드 | 높은 열 안정성을 갖는 적어도 하나의 중합체로 캡슐화된 커패시터 |
JP7555705B2 (ja) * | 2019-12-11 | 2024-09-25 | Tdk株式会社 | コイル部品 |
JP7557934B2 (ja) * | 2019-12-13 | 2024-09-30 | 太陽誘電株式会社 | セラミック電子部品およびその製造方法 |
JP7234974B2 (ja) * | 2020-02-27 | 2023-03-08 | 株式会社村田製作所 | 積層セラミック電子部品 |
KR20220041508A (ko) * | 2020-09-25 | 2022-04-01 | 삼성전기주식회사 | 코일 부품 |
CN112802647B (zh) * | 2021-01-13 | 2021-11-23 | 江苏新林芝电子科技股份有限公司 | 一种耐还原性气氛强的正温度系数陶瓷热敏电阻元件及其制备方法 |
CN115331902B (zh) * | 2022-05-26 | 2024-04-02 | 昆山聚达电子有限公司 | 一种ptc热敏电阻元件加工工艺 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01186607A (ja) * | 1988-01-14 | 1989-07-26 | Nec Corp | 積層型セラミックコンデンサ素子 |
JPH09148105A (ja) * | 1995-11-29 | 1997-06-06 | Matsushita Electric Ind Co Ltd | 電子部品およびその製造方法 |
JPH10223407A (ja) * | 1997-02-13 | 1998-08-21 | Mitsubishi Materials Corp | チップ型サーミスタ及びその製造方法 |
JP2002033237A (ja) * | 2000-07-14 | 2002-01-31 | Matsushita Electric Ind Co Ltd | セラミック電子部品およびその製造方法 |
JP2010123865A (ja) * | 2008-11-21 | 2010-06-03 | Murata Mfg Co Ltd | セラミック電子部品および部品内蔵基板 |
JP2011249615A (ja) * | 2010-05-27 | 2011-12-08 | Mitsubishi Materials Corp | 表面実装型電子部品およびその製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2573445B2 (ja) | 1991-10-08 | 1997-01-22 | 株式会社東芝 | 非直線抵抗体 |
JPH09205005A (ja) * | 1996-01-24 | 1997-08-05 | Matsushita Electric Ind Co Ltd | 電子部品とその製造方法 |
KR100214555B1 (ko) | 1997-02-14 | 1999-08-02 | 구본준 | 반도체 패키지의 제조방법 |
US6214685B1 (en) | 1998-07-02 | 2001-04-10 | Littelfuse, Inc. | Phosphate coating for varistor and method |
JP3555563B2 (ja) * | 1999-08-27 | 2004-08-18 | 株式会社村田製作所 | 積層チップバリスタの製造方法および積層チップバリスタ |
US6535105B2 (en) | 2000-03-30 | 2003-03-18 | Avx Corporation | Electronic device and process of making electronic device |
CN100454454C (zh) * | 2002-01-11 | 2009-01-21 | 松下电器产业株式会社 | 陶瓷电子部件及其制造方法 |
US20050229388A1 (en) * | 2004-04-20 | 2005-10-20 | Sheng-Ming Deng | Multi-layer ceramic chip varistor device surface insulation method |
US7943241B2 (en) * | 2004-11-29 | 2011-05-17 | Kyocera Corporation | Composite ceramic body |
JP5440309B2 (ja) * | 2010-03-24 | 2014-03-12 | 株式会社村田製作所 | 積層セラミック電子部品の製造方法 |
-
2014
- 2014-01-28 WO PCT/JP2014/051826 patent/WO2014119564A1/ja active Application Filing
- 2014-01-28 JP JP2014559689A patent/JP6015779B2/ja active Active
- 2014-01-28 KR KR1020157023057A patent/KR101721630B1/ko active Active
- 2014-01-28 CN CN201480006360.0A patent/CN104969307B/zh active Active
-
2015
- 2015-07-22 US US14/805,525 patent/US9997293B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01186607A (ja) * | 1988-01-14 | 1989-07-26 | Nec Corp | 積層型セラミックコンデンサ素子 |
JPH09148105A (ja) * | 1995-11-29 | 1997-06-06 | Matsushita Electric Ind Co Ltd | 電子部品およびその製造方法 |
JPH10223407A (ja) * | 1997-02-13 | 1998-08-21 | Mitsubishi Materials Corp | チップ型サーミスタ及びその製造方法 |
JP2002033237A (ja) * | 2000-07-14 | 2002-01-31 | Matsushita Electric Ind Co Ltd | セラミック電子部品およびその製造方法 |
JP2010123865A (ja) * | 2008-11-21 | 2010-06-03 | Murata Mfg Co Ltd | セラミック電子部品および部品内蔵基板 |
JP2011249615A (ja) * | 2010-05-27 | 2011-12-08 | Mitsubishi Materials Corp | 表面実装型電子部品およびその製造方法 |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10650955B2 (en) | 2014-07-25 | 2020-05-12 | Murata Manufacturing Co., Ltd. | Method for manufacturing an electronic component |
WO2016013649A1 (ja) * | 2014-07-25 | 2016-01-28 | 株式会社村田製作所 | 電子部品及びその製造方法 |
US10475567B2 (en) | 2014-07-25 | 2019-11-12 | Murata Manufacturing Co., Ltd. | Electronic component and method for manufacturing the same |
US10553343B2 (en) | 2014-07-25 | 2020-02-04 | Murata Manufacturing Co., Ltd. | Electronic component and method for manufacturing the same |
WO2016013643A1 (ja) * | 2014-07-25 | 2016-01-28 | 株式会社村田製作所 | 電子部品及びその製造方法 |
WO2016017511A1 (ja) * | 2014-07-28 | 2016-02-04 | 株式会社村田製作所 | 電子部品及びその製造方法 |
JP2016031988A (ja) * | 2014-07-28 | 2016-03-07 | 株式会社村田製作所 | セラミック電子部品およびその製造方法 |
JP2016031989A (ja) * | 2014-07-28 | 2016-03-07 | 株式会社村田製作所 | セラミック電子部品 |
JP2016031992A (ja) * | 2014-07-28 | 2016-03-07 | 株式会社村田製作所 | セラミック電子部品およびその製造方法 |
JP2016139789A (ja) * | 2015-01-27 | 2016-08-04 | サムソン エレクトロ−メカニックス カンパニーリミテッド. | パワーインダクタ及びその製造方法 |
KR102109634B1 (ko) * | 2015-01-27 | 2020-05-29 | 삼성전기주식회사 | 파워 인덕터 및 그 제조 방법 |
US11037721B2 (en) | 2015-01-27 | 2021-06-15 | Samsung Electro-Mechanics Co., Ltd. | Power inductor and method of manufacturing the same |
KR20160092543A (ko) * | 2015-01-27 | 2016-08-05 | 삼성전기주식회사 | 파워 인덕터 및 그 제조 방법 |
US20160233029A1 (en) * | 2015-02-06 | 2016-08-11 | Samsung Electro-Mechanics Co., Ltd. | Multilayer ceramic electronic component and method of manufacturing the same |
US9997296B2 (en) * | 2015-02-06 | 2018-06-12 | Samsung Electro-Mechanics Co., Ltd. | Multilayer ceramic electronic component and method of manufacturing the same |
CN105869885A (zh) * | 2015-02-06 | 2016-08-17 | 三星电机株式会社 | 多层陶瓷电子组件及其制造方法 |
JP2016167576A (ja) * | 2015-03-04 | 2016-09-15 | 株式会社村田製作所 | 電子部品及び電子部品の製造方法 |
US11120934B2 (en) | 2015-03-04 | 2021-09-14 | Murata Manufacturing Co., Ltd. | Electronic component and method for manufacturing electronic component |
KR101845601B1 (ko) * | 2015-03-04 | 2018-04-04 | 가부시키가이샤 무라타 세이사쿠쇼 | 전자 부품 및 전자 부품의 제조 방법 |
US10431365B2 (en) | 2015-03-04 | 2019-10-01 | Murata Manufacturing Co., Ltd. | Electronic component and method for manufacturing electronic component |
CN105938754A (zh) * | 2015-03-04 | 2016-09-14 | 株式会社村田制作所 | 电子部件以及电子部件的制造方法 |
CN105989987A (zh) * | 2015-03-19 | 2016-10-05 | 株式会社村田制作所 | 电子部件及其制造方法 |
JP2016178282A (ja) * | 2015-03-19 | 2016-10-06 | 株式会社村田製作所 | 電子部品およびその製造方法 |
US10875095B2 (en) | 2015-03-19 | 2020-12-29 | Murata Manufacturing Co., Ltd. | Electronic component comprising magnetic metal powder |
CN105989987B (zh) * | 2015-03-19 | 2019-03-05 | 株式会社村田制作所 | 电子部件及其制造方法 |
US11817244B2 (en) | 2015-03-19 | 2023-11-14 | Murata Manufacturing Co., Ltd. | Method for manufacturing electronic component |
KR20170134186A (ko) * | 2016-05-26 | 2017-12-06 | 다이요 유덴 가부시키가이샤 | 적층 세라믹 콘덴서 |
KR102307944B1 (ko) | 2016-05-26 | 2021-10-01 | 다이요 유덴 가부시키가이샤 | 적층 세라믹 콘덴서 |
US10586653B2 (en) * | 2016-09-20 | 2020-03-10 | Murata Manufacturing Co., Ltd. | Multilayer ceramic electronic component including organic layers |
US20180082789A1 (en) * | 2016-09-20 | 2018-03-22 | Murata Manufacturing Co., Ltd. | Multilayer ceramic electronic component and manufacturing method therefor |
CN110610807A (zh) * | 2018-06-15 | 2019-12-24 | 三星电机株式会社 | 电容器组件 |
CN110610807B (zh) * | 2018-06-15 | 2022-07-08 | 三星电机株式会社 | 电容器组件 |
Also Published As
Publication number | Publication date |
---|---|
KR101721630B1 (ko) | 2017-03-30 |
US20150325369A1 (en) | 2015-11-12 |
CN104969307B (zh) | 2018-09-28 |
KR20150110760A (ko) | 2015-10-02 |
CN104969307A (zh) | 2015-10-07 |
US9997293B2 (en) | 2018-06-12 |
JP6015779B2 (ja) | 2016-10-26 |
JPWO2014119564A1 (ja) | 2017-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6015779B2 (ja) | セラミック電子部品およびその製造方法 | |
JP6060945B2 (ja) | セラミック電子部品およびその製造方法 | |
JP6274044B2 (ja) | セラミック電子部品 | |
US9595391B2 (en) | Ceramic electronic component and manufacturing method therefor | |
JP6252393B2 (ja) | セラミック電子部品およびその製造方法 | |
JP5835357B2 (ja) | 電子部品及びその製造方法 | |
JP5180753B2 (ja) | セラミック積層電子部品およびその製造方法 | |
US20130208401A1 (en) | Electronic component and method for manufacturing electronic component | |
JP2019220602A (ja) | 電子部品および電子部品の製造方法 | |
JP2012237033A (ja) | 電子部品 | |
JP2020119949A (ja) | 積層セラミック電子部品の製造方法 | |
JPS63146421A (ja) | 積層型セラミツクチツプコンデンサ−の製造方法 | |
JP2000306763A (ja) | 積層セラミックコンデンサとその製造方法 | |
JP2006286771A (ja) | セラミック電子部品の製造方法及びセラミック電子部品 | |
JP2002184607A (ja) | 積層型バリスタ及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14745586 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014559689 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20157023057 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14745586 Country of ref document: EP Kind code of ref document: A1 |