WO2014103503A1 - 電動車両の変速制御装置 - Google Patents
電動車両の変速制御装置 Download PDFInfo
- Publication number
- WO2014103503A1 WO2014103503A1 PCT/JP2013/079510 JP2013079510W WO2014103503A1 WO 2014103503 A1 WO2014103503 A1 WO 2014103503A1 JP 2013079510 W JP2013079510 W JP 2013079510W WO 2014103503 A1 WO2014103503 A1 WO 2014103503A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shift
- deceleration
- torque
- control device
- regenerative torque
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2054—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2009—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/16—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/50—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
- B60L50/60—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
- B60L50/61—Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
- B60L7/14—Dynamic electric regenerative braking for vehicles propelled by AC motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/10—Dynamic electric regenerative braking
- B60L7/18—Controlling the braking effect
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/24—Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
- B60L7/24—Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
- B60L7/26—Controlling the braking effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/16—Inhibiting or initiating shift during unfavourable conditions, e.g. preventing forward reverse shift at high vehicle speed, preventing engine over speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2210/00—Converter types
- B60L2210/40—DC to AC converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/12—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/14—Acceleration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/10—Vehicle control parameters
- B60L2240/26—Vehicle weight
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/421—Speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/42—Drive Train control parameters related to electric machines
- B60L2240/423—Torque
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/48—Drive Train control parameters related to transmissions
- B60L2240/486—Operating parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2240/00—Control parameters of input or output; Target parameters
- B60L2240/40—Drive Train control parameters
- B60L2240/50—Drive Train control parameters related to clutches
- B60L2240/507—Operating parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2250/00—Driver interactions
- B60L2250/26—Driver interactions by pedal actuation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2270/00—Problem solutions or means not otherwise provided for
- B60L2270/10—Emission reduction
- B60L2270/14—Emission reduction of noise
- B60L2270/145—Structure borne vibrations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/10—Controlling shift hysteresis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S903/00—Hybrid electric vehicles, HEVS
- Y10S903/902—Prime movers comprising electrical and internal combustion motors
- Y10S903/903—Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
- Y10S903/945—Characterized by control of gearing, e.g. control of transmission ratio
Definitions
- the present invention relates to a shift control device for an electric vehicle including a motor generator that performs regeneration during deceleration and an automatic transmission having a meshing clutch as a shift element in a drive system.
- the present invention has been made focusing on the above problems, and it is an object of the present invention to provide a shift control device for an electrically powered vehicle which can improve the electricity cost by improving the motor operating point when there is a shift request during deceleration regeneration. I assume.
- an electric vehicle includes a motor generator that performs regeneration during deceleration and an automatic transmission having a meshing clutch as a speed change element in a drive system from a drive source to driving wheels.
- the electrically-powered vehicle shift control device includes shift request determination means, shift permission determination means, and shift start means.
- the shift request determination means is configured such that the shift request during deceleration regeneration is an upshift such that the release element at the changeover shift is the meshing clutch, or the engaging element at the rebuilding shift is the meshing clutch It is determined whether or not it is a downshift.
- the shift permission determination unit determines shift permission based on the magnitude of the regenerative torque when it is determined that the shift request is a shift request that uses the meshing clutch as an open element / engagement element during deceleration regeneration.
- the shift start unit starts shifting according to the shift request.
- the shift permission determination means determines the shift permission based on the magnitude of the regenerative torque. Then, when it is determined that the shift is permitted, the shift start means starts shifting according to the shift request. That is, when there is a shift request during deceleration regeneration, the frequency at which shifting can be performed increases, such as starting shift according to shift permission determination based on the magnitude of regenerative torque. For this reason, the time during which the motor generator can be operated at an efficient operating point becomes longer as compared with the case where the gear shift is uniformly prohibited during deceleration regeneration, and the motor efficiency is improved. As a result, when there is a shift request during deceleration regeneration, the power consumption can be improved by improving the motor operating point.
- FIG. 1 is an entire system configuration diagram showing a drive system configuration and a control system configuration of an electric vehicle (an example of an electric vehicle) to which a transmission control device according to a first embodiment is applied.
- FIG. 2 is a control block diagram showing a detailed configuration of the transmission control system of the first embodiment.
- 5 is a flowchart showing the flow of a transmission control process executed by the transmission controller of the first embodiment.
- FIG. 10 is an allowable G fluctuation map diagram showing an example of allowable deceleration G fluctuation determined according to the vehicle speed and the deceleration G when calculating the threshold value of the shift control process.
- FIG. 6 is a shift map diagram showing an example of an up shift line and a down shift line of an automatic transmission used during power running and shift request non-intervention regeneration.
- FIG. 1 is an entire system configuration diagram showing a drive system configuration and a control system configuration of an electric vehicle (an example of an electric vehicle) to which a transmission control device according to a first embodiment is applied.
- FIG. 2 is
- FIG. 6 is a shift map diagram showing an example of an upshift line, a downshift line, and a regenerative torque threshold line of the automatic transmission used at the time of shift request intervention regeneration.
- the characteristics of the motor rotational speed, the vehicle speed, the threshold of regenerative torque, and the regenerative torque when there is an intervention of a downshift request on the way from regenerative deceleration to stop in the electric vehicle equipped with the shift control device of Example 1 are shown. It is a time chart.
- FIG. 10 is a flowchart showing the flow of a transmission control process executed by the transmission controller of the second embodiment.
- FIG. 6 is a diagram showing an example of a drive system configuration of a hybrid vehicle (another example of the electric vehicle) to which the transmission control device of the present invention can be applied.
- the configuration of the transmission control apparatus mounted on the electric vehicle (an example of the electric vehicle) according to the first embodiment will be described by being divided into “overall system configuration”, “detailed configuration of transmission control system”, and “transmission control processing configuration”.
- FIG. 1 shows a drive system configuration and a control system configuration of an electric vehicle to which the transmission control device of the first embodiment is applied.
- the entire system configuration will be described based on FIG.
- a motor generator MG As a drive system configuration of the electric vehicle, as shown in FIG. 1, a motor generator MG, an automatic transmission 3 and a drive wheel 14 are provided.
- the motor generator MG is used as a drive motor at the time of power running, is used as a generator at the time of regeneration, and its motor shaft is connected to the transmission input shaft 6 of the automatic transmission 3.
- the automatic transmission 3 is a continuously meshed step-variable transmission that transmits power by one of two gear pairs having different gear ratios, and has a high gear (high gear) with a small reduction ratio and a low gear with a large reduction ratio. It is a two-speed shift with (low speed).
- the automatic transmission 3 is configured by a low side transmission mechanism 8 that realizes a low gear and a high side transmission mechanism 9 that realizes a high gear.
- the transmission input shaft 6 and the transmission output shaft 7 are respectively arranged in parallel.
- the low side transmission mechanism 8 is for selecting the low side transmission path, and is disposed on the transmission output shaft 7.
- the low-side transmission mechanism 8 engages the meshing engagement of the gear 8a with the transmission output shaft 7 so that the low speed gear pair (gear 8a, gear 8b) drives and connects the transmission input / output shafts 6, 7 It comprises the engagement clutch 8c (meshing clutch) which releases.
- the low speed gear pair includes a gear 8 a rotatably supported on the transmission output shaft 7 and a gear 8 b meshing with the gear 8 a and rotating together with the transmission input shaft 6.
- the high side transmission mechanism 9 is for selecting the high side transmission path, and is disposed on the transmission input shaft 6.
- friction engagement / disengagement of the gear 9a with respect to the transmission input shaft 6 is performed so that the high speed gear pair (gear 9a, gear 9b) drives and connects the transmission input / output shafts 6, 7 It comprises by the friction clutch 9c which does.
- the high-speed gear pair includes a gear 9 a rotatably supported on the transmission input shaft 6 and a gear 9 b meshing with the gear 9 a and rotating together with the transmission output shaft 7.
- the transmission output shaft 7 fixes the gear 11, and drives and couples the differential gear device 13 to the transmission output shaft 7 via a final drive gear set including the gear 11 and a gear 12 meshing with the gear 11. .
- the motor power of motor generator MG that has reached transmission output shaft 7 passes through final drive gear set 11, 12 and differential gear device 13 to drive left and right drive wheels 14 (note that only one drive wheel is shown in FIG. 1). To be transmitted to the
- a motor controller 28, a brake controller 29, an integrated controller 30, a CAN communication line 31, and a range position switch 32 are provided.
- the gear change controller 21 releases the engagement clutch 8c and the friction of the friction clutch 9c when upshifting to the high gear is performed with the engagement clutch 8c engaged and the low gear gear position of the friction clutch 9c released is selected. Carry out replacement control by fastening. Also, when downshifting to the low gear stage with the engagement clutch 8c released and the friction clutch 9c being in the low gear stage in which the friction clutch 9c is frictionally engaged selected, switching over by meshing engagement of the engagement clutch 8c and release of the friction clutch 9c Carry out control. That is, in the upshift, the engagement clutch 8c, which is a meshing clutch, is an open element, and in the downshift, the engagement clutch 8c, which is a meshing clutch, is an engagement element.
- FIG. 2 shows the detailed configuration of the transmission control system of the first embodiment. The detailed configuration of the transmission control system will be described below with reference to FIG.
- an engagement clutch 8c, a friction clutch 9c, a motor generator MG, a hydraulic pressure brake 15, and a shift controller 21 As a configuration of the shift control system, an engagement clutch 8c, a friction clutch 9c, a motor generator MG, a hydraulic pressure brake 15, and a shift controller 21; And an integrated controller 30. That is, the engagement clutch 8c and the friction clutch 9c are configured to perform shift control according to a command from the shift controller 21, and the motor generator MG and the hydraulic brake 15 are configured to perform regenerative coordinated brake control according to a command from the integrated controller 30. And
- the engagement clutch 8c is a clutch based on synchro meshing engagement, and has a clutch gear 8d provided on the gear 8a, a clutch hub 8e coupled to the transmission output shaft 7, and a coupling sleeve 8f (see FIG. See Figure 1). Then, the coupling sleeve 8 f is stroke-driven by the electric actuator 41 to engage and release the engagement.
- the meshing engagement and release of the engagement clutch 8c is determined by the position of the coupling sleeve 8f, and the shift controller 21 reads the value of the sleeve position sensor 27 so that the sleeve position becomes the meshing engagement position or release position.
- a position servo controller 51 for example, a position servo system based on PID control for giving a current to the electric actuator 41 is provided.
- the gear 8a is drivingly connected to the transmission output shaft 7.
- the coupling sleeve 8 f is displaced in the axial direction from the position shown in FIG. 1 and the gear 8 a is not engaged with one of the clutch gear 8 d and the outer peripheral clutch teeth of the clutch hub 8 e Disconnect from
- the friction clutch 9c has a driven plate 9d that rotates with the clutch gear 9a and a drive plate 9e that rotates with the transmission input shaft 6 (see FIG. 1). Then, by driving the slider 9f which applies a pressing force to the both plates 9d and 9e by the electric actuator 42, the frictional engagement / release is performed.
- the transfer torque capacity of the friction clutch 9c is determined by the position of the slider 9f, and the slider 9f is a screw mechanism, and holds the position when the input of the electric actuator 42 is 0 (zero). There is.
- the shift controller 21 reads the value of the slider position sensor 26 and applies a position servo controller 52 (for example, a position servo system based on PID control) to apply a current to the electric actuator 42 so that the slider position can obtain a desired transfer torque capacity.
- a position servo controller 52 for example, a position servo system based on PID control
- the friction clutch 9c rotates integrally with the transmission input shaft 6, and when the clutch friction is engaged, the gear 9a is drivingly connected to the transmission input shaft 6, and when the clutch is released, the gear 9a and the transmission input shaft 6 are Disconnect the drive connection.
- the motor generator MG is subjected to power running control or regenerative control by a motor controller 28 which inputs a command output from the integrated controller 30. That is, when the motor controller 28 inputs a motor torque command, the motor generator MG is subjected to power running control. Further, when the motor controller 28 inputs a regenerative torque command, the motor generator MG is regeneratively controlled.
- the hydraulic pressure brake 15 applies a hydraulic pressure braking force to the drive wheels 14 by the brake fluid supplied via the brake pedal 16, the electric booster 17, the master cylinder 18, and the brake hydraulic pressure actuator 19.
- the brake controller 29 inputs a brake fluid pressure command during regenerative coordinated brake control
- the fluid pressure brake 15 controls the brake fluid pressure by outputting a drive command according to the sharing of the fluid pressure braking force to the electric booster 17.
- Ru the regenerative coordinated brake control is a control that achieves the required braking force (or the required deceleration G) calculated based on the brake stroke amount from the brake stroke sensor 24 by sharing the regenerative braking force and the hydraulic braking force.
- the regenerative braking force is determined based on the maximum regenerative torque that is possible at that time, and the remainder obtained by subtracting the regenerative braking force from the required braking force is shared by the hydraulic braking force.
- the shift controller 21 inputs information from the vehicle speed sensor 22, the accelerator opening sensor 23, the brake stroke sensor 24, the longitudinal G sensor 25 and the like, and uses the shift map (FIG. 5) or the like to upshift the automatic transmission 3. And control downshifts.
- FIG. 3 shows the flow of the transmission control process executed by the transmission controller 21 according to the first embodiment.
- each step of the shift control processing configuration will be described based on FIG.
- step S1 it is determined whether there is a shift request for upshifting or downshifting during deceleration regeneration. If YES (there is a shift request during regeneration), the process proceeds to step S3, and if NO (there is no shift request during regeneration), the process proceeds to step S2 (shift request determination means).
- the release element of the upshift by switching is the engagement clutch 8c
- the coupling element of the downshift by switching is the engagement clutch 8c. A determination is made as to whether or not there is a shift request between the two shift speeds.
- step S2 following the determination that there is no shift request during regeneration in step S1, shift control is performed according to the shift map (FIG. 5) at normal times, and the process proceeds to the end.
- step S3 following the determination that there is a shift request during regeneration in step S1, or the determination that the magnitude condition of the regenerative torque in step S4 is not satisfied, the threshold (absolute value) of the regenerative torque is calculated. Then, the process proceeds to step S4 (regeneration torque threshold calculation means).
- the threshold value of the regenerative torque is set to a value at which the driver can accept a torque drop that can be tolerated when a drop in torque transmitted to the drive system occurs due to a changeover shift using the meshing clutch 8c.
- Threshold value of regenerative torque allowable deceleration G fluctuation ⁇ ⁇ gear ratio ⁇ (tire radius x estimated vehicle weight) ⁇ The threshold value of the regenerative torque is calculated by the following equation.
- step S3 the allowable deceleration G fluctuation for each calculation cycle is determined using the allowable deceleration G fluctuation map shown in FIG. That is, the allowable deceleration G fluctuation is given as a large value as the vehicle speed from the vehicle speed sensor 22 is higher, and the allowable deceleration G fluctuation is given as a larger value as the actual deceleration absolute value from the front and rear G sensor 25 is higher. .
- step S4 following the threshold calculation of the regenerative torque in step S3, a shift is made depending on whether the current regenerative torque size (regenerative torque absolute value) is smaller than the threshold of the regenerative torque calculated in step S3. Determine the permission. If YES (threshold of regenerative torque> current regenerative torque), the process proceeds to step S5, and if NO (threshold of regenerative torque ⁇ current regenerative torque), the process returns to step S3 (shift permission determining unit).
- step S5 following the determination that the threshold value of the regenerative torque in step S4> the current regenerative torque, the shift is started according to the shift request (up shift or down shift) in step S1 and the process proceeds to the end (shift Start means).
- step S1 to step S2 to end is repeated in the flowchart shown in FIG. 3, and in step S2 the shift map shown in FIG. The usual shift control used is executed.
- the shift controller 21 inputs the vehicle speed VSP from the vehicle speed sensor 22, the accelerator opening APO from the accelerator opening sensor 23, and the brake stroke amount BST from the brake stroke sensor 24. . Then, based on the input information and the shift map illustrated in FIG. 5, shift control of the automatic transmission 3 described below is performed.
- thick solid lines indicate maximum motor drive torque lines obtained by connecting maximum motor drive torque values of motor generator MG2 for each vehicle speed VSP, and maximum motor regenerative torque values for motor generator MG2 for each vehicle speed VSP.
- the maximum motor regenerative torque line obtained by connecting is shown, and the area surrounded by these is the practical area.
- an upshift line (Low ⁇ High) indicated by an alternate long and short dash line and a down shift line indicated by a broken line (High ⁇ Low) Set is set to a higher vehicle speed side than the downshift line (High ⁇ Low) by the amount of hysteresis.
- the driving point is determined by the required motor driving torque obtained from the accelerator opening APO and the vehicle speed VSP.
- the driving point is determined by the required motor regenerative torque obtained from the brake stroke amount BST and the vehicle speed VSP.
- the operating point in the practical area crosses the up shift line (Low ⁇ High) and enters the high side shift stage area. And an upshift request to switch the target shift position to the high gear position. Then, when there is a request for upshifting, the upshifting is immediately performed by a re-establishing shift in which the engagement clutch 8c in the meshing engagement state is released and then the friction clutch 9c in the released state is frictionally engaged.
- the operating point within the practical range crosses the down shift line (High ⁇ Low) and enters the low side shift range And a down shift request for switching the target shift position to the low gear position.
- a downshift is requested, the friction clutch 9c in the frictional engagement state is immediately released, and then the differential rotation of the engagement clutch 8c is synchronously controlled by the motor generator MG, and then the engagement clutch 8c is engaged and engaged.
- the downshift is performed by the remake shift.
- the engagement clutch 8c is engaged and the selection state of the low gear stage for releasing the friction clutch 9c is maintained. . Further, if the gear at the start of regeneration is the high gear, the selection state of the high gear, in which the friction clutch 9c is in the friction engagement state and the engagement clutch 8c is in the release state, is maintained.
- step S3 the threshold value of the regenerative torque is calculated, and in step S4, the shift permission is determined depending on whether or not the magnitude of the current regenerative torque is smaller than the threshold value of the regenerative torque calculated in step S3. Then, while NO (threshold of regenerative torque ⁇ current regenerative torque) is determined in step S4, the flow advancing from step S3 to step S4 is repeated to calculate the regenerative torque calculated for each predetermined cycle. The shift permission determination using the threshold is repeated.
- step S4 determines YES in step S4 (threshold value of regenerative torque> current regenerative torque)
- step S5 the process proceeds from step S5 to end, and in step S5, a shift request (up shift or down shift) is made in step S1. Therefore, the shift is started.
- t0 is a regenerative deceleration start time
- t1 is a shift request time
- t2 is a shift start time
- t3 is a shift end time
- t4 is a stop time.
- an area F where the regenerative torque is equal to or greater than the “regenerative torque threshold” is regarded as a shift standby area.
- An area smaller than "the threshold value of regenerative torque” is taken as a shift permission area.
- the shift permission is determined based on the magnitude of the regeneration torque
- the shift is started according to the shift request. That is, when there is a shift request during deceleration regeneration, the frequency at which shifting can be performed increases, such as starting shift according to shift permission determination based on the magnitude of regenerative torque. For this reason, compared with the case where the gear shift is uniformly prohibited during the deceleration regeneration, the time during which the motor generator MG can be operated at an efficient operating point becomes longer, and the motor efficiency is improved. As a result, when there is a shift request during deceleration regeneration, the power consumption can be improved by improving the motor operating point.
- the torque drop index value that the driver can tolerate is set as the threshold value.
- size of the present regenerative torque is smaller than a threshold value, the structure which permits gear shift was employ
- the allowable deceleration G fluctuation that the driver can tolerate is determined as the deceleration step, and the allowable deceleration G fluctuation that has been determined, the gear ratio of the pre-shift gear stage, and the vehicle specifications.
- the threshold value of the regenerative torque is calculated.
- a regenerative torque is used as a torque dropout index value, and gear shifting is permitted when the current regenerative torque is smaller than the threshold value of the regenerative torque. That is, the current regenerative torque can be obtained with high accuracy by the torque command value of motor generator MG. Therefore, even under running conditions where the current deceleration G can not be detected with high accuracy (for example, traveling on a slope road by uphill or downhill), it is possible to improve the electricity cost by improving the motor operating point.
- the allowable deceleration G fluctuation is given as a larger value as the vehicle speed VSP is higher. That is, the lower the vehicle speed VSP is, the higher the driver's shock sensitivity is, and the higher the vehicle speed VSP is, the lower the driver's shock sensitivity is. Therefore, regardless of the vehicle speed VSP, when the width of the deceleration G fluctuation is given the same width, the lower the vehicle speed VSP, the larger the torque loss shock felt by the driver, and the higher the vehicle speed VSP, the smaller the torque loss shock felt by the driver. . Therefore, appropriate allowable deceleration G fluctuation is provided so that the driver's shock does not change regardless of the speed of the vehicle speed VSP, and the shift permission area during regenerative deceleration in the high vehicle speed region can be expanded.
- the allowable deceleration G fluctuation is given as a larger value as the deceleration G becomes higher. That is, the lower the deceleration G, the higher the shock sensitivity of the driver, and the higher the deceleration G, the lower the shock sensitivity of the driver. Therefore, regardless of the deceleration G, when the width of the deceleration G fluctuation is given the same width, the lower the deceleration G, the larger the torque loss shock felt by the driver, and the higher the deceleration G, the smaller the torque loss shock felt by the driver. .
- Example 1 Vehicle weight is heavy, high vehicle speed, uphill: The threshold value of regenerative torque is calculated with the relation that the threshold value of regenerative torque is light, large vehicle weight is low, low vehicle speed, downhill: threshold value of regenerative torque is small.
- An electric vehicle provided with a motor generator MG for performing regeneration during deceleration and an automatic transmission 3 having a meshing clutch (engagement clutch 8c) as a transmission element in a drive system from a drive source to drive wheels In (electric car),
- the gear change request during deceleration regeneration is an upshift so that the release element in the changeover shift becomes the meshing clutch (engagement clutch 8c), or the fastening element in the changeover shift is the meshing clutch (engagement clutch 8c)
- Shift request determination means S1 in FIG. 3) for determining whether or not the downshift is such that A gear change permission judging unit (Fig.
- the shift permission determining means causes the torque transmitted to the drive system to be disengaged due to the shift to the neutral state during the changeover shift transition period using the meshing clutch (engaging clutch 8c)
- the torque loss index value regenerative torque
- the shift is permitted if the torque loss index value according to the current size of the regenerative torque is smaller than the threshold value (FIG. 3).
- the driver can tolerate the occurrence of the torque loss due to the execution of the shift by permitting the shift when the shift request is during deceleration regeneration and smaller than the threshold. It can be suppressed to below torque loss.
- the regenerative torque threshold calculation means (S3 in FIG. 3) gives the allowable deceleration G fluctuation with a larger value as the vehicle speed VSP is higher (FIG. 4). Therefore, in addition to the effect of (3), it is possible to give an appropriate allowable deceleration G fluctuation in which the driver's shock does not change regardless of the speed of the vehicle speed VSP, and shift permission during regenerative deceleration in the high vehicle speed region
- the area can be expanded.
- the regenerative torque threshold calculation means (S3 in FIG. 3) gives the allowable deceleration G fluctuation with a larger value as the deceleration G becomes higher (FIG. 4). Therefore, in addition to the effect of (3) or (4), it is possible to give an appropriate allowable deceleration G fluctuation in which the driver's shock does not change regardless of the level of deceleration G and regenerative deceleration in the high deceleration G region. It is possible to expand the middle shift permission area.
- the second embodiment is an example using the deceleration G instead of the regenerative torque used in the first embodiment as the torque loss index value.
- FIG. 8 shows the flow of the transmission control process executed by the transmission controller 21 according to the second embodiment.
- each step of the shift control processing configuration will be described based on FIG.
- step S21 it is determined whether there is a shift request for an upshift or a downshift during deceleration regeneration. If YES (there is a shift request during regeneration), the process proceeds to step S23, and if NO (there is no shift request during regeneration), the process proceeds to step S22 (shift request determination means).
- step S22 following the determination that there is no shift request during regeneration in step S21, shift control at normal times is performed according to the shift map (FIG. 5), and the process proceeds to the end.
- step S23 the threshold (absolute value) of the deceleration G is calculated following the determination that there is a shift request during regeneration in step S21, or the determination that the magnitude condition of the deceleration G in step S24 is not satisfied. Then, the process proceeds to step S24 (deceleration G threshold value calculation means).
- the threshold value of the deceleration G is an allowable deceleration that the driver can tolerate as a deceleration step when the torque transmitted to the drive system is lost due to the neutral state in the transition transition period using the engagement clutch 8c. Calculated by the value of G fluctuation. Specifically, it is determined using the allowable deceleration G fluctuation map shown in FIG.
- the allowable deceleration G fluctuation is given as a large value as the vehicle speed from the vehicle speed sensor 22 is higher, and the allowable deceleration G fluctuation is given as a larger value as the actual deceleration absolute value from the front and rear G sensor 25 is higher. .
- step S24 following the threshold calculation of the deceleration G in step S23, a shift is made depending on whether the current deceleration G magnitude (deceleration G absolute value) is smaller than the threshold of the deceleration G calculated in step S23. Determine the permission. If YES (threshold for deceleration G> present deceleration G), the process proceeds to step S25, and if NO (threshold for deceleration G ⁇ current deceleration G), the process returns to step S23 (shift permission determination means).
- step S25 following the determination that the threshold value of deceleration G> current deceleration G in step S24, the shift is started according to the shift request (up shift or down shift) in step S21, and the process proceeds to the end (shift Start means).
- the configurations of FIG. 1 and FIG. 2 are the same as those of the first embodiment, so the illustration and the description thereof will be omitted.
- t0 is a regenerative deceleration start time
- t1 is a shift request time
- t2 is a shift start time
- t3 is a shift end time
- t4 is a stop time.
- the current deceleration G becomes the threshold of the deceleration G by changing the deceleration G in the decreasing direction by reducing the brake depression force so as to suppress the rapid decrease of the vehicle speed VSP. Get close. Then, the relationship of threshold of deceleration G> current deceleration G is established, and at time t2 when the operating point crosses the threshold of deceleration G, downshifting is started. Then, when time elapses from the downshift start time t2, the downshift advances while the deceleration G is kept small, and the downshift to increase the motor rotational speed which is the transmission input rotational speed at time t3 ends . After that, the vehicle speed decreases with the decrease of the motor rotation speed while the deceleration G is kept small, and the vehicle stops at time t4.
- the allowable deceleration G fluctuation that the driver can tolerate as the deceleration step is calculated as the threshold value of the deceleration G.
- a configuration is adopted in which the deceleration G is used as the torque loss index value, and the shift is permitted when the current deceleration G is smaller than the threshold of the deceleration G. That is, the shift permission is determined after providing the threshold for the deceleration G detected by the front and rear G sensor 25 mounted on the vehicle instead of providing the threshold for the regenerative torque as in the first embodiment. Become.
- the shift can be permitted when the deceleration G is small despite the regenerative torque of the uphill or the like being large, and the electricity cost is further improved.
- the other actions are the same as in the first embodiment, and thus the description thereof is omitted.
- a deceleration G threshold value calculation means (S23 in FIG. 8) for calculating the allowable deceleration G fluctuation that the driver can tolerate as the deceleration step as the threshold value of the deceleration G when the torque causes a drop.
- the shift permission determination unit (S24 in FIG. 8) uses the deceleration G as a torque drop index value, and permits the shift when the current deceleration G is smaller than the threshold of the deceleration G (FIG. 8). For this reason, in addition to the effect of (2), the frequency of permitting shifting is increased in the case of a traveling condition in which the deceleration G is small despite the large regenerative torque, and power consumption can be further improved.
- an automatic transmission an example of a transmission having an engagement clutch 8c and a friction clutch 9c and using a second gear including high gear and low gear is shown.
- an automatic transmission an automatic transmission having a meshing clutch (dog clutch, synchro clutch) as a gearshift element, and having a gear stage using this meshing clutch as a release element or a fastening element, the third gear shift stage It may be the above transmission.
- Example 1 an example in which regenerative torque (Example 1) and deceleration G (Example 2) are used as torque loss index values is shown.
- the torque dropout index value any other value may be used as long as it becomes a index of torque dropout, such as a value obtained by combining regenerative torque and deceleration G.
- Examples 1 and 2 an example in which the threshold value of the torque loss index value (regenerative torque, deceleration G) is a variable value obtained by calculation is shown.
- the threshold value of the torque loss index value (regenerative torque, deceleration G) may be set as a fixed value determined in advance by experiment or the like.
- the transmission control device of the present invention is applied to an electric vehicle provided with a motor generator as a drive source.
- the transmission control apparatus of the present invention can also be applied to a hybrid vehicle provided with an engine and a motor generator as a drive source.
- the drive system of the first and second embodiments includes the engine 1, the motor generator MG1 for power generation, and the power distribution device 2. It may be added.
- the shift control of the present invention can be applied when the engine 1 and the motor generator for power generation MG1 are in a state of zero torque and the automatic transmission 3 carries out a shift while the drive motor generator MG2 is regenerating.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- General Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Physics & Mathematics (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Control Of Transmission Device (AREA)
- Hybrid Electric Vehicles (AREA)
Abstract
Description
この電動車両変速制御装置において、変速要求判断手段と、変速許可判断手段と、変速開始手段と、を有する。
前記変速要求判断手段は、減速回生中の変速要求が、架け替え変速での開放要素が前記噛み合いクラッチとなるようなアップ変速、あるいは、架け替え変速での締結要素が前記噛み合いクラッチとなるようなダウン変速であるか否かを判断する。
前記変速許可判断手段は、減速回生中、前記噛み合いクラッチを開放要素/締結要素とする変速要求であると判断されると、回生トルクの大きさに基づいて変速許可を判断する。
前記変速開始手段は、前記変速許可判断手段により変速許可が判断されたら、変速要求にしたがって変速を開始する。
すなわち、減速回生中に変速要求があると、回生トルクの大きさに基づく変速許可判断にしたがって変速を開始するというように、変速できる頻度が増える。このため、減速回生中は一律に変速を禁止する場合に比べ、モータジェネレータを効率の良い動作点で運転できる時間が長くなり、モータ効率の向上となる。
この結果、減速回生中に変速要求があるとき、モータ動作点を改善することで電費の向上を図ることができる。
実施例1における電気自動車(電動車両の一例)に搭載された変速制御装置の構成を、「全体システム構成」、「変速制御系の詳細構成」、「変速制御処理構成」に分けて説明する。
図1は、実施例1の変速制御装置が適用された電気自動車の駆動系構成と制御系構成を示す。以下、図1に基づき、全体システム構成を説明する。
図2は、実施例1の変速制御系の詳細構成を示す。以下、図2に基づき、変速制御系の詳細構成を説明する。
この係合クラッチ8cの噛み合い係合と開放は、カップリングスリーブ8fの位置によって決まり、変速コントローラ21は、スリーブ位置センサ27の値を読み込み、スリーブ位置が噛み合い係合位置又は開放位置になるように電動アクチュエータ41に電流を与える位置サーボコントローラ51(例えば、PID制御による位置サーボ系)を備えている。
そして、カップリングスリーブ8fがクラッチギア8d及びクラッチハブ8eの外周クラッチ歯の双方に噛合した図1に示す噛み合い位置にあるとき、ギア8aを変速機出力軸7に駆動連結する。一方、カップリングスリーブ8fが、図1に示す位置から軸線方向へ変位することでクラッチギア8d及びクラッチハブ8eの外周クラッチ歯の一方と非噛み合い位置にあるとき、ギア8aを変速機出力軸7から切り離す。
この摩擦クラッチ9cの伝達トルク容量は、スライダ9fの位置によって決まり、また、スライダ9fはネジ機構となっており、電動アクチュエータ42の入力が0(ゼロ)のとき、位置を保持する機構となっている。変速コントローラ21は、スライダ位置センサ26の値を読み込み、所望の伝達トルク容量が得られるスライダ位置になるように電動アクチュエータ42に電流を与える位置サーボコントローラ52(例えば、PID制御による位置サーボ系)を備えている。
そして、摩擦クラッチ9cは、変速機入力軸6と一体に回転し、クラッチ摩擦締結のときギア9aを変速機入力軸6に駆動連結し、クラッチ開放のとき、ギア9aと変速機入力軸6の駆動連結を切り離す。
図3は、実施例1の変速コントローラ21にて実行される変速制御処理の流れを示す。以下、図3に基づき、変速制御処理構成をあらわす各ステップについて説明する。
ここで、実施例1の自動変速機3の場合、架け替えによるアップ変速の開放要素が係合クラッチ8cとなり、架け替えによるダウン変速の締結要素が係合クラッチ8cとなることで、回生中における2つの変速段間での変速要求有無の判断を行う。
ここで、回生トルクを閾値は、噛み合いクラッチ8cを用いた架け替え変速により駆動系を伝達するトルクに抜けが生じるとき、ドライバが許容できるトルク抜けとなる値に設定される。具体的には、噛み合いクラッチ8cを用いた架け替え変速過渡期に一瞬ニュートラル状態になることで駆動系を伝達するトルクに抜けが生じるとき、減速度段差としてドライバが許容できる許容減速G変動を決める。そして、決めた許容減速G変動と、変速前ギア段のギア比と、タイヤ半径(車両諸元)と、推定車重(車両諸元)と、に基づいて、
回生トルクの閾値=許容減速G変動÷{ギア比÷(タイヤ半径×推定車重)}
の式により回生トルクの閾値を算出する。
さらに、ステップS3では、算出周期毎の許容減速G変動を、図4に示す許容減速G変動マップを用いて決めるようにしている。つまり、車速センサ22からの車速が高いほど許容減速G変動を大きい値で与え、また、前後Gセンサ25からの実減速度絶対値が高いほど許容減速G変動を大きい値で与えるようにしている。
まず、「背景技術」を説明する。そして、実施例1の電気自動車の変速制御装置における作用を、「通常時の変速制御作用」、「変速要求介入回生時の変速制御作用」に分けて説明する。
実施例1の駆動系構成を持つ電気自動車において、モータジェネレータMGによる回生中に自動変速機3がアップ変速を実施する場合を考える。
よって、回生中にアップ変速を実施した場合、係合クラッチ8cの開放から摩擦クラッチ9cの締結までのアップ変速過渡期に自動変速機3が一瞬ニュートラル状態となる。このため、モータジェネレータMGから駆動輪14までの駆動系を伝達する回生トルク(負のトルク)がゼロになる、所謂トルク抜けが発生し、ドライバに多大な違和感を与える。
しかし、変速制御は、モータ動作点が最適になるように、車速と要求モータトルクに応じて行われるものであるため、一律に回生中は変速を禁止すると、モータを効率の良い動作点で運転できる時間が短くなり、電費が悪化する。
モータジェネレータMGの力行時、あるいは、モータジェネレータMGが回生中に自動変速機3がアップ変速やダウン変速を実施しない場合は、モータ動作点が最適になるように変速制御される。以下、これを反映する通常時(力行時、あるいは、変速要求の介入がない回生中)の変速制御作用を、図3及び図5に基づき説明する。
モータジェネレータMGの回生中、アップ変速要求やダウン変速要求が介入する場合、回生トルクの大きさに基づいて変速許可が判断される。以下、これを反映する変速要求介入回生時の変速制御作用を、図3、図6及び図7に基づき説明する。
すなわち、減速回生中に変速要求があると、回生トルクの大きさに基づく変速許可判断にしたがって変速を開始するというように、変速できる頻度が増える。このため、減速回生中は一律に変速を禁止する場合に比べ、モータジェネレータMGを効率の良い動作点で運転できる時間が長くなり、モータ効率の向上となる。この結果、減速回生中に変速要求があるとき、モータ動作点を改善することで電費の向上が図られる。
したがって、減速回生中に変速要求があるとき、閾値よりも小さい場合に変速が許可されることで、変速を実施することによるトルク抜けの発生が、ドライバが許容できるトルク抜け以下に抑えられる。
すなわち、現在の回生トルクは、モータジェネレータMGのトルク指令値により、精度良く取得することができる。
したがって、現在の減速Gを精度良く検出できないような走行状況(例えば、上り坂や下り坂による勾配路走行)においても、モータ動作点の改善による電費向上の実効が図られる。
すなわち、車速VSPが低いほどドライバのショック感度が高く、車速VSPが高いほどドライバのショック感度が低い。このため、車速VSPにかかわらず減速G変動の幅を同じ幅で与えた場合、車速VSPが低いほどドライバが感じるトルク抜けショックが大きくなり、車速VSPが高いほどドライバが感じるトルク抜けショックが小さくなる。
したがって、車速VSPの高低にかかわらずドライバのショック感が変わらない適切な許容減速G変動を与えられると共に、高車速域での回生減速中の変速許可領域の拡大が図られる。
すなわち、減速Gが低いほどドライバのショック感度が高く、減速Gが高いほどドライバのショック感度が低い。このため、減速Gにかかわらず減速G変動の幅を同じ幅で与えた場合、減速Gが低いほどドライバが感じるトルク抜けショックが大きくなり、減速Gが高いほどドライバが感じるトルク抜けショックが小さくなる。
したがって、減速Gの高低にかかわらずドライバのショック感が変わらない適切な許容減速G変動を与えられると共に、上り坂等による高減速G域での回生減速中の変速許可領域の拡大が図られる。
車重が重い、高車速、上り坂:回生トルクの閾値を大
車重が軽い、低車速、下り坂:回生トルクの閾値を小
という関係にて、回生トルクの閾値が算出される。
実施例1の電気自動車の変速制御装置にあっては、下記に列挙する効果を得ることができる。
減速回生中の変速要求が、架け替え変速での開放要素が前記噛み合いクラッチ(係合クラッチ8c)となるようなアップ変速、あるいは、架け替え変速での締結要素が前記噛み合いクラッチ(係合クラッチ8c)となるようなダウン変速であるか否かを判断する変速要求判断手段(図3のS1)と、
減速回生中、前記噛み合いクラッチ(係合クラッチ8c)を開放要素/締結要素とする変速要求であると判断されると、回生トルクの大きさに基づいて変速許可を判断する変速許可判断手段(図3のS4)と、
前記変速許可判断手段により変速許可が判断されたら、変速要求にしたがって変速を開始する変速開始手段(図3のS5)と、
を有する(図3)。
このため、減速回生中に変速要求があるとき、モータ動作点を改善することで電費の向上を図ることができる。
このため、(1)の効果に加え、減速回生中に変速要求があるとき、閾値よりも小さい場合に変速を許可することで、変速を実施することによるトルク抜けの発生を、ドライバが許容できるトルク抜け以下に抑えることができる。
前記変速許可判断手段(図3のS4)は、トルク抜け指標値として回生トルクを用い、現在の回生トルクが前記回生トルクの閾値よりも小さい場合に変速を許可する(図3)。
このため、(2)の効果に加え、現在の減速Gを精度良く検出できないような走行状況においても、モータ動作点の改善による電費向上の実効を図ることができる。
このため、(3)の効果に加え、車速VSPの高低にかかわらずドライバのショック感が変わらない適切な許容減速G変動を与ることができると共に、高車速域での回生減速中の変速許可領域の拡大を図ることができる。
このため、(3)又は(4)の効果に加え、減速Gの高低にかかわらずドライバのショック感が変わらない適切な許容減速G変動を与えることができると共に、高減速G域での回生減速中の変速許可領域の拡大を図ることができる。
図8は、実施例2の変速コントローラ21にて実行される変速制御処理の流れを示す。以下、図8に基づき、変速制御処理構成をあらわす各ステップについて説明する。
ここで、減速Gの閾値は、係合クラッチ8cを用いた架け替え変速過渡期にニュートラル状態になることで駆動系を伝達するトルクに抜けが生じるとき、減速度段差としてドライバが許容できる許容減速G変動の値により算出される。具体的には、図4に示す許容減速G変動マップを用いて決めるようにしている。つまり、車速センサ22からの車速が高いほど許容減速G変動を大きい値で与え、また、前後Gセンサ25からの実減速度絶対値が高いほど許容減速G変動を大きい値で与えるようにしている。
なお、図1及び図2の構成は、実施例1と同様であるので図示並びに説明を省略する。
実施例2の変速制御装置を搭載した電気自動車にて回生減速から停車に至る途中でダウン変速要求の介入があった際の変速制御作用を、図9に示すタイムチャートにより説明する。図9において、t0は回生減速開始時刻、t1は変速要求時刻、t2は変速開始時刻、t3は変速終了時刻、t4は停車時刻である。
すなわち、実施例1のように、回生トルクに閾値を設けるのではなく、車両に搭載された前後Gセンサ25により検出される減速Gに閾値を設けた上で、変速許可が判断されることになる。
これにより、上り坂等の回生トルクが大きいにもかかわらず、減速Gが小さい場合に変速を許可することができ、より電費が向上する。なお、他の作用は、実施例1と同様であるので、説明を省略する。
実施例2の電気自動車の変速制御装置にあっては、下記の効果を得ることができる。
前記変速許可判断手段(図8のS24)は、トルク抜け指標値として減速Gを用い、現在の減速Gが前記減速Gの閾値よりも小さい場合に変速を許可する(図8)。
このため、(2)の効果に加え、回生トルクが大きいにもかかわらず減速Gが小さい走行状況のとき、変速を許可する頻度が増え、より電費を向上させることができる。
Claims (6)
- 駆動源から駆動輪までの駆動系に、減速中に回生を実施するモータジェネレータと、変速要素として噛み合いクラッチを有する自動変速機と、を備えた電動車両において、
減速回生中の変速要求が、架け替え変速での開放要素が前記噛み合いクラッチとなるようなアップ変速、あるいは、架け替え変速での締結要素が前記噛み合いクラッチとなるようなダウン変速であるか否かを判断する変速要求判断手段と、
減速回生中、前記噛み合いクラッチを開放要素/締結要素とする変速要求であると判断されると、回生トルクの大きさに基づいて変速許可を判断する変速許可判断手段と、
前記変速許可判断手段により変速許可が判断されたら、変速要求にしたがって変速を開始する変速開始手段と、
を有することを特徴とする電動車両の変速制御装置。 - 請求項1に記載された電動車両の変速制御装置において、
前記変速許可判断手段は、前記噛み合いクラッチを用いた架け替え変速過渡期にニュートラル状態になることで駆動系を伝達するトルクに抜けが生じるとき、ドライバが許容できるトルク抜け指標値を閾値として設定し、現在の回生トルクの大きさによるトルク抜け指標値が前記閾値よりも小さい場合に変速を許可する
ことを特徴とする電動車両の変速制御装置。 - 請求項2に記載された電動車両の変速制御装置において、
前記トルクに抜けが生じるとき、減速度段差としてドライバが許容できる許容減速G変動を決め、決めた許容減速G変動と、変速前ギア段のギア比と、車両諸元と、に基づいて、前記回生トルクの閾値を算出する回生トルク閾値算出手段を有し、
前記変速許可判断手段は、トルク抜け指標値として回生トルクを用い、現在の回生トルクが前記回生トルクの閾値よりも小さい場合に変速を許可する
ことを特徴とする電動車両の変速制御装置。 - 請求項3に記載された電動車両の変速制御装置において、
前記回生トルク閾値算出手段は、車速が高いほど許容減速G変動を大きい値で与える
ことを特徴とする電動車両の変速制御装置。 - 請求項3又は4に記載された電動車両の変速制御装置において、
前記回生トルク閾値算出手段は、減速Gが高いほど許容減速G変動を大きい値で与える
ことを特徴とする電動車両の変速制御装置。 - 請求項2に記載された電動車両の変速制御装置において、
前記トルクに抜けが生じるとき、減速度段差としてドライバが許容できる許容減速G変動を減速Gの閾値として算出する減速G閾値算出手段を有し、
前記変速許可判断手段は、トルク抜け指標値として減速Gを用い、現在の減速Gが前記減速Gの閾値よりも小さい場合に変速を許可する
ことを特徴とする電動車両の変速制御装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014554210A JP5920487B2 (ja) | 2012-12-26 | 2013-10-31 | 電動車両の変速制御装置 |
CN201380066902.9A CN104870868B (zh) | 2012-12-26 | 2013-10-31 | 电动车辆的变速控制装置 |
EP13866765.4A EP2940348B1 (en) | 2012-12-26 | 2013-10-31 | Eletric vehicle gearshift control method and device |
US14/646,022 US9662998B2 (en) | 2012-12-26 | 2013-10-31 | Electric vehicle gear shifting control device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012282380 | 2012-12-26 | ||
JP2012-282380 | 2012-12-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2014103503A1 true WO2014103503A1 (ja) | 2014-07-03 |
WO2014103503A8 WO2014103503A8 (ja) | 2015-06-18 |
Family
ID=51020602
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/079510 WO2014103503A1 (ja) | 2012-12-26 | 2013-10-31 | 電動車両の変速制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9662998B2 (ja) |
EP (1) | EP2940348B1 (ja) |
JP (1) | JP5920487B2 (ja) |
CN (1) | CN104870868B (ja) |
WO (1) | WO2014103503A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014173634A (ja) * | 2013-03-07 | 2014-09-22 | Nissan Motor Co Ltd | 車両の変速制御装置 |
EP3020595A1 (en) * | 2014-11-12 | 2016-05-18 | Hyundai Motor Company | Method for determining amount of regenerative braking |
CN105937562A (zh) * | 2015-03-02 | 2016-09-14 | 丰田自动车株式会社 | 变速器的控制装置 |
JP2017112666A (ja) * | 2015-12-14 | 2017-06-22 | トヨタ自動車株式会社 | 動力伝達装置の制御装置 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016027278A (ja) * | 2014-06-30 | 2016-02-18 | アイシン精機株式会社 | 車両の制御装置および車両の駆動システム |
KR101526432B1 (ko) * | 2014-07-31 | 2015-06-05 | 현대자동차 주식회사 | 하이브리드 차량의 회생 제동량 연산 장치 및 방법 |
KR101628545B1 (ko) * | 2014-11-27 | 2016-06-08 | 현대자동차주식회사 | 하이브리드 차량의 회생제동 제어방법 |
JP6118932B1 (ja) * | 2016-03-30 | 2017-04-19 | 本田技研工業株式会社 | 駆動装置 |
CN105871126A (zh) * | 2016-06-03 | 2016-08-17 | 重庆乔麦科技有限公司 | 一种电动发电回收设备 |
JP6776670B2 (ja) | 2016-07-07 | 2020-10-28 | スズキ株式会社 | 車両の変速制御装置 |
CN107131296B (zh) * | 2017-05-25 | 2019-01-15 | 重庆大学 | 一种面向能耗的纯电动汽车两挡变速系统控制策略 |
US12172641B2 (en) * | 2019-05-15 | 2024-12-24 | Ford Global Technologies, Llc | Electrified vehicle configured to selectively increase energy recovery threshold and corresponding method |
CN111379852B (zh) * | 2019-06-17 | 2021-07-13 | 长城汽车股份有限公司 | 挡位确定方法、系统及车辆 |
DE102020001795B3 (de) * | 2019-11-28 | 2020-10-29 | Hans Hermann Rottmerhusen | Elektromotorischer Antrieb für ein Kraftfahrzeug |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03117776A (ja) * | 1989-07-05 | 1991-05-20 | Dr Ing H C F Porsche Ag | 自動変速装置の制御方法および制御装置 |
JPH07264711A (ja) | 1994-03-17 | 1995-10-13 | Honda Motor Co Ltd | 電動車両の制動装置 |
JP2000274525A (ja) * | 1999-03-24 | 2000-10-03 | Aisin Aw Co Ltd | 自動変速機の制御装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1127802A (ja) | 1997-07-03 | 1999-01-29 | Toyota Motor Corp | 電気自動車の制動制御装置 |
JP3852402B2 (ja) * | 2002-12-25 | 2006-11-29 | トヨタ自動車株式会社 | ハイブリッド駆動装置の制御装置 |
KR100520565B1 (ko) * | 2003-11-18 | 2005-10-11 | 현대자동차주식회사 | 사륜 구동 전기자동차의 회생 제동 제어방법 및 시스템 |
JP4039427B2 (ja) * | 2005-02-16 | 2008-01-30 | トヨタ自動車株式会社 | 自動車及びその制御方法 |
US8204664B2 (en) * | 2007-11-03 | 2012-06-19 | GM Global Technology Operations LLC | Method for controlling regenerative braking in a vehicle |
US7908067B2 (en) * | 2007-12-05 | 2011-03-15 | Ford Global Technologies, Llc | Hybrid electric vehicle braking downshift control |
US7848816B1 (en) | 2007-12-27 | 2010-12-07 | Pacesetter, Inc. | Acquiring nerve activity from carotid body and/or sinus |
JP2010116121A (ja) * | 2008-11-14 | 2010-05-27 | Toyota Motor Corp | 車両用動力伝達装置の制御装置 |
JP5071438B2 (ja) * | 2009-05-19 | 2012-11-14 | トヨタ自動車株式会社 | 車両用動力伝達装置の制御装置 |
BRPI1015562A2 (pt) * | 2009-06-25 | 2016-08-16 | Honda Motor Co Ltd | aparelho de saída de força |
US9616895B2 (en) * | 2012-05-07 | 2017-04-11 | Ford Global Technologies, Llc | Controlled regenerative braking torque incrementing in hybrid vehicle downshift |
-
2013
- 2013-10-31 US US14/646,022 patent/US9662998B2/en active Active
- 2013-10-31 EP EP13866765.4A patent/EP2940348B1/en active Active
- 2013-10-31 CN CN201380066902.9A patent/CN104870868B/zh active Active
- 2013-10-31 JP JP2014554210A patent/JP5920487B2/ja active Active
- 2013-10-31 WO PCT/JP2013/079510 patent/WO2014103503A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03117776A (ja) * | 1989-07-05 | 1991-05-20 | Dr Ing H C F Porsche Ag | 自動変速装置の制御方法および制御装置 |
JPH07264711A (ja) | 1994-03-17 | 1995-10-13 | Honda Motor Co Ltd | 電動車両の制動装置 |
JP2000274525A (ja) * | 1999-03-24 | 2000-10-03 | Aisin Aw Co Ltd | 自動変速機の制御装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014173634A (ja) * | 2013-03-07 | 2014-09-22 | Nissan Motor Co Ltd | 車両の変速制御装置 |
EP3020595A1 (en) * | 2014-11-12 | 2016-05-18 | Hyundai Motor Company | Method for determining amount of regenerative braking |
US9533581B2 (en) | 2014-11-12 | 2017-01-03 | Hyundai Motor Company | Method for determining amount of regenerative braking |
CN105937562A (zh) * | 2015-03-02 | 2016-09-14 | 丰田自动车株式会社 | 变速器的控制装置 |
JP2017112666A (ja) * | 2015-12-14 | 2017-06-22 | トヨタ自動車株式会社 | 動力伝達装置の制御装置 |
Also Published As
Publication number | Publication date |
---|---|
CN104870868A (zh) | 2015-08-26 |
US20150283920A1 (en) | 2015-10-08 |
EP2940348A4 (en) | 2016-03-09 |
JPWO2014103503A1 (ja) | 2017-01-12 |
EP2940348B1 (en) | 2019-02-27 |
US9662998B2 (en) | 2017-05-30 |
EP2940348A1 (en) | 2015-11-04 |
JP5920487B2 (ja) | 2016-05-18 |
WO2014103503A8 (ja) | 2015-06-18 |
CN104870868B (zh) | 2017-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014103503A1 (ja) | 電動車両の変速制御装置 | |
JP5045431B2 (ja) | ハイブリッド車両のエンジン始動制御装置 | |
US7878281B2 (en) | Transmitting state switching control apparatus for hybrid vehicle | |
US8002059B2 (en) | Controlling device and method for hybrid vehicle | |
JP5429400B2 (ja) | 車両用ハイブリッド駆動装置 | |
US7874956B2 (en) | Engine start controlling apparatus and method for hybrid vehicle | |
JP5637217B2 (ja) | 車両の回生制動制御装置 | |
WO2012059999A1 (ja) | ハイブリッド車両の制御装置 | |
WO2012056857A1 (ja) | ハイブリッド車両のエンジン始動制御装置 | |
US20100304922A1 (en) | Deceleration control apparatus for hybrid electric vehicle | |
WO2014175080A1 (ja) | ハイブリッド車両の制御装置 | |
JP2004007972A (ja) | ハイブリッド電気自動車の制御方法 | |
JP5854156B2 (ja) | 電動車両の変速制御装置 | |
EP2966319B1 (en) | Electric vehicle shift control device | |
JP2013180598A (ja) | 電動車両の変速制御装置 | |
JP2008195143A (ja) | ハイブリッド車両の協調回生制動制御装置 | |
JP5322751B2 (ja) | 車両の動力伝達制御装置 | |
JP5011500B2 (ja) | ハイブリッド車両のモータ/ジェネレータ制御装置 | |
JP5652120B2 (ja) | 回生制御装置 | |
JP2012086810A (ja) | 車両の制御装置 | |
JP2023169919A (ja) | 車両の制御装置 | |
JP5652121B2 (ja) | 回生制御装置 | |
JP2022087379A (ja) | ハイブリッド車両 | |
JP6233915B2 (ja) | 車両用無段変速制御システム及び作業車両 | |
CN113619556A (zh) | 无离合器滑磨的混合动力模式切换协调控制方法及系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13866765 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014554210 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14646022 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013866765 Country of ref document: EP |