WO2014091548A1 - 空調給湯複合システム - Google Patents
空調給湯複合システム Download PDFInfo
- Publication number
- WO2014091548A1 WO2014091548A1 PCT/JP2012/082002 JP2012082002W WO2014091548A1 WO 2014091548 A1 WO2014091548 A1 WO 2014091548A1 JP 2012082002 W JP2012082002 W JP 2012082002W WO 2014091548 A1 WO2014091548 A1 WO 2014091548A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- refrigerant
- heat medium
- hot water
- water supply
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0007—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
- F24F5/001—Compression cycle type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D11/00—Central heating systems using heat accumulated in storage masses
- F24D11/02—Central heating systems using heat accumulated in storage masses using heat pumps
- F24D11/0214—Central heating systems using heat accumulated in storage masses using heat pumps water heating system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0096—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater combined with domestic apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/006—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass for preventing frost
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B49/00—Arrangement or mounting of control or safety devices
- F25B49/02—Arrangement or mounting of control or safety devices for compression type machines, plants or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0046—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
- F24F2005/006—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground receiving heat-exchange fluid from the drinking or sanitary water supply circuit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/003—Indoor unit with water as a heat sink or heat source
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/006—Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/023—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
- F25B2313/0231—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/023—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
- F25B2313/0232—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/023—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
- F25B2313/0233—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/027—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
- F25B2313/0272—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/027—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
- F25B2313/02741—Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/13—Economisers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/23—Separators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2600/00—Control issues
- F25B2600/25—Control of valves
- F25B2600/2501—Bypass valves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/12—Hot water central heating systems using heat pumps
Definitions
- the present invention relates to an air-conditioning and hot-water supply complex system equipped with a heat pump cycle and capable of simultaneously providing a cooling load, a heating load and a hot water supply load.
- a bypass pipe having a bypass solenoid valve installed in parallel with the hot water heat exchanger is provided between the inlet and outlet of the refrigerant pipe connected to the hot water heat exchanger, and the bypass pipe is opened and closed by opening and closing the bypass solenoid valve. Controls the amount of hot water supply refrigerant flowing into the hot water heat exchanger by allowing the hot water supply refrigerant to flow in, and bypasses when the surface temperature of the outdoor heat exchanger is equal to or lower than the temperature set for defrosting operation.
- a solenoid valve is opened and a hot water supply refrigerant flows into a bypass pipe (see, for example, Patent Document 2).
- Japanese Patent Laid-Open No. 11-270920 see, for example, pages 3 to 4 and FIG. 1
- WO09 / 122477 see, for example, pages 14-15, FIG. 5
- the bypass solenoid valve connected in parallel to the hot water supply heat exchanger is opened during the defrosting operation to bypass the refrigerant and prevent the refrigerant from flowing into the hot water supply heat exchanger. ing. Therefore, in a system in which more than half of the use side heat exchangers are constituted by hot water supply heat exchangers, heat exchange can be performed in order to evaporate the refrigerant condensed in the outdoor heat exchanger during the defrosting operation. There is only a refrigerant pipe of the bypass circuit in parallel with the indoor heat exchanger and the hot water supply heat exchanger. As a result, there was a problem that the evaporation capacity could not be ensured and the defrosting operation took time.
- This invention was made in order to solve the above subjects, and it aims at providing the air-conditioning hot-water supply complex system which can shorten defrost operation time.
- a compressor, an outdoor heat exchanger, an air conditioning throttle means, and an indoor heat exchanger are connected in series, and the compressor, the outdoor heat exchanger, and hot water supply are connected.
- the throttle means, and the refrigerant side flow path of the refrigerant-heat medium heat exchanger are connected in series, and the refrigerant side flow path of the refrigerant-heat medium heat exchanger, the hot water supply throttle means, and a bypass solenoid valve
- a hot water supply load circuit that circulates the heat medium, and the refrigeration cycle and the hot water supply load circuit are the refrigerant-refrigerant heat exchanger, the refrigerant and the To exchange heat with the heat medium Cascade-connected, and includes a control device for controlling the air conditioning throttle means, the hot water supply throttle means, and the bypass solenoid valve, and
- the bypass solenoid valve and the hot water supply throttle means are controlled based on the temperature of the refrigerant on the refrigerant inlet side and the temperature of the heat medium on the heat medium inlet side of the refrigerant-heat medium heat exchanger. is there.
- the temperature of the refrigerant on the refrigerant inlet side of the refrigerant-heat medium heat exchanger and the heat medium on the heat medium inlet side of the refrigerant-heat medium heat exchanger are reduced. Since the bypass solenoid valve and the hot water supply throttle means are controlled based on the temperature, the defrosting operation time can be shortened.
- FIG. 1 is a circuit diagram schematically showing a refrigerant circuit configuration of an air conditioning and hot water supply complex system according to Embodiment 1 of the present invention. Based on FIG. 1, the refrigerant circuit structure and operation
- the air conditioning and hot water supply complex system 100 is installed in a building, a condominium, or the like, and can simultaneously supply a cooling load, a heating load, and a hot water supply load by using a refrigeration cycle that circulates a refrigerant.
- the air conditioning and hot water supply complex system 100 includes a refrigeration cycle 1 and a hot water supply load circuit 2.
- the refrigeration cycle 1 and the hot water supply load circuit 2 are configured to perform heat exchange in the refrigerant-heat medium heat exchanger 41 without mixing each other's refrigerant or heat medium (for example, water or brine).
- the heat medium is water.
- the air conditioning and hot water supply complex system 100 is provided with a control device 50 that performs overall control of the operation of the air conditioning and hot water supply complex system 100.
- the control device 50 controls the driving frequency of the compressor 101, the rotational speed of the blower (not shown), the switching of the four-way valve 102, the opening of each throttle means, the driving frequency of the circulation pump 21, the opening and closing of the valve means 109a and the valve means 109b. Control etc. That is, the control device 50 is configured by a microcomputer or the like, and based on detection information from various detection devices (not shown) and instructions from the remote controller, each actuator (driving components constituting the air-conditioning and hot water supply combined system 100). And the operation of the air conditioning and hot water supply complex system 100 is executed.
- a storage device (not shown) that stores various types of information is also provided.
- the storage device is configured by a memory or the like, and preliminarily stores a set water temperature (set heat medium temperature) described later, information on each of the first temperature a to the fifth temperature e, a data table of freezing temperatures, and the like.
- the refrigeration cycle 1 includes a heat source unit A, an indoor unit B (may be a plurality of units), a plurality of hot water supply apparatuses C, and a relay unit D. Among these, the indoor unit B and the hot water supply device C are connected to the heat source unit A in parallel. And by switching the refrigerant
- Heat source machine A In the heat source machine A, a compressor 101, a four-way valve 102 which is a flow path switching unit, an outdoor heat exchanger 103, and an accumulator 104 are connected in series.
- the heat source unit A has a function of supplying a heat source (cold heat or hot heat) to the indoor unit B and the hot water supply device C.
- a blower such as a fan for supplying air to the outdoor heat exchanger 103 may be provided in the vicinity of the outdoor heat exchanger 103.
- the check valve 105a includes a check valve 105b that allows a refrigerant flow only in a predetermined direction (direction from the relay machine D to the heat source machine A) to the low-pressure side connection pipe 107 between the four-way valve 102 and the relay machine D.
- the high-pressure side connection pipe 106 and the low-pressure side connection pipe 107 are opposite to the first connection pipe 130 that connects the upstream side of the check valve 105a and the upstream side of the check valve 105b, and the downstream side of the check valve 105a.
- the second connection pipe 131 is connected to the downstream side of the stop valve 105b.
- the first connection pipe 130 is provided with a check valve 105 d that allows the refrigerant to flow only in the direction from the low pressure side connection pipe 107 to the high pressure side connection pipe 106.
- the second connection pipe 131 is also provided with a check valve 105 c that allows the refrigerant to flow only in the direction from the low-pressure side connection pipe 107 to the high-pressure side connection pipe 106.
- FIG. 1 In addition, in FIG.
- the compressor 101 sucks refrigerant and compresses the refrigerant to a high temperature / high pressure state.
- the four-way valve 102 switches the refrigerant flow.
- the outdoor heat exchanger 103 functions as an evaporator or a radiator (condenser), performs heat exchange between air supplied from a blower (not shown) and the refrigerant, and converts the refrigerant into evaporated gas or condensates. It is.
- the accumulator 104 is disposed on the suction side of the compressor 101 and stores excess refrigerant.
- the accumulator 104 may be any container that can store excess refrigerant.
- FIG. 1 shows an example in which two air conditioning throttle means 117 and two indoor heat exchangers 118 are mounted in parallel.
- the connecting pipe connecting the relay machine D to the indoor heat exchanger 118 is called a connecting pipe 133
- the connecting pipe connecting the relay machine D to the air conditioning throttle means 117 is called a connecting pipe 134.
- the air conditioning throttle means 117 has a function as a pressure reducing valve or an expansion valve, and expands the refrigerant by decompressing it.
- the air-conditioning throttle means 117 may be constituted by a controllable opening degree, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
- the indoor heat exchanger 118 functions as a radiator (condenser) and an evaporator, exchanges heat between air supplied from a blower means (not shown) and the refrigerant, and condenses or liquefies the refrigerant. Is.
- the hot water supply device C includes a refrigerant-heat medium heat exchanger 41, a hot water supply throttle means 119 installed on the refrigerant flow path side of the refrigerant-heat medium heat exchanger 41, and the refrigerant-heat medium heat exchanger 41 in parallel.
- a bypass solenoid valve 140 installed on a bypass path connected by piping is mounted.
- the hot water supply apparatus C accommodates a part of the configuration of the refrigeration cycle 1 and a part of the configuration of the hot water supply load circuit 2 to be described later, and supplies the cold heat or heat from the heat source unit A via the refrigerant-heat medium heat exchanger 41. And has a function of supplying to the hot water supply load circuit 2.
- the refrigeration cycle 1 and the hot water supply load circuit 2 are cascade-connected by a refrigerant-heat medium heat exchanger 41.
- the hot water supply device C also functions as a chiller by the flow of the refrigerant.
- the connection pipe connected from the relay D to the refrigerant-heat medium heat exchanger 41 is connected to the connection pipe 135, and the connection pipe connected from the relay D to the hot water supply throttle means 119 is connected to the connection pipe. 136.
- a connection pipe connecting the connection pipe 135 and the connection pipe 136 via the bypass electromagnetic valve 140 and forming a bypass path is referred to as a bypass pipe 141.
- the hot water supply throttle means 119 has a function as a pressure reducing valve or an expansion valve, like the air conditioning throttle means 117, and expands the refrigerant by decompressing it.
- the hot water supply throttling means 119 is preferably constituted by a controllable opening degree, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary.
- the refrigerant-heat medium heat exchanger 41 functions as a radiator (condenser) and an evaporator, and generates heat between the refrigerant circulating in the refrigeration cycle 1 and the heat medium circulating in the hot water supply load circuit 2. It is supposed to exchange.
- the bypass solenoid valve 140 controls whether the air conditioning and hot water supply combined system 100 is switched between open and closed during the defrosting operation and allows the refrigerant to flow into the bypass pipe 141.
- the refrigerant flow path is switched between the refrigerant-heat medium heat exchanger 41 and the bypass pipe 141 by switching between opening and closing together with the hot water supply throttle means 119. Further, it is used to control the amount of refrigerant flowing into the refrigerant-heat medium heat exchanger 41.
- the hot water supply device C is provided with two temperature sensors.
- the first temperature sensor 27 is installed between the refrigerant-heat medium heat exchanger 41 and the second distribution unit 110 on the refrigerant inlet side of the refrigerant-heat medium heat exchanger 41, and is mainly used for the refrigerant-heat medium heat. The temperature of the refrigerant flowing into the exchanger 41 is detected.
- the second temperature sensor 28 is installed between the circulation pump 21 (to be described later) and the refrigerant-heat medium heat exchanger 41, which will be described later, on the heat medium inlet side of the refrigerant-heat medium heat exchanger 41. The temperature of the heat medium flowing into the exchanger 41 is detected.
- Temperature information detected by these temperature sensors is sent to a control device 50 that performs overall control of the operation of the air conditioning and hot water supply complex system 100, and is used for control of each actuator constituting the air conditioning and hot water supply complex system 100. Will be.
- the relay unit D has a function of connecting the indoor unit B and the hot water supply device C to the heat source unit A. Further, the relay machine D causes the indoor unit B to function as a heating indoor unit or a cooling indoor unit by selectively opening or closing either the valve unit 109a or the valve unit 109b of the first distribution unit 109, and a hot water supply device Decide whether C is a chiller or a water heater.
- the relay D includes a gas-liquid separator 108, a first distributor 109, a second distributor 110, a first internal heat exchanger 111, a first relay throttle means 112, a second internal The heat exchanger 113 and the second relay expansion means 114 are mounted.
- connection pipe 133 and a connection pipe 135 are branched into two, one connected to the low-pressure side connection pipe 107 and the other connected to the gas-liquid separator 108 (connection It is connected to the pipe 132).
- the connecting pipe 133 and the connecting pipe 135 connected to the low-pressure side connecting pipe 107 are provided with valve means 109b that is controlled to be opened and closed so as not to conduct the refrigerant.
- the connecting pipe 133 and the connecting pipe 135 connected to the connecting pipe 132 are also provided with valve means 109a that is controlled to be opened and closed so as not to conduct the refrigerant.
- connection pipe 134 and the connection pipe 136 are branched into two, one being connected by the first meeting part 115 and the other being connected by the second meeting part 116. .
- a check valve 110a that allows refrigerant to flow only in one side is provided in the connection pipe 134 and the connection pipe 136 that are connected at the first meeting portion 115.
- the connection pipe 134 and the connection pipe 136 connected by the second meeting part 116 are also provided with a check valve 110b that allows only one refrigerant to flow.
- the flow path may be switched more reliably by using valve means such as an electromagnetic valve instead of the check valve 110a and the check valve 110b.
- the first meeting unit 115 connects the second distribution unit 110 to the gas-liquid separator 108 via the first relay throttle unit 112 and the first internal heat exchanger 111.
- the second meeting unit 116 connects the second distribution unit 110 to the second meeting unit 115 via the second internal heat exchanger 113.
- the 2nd meeting part 116 is branched between the 2nd distribution part 110 and the 2nd internal heat exchanger 113 (henceforth the branch piping 116a).
- the branch pipe 116 a is connected to the low-pressure side connection pipe 107 via the second relay expansion means 114, the second internal heat exchanger 113, and the first internal heat exchanger 111.
- the gas-liquid separator 108 has a function of separating the inflowing refrigerant into a gas refrigerant and a liquid refrigerant.
- the gas-liquid separator 108 is provided in the high-pressure side connection pipe 106, one of which is connected to the valve means 109 a of the first distribution unit 109 and the other is connected to the second distribution unit 110 via the first meeting unit 115.
- the first distribution unit 109 has a function of opening / closing one of the valve means 109a and the valve means 109b alternatively according to the required loads of the indoor unit B and the hot water supply device C.
- the 2nd distribution part 110 has a function which permits the flow of a refrigerant to either one by check valve 110a and check valve 110b.
- the first internal heat exchanger 111 includes a refrigerant that is conducted through the first meeting section 115 between the gas-liquid separator 108 and the first relay throttle means 112, and a downstream side of the second internal heat exchanger 113. Heat exchange is performed with the refrigerant that is conducted through the branch pipe 116a.
- the first repeater throttle means 112 is provided in the first meeting part 115 between the first internal heat exchanger 111 and the second distribution part 110, and expands the refrigerant by decompressing it.
- the first repeater throttle means 112 may be configured with a variable opening degree controllable means, for example, a precise flow rate control means using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
- the second internal heat exchanger 113 exchanges heat between the refrigerant that is conducted through the second meeting part 116 and the refrigerant that is conducted through the branch pipe 116a on the downstream side of the second relay throttle unit 114. Is to execute.
- the second relay throttling means 114 is provided in the second meeting part 116 between the second internal heat exchanger 113 and the second distribution part 110, functions as a pressure reducing valve or an expansion valve, and decompresses the refrigerant. And expand.
- the second relay unit throttle unit 114 can be controlled to have a variable opening, for example, a precise flow rate control unit using an electronic expansion valve, or a low cost such as a capillary tube.
- the refrigerant flow rate adjusting means may be used.
- the refrigeration cycle 1 includes the compressor 101, the four-way valve 102, the indoor heat exchanger 118, the air conditioning throttle means 117, and the outdoor heat exchanger 103 connected in series, and the compressor 101, the four-way valve 102.
- the refrigerant-heat medium heat exchanger 41, the hot water supply throttle means 119, and the outdoor heat exchanger 103 are connected in series.
- the refrigeration cycle 1 is configured such that the indoor heat exchanger 118 and the refrigerant-heat medium heat exchanger 41 are connected in parallel via the relay unit D.
- the compressor 101 is not particularly limited as long as it can compress the sucked refrigerant into a high-pressure state.
- various types such as reciprocating, rotary, scroll, or screw can be used.
- the compressor 101 may be configured as a type in which the rotational speed can be variably controlled by an inverter, or may be configured as a type in which the rotational speed is fixed.
- the type of refrigerant circulating in the refrigeration cycle 1 is not particularly limited, for example, natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, and helium, alternative refrigerants that do not contain chlorine such as HFC410A, HFC407C, and HFC404A, Alternatively, any of CFC-based refrigerants such as R22 and R134a used in existing products may be used.
- natural refrigerants such as carbon dioxide (CO 2 ), hydrocarbons, and helium
- alternative refrigerants that do not contain chlorine such as HFC410A, HFC407C, and HFC404A
- any of CFC-based refrigerants such as R22 and R134a used in existing products may be used.
- FIG. 1 shows an example in which four or more indoor units B are connected, but the number of connected units is not particularly limited. And the capacity
- the refrigerant flowing into the indoor unit B is depressurized by the air conditioning throttle means 117 to be in a low-pressure / low-pressure gas state, stored in the indoor heat exchanger 118, flows through the connection pipe 133, and flows through the first distribution unit 109. It merges in the low-pressure side connecting pipe 107 via the valve means 109b.
- the refrigerant flowing into the hot water supply apparatus C is depressurized by the hot water supply throttling means 119, is reduced in temperature and pressure, is stored in the refrigerant-heat medium heat exchanger 41 (that is, takes heat from the hot water supply load circuit 2),
- the refrigerant flowing out of the indoor unit B merges with the low-pressure side connection pipe 107.
- the check valve 105 b After merging, the check valve 105 b is conducted, flows through the four-way valve 102, passes through the accumulator 104, and flows to the compressor 101. And the refrigerant
- the refrigerant that has flowed into the gas-liquid separator 108 flows through the first meeting section 115 and performs heat exchange with the refrigerant expanded to low temperature and low pressure by the second relay expansion means 114 in the first internal heat exchanger 111. To obtain the degree of supercooling.
- the refrigerant passes through the first repeater throttle means 112, merges with the refrigerant flowing out from the indoor unit B and the hot water supply device C at the first meeting unit 115, and flows into the second internal heat exchanger 113.
- the refrigerant flowing into the second internal heat exchanger 113 has a degree of supercooling by performing heat exchange with the refrigerant expanded to low temperature and low pressure in the second relay heat exchanger 113 in the second internal heat exchanger 113. obtain. And this refrigerant
- coolant flows to the throttle means 114 side for 2nd relay machines. Then, the refrigerant is distributed to the second distribution unit 110 side and returns to the indoor unit B.
- the refrigerant that has been conducted through the second repeater throttle means 114 passes through the branch pipe 116a, undergoes heat exchange in the second internal heat exchanger 113 and the first internal heat exchanger 111, and evaporates. Thereafter, the refrigerant is guided to the low-pressure side connection pipe 107, passes through the check valve 105 b, travels to the compressor 101 through the four-way valve 102 and the accumulator 104.
- the hot water supply load circuit 2 is configured by being connected by a circulation pump 21, a heat medium flow path side of the refrigerant-heat medium heat exchanger 41, a hot water storage tank 29, and a heat medium pipe 202. That is, in the hot water supply load circuit 2, the circulation pump 21, the heat medium flow path side of the refrigerant-heat medium heat exchanger 41, and the hot water storage tank 29 are connected in series by the heat medium pipe 202 to form a heat medium circuit. It is configured.
- the type of the heat medium that circulates through the heat medium pipe 202 is not particularly limited.
- the refrigerant (the same kind or various kinds of refrigerant as the refrigerant circulating in the refrigeration cycle 1), brine (antifreeze), water, brine And a mixture of water and an additive having a high anticorrosion effect can be used.
- the heat medium pipe 202 may be constituted by, for example, a copper pipe, a stainless pipe, a steel pipe, a vinyl chloride pipe, or the like.
- the circulation pump 21 sucks the heat medium stored in the hot water storage tank 29, pressurizes the heat medium, and circulates the heat medium pipe 202.
- the circulation pump 21 may be configured as a type in which the rotational speed can be variably controlled by an inverter, or may be configured as a type in which the rotational speed is fixed.
- the circulation pump 21 is not particularly limited as long as it is capable of delivering a heat medium.
- the refrigerant-heat medium heat exchanger 41 performs heat exchange between the heat medium circulating in the hot water supply load circuit 2 and the refrigerant circulating in the refrigeration cycle 1 as described above.
- the hot water storage tank 29 stores the heat medium heated by the refrigerant-heat medium heat exchanger 41.
- ⁇ Operation of hot water supply load circuit 2 ⁇ First, a relatively low-temperature heat medium stored in the hot water storage tank 29 is drawn out from the bottom of the hot water storage tank 29 and pressurized by the circulation pump 21. The heat medium pressurized by the circulation pump 21 flows into the heat medium flow path side of the refrigerant-heat medium heat exchanger 41. In the refrigerant-heat medium heat exchanger 41, the heat medium circulating in the hot water supply load circuit 2 is heated by the refrigerant circulating in the refrigeration cycle 1. The heated heat medium returns to the relatively hot upper portion of the hot water storage tank 29 and is stored in the hot water storage tank 29.
- the air conditioning and hot water supply complex system 100 for example, when there is a demand for hot water supply during the air conditioning cooling operation in summer, it has been necessary to provide the hot water conventionally by a boiler or the like. Since the hot water is recovered and reused, the system COP is greatly improved and energy is saved.
- FIG. 2 is a diagram showing the relationship between the refrigerant temperature and the water freezing due to the water temperature in the combined air-conditioning and hot-water supply system according to Embodiment 1 of the present invention.
- the freezing of water as a heat medium depends not only on the water temperature but also on the temperature of the refrigerant flowing into the refrigerant-heat medium heat exchanger 41. For example, even if the water temperature is 20 ° C., the water may freeze if the temperature of the refrigerant exchanging heat is ⁇ 25 ° C. Therefore, it is necessary to keep the water temperature higher than the freezing temperature of water shown in FIG. 2 so that the water is not frozen during the defrosting operation of the air conditioning and hot water supply complex system 100.
- FIG. 3 is a diagram showing a control flow of the hot water supply throttle means and the bypass solenoid valve during the defrosting operation in the air-conditioning and hot water combined system according to Embodiment 1 of the present invention
- FIG. 4 is Embodiment 1 of the present invention. It is an enlarged view of the hot water supply load circuit 2 and the hot water supply apparatus C in the refrigerant circuit configuration of the combined air conditioning and hot water supply system according to FIG.
- the control of the hot water supply throttling means and the bypass solenoid valve during the defrosting operation in the combined air conditioning and hot water supply system 100 according to Embodiment 1 will be described with reference to FIG.
- the controller 50 determines whether the water temperature detected by the second temperature sensor 28 (hereinafter referred to as inlet water temperature) is higher than the first temperature a (inlet water temperature> a °) is determined (S1). At this time, a is a reference temperature for collecting heat from water. If (S1) is satisfied, the controller 50 determines whether the value obtained by subtracting the inlet water temperature from the set water temperature is smaller than the second temperature b (set water temperature ⁇ inlet water temperature ⁇ b ° C.) (S3). At this time, b is the likelihood for the set water temperature, and may be set to 5 ° C., for example.
- the control device 50 calculates a third temperature c, which is the refrigerant temperature at which water freezes, from the inlet water temperature (S4).
- a data table showing the relationship between the refrigerant temperature and the water freezing due to the water temperature as shown in FIG. 2 may be stored in the storage device and referred to. Or you may calculate by calculation of a heat balance.
- the control device 50 determines whether the refrigerant temperature detected by the first temperature sensor 27 (hereinafter referred to as the inlet refrigerant temperature) is larger than the sum of c and the fifth temperature e (inlet refrigerant temperature> c + e). ° C) is determined (S5). At this time, e is a margin for freezing of water, and may be set to 3 ° C., for example. If (S5) is satisfied, the control device 50 closes the bypass solenoid valve 140 and fully opens the hot water supply throttle means 119.
- the refrigerant flow path is used as the refrigerant-heat medium heat exchanger 41, and heat is collected from the water by flowing the refrigerant into the refrigerant-heat medium heat exchanger 41 (S6). Thereby, defrosting capability can be improved.
- the controller 50 determines whether the inlet water temperature is higher than the fourth temperature d (inlet water temperature> d ° C.) (S2). At this time, d may be set to, for example, a lower limit water temperature allowable for operation.
- the control device 50 calculates the refrigerant temperature c at which water freezes from the inlet water temperature (S4 ′), similarly to (S4).
- the control device 50 determines whether the refrigerant temperature detected by the first temperature sensor 27 (hereinafter referred to as inlet refrigerant temperature) is larger than the value obtained by adding e to c (inlet refrigerant temperature). > C + e ° C.) (S5 ′). If (S5 ′) is satisfied, the bypass solenoid valve 140 is opened, and the hot water supply throttle means 119 is fully opened (S8). This allows the refrigerant to flow into the bypass pipe 141 in addition to the refrigerant-heat medium heat exchanger 41, thereby limiting the amount of refrigerant flowing into the refrigerant-heat medium heat exchanger 41 and limiting heat collection from water. Because. Thus, heat is collected from the water to improve the defrosting capability, and the water deprived of heat by the refrigerant is prevented from freezing, and the refrigerant-heat medium heat exchanger 41 is protected.
- the control device 50 is concerned about water freezing. 140 is opened and the hot water supply throttle means 119 is fully closed (S7). This is to stop heat collection from the water by using the bypass passage 141 as the coolant channel and preventing the coolant from flowing into the coolant-heat medium heat exchanger 41. As a result, the water deprived of heat by the refrigerant is prevented from freezing, and the refrigerant-heat medium heat exchanger 41 is protected.
- the opening and closing of the bypass solenoid valve 140 and the hot water supply throttle means 119 is controlled based on the refrigerant temperature and the water temperature.
- the temperature of water as the heat medium is thereby kept higher than the freezing temperature, and the refrigerant-heat medium heat exchanger 41 is protected from damage due to freezing of the water, and heat is collected from the water, thereby improving the defrosting ability. Can do.
- the defrosting operation time can be shortened.
- FIG. FIG. 5 is a diagram showing the relationship between the water freezing temperature and the water flow velocity in the air conditioning and hot water supply complex system according to Embodiment 2 of the present invention
- FIG. 6 is a diagram of the air conditioning and hot water supply complex system according to Embodiment 2 of the present invention. It is an enlarged view of hot water supply load circuit 2 and hot water supply device C in the refrigerant circuit configuration.
- the portions other than the hot water supply load circuit 2 and the hot water supply apparatus C of the air conditioning and hot water supply complex system according to the second embodiment are the same as those of the air conditioning and hot water supply complex system 100 according to the first embodiment. Therefore, the second embodiment will be described with a focus on differences from the first embodiment, and the same parts as those of the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
- the freezing of water which is a heat medium, depends on the speed of water circulating in the heat medium pipe 202 (hereinafter referred to as the water flow speed) in addition to the water temperature and the refrigerant temperature.
- the water flow speed the speed of water circulating in the heat medium pipe 202
- the water flow rate detection sensor 30 is installed between the refrigerant-heat medium heat exchanger 41 and the circulation pump 21 on the heat medium inlet side of the refrigerant-heat medium heat exchanger 41.
- the water flow rate detection sensor 30 detects the speed of water flowing into the refrigerant-heat medium heat exchanger 41.
- the control device 50 calculates the refrigerant temperature c at which water freezes from the inlet water temperature and the water flow velocity.
- a data table showing the relationship between the refrigerant temperature, the water temperature, and the water freezing depending on the water flow rate as shown in FIG. 5 may be stored in the storage device and referred to. Others are the same as those of the first embodiment, and are omitted.
- the refrigerant temperature c at which water freezes can be calculated more accurately than in the first embodiment. Therefore, the defrosting operation of the air conditioning and hot water supply complex system 100 can be performed more efficiently.
- FIG. FIG. 7 is an enlarged view of hot water supply load circuit 2 and hot water supply device C in the refrigerant circuit configuration of the air conditioning and hot water supply complex system according to Embodiment 2 of the present invention.
- the portions other than the hot water supply load circuit 2 and the hot water supply apparatus C of the air conditioning and hot water supply complex system according to the third embodiment are the same as those of the air conditioning and hot water supply complex system 100 according to the first and second embodiments. Therefore, the third embodiment will be described with a focus on differences from the first and second embodiments, and the same parts as those of the first and second embodiments will be denoted by the same reference numerals and the description thereof will be omitted. Yes.
- the circulation pump 21a is configured as a type that can be variably controlled by an inverter. That is, the circulation pump 21 according to the third embodiment can change the speed of the water circulating in the heat medium pipe 202 by changing the output. Therefore, during the defrosting operation in the air conditioning and hot water supply complex system 100, the time during which water can be collected can be increased by temporarily increasing the water flow rate using the circulation pump 21a. Therefore, the defrosting operation of the air conditioning and hot water supply complex system 100 can be performed more efficiently.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Heat-Pump Type And Storage Water Heaters (AREA)
- Air Conditioning Control Device (AREA)
Abstract
Description
実施の形態1.
図1は、本発明の実施の形態1に係る空調給湯複合システムの冷媒回路構成を概略的に示す回路図である。図1に基づいて、空調給湯複合システム100の冷媒回路構成及び動作について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
なお、本実施の形態1乃至3では、熱媒体は水とする。
また、各種情報を記憶する図示省略の記憶装置も設けられている。記憶装置は、メモリ等で構成されており、後述する設定水温(設定熱媒体温度)、第一温度a~第五温度eの各情報、凍結温度のデータテーブル等が予め記憶されている。
冷凍サイクル1は、熱源機Aと、室内機B(複数台でもよい)と、複数台の給湯装置C、中継機Dと、を備えている。このうち、室内機B及び給湯装置Cは、熱源機Aに対して並列となるように接続されている。そして、熱源機Aと、室内機B及び給湯装置Cとの、間に設置される中継機Dで冷媒の流れを切り換えることで、室内機Bを暖房室内機又は冷房室内機として機能させるようになっている。
熱源機Aには、圧縮機101と、流路切替手段である四方弁102と、室外熱交換器103と、アキュムレーター104とが直列に接続されて搭載されている。この熱源機Aは、室内機B及び給湯装置Cに熱源(冷熱又は温熱)を供給する機能を有している。なお、図示はしていないが、室外熱交換器103の近傍に、この室外熱交換器103に空気を供給するためのファン等の送風機を設けるとよい。
室内機Bには、空調用絞り手段117と、室内熱交換器118とが、直列に接続されて搭載されている。室内機Bは、熱源機Aからの冷熱の供給を受けて冷房負荷を担当したり、熱源機Aからの温熱の供給を受けて暖房負荷を担当したりする機能を有している。なお、室内熱交換器118の近傍に、この室内熱交換器118に空気を供給するためのファン等の送風機を設けるとよい。また、図1では、2台の空調用絞り手段117と、2台の室内熱交換器118とが、それぞれ並列に搭載されている場合を例に示している。さらに、便宜的に、中継機Dから室内熱交換器118に接続している接続配管を接続配管133と、中継機Dから空調用絞り手段117に接続している接続配管を接続配管134と称する。
給湯装置Cには、冷媒-熱媒体熱交換器41、冷媒-熱媒体熱交換器41の冷媒流路側に設置された給湯用絞り手段119、及び、冷媒-熱媒体熱交換器41と並列に配管接続されたバイパス経路上に設置されたバイパス電磁弁140が搭載されている。給湯装置Cは、冷凍サイクル1の構成の一部と、後述する給湯負荷回路2の構成の一部とが収容され、熱源機Aからの冷熱又は温熱を冷媒-熱媒体熱交換器41を介して給湯負荷回路2に供給する機能を有している。冷凍サイクル1と給湯負荷回路2とは、冷媒-熱媒体熱交換器41でカスケード接続されている。なお、給湯装置Cは、冷媒の流れによって冷水器としても機能する。また、便宜的に、中継機Dから冷媒-熱媒体熱交換器41に接続している接続配管を接続配管135と、中継機Dから給湯用絞り手段119に接続している接続配管を接続配管136と称する。また、バイパス電磁弁140を介して接続配管135と接続配管136とを接続し、バイパス経路を形成している接続配管をバイパス配管141と称する。
中継機Dは、室内機B及び給湯装置Cのそれぞれと、熱源機Aとを、接続する機能を有している。また、中継機Dは、第1分配部109の弁手段109a又は弁手段109bの何れかを択一的に開閉することにより、室内機Bを暖房室内機又は冷房室内機として機能させ、給湯装置Cを冷水器または給湯機とするかを決定する。この中継機Dには、気液分離器108と、第1分配部109と、第2分配部110と、第1内部熱交換器111と、第1中継機用絞り手段112と、第2内部熱交換器113と、第2中継機用絞り手段114とが、搭載されている。
暖房運転時において、外気温度が低下して、室外熱交換器103の温度が0℃以下になるような場合、室外熱交換器103に霜が付着してくる。霜が多量に付着すると暖房能力が低下してくるため、霜を溶かすため霜取運転を行う必要がある。
そこで、冷房運転と同様の回路動作で行う霜取運転を実行している際の冷凍サイクル1の動作を説明する。
また、給湯装置Cに流入した冷媒は、給湯用絞り手段119で減圧され、低温・低圧にされ、冷媒-熱媒体熱交換器41で蓄熱し(つまり、給湯負荷回路2から熱を奪い)、室内機Bから流出した冷媒と低圧側接続配管107で合流する。
給湯負荷回路2は、循環用ポンプ21と、冷媒-熱媒体熱交換器41の熱媒体流路側と、貯湯タンク29と、熱媒体配管202で接続されて構成されている。つまり、給湯負荷回路2は、循環用ポンプ21、冷媒-熱媒体熱交換器41の熱媒体流路側、及び、貯湯タンク29が熱媒体配管202で直列に接続されて熱媒体回路を形成するように構成されている。
まず、貯湯タンク29に蓄えられている比較的低温な熱媒体は、循環用ポンプ21によって貯湯タンク29の底部から引き出されるとともに加圧される。循環用ポンプ21で加圧された熱媒体は、冷媒-熱媒体熱交換器41の熱媒体流路側に流入する。この冷媒-熱媒体熱交換器41では、冷凍サイクル1を循環している冷媒によって、給湯負荷回路2を循環している熱媒体が加熱される。加熱された熱媒体は、貯湯タンク29の比較的高温な上部へ戻り、この貯湯タンク29に蓄えられることになる。
図2に示すように、熱媒体である水の凍結は水温だけによらず、冷媒-熱媒体熱交換器41に流入する冷媒温度にも依存している。例えば、水温が20℃であっても熱交換する冷媒の温度が-25℃であれば水が凍結する可能性がある。
そのため、空調給湯複合システム100の霜取運転中において、水を凍結させないためには、水温を図2に示す水の凍結温度より高く保つことが必要である。
以下、図3に沿って本実施の形態1に係る空調給湯複合システム100における霜取運転中の給湯用絞り手段とバイパス電磁弁との制御について説明する。
まず、空調給湯複合システム100において霜取運転が開始されると、制御装置50は第2温度センサー28で検出した水温(以下、入口水温と称する)が第一温度aより大きいか(入口水温>a℃)の判定を行う(S1)。このときaは水からの採熱を行う基準となる温度である。
(S1)を満たしていた場合、制御装置50は設定水温から入口水温を引いた値が第二温度bより小さいか(設定水温-入口水温<b℃)の判定を行う(S3)。このときbは設定水温に対する尤度であり、例えば5℃に設定するとよい。この判定は霜取運転中の採熱により、水温が下がり過ぎないようにするために行う。
(S3)を満たしていた場合、制御装置50は入口水温から、水が凍結する冷媒温度である第三温度cを算出する(S4)。このときcの算出には、図2のような冷媒温度と水温による水の凍結の関係を示すデータテーブルを記憶装置に記憶させておき、それを参照するとよい。または、熱収支の計算により算出してもよい。
cの算出が完了したら、制御装置50は第1温度センサー27で検出した冷媒温度(以下、入口冷媒温度と称する)がcに第五温度eを加えたものより大きいか(入口冷媒温度>c+e℃)の判定を行う(S5)。このときeは水の凍結に対する余裕しろであり、例えば3℃に設定するとよい。
(S5)を満たしていた場合、制御装置50はバイパス電磁弁140を閉とし、給湯用絞り手段119を全開とする。これは冷媒流路を冷媒-熱媒体熱交換器41とし、冷媒-熱媒体熱交換器41に冷媒を流入させることで水からの採熱を行うためである(S6)。それによって霜取能力を向上させることができる。
(S2)を満たしていた場合、あるいは(S3)を満たしていなかった場合、(S4)と同様に、制御装置50は入口水温から、水が凍結する冷媒温度cを算出する(S4’)。
cの算出が完了したら、(S5)と同様に、制御装置50は第1温度センサー27で検出した冷媒温度(以下、入口冷媒温度)がcにeを加えたものより大きいか(入口冷媒温度>c+e℃)の判定を行う(S5’)。
(S5’)を満たしていた場合、バイパス電磁弁140を開とし、給湯用絞り手段119を全開とする(S8)。これは冷媒-熱媒体熱交換器41に加えバイパス配管141にも冷媒を流入させることにより、冷媒-熱媒体熱交換器41に流入する冷媒の量を制限し、水からの採熱を制限するためである。それによって水からの採熱をして霜取能力を向上させつつ、冷媒に熱を奪われた水が凍結するのを防ぎ、冷媒-熱媒体熱交換器41の保護を行う。
図5は、本発明の実施の形態2に係る空調給湯複合システムにおける水の凍結温度と水流速との関係を示す図、図6は、本発明の実施の形態2に係る空調給湯複合システムの冷媒回路構成における給湯負荷回路2と給湯装置Cとの拡大図である。
なお、本実施の形態2に係る空調給湯複合システムの給湯負荷回路2と給湯装置C以外の部分については、本実施の形態1に係る空調給湯複合システム100と同様である。そこで、本実施の形態2では本実施の形態1との相違点を中心に説明し、本実施の形態1と同一部分には、同一符号を付して説明を省略するものとしている。
そこで、図6に示すように水流速検出センサー30を冷媒-熱媒体熱交換器41の熱媒体入口側である、冷媒-熱媒体熱交換器41と循環用ポンプ21との間に設置する。水流速検出センサー30は、冷媒-熱媒体熱交換器41に流入する水の速度を検出するものである。
(S4)及び(S4’)において、制御装置50は入口水温と水流速とから、水が凍結する冷媒温度cを算出する。このときcの算出には、図5のような冷媒温度と水温と水流速による水の凍結の関係を示すデータテーブルを記憶装置に記憶させておき、それを参照するとよい。その他、本実施の形態1と同様のため、省略する。
したがって、より効率的に空調給湯複合システム100の霜取運転を行うことができる。
図7は、本発明の実施の形態2に係る空調給湯複合システムの冷媒回路構成における給湯負荷回路2と給湯装置Cとの拡大図である。
なお、本実施の形態3に係る空調給湯複合システムの給湯負荷回路2と給湯装置C以外の部分については、本実施の形態1及び2に係る空調給湯複合システム100と同様である。そこで、本実施の形態3では本実施の形態1及び2との相違点を中心に説明し、本実施の形態1及び2と同一部分には、同一符号を付して説明を省略するものとしている。
そのため、空調給湯複合システム100における霜取運転中において、一時的に循環用ポンプ21aで水流速を速くすることによって水採熱できる時間を増やすことができる。
したがって、より効率的に空調給湯複合システム100の霜取運転を行うことができる。
Claims (13)
- 圧縮機、室外熱交換器、空調用絞り手段、及び、室内熱交換器が直列に配管接続され、かつ、前記圧縮機、前記室外熱交換器、給湯用絞り手段、及び、冷媒-熱媒体熱交換器の冷媒側流路が直列に配管接続され、かつ、前記冷媒-熱媒体熱交換器の冷媒側流路及び前記給湯用絞り手段と、バイパス電磁弁とを有し、前記冷媒-熱媒体熱交換器をバイパスするバイパス経路とが並列に配管接続され、冷媒を循環させる冷凍サイクルと、
循環用ポンプ、前記冷媒-熱媒体熱交換器の熱媒体流路、及び、貯湯タンクが直列に配管接続され、熱媒体を循環させる給湯負荷回路と、を備え、
前記冷凍サイクルと前記給湯負荷回路とは、前記冷媒-冷媒熱交換器で、前記冷媒と前記熱媒体とが熱交換を行なうようにカスケード接続されており、
前記空調用絞り手段、前記給湯用絞り手段、及び、前記バイパス電磁弁を制御する制御装置を備え、
前記制御装置は、
霜取運転において、前記冷媒-熱媒体熱交換器の冷媒入口側の冷媒の温度と、前記冷媒-熱媒体熱交換器の熱媒体入口側の熱媒体の温度と、に基づいて、前記バイパス電磁弁と前記給湯用絞り手段とを制御する
ことを特徴とする空調給湯複合システム。 - 前記制御装置は、
前記熱媒体の温度が第一温度より高く、かつ、設定熱媒体温度から前記熱媒体の温度を引いた値が第二温度より低い場合に、
前記熱媒体が凍結する冷媒の温度である第三温度を算出し、
前記冷媒の温度が、前記第三温度に水の凍結に対する余裕しろを加えたものより高い場合に、
前記バイパス電磁弁を閉とし、前記給湯用絞り手段を開とする
ことを特徴とする請求項1に記載の空調給湯複合システム。 - 前記制御装置は、
前記熱媒体の温度が第一温度より低く、かつ、第四温度より高い場合に、
前記熱媒体が凍結する冷媒の温度である第三温度を算出し、
前記冷媒の温度が、前記第三温度に水の凍結に対する余裕しろを加えたものより高い場合に、
前記バイパス電磁弁を開とし、前記給湯用絞り手段も開とする
ことを特徴とする請求項1に記載の空調給湯複合システム。 - 前記制御装置は、
前記熱媒体の温度が第一温度より高く、かつ、設定熱媒体温度から前記熱媒体の温度を引いた値が第二温度より高い場合に、
前記熱媒体が凍結する冷媒の温度である第三温度を算出し、
前記冷媒の温度が、前記第三温度に水の凍結に対する余裕しろを加えたものより高い場合に、
前記バイパス電磁弁を開とし、前記給湯用絞り手段も開とする
ことを特徴とする請求項1に記載の空調給湯複合システム。 - 前記制御装置は、
前記熱媒体の温度が第一温度より低く、かつ、第四温度より低い場合に、
前記バイパス電磁弁を開とし、前記給湯用絞り手段を閉とする
ことを特徴とする請求項1に記載の空調給湯複合システム。 - 前記制御装置は、
前記熱媒体の温度が第一温度より低く、かつ、第四温度より高い場合に、
前記熱媒体が凍結する冷媒の温度である第三温度を算出し、
前記冷媒の温度が、前記第三温度に水の凍結に対する余裕しろを加えたものより低い場合に、
前記バイパス電磁弁を開とし、前記給湯用絞り手段を閉とする
ことを特徴とする請求項1に記載の空調給湯複合システム。 - 前記制御装置は、
前記熱媒体の温度が第一温度より高く、かつ、設定熱媒体温度から前記熱媒体の温度を引いた値が第二温度より高い場合に、
前記熱媒体が凍結する冷媒の温度である第三温度を算出し、
前記冷媒の温度が、前記第三温度に水の凍結に対する余裕しろを加えたものより低い場合に、
前記バイパス電磁弁を開とし、前記給湯用絞り手段を閉とする
ことを特徴とする請求項1に記載の空調給湯複合システム。 - 前記制御装置は、
前記熱媒体の温度が第一温度より高く、かつ、設定熱媒体温度から前記熱媒体の温度を引いた値が第二温度より低い場合に、
前記熱媒体が凍結する冷媒の温度である第三温度を算出し、
前記冷媒の温度が、前記温度に水の凍結に対する余裕しろを加えたものより低い場合に、
前記バイパス電磁弁を開とし、前記給湯用絞り手段を閉とする
ことを特徴とする請求項1に記載の空調給湯複合システム。 - 前記制御装置は、
霜取運転において、前記バイパス電磁弁と前記給湯用絞り手段との制御を所定時間毎に繰り返し行う
ことを特徴とする請求項1~8のいずれかに記載の空調給湯複合システム。 - 前記冷媒-熱媒体熱交換器の冷媒入口側には前記冷媒の温度を検出する第1温度センサーが設けられており、
前記冷媒-熱媒体熱交換器の熱媒体入口側には前記熱媒体の温度を検出する第2温度センサーが設けられている
ことを特徴とする請求項1~9のいずれかに記載の空調給湯複合システム。 - 前記給湯負荷回路上に、熱媒体の流速を検出する流速検出センサーを設け、
前記制御装置は、
霜取運転において、前記冷媒の温度と、前記熱媒体の温度と、前記流速検出センサーで検出した熱媒体の流速と、に基づいて、前記バイパス電磁弁と前記給湯用絞り手段とを制御する
ことを特徴とする請求項1~10のいずれかに記載の空調給湯複合システム。 - 前記流速検出センサーは、前記冷媒-熱媒体熱交換器の熱媒体入口側に設けられている
ことを特徴とする請求項11に記載の空調給湯複合システム。 - 前記循環用ポンプは、
前記給湯負荷回路を循環している熱媒体の流速を変化させる
ことを特徴とする請求項11または12に記載の空調給湯複合システム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280077391.6A CN104813121B (zh) | 2012-12-11 | 2012-12-11 | 空调供热水复合系统 |
US14/647,510 US9631826B2 (en) | 2012-12-11 | 2012-12-11 | Combined air-conditioning and hot-water supply system |
JP2014551759A JP5984965B2 (ja) | 2012-12-11 | 2012-12-11 | 空調給湯複合システム |
PCT/JP2012/082002 WO2014091548A1 (ja) | 2012-12-11 | 2012-12-11 | 空調給湯複合システム |
EP12889939.0A EP2933588B1 (en) | 2012-12-11 | 2012-12-11 | Air conditioning hot water supply composite system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/082002 WO2014091548A1 (ja) | 2012-12-11 | 2012-12-11 | 空調給湯複合システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014091548A1 true WO2014091548A1 (ja) | 2014-06-19 |
Family
ID=50933875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/082002 WO2014091548A1 (ja) | 2012-12-11 | 2012-12-11 | 空調給湯複合システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US9631826B2 (ja) |
EP (1) | EP2933588B1 (ja) |
JP (1) | JP5984965B2 (ja) |
CN (1) | CN104813121B (ja) |
WO (1) | WO2014091548A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104792076A (zh) * | 2015-04-28 | 2015-07-22 | 广东美的暖通设备有限公司 | 一种三管制多联机空调系统回油或化霜控制方法及其系统 |
CN104792075A (zh) * | 2015-04-28 | 2015-07-22 | 广东美的暖通设备有限公司 | 一种三管制多联机空调系统回油或化霜控制方法及其系统 |
CN106660430A (zh) * | 2014-07-23 | 2017-05-10 | 株式会社电装 | 制冷循环装置 |
JP2017142038A (ja) * | 2016-02-12 | 2017-08-17 | 三菱重工サーマルシステムズ株式会社 | 冷凍サイクル装置 |
JP2017142039A (ja) * | 2016-02-12 | 2017-08-17 | 三菱重工サーマルシステムズ株式会社 | 空気調和装置 |
CN107208942A (zh) * | 2015-02-02 | 2017-09-26 | 三菱重工制冷空调系统株式会社 | 控制装置、控制方法以及程序 |
JP2020056571A (ja) * | 2016-08-04 | 2020-04-09 | 三菱電機株式会社 | 熱源システム |
CN115371301A (zh) * | 2022-07-14 | 2022-11-22 | 浙江中广电器集团股份有限公司 | 一种基于evi天氟地水多联机制冷模式回油的控制方法 |
CN115638477A (zh) * | 2022-10-19 | 2023-01-24 | 青岛海信日立空调系统有限公司 | 水源机 |
JP2023503192A (ja) * | 2020-02-06 | 2023-01-26 | エルジー エレクトロニクス インコーポレイティド | 空気調和装置 |
WO2024252473A1 (ja) * | 2023-06-05 | 2024-12-12 | 三菱電機株式会社 | 冷凍サイクル装置 |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10429083B2 (en) * | 2013-08-30 | 2019-10-01 | Qingdao Hisense Hitachi Air-conditioning Systems Co., Ltd. | Multi-type air conditioner system |
CN103759455B (zh) * | 2014-01-27 | 2015-08-19 | 青岛海信日立空调系统有限公司 | 热回收变频多联式热泵系统及其控制方法 |
CN107084560A (zh) * | 2016-02-16 | 2017-08-22 | 青岛海尔新能源电器有限公司 | 热泵热水装置及其除霜方法 |
CN105823280A (zh) * | 2016-03-29 | 2016-08-03 | 青岛海信日立空调系统有限公司 | 一种除霜装置、除霜控制方法、控制器及空气源热泵系统 |
ES2987928T3 (es) * | 2016-09-23 | 2024-11-18 | Daikin Ind Ltd | Sistema para acondicionamiento de aire y suministro de agua caliente |
ES2934137T3 (es) * | 2016-09-23 | 2023-02-17 | Daikin Ind Ltd | Sistema de aire acondicionado y suministro de agua caliente |
WO2020235989A1 (en) * | 2019-05-23 | 2020-11-26 | Daikin Research & Development Malaysia Sdn. Bhd. | Apparatus and system for heat transfer between fluids |
WO2021044886A1 (ja) * | 2019-09-05 | 2021-03-11 | 東芝キヤリア株式会社 | 冷凍サイクル装置 |
CN111121290B (zh) * | 2019-12-19 | 2021-11-09 | 宁波奥克斯电气股份有限公司 | 一种电子膨胀阀的控制方法、控制装置和热泵热水机 |
DE102019135468A1 (de) * | 2019-12-20 | 2021-06-24 | Friedhelm Meyer | Verfahren zum Betrieb eines integralen Heiz-/Klimatisierungs- und Kühlsystems sowie integrales Heiz-/Klimatisierungs- und Kühlsystem mit thermischem Speicher |
KR20210108242A (ko) | 2020-02-25 | 2021-09-02 | 엘지전자 주식회사 | 히트펌프 공기조화기 |
CN114251862A (zh) * | 2020-09-24 | 2022-03-29 | 北京市京科伦工程设计研究院有限公司 | 单级二氧化碳多联机冷热多功能中央空调 |
WO2022176148A1 (ja) * | 2021-02-19 | 2022-08-25 | 三菱電機株式会社 | 冷凍サイクル装置 |
EP4329178A4 (en) * | 2021-04-19 | 2024-06-05 | Mitsubishi Electric Corporation | POWER CONVERSION DEVICE, HEAT PUMP DEVICE AND AIR CONDITIONING |
EP4339523A4 (en) * | 2021-05-14 | 2024-05-29 | Mitsubishi Electric Corporation | AIR CONDITIONING AND CLIMATE CONTROL SYSTEM |
CN114739063B (zh) * | 2022-04-26 | 2024-02-23 | 青岛海尔空调电子有限公司 | 热泵机组及其控制方法 |
KR20250015212A (ko) * | 2023-07-24 | 2025-02-03 | 엘지전자 주식회사 | 열공급장치 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6341779A (ja) * | 1986-08-07 | 1988-02-23 | 株式会社荏原製作所 | ヒ−ティングタワ−付きヒ−トポンプの運転方法 |
JPH02192538A (ja) * | 1989-01-18 | 1990-07-30 | Shimizu Corp | 低温度冷水製造装置 |
JPH11270920A (ja) | 1998-03-20 | 1999-10-05 | Mitsubishi Electric Corp | 多機能ヒートポンプシステムおよびその運転制御方法 |
JP2002071245A (ja) * | 2000-08-28 | 2002-03-08 | Kubota Corp | ヒートポンプ装置 |
JP2009041860A (ja) * | 2007-08-09 | 2009-02-26 | Toshiba Carrier Corp | ヒートポンプ給湯装置の制御方法 |
WO2009122477A1 (ja) | 2008-03-31 | 2009-10-08 | 三菱電機株式会社 | 空調給湯複合システム |
JP2012197956A (ja) * | 2011-03-18 | 2012-10-18 | Mitsubishi Electric Corp | ヒートポンプ式給湯機 |
WO2012164608A1 (ja) * | 2011-05-31 | 2012-12-06 | 三菱電機株式会社 | 空調給湯複合システム |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60175983A (ja) * | 1984-02-22 | 1985-09-10 | 松下電器産業株式会社 | 冷房排熱給湯機 |
US5465588A (en) * | 1994-06-01 | 1995-11-14 | Hydro Delta Corporation | Multi-function self-contained heat pump system with microprocessor control |
JP3297657B2 (ja) * | 1999-09-13 | 2002-07-02 | 株式会社デンソー | ヒートポンプ式給湯器 |
JP3801006B2 (ja) * | 2001-06-11 | 2006-07-26 | ダイキン工業株式会社 | 冷媒回路 |
JP3956674B2 (ja) * | 2001-11-13 | 2007-08-08 | ダイキン工業株式会社 | 冷媒回路 |
JP2003222391A (ja) * | 2002-01-29 | 2003-08-08 | Daikin Ind Ltd | ヒートポンプ式給湯機 |
JP3932913B2 (ja) * | 2002-01-29 | 2007-06-20 | ダイキン工業株式会社 | ヒートポンプ式給湯機 |
JP3742356B2 (ja) * | 2002-03-20 | 2006-02-01 | 株式会社日立製作所 | ヒートポンプ給湯機 |
JP4756035B2 (ja) * | 2005-03-28 | 2011-08-24 | 東芝キヤリア株式会社 | 給湯機 |
CN201062898Y (zh) * | 2007-05-15 | 2008-05-21 | 刘毅 | 一种废热回收即热补水循环式依附型热泵装置 |
JP5095295B2 (ja) | 2007-08-03 | 2012-12-12 | 東芝キヤリア株式会社 | 給湯装置 |
EP2184563A4 (en) * | 2008-02-04 | 2016-02-17 | Mitsubishi Electric Corp | AIR CONDITIONING AND WATER HEATING COMPLEX SYSTEM |
US20100282434A1 (en) * | 2008-03-31 | 2010-11-11 | Mitsubishi Electric Corporation | Air conditioning and hot water supply complex system |
JP5178841B2 (ja) * | 2008-10-29 | 2013-04-10 | 三菱電機株式会社 | 空気調和装置 |
JP2010144938A (ja) * | 2008-12-16 | 2010-07-01 | Mitsubishi Electric Corp | ヒートポンプ給湯装置およびその運転方法 |
JP5042262B2 (ja) * | 2009-03-31 | 2012-10-03 | 三菱電機株式会社 | 空調給湯複合システム |
US8616017B2 (en) * | 2009-05-08 | 2013-12-31 | Mitsubishi Electric Corporation | Air conditioning apparatus |
US20120222440A1 (en) * | 2009-11-18 | 2012-09-06 | Mitsubishi Electric Corporation | Regrigeration cycle apparatus and information transfer method used therein |
US9709308B2 (en) * | 2010-01-26 | 2017-07-18 | Mitsubishi Electric Corporation | Heat pump device and refrigerant bypass method |
JP5220045B2 (ja) * | 2010-02-15 | 2013-06-26 | 三菱電機株式会社 | 冷却装置 |
JP5751028B2 (ja) * | 2010-06-10 | 2015-07-22 | 株式会社デンソー | ヒートポンプサイクル |
CN202204087U (zh) * | 2011-08-05 | 2012-04-25 | 东南大学 | 一种一体式空气源与地源复合型热泵装置 |
US9316421B2 (en) * | 2012-08-02 | 2016-04-19 | Mitsubishi Electric Corporation | Air-conditioning apparatus including unit for increasing heating capacity |
-
2012
- 2012-12-11 JP JP2014551759A patent/JP5984965B2/ja not_active Expired - Fee Related
- 2012-12-11 EP EP12889939.0A patent/EP2933588B1/en not_active Not-in-force
- 2012-12-11 US US14/647,510 patent/US9631826B2/en active Active
- 2012-12-11 WO PCT/JP2012/082002 patent/WO2014091548A1/ja active Application Filing
- 2012-12-11 CN CN201280077391.6A patent/CN104813121B/zh not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6341779A (ja) * | 1986-08-07 | 1988-02-23 | 株式会社荏原製作所 | ヒ−ティングタワ−付きヒ−トポンプの運転方法 |
JPH02192538A (ja) * | 1989-01-18 | 1990-07-30 | Shimizu Corp | 低温度冷水製造装置 |
JPH11270920A (ja) | 1998-03-20 | 1999-10-05 | Mitsubishi Electric Corp | 多機能ヒートポンプシステムおよびその運転制御方法 |
JP2002071245A (ja) * | 2000-08-28 | 2002-03-08 | Kubota Corp | ヒートポンプ装置 |
JP2009041860A (ja) * | 2007-08-09 | 2009-02-26 | Toshiba Carrier Corp | ヒートポンプ給湯装置の制御方法 |
WO2009122477A1 (ja) | 2008-03-31 | 2009-10-08 | 三菱電機株式会社 | 空調給湯複合システム |
JP2012197956A (ja) * | 2011-03-18 | 2012-10-18 | Mitsubishi Electric Corp | ヒートポンプ式給湯機 |
WO2012164608A1 (ja) * | 2011-05-31 | 2012-12-06 | 三菱電機株式会社 | 空調給湯複合システム |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3173268A4 (en) * | 2014-07-23 | 2018-04-18 | Denso Corporation | Refrigeration cycle device |
CN106660430A (zh) * | 2014-07-23 | 2017-05-10 | 株式会社电装 | 制冷循环装置 |
CN106660430B (zh) * | 2014-07-23 | 2019-05-10 | 株式会社电装 | 制冷循环装置 |
CN107208942A (zh) * | 2015-02-02 | 2017-09-26 | 三菱重工制冷空调系统株式会社 | 控制装置、控制方法以及程序 |
CN104792075A (zh) * | 2015-04-28 | 2015-07-22 | 广东美的暖通设备有限公司 | 一种三管制多联机空调系统回油或化霜控制方法及其系统 |
CN104792076A (zh) * | 2015-04-28 | 2015-07-22 | 广东美的暖通设备有限公司 | 一种三管制多联机空调系统回油或化霜控制方法及其系统 |
JP2017142038A (ja) * | 2016-02-12 | 2017-08-17 | 三菱重工サーマルシステムズ株式会社 | 冷凍サイクル装置 |
JP2017142039A (ja) * | 2016-02-12 | 2017-08-17 | 三菱重工サーマルシステムズ株式会社 | 空気調和装置 |
JP2020056571A (ja) * | 2016-08-04 | 2020-04-09 | 三菱電機株式会社 | 熱源システム |
JP2023503192A (ja) * | 2020-02-06 | 2023-01-26 | エルジー エレクトロニクス インコーポレイティド | 空気調和装置 |
JP7541101B2 (ja) | 2020-02-06 | 2024-08-27 | エルジー エレクトロニクス インコーポレイティド | 空気調和装置 |
CN115371301A (zh) * | 2022-07-14 | 2022-11-22 | 浙江中广电器集团股份有限公司 | 一种基于evi天氟地水多联机制冷模式回油的控制方法 |
CN115638477A (zh) * | 2022-10-19 | 2023-01-24 | 青岛海信日立空调系统有限公司 | 水源机 |
WO2024252473A1 (ja) * | 2023-06-05 | 2024-12-12 | 三菱電機株式会社 | 冷凍サイクル装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2933588B1 (en) | 2019-10-02 |
CN104813121A (zh) | 2015-07-29 |
JP5984965B2 (ja) | 2016-09-06 |
EP2933588A4 (en) | 2016-08-10 |
US20150308700A1 (en) | 2015-10-29 |
EP2933588A1 (en) | 2015-10-21 |
JPWO2014091548A1 (ja) | 2017-01-05 |
CN104813121B (zh) | 2016-08-24 |
US9631826B2 (en) | 2017-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5984965B2 (ja) | 空調給湯複合システム | |
CN203323456U (zh) | 热泵装置 | |
CN104350338B (zh) | 空调装置 | |
CN108332285B (zh) | 空调器系统 | |
KR101192346B1 (ko) | 히트 펌프식 급탕장치 | |
JP5042262B2 (ja) | 空調給湯複合システム | |
CN104254743B (zh) | 空气调节装置 | |
US20120291460A1 (en) | Heat pump device and refrigerant bypass method | |
CN107110547A (zh) | 制冷循环装置 | |
CN105247302A (zh) | 空调装置 | |
CN104272037A (zh) | 空气调节装置 | |
JP5734424B2 (ja) | 空調給湯複合システム | |
CN103874892A (zh) | 空气调节装置 | |
JP6715655B2 (ja) | 冷却装置 | |
WO2011158305A1 (ja) | 冷凍空調装置 | |
JP5872052B2 (ja) | 空気調和装置 | |
JP5517891B2 (ja) | 空気調和装置 | |
EP3734192B1 (en) | Air conditioner system | |
KR101859232B1 (ko) | 냉장 복합 공조시스템 | |
CN213089945U (zh) | 一种空调装置 | |
JP2981559B2 (ja) | 空気調和機 | |
JP6188932B2 (ja) | 冷凍サイクル装置、及びその冷凍サイクル装置を備えた空気調和装置 | |
JP6042037B2 (ja) | 冷凍サイクル装置 | |
KR101269843B1 (ko) | 외기의 온도와 증발 온도에 연동하여 냉매의 응축 온도 조절이 가능한 히트 펌프 시스템 | |
JP2011127775A (ja) | 空気調和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12889939 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014551759 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14647510 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012889939 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |