[go: up one dir, main page]

WO2014087958A1 - 膜-電極接合体の製造方法、膜-電極接合体、膜-電極接合体形成用積層体、固体高分子型燃料電池および水電解装置 - Google Patents

膜-電極接合体の製造方法、膜-電極接合体、膜-電極接合体形成用積層体、固体高分子型燃料電池および水電解装置 Download PDF

Info

Publication number
WO2014087958A1
WO2014087958A1 PCT/JP2013/082320 JP2013082320W WO2014087958A1 WO 2014087958 A1 WO2014087958 A1 WO 2014087958A1 JP 2013082320 W JP2013082320 W JP 2013082320W WO 2014087958 A1 WO2014087958 A1 WO 2014087958A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
laminate
electrolyte membrane
electrode assembly
catalyst layer
Prior art date
Application number
PCT/JP2013/082320
Other languages
English (en)
French (fr)
Inventor
宣彰 若林
宏文 後藤
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to US14/649,002 priority Critical patent/US20150322578A1/en
Priority to EP13861211.4A priority patent/EP2927998A4/en
Priority to JP2014551087A priority patent/JPWO2014087958A1/ja
Publication of WO2014087958A1 publication Critical patent/WO2014087958A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • C25B13/08Diaphragms; Spacing elements characterised by the material based on organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8814Temporary supports, e.g. decal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • the present invention relates to a method for producing a membrane-electrode assembly, a membrane-electrode assembly, a laminate for forming a membrane-electrode assembly, a solid polymer fuel cell, and a water electrolysis device.
  • Fuel cells are power generators that directly extract electricity by electrochemically reacting hydrogen gas, methanol, and oxygen gas. They attract attention as pollution-free power generators that can directly convert chemical energy into electrical energy with high efficiency. ing.
  • Such a fuel cell is usually composed of a pair of electrode membranes (anode electrode and cathode electrode) carrying a catalyst and one proton conductive solid polymer electrolyte membrane sandwiched between the electrode membranes. Hydrogen ions and electrons are generated at the anode electrode, and the hydrogen ions pass through the solid polymer electrolyte membrane and react with oxygen at the cathode electrode to generate water.
  • the solid polymer electrolyte membrane used here is required to exhibit sufficient proton conductivity, to suppress permeation thereof so that the supplied gas or fuel such as methanol does not directly react, In order to obtain a fuel cell exhibiting stable performance over a long period of time, the properties required for these solid polymer electrolyte membranes are required to be able to be exhibited over a long period of time.
  • solid polymer electrolyte membrane examples include Nafion (registered trademark, manufactured by DuPont), Aciplex (registered trademark, manufactured by Asahi Kasei Kogyo Co., Ltd.), and Flemion (registered trademark, manufactured by Asahi Glass Co., Ltd.).
  • fluorocarbon polymer electrolyte membranes having sulfonic acid groups mainly aromatic rings such as polyaromatic hydrocarbons, polyether ether ketones, polyphenylene sulfides, polyimides or polybenzazoles
  • a polymer electrolyte membrane having a chain skeleton and having a sulfonic acid group is used. In the fuel cell configured as described above, these electrolyte membranes may not exhibit sufficient durability when the fuel cell is operated for a long time, and it is easy to obtain a fuel cell that exhibits stable properties over a long period of time. There was no case.
  • Patent Document 1 discloses a polymer electrolyte laminate film comprising a laminate of two or more films having a proton exchange resin for the purpose of providing a highly durable polymer electrolyte membrane.
  • the membrane / electrode assembly when the polymer electrolyte laminate membrane is used for a polymer electrolyte fuel cell is formed in advance at a temperature equal to or higher than the melting point of the electrolyte membrane, and a catalyst layer or the like is formed on both sides thereof. It is disclosed that it is created by transfer bonding by hot pressing.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a membrane-electrode assembly having high quality and excellent durability.
  • a configuration example of the present invention is as follows.
  • a method for producing a membrane-electrode assembly comprising the following step (A1) or (A2) and step (B1) or (B2).
  • Step (A1) Step of arranging a catalyst layer on one side of an electrolyte membrane to obtain a laminate
  • a method for producing a membrane-electrode assembly comprising the following step (A ′) and step (B ′).
  • the catalyst layer is disposed on one surface of the electrolyte membrane of the electrolyte membrane with a base material, and then the base material is peeled off, thereby the laminate A and the laminate, respectively.
  • a method for producing a membrane-electrode assembly comprising the following steps (C) and (D).
  • Step (A1) Step of arranging a catalyst layer on one side of an electrolyte membrane to obtain a laminate
  • Step (B ′): The laminate A ′ A process of obtaining a membrane-electrode assembly by bending so that surfaces having no catalyst layer face each other at a position where the catalyst layer is not disposed
  • the catalyst layer is disposed on one surface of the electrolyte membrane of the electrolyte membrane with a base material, and then the base material is peeled off, thereby the laminate A and the laminate, respectively.
  • the membrane-electrode assembly according to any one of [6] to [8], which is a step of obtaining A ′.
  • a laminate for forming a membrane-electrode assembly in which two or more catalyst layers not in contact with each other are arranged at different positions on one surface of an electrolyte membrane.
  • a membrane-electrode assembly in which the electrolyte membrane is bent and has catalyst layers on both sides opposite to the surface in contact therewith.
  • a polymer electrolyte fuel cell having the membrane-electrode assembly according to [6] to [10] or [12].
  • a water electrolysis apparatus having the membrane-electrode assembly according to [6] to [10] or [12].
  • the present invention it is possible to easily obtain a membrane-electrode assembly having high quality and excellent durability, which is unlikely to cause defects and deformation during the production of the membrane-electrode assembly.
  • a membrane-electrode assembly including an electrolyte membrane (electrolyte membrane laminate) in which precipitation of selenium is suppressed For this reason, a fuel cell excellent in power generation performance and durability and a water electrolysis device excellent in water electrolysis performance and durability can be obtained.
  • FIG. 1 is a schematic diagram showing an example of the membrane-electrode assembly of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of a method including (A ′) and step (B ′) and a membrane-electrode assembly obtained by the method.
  • the membrane-electrode assembly of the present invention can be produced by the following methods (I) to (III).
  • the layer 14 has an order structure.
  • the methods (I) to (III) preferably the methods (I) and (II), more preferably the method (I), defects and deformations occur during the production of the membrane-electrode assembly. It is difficult to use an apparatus or the like that is necessary in the conventional method.
  • a membrane-electrode assembly having high quality and excellent durability can be easily obtained, and it has sufficient proton conductivity and permeation suppression properties such as fuel and oxygen, and has excellent durability and molecular weight. It is possible to obtain a membrane-electrode assembly including an electrolyte membrane (electrolyte membrane laminate) in which deterioration with time and precipitation of platinum inside the electrolyte membrane (electrolyte membrane laminate) are suppressed.
  • the membrane-electrode assembly of the present invention may include a bent electrolyte membrane, and may have a catalyst layer on both sides opposite to the surface in contact therewith.
  • An example of such a membrane-electrode assembly is the membrane-electrode assembly 30 shown in FIG.
  • This membrane-electrode assembly also has a structure in the order of a catalyst layer, an electrolyte membrane, an electrolyte membrane, and a catalyst layer. Specifically, the following step (II) is carried out in advance (if necessary, other electrolyte membranes or adhesives).
  • the catalyst layer can be obtained by arranging the catalyst layer on both sides of the folded electrolyte membrane (through a layer or the like) in the same manner as in the following step (A1).
  • surface in contact with the surface refers to a surface in contact with the electrolyte membrane by bending, or a surface in contact with another electrolyte membrane when the electrolyte membrane is bent through another electrolyte membrane, an adhesive layer, or the like. I mean.
  • Method (II) A method for producing a membrane-electrode assembly, comprising the following step (A ′) and step (B ′).
  • Method (III) A method for producing a membrane-electrode assembly, comprising the following steps (C) and (D).
  • a membrane-electrode assembly in the order of the catalyst layer, the electrolyte membrane, the electrolyte membrane, and the catalyst layer is obtained.
  • the catalyst layers constituting the membrane-electrode assembly may be the same or different, and the electrolyte membranes may be the same or different.
  • a plurality of laminates are used.
  • the plurality of laminates may be the same laminate, or a laminate having the same electrolyte membrane and different catalyst layers.
  • a laminate having the same catalyst layer and different electrolyte membranes may be used, or a laminate having a different electrolyte membrane and catalyst layer may be used.
  • all of the contained catalyst layers may be the same or may have at least two different catalyst layers.
  • the two catalyst layers constituting the membrane-electrode assembly constitute an anode electrode or a cathode electrode, respectively. Since the characteristics required for these electrodes are different, the two catalyst layers are preferably different layers.
  • the catalyst layer When the catalyst layer is disposed on the electrolyte membrane, only the catalyst layer may be disposed on the electrolyte membrane, but a layer including the catalyst layer (for example, a layer including the catalyst layer and the gas diffusion layer) is prepared in advance. In addition, this layer may be disposed on the electrolyte membrane.
  • a layer including the catalyst layer and a gas diffusion layer a gas diffusion layer is formed on the catalyst layer, or the catalyst layer and the gas diffusion layer are separately formed and overlapped. It is preferable to form an intermediate layer on the gas diffusion layer and then form a catalyst layer on the intermediate layer, and to apply the catalyst layer forming varnish directly on the gas diffusion layer It is not preferable from the viewpoint of the surface smoothness of the layer.
  • the membrane-electrode assembly of the present invention may be a laminate in the order of a catalyst layer, an electrolyte membrane, an electrolyte membrane, and a catalyst layer, and the effects of the present invention can be achieved between the catalyst layer and the electrolyte membrane and between the electrolyte membranes.
  • Other layers that have been used in conventional membrane-electrode assemblies may be present as long as they are not impaired.
  • a layer for adhering these layers eg, JP-A-2006-156295
  • a bleed-out preventing layer eg, JP-A-2011-2011.
  • a liquid and / or gas permeable layer eg, Japanese Patent Application Laid-Open No. 2007-273280
  • electrolyte membranes and these layers may be provided between the electrolyte membranes.
  • a layer that has been used in a conventional membrane-electrode assembly may be present on the opposite side of the catalyst layer from the electrolyte membrane side.
  • a gas diffusion layer is preferably present on the opposite side of the catalyst layer from the electrolyte membrane side.
  • Method (I) includes the following step (A1) or (A2) and step (B1) or (B2).
  • Step (A1) is a step of obtaining a laminate A by disposing a catalyst layer on one surface of the electrolyte membrane. This step (A1) is not particularly limited and can be performed by a conventionally known method.
  • a method of obtaining a laminate A by laminating a gas diffusion layer or the like on a catalyst layer A catalyst layer or a laminate of a catalyst layer and a gas diffusion layer is formed in advance, and the catalyst layer or laminate is laminated on one surface of the electrolyte membrane by lamination or thermal transfer, and if necessary, on the catalyst layer.
  • stacking a gas diffusion layer etc. is mentioned.
  • the step (A1) is desirably a step of obtaining the laminate A by disposing the catalyst layer on one surface of the electrolyte membrane of the electrolyte membrane with substrate and then peeling the substrate.
  • the catalyst layer when the catalyst layer is provided on the electrolyte membrane, the catalyst layer is provided on the laminate of the electrolyte membrane without the substrate, or the catalyst layer is provided on the electrolyte membrane surface of the electrolyte membrane with the substrate. After peeling off, a catalyst layer was formed on the other surface of the electrolyte membrane.
  • the electrolyte membrane since there is no base material that supports the electrolyte membrane at the time of forming the catalyst layer, the electrolyte membrane is deformed (expanded, contracted, warped, etc.) due to heat, drying, solvent that can be used, etc.
  • an apparatus for fixing the electrolyte membrane is necessary.
  • the electrolyte membrane is the base material. Since the catalyst layer can be disposed in a state supported by the catalyst layer, the electrolyte membrane is less likely to be deformed when the catalyst layer is disposed, and a high-quality membrane-electrode assembly that has excellent power generation performance and durability is provided by the above-described device. Without it, it can be easily obtained.
  • the step (A1) may be a step of obtaining a laminate A in which a plurality of catalyst layers are arranged on one side of the electrolyte membrane. Specifically, the one side of the electrolyte membrane is not in contact with each other.
  • the step of arranging two or more catalyst layers at different positions and obtaining the laminate A (that is, the step (A ′)) may be used.
  • the laminate obtained by the step (A1) can be wound into a roll. By making it into a roll, it can be easily transported.
  • Step (A2) is a step of applying the electrolyte membrane forming composition to the catalyst layer to obtain a laminate A having the catalyst layer and the electrolyte membrane.
  • This step (A2) is not particularly limited and can be performed by a conventionally known method. Specifically, a catalyst layer or a laminate of a catalyst layer and a gas diffusion layer is prepared in advance, and this catalyst layer is formed on the catalyst layer.
  • a method for obtaining a laminate by applying a composition for forming an electrolyte membrane by a conventionally known method, and drying and curing the composition as necessary may be mentioned.
  • a high-quality membrane-electrode assembly that hardly deforms and that has excellent power generation performance and durability can be easily obtained without the above-mentioned device, etc.
  • composition for forming an electrolyte membrane is not particularly limited, for example, and may be any composition containing a polymer contained in a conventionally known electrolyte membrane. Specifically, the following composition for forming an electrolyte membrane may be used. Can be mentioned.
  • the laminate obtained by the step (A2) can be wound up in a roll shape. By making it into a roll, it can be easily transported.
  • the step (B1) is a step of obtaining a membrane-electrode assembly by laminating the electrolyte membrane sides of the laminate A facing each other.
  • a plurality of laminates A preferably two laminates A are used.
  • they may be laminated so that the electrolyte membrane surfaces are in contact with each other, or the electrolyte membrane surfaces are in contact with each other through another electrolyte membrane, an adhesive layer, or the like. You may laminate
  • the step (B1) includes a laminate A in which two or more catalyst layers that are not in contact with each other are arranged at different positions, and the catalyst layer is arranged. Cut the electrolyte membrane and the catalyst layer in the stacking direction at a position where they are not, and use the obtained two or more laminates to laminate the electrolyte membranes facing each other to obtain a membrane-electrode assembly It may be a process.
  • the electrolyte Cutting may be performed an arbitrary number of times (up to 2n-1 times) in the stacking direction of the membrane and the catalyst layer.
  • the laminate A having a substrate is used, and the substrate is removed therefrom to obtain a laminate.
  • the step of laminating is preferable.
  • the laminate A used in the step (B1) is a catalyst layer for a cathode electrode, from the viewpoint that a membrane-electrode assembly that can be used in a fuel cell or a water electrolysis device can be obtained easily and inexpensively. It is preferable that the other is a laminate including a catalyst layer for the anode electrode.
  • the step (B1) is not particularly limited.
  • a method of simply stacking the electrolyte membrane sides of the two laminates A to obtain a membrane-electrode assembly A method of obtaining a membrane-electrode assembly by superposing or heating while superposing the electrolyte membrane side; hot press, roll press after superposing or superposing the electrolyte membrane sides of the two laminates A
  • Method for obtaining a membrane-electrode assembly by applying a solution Method for obtaining a membrane-electrode assembly by cross-linking the electrolyte membrane after or while superposing the electrolyte membrane sides of the two laminates A (This If, it may be used an electrolyte membrane containing a cross-link
  • the catalyst layer, the electrolyte membrane, the electrolyte membrane, and the catalyst layer are referred to as a membrane-electrode assembly in that order.
  • the membrane-electrode assembly of the present invention includes three or more electrolyte membranes (for example, when three electrolyte membranes are included, the membrane in the order of catalyst layer, electrolyte membrane, electrolyte membrane, electrolyte membrane, and catalyst layer)
  • An electrode assembly uses any one of the above-mentioned methods or known coating methods (for example, one or two or more types of compositions for forming an electrolyte membrane).
  • the laminate After coating on the electrolyte membrane by a method, and drying and curing as necessary, the laminate is further laminated by a known method) and the obtained laminate and at least one electrolyte
  • the film may be laminated by another method.
  • the membrane-electrode assembly of the present invention may include one obtained by bending one electrolyte membrane, or may include one obtained by laminating and bending two or more electrolyte membranes, or one electrolyte membrane. And other electrolyte membranes (bent or unfolded) may be included.
  • An adhesive layer or the like may be present between the electrolyte membranes that are in contact with each other by bending, and an adhesive layer or the like may also be present between the folded electrolyte membrane and the other electrolyte membrane.
  • the electrolyte membrane portion (also referred to as “electrolyte membrane laminate” in the present invention) has sufficient proton conductivity and permeation suppression properties such as fuel and oxygen, is excellent in durability, and decreases in molecular weight over time. Since the deposition of platinum inside the electrolyte membrane laminate tends to be suppressed, the step (B1) can be performed by at least one of the following methods (i) to (ii) to form the membrane-electrode assembly.
  • the membrane-electrode assembly obtained by the above method (i) does not require the use of impurities such as an adhesive during the production of the membrane-electrode assembly, so that during operation of the fuel cell or water electrolysis device, This is preferable because deterioration due to the impurities hardly occurs.
  • the electrolyte membrane laminate constituting the membrane-electrode assembly of the present invention is particularly excellent in durability, the molecular weight decreases with time, and the electrolyte membrane laminate This is preferable because precipitation of platinum is suppressed.
  • the temperature lower than Tg of the polymer contained in the electrolyte membrane is not particularly limited, but is preferably 5 to 90 ° C. lower than Tg, and more preferably 10 to 60 lower than Tg. It is a low temperature.
  • the “polymer contained in the electrolyte membrane” means a temperature lower than Tg of the polymer having the lowest Tg.
  • the temperature lower than Tg of the polymer contained in the electrolyte membrane refers to the polymer contained in the electrolyte membrane to be used, It refers to the temperature below the Tg of the polymer having the lowest Tg.
  • the method (ii) may be performed while applying pressure by a known press technique such as a hot press, a roll press, or a vacuum press in a state where two or more laminates are superposed.
  • a known press technique such as a hot press, a roll press, or a vacuum press in a state where two or more laminates are superposed.
  • the membrane-electrode assembly obtained by the method (ii) is preferable from the viewpoint of ease of work when manufacturing a fuel cell or a water electrolysis device, because the membrane-electrode assembly does not vary.
  • the method (ii) is preferably a temperature lower than Tg of the polymer contained in the electrolyte membrane, after the two laminates A are simply overlapped so that the electrolyte membrane surfaces are in contact with each other. Or after the two laminates A are simply overlapped so that the electrolyte membrane surfaces are in contact with each other, or after being overlapped with a crosslinking agent interposed therebetween, A method of cross-linking at a temperature lower than the Tg of the coalescence is preferable from the viewpoints of excellent durability, a decrease in molecular weight with time, and a membrane-electrode assembly in which the precipitation of platinum inside the electrolyte membrane is suppressed.
  • the cross-linking agent can be used without particular limitation as long as it can cross-link between electrolyte membranes.
  • a cross-linking agent having the following structure is preferable.
  • R 1 is hydrogen or an arbitrary organic group.
  • cross-linking agent examples include RESITOP C357 (manufactured by Gunei Chemical Industry Co., Ltd.), DM-BI25X-F, 46DMOC, 46DMOIPP, 46DMOEP (trade name, manufactured by Asahi Organic Materials Co., Ltd.), DML -MBPC, DML-MBOC, MDL-OCHP, DML-PC, DML-PCHP, DML-PTBP, DML-34X, DML-EP, DML-POP, DML-OC, dimethylol-Bis-C, dimethylol-BisOC-P , DML-BisOC-Z, DML-BisOCHP-Z, DML-PFP, DML-PSBP, DML-MB25, DML-MTrisPC, DML-Bis25X-34XL, DML-Bis25X-PCHP (trade name, Honshu Chemical Industry Co., Ltd.) ), "Nikarak" (registered trademark) MX-29 (registere
  • TriML-P TriML-35XL
  • TriML-TrisCR-HAP trade name, manufactured by Honshu Chemical Industry Co., Ltd.
  • TM-BIP-A trade name, manufactured by Asahi Organic Materials Co., Ltd.
  • TML-BP TML-HQ
  • TML-pp-BPF TML-BPA
  • TMOM-BP trade name, manufactured by Honshu Chemical Industry Co., Ltd.
  • Nicarac MX-280
  • “Nicarac” MX-270 trade name, Co., Ltd.
  • HML-TPPHBA HML-TPHAP
  • HML-TPHAP trade name, manufactured by Honshu Chemical Industry Co., Ltd.
  • the electrolyte membrane laminate in the membrane-electrode assembly obtained through the methods (i) to (ii) uses one type or two or more types of electrolyte membrane forming compositions, and a known composition is known. After being applied on the substrate by the above method, and if necessary dried or cured, a laminate obtained by applying the composition thereover by a known method, or two or more electrolyte membranes, It is different from those fused by applying a temperature equal to or higher than Tg of the electrolyte membrane.
  • the membrane-electrode assembly of the present invention When the membrane-electrode assembly of the present invention is used in a fuel cell or a water electrolysis apparatus, a certain amount of pressure is applied to the fuel cell or the water electrolysis apparatus when it is laminated with other members. Even when a battery is used, a certain amount of temperature may be applied. Even in this case, the electrolyte membrane laminate in the membrane-electrode assembly obtained through the methods (i) to (ii) is publicly known. It is different from the electrolyte membrane laminate obtained by the coating method and fusion.
  • the electrolyte membranes In order to obtain an electrolyte membrane laminate exhibiting high proton conductivity, the interface between the electrolyte membranes used In order to facilitate the transfer of hydrogen ions at the electrolyte membrane, the electrolyte membranes should be firmly fused together, and more specifically, the interface should not exist so as to reduce contact resistance at the interface between the electrolyte membranes. (One electrolyte membrane) has been considered desirable. Further, from the viewpoint of obtaining an electrolyte membrane laminate having sufficient fuel and oxygen or other permeation suppression properties, it has been considered that the electrolyte membranes are firmly bonded to each other or that one electrolyte membrane is desirable. It was.
  • the electrolyte membrane laminate in the membrane-electrode assembly obtained through the above methods (i) to (ii) is composed of one electrolyte membrane or a laminate of two or more fused electrolyte membranes. It has the same level of sufficient proton conductivity and permeation suppression of fuel and oxygen. Further, the electrolyte membrane laminate is durable even when the same electrolyte membrane is used as compared with the case of using one electrolyte membrane or a laminate of two or more fused electrolyte membranes. And the decrease in molecular weight over time is suppressed.
  • the electrolyte membrane interfaces are in physical contact with each other, and the morphology and conduction path of the electrolyte membrane are misaligned at the electrolyte membrane interface.
  • the conduction path it is considered that small ions such as protons can pass through the conduction path. That is, it is desirable that the electrolyte membrane laminate in the membrane-electrode assembly should have a certain degree of contact resistance at the interface between the electrolyte membranes, and that the contact resistance should be high so long as the power generation performance is not impaired. It is done.
  • a catalyst layer is provided on the electrode of the fuel cell, and platinum is used as a catalyst contained in the catalyst layer.
  • This platinum is important because it promotes the chemical reaction that is the source of the extracted electrical energy.
  • a part of the platinum in the catalyst layer is deposited in the electrolyte membrane. It is considered that the deterioration of the electrolyte membrane is caused by platinum, which causes the long-term stability of the fuel cell to decrease.
  • platinum is used for all or part of the electrode catalyst layer, and it is in the catalyst layer during operation as in the case of a fuel cell. It is considered that a part of platinum is deposited in the electrolyte membrane, and the deposited platinum causes deterioration of the electrolyte membrane, which causes a long-term stability of the water electrolysis apparatus to be lowered.
  • the electrolyte membrane laminate in the membrane-electrode assembly obtained through the methods (i) to (ii) is a platinum that occurs during the operation of a fuel cell or a water electrolysis device. It has been found that the movement of the inside of the laminate and the precipitation inside the laminate can be reduced. The reason why the electrolyte membrane laminate obtained through the methods (i) to (ii) has such an effect is not clear, but it is because of the high resistance that platinum ions pass through at the interface between the electrolyte membranes. It is considered that the amount of platinum deposited inside the electrolyte membrane laminate was suppressed. Therefore, by using a membrane-electrode assembly including such an electrolyte membrane laminate, a fuel cell and a water electrolysis device having excellent durability can be obtained.
  • the laminate A and the electrolyte membrane a are laminated so that the electrolyte membrane of the laminate A and the electrolyte membrane a are in contact with each other, and then the side opposite to the side of the electrolyte membrane a in contact with the laminate A
  • a catalyst layer is disposed on the substrate to obtain a membrane-electrode assembly.
  • it is preferable to laminate so that the surface of the laminate A opposite to the surface on which the catalyst layer of the electrolyte membrane is disposed is in contact with the widest surface of the electrolyte membrane a.
  • the electrolyte membrane a may be the same membrane as the electrolyte membrane contained in the laminate A, or may be a membrane having a different thickness and contained components. Further, the electrolyte membrane a may be one sheet or two or more sheets.
  • the method for laminating the laminate A and the electrolyte membrane a and the method for laminating these electrolyte membranes when two or more electrolyte membranes a are used are not particularly limited, but the step (B1) ), The same method as the method of laminating two laminates may be mentioned, and the methods (i) to (ii) are preferred.
  • the method for disposing the catalyst layer on the electrolyte membrane a is not particularly limited and can be performed by a conventionally known method.
  • the catalyst layer is disposed on the electrolyte membrane. The method similar to the method illustrated as a method of arrange
  • Step (A ′) is a step in which two or more catalyst layers that are not in contact with each other are arranged at different positions on one surface of the electrolyte membrane to obtain a laminate A ′.
  • An example of such a laminate A ′ is a laminate A′20 as shown in FIG.
  • This step (A ′) is not particularly limited and can be carried out by a conventionally known method.
  • the same method as the method exemplified as the method for disposing the catalyst layer on the electrolyte membrane can be mentioned. It is done.
  • a catalyst layer is disposed on one side of the electrolyte membrane of the substrate-attached electrolyte membrane, and specifically, the electrolyte membrane of the substrate-attached electrolyte membrane. It is preferable that two or more catalyst layers that are not in contact with each other on one side are arranged at different positions and then the base material is peeled to obtain the laminate A ′.
  • the above-mentioned “in different positions” excludes, for example, the case where only one laminate including two catalyst layers that are not in contact with each other is arranged when two catalyst layers are arranged on the electrolyte membrane. Means.
  • the laminate obtained by the step (A ′) can be wound into a roll. By making it into a roll, it can be easily transported.
  • Step (B ′) is a step of obtaining the membrane-electrode assembly by bending the laminate A ′ so that the surfaces having no catalyst layer face each other at a position where the catalyst layer is not disposed.
  • An example of such a membrane-electrode assembly is a membrane-electrode assembly 30 as shown in FIG.
  • folding so that the surfaces having no catalyst layer face each other means folding so that a membrane-electrode assembly in the order of the catalyst layer, the electrolyte membrane, the electrolyte membrane, and the catalyst layer is obtained.
  • the electrolyte membrane surfaces of the laminate A ′ may be bent so that they are in contact with each other, or the electrolyte membrane surfaces of the laminate A ′ may be bent so as to be in contact with each other via another electrolyte membrane, an adhesive layer, or the like.
  • the laminate A ′ is bent in the step (B ′), it is bent so that the electrolyte membrane surface is in contact with the method exemplified in the method of laminating the laminate A in the step (B1). Also good. Also in this case, for the same reason as described above, it is preferable to obtain a membrane-electrode assembly through the methods (i) to (ii).
  • step (B ′) from the viewpoint of easily obtaining a membrane-electrode assembly having high quality and excellent durability, a laminate A ′ having a substrate is used, and the substrate is removed therefrom.
  • the step of bending is preferable.
  • the laminated body A ′ used in the step (B ′) is one in which one of the adjacent catalyst layers is a cathode from the viewpoint that a membrane-electrode assembly that can be used in a fuel cell or a water electrolysis apparatus can be obtained easily and inexpensively. It is preferable that it is a catalyst layer for electrodes, and the other is a catalyst layer for anode electrodes.
  • the laminate A ′ is a laminate in which 2n (n is an integer of 2 or more) catalyst layers that are not in contact with each other are arranged at different positions, the laminate is provided with a catalyst layer.
  • the cut laminate is cut in the stacking direction of the electrolyte membrane and the catalyst layer so that the cut laminate has two or more catalyst layers that are not in contact with each other. It may be a step of obtaining a membrane-electrode assembly by bending so that surfaces having no catalyst layer face each other at a position where no layer is disposed.
  • Method (III) includes the following step (C) and step (D).
  • ⁇ Process (C)> In step (C), (i ′) the electrolyte membrane is overlaid, or (ii ′) the electrolyte membrane is laminated, and after or during the lamination, the glass transition temperature of the polymer contained in the electrolyte membrane In this process, the laminate C is obtained by heating at a temperature lower than the glass transition temperature by 90 ° C.
  • a laminate having the same effect as that of the electrolyte membrane laminate in the membrane-electrode assembly obtained through the methods (i) to (ii) is obtained.
  • the methods (i ′) and (ii ′) are the same as the methods (i) and (ii) exemplified in the step (B1) except that an electrolyte membrane is used instead of the laminate. Is mentioned.
  • Step (D) is a step of disposing catalyst layers on both sides of the laminate C.
  • This step (D) is not particularly limited and can be performed by a conventionally known method.
  • a method similar to the method exemplified as the method for disposing the catalyst layer on the electrolyte membrane can be mentioned. .
  • the electrolyte membrane is not particularly limited as long as it is an electrolyte membrane containing a polymer, and examples thereof include a membrane conventionally used as a solid polymer electrolyte membrane and an electrolyte membrane containing a reinforcing layer.
  • the Tg of the polymer and electrolyte membrane is such that the electrolyte membranes constituting the electrolyte membrane laminate are not fused together during operation of the fuel cell or water electrolysis device, and a fuel cell or water electrolysis device having a desired effect is obtained.
  • the temperature is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and still more preferably 150 ° C. or higher from the viewpoint of being able to.
  • the upper limit of the Tg is not particularly limited, but may be, for example, 250 ° C.
  • the Tg of the polymer and the electrolyte membrane when the Tg of the polymer and the electrolyte membrane is within the above range, it includes an electrolyte membrane (electrolyte membrane laminate) that has excellent durability and suppresses a decrease in molecular weight over time and precipitation of platinum inside the electrolyte membrane.
  • a membrane-electrode assembly can be obtained, and further, a fuel cell and a water electrolysis device excellent in durability and the like can be obtained.
  • the Tg can be measured by the method described in the examples below.
  • the Tg of the electrolyte membrane when the electrolyte membrane contains a component other than the reinforcing layer and the polymer is obtained by immersing the electrolyte membrane in a solvent that can dissolve the polymer contained in the electrolyte membrane. After the polymer is eluted from the solvent, the solvent is removed to obtain a polymer, and this polymer can be used to measure the Tg of the polymer contained in the electrolyte membrane.
  • the weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the polymer is preferably 10,000 to 1,000,000, more preferably 20,000 to 800,000, and even more preferably 50,000 to 300,000.
  • the number average molecular weight (Mn) is preferably 3,000 to 1,000,000, more preferably 6000 to 800,000, and still more preferably 15,000 to 300,000.
  • the average molecular weight of the polymer can be measured by the method described in the Examples below.
  • the ion exchange capacity of the polymer is preferably 0.5 to 5.0 meq / g, more preferably 0.5 to 4.0 meq / g, and still more preferably 0.8 to 4.0 meq / g.
  • An ion exchange capacity of 0.5 meq / g or more is preferable because it provides an electrolyte membrane with high proton conductivity and high power generation / water splitting performance.
  • it is 3.5 meq / g or less, it becomes an electrolyte membrane having sufficiently high water resistance, which is preferable.
  • the ion exchange capacity of the polymer can be measured by the method described in the Examples below.
  • the ion exchange capacity can be adjusted by changing the type, ratio, combination, etc. of the structural units contained in the polymer. Therefore, it can be adjusted by changing the charge amount ratio, type, etc. of the precursor (monomer / oligomer) that induces the structural unit during the polymerization.
  • the proportion of the structural unit containing an ion exchange group is increased in the polymer, the ion exchange capacity of the obtained electrolyte membrane is increased and the proton conductivity is increased, but the water resistance tends to be reduced.
  • the proportion of the structural unit is reduced, the ion exchange capacity of the obtained electrolyte membrane is reduced and the water resistance is increased, but the proton conductivity tends to be lowered.
  • the said electrolyte membrane can be manufactured by including the process of apply
  • the composition can be prepared by applying the composition onto a substrate made of metal, glass, plastic such as polyethylene terephthalate, and then drying the applied composition.
  • a substrate is preferably a substrate that can be peeled off from the electrolyte membrane.
  • a reinforcing layer made of a porous material, a sheet-like fibrous substance, or the like is impregnated or applied with a composition containing the polymer and a solvent that dissolves the polymer. It may be an electrolyte membrane containing a reinforcing layer, or an electrolyte membrane containing fibers, filler-like reinforcing materials, and the like.
  • the electrolyte membrane is made of a compound having a high platinum affinity (eg, a compound containing a sulfur atom), a metal-containing compound such as tin oxide or tin ion, and a metal ion as necessary, as long as the effects of the present invention are not impaired.
  • An additive such as at least one metal component selected from the group may be included.
  • the electrolyte membrane-forming composition further includes inorganic acids such as sulfuric acid and phosphoric acid; phosphate glass; tungstic acid; phosphate hydrate; ⁇ -alumina proton-substituted product Inorganic proton conductor particles such as proton-introduced oxide; organic acid containing carboxylic acid; organic acid containing sulfonic acid; organic acid containing phosphonic acid;
  • the thickness of the electrolyte membrane may be the same as that of an electrolyte membrane usually used in a fuel cell or a water electrolysis apparatus, but is preferably 3 to 200 ⁇ m, more preferably 5 to 150 ⁇ m.
  • Examples of the electrolyte membrane include a membrane containing one or more kinds of polymers having a sulfonic acid group from the viewpoint of obtaining a membrane-electrode assembly excellent in power generation performance, for example, ion exchange groups.
  • Examples of the polymer include aliphatic heavy polymers such as polyacetal, polyethylene, polypropylene, acrylic resin, polystyrene, polystyrene-graft-ethylenetetrafluoroethylene copolymer, polystyrene-graft-polytetrafluoroethylene, and aliphatic polycarbonate.
  • Polymers in which ion exchange groups such as sulfonic acid groups and phosphonic acid groups are introduced into the polymer polyester, polysulfone, polyphenylene ether, polyetherimide, aromatic polycarbonate, polyether ether ketone, polyether ketone, polyether ketone ketone, Polyether ether sulfone, polyether sulfone, polycarbonate, polyphenylene sulfide, aromatic polyamide, aromatic polyamideimide, aromatic polyimide, polybenzoxa
  • a polymer in which an ion-exchange group such as a sulfonic acid group or a phosphonic acid group is introduced into an aromatic polymer having an aromatic ring in a part or all of the main chain, such as alcohol, polybenzothiazole, and polybenzimidazole. Can be mentioned.
  • a known polymer can be used as the polymer, and is not particularly limited.
  • Nafion registered trademark, manufactured by DuPont
  • Aciplex registered trademark, manufactured by Asahi Kasei Kogyo Co., Ltd.
  • Flemion A registered trademark, manufactured by Asahi Glass Co., Ltd.
  • a fluorinated carbon-based high molecular polymer having a sulfonic acid group commercially available
  • polyaromatic hydrocarbon-based, polyetheretherketone-based, polyphenylene sulfide-based A high molecular polymer having an aromatic ring such as a polyimide-based or polybenzazole-based main chain skeleton and a sulfonic acid group can be used.
  • the polymer (1) is a polymer having a structural unit having a proton conductive group and a hydrophobic structural unit, and is a polymer or an oligomer.
  • the structural unit having a proton conductive group may be simply a proton conductive group, and examples of the proton conductive group include a sulfonic acid group, a phosphonic acid group, a carboxy group, and a bissulfonylimide group. And sulfonic acid groups are preferred.
  • the polymer (1) is a polymer comprising a hydrophilic segment (A1) serving as a structural unit having a proton conductive group and a hydrophobic segment (B1) serving as a hydrophobic structural unit. It is preferable.
  • the polymer (1) may be a block polymer or a random polymer, but an electrolyte membrane that is more excellent in power generation, water electrolysis performance, and dimensional stability during a wet and dry cycle is obtained. From the viewpoint of being obtained, a block copolymer of the hydrophilic segment (A1) and the hydrophobic segment (B1) is preferable.
  • the hydrophilic segment (A1) is not particularly limited as long as it has a proton conductive group and exhibits hydrophilicity.
  • the hydrophilic segment (A1) has an aromatic ring in the main chain and a proton conductive group such as a sulfonic acid group. From the point that an electrolyte membrane having high continuity of the hydrophilic segment and high proton conductivity can be obtained (hereinafter referred to as “structural unit”). (5) ”) is preferable, and a segment composed of the structural unit (5) is more preferable.
  • the hydrophilic segment (A1) may consist of only one type of structural unit or may contain two or more types of structural units.
  • Ar 11 , Ar 12 and Ar 13 are each independently a halogen atom, a nitrile group, a monovalent hydrocarbon group having 1 to 20 carbon atoms or a monovalent halogenated carbon atom having 1 to 20 carbon atoms.
  • R 18 and R 19 each independently represents a hydrogen atom or a protecting group. However, at least one of all R 18 and R 19 contained in the structural unit (5) is a hydrogen atom.
  • x 1 independently represents an integer of 0 to 6
  • x 2 represents an integer of 1 to 7
  • a represents 0 or 1
  • b represents an integer of 0 to 20.
  • the protecting group refers to an ion, atom or atomic group used for the purpose of temporarily protecting a reactive group (—SO 3 — or —SO 3 ⁇ ).
  • a reactive group —SO 3 — or —SO 3 ⁇
  • Specific examples include an alkali metal atom, an aliphatic hydrocarbon group, an alicyclic group, an oxygen-containing heterocyclic group, and a nitrogen-containing cation.
  • the hydrophilic segment (A1) includes, in addition to the structural unit (5) having a sulfonic acid group, as a structural unit having a proton conductive group other than a sulfonic acid group, for example, a structural unit having a phosphonic acid group, Aromatic structural units having a nitrogen-containing heterocyclic ring described in Kaikai 2011-089036 and International Publication No. 2007/010731 may be included.
  • hydrophobic segment (B1) is not particularly limited as long as it is a hydrophobic segment.
  • the hydrophilic segment (B1) may be composed of only one type of structural unit or may include two or more types of structural units.
  • the hydrophobic segment (B1) preferably includes a hydrophobic segment that has an aromatic ring in the main chain and does not contain a proton conductive group such as a sulfonic acid group, and an electrolyte membrane that is more excellent in suppressing hot water swelling.
  • structural unit (1) the structural unit represented by the following formula (1)
  • structural unit (2) the structural unit represented by the following formula (2)
  • structural unit (3 ′) a structural unit represented by the following formula (3 ′)
  • the segment is preferably a segment composed of at least one structural unit selected from the group consisting of the structural unit (1) and the structural unit (2).
  • the polymer (1) contains any of the structural units (1) to (3 ′), in particular, the structural unit (1) or (2), the hydrophobicity of the polymer is remarkably improved. . Therefore, it is possible to obtain an electrolyte membrane having excellent hot water resistance while having proton conductivity similar to the conventional one. Moreover, when segment (B1) contains a nitrile group, an electrolyte membrane with high toughness and mechanical strength can be produced.
  • the segment (B1) contains the structural unit (1)
  • the segment (B1) includes the polymer (1) obtained by increasing the rigidity and increasing the aromatic ring density.
  • the hot water resistance, radical resistance to peroxide, gas barrier properties, mechanical strength, dimensional stability, etc. of the electrolyte membrane can be improved.
  • the hydrophobic segment (B1) may include one type of structural unit (1), or may include two or more types of structural units (1).
  • At least one substitutable carbon atom constituting the aromatic ring may be replaced with a nitrogen atom, and R 21 is independently a halogen atom, a hydroxy group, a nitro group, a nitrile group or R 22 —.
  • E- is a direct bond, —O—, —S—, —CO—, —SO 2 —, —CONH—, —COO—, —CF 2 —, —CH 2 —, —C (CF 3 ) 2 -or -C (CH 3 ) 2- ;
  • R 22 represents an alkyl group, a halogenated alkyl group, an alkenyl group, an aryl group, a halogenated aryl group or a nitrogen-containing heterocyclic ring, and at least one of these groups one of the hydrogen atoms, further hydroxy group, a nitro group, may be substituted with at least one group selected from the group consisting of nitrile group, and R 22 -E-.
  • the plurality of E may be the same or different, and a plurality of R 22 (however, The structure of the portion excluding the structural difference caused by the substitution may be the same or different.
  • c 1 and c 2 independently represent an integer of 0 or 1 or more, d represents an integer of 1 or more, and e independently represents an integer of 0 to (2c 1 + 2c 2 +4).
  • the hydrophobic segment (B1) contains the structural unit (2) because radical resistance to peroxide and the like is improved and an electrolyte membrane excellent in power generation / water electrolysis durability can be obtained. Moreover, when the hydrophobic segment (B1) contains the structural unit (2), an appropriate flexibility (flexibility) can be imparted to the segment (B1), and the electrolyte membrane containing the resulting polymer Toughness can be improved.
  • the hydrophobic segment (B1) may include one type of structural unit (2), or may include two or more types of structural units (2).
  • At least one substitutable carbon atom constituting the aromatic ring may be replaced with a nitrogen atom, and R 31 is independently a halogen atom, a hydroxy group, a nitro group, a nitrile group or R 22 —.
  • E- (E and R 22 are each independently synonymous with E and R 22 in the formula (1)), and a plurality of R 31 may be bonded to form a ring structure.
  • f represents 0 or an integer of 1 or more
  • g represents an integer of 0 to (2f + 4).
  • the structural unit represented by Formula (2) is a structural unit other than the structural unit represented by Formula (1).
  • the hydrophobic segment (B1) may include one type of structural unit (3 ′) or may include two or more types of structural units (3 ′).
  • a ′ and D ′ are each independently a direct bond, —O—, —S—, —CO—, —SO 2 —, —SO—, —CONH—, —COO—, — (CF 2 ) i — (i is an integer from 1 to 10), — (CH 2 ) j — (j is an integer from 1 to 10), —CR ′ 2 — (R ′ is an aliphatic hydrocarbon) Group, aromatic hydrocarbon group or halogenated hydrocarbon group.), Cyclohexylidene group or fluorenylidene group, B ′ independently represents an oxygen atom or a sulfur atom, and R 1 to R 16 each independently represents a hydrogen atom, a halogen atom, a hydroxy group, a nitro group, a nitrile group or R 22 -E- (E and R 22 are Each independently has the same meaning as E and R 22 in formula (1), and a plurality of groups of R 1
  • the polymer (1) can be synthesized by a conventionally known method and is not particularly limited.
  • the compound serving as the structural unit is reacted in the presence of a catalyst or a solvent.
  • it can be synthesized by introducing a proton conductive group by a method such as conversion of a sulfonic acid ester group or the like to a sulfonic acid group, or sulfonation using a sulfonating agent.
  • the catalyst layer is not particularly limited, and a known layer can be used.
  • the catalyst layer includes a catalyst, an ion exchange resin electrolyte, and the like.
  • a noble metal catalyst such as platinum, palladium, gold, ruthenium or iridium is preferably used.
  • the noble metal catalyst may contain two or more elements such as an alloy or a mixture.
  • a precious metal catalyst a catalyst supported on high specific surface area carbon fine particles may be used.
  • the ion exchange resin electrolyte functions as a binder component for binding the catalyst, and efficiently supplies ions generated by the reaction on the catalyst to the electrolyte membrane (electrolyte membrane laminate) at the anode electrode, and at the cathode electrode.
  • a substance that efficiently supplies ions supplied from the electrolyte membrane (electrolyte membrane laminate) to the catalyst is preferable.
  • the ion exchange resin electrolyte is preferably a polymer having a proton exchange group in order to improve proton conductivity in the catalyst layer.
  • proton exchange groups contained in such a polymer include, but are not particularly limited to, sulfonic acid groups, carboxylic acid groups, and phosphoric acid groups.
  • a polymer having such a proton exchange group is also used without any particular limitation, but a polymer having a proton exchange group composed of a fluoroalkyl ether side chain and a fluoroalkyl main chain, and a sulfonic acid group can be used.
  • An aromatic hydrocarbon polymer having the same is preferably used.
  • the polymer exemplified in the column of the electrolyte membrane may be used as an ion exchange resin electrolyte, and further includes a polymer having a proton exchange group and containing a fluorine atom, another polymer obtained from ethylene, styrene, and the like. These copolymers or blends may be used.
  • an ion exchange resin electrolyte a known one can be used without particular limitation, and may be, for example, Nafion.
  • the catalyst layer may further contain additives such as carbon fiber and a resin not having an ion exchange group, if necessary.
  • This additive is preferably a component having high water repellency, and examples thereof include a fluorine-containing copolymer, a silane coupling agent, a silicone resin, a wax, and polyphosphazene. It is a coalescence.
  • the thickness of the catalyst layer may be the same as that of a catalyst layer usually used in a fuel cell or a water electrolysis apparatus, but is preferably 1 to 100 ⁇ m, more preferably 3 to 50 ⁇ m.
  • the gas diffusion layer is not particularly limited and a known one can be used, and examples thereof include a porous substrate or a laminated structure of a porous substrate and a microporous layer.
  • the gas diffusion layer is composed of a laminated structure of a porous substrate and a microporous layer, the microporous layer is preferably in contact with the catalyst layer.
  • the gas diffusion layer preferably contains a fluoropolymer in order to impart water repellency.
  • the thickness of the gas diffusion layer may be the same as that of a gas diffusion layer usually used in fuel cells, but is preferably 50 to 400 ⁇ m, more preferably 100 to 300 ⁇ m.
  • the polymer electrolyte fuel cell according to the present invention has the membrane-electrode assembly. For this reason, the fuel cell according to the present invention is particularly excellent in durability, a decrease in power generation performance over time is suppressed, and stable power generation is possible over a long period of time.
  • the fuel cell according to the present invention includes at least one electricity generation unit including a separator, located on both outer sides of at least one membrane-electrode assembly; a fuel supply unit for supplying fuel to the electricity generation unit And an oxidant supply part for supplying an oxidant to the electricity generation part.
  • separator those used in ordinary fuel cells can be used. Specifically, a carbon type separator, a metal type separator, etc. are mentioned.
  • the fuel cell of the present invention may be a single cell or a stack cell in which a plurality of single cells are connected in series.
  • a known method can be used as the stacking method. Specifically, it may be flat stacking in which single cells are arranged in a plane, and a fuel or oxidant flow path is a stack in which single cells are stacked via separators formed on the back surface of the separator. Polar stacking may be used.
  • the water electrolysis apparatus according to the present invention has the membrane-electrode assembly. For this reason, the water electrolysis apparatus according to the present invention is particularly excellent in durability, suppresses a decrease in performance over time, and enables stable electrolysis over a long period of time.
  • the ion exchange capacity of the polymers obtained in the following synthesis examples was measured as follows.
  • the polymer obtained in the following synthesis example was immersed in deionized water to completely remove the acid remaining in the polymer, and then immersed in 2 mL of 2N saline per 1 mg of the polymer.
  • a hydrochloric acid aqueous solution was prepared by ion exchange. This hydrochloric acid aqueous solution was neutralized with a standard aqueous solution of 0.001N sodium hydroxide using phenolphthalein as an indicator.
  • the polymer after ion exchange was washed with deionized water, dried in vacuum at 110 ° C. for 2 hours, and the dry weight was measured.
  • Ion exchange capacity titration amount of sodium hydroxide (mmol) / dry weight of polymer (g)
  • NMP buffer solution N-methyl-2-pyrrolidone buffer solution
  • TOSOH HLC-8220 manufactured by Tosoh Corporation
  • Mn number average molecular weight
  • Mw weight average molecular weight in terms of polystyrene were determined by gel permeation chromatography (GPC) using TSKgel ⁇ -M (manufactured by Tosoh Corporation) as a column.
  • the NMP buffer solution was prepared at a ratio of NMP (3 L) / phosphoric acid (3.3 mL) / lithium bromide (7.83 g).
  • THF tetrahydrofuran
  • TOSOH HLC-8220 manufactured by Tosoh Corporation
  • TSKgel ⁇ -M manufactured by Tosoh Corporation
  • the resulting reaction solution was allowed to cool and then diluted by adding 100 mL of toluene.
  • the precipitate of the inorganic compound produced as a by-product was removed by filtration, and the filtrate was put into 2 L of methanol.
  • the precipitated product was collected by filtration, dried, and dissolved in 250 mL of THF.
  • the obtained solution was poured into 2 L of methanol and reprecipitated to obtain 107 g of the target compound (precipitate).
  • the Mn in terms of polystyrene determined by GPC (solvent: THF) of the obtained target compound was 7,300.
  • the obtained compound was an oligomer represented by the following structural formula.
  • 2,3-dimethyl-1-propanol (neopentyl alcohol) (38.8 g, 440 mmol) was added to pyridine (300 mL) and cooled to about 10 ° C.
  • the crude crystals obtained above were gradually added thereto over about 30 minutes. After the total amount was added, the reaction was further stirred for 30 minutes. After the reaction, the reaction solution was poured into 1000 mL of hydrochloric acid water, and the precipitated solid was collected. The obtained solid was dissolved in ethyl acetate, washed successively with aqueous sodium bicarbonate solution and brine, dried over magnesium sulfate, and ethyl acetate was distilled off to obtain crude crystals. This was recrystallized from methanol to obtain white crystals of neopentyl 3- (2,5-dichlorobenzoyl) benzenesulfonate represented by the following structural formula.
  • the dried product is placed in a 2 L three-necked flask equipped with a stirrer, thermometer, cooling tube, Dean-Stark tube and nitrogen-introduced three-way cock, and stirred at 100 ° C. in 1 L of toluene to retain residual moisture. It was dissolved while leaving. After allowing to cool, the precipitated crystals were filtered to obtain 142 g of pale yellow 2,5-dichloro-4 ′-(2-pyridinyloxy) benzophenone represented by the following structural formula in a yield of 83%.
  • the obtained mixture was heated with stirring (finally heated to 82 ° C.) and reacted for 3 hours. An increase in viscosity in the system was observed during the reaction.
  • the solution after the reaction was diluted with 175 mL of DMAc, stirred for 30 minutes, and then filtered using Celite as a filter aid.
  • the obtained filtrate was put into a 1 L three-necked flask equipped with a stirrer, to which 24.4 g (281 mmol) of lithium bromide was added in 1/3 portions at intervals of 1 hour. The reaction was carried out at 5 ° C. for 5 hours under a nitrogen atmosphere. After the reaction, the mixture was cooled to room temperature, poured into 4 L of acetone and solidified.
  • the coagulated product was collected by filtration, air-dried, pulverized with a mixer, put into 1500 mL of 1N sulfuric acid, and washed with stirring. After filtration, the filtrate is washed with ion-exchanged water until the pH of the washing liquid becomes 5 or higher, and then dried at 80 ° C. overnight, and 38.0 g of a polymer having a sulfonic acid group into which a target basic unit has been introduced. Got.
  • the ion exchange capacity of this polymer was 2.33 meq / g.
  • the obtained polymer having a sulfonic acid group was a compound (resin A) represented by the following structural formula. Moreover, the glass transition temperature of the obtained compound was 190 degreeC.
  • the addition system solution was added to the obtained reaction system under nitrogen. After heating the system to 60 ° C. with stirring, 15.39 g (235.43 mmol) of zinc and 2.05 g (3.14 mmol) of bis (triphenylphosphine) nickel dichloride were added to further promote the polymerization, and 80 ° C. For 3 hours. An exotherm and an increase in viscosity were observed with the reaction.
  • the obtained solution was diluted with 273 mL of DMAc and filtered using Celite as a filter aid.
  • 29.82 g (343.33 mmol) of lithium bromide was added and reacted at 100 ° C. for 7 hours.
  • the reaction solution was cooled to room temperature and poured into 3.2 L of water to be solidified.
  • Acetone was added to the coagulated product, and washing and filtration were performed 4 times with stirring.
  • the washed product was washed and filtered seven times while stirring with 1N sulfuric acid. Further, the washed product was washed and filtered with deionized water until the pH of the washing solution reached 5 or higher.
  • the obtained washed product was dried at 75 ° C. for 24 hours to obtain 26.3 g of a polymer having a target sulfonic acid group.
  • the polystyrene-equivalent molecular weight measured by GPC (solvent: NMP buffer solution) of the polymer having a sulfonic acid group was Mn of 53,000 and Mw of 120,000. Moreover, the ion exchange capacity of this polymer was 2.30 meq / g.
  • p is a value calculated from the charged amount of the raw material forming the structural unit.
  • the separated organic layer was washed successively with 740 mL of water, 740 mL of a 10 wt% aqueous potassium carbonate solution and 740 mL of saturated brine, and then the solvent was distilled off under reduced pressure.
  • the residue was purified by silica gel column chromatography (chloroform solvent). Subsequently, the solvent was distilled off from the obtained eluate under reduced pressure. Thereafter, the residue was dissolved in 970 mL of hexane at 65 ° C. and then cooled to room temperature. The precipitated solid was separated by filtration. The separated solid was dried to obtain 99.4 g of a white solid of 2,5-dichlorobenzenesulfonic acid (2,2-dimethylpropyl) represented by the following formula in a yield of 82.1%.
  • the nickel-containing solution was poured into the obtained liquid, and a polymerization reaction was performed at 70 ° C. for 4 hours.
  • the reaction mixture was added to 60 mL of methanol, and then 60 mL of a 6 mol / L hydrochloric acid aqueous solution was added to the resulting mixture and stirred for 1 hour.
  • the precipitated solid was separated by filtration and dried to obtain 1.62 g of a grayish white polymerization intermediate.
  • 1.62 g of the obtained polymerization intermediate was added to a mixed solution of 1.13 g (13.0 mmol) of lithium bromide and 56 mL of NMP, and reacted at 120 ° C. for 24 hours.
  • the reaction mixture was poured into 560 mL of 6 mol / L hydrochloric acid aqueous solution and stirred for 1 hour.
  • the precipitated solid was separated by filtration.
  • the separated solid was dried to obtain 0.42 g of an off-white polymer having a target sulfonic acid group.
  • the polystyrene-converted molecular weight of the polymer having a sulfonic acid group measured by GPC (solvent: NMP) was 75,000 for Mn and 173,000 for Mw.
  • the ion exchange capacity of this polymer was 1.95 meq / g.
  • the obtained polymer having a sulfonic acid group was a compound (resin C) having the following structural unit.
  • the glass transition temperature of the obtained compound was 225 degreeC.
  • n and n are each independently a value calculated from the charged amount of the raw material forming each structural unit.
  • a cathode catalyst paste In an 80 mL PTFE container, 80 g of zirconia balls (YTZ balls) having a diameter of 5 mm, platinum-supported carbon particles (“TEC10E50E” manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., Pt: 45.6% by mass), and distilled water 3 .64 g was added and kneaded at 200 rpm for 10 minutes using a planetary ball mill (P-5). Thereafter, 11.91 g of n-propyl alcohol and Nafion D2020 (4.40 g) were further added and kneaded at 200 rpm for 30 minutes, and then the zirconia balls were removed to obtain a cathode catalyst paste.
  • YTZ balls zirconia balls having a diameter of 5 mm
  • platinum-supported carbon particles (“TEC10E50E” manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., Pt: 45.6% by mass)
  • the cathode catalyst paste was applied with a doctor blade and then dried to obtain a cathode catalyst transfer sheet.
  • the amount of Pt in the cathode catalyst transfer sheet was 0.5 mg / cm 2 .
  • the anode catalyst paste was applied on the underlayer on the underlayer coating gas diffusion layer with a doctor blade so that the total amount of Pt and Ru was 0.5 mg / cm 2, and then dried at 80 ° C. for 15 minutes.
  • An anode gas diffusion electrode was prepared.
  • the cathode catalyst paste After applying the cathode catalyst paste on the underlayer on the underlayer coating gas diffusion layer with a doctor blade so that the amount of Pt is 0.5 mg / cm 2 , the cathode catalyst paste is dried at 80 ° C. for 15 minutes. Was made.
  • the membrane electrode assembly A1 was incorporated into an evaluation cell (“JFC-025-01H” manufactured by Chemix Co., Ltd.) to produce a fuel cell having an effective area of 25 cm 2 .
  • the temperature of the pre-treated fuel cell is set to 80 ° C., and pure hydrogen gas containing water vapor with a dew point of 60 ° C. is used on the anode side so that the utilization rate of pure hydrogen gas is 70%.
  • Supplyed to the cathode side water containing water vapor with a dew point of 60 ° C. was supplied so that the utilization rate of oxygen was 40%, and the voltage when power was generated at 1 A / cm 2 was measured.
  • a plurality of fuel cells were prepared in the same manner as described above, and the voltage was measured in the same manner as described above using each fuel cell, and the pass rate was calculated.
  • the results are shown in Table 1.
  • the pass rate is calculated by calculating an average value of the voltages of (5-1) and (5-2) measured using a plurality of fuel cells, and (5-1) and (5) When the voltage value of -2) is within ⁇ 10 mV of the average value, the fuel cell is regarded as acceptable and the ratio of the acceptable fuel cells to a plurality of fuel cells is calculated.
  • Table 2 shows the average voltages of (5-1) and (5-2) at this time.
  • the temperature of the fuel cell is set to 80 ° C.
  • nitrogen gas containing water vapor having a dew point of 90 ° C. is supplied to the anode side at 0.5 L / min
  • water vapor having a dew point of 90 ° C. is fed to the cathode side.
  • dry nitrogen gas was supplied to the anode side at 0.5 L / min
  • dry nitrogen gas was supplied to the cathode side at 1.0 L / min.
  • a dry-wet cycle was performed in which the cycle of supplying for 30 minutes was one cycle.
  • the hydrogen crossover current was measured every 20 cycles, and when the current value increased to 10 times the initial value, it was determined that the membrane electrode assembly had broken. Table 1 shows the cumulative number of cycles until membrane breakage of the membrane electrode assembly.
  • Comparative Example 3 (2) Measurement of Glass Transition Temperature The glass transition temperature of a commercially available 50 ⁇ m thick Nafion film (manufactured by DuPont, NRE212CS) measured by the same method as in Comparative Example 1 was 75 ° C.
  • Example 1 Film Formation A film substrate laminate A2 is obtained in the same manner as in Comparative Example 1 except that the film thickness after peeling from the substrate (the film thickness of the resin A film 2) is 15 ⁇ m. It was. Two membrane substrate laminates A2 were prepared.
  • the cathode catalyst paste was applied with a doctor blade, dried at 80 ° C. for 15 minutes, The membrane catalyst layer laminate A2C was obtained by peeling.
  • the amount of Pt in the cathode catalyst layer was 0.5 mg / cm 2 .
  • a 5 cm ⁇ 5 cm gas diffusion layer 25BC manufactured by SGL CARBON is overlaid on the catalyst paste application surface of the membrane catalyst layer laminate A2C, and hot-pressed at 140 ° C. for 5 minutes under a pressure of 60 kg / cm 2 to obtain a membrane electrode assembly A2C. Produced.
  • Example 2 (1) Film Formation A film substrate laminate B2 was obtained in the same manner as in Comparative Example 2 except that the cast coating was performed so that the film thickness after peeling from the substrate was 15 ⁇ m. Two membrane substrate laminates B2 were prepared.
  • the membrane electrode assembly B2A and the membrane electrode assembly B2C are stacked so that the substrate peeling surfaces face each other, and are assembled in an evaluation cell (“JFC-025-01H”) with an effective area of 25 cm 2 .
  • JFC-025-01H evaluation cell
  • a fuel cell was prepared, and a power generation evaluation test and a wet / dry cycle test were performed in the same manner as in Comparative Example 1.
  • Example 3 (1) Film Formation A film substrate laminate B3 was obtained in the same manner as in Comparative Example 2 except that the film was peel-coated from the substrate so that the film thickness was 10 ⁇ m. Moreover, the film
  • the cathode catalyst paste was applied with a doctor blade, dried at 80 ° C. for 15 minutes, and then peeled off from the substrate.
  • a membrane catalyst layer laminate B4C was obtained.
  • the amount of Pt in the cathode catalyst layer was 0.5 mg / cm 2 .
  • a 5 cm ⁇ 5 cm gas diffusion layer 25BC manufactured by SGL CARBON is overlaid on the catalyst paste application surface of the membrane catalyst layer laminate B4C, and hot-pressed at 140 ° C. for 5 minutes under a pressure of 60 kg / cm 2 to obtain the membrane electrode assembly B4C. Produced.
  • Example 4 (3) Production of membrane electrode assembly
  • the anode catalyst paste was applied with a doctor blade using a mask having an opening of 5 cm ⁇ 5 cm on the coating film side of the membrane substrate laminate B4 obtained in Example 3. After drying at 80 ° C. for 15 minutes, the film was peeled from the substrate to obtain a membrane catalyst layer laminate B4A.
  • the total amount of Pt and Ru in the anode catalyst layer was 0.5 mg / cm 2 .
  • a 5 cm ⁇ 5 cm gas diffusion layer 25BC manufactured by SGL CARBON was overlaid on the catalyst paste application surface of the membrane catalyst layer laminate B4A, and hot-pressed at 140 ° C. for 5 minutes under a pressure of 60 kg / cm 2 to obtain a membrane electrode assembly B4A. Produced.
  • the membrane catalyst layer laminate B3C was obtained by peeling from the substrate.
  • the amount of Pt in the cathode catalyst layer was 0.5 mg / cm 2 .
  • a 5 cm ⁇ 5 cm gas diffusion layer 25BC manufactured by SGL CARBON is overlaid on the catalyst paste application surface of the membrane catalyst layer laminate B3C, and hot-pressed at 140 ° C. for 5 minutes under a pressure of 60 kg / cm 2 to obtain a membrane electrode assembly B3C.
  • the membrane electrode assembly B4A and the membrane electrode assembly B3C are stacked so that the substrate peeling surfaces face each other, and are assembled in an evaluation cell (“JFC-025-01H”) with an effective area of 25 cm 2 .
  • JFC-025-01H evaluation cell
  • a fuel cell was prepared, and a power generation evaluation test and a wet / dry cycle test were performed in the same manner as in Comparative Example 1.
  • Example 5 (4) Fabrication of fuel cell
  • the membrane electrode assembly B3A obtained in Example 3 and the membrane electrode assembly B3C obtained in Example 4 were opposed to each other with the substrate release surface facing each other.
  • the resin B film 3 obtained by peeling the base material from the film base material laminate B3 obtained in the above is stacked so as to be sandwiched, and incorporated in an evaluation cell (“JFC-025-01H”), with an effective area of 25 cm 2 .
  • JFC-025-01H evaluation cell
  • a fuel cell was fabricated.
  • a power generation evaluation test and a wet / dry cycle test were performed in the same manner as in Comparative Example 1.
  • Example 6 (2) Measurement of Glass Transition Temperature The glass transition temperature of a 25 ⁇ m-thick Nafion film (manufactured by DuPont, NRE211CS) measured by the same method as in Comparative Example 1 was 75 ° C.
  • the cathode catalyst paste was applied with a doctor blade, dried at 80 ° C. for 15 minutes, and then peeled off from the base material.
  • a membrane catalyst layer laminate N2C was obtained.
  • the amount of Pt in the cathode catalyst layer was 0.5 mg / cm 2 .
  • a 5 cm ⁇ 5 cm gas diffusion layer 25BC made by SGL CARBON is overlaid on the catalyst paste application surface of the membrane catalyst layer laminate N2C, and hot-pressed at 140 ° C. for 5 minutes under a pressure of 60 kg / cm 2 to obtain a membrane electrode assembly N2C.
  • Example 7 (4) Fabrication of fuel cell
  • the membrane electrode assembly A2A obtained in Example 1 and the membrane electrode assembly B2C obtained in Example 2 were overlapped so that the substrate peeling surfaces face each other, and an evaluation cell ( A fuel cell having an effective area of 25 cm 2 was fabricated in “JFC-025-01H”), and a power generation evaluation test and a wet / dry cycle test were performed in the same manner as in Comparative Example 1.
  • Example 8 Film Formation A film substrate laminate B5 was obtained in the same manner as in Comparative Example 2 except that cast coating was performed so that the film thickness after peeling from the substrate was 25 ⁇ m.
  • Example 9 (3) Production of membrane electrode assembly
  • the cathode catalyst paste was applied with a doctor blade using a mask having an opening of 5 cm ⁇ 5 cm on the coating film side of the membrane substrate laminate B5 obtained in Example 8. After drying at 80 ° C. for 15 minutes, the film was peeled from the substrate to obtain a membrane catalyst layer laminate B5C.
  • the amount of Pt in the cathode catalyst layer was 0.5 mg / cm 2 .
  • a 5 cm ⁇ 5 cm gas diffusion layer 25BC manufactured by SGL CARBON is overlaid on the catalyst paste application surface of the membrane catalyst layer laminate B5C, and hot-pressed at 140 ° C. for 5 minutes under a pressure of 60 kg / cm 2 to obtain a membrane electrode assembly B5C.
  • Example 10 (4) Fabrication of fuel cell
  • the membrane electrode assembly B3A obtained in Example 3 and the membrane electrode assembly B2C obtained in Example 2 are opposed to each other with the base material peeling surface facing each other, and Nafion NRE211CS is interposed therebetween.
  • the fuel cells having an effective area of 25 cm 2 were fabricated by stacking them so as to be sandwiched and incorporating them into an evaluation cell (“JFC-025-01H”). Using the obtained fuel cell, a power generation evaluation test and a wet / dry cycle test were performed in the same manner as in Comparative Example 1.
  • Example 11 (4) Fabrication of fuel cell
  • the membrane electrode assembly B3A obtained in Example 3 and the membrane electrode assembly N2C obtained in Example 6 were opposed to each other with the substrate release surface facing each other.
  • the resin B film 2 from which the base material was peeled off was stacked on the membrane base material laminate B2 obtained in step 1 and incorporated in the evaluation cell (“JFC-025-01H”) to produce a fuel cell with an effective area of 25 cm 2. did.
  • a power generation evaluation test and a wet / dry cycle test were performed in the same manner as in Comparative Example 1.
  • Example 12 (4) Fabrication of fuel cell
  • the membrane electrode assembly N2A obtained in Example 6 and the membrane electrode assembly B3C obtained in Example 4 face each other with the substrate peeling surface facing each other and Example 11 therebetween.
  • the resin B film 2 obtained in (1) was stacked so as to be sandwiched, and incorporated in an evaluation cell (“JFC-025-01H”) to produce a fuel cell having an effective area of 25 cm 2 .
  • JFC-025-01H evaluation cell
  • a power generation evaluation test and a wet / dry cycle test were performed in the same manner as in Comparative Example 1.
  • Example 13 (3) Production of membrane electrode assembly Using a mask having an opening of 5 cm x 5 cm on the coating film side of the membrane substrate laminate B2 obtained by the same method as in Example 2, the anode catalyst paste was used as a doctor blade. Furthermore, the cathode catalyst paste was applied with a doctor blade using a mask having an opening of 5 cm ⁇ 5 cm in a place not in contact with the anode catalyst paste application part on the coating film side of the membrane substrate laminate B2. These paste application parts were dried at 80 ° C. for 15 minutes and then peeled from the substrate to obtain a membrane catalyst layer laminate B2AC. The total amount of Pt and Ru in the anode catalyst layer of this laminate was 0.5 mg / cm 2 , and the Pt amount in the cathode catalyst layer was 0.5 mg / cm 2 .
  • a gas diffusion layer 25BC made of SGL CARBON having a size of 5 cm ⁇ 5 cm was superimposed on the surface coated with the cathode catalyst paste and hot-pressed at 140 ° C. for 5 minutes under a pressure of 60 kg / cm 2 to prepare a membrane electrode assembly B2AC.
  • the catalyst coating surface of the anode catalyst transfer sheet is directed to the coating film side of one membrane substrate laminate A3 and pressed under conditions of 150 ° C., 3 MPa, 5 minutes, and then a PTFE sheet. And the polyimide film were peeled off to obtain a membrane catalyst layer laminate A3A.
  • a gas diffusion layer 25BC manufactured by SGL CARBON was placed on the PTFE sheet release surface of the membrane catalyst layer laminate A3A, and hot-pressed at 140 ° C. for 5 minutes under a pressure of 60 kg / cm 2 to prepare a membrane electrode assembly A3A.
  • the catalyst coated surface of the cathode catalyst transfer sheet is directed to the coating film side of the other film substrate laminate A3, pressed under conditions of 150 ° C., 3 MPa, and 5 minutes, and then the PTFE sheet and the polyimide film are peeled off to form a film.
  • Catalyst layer laminate A3C was obtained.
  • a gas diffusion layer 25BC manufactured by SGL CARBON was placed on the PTFE sheet release surface of the membrane catalyst layer laminate A3C, and hot-pressed at 140 ° C. for 5 minutes under a pressure of 60 kg / cm 2 to prepare a membrane electrode assembly A3C.
  • the membrane electrode assembly A3A and the membrane electrode assembly A3C are stacked so that the substrate peeling surfaces face each other, and are assembled in an evaluation cell (“JFC-025-01H”) with an effective area of 25 cm 2 .
  • JFC-025-01H evaluation cell
  • a fuel cell was prepared, and a power generation evaluation test and a wet / dry cycle test were performed in the same manner as in Comparative Example 1.
  • Example 15 (3) Production of membrane electrode assembly
  • the catalyst-coated surface of the anode catalyst transfer sheet was placed on the resin A membrane 3 obtained in Example 14 and pressed under conditions of 150 ° C., 3 MPa, 5 minutes, and then a PTFE sheet was used.
  • the film catalyst layer laminate A4A was obtained by peeling off.
  • a gas diffusion layer 25BC manufactured by SGL CARBON was placed on the PTFE sheet release surface of the membrane catalyst layer laminate A4A, and hot-pressed at 140 ° C. for 5 minutes under a pressure of 60 kg / cm 2 to prepare a membrane electrode assembly A4A.
  • the catalyst-coated surface of the cathode catalyst transfer sheet was placed on the resin A membrane 3 obtained in Example 14, and pressed under conditions of 150 ° C., 3 MPa, and 5 minutes. Then, the PTFE sheet was peeled off, and the membrane catalyst layer laminate A4C was obtained. Obtained.
  • a gas diffusion layer 25BC manufactured by SGL CARBON was superimposed on the PTFE sheet release surface of the membrane catalyst layer laminate A4C, and hot-pressed at 140 ° C. for 5 minutes under a pressure of 60 kg / cm 2 to prepare a membrane electrode assembly A4C.
  • the membrane electrode assembly A4A and the membrane electrode assembly A4C are stacked so that the surfaces of the resin A membrane 3 face each other, and are assembled in an evaluation cell ("JFC-025-01H"), with an effective area of 25 cm 2 A fuel cell was prepared, and a power generation evaluation test and a wet / dry cycle test were performed in the same manner as in Comparative Example 1.
  • Example 16 (3) Production of membrane electrode assembly
  • the catalyst coated surface of the anode catalyst transfer sheet was placed on the coating film side of the membrane substrate laminate A3 obtained in Example 14, and pressed under conditions of 150 ° C., 3 MPa, and 5 minutes. After that, the PTFE sheet is peeled off, the gas diffusion layer 25BC manufactured by SGL CARBON is overlaid on the PTFE sheet peeling surface, hot-pressed at 140 ° C. for 5 minutes under a pressure of 60 kg / cm 2 , and the polyimide film is peeled off to bond the membrane electrode Body A5A was produced.
  • the catalyst coated surface of the cathode catalyst transfer sheet was placed on the coating film side of the membrane substrate laminate A3 obtained in Example 14 and pressed under conditions of 150 ° C., 3 MPa, 5 minutes, and then the PTFE sheet was peeled off, and PTFE was removed.
  • a gas diffusion layer 25BC manufactured by SGL CARBON was overlaid on the sheet peeling surface, hot-pressed at 140 ° C. for 5 minutes under a pressure of 60 kg / cm 2 , and a polyimide film was peeled off to produce a membrane electrode assembly A5C.
  • Example 17 (3) Production of membrane electrode assembly Membrane catalyst layer laminate A3A and membrane catalyst layer laminate A3C obtained in Example 14 were stacked so that the respective substrate release surfaces face each other, and further each PTFE sheet release surface A gas diffusion layer 25BC manufactured by SGL CARBON was overlaid on the substrate and hot pressed at 140 ° C. for 5 minutes under a pressure of 60 kg / cm 2 to prepare a membrane electrode assembly A6.
  • Example 18 (3) Production of membrane electrode assembly
  • the anode gas diffusion electrode was placed on the coating film side of the membrane substrate laminate A3 obtained in Example 14, and the catalyst-coated surface of the diffusion electrode was in contact with the coating film of the laminate A3.
  • the membrane electrode assembly A7A was produced by peeling the polyimide film after pressing under conditions of 150 ° C., 3 MPa, and 5 minutes.
  • a cathode gas diffusion electrode was stacked on the coating film side of the membrane substrate laminate A3 obtained in Example 14 so that the catalyst-coated surface of the diffusion electrode was in contact with the coating film of the laminate A3, and 150 ° C., 3 MPa, 5 After pressing under the condition of minute, the membrane electrode assembly A7C was produced by peeling off the polyimide film.
  • the membrane electrode assembly A7A and the membrane electrode assembly A7C are stacked so that the substrate peeling surfaces face each other, and are assembled in an evaluation cell (“JFC-025-01H”) with an effective area of 25 cm 2 .
  • JFC-025-01H evaluation cell
  • a fuel cell was prepared, and a power generation evaluation test and a wet / dry cycle test were performed in the same manner as in Comparative Example 1.
  • Example 19 (3) Preparation of membrane electrode assembly
  • the catalyst coated surface of the cathode catalyst transfer sheet was placed on Nafion NRE211CS and pressed under conditions of 120 ° C., 3 MPa, and 1 minute, and then the PTFE sheet was peeled off to form membrane catalyst layer laminate N3C. Obtained.
  • a gas diffusion layer 25BC manufactured by SGL CARBON was placed on the PTFE sheet release surface of the membrane catalyst layer laminate N3C, and hot-pressed at a pressure of 60 kg / cm 2 and 140 ° C. for 5 minutes to obtain a membrane electrode assembly N3C.
  • Example 20 (3) Production of membrane electrode assembly
  • the substrate was peeled from the membrane substrate laminate A2 obtained in Example 1 on the substrate release surface side of the membrane catalyst layer laminate B2A obtained in Example 2.
  • the obtained resin A membrane 2 is overlaid, a gas diffusion layer 25BC manufactured by SGL CARBON is overlaid on the catalyst layer of the membrane catalyst layer laminate B2A, a cathode gas diffusion electrode is applied to the resin A membrane 2 side, and the catalyst is applied to the diffusion electrode.
  • the surfaces were stacked so as to be in contact with the resin A film 2 and pressed under the conditions of 150 ° C., 3 MPa, and 5 minutes to obtain membrane electrode assemblies B2A-A7C.
  • Example 21 Film Formation A film substrate laminate C2 was obtained in the same manner as in Comparative Example 6 except that cast coating was performed so that the film thickness after peeling from the substrate was 15 ⁇ m.
  • the membrane electrode assembly C2A and the membrane electrode assembly C2C are stacked so that the substrate peeling surfaces face each other, and are assembled in an evaluation cell (“JFC-025-01H”) with an effective area of 25 cm 2 .
  • JFC-025-01H evaluation cell
  • a fuel cell was prepared, and a power generation evaluation test and a wet / dry cycle test were performed in the same manner as in Comparative Example 1.
  • Example 22 (3) Production of membrane electrode assembly Two sheets of the resin B film 2 obtained by peeling the substrate from the membrane substrate laminate B2 obtained in Example 2 were stacked, and from both sides of the obtained laminate, The anode catalyst coated surface and the cathode catalyst coated surface are sandwiched between the anode catalyst transfer sheet and the cathode catalyst transfer sheet so as to be in contact with the laminate of the resin B film 2, pressed at 150 ° C., 3 MPa, and 5 minutes, and then PTFE sheet.
  • the gas diffusion layer 25BC manufactured by SGL CARBON was overlaid on the release surface of the PTFE sheet, and hot-pressed at 140 ° C. for 5 minutes under a pressure of 60 kg / cm 2 to prepare a membrane electrode assembly B9D.
  • Example 23 (4) Fabrication of fuel cell Two Nafion NRE211CS membranes are stacked, and the anode gas diffusion electrode and the cathode gas diffusion electrode are further directed to the Nafion NRE211CS membrane side from both sides of the obtained laminate.
  • the resulting laminate was assembled into an evaluation cell (“JFC-025-01H”) to produce a fuel cell with an effective area of 25 cm 2 , and a power generation evaluation test and a wet / dry cycle were performed in the same manner as in Comparative Example 1. A test was conducted.
  • the dissolved solution was cast coated on the anode catalyst layer with a die coater, preliminarily dried at 80 ° C. for 40 minutes, then dried at 120 ° C. for 40 minutes, and immersed in distilled water overnight, and the remaining NMP in the coating film was removed and air-dried.
  • the PTFE sheet and the mask were removed to obtain a membrane catalyst layer laminate A9A. It was 30 micrometers when the thickness of the coating film (resin A coating film) containing resin A of membrane catalyst layer laminated body A9A was measured.
  • the cathode catalyst paste is applied with a doctor blade and then dried.
  • the membrane catalyst layer laminate A9 was obtained by forming the cathode catalyst layer.
  • the amount of Pt in the cathode catalyst layer of the membrane catalyst layer laminate A9 was 0.5 mg / cm 2 .
  • Both surfaces of the membrane catalyst layer laminate A9 were sandwiched between gas diffusion layers 25BC manufactured by SGL CARBON, and hot-pressed at 140 ° C. for 5 minutes under a pressure of 60 kg / cm 2 to prepare a membrane electrode assembly A9.
  • the dissolved solution was cast coated on the anode catalyst layer with a die coater, preliminarily dried at 80 ° C. for 40 minutes, then dried at 120 ° C. for 40 minutes, and immersed in distilled water overnight, and the remaining NMP in the coating film Was removed and air-dried.
  • the PTFE sheet and mask were removed to obtain a membrane catalyst layer laminate A10A. It was 15 micrometers when the thickness of the coating film (resin A coating film) containing resin A of membrane catalyst layer laminated body A10A was measured.
  • a gas diffusion layer 25BC manufactured by SGL CARBON was superimposed on the anode catalyst layer surface of the membrane catalyst layer laminate A10A, and hot pressed at 140 ° C. for 5 minutes under a pressure of 60 kg / cm 2 to prepare a membrane electrode assembly A10A.
  • a cathode catalyst layer was formed by applying the cathode catalyst paste with a doctor blade and drying the mask using a mask having an opening of 5 cm ⁇ 5 cm on a PTFE sheet having a thickness of 100 ⁇ m.
  • the amount of Pt in the cathode catalyst layer formed on the PTFE sheet was 0.5 mg / cm 2 .
  • the dissolved solution is cast coated on the cathode catalyst layer with a die coater, preliminarily dried at 80 ° C. for 40 minutes, then dried at 120 ° C. for 40 minutes, and immersed in distilled water overnight, and the remaining NMP in the coating film Was removed and air-dried.
  • the PTFE sheet and mask were removed to obtain a membrane catalyst layer laminate A10C. It was 15 micrometers when the thickness of the coating film containing resin A (resin A coating film) was measured.
  • a gas diffusion layer 25BC manufactured by SGL CARBON was superimposed on the cathode catalyst layer surface of the membrane catalyst layer laminate A10C, and hot-pressed at 140 ° C. for 5 minutes under a pressure of 60 kg / cm 2 to prepare a membrane electrode assembly A10C.
  • the membrane-electrode assembly obtained by the production method of the present invention is excellent in the pass rate of power generation performance and the number of dry and wet cycles up to the membrane breakage, and has high quality and excellent durability.
  • the pass rate of the power generation performance and the number of dry and wet cycles until the membrane breakage were reduced.
  • the comparative example 7 includes the step of heating at a temperature exceeding the Tg of the polymer contained in the electrolyte membrane in the step corresponding to the step (C)
  • the production method of the present invention is included (step (C). In comparison with Example 23, the pass rate of power generation performance and the number of dry and wet cycles up to the film breakage were reduced.
  • the membrane-electrode assembly obtained by the production method of the present invention is excellent in the pass rate of power generation performance and the number of dry and wet cycles until membrane breakage, regardless of the electrolyte membrane contained in the assembly. It turns out that it is high quality and excellent in durability (Examples 1 to 24). Comparing Examples 14 to 16, when the catalyst layer and the gas diffusion layer are formed on the electrolyte membrane, it is excellent in the number of dry and wet cycles until the membrane breaks that the electrolyte membrane is laminated with a base material. It can be seen that this is preferable from the viewpoint of obtaining a membrane-electrode assembly.
  • membrane-electrode assembly 12 gas diffusion layer 14: catalyst layer 16: electrolyte membrane 16 ′: electrolyte membrane laminate 20: laminate A ′ 24: catalyst layer 26: electrolyte membrane 30: membrane-electrode assembly

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)
  • Conductive Materials (AREA)

Abstract

 下記工程(A1)または(A2)と、工程(B1)または(B2)とを含む、膜-電極接合体の製造方法。 工程(A1):電解質膜の片面に触媒層を配置し、積層体Aを得る工程 工程(A2):触媒層に電解質膜形成用組成物を塗布し、触媒層と電解質膜とを有する積層体Aを得る工程 工程(B1):積層体Aそれぞれの電解質膜側同士を対向させて積層し、膜-電極接合体を得る工程 工程(B2):積層体Aと電解質膜aとを、積層体Aの電解質膜と電解質膜aとが接するように積層し、その後、電解質膜aの積層体Aに接する側とは反対側に触媒層を配置し、膜-電極接合体を得る工程

Description

膜-電極接合体の製造方法、膜-電極接合体、膜-電極接合体形成用積層体、固体高分子型燃料電池および水電解装置
 本発明は、膜-電極接合体の製造方法、膜-電極接合体、膜-電極接合体形成用積層体、固体高分子型燃料電池および水電解装置に関するものである。
 燃料電池は、水素ガスやメタノールと酸素ガスとを電気化学的に反応させて直接電気を取り出す発電装置であり、化学エネルギーを電気エネルギーに高効率で直接変換できる無公害な発電装置として注目を集めている。
 このような燃料電池は、通常、触媒を担持した一対の電極膜(アノード極およびカソード極)と該電極膜に挟持された1枚のプロトン伝導性の固体高分子電解質膜とから構成される。アノード極では、水素イオンと電子が生じ、水素イオンは固体高分子電解質膜を通って、カソード極で酸素と反応して水が生じる。
 ここで用いられる固体高分子電解質膜は、十分なプロトン伝導性を示すこと、供給されるガスやメタノール等の燃料が直接反応することがないようにこれらの透過を抑制することなどが求められ、長期に安定した性能を示す燃料電池を得るために、これらの固体高分子電解質膜に求められる性質も長期にわたって発揮できることが求められている。
 前記固体高分子電解質膜としては、Nafion(登録商標、デュポン(株)製)、アシプレックス(登録商標、旭化成工業(株)製)、フレミオン(登録商標、旭硝子(株)製)の商品名で市販されているスルホン酸基を有する全フッ化炭素系高分子電解質膜;ポリ芳香族炭化水素系、ポリエーテルエーテルケトン系、ポリフェニレンスルフィド系、ポリイミド系またはポリベンザゾール系などの芳香族環を主鎖骨格に有し、スルホン酸基を有する高分子電解質膜;等が使用されている。
 前記のような構成の燃料電池において、これらの電解質膜は、燃料電池の長時間の運転に際し、十分な耐久性を示さない場合があり、長期に安定した性質を示す燃料電池を得ることは容易ではない場合があった。
 ここで、特許文献1には、高耐久性を有する高分子電解質膜を提供することを目的として、プロトン交換樹脂を有するフィルム2層以上の積層体からなる高分子電解質積層膜が開示されており、該高分子電解質積層膜を固体高分子形燃料電池に用いる場合の膜/電極接合体は、予め、電解質膜の融点以上の温度で積層膜を形成しておき、その両面に触媒層等を熱プレスにより転写接合することで作成されることが開示されている。
特開2006-155924号公報
 しかしながら、前記特許文献1に記載の方法で膜/電極接合体を作成する際には、欠陥が生じやすく、また、電解質膜の変形が起こりやすかった。このため、得られる膜/電極接合体は、品質が劣る傾向にあり、また、耐久性に改善の余地があった。
 本発明は、前記課題に鑑みてなされたものであり、高品質で耐久性に優れる膜-電極接合体を提供することを目的とする。
 このような状況のもと、本発明者らは、前記課題を解決すべく鋭意検討した結果、特定の方法で膜-電極接合体を製造することで、前記の目的を達成できることを見出し、本発明を完成するに至った。
 本発明の構成例は以下の通りである。
 [1] 下記工程(A1)または(A2)と、工程(B1)または(B2)とを含む、膜-電極接合体の製造方法。
 工程(A1):電解質膜の片面に触媒層を配置し、積層体Aを得る工程
 工程(A2):触媒層に電解質膜形成用組成物を塗布し、触媒層と電解質膜とを有する積層体Aを得る工程
 工程(B1):積層体Aそれぞれの電解質膜側同士を対向させて積層し、膜-電極接合体を得る工程
 工程(B2):積層体Aと電解質膜aとを、積層体Aの電解質膜と電解質膜aとが接するように積層し、その後、電解質膜aの積層体Aに接する側とは反対側に触媒層を配置し、膜-電極接合体を得る工程
 [2] 下記工程(A’)と工程(B’)とを含む、膜-電極接合体の製造方法。
 工程(A’):電解質膜の片面に、互いに接していない2つ以上の触媒層をそれぞれ異なる位置に配置し、積層体A’を得る工程
 工程(B’):前記積層体A’を、触媒層が配置されていない位置で、触媒層を有しない面同士が対向するように折り曲げ、膜-電極接合体を得る工程
 [3] 前記工程(B1)、工程(B’)、および、工程(B2)における積層体Aと電解質膜aとを積層する工程が、
 積層体Aを単に重ね合わせる工程、もしくは、積層体Aと電解質膜aとを単に重ね合わせる工程、または、
 用いる電解質膜に含まれる重合体のガラス転移温度より90℃低い温度からガラス転移温度未満の温度で加熱する工程を含む、
 [1]または[2]に記載の膜-電極接合体の製造方法。
 [4] 前記工程(A1)および工程(A’)が、基材付電解質膜の電解質膜の片面に触媒層を配置し、次いで、基材を剥離することでそれぞれ、積層体Aおよび積層体A’を得る工程である、[1]~[3]のいずれかに記載の膜-電極接合体の製造方法。
 [5] 下記工程(C)と工程(D)とを含む、膜-電極接合体の製造方法。
 工程(C):電解質膜を重ね合わせることで、または、
電解質膜を積層し、当該積層後もしくは積層中に、該電解質膜に含まれる重合体のガラス転移温度より90℃低い温度からガラス転移温度未満の温度で加熱することで、
積層体Cを得る工程
 工程(D):前記積層体Cの両面に触媒層を配置する工程
 [6] 下記工程(A1)または(A2)と、工程(B1)または(B2)とを含む方法で得られる膜-電極接合体。
 工程(A1):電解質膜の片面に触媒層を配置し、積層体Aを得る工程
 工程(A2):触媒層に電解質膜形成用組成物を塗布し、触媒層と電解質膜とを有する積層体Aを得る工程
 工程(B1):積層体Aそれぞれの電解質膜側同士を対向させて積層し、膜-電極接合体を得る工程
 工程(B2):積層体Aと電解質膜aとを、積層体Aの電解質膜と電解質膜aとが接するように積層し、その後、電解質膜aの積層体Aに接する側とは反対側に触媒層を配置し、膜-電極接合体を得る工程
 [7] 下記工程(A’)と工程(B’)とを含む方法で得られる膜-電極接合体。
 工程(A’):電解質膜の片面に、互いに接していない2つ以上の触媒層をそれぞれ異なる位置に配置し、積層体A’を得る工程
 工程(B’):前記積層体A’を、触媒層が配置されていない位置で、触媒層を有しない面同士が対向するように折り曲げ、膜-電極接合体を得る工程
 [8] 前記工程(B1)、工程(B’)、および、工程(B2)における積層体Aと電解質膜aとを積層する工程が、
 積層体Aを単に重ね合わせる工程、もしくは、積層体Aと電解質膜aとを単に重ね合わせる工程、または、
 用いる電解質膜に含まれる重合体のガラス転移温度より90℃低い温度からガラス転移温度未満の温度で加熱する工程を含む、
 [6]または[7]に記載の膜-電極接合体。
 [9] 前記工程(A1)および工程(A’)が、基材付電解質膜の電解質膜の片面に触媒層を配置し、次いで、基材を剥離することでそれぞれ、積層体Aおよび積層体A’を得る工程である、[6]~[8]のいずれかに記載の膜-電極接合体。
 [10] 下記工程(C)と工程(D)とを含む方法で得られる膜-電極接合体。
 工程(C):電解質膜を重ね合わせることで、または、
電解質膜を積層し、当該積層後もしくは積層中に、該電解質膜に含まれる重合体のガラス転移温度より90℃低い温度からガラス転移温度未満の温度で加熱することで、
積層体Cを得る工程
 工程(D):前記積層体Cの両面に触媒層を配置する工程
 [11] 電解質膜の片面に、互いに接していない2つ以上の触媒層をそれぞれ異なる位置に配置させた、膜-電極接合体形成用積層体。
 [12] 電解質膜が折り曲げられており、その際に接する面とは反対側の両面に触媒層を有している、膜-電極接合体。
 [13] [6]~[10]または[12]に記載の膜-電極接合体を有する固体高分子型燃料電池。
 [14] [6]~[10]または[12]に記載の膜-電極接合体を有する水電解装置。
 本発明によれば、膜-電極接合体の製造時の欠陥や変形が起こりにくく、高品質で耐久性に優れる膜-電極接合体を容易に得ることができる。
 また、本発明によれば、十分なプロトン伝導性ならびに燃料および酸素等の透過抑制性を有し、耐久性に優れ、分子量の経時的な低下や電解質膜(電解質膜積層体)内部での白金の析出が抑制された電解質膜(電解質膜積層体)を含む膜-電極接合体を得ることができる。
 このため、発電性能および耐久性等に優れる燃料電池、ならびに、水電解性能および耐久性等に優れる水電解装置を得ることができる。
図1は、本発明の膜-電極接合体の一例を示す概略模式図である。 図2は、(A’)と工程(B’)とを含む方法およびその方法で得られる膜-電極接合体の一例を示す概略断面図である。
 ≪膜-電極接合体≫
 本発明の膜-電極接合体は、以下の(I)~(III)の方法で製造することができ、例えば、図1に示すように、触媒層14、電解質膜16、電解質膜16および触媒層14の順の構造を有する。
 以下の(I)~(III)の方法、好ましくは(I)および(II)の方法、より好ましくは(I)の方法によれば、膜-電極接合体の製造時の欠陥や変形が起こりにくく、従来の方法では必要となった装置等を用いなくてもよい。このため、高品質で耐久性に優れる膜-電極接合体を容易に得ることができ、また、十分なプロトン伝導性ならびに燃料および酸素等の透過抑制性を有し、耐久性に優れ、分子量の経時的な低下や電解質膜(電解質膜積層体)内部での白金の析出が抑制された電解質膜(電解質膜積層体)を含む膜-電極接合体を得ることができる。
 また、本発明の膜-電極接合体は、折り曲げられた電解質膜を含み、その際に接する面とは反対側の両面に触媒層を有しているものであってもよい。このような膜-電極接合体としては、例えば、図2の膜-電極接合体30が挙げられる。この膜-電極接合体も触媒層、電解質膜、電解質膜および触媒層の順の構造を有しており、具体的には、下記工程(II)や、予め(必要により他の電解質膜や接着層等を介して)折り曲げた電解質膜の外側の両面に、下記工程(A1)と同様の方法で触媒層を配置することで得ることができる。
 なお、前記「その際に接する面」とは、電解質膜を折り曲げることで接する面、または、電解質膜を他の電解質膜や接着層等を介して折り曲げる際の他の電解質膜等との接する面のことをいう。
 方法(I):工程(A1)または(A2)と工程(B1)または(B2)とを含む、膜-電極接合体の製造方法。
 工程(A1):電解質膜の片面に触媒層を配置し、積層体Aを得る工程
 工程(A2):触媒層に電解質膜形成用組成物を塗布し、触媒層と電解質膜とを有する積層体Aを得る工程
 工程(B1):積層体Aそれぞれの電解質膜側同士を対向させて積層し、膜-電極接合体を得る工程
 工程(B2):積層体Aと電解質膜aとを、積層体Aの電解質膜と電解質膜aとが接するように積層し、その後、電解質膜aの積層体Aに接する側とは反対側に触媒層を配置し、膜-電極接合体を得る工程
 方法(II):下記工程(A’)と工程(B’)とを含む、膜-電極接合体の製造方法。
 工程(A’):電解質膜の片面に、互いに接していない2つ以上の触媒層をそれぞれ異なる位置に配置し、積層体A’を得る工程
 工程(B’):前記積層体A’を、触媒層が配置されていない位置で、触媒層を有しない面同士が対向するように折り曲げ、膜-電極接合体を得る工程
 方法(III):下記工程(C)と工程(D)とを含む、膜-電極接合体の製造方法。
 工程(C):電解質膜を重ね合わせることで、または、電解質膜を積層し、当該積層後もしくは積層中に、該電解質膜に含まれる重合体のガラス転移温度より90℃低い温度からガラス転移温度未満の温度で加熱することで、積層体Cを得る工程
 工程(D):前記積層体Cの両面に触媒層を配置する工程
 このような製造方法では、触媒層、電解質膜、電解質膜および触媒層の順の膜-電極接合体が得られる。この膜-電極接合体を構成する触媒層同士は同一であっても異なっていてもよく、また、電解質膜同士も同一であっても異なっていてもよい。
 前記工程(B1)では、複数枚の積層体を用いることになるが、この複数枚の積層体は、同一の積層体であってもよく、電解質膜が同じで触媒層が異なる積層体であってもよく、触媒層が同じで電解質膜が異なる積層体であってもよく、電解質膜と触媒層とがそれぞれ異なる積層体であってもよい。
 また、前記積層体A'は、含まれる触媒層の全てが同一であってもよく、少なくとも2つの異なる触媒層を有してもよい。
 通常、膜-電極接合体を構成する2つの触媒層は、それぞれアノード電極またはカソード電極を構成する。これらの電極に要求される特性は異なることから、前記2つの触媒層は、異なる層であることが好ましい。
 前記電解質膜に触媒層を配置する際には、電解質膜に触媒層のみを配置してもよいが、予め触媒層を含む層(例えば、触媒層とガス拡散層とを含む層)を作成しておき、この層を電解質膜に配置してもよい。
 このように、触媒層とガス拡散層とを含む層を作成する場合には、触媒層を形成した上にガス拡散層を形成したり、触媒層とガス拡散層とを別々に作成し重ね合わせたり、ガス拡散層の上に、中間層を設けた後、その中間層上に触媒層を形成することが好ましく、ガス拡散層上に直接触媒層形成用ワニスを塗布することは、得られる触媒層の表面平滑性などの点から好ましくない。
 本発明の膜-電極接合体は、触媒層、電解質膜、電解質膜および触媒層の順の積層体であればよく、触媒層と電解質膜との間、電解質膜間に、本発明の効果を損なわない限り、従来の膜-電極接合体に用いられてきた他の層が存在していてもよい。
 例えば、触媒層と電解質膜との間には、これらの層を接着するための層、抗酸化還元層(例:特開2006-156295号公報)、滲み出し防止層(例:特開2011-23225号公報)、液体および/またはガス透過層(例:特開2007-273280号公報)などが存在していてもよく、電解質膜間には、さらに、同一のまたは異なる電解質膜、これらの層を接着するための層などが存在していてもよい。
 また、前記触媒層の電解質膜側の反対側にも、従来の膜-電極接合体に用いられてきた層が存在していてもよい。特に、本発明の膜-電極接合体を燃料電池に使用する際には、前記触媒層の電解質膜側の反対側には、ガス拡散層が存在していることが好ましい。
 <方法(I)>
 方法(I)は、下記工程(A1)または(A2)と、工程(B1)または(B2)とを含む。
 〈工程(A1)〉
 工程(A1)は、電解質膜の片面に触媒層を配置し、積層体Aを得る工程である。
 この工程(A1)は、特に制限されず、従来公知の方法で行うことができるが、例えば、
 電解質膜の片面に、触媒層形成用組成物(通常、溶剤が含まれる)を塗布したり、触媒層となる材料をスパッタ等で積層させることで、触媒層を形成した後、必要により、該触媒層上にガス拡散層等を積層することで積層体Aを得る方法、
 予め触媒層や触媒層とガス拡散層との積層体等を形成し、該触媒層や積層体を、電解質膜の片面に、貼り付けや、熱転写により積層した後、必要により、触媒層上にガス拡散層等を積層することで積層体Aを得る方法
が挙げられる。
 前記工程(A1)は、基材付電解質膜の電解質膜の片面に触媒層を配置し、次いで、基材を剥離することで積層体Aを得る工程であることが望ましい。
 従来の方法では、電解質膜上に触媒層を設ける際には、基材のない電解質膜の積層体に触媒層を設けたり、基材付電解質膜の電解質膜面に触媒層を設け、基材を剥離した後、該電解質膜の他方の面に触媒層が形成されていた。
 このような方法では、触媒層形成時に電解質膜を支持する基材が存在しないため、触媒層形成時の熱、乾燥、使用され得る溶剤等により、電解質膜が変形(膨張、収縮、反りや、しわの発生等を含む)しやすく、また、基材を剥離した電解質膜に触媒層を形成するため、該電解質膜を固定するための装置が必要であった。
 一方、前記工程(A1)において、基材と電解質膜とを含む層を用いることで、膜-電極接合体を構成する触媒層を電解質膜の片面に配置する際には、電解質膜が基材により支持されている状態で触媒層を配置できるため、触媒層を配置する際の電解質膜の変形が起こりにくく、発電性能および耐久性に優れる高品質な膜-電極接合体を、前記装置等がなくても容易に得ることができる。
 なお、前記工程(A1)は、電解質膜の片面に、複数の触媒層が配置された積層体Aを得る工程であってもよく、具体的には、電解質膜の片面に、互いに接していない2つ以上の触媒層をそれぞれ異なる位置に配置し、積層体Aを得る工程(つまり前記工程(A'))であってもよい。
 前記工程(A1)によって得られた積層体は、ロール状に巻き取ることができる。ロール状にすることで簡便に輸送することができる。
 〈工程(A2)〉
 工程(A2)は、触媒層に電解質膜形成用組成物を塗布し、触媒層と電解質膜とを有する積層体Aを得る工程である。
 この工程(A2)は、特に制限されず、従来公知の方法で行うことができるが、具体的には、触媒層や触媒層とガス拡散層との積層体を予め作成し、この触媒層上に、電解質膜形成用組成物を従来公知の方法で塗布し、必要により、該組成物を乾燥、硬化させることで、積層体を得る方法が挙げられ、電解質膜を形成する際の触媒層の変形が起こりにくく、発電性能および耐久性に優れる高品質な膜-電極接合体を、前記装置等がなくても容易に得ることができるなどの点から、基材付触媒層またはガス拡散層付触媒層の触媒層上に電解質膜形成用組成物を従来公知の方法で塗布し、必要により、該組成物を乾燥、硬化させることで、積層体を得る方法が好ましい。
 前記電解質膜形成用組成物としては、例えば、特に制限されず、従来公知の電解質膜に含まれる重合体を含有する組成物であればよく、具体的には、下記電解質膜形成用組成物が挙げられる。
 前記工程(A2)によって得られた積層体は、ロール状に巻き取ることができる。ロール状にすることで簡便に輸送することができる。
 〈工程(B1)〉
 工程(B1)は、積層体Aそれぞれの電解質膜側同士を対向させて積層し、膜-電極接合体を得る工程である。
 この工程(B1)は、複数の積層体A、好ましくは2つの積層体Aが用いられる。
 なお、前記「積層体Aそれぞれの電解質膜側同士を対向させて積層」するとは、触媒層、電解質膜、電解質膜および触媒層の順の膜-電極接合体が得られるように積層することをいい、2枚の積層体Aを用いる場合には、それぞれの電解質膜面同士が接するように積層してもよいし、それぞれの電解質膜面同士が他の電解質膜や接着層等を介して接するように積層してもよい。
 前記工程(A1)が工程(A')である場合、工程(B1)は、互いに接していない2つ以上の触媒層がそれぞれ異なる位置に配置された積層体Aを、触媒層が配置されていない位置で、電解質膜と触媒層との積層方向に切断し、得られた2つ以上の積層体を用いて、それぞれの電解質膜側同士を対向させて積層し、膜-電極接合体を得る工程であってもよい。
 なお、本発明において、積層体を電解質膜と触媒層との積層方向に切断する際には、例えば、用いる積層体が、前記触媒層を2n個(nは1以上の整数)有する場合、電解質膜と触媒層との積層方向に任意の回数(最大2n-1回)切断してもよい。
 工程(B1)は、高品質で耐久性に優れる膜-電極接合体を容易に得ることができる等の点から、基材を有する積層体Aを用い、そこから基材を除去して積層体を積層する工程であることが好ましい。
 また、工程(B1)において用いる積層体Aは、容易に、安価に、燃料電池や水電解装置に使用できる膜-電極接合体が得られる等の点から、1つが、カソード電極用の触媒層を含む積層体であり、もう1つが、アノード電極用の触媒層を含む積層体であることが好ましい。
 工程(B1)としては、特に制限されないが、例えば2つの積層体を用いる場合、2つの積層体Aの電解質膜側を単に重ね合わせ、膜-電極接合体を得る方法;2つの積層体Aの電解質膜側を重ね合わせた後または重ね合わせながら加熱することで、膜-電極接合体を得る方法;2つの積層体Aの電解質膜側を重ね合わせた後または重ね合わせながら、ホットプレス、ロールプレス、真空プレス等の公知のプレス技術を用いることで、膜-電極接合体を得る方法;2つの積層体Aの電解質膜側に、公知の接着剤や電解質膜を溶解させる溶媒(この溶媒を含む溶液)を塗布して膜-電極接合体を得る方法;2つの積層体Aの電解質膜側を重ね合わせた後または重ね合わせながら、該電解質膜を架橋させることで膜-電極接合体を得る方法(この場合、架橋剤を含む電解質膜を用いてもよいし、積層体Aを重ね合わせる際に、該重ね合わせ面に架橋剤を塗布してもよい);が挙げられる。
 なお、これらの方法によっては、得られる膜-電極接合体において、複数枚の電解質膜が一体となっており、複数枚の電解質膜を用いていたことが分からなくなっている場合があるが、このような場合であっても、その製造方法に鑑みて、本発明では、触媒層、電解質膜、電解質膜および触媒層の順の膜-電極接合体という。
 本発明の膜-電極接合体は、3枚以上の電解質膜を含む場合(例えば、電解質膜を3枚含む場合は、触媒層、電解質膜、電解質膜、電解質膜および触媒層の順の膜-電極接合体となる)、少なくとも2枚の電解質膜が、前記何れかの方法や公知の塗装方法(例えば、1種類または2種類以上の電解質膜形成用組成物を用い、ある組成物を公知の方法で電解質膜上に塗布し、必要により乾燥や硬化させた後、さらにその上にある組成物を公知の方法で塗布する方法)等により積層され、得られた積層体と少なくとも1枚の電解質膜とを別の方法で積層したものであってもよい。さらに、本発明の膜-電極接合体は、1枚の電解質膜を折り曲げたものを含んでもよいし、2枚以上の電解質膜を積層し折り曲げたものを含んでもよいし、1枚の電解質膜を折り曲げたものと、他の電解質膜(折り曲げたものまたは折り曲げていないもの)とを含んでいてもよい。折り曲げることで接する電解質膜間には、接着層等が存在していてもよいし、折り曲げた電解質膜と前記他の電解質膜との間にも、接着層等が存在していてもよい。
 これらの中でも、膜-電極接合体の製造時の欠陥や変形が起こりにくく、高品質で耐久性に優れる膜-電極接合体を容易に得ることができ、得られる膜-電極接合体における電解質膜、電解質膜部分(本発明では、「電解質膜積層体」ともいう。)が、十分なプロトン伝導性ならびに燃料および酸素等の透過抑制性を有し、耐久性に優れ、分子量の経時的な低下や電解質膜積層体内部での白金の析出が抑制される傾向にあるため、前記工程(B1)は、少なくとも下記(i)~(ii)の方法のいずれかの方法で膜-電極接合体を得る工程であることが好ましい。
 (i)2つの積層体Aを電解質膜面が接するように単に重ね合わせる方法
 (ii)2つの前記積層体Aを積層後または積層中に、電解質膜に含まれる重合体のTg未満の温度で加熱、好ましくは、電解質膜に含まれる重合体のガラス転移温度より90℃低い温度からガラス転移温度未満の温度で加熱することで、電解質膜面が接するように貼り合わせる方法(この際、電解質膜同士を架橋させてもよい)
 前記(i)の方法で得られた膜-電極接合体は、該膜-電極接合体製造時に、接着剤などの不純物を用いなくてもよいため、燃料電池や水電解装置の作動中における、該不純物による劣化などが起こりにくいため好ましい。
 また、前記(i)の方法によれば、本発明の膜-電極接合体を構成する電解質膜積層体が、特に、耐久性に優れ、分子量の経時的な低下や電解質膜積層体内部での白金の析出が抑制されるものとなるため好ましい。
 前記(ii)の方法における、前記電解質膜に含まれる重合体のTg未満の温度としては、特に制限されないが、好ましくはTgより5~90℃低い温度であり、より好ましくはTgより10~60℃低い温度である。なお、例えば、工程(B1)で積層体Aとして、2種類の異なる積層体Aを用い、該積層体Aに含まれる電解質膜が異なる重合体を含む場合、「前記電解質膜に含まれる重合体のTg未満の温度」とは、最も低いTgを有する重合体のTg未満の温度のことをいう。また、例えば、2つの積層体Aを電解質膜を介して積層する場合にも、「前記電解質膜に含まれる重合体のTg未満の温度」とは、用いる電解質膜に含まれる重合体のうち、最も低いTgを有する重合体のTg未満の温度のことをいう。
 前記(ii)の方法の際には、2つ以上の積層体を重ね合わせた状態で、ホットプレス、ロールプレス、真空プレス等の公知のプレス技術等により圧力をかけながら行ってもよい。
 前記(ii)の方法で得られた膜-電極接合体は、該膜-電極接合体がばらばらにならず、燃料電池や水電解装置を製造する際の作業容易性などの点で好ましい。
 前記(ii)の方法としては、好ましくは、2つの積層体Aを、電解質膜面が接するように、単に重ね合わせた後もしくは重ね合わせながら、前記電解質膜に含まれる重合体のTg未満の温度で貼り合わせる方法、または、2つの積層体Aを、電解質膜面が接するように、単に重ね合わせた後または架橋剤を介在させて重ね合わせた後もしくは重ね合わせながら、前記電解質膜に含まれる重合体のTg未満の温度で架橋させる方法が、耐久性に優れ、分子量の経時的な低下や電解質膜内部での白金の析出が抑制される膜-電極接合体が得られるなどの点から好ましい。
 前記架橋剤としては電解質膜間を架橋できるものであれば特に制限なく使用することができるが、例えば下記構造を有する架橋剤が好ましい。
Figure JPOXMLDOC01-appb-C000001
(式中R1は水素または任意の有機基である。)
 前記架橋剤としては、具体的には、RESITOP C357(群栄化学工業(株)製)、DM-BI25X-F、46DMOC、46DMOIPP、46DMOEP(商品名、旭有機材工業(株)製)、DML-MBPC、DML-MBOC、MDL-OCHP、DML-PC、DML-PCHP、DML-PTBP、DML-34X、DML-EP、DML-POP、DML-OC、ジメチロール-Bis-C、ジメチロール-BisOC-P、DML-BisOC-Z、DML-BisOCHP-Z、DML-PFP、DML-PSBP、DML-MB25、DML-MTrisPC、DML-Bis25X-34XL、DML-Bis25X-PCHP(商品名、本州化学工業(株)製)、”ニカラック”(登録商標)MX-290(商品名、(株)三和ケミカル製)、2,6-ジメトキシメチル-4-t-ブチルフェノール、2,6-ジメトキシメチル-p-クレゾール、2,6-ジアセトキシメチル-p- クレゾール等、TriML-P、TriML-35XL、TriML-TrisCR-HAP(商品名、本州化学工業(株)製)等、TM-BIP-A(商品名、旭有機材工業(株)製)、TML-BP、TML-HQ、TML-pp-BPF、TML-BPA、TMOM-BP(商品名、本州化学工業(株)製)、”ニカラック”MX-280、”ニカラック”MX-270(商品名、(株)三和ケミカル製)等、HML-TPPHBA、HML-TPHAP(商品名、本州化学工業(株)製)を挙げることができる。
 なお、前記(i)~(ii)の方法を経て得られる膜-電極接合体中の電解質膜積層体は、1種類または2種類以上の電解質膜形成用組成物を用い、ある組成物を公知の方法で基材上に塗布し、必要により乾燥や硬化させた後、さらにその上にある組成物を公知の方法で塗布すること等により得られる積層体や、2枚以上の電解質膜に、該電解質膜のTg以上の温度かけることで融着させたものとは異なる。また、2つの積層体Aの電解質膜面に、該電解質膜を溶解させる溶媒(この溶媒を含む溶液)を塗布して、電解質膜面が接するように重ね合わせて得られるものとも異なる。
 本発明の膜-電極接合体を燃料電池や水電解装置に使用する場合には、該燃料電池や水電解装置を構成する他の部材と積層するに際に、ある程度の圧力がかかったり、燃料電池の使用時等の際にある程度の温度がかかることがあるが、この場合でも、前記(i)~(ii)の方法を経て得られる膜-電極接合体中の電解質膜積層体は、公知の塗装方法や融着により得られる電解質膜積層体とは異なるものである。
 従来、燃料電池では、アノード極で生じた水素イオンは、電解質膜を通って、カソード極で反応するため、高いプロトン伝導性を示す電解質膜積層体を得るためには、用いる電解質膜同士の界面での水素イオンの授受がスムーズになるよう、電解質膜同士の界面での接触抵抗等を低減するように、電解質膜同士は、しっかり融着していること、さらに言えば、界面が存在しないこと(1枚の電解質膜)が望ましいと考えられてきた。
 また、十分な燃料および酸素等の透過抑制性を有する電解質膜積層体を得る点からも、電解質膜同士は、しっかり融着していること、または、1枚の電解質膜が望ましいと考えられてきた。
 しかしながら、前記(i)~(ii)の方法を経て得られる膜-電極接合体中の電解質膜積層体は、1枚の電解質膜や、融着された2枚以上の電解質膜の積層体と同程度の十分なプロトン伝導性ならびに燃料および酸素等の透過抑制性を有する。
 さらに、該電解質膜積層体は、1枚の電解質膜や、融着された2枚以上の電解質膜の積層体を用いた場合に比べ、同じ電解質膜を用いた場合であっても、耐久性に優れ、分子量の経時的な低下が抑制される。
 このような効果が得られる理由は定かではないが、電解質膜界面同士が物理的に接触して、電解質膜表面のモルフォロジーや伝導パスが電解質膜界面でズレているため白金のような大きなイオンは伝導パスを通過しにくいが、プロトンのような小さなイオンは伝導パスを通ることができるためであると考えられる。つまり、前記膜-電極接合体中の電解質膜積層体は、電解質膜同士の界面で、ある程度の接触抵抗が存在すること、さらには接触抵抗が発電性能を損なわない範囲で高いことが望ましいと考えられる。
 また、一般的に、燃料電池の電極には、触媒層が設けられ、触媒層に含まれる触媒として白金が用いられている。この白金は、取り出される電気エネルギーの元となる化学反応を促進するため重要であるが、一方で、電池作動中に、触媒層にある白金の一部が電解質膜内で析出し、この析出した白金により、電解質膜の劣化が引き起こされ、燃料電池の長期安定性が低下する要因になっていると考えられる。
 さらに、水の電気分解により水素と酸素を生成する水電解装置中においても、電極触媒層の全部または一部に白金が使用されており、燃料電池の場合と同様に作動中に触媒層にある白金の一部が電解質膜内で析出し、この析出した白金により、電解質膜の劣化が引き起こされ、水電解装置の長期安定性が低下する要因となっていると考えられている。
 本発明者らは、鋭意検討した結果、前記(i)~(ii)の方法を経て得られる膜-電極接合体中の電解質膜積層体は、燃料電池や水電解装置の作動時に起こる、白金の該積層体内部への移動や該積層体内部での析出を低減することができることを見出した。
 前記(i)~(ii)の方法を経て得られる電解質膜積層体が、このような効果を有する理由は定かではないが、電解質膜同士の界面での白金イオンが通過する抵抗が高いことにより、電解質膜積層体内部での白金の析出量が抑制されたと考えられる。
 従って、このような電解質膜積層体を含む膜-電極接合体を用いることで、耐久性に優れる燃料電池および水電解装置を得ることができる。
 〈工程(B2)〉
 工程(B2)は、積層体Aと電解質膜aとを、積層体Aの電解質膜と電解質膜aとが接するように積層し、その後、電解質膜aの積層体Aに接する側とは反対側に触媒層を配置し、膜-電極接合体を得る工程である。この工程(B2)では、具体的には、積層体Aにおける電解質膜の触媒層が配置された面とは反対側の面と、電解質膜aの最も広い面が接するように積層することが好ましい。
 前記電解質膜aとしては、積層体Aに含まれる電解質膜と同じ膜であってもよいし、厚みや、含まれる成分の異なる膜であってもよい。また、電解質膜aは、1枚であってもよく、2枚以上でもよい。
 工程(B2)において、積層体Aと電解質膜aとを積層する方法、また、2枚以上の電解質膜aを用いる場合のこれらの電解質膜を積層する方法は特に制限されないが、前記工程(B1)において、2つの積層体を積層する方法と同様の方法が挙げられ、好ましくは、前記(i)~(ii)の方法である。
 また、工程(B2)において、電解質膜aに触媒層を配置する方法としては、特に制限されず、従来公知の方法で行うことができるが、前記工程(A1)において、電解質膜に触媒層を配置する方法として例示した方法と同様の方法が挙げられる。
 <方法(II)>
 方法(II)は、下記工程(A’)と工程(B’)とを含む。
 〈工程(A’)〉
 工程(A’)は、電解質膜の片面に、互いに接していない2つ以上の触媒層をそれぞれ異なる位置に配置し、積層体A’を得る工程である。このような積層体A’としては、例えば、図2に示すような積層体A’20が挙げられる。
 この工程(A’)は、特に制限されず、従来公知の方法で行うことができるが、前記工程(A1)において、電解質膜に触媒層を配置する方法として例示した方法と同様の方法が挙げられる。
 前記工程(A’)は、前記工程(A1)の場合と同じ理由から、基材付電解質膜の電解質膜の片面に触媒層を配置し、具体的には、基材付電解質膜の電解質膜の片面に互いに接していない2つ以上の触媒層をそれぞれ異なる位置に配置し、次いで、基材を剥離することで積層体A’を得る工程であることが望ましい。
 なお、前記「それぞれ異なる位置に」とは、例えば、電解質膜に2つの触媒層を配置する際に、互いに接していない2つの触媒層を含む1つの積層体のみが配置される場合を除くことを意味している。
 前記工程(A’)によって得られた積層体は、ロール状に巻き取ることができる。ロール状にすることで簡便に輸送することができる。
 〈工程(B’)〉
 工程(B’)は、前記積層体A’を、触媒層が配置されていない位置で、触媒層を有しない面同士が対向するように折り曲げ、膜-電極接合体を得る工程である。このような、膜-電極接合体としては、例えば、図2に示すような、膜-電極接合体30が挙げられる。
 なお、前記「触媒層を有しない面同士が対向するように折り曲げ」るとは、触媒層、電解質膜、電解質膜および触媒層の順の膜-電極接合体が得られるように折り曲げることをいい、積層体A’の電解質膜面同士が接するように折り曲げてもよいし、積層体A’の電解質膜面同士が他の電解質膜や接着層等を介して接するように折り曲げてもよい。
 また、工程(B’)において、積層体A’を折り曲げる際には、前記工程(B1)における積層体Aを積層する方法で例示した方法と同様の方法で電解質膜面が接するように折り曲げてもよい。この場合も、前記と同じ理由で、前記(i)~(ii)の方法を経て膜-電極接合体を得ることが好ましい。
 工程(B')は、高品質で耐久性に優れる膜-電極接合体を容易に得ることができる等の点から、基材を有する積層体A'を用い、そこから基材を除去して折り曲げる工程であることが好ましい。
 工程(B’)で用いる積層体A’は、容易に、安価に、燃料電池や水電解装置に使用できる膜-電極接合体が得られる等の点から、隣り合う触媒層の1つが、カソード電極用の触媒層であり、もう一方が、アノード電極用の触媒層であることが好ましい。
 なお、前記積層体A'が、互いに接していない2n個(nは2以上の整数)の触媒層をそれぞれ異なる位置に配置した積層体である場合、該積層体を、触媒層が配置されていない位置で、切断後の1つの積層体には互いに接していない2つ以上触媒層を有するように、電解質膜と触媒層との積層方向に切断し、得られた積層体を用いて、触媒層が配置されていない位置で、触媒層を有しない面同士が対向するように折り曲げ、膜-電極接合体を得る工程であってもよい。
 <方法(III)>
 方法(III)は、下記工程(C)と工程(D)とを含む。
 〈工程(C)〉
 工程(C)は、(i')電解質膜を重ね合わせることで、または、(ii')電解質膜を積層し、当該積層後もしくは積層中に、該電解質膜に含まれる重合体のガラス転移温度より90℃低い温度からガラス転移温度未満の温度で加熱することで、積層体Cを得る工程である。
 この工程では、前記(i)~(ii)の方法を経て得られる膜-電極接合体中の電解質膜積層体が有する効果と同様の効果を有する積層体が得られる。
 前記(i')および(ii')の方法としては、それぞれ、積層体の代わりに電解質膜を用いる以外は、前記工程(B1)において例示した(i)および(ii)の方法と同様の方法が挙げられる。
 〈工程(D)〉
 工程(D)は、前記積層体Cの両面に触媒層を配置する工程である。
 この工程(D)は、特に制限されず、従来公知の方法で行うことができるが、前記工程(A1)において、電解質膜に触媒層を配置する方法として例示した方法と同様の方法が挙げられる。
 <電解質膜、触媒層およびガス拡散層>
 〈電解質膜〉
 前記電解質膜は、重合体を含む電解質膜であれば特に制限されず、従来より固体高分子電解質膜として使用されていた膜や補強層を含む電解質膜が挙げられる。
 前記重合体および電解質膜のTgは、燃料電池や水電解装置の作動中に前記電解質膜積層体を構成する電解質膜同士が融着せず、所望の効果を有する燃料電池や水電解装置を得ることができるなどの点から、好ましくは100℃以上であり、より好ましくは120℃以上、さらに好ましくは150℃以上である。該Tgの上限は特に制限されないが、例えば、250℃であればよい。
 前記重合体および電解質膜のTgが前記範囲にあることで、耐久性に優れ、分子量の経時的な低下や電解質膜内部での白金の析出が抑制された電解質膜(電解質膜積層体)を含む膜-電極接合体を得ることができ、さらに、耐久性等に優れる燃料電池および水電解装置を得ることができる。
 前記Tgは、具体的には、下記実施例に記載の方法で測定することができる。
 なお、前記電解質膜が補強層や前記重合体以外の他の成分を含む場合の該電解質膜のTgは、該電解質膜に含まれる重合体を溶解しうる溶媒に電解質膜を浸漬し、電解質膜から重合体を溶出させた後、溶媒を除去し重合体を得、この重合体を用いて、電解質膜に含まれる重合体のTgを測定することで測定することができる。
 前記重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の、重量平均分子量(Mw)は、好ましくは1万~100万、より好ましくは2万~80万、さらに好ましくは5万~30万であり、数平均分子量(Mn)は、好ましくは3000~100万、より好ましくは6000~80万、さらに好ましくは15000~30万である。重合体の平均分子量は、具体的には、下記実施例に記載の方法で測定することができる。
 前記重合体のイオン交換容量は、好ましくは0.5~5.0meq/g、より好ましくは0.5~4.0meq/g、さらに好ましくは0.8~4.0meq/gである。イオン交換容量が0.5meq/g以上であれば、プロトン伝導度が高く、かつ発電・水分解性能の高い電解質膜となるため好ましい。一方、3.5meq/g以下であれば、充分に高い耐水性を有する電解質膜となるため好ましい。重合体のイオン交換容量は、具体的には、下記実施例に記載の方法で測定することができる。
 前記イオン交換容量は、重合体に含まれる構造単位の種類、その割合、組み合わせなどを変更することにより、調整することができる。したがって、重合時に構造単位を誘導する前駆体(モノマー・オリゴマー)の仕込み量比、種類等を変えれば調整することができる。
 概して、イオン交換基を含む構造単位の存在割合が重合体中に多くなると、得られる電解質膜のイオン交換容量が増えプロトン伝導性が高くなるが、耐水性が低下する傾向にあり、一方、該構造単位の存在割合が少なくなると、得られる電解質膜のイオン交換容量が小さくなり、耐水性が高まるが、プロトン伝導性が低下する傾向にある。
 前記電解質膜は、例えば、前記重合体と該重合体を溶解する溶媒とを含む電解質膜形成用組成物を、公知の方法により基材上に塗布する工程を含むことにより製造することができる。具体的には、前記組成物を、金属製、ガラス製またはポリエチレンテレフタレート等のプラスチック製などの基材上に塗布した後、塗布した組成物を乾燥させることで作成することができる。
 このような基材としては、電解質膜から剥離可能な基材であることが好ましい。
 また、前記電解質膜としては、前記重合体と該重合体を溶解する溶媒とを含む組成物を多孔質材料やシート状の繊維質物質などからなる補強層に含浸させたり、塗布したりすることで得られる、補強層を含む電解質膜であってもよく、繊維、フィラー状の補強材などを含む電解質膜であってもよい。
 前記電解質膜は、本発明の効果を損なわない範囲において、必要に応じて、白金親和度の高い化合物(例:硫黄原子などを含む化合物)、酸化スズやスズイオンなどの金属含有化合物および金属イオンからなる群より選ばれる少なくとも1種の金属成分等の添加剤を含んでいてもよい。
 また、前記電解質膜形成用組成物には、前記重合体および溶媒に加え、さらに、硫酸、リン酸などの無機酸;リン酸ガラス;タングステン酸;リン酸塩水和物;β-アルミナプロトン置換体;プロトン導入酸化物等の無機プロトン伝導体粒子;カルボン酸を含む有機酸;スルホン酸を含む有機酸;ホスホン酸を含む有機酸;適量の水などを配合してもよい。
 前記電解質膜の厚みは、燃料電池や水電解装置に通常用いられる電解質膜と同程度の厚みであればよいが、好ましくは3~200μm、より好ましくは5~150μmである。
 前記電解質膜としては、例えば、イオン交換基、特に、発電性能に優れる膜-電極接合体が得られる等の点からスルホン酸基を有する重合体を1種単独で、または2種以上含む膜が好ましい。
 前記重合体としては、例えば、ポリアセタール、ポリエチレン、ポリプロピレン、アクリル系樹脂、ポリスチレン、ポリスチレン-グラフト-エチレンテトラフルオロエチレン共重合体、ポリスチレン-グラフト-ポリテトラフルオロエチレン、脂肪族ポリカーボネート等の脂肪族系重合体にスルホン酸基やホスホン酸基等のイオン交換基が導入された重合体、ポリエステル、ポリスルホン、ポリフェニレンエーテル、ポリエーテルイミド、芳香族ポリカーボネート、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエーテルケトンケトン、ポリエーテルエーテルスルホン、ポリエーテルスルホン、ポリカーボネート、ポリフェニレンスルフィド、芳香族ポリアミド、芳香族ポリアミドイミド、芳香族ポリイミド、ポリベンゾオキサゾール、ポリベンゾチアゾール、ポリベンゾイミダゾール等の主鎖の一部または全部に芳香族環を有する芳香族系重合体にスルホン酸基やホスホン酸基等のイオン交換基が導入された重合体が挙げられる。
 前記重合体としては、公知の重合体を用いることができ、特に限定されないが、例えば、 Nafion(登録商標、デュポン(株)製)、アシプレックス(登録商標、旭化成工業(株)製)、フレミオン(登録商標、旭硝子(株)製)の商品名で市販されているスルホン酸基を有する全フッ化炭素系高分子重合体;ポリ芳香族炭化水素系、ポリエーテルエーテルケトン系、ポリフェニレンスルフィド系、ポリイミド系またはポリベンザゾール系などの芳香族環を主鎖骨格に有し、スルホン酸基を有する高分子重合体;等を使用することができる。このなかでも、国際公開第2013/018677号、特開2012-067216号公報、特開2010-238374号公報、特開2010-174179号公報、特開2010-135282号公報、特開2004-137444号公報、特開2004-345997号公報、特開2004-346163号公報等に記載の重合体が好ましく、下記重合体(1)がより好ましい。
 ・重合体(1)
 前記重合体(1)は、プロトン伝導性基を有する構造単位と疎水性構造単位とを有する重合体であり、ポリマーまたはオリゴマーである。
 本発明において、プロトン伝導性基を有する構造単位は、単にプロトン伝導性基であってもよく、プロトン伝導性基としては、スルホン酸基、ホスホン酸基、カルボキシ基、ビススルホニルイミド基などが挙げられ、スルホン酸基が好ましい。
 前記重合体(1)は、具体的には、プロトン伝導性基を有する構造単位となる親水性セグメント(A1)と、疎水性構造単位となる疎水性セグメント(B1)とからなる重合体であることが好ましい。この場合、該重合体(1)は、ブロック重合体であってもよく、ランダム重合体であってもよいが、より発電や水電解性能および乾湿サイクル時の寸法安定性に優れる電解質膜が得られる等の点から、親水性セグメント(A1)と疎水性セグメント(B1)とのブロック共重合体が好ましい。
 ・親水性セグメント(A1)
 親水性セグメント(A1)としては、プロトン伝導性基を有し、親水性を示すセグメントであれば特に制限されないが、例えば、主鎖に芳香環を有し、スルホン酸基などのプロトン伝導性基を含有する親水性セグメントが挙げられ、親水性セグメントの連続性が高く、プロトン伝導度が高い電解質膜が得られるなどの点から、下記式(5)で表される構造単位(以下「構造単位(5)」ともいう。)を含むセグメントであることが好ましく、構造単位(5)からなるセグメントであることがより好ましい。
 親水性セグメント(A1)は、1種類の構造単位のみからなってもよく、2種類以上の構造単位を含んでもよい。
Figure JPOXMLDOC01-appb-C000002
 式(5)中、Ar11、Ar12およびAr13はそれぞれ独立に、ハロゲン原子、ニトリル基、炭素数1~20の1価の炭化水素基もしくは炭素数1~20の1価のハロゲン化炭化水素基で置換されていてもよい、ベンゼン環、縮合芳香環または含窒素複素環を有する芳香族基を示し、YおよびZはそれぞれ独立に、直接結合、-O-、-S-、-CO-、-SO2-、-SO-、-(CH2u-、-(CF2u-(uは1~10の整数である。)、-C(CH32-または-C(CF32-を示し、R17は独立に、直接結合、-O(CH2p-、-O(CF2p-、-(CH2p-または-(CF2p-(pは1~12の整数を示す。)を示し、R18およびR19はそれぞれ独立に、水素原子または保護基を示す。ただし、前記構造単位(5)中に含まれる全てのR18およびR19のうち少なくとも1個は水素原子である。
 x1は独立に、0~6の整数を示し、x2は1~7の整数を示し、aは0または1を示し、bは0~20の整数を示す。
 前記保護基とは、反応性の基(-SO3-または-SO3 -)を一時的に保護する目的で使用されるイオン、原子または原子団等のことをいう。具体的には、アルカリ金属原子、脂肪族炭化水素基、脂環基、含酸素複素環基および含窒素カチオンなどが挙げられる。
 親水性セグメント(A1)は、スルホン酸基を有する前記構造単位(5)以外にも、スルホン酸基以外のプロトン伝導性基を有する構造単位として、例えば、ホスホン酸基を有する構造単位や、特開2011-089036号公報および国際公開第2007/010731号等に記載の含窒素複素環を有する芳香族系構造単位などを含んでもよい。
 ・疎水性セグメント(B1)
 疎水性セグメント(B1)としては、疎水性を示すセグメントであれば特に制限されない。
 親水性セグメント(B1)は、1種類の構造単位のみからなってもよく、2種類以上の構造単位を含んでもよい。
 疎水性セグメント(B1)としては、好ましくは、主鎖に芳香環を有し、スルホン酸基などのプロトン伝導性基を含有しない疎水性セグメントが挙げられ、より熱水膨潤抑制に優れる電解質膜が得られるなどの点から、下記式(1)で表される構造単位(以下「構造単位(1)」ともいう。)、下記式(2)で表される構造単位(以下「構造単位(2)」ともいう。)および下記式(3')で表される構造単位(以下「構造単位(3')」ともいう。)からなる群より選ばれる少なくとも1種の構造単位を含むセグメントであることが好ましく、構造単位(1)および構造単位(2)からなる群より選ばれる少なくとも1種の構造単位からなるセグメントであることがより好ましい。
 前記重合体(1)が、構造単位(1)~(3')のいずれか、特には、構造単位(1)または(2)を含有することにより、該重合体の疎水性が著しく向上する。このため、従来と同様のプロトン伝導性を具備しながら、優れた熱水耐性を有する電解質膜を得ることができる。また、セグメント(B1)がニトリル基を含む場合は、靭性および機械的強度の高い電解質膜を製造できる。
・構造単位(1)
 疎水性セグメント(B1)が、構造単位(1)を含有することにより、該セグメント(B1)の剛直性が高くなり、かつ芳香環密度が高くなることで、得られる重合体(1)を含む電解質膜の熱水耐性、過酸化物に対するラジカル耐性、ガスバリア性、機械的強度および寸法安定性等を向上させることができる。
 前記疎水性セグメント(B1)は、1種類の構造単位(1)を含んでもよく、2種類以上の構造単位(1)を含んでもよい。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、芳香環を構成する少なくとも1つの置換可能な炭素原子は窒素原子に置き換えられてもよく、R21は独立に、ハロゲン原子、ヒドロキシ基、ニトロ基、ニトリル基またはR22-E-(Eは、直接結合、-O-、-S-、-CO-、-SO2-、-CONH-、-COO-、-CF2-、-CH2-、-C(CF32-または-C(CH32-を示し;R22は、アルキル基、ハロゲン化アルキル基、アルケニル基、アリール基、ハロゲン化アリール基または含窒素複素環を示し、これらの基の少なくとも1つの水素原子は、さらにヒドロキシ基、ニトロ基、ニトリル基およびR22-E-からなる群より選ばれる少なくとも1種の基で置換されていてもよい。)を示し、複数のR21が結合して環構造を形成してもよい。
 なお、R21がR22-E-であり、かつ、該R22がさらにR22-E-で置換される場合、複数のEは同一でも異なっていてもよく、複数のR22(ただし、置換によって生じる構造の差異を除く部分の構造)も同一でも異なっていてもよい。このことは、他の式中の符号においても同様である。
 c1およびc2は独立に0または1以上の整数を示し、dは1以上の整数を示し、eは独立に、0~(2c1+2c2+4)の整数を示す。
・構造単位(2)
 前記疎水性セグメント(B1)が構造単位(2)を含むと、過酸化物などに対するラジカル耐性が向上し、発電・水電解耐久性に優れる電解質膜が得られると考えられるため好ましい。
 また、前記疎水性セグメント(B1)が構造単位(2)を含有することにより、該セグメント(B1)に適度な屈曲性(柔軟性)を付与することができ、得られる重合体を含む電解質膜の靭性を向上させることができる。
 前記疎水性セグメント(B1)は、1種類の構造単位(2)を含んでもよく、2種類以上の構造単位(2)を含んでもよい。
Figure JPOXMLDOC01-appb-C000004
 式(2)中、芳香環を構成する少なくとも1つの置換可能な炭素原子は窒素原子に置き換えられてもよく、R31は独立に、ハロゲン原子、ヒドロキシ基、ニトロ基、ニトリル基またはR22-E-(EおよびR22はそれぞれ独立に、前記式(1)中のEおよびR22と同義である。)を示し、複数のR31が結合して環構造を形成してもよい。
 fは0または1以上の整数を示し、gは0~(2f+4)の整数を示す。ただし、式(2)で表される構造単位は、式(1)で表される構造単位以外の構造単位である。
・構造単位(3')
 前記疎水性セグメント(B1)が構造単位(3')を含有することにより、該セグメント(B1)に適度な屈曲性(柔軟性)を付与することができ、得られる重合体を含む電解質膜の靭性を向上させることができる。
 前記疎水性セグメント(B1)は、1種類の構造単位(3')を含んでもよく、2種類以上の構造単位(3')を含んでもよい。
Figure JPOXMLDOC01-appb-C000005
 式(3')中、A'およびD'はそれぞれ独立に、直接結合、-O-、-S-、-CO-、-SO2-、-SO-、-CONH-、-COO-、-(CF2i-(iは1~10の整数である)、-(CH2j-(jは1~10の整数である)、-CR'2-(R'は脂肪族炭化水素基、芳香族炭化水素基またはハロゲン化炭化水素基を示す。)、シクロヘキシリデン基またはフルオレニリデン基を示し、
 B'は独立に、酸素原子または硫黄原子を示し、R1~R16はそれぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、ニトロ基、ニトリル基またはR22-E-(EおよびR22はそれぞれ独立に、式(1)中のEおよびR22と同義である。)を示し、R1~R16のうちの複数の基が結合して環構造を形成してもよい。
 sおよびtはそれぞれ独立に、0~4の整数を示し、rは0または1以上の整数を示す。
 ・重合体(1)の合成方法
 前記重合体(1)は、従来公知の方法で合成することができ、特に制限されないが、例えば、前記構造単位となる化合物を触媒や溶媒の存在下で反応させ、必要によりスルホン酸エステル基などをスルホン酸基に変換する、または、スルホン化剤を用いてスルホン化する等の方法でプロトン伝導性基を導入することにより合成することができる。
 〈触媒層〉
 前記触媒層は、特に制限されず公知のものを使用することができるが、例えば、触媒、イオン交換樹脂電解質などから構成される。
 触媒としては、白金、パラジウム、金、ルテニウム、イリジウムなどの貴金属触媒が好ましく用いられる。また、貴金属触媒は、合金や混合物などのように、2種以上の元素を含むものであってもよい。このような貴金属触媒は、高比表面積カーボン微粒子に担持したものを用いてもよい。
 イオン交換樹脂電解質は、前記触媒を結着させるバインダー成分として働くとともに、アノード極では触媒上の反応によって発生したイオンを電解質膜(電解質膜積層体)へ効率的に供給し、また、カソード極では電解質膜(電解質膜積層体)から供給されたイオンを触媒へ効率的に供給する物質であることが好ましい。
 前記イオン交換樹脂電解質としては、触媒層内のプロトン伝導性を向上させるためにプロトン交換基を有するポリマーが好ましい。
 このようなポリマーに含まれるプロトン交換基としては、スルホン酸基、カルボン酸基、リン酸基などが挙げられるが特に限定されるものではない。
 また、このようなプロトン交換基を有するポリマーも、特に限定されることなく用いられるが、フルオロアルキルエーテル側鎖とフルオロアルキル主鎖とから構成されるプロトン交換基を有するポリマーや、スルホン酸基を有する芳香族炭化水素系重合体などが好ましく用いられる。また、前記電解質膜の欄で例示した重合体をイオン交換樹脂電解質として使用してもよく、さらに、プロトン交換基を有し、フッ素原子を含むポリマー、エチレンやスチレンなどから得られる他のポリマーや、これらの共重合体やブレンドであっても構わない。
 このようなイオン交換樹脂電解質は、公知のものを特に制限なく使用可能であり、例えば、Nafionであってもよい。
 前記触媒層は、必要に応じてさらに、炭素繊維、イオン交換基を有しない樹脂等の添加剤を含んでもよい。この添加剤としては撥水性の高い成分であることが好ましく、例えば、含フッ素共重合体、シランカップリング剤、シリコーン樹脂、ワックス、ポリホスファゼンなどを挙げることができるが、好ましくは含フッ素共重合体である。
 前記触媒層の厚みは、燃料電池や水電解装置に通常用いられる触媒層と同程度の厚みであればよいが、好ましくは1~100μm、より好ましくは3~50μmである。
 〈ガス拡散層〉
 前記ガス拡散層としては、特に制限されず公知のものを使用することができるが、多孔性基材または多孔性基材と微多孔層との積層構造体等が挙げられる。ガス拡散層が多孔性基材と微多孔層との積層構造体からなる場合には、微多孔層が触媒層に接することが好ましい。また、前記ガス拡散層は、撥水性を付与するために含フッ素重合体を含んでいることが好ましい。
 前記ガス拡散層の厚みは、燃料電池に通常用いられるガス拡散層と同程度の厚みであればよいが、好ましくは50~400μm、より好ましくは100~300μmである。
 ≪固体高分子型燃料電池≫
 本発明に係る固体高分子型燃料電池は、前記膜-電極接合体を有する。このため、本発明に係る燃料電池は、特に耐久性に優れ、発電性能の経時的な低下が抑制され、長期にわたって安定な発電が可能である。
 本発明に係る燃料電池は、具体的には、少なくとも一つの膜-電極接合体の両外側に位置する、セパレータを含む少なくとも一つの電気発生部;燃料を前記電気発生部に供給する燃料供給部;および酸化剤を前記電気発生部に供給する酸化剤供給部を含む燃料電池であることが好ましい。
 前記セパレータとしては、通常の燃料電池に使用されるものを用いることができる。具体的にはカーボンタイプのセパレータ、金属タイプのセパレータ等が挙げられる。
 また、燃料電池を構成する部材としては、公知のものを特に制限なく使用することが可能である。本発明の燃料電池は単セルであってもよいし、複数の単セルを直列に繋いだスタックセルであってもよい。スタックの方法としては公知の方法を用いることができる。具体的には単セルを平面状に並べた平面スタッキングであってもよいし、および燃料または酸化剤の流路が、セパレータの裏表面にそれぞれ形成されているセパレータを介して単セルを積み重ねるバイポーラースタッキングであってもよい。
 ≪水電解装置≫
 本発明に係る水電解装置は、前記膜-電極接合体を有する。このため、本発明に係る水電解装置は、特に耐久性に優れ、性能の経時的な低下が抑制され、長期にわたって安定な電気分解が可能である。
 以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。
 〔スルホン酸基を有する重合体のイオン交換容量〕
 以下の合成例で得られた重合体のイオン交換容量は以下のようにして測定した。
 以下の合成例で得られた重合体を脱イオン水に浸漬することで、該重合体中に残存している酸を完全に除去した後、重合体1mg当たり2mLの2N食塩水に浸漬してイオン交換させることにより塩酸水溶液を調製した。この塩酸水溶液を、フェノールフタレインを指示薬として、0.001N水酸化ナトリウムの標準水溶液にて中和滴定した。イオン交換後の重合体を脱イオン水で洗浄し、110℃で2時間真空乾燥させて乾燥重量を測定した。下記式に示すように、水酸化ナトリウムの滴定量と重合体の乾燥重量とから、スルホン酸基の当量(以下「イオン交換容量」という。)を求めた。
 イオン交換容量(meq/g)=水酸化ナトリウムの滴定量(mmol)/重合体の乾燥重量(g)
 〔分子量の測定〕
 以下の合成例で得られた化合物の分子量の測定は、測定する化合物に応じて以下の(A)または(B)の方法を用いた。
 (A)測定する化合物をN-メチル-2-ピロリドン緩衝溶液(以下「NMP緩衝溶液」という。)に溶解し、溶離液としてNMP緩衝溶液を、装置としてTOSOH HLC-8220(東ソー(株)製)を、カラムとしてTSKgel α-M(東ソー(株)製)を用いたゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレン換算の数平均分子量(Mn)および重量平均分子量(Mw)を求めた。
 NMP緩衝溶液は、NMP(3L)/リン酸(3.3mL)/臭化リチウム(7.83g)の比率で調製した。
 (B)測定する化合物をテトラヒドロフラン(THF)に溶解し、溶離液としてTHFを、装置としてTOSOH HLC-8220(東ソー(株)製)を、カラムとしてTSKgel α-M(東ソー(株)製)を用いたGPCにより、ポリスチレン換算のMnおよびMwを求めた。
 (2)ガラス転移温度の測定
 動的粘弾性装置(アイティー計測制御(株)製「DVA-200」)を用い、変形様式:引張、下限弾性率:1000Pa、下限動ちから:0cN、昇温速度:2℃/分、測定周波数10Hz、歪:0.05%、静/動力比:1.5、上限伸び率:50%、最小加重:0.5cNの条件で測定することで、温度と弾性率との曲線を得、得られた曲線の変曲点からガラス転移温度を求めた。
 〔合成例1〕
 (1)疎水性ユニットの合成
 撹拌機、温度計、冷却管、Dean-Stark管および窒素導入の三方コックを取り付けた1Lの三つ口のフラスコに、2,6-ジクロロベンゾニトリル49.4g(0.29モル)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン88.4g(0.26モル)、および炭酸カリウム47.3g(0.34モル)を量り取った。得られたフラスコを窒素置換後、該フラスコにスルホラン346mLおよびトルエン173mLを加えて攪拌した。フラスコをオイルバスにつけ、150℃で加熱還流させた。反応により生成した水をトルエンと共沸させ、Dean-Stark管で系外に除去しながら反応させると、約3時間で水の生成がほとんど認められなくなった。反応温度を徐々に上げながら大部分のトルエンを除去した後、200℃で3時間反応を続けた。次いで、2,6-ジクロロベンゾニトリル12.3g(0.072モル)を加え、さらに5時間反応した。得られた反応液を放冷後、トルエン100mLを加えて希釈した。副生した無機化合物の沈殿物を濾過除去し、濾液を2Lのメタノール中に投入した。沈殿した生成物を濾別回収し、乾燥後、THF250mLに溶解させた。得られた溶液をメタノール2Lに投入し、再沈殿させ、目的の化合物(沈殿物)107gを得た。
 得られた目的の化合物のGPC(溶媒:THF)で求めたポリスチレン換算のMnは7,300であった。得られた化合物は下記構造式で表されるオリゴマーであった。
Figure JPOXMLDOC01-appb-C000006
 (2)親水性ユニットの合成
 攪拌機および冷却管を備えた3Lの三つ口フラスコに、クロロスルホン酸233.0g(2モル)を加え、続いて2,5-ジクロロベンゾフェノン100.4g(400ミリモル)を加え、得られたフラスコを100℃のオイルバスに入れ、8時間反応させた。8時間後、反応液を砕氷1000gにゆっくりと注ぎ、酢酸エチルで抽出した。有機層を食塩水で洗浄し、硫酸マグネシウムで乾燥させた後、酢酸エチルを留去し、淡黄色の粗結晶3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸クロリドを得た。粗結晶は精製せず、そのまま次工程に用いた。
 2,2-ジメチル-1-プロパノール(ネオペンチルアルコール)38.8g(440ミリモル)をピリジン300mLに加え、約10℃に冷却した。ここに上記で得られた粗結晶を約30分かけて徐々に加えた。全量添加後、さらに30分撹拌し反応させた。反応後、反応液を塩酸水1000mL中に注ぎ、析出した固体を回収した。得られた固体を酢酸エチルに溶解させ、炭酸水素ナトリウム水溶液、食塩水で順次洗浄後、硫酸マグネシウムで乾燥させ、酢酸エチルを留去することで粗結晶を得た。これをメタノールで再結晶し、下記構造式で表される3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチルの白色結晶を得た。
Figure JPOXMLDOC01-appb-C000007
 (3)塩基性ユニットの合成
 撹拌羽根、温度計および窒素導入管を取り付けた2Lの3つ口フラスコに、フルオロベンゼン240.2g(2.50モル)を取り、氷浴で10℃まで冷却し、2,5-ジクロロ安息香酸クロライド134.6g(0.50モル)、および塩化アルミニウム86.7g(0.65モル)を反応温度が40℃を超えないように徐々に添加した。添加後、40℃で8時間撹拌した。薄層クロマトグラフィーにより原料の消失を確認した後、攪拌後の混合物を氷水に滴下し、酢酸エチルで抽出した。得られた有機層を5%重曹水により中和した後、飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた後、エバポレーターで溶媒を留去した。これをメタノールで再結晶させることで、中間体の2,5-ジクロロ-4'-フルオロベンゾフェノンを130g、収率97%で得た。
 撹拌機、温度計、冷却管、Dean-Stark管および窒素導入の三方コックを取り付けた2Lの3つ口フラスコに、前記2,5-ジクロロ-4'-フルオロベンゾフェノン130.5g(0.49モル)、2-ヒドロキシピリジン46.1g(0.49モル)、および炭酸カリウム73.7g(0.53モル)を取り、N,N-ジメチルアセトアミド(DMAc)500mLおよびトルエン100mLを加え、オイルバス中、窒素雰囲気下で撹拌しながら130℃で反応させた。反応により生成した水をトルエンと共沸させ、Dean-Stark管で系外に除去しながら反応させると、約3時間で水の生成がほとんど認められなくなった。その後、大部分のトルエンを除去し、130℃で10時間反応を続けた。得られた反応液を放冷後濾過し、濾液を2Lの水/メタノール(9/1)中に投入した。沈殿した生成物を濾別により回収し、乾燥させた。
 撹拌機、温度計、冷却管、Dean-Stark管および窒素導入の三方コックを取り付けた2Lの3つ口フラスコに前記乾燥物を取り、トルエン1L中、100℃で撹拌し、残留した水分を留去しながら溶解させた。放冷後、析出した結晶を濾過することにより下記構造式で表される淡黄色の2,5-ジクロロ-4'-(2-ピリジニルオキシ)ベンゾフェノンを142g、収率83%で得た。
Figure JPOXMLDOC01-appb-C000008
 (4)スルホン酸基を有する重合体の合成
 撹拌機、温度計および窒素導入管を接続した1Lの3つ口フラスコに、乾燥したDMAc166mLを入れ、そこに(1)で合成したオリゴマー13.4g(1.8ミリモル)、(2)で合成した3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル37.6g(93.7ミリモル)、(3)で合成した2,5-ジクロロ-4'-(2-ピリジニルオキシ)ベンゾフェノン1.61g(4.7ミリモル)、ビス(トリフェニルホスフィン)ニッケルジクロリド2.62g(4.0ミリモル)、トリフェニルホスフィン10.5g(40.1ミリモル)、ヨウ化ナトリウム0.45g(3.0ミリモル)、および亜鉛15.7g(240.5ミリモル)の混合物を窒素下で加えた。
 得られた混合物を撹拌下に加熱し(最終的には82℃まで加温)、3時間反応させた。反応途中で系中の粘度上昇が観察された。反応後の溶液をDMAc175mLで希釈し、30分撹拌した後、セライトを濾過助剤として用い濾過した。得られた濾液を、撹拌機を取り付けた1Lの3つ口フラスコに入れ、ここに臭化リチウム24.4g(281ミリモル)を1/3ずつ3回に分け1時間間隔で加え、内温120℃で5時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、アセトン4Lに注ぎ、凝固させた。凝固物を濾集、風乾後、ミキサーで粉砕し、1N硫酸1500mLに入れ、攪拌しながら洗浄を行った。濾過後、濾物を洗浄液のpHが5以上となるまで、イオン交換水で洗浄後、80℃で一晩乾燥し、目的の塩基性ユニットが導入されたスルホン酸基を有する重合体38.0gを得た。得られたスルホン酸基を有する重合体のGPC(溶媒:NMP緩衝溶液)で測定したポリスチレン換算の分子量は、Mn=63000、Mw=194000であった。また、この重合体のイオン交換容量は2.33meq/gであった。得られたスルホン酸基を有する重合体は、下記構造式で表される化合物(樹脂A)であった。また、得られた化合物のガラス転移温度は190℃であった。
Figure JPOXMLDOC01-appb-C000009
(式中、o、m、kおよびnは、その構造単位を形成する原料の仕込み量から算出される値である。)
 〔合成例2〕
 (1)親水性ユニットの合成
 攪拌機を備えた1Lのフラスコに、ネオペンチルアルコール(45.30g、514mmol)のピリジン(300mL)溶液を加え、続いて3,5-ジクロロベンゼンスルホニルクロライド(114.65g、467mmol)を少量ずつ攪拌しながら15分かけて添加した。この間、反応温度は18~20℃に保った。反応混合物の入ったフラスコを、氷浴中で冷却しながらさらに30分攪拌した後、氷冷した10% HCl水溶液(1600mL)を添加した。水に不溶の成分を700mLの酢酸エチルで抽出し、1N HCl水溶液で2回(各700mL)洗浄し、次いで、5% NaHCO3水溶液で2回(各700mL)洗浄し、その後硫酸マグネシウムで乾燥させた。回転乾燥機を用いて溶媒を除去し、残渣を500mLのメタノールで再結晶させた。その結果、下記構造式で表される3,5-ジクロロベンゼンスルホン酸ネオペンチルの光沢のある無色結晶を収量105.98g、収率76%で得た。
Figure JPOXMLDOC01-appb-C000010
 (2)スルホン酸基を有する重合体の合成
 添加系:得られた3,5-ジクロロベンゼンスルホン酸ネオペンチル29.15g(98.09mmol)およびトリフェニルホスフィン1.65g(6.28mmol)の混合物中に、脱水したDMAc71mLを窒素下で加えて添加系溶液を調製した。
 反応系:2,5-ジクロロベンゾフェノン23.03g(91.71mmol)、2,6-ジクロロベンゾニトリル1.75g(10.19mmol)、トリフェニルホスフィン1.92g(7.34mmol)および亜鉛15.99g(244.57mmol)の混合物中に、脱水したDMAc66mLを窒素下で加えた。この反応系を撹拌下に60℃まで加熱した後、ビス(トリフェニルホスフィン)ニッケルジクロリド1.60g(2.45mmol)を加えて重合を開始し、80℃で20分間撹拌した。反応に伴い発熱や粘度上昇が観察された。
 得られた反応系に添加系溶液を窒素下で加えた。この系を撹拌下に60℃まで加熱した後、亜鉛15.39g(235.43mmol)およびビス(トリフェニルホスフィン)ニッケルジクロリド2.05g(3.14mmol)を加えてさらに重合を促進させ、80℃で3時間撹拌した。反応に伴い発熱や粘度上昇が観察された。
 得られた溶液をDMAc273mLで希釈し、セライトを濾過助剤として用いて濾過した。濾液に臭化リチウム29.82g(343.33mmol)を加え、100℃で7時間反応させた。反応後、反応液を室温まで冷却し、水3.2Lに投入して凝固させた。凝固物にアセトンを加え、撹拌しながら4回洗浄・濾過を行った。洗浄物を1N硫酸で撹拌しながら7回洗浄・濾過を行った。さらに洗浄物を洗浄液のpHが5以上になるまで脱イオン水で洗浄・濾過を行った。得られた洗浄物を75℃で24時間乾燥させることにより目的のスルホン酸基を有する重合体26.3gを得た。
 このスルホン酸基を有する重合体のGPC(溶媒:NMP緩衝溶液)で測定したポリスチレン換算の分子量は、Mnが53000であり、Mwが120000であった。また、この重合体のイオン交換容量は2.30meq/gであった。NMRで確認したところ、得られたスルホン酸基を有する重合体は、下記構造単位(q:r=90:10)を有する化合物(樹脂B)であった。また、得られた化合物のガラス転移温度は166℃であった。
Figure JPOXMLDOC01-appb-C000011
(式中、pは、その構造単位を形成する原料の仕込み量から算出される値である。)
 〔合成例3〕
 (1)親水性ユニットの合成
 2,2-ジメチルプロパノール44.9g(510.2mmol)をピリジン147mlに溶解させた。これに、0℃で、2,5-ジクロロベンゼンスルホン酸クロリド100g(405.6mmol)を加え、室温で1時間攪拌し、反応させた。反応混合物に、酢酸エチル740mLおよび2mol%塩酸水溶液740mLを加え、30分間撹拌した後静置し、有機層を分離した。分離した有機層を水740mL、10重量%炭酸カリウム水溶液740mLおよび飽和食塩水740mLで順次洗浄した後、減圧下で、溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィ(クロロホルム溶媒)で精製した。次いで、得られた溶出液から溶媒を、減圧下で留去した。その後、残渣を、65℃のヘキサン970mLに溶解させた後、室温まで冷却した。析出した固体を濾過により分離した。分離した固体を乾燥し、下記式で表される2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)の白色固体を99.4g、収率82.1%で得た。
Figure JPOXMLDOC01-appb-C000012
 (2)スルホン酸基を有する重合体の合成
 無水塩化ニッケル1.62g(12.5mmol)とジメチルスルホキシド(DMSO)15mLとをフラスコ内で混合し、内温70℃に調整した。これに、2,2’-ビピリジン2.15g(13.8mol)を加え、同温度で10分間撹拌し、ニッケル含有溶液を調製した。
 (1)で合成した2,5-ジクロロベンゼンスルホン酸(2,2-ジメチルプロピル)1.49g(5.0mmol)と下記式(S)で表されるスミカエクセルPES5200P(住友化学(株)製、Mn=40000、Mw=94000)0.50g(0.013mmol)とをジメチルスルホキシド(DMSO)5mLに溶解させることで得られた溶液に、亜鉛1.23g(18.8mmol)を加え、70℃に調整した。
Figure JPOXMLDOC01-appb-C000013
 得られた液に、前記ニッケル含有溶液を注ぎ込み、70℃で4時間重合反応を行った。反応混合物をメタノール60mL中に加え、次いで、得られた混合物に6mol/L塩酸水溶液60mLを加え、1時間撹拌した。析出した固体を濾過により分離した後、乾燥し、灰白色の重合中間体1.62gを得た。得られた重合中間体1.62gを、臭化リチウム1.13g(13.0mmol)とNMP56mLとの混合溶液に加え、120℃で24時間反応させた。反応混合物を、6mol/L塩酸水溶液560mL中に注ぎ込み、1時間撹拌した。析出した固体を濾過により分離した。分離した固体を乾燥させ、灰白色の目的のスルホン酸基を有する重合体0.42gを得た。
 このスルホン酸基を有する重合体のGPC(溶媒:NMP)で測定したポリスチレン換算の分子量は、Mnが75000であり、Mwが173000であった。この重合体のイオン交換容量は1.95meq/gであった。得られたスルホン酸基を有する重合体は、下記構造単位を有する化合物(樹脂C)であった。また、得られた化合物のガラス転移温度は225℃であった。
Figure JPOXMLDOC01-appb-C000014
(式中、mおよびnはそれぞれ独立に、それぞれの構造単位を形成する原料の仕込み量から算出される値である。)
〔触媒ペーストの作製〕
 80mLのポリテトラフルオロエチレン(PTFE)容器に、直径5mmのジルコニアボール((株)ニッカトー製「YTZボール」)80g、白金ルテニウム担持カーボン粒子(田中貴金属工業(株)製「TEC61E54」、Pt:29.8質量%担持、Ru:23.2質量%担持)1.28g、および蒸留水3.60gを入れ、遊星ボールミル(フリッチュ社製「P-5」)を用いて200rpmで10分間混練した。その後、更にn-プロピルアルコール12.02gおよびNafion D2020(DuPont社製、ポリマー濃度21%分散液、イオン交換容量1.08meq/g)3.90gを加え、200rpmで30分間混練した後、ジルコニアボールを除去することで、アノード触媒ペーストを得た。
 80mLのPTFE容器に、直径5mmのジルコニアボール(YTZボール)80g、白金担持カーボン粒子(田中貴金属工業(株)製「TEC10E50E」、Pt:45.6質量%担持)1.25g、および蒸留水3.64gを入れ、遊星ボールミル(P-5)を用いて200rpmで10分間混練した。その後、更にn-プロピルアルコール11.91gおよびNafion D2020(4.40g)を加え、200rpmで30分間混練した後、ジルコニアボールを除去することで、カソード触媒ペーストを得た。
 〔触媒転写シートの作製〕
 厚み100μmのPTFEシートに5cm×5cmの開口を有するマスクを用い、前記アノード触媒ペーストをドクターブレードにて塗布後、乾燥し、アノード触媒転写シートを得た。アノード触媒転写シートのPtとRuとの合計量は0.5mg/cm2であった。
 厚み100μmのPTFEシートに5cm×5cmの開口を有するマスクを用い、前記カソード触媒ペーストをドクターブレードにて塗布後、乾燥し、カソード触媒転写シートを得た。カソード触媒転写シートのPtの量は0.5mg/cm2であった。
 〔ガス拡散電極の作製〕
 80mLのPTFE容器に直径5mmのジルコニアボール(YTZボール)80g、カーボンブラック(ライオン(株)製「ケッチェンブラックEC」)0.48g、蒸留水12.14g、n-プロピルアルコール4.05g、およびNafion D2020(3.33g)を入れ、遊星ボールミル(P-5)を用いて200rpmで5分間混練した後、ジルコニアボールを除去することでカーボンブラックペーストを作製した。
 得られたカーボンブラックペーストをSGL CARBON社製のガス拡散層25BC上にドクターブレードにて乾燥後の重量増加が0.3mg/cm2になるように塗布し、80℃で15分間乾燥させることで下地層塗布ガス拡散層を作製した。
 アノード触媒ペーストを、下地層塗布ガス拡散層上の下地層上にPtとRuとの合計量が0.5mg/cm2になるようにドクターブレードにて塗布後、80℃で15分間乾燥し、アノードガス拡散電極を作製した。
 カソード触媒ペーストを、下地層塗布ガス拡散層上の下地層上にPtの量が0.5mg/cm2になるようにドクターブレードにて塗布後、80℃で15分間乾燥し、カソードガス拡散電極を作製した。
 [比較例1]
 (1)製膜
 合成例1で得られた樹脂A 16gをメタノール/NMP=40/60(質量比)の混合溶媒84mLに溶解した溶液を、ポリエチレンテレフタレート(PET)フィルム基材上にダイコーターにてキャスト塗工し、80℃で40分予備乾燥した後、120℃で40分乾燥した。乾燥後の塗膜付PETフィルムを大量の蒸留水に一晩浸漬し、塗膜中の残存NMPを取り除いた後、風乾し、膜基材積層体A1を得た。膜基材積層体A1からPETフィルムを剥離して得られた樹脂A膜1の厚みは30μmであった。
 (2)ガラス転移温度の測定
 動的粘弾性装置(アイティー計測制御(株)製「DVA-200」)を用い、変形様式:引張、下限弾性率:1000Pa、下限動ちから:0cN、昇温速度:2℃/分、測定周波数10Hz、歪:0.05%、静/動力比:1.5、上限伸び率:50%、最小加重:0.5cNの条件で測定することで、温度と弾性率との曲線を得、得られた曲線の変曲点からガラス転移温度を求めた。樹脂A膜1のガラス転移温度は190℃であった。
 なお同一の樹脂および同様の製法から得られる膜のガラス転移温度は膜厚によらず同一である。
 (3)膜電極接合体の作製
 膜基材積層体A1の塗膜側に、5cm×5cmの開口を有するマスクを用い、前記アノード触媒ペーストをドクターブレードにて塗布、風乾し、基材から剥離した後、基材剥離面に、5cm×5cmの開口を有するマスクを用い、ドクターブレードにて前記カソード触媒ペーストを塗布した。これを80℃で15分間乾燥することで、電解質膜の両面に触媒層が形成された膜触媒層積層体A1を得た。アノード触媒層のPtとRuとの合計量は0.5mg/cm2であった。カソード触媒層のPtの量は0.5mg/cm2であった。
 膜触媒層積層体A1の両面をSGL CARBON社製のガス拡散層25BCで挟み、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体A1を作製した。
 (4)燃料電池の作製
 膜電極接合体A1を評価用セル((株)ケミックス製「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製した。
 (5)発電評価試験
 前記燃料電池のアノード側に、純水素ガスに露点80℃の水蒸気を含ませたものを0.5L/minで供給し、カソード側に、空気に露点80℃の水蒸気を含ませたものを2L/minで供給し、燃料電池の温度を80℃に制御し、0~1A/cm2までの電流掃引を120回繰り返し、前処理をした。
 (5-1)前処理後の燃料電池の温度を80℃にし、アノード側に、純水素ガスに露点60℃の水蒸気を含ませたものを純水素ガスの利用率が70%になるように供給し、カソード側に、空気に露点60℃の水蒸気を含ませたものを酸素の利用率が40%になるように供給し、1A/cm2で発電した時の電圧を計測した。
 (5-2)次に燃料電池の温度を80℃のまま、アノード側に、純水素ガスに露点80℃の水蒸気を含ませたものを純水素ガスの利用率が70%になるように供給し、カソード側に、空気に露点80℃の水蒸気を含ませたものを酸素の利用率が40%になるように供給し、1A/cm2で発電した時の電圧を計測した。
 複数の燃料電池を前記と同様に作成し、それぞれの燃料電池を用いて前記と同様に電圧を測定し、合格率を算出した。結果を表1に示す。
 なお、前記合格率は、複数の燃料電池を用いて測定した前記(5-1)および(5-2)の電圧の平均値を算出し、各燃料電池における前記(5-1)および(5-2)の電圧の値が該平均値の±10mV以内となった場合に、該燃料電池を合格とし、複数の燃料電池に対する合格の燃料電池の割合を算出することで得られる。また、この時の前記(5-1)および(5-2)の平均電圧を表2に示す。
 (6)乾湿サイクル試験
 前記燃料電池のアノード側に、純水素ガスに露点80℃の水蒸気を含ませたものを0.5L/minで供給し、カソード側に、空気に露点80℃の水蒸気を含ませたものを2L/minで供給し、燃料電池の温度を80℃に制御し、0~1A/cm2までの電流掃引を120回繰り返し、前処理をした。
 前処理後の燃料電池のアノード側に、純水素ガスに露点45℃の水蒸気を含ませたものを0.5L/minで供給し、カソード側に、窒素ガスに露点45℃の水蒸気を含ませたものを0.5L/minで供給し、燃料電池の温度を50℃に制御し、ポテンショガルバノスタット(ソーラトロン社製 1287型)を用い、アノードに対するカソードの電圧を0.4Vにしたときの水素酸化の電流値から水素クロスオーバー電流を得た。
 次に燃料電池の温度を80℃にし、アノード側に、窒素ガスに露点90℃の水蒸気を含ませたものを0.5L/minで供給し、カソード側に、窒素ガスに露点90℃の水蒸気を含ませたものを1.0L/minで供給することを30分続け、その後アノード側に、乾燥窒素ガスを0.5L/minで供給し、カソード側に、乾燥窒素ガス1.0L/minで供給することを30分続けるサイクルを1サイクルとする乾湿サイクルを行った。20サイクル毎に水素クロスオーバー電流を測定し、該電流値が初期値の10倍まで増加したとき膜電極接合体が破膜したと判定した。膜電極接合体の破膜までの累積サイクル数を表1に示す。
 [比較例2]
 (1)製膜
 合成例2で得られた樹脂B 15gをNMP/メチルエチルケトン/メタノール=60/20/20(質量比)の混合溶媒85mLに溶解した溶液を、PETフィルム上にダイコーターにてキャスト塗工し、80℃で40分予備乾燥した後、120℃で40分乾燥した。乾燥後の塗膜付PETフィルムを大量の蒸留水に一晩浸漬し、塗膜中の残存NMPを取り除いた後、風乾し、膜基材積層体B1を得た。PETフィルムから剥離することで膜厚が30μmである樹脂B膜1を得た。
 (2)ガラス転移温度の測定
 比較例1と同様の方法で測定した樹脂B膜1のガラス転移温度は166℃であった。
 (3)膜電極接合体の作製
 膜基材積層体B1を使用した他は比較例1と同様の方法で膜電極接合体B1を得た。
 (4)燃料電池の作製
 膜電極接合体B1を使用した他は比較例1と同様の方法で燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [比較例3]
 (2)ガラス転移温度の測定
 比較例1と同様の方法で測定した市販の厚み50μmのNafion膜(DuPont社製、NRE212CS)のガラス転移温度は75℃であった。
 (3)膜電極接合体の作製
 PET基材付きのNafion NRE212CSを使用した他は比較例1と同様の方法で膜電極接合体N1を得た。
 (4)燃料電池の作製
 膜電極接合体N1を使用した他は比較例1と同様の方法で燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [比較例4]
 (3)膜電極接合体の作製
 比較例1と同様の方法で得られた樹脂A膜1を、アノード触媒転写シートおよびカソード触媒転写シートで、該転写シートの触媒塗布面が樹脂A膜1側になるように挟み込み、150℃、3MPa、5分の条件でプレスした後、PTFEシートを剥がし、膜触媒層積層体A1Dを得た。
 膜触媒層積層体A1Dの両面をSGL CARBON社製のガス拡散層25BCで挟み、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体A1Dを作製した。
 (4)燃料電池の作製
 膜電極接合体A1Dを使用した他は比較例1と同様の方法で燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [比較例5]
 (3)膜電極接合体の作製
 比較例1と同様の方法で得られた樹脂A膜1を、アノードガス拡散電極およびカソードガス拡散電極で、該電極の触媒塗布面が樹脂A膜1側になるように挟み、150℃、3MPa、5分の条件でプレスすることで、膜電極接合体A1Gを得た。
 (4)燃料電池の作製
 膜電極接合体A1Gを使用した他は比較例1と同様の方法で燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [比較例6]
 (1)製膜
 合成例3で得られた樹脂C 15gをNMP/メチルエチルケトン/メタノール=60/20/20(質量比)の混合溶媒85mLに溶解した溶液を、PETフィルム上にダイコーターにてキャスト塗工し、80℃で40分予備乾燥した後、120℃で40分乾燥した。乾燥後の塗膜付PETフィルムを大量の蒸留水に一晩浸漬し、塗膜中の残存NMPを取り除いた後、風乾し、膜基材積層体C1を得た。PETフィルムから剥離することで膜厚が30μmである樹脂C膜1を得た。
 (2)ガラス転移温度の測定
 比較例1と同様の方法で測定した樹脂C膜1のガラス転移温度は225℃であった。
 (3)膜電極接合体の作製
 膜基材積層体C1を使用した他は比較例1と同様の方法で膜電極接合体C1を得た。
 (4)燃料電池の作製
 膜電極接合体C1を使用した他は比較例1と同様の方法で燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例1]
 (1)製膜
 基材からの剥離後の膜厚(樹脂A膜2の膜厚)が15μmになるようキャスト塗工した他は比較例1と同様の方法で膜基材積層体A2を得た。なお、膜基材積層体A2は、2つ作成した。
 (3)膜電極接合体の作製
 1つの膜基材積層体A2の塗膜側に、5cm×5cmの開口を有するマスクを用い、前記アノード触媒ペーストをドクターブレードにて塗布し、80℃で15分間乾燥した後、基材から剥離し、膜触媒層積層体A2Aを得た。アノード触媒層のPtとRuとの合計量は0.5mg/cm2であった。膜触媒層積層体A2Aの触媒ペースト塗布面に5cm×5cmのSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体A2Aを作製した。
 もう1つの膜基材積層体A2の塗膜側に、5cm×5cmの開口を有するマスクを用い、前記カソード触媒ペーストをドクターブレードにて塗布し、80℃で15分間乾燥した後、基材から剥離し、膜触媒層積層体A2Cを得た。カソード触媒層のPt量は0.5mg/cm2であった。膜触媒層積層体A2Cの触媒ペースト塗布面に5cm×5cmのSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体A2Cを作製した。
 (4)燃料電池の作製
 膜電極接合体A2Aおよび膜電極接合体A2Cの基材剥離面が対向するように重ね、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例2]
 (1)製膜
 基材からの剥離後の膜厚が15μmになるようキャスト塗工した他は比較例2と同様の方法で膜基材積層体B2を得た。なお、膜基材積層体B2は、2つ作成した。
 (3)膜電極接合体の作製
 膜基材積層体B2を使用した他は実施例1と同様の方法でアノード触媒ペーストを塗布した膜電極接合体B2Aおよびカソード触媒ペーストを塗布した膜電極接合体B2Cを得た。
 (4)燃料電池の作製
 膜電極接合体B2Aおよび膜電極接合体B2Cの基材剥離面が対向するように重ね、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例3]
 (1)製膜
 基材からの剥離後の膜厚が10μmになるようキャスト塗工した他は比較例2と同様の方法で膜基材積層体B3を得た。また、基材からの剥離後の膜厚が20μmになるようキャスト塗工した以外は比較例2と同様の方法で膜基材積層体B4を得た。
 (3)膜電極接合体の作製
 膜基材積層体B3の塗膜側に、5cm×5cmの開口を有するマスクを用い、前記アノード触媒ペーストをドクターブレードにて塗布し、80℃で15分間乾燥した後、基材から剥離し、膜触媒層積層体B3Aを得た。アノード触媒層のPtとRuとの合計量は0.5mg/cm2であった。膜触媒層積層体B3Aの触媒ペースト塗布面に5cm×5cmのSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体B3Aを作製した。
 膜基材積層体B4の塗膜側に、5cm×5cmの開口を有するマスクを用い、前記カソード触媒ペーストをドクターブレードにて塗布し、80℃で15分間乾燥した後、基材から剥離し、膜触媒層積層体B4Cを得た。カソード触媒層のPt量は0.5mg/cm2であった。膜触媒層積層体B4Cの触媒ペースト塗布面に5cm×5cmのSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体B4Cを作製した。
 (4)燃料電池の作製
 膜電極接合体B3Aおよび膜電極接合体B4Cの基材剥離面が対向するように重ね、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例4]
 (3)膜電極接合体の作製
 実施例3で得られた膜基材積層体B4の塗膜側に、5cm×5cmの開口を有するマスクを用い、前記アノード触媒ペーストをドクターブレードにて塗布し、80℃で15分間乾燥した後、基材から剥離し、膜触媒層積層体B4Aを得た。アノード触媒層のPtとRuとの合計量は0.5mg/cm2であった。膜触媒層積層体B4Aの触媒ペースト塗布面に5cm×5cmのSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体B4Aを作製した。
 実施例3で得られた膜基材積層体B3の塗膜側に、5cm×5cmの開口を有するマスクを用い、前記カソード触媒ペーストをドクターブレードにて塗布し、80℃で15分間乾燥した後、基材から剥離し、膜触媒層積層体B3Cを得た。カソード触媒層のPt量は0.5mg/cm2であった。膜触媒層積層体B3Cの触媒ペースト塗布面に5cm×5cmのSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体B3Cを作製した。
 (4)燃料電池の作製
 膜電極接合体B4Aおよび膜電極接合体B3Cの基材剥離面が対向するように重ね、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例5]
 (4)燃料電池の作製
 実施例3で得られた膜電極接合体B3Aと実施例4で得られた膜電極接合体B3Cとを、基材剥離面が対向し、かつ、その間に実施例3で得られた膜基材積層体B3から基材を剥離することで得られる樹脂B膜3を挟むように重ね、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製した。得られた燃料電池を用い、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例6]
 (2)ガラス転移温度の測定
 比較例1と同様の方法で測定した厚み25μmのNafion膜(DuPont社製、 NRE211CS)のガラス転移温度は75℃であった。
 (3)膜電極接合体の作製
 PET基材付きNafion NRE211CSのNafion膜側に、5cm×5cmの開口を有するマスクを用い、前記アノード触媒ペーストをドクターブレードにて塗布し、80℃で15分間乾燥した後、基材から剥離し、膜触媒層積層体N2Aを得た。アノード触媒層のPtとRuとの合計量は0.5mg/cm2であった。膜触媒層積層体N2Aの触媒ペースト塗布面に5cm×5cmのSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体N2Aを作製した。
 PET基材付きNafion NRE211CSのNafion膜側に、5cm×5cmの開口を有するマスクを用い、前記カソード触媒ペーストをドクターブレードにて塗布し、80℃で15分間乾燥した後、基材から剥離し、膜触媒層積層体N2Cを得た。カソード触媒層のPt量は0.5mg/cm2であった。膜触媒層積層体N2Cの触媒ペースト塗布面に5cm×5cmのSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体N2Cを作製した。
 (4)燃料電池の作製
 膜電極接合体N2Aおよび膜電極接合体N2Cの基材剥離面が対向するように重ね、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例7]
 (4)燃料電池の作製
 実施例1で得られた膜電極接合体A2Aと実施例2で得られた膜電極接合体B2Cとを、基材剥離面が対向するように重ね、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例8]
 (1)製膜
 基材からの剥離後の膜厚が25μmになるようキャスト塗工した以外は比較例2と同様の方法で膜基材積層体B5を得た。
 (3)膜電極接合体の作製
 膜基材積層体B5の塗膜側に、5cm×5cmの開口を有するマスクを用い、前記アノード触媒ペーストをドクターブレードにて塗布し、80℃で15分間乾燥した後、基材から剥離し、膜触媒層積層体B5Aを得た。アノード触媒層のPtとRuとの合計量は0.5mg/cm2であった。膜触媒層積層体B5Aの触媒ペースト塗布面に5cm×5cmのSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体B5Aを作製した。
 (4)燃料電池の作製
 膜電極接合体B5Aと実施例6で得られた膜電極接合体N2Cとを、基材剥離面が対向するように重ね、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例9]
 (3)膜電極接合体の作製
 実施例8で得られた膜基材積層体B5の塗膜側に、5cm×5cmの開口を有するマスクを用い、前記カソード触媒ペーストをドクターブレードにて塗布し、80℃で15分間乾燥した後、基材から剥離し、膜触媒層積層体B5Cを得た。カソード触媒層のPt量は0.5mg/cm2であった。膜触媒層積層体B5Cの触媒ペースト塗布面に5cm×5cmのSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体B5Cを作製した。
 (4)燃料電池の作製
 実施例6で得られた膜電極接合体N2Aと膜電極接合体B5Cとを、基材剥離面が対向するように重ね、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例10]
 (4)燃料電池の作製
 実施例3で得られた膜電極接合体B3Aと実施例2で得られた膜電極接合体B2Cとを、基材剥離面が対向し、かつ、その間にNafion NRE211CSを挟むように重ね、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製した。得られた燃料電池を用い、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例11]
 (4)燃料電池の作製
 実施例3で得られた膜電極接合体B3Aと実施例6で得られた膜電極接合体N2Cとを、基材剥離面が対向し、かつ、その間に実施例2で得られた膜基材積層体B2から基材を剥離した樹脂B膜2を挟むように重ね、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製した。得られた燃料電池を用い、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例12]
 (4)燃料電池の作製
 実施例6で得られた膜電極接合体N2Aと実施例4で得られた膜電極接合体B3Cとを、基材剥離面が対向し、かつ、その間に実施例11で得られた樹脂B膜2を挟むように重ね、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製した。得られた燃料電池を用い、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例13]
 (3)膜電極接合体の作製
 実施例2と同様の方法で得た膜基材積層体B2の塗膜側に、5cm×5cmの開口を有するマスクを用い、前記アノード触媒ペーストをドクターブレードにて塗布し、さらに、膜基材積層体B2の塗膜側のアノード触媒ペースト塗布部と接しない場所に、5cm×5cmの開口を有するマスクを用い、前記カソード触媒ペーストをドクターブレードにて塗布し、これらペースト塗布部を80℃で15分間乾燥した後、基板から剥離し、膜触媒層積層体B2ACを得た。この積層体のアノード触媒層のPtとRuとの合計量は0.5mg/cm2であり、カソード触媒層のPt量は0.5mg/cm2であった。
 膜触媒層積層体B2ACを、基材剥離面が接するように、また、2つの触媒層が電解質膜を挟んで対向するように、電解質膜におけるペースト塗布部以外の位置で折り曲げた後、アノードおよびカソード触媒ペースト塗布面にそれぞれ5cm×5cmのSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体B2ACを作製した。
 (4)燃料電池の作製
 膜電極接合体B2ACを評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例14]
 (1)製膜
 合成例1で得られた樹脂A16gをメタノール/NMP=40/60(質量比)の混合溶媒84mLに溶解した溶液をポリイミドフィルム基材上にダイコーターにてキャスト塗工し、80℃で40分予備乾燥した後、120℃で40分乾燥した。乾燥後の塗膜付ポリイミドフィルムを大量の蒸留水に一晩浸漬し、塗膜中の残存NMPを取り除いた後、風乾し、膜基材積層体A3を得た。なお、膜基材積層体A3は、2つ作成した。膜基材積層体A3からポリイミドフィルムを剥離して得られた樹脂A膜3の厚みは15μmであった。
 (3)膜電極接合体の作製
 1つの膜基材積層体A3の塗膜側にアノード触媒転写シートの触媒塗布面を向け重ね、150℃、3MPa、5分の条件でプレスした後、PTFEシートとポリイミドフィルムとを剥がし、膜触媒層積層体A3Aを得た。膜触媒層積層体A3AのPTFEシート剥離面にSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体A3Aを作製した。
 もう1つの膜基材積層体A3の塗膜側にカソード触媒転写シートの触媒塗布面を向け重ね、150℃、3MPa、5分の条件でプレスした後、PTFEシートとポリイミドフィルムとを剥がし、膜触媒層積層体A3Cを得た。膜触媒層積層体A3CのPTFEシート剥離面にSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体A3Cを作製した。
 (4)燃料電池の作製
 膜電極接合体A3Aおよび膜電極接合体A3Cの基材剥離面が対向するように重ね、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例15]
 (3)膜電極接合体の作製
 実施例14で得られた樹脂A膜3にアノード触媒転写シートの触媒塗布面を向け重ね、150℃、3MPa、5分の条件でプレスした後、PTFEシートを剥がし、膜触媒層積層体A4Aを得た。膜触媒層積層体A4AのPTFEシート剥離面にSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体A4Aを作製した。
 実施例14で得られた樹脂A膜3にカソード触媒転写シートの触媒塗布面を向け重ね、150℃、3MPa、5分の条件でプレスした後、PTFEシートを剥がし、膜触媒層積層体A4Cを得た。膜触媒層積層体A4CのPTFEシート剥離面にSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体A4Cを作製した。
 (4)燃料電池の作製
 膜電極接合体A4Aおよび膜電極接合体A4Cの樹脂A膜3面が対向するように重ね、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例16]
 (3)膜電極接合体の作製
 実施例14で得られた膜基材積層体A3の塗膜側にアノード触媒転写シートの触媒塗布面を向け重ね、150℃、3MPa、5分の条件でプレスした後、PTFEシートを剥がし、PTFEシート剥離面にSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、ポリイミドフィルムを剥がすことで膜電極接合体A5Aを作製した。
 実施例14で得られた膜基材積層体A3の塗膜側にカソード触媒転写シートの触媒塗布面を向け重ね、150℃、3MPa、5分の条件でプレスした後、PTFEシートを剥がし、PTFEシート剥離面にSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、ポリイミドフィルムを剥がすことで膜電極接合体A5Cを作製した。
 (4)燃料電池の作製
 膜電極接合体A5Aおよび膜電極接合体A5Cの基材剥離面が対向するように重ね、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例17]
 (3)膜電極接合体の作製
 実施例14で得られた膜触媒層積層体A3Aおよび膜触媒層積層体A3Cをそれぞれの基材剥離面が対向するように重ね、更にそれぞれのPTFEシート剥離面にSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体A6を作製した。
 (4)燃料電池の作製
 膜電極接合体A6を評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例18]
 (3)膜電極接合体の作製
 実施例14で得られた膜基材積層体A3の塗膜側にアノードガス拡散電極を、該拡散電極の触媒塗布面が積層体A3の塗膜に接するように重ね、150℃、3MPa、5分の条件でプレスした後、ポリイミドフィルムを剥がすことで膜電極接合体A7Aを作製した。
 実施例14で得られた膜基材積層体A3の塗膜側にカソードガス拡散電極を、該拡散電極の触媒塗布面が積層体A3の塗膜に接するように重ね、150℃、3MPa、5分の条件でプレスした後、ポリイミドフィルムを剥がすことで膜電極接合体A7Cを作製した。
 (4)燃料電池の作製
 膜電極接合体A7Aおよび膜電極接合体A7Cの基材剥離面が対向するように重ね、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例19]
 (3)膜電極接合体の作製
 Nafion NRE211CSにカソード触媒転写シートの触媒塗布面を向け重ね、120℃、3MPa、1分の条件でプレスした後、PTFEシートを剥がし、膜触媒層積層体N3Cを得た。膜触媒層積層体N3CのPTFEシート剥離面にSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2、140℃で5分間ホットプレスし、膜電極接合体N3Cを得た。
 (4)燃料電池の作製
 実施例8に記載の膜電極接合体B5Aの基材剥離面が膜電極接合体N3CのNafion NRE211CSに接するように重ね、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例20]
 (3)膜電極接合体の作製
 実施例2で得られた膜触媒層積層体B2Aの基材剥離面側に、実施例1で得られた膜基材積層体A2から基材を剥離して得られる樹脂A膜2を重ね、膜触媒層積層体B2Aの触媒層上にSGL CARBON社製のガス拡散層25BCを重ね、樹脂A膜2側にカソードガス拡散電極を、該拡散電極の触媒塗布面が樹脂A膜2に接するように重ね、150℃、3MPa、5分の条件でプレスし、膜電極接合体B2A-A7Cを得た。
 (4)燃料電池の作製
 膜電極接合体B2A-A7Cを評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例21]
 (1)製膜
 基材からの剥離後の膜厚が15μmになるようキャスト塗工した以外は比較例6と同様の方法で膜基材積層体C2を得た。
 (3)膜電極接合体の作製
 膜基材積層体C2を使用した他は実施例1と同様の方法でアノード触媒ペーストを塗布した膜電極接合体C2Aおよびカソード触媒ペーストを塗布した膜電極接合体C2Cを得た。
 (4)燃料電池の作製
 膜電極接合体C2Aおよび膜電極接合体C2Cの基材剥離面が対向するように重ね、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [比較例7]
 (4)燃料電池の作製
 Nafion NRE211CS膜を2枚重ね、150℃、3MPa、5分の条件でプレスした後、得られた積層体の両側から、アノードガス拡散電極およびカソードガス拡散電極を、該電極の触媒塗布面それぞれがNafion NRE211CS膜側に向くように重ね、得られた積層体を評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例22]
 (3)膜電極接合体の作製
 実施例2で得られた膜基材積層体B2から基材を剥離して得られた樹脂B膜2を2枚重ね、得られた積層体の両側から、アノード触媒塗布面およびカソード触媒塗布面それぞれが樹脂B膜2の積層体に接するようにアノード触媒転写シートとカソード触媒転写シートで挟み、150℃、3MPa、5分の条件でプレスした後、PTFEシートを剥がし、PTFEシートの剥離面にSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体B9Dを作製した。
 (4)燃料電池の作製
 膜電極接合体B9Dを評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例23]
 (4)燃料電池の作製
 Nafion NRE211CS膜を2枚重ね、得られた積層体の両側から、更にアノードガス拡散電極およびカソードガス拡散電極を、該電極の触媒塗布面それぞれがNafion NRE211CS膜側に向くように重ね、得られた積層体を評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [比較例8]
 (3)膜電極接合体の作製
 厚み100μmのPTFEシートに、5cm×5cmの開口を有するマスクを用い、前記アノード触媒ペーストをドクターブレードにて塗布後、乾燥することで、アノード触媒層を形成した。PTFEシート上に形成されたアノード触媒層のPtとRuとの合計量は0.5mg/cm2であった。5cm×5cmの開口を有するマスクを前記アノード触媒層に開口部が重なるように設置し、合成例1で得られた樹脂A 16gをメタノール/NMP=40/60(質量比)の混合溶媒84mLに溶解した溶液をアノード触媒層上にダイコーターにてキャスト塗工し、80℃で40分予備乾燥した後、120℃で40分乾燥し、蒸留水に一晩浸漬し、塗膜中の残存NMPを取り除いた後、風乾した。前記PTFEシートおよびマスクを取り外し、膜触媒層積層体A9Aを得た。膜触媒層積層体A9Aの樹脂Aを含む塗膜(樹脂A塗膜)の厚みを測定したところ30μmであった。
 膜触媒層積層体A9Aの樹脂A塗膜のアノード触媒層を有する面とは反対側の面上に5cm×5cmの開口を有するマスクを用い、前記カソード触媒ペーストをドクターブレードにて塗布後、乾燥し、カソード触媒層を形成することで、膜触媒層積層体A9を得た。膜触媒層積層体A9のカソード触媒層におけるPt量は0.5mg/cm2であった。
 膜触媒層積層体A9の両面をSGL CARBON社製のガス拡散層25BCで挟み、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体A9を作製した。
 (4)燃料電池の作製
 膜電極接合体A9を使用した他は比較例1と同様の方法で燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
 [実施例24]
 (3)膜電極接合体の作製
 厚み100μmのPTFEシートに、5cm×5cmの開口を有するマスクを用い、前記アノード触媒ペーストをドクターブレードにて塗布後、乾燥することでアノード触媒層を形成した。PTFEシート上に形成されたアノード触媒層のPtとRuとの合計量は0.5mg/cm2であった。5cm×5cmの開口を有するマスクを前記アノード触媒層に開口部が重なるように設置し、合成例1で得られた樹脂A 16gをメタノール/NMP=40/60(質量比)の混合溶媒84mLに溶解した溶液をアノード触媒層上にダイコーターにてキャスト塗工し、80℃で40分予備乾燥した後、120℃で40分乾燥し、蒸留水に一晩浸漬し、塗膜中の残存NMPを取り除いた後、風乾した。前記PTFEシートおよびマスクを取り外し、膜触媒層積層体A10Aを得た。膜触媒層積層体A10Aの樹脂Aを含む塗膜(樹脂A塗膜)の厚みを測定したところ15μmであった。膜触媒層積層体A10Aのアノード触媒層面にSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体A10Aを作製した。
 厚み100μmのPTFEシートに5cm×5cmの開口を有するマスクを用い、前記カソード触媒ペーストをドクターブレードにて塗布後、乾燥することでカソード触媒層を形成した。PTFEシート上に形成されたカソード触媒層のPtの量は0.5mg/cm2であった。5cm×5cmの開口を有するマスクを前記カソード触媒層に開口部が重なるように設置し、合成例1で得られた樹脂A 16gをメタノール/NMP=40/60(質量比)の混合溶媒84mLに溶解した溶液をカソード触媒層上にダイコーターにてキャスト塗工し、80℃で40分予備乾燥した後、120℃で40分乾燥し、蒸留水に一晩浸漬し、塗膜中の残存NMPを取り除いた後、風乾した。前記PTFEシートおよびマスクを取り外し、膜触媒層積層体A10Cを得た。樹脂Aを含む塗膜(樹脂A塗膜)の厚みを測定したところ15μmであった。膜触媒層積層体A10Cのカソード触媒層面にSGL CARBON社製のガス拡散層25BCを重ね、圧力60kg/cm2下、140℃で5分間ホットプレスし、膜電極接合体A10Cを作製した。
 (4)燃料電池の作製
 膜電極接合体A10Aおよび膜電極接合体A10Cを、それぞれの樹脂A塗膜面が対向するように重ね、評価用セル(「JFC-025-01H」)に組み込み、有効面積25cm2の燃料電池を作製し、比較例1と同様の方法で発電評価試験および乾湿サイクル試験を行った。
Figure JPOXMLDOC01-appb-T000015
 
Figure JPOXMLDOC01-appb-T000016
 
 表1の結果から、本発明の製造方法で得られた膜-電極接合体は、発電性能の合格率および破膜までの乾湿サイクル数に優れ、高品質で耐久性に優れ、本発明の製造方法ではない方法で得られた、1枚の電解質膜しか含まない比較例1~6および8の膜-電極接合体は、発電性能の合格率および破膜までの乾湿サイクル数が低下した。
 比較例7は、前記工程(C)に相当する工程おいて、電解質膜に含まれる重合体のTgを超える温度で加熱する工程を含むため、本発明の製造方法を含む(工程(C)を含む)実施例23と比較すると、発電性能の合格率および破膜までの乾湿サイクル数が低下した。
 本発明の製造方法で得られた膜-電極接合体は、該接合体に含まれる電解質膜がどのような膜であっても、発電性能の合格率および破膜までの乾湿サイクル数に優れ、高品質で耐久性に優れることが分かる(実施例1~24)。
 実施例14~16を比較すると、触媒層およびガス拡散層を電解質膜上に形成する際には、該電解質膜には基材が積層されていることが、破膜までの乾湿サイクル数に優れる膜-電極接合体が得られるなどの点から好ましいことが分かる。
10:膜-電極接合体
12:ガス拡散層
14:触媒層
16:電解質膜
16': 電解質膜積層体
20:積層体A’
24:触媒層
26:電解質膜
30:膜-電極接合体

Claims (14)

  1.  下記工程(A1)または(A2)と、工程(B1)または(B2)とを含む、膜-電極接合体の製造方法。
     工程(A1):電解質膜の片面に触媒層を配置し、積層体Aを得る工程
     工程(A2):触媒層に電解質膜形成用組成物を塗布し、触媒層と電解質膜とを有する積層体Aを得る工程
     工程(B1):積層体Aそれぞれの電解質膜側同士を対向させて積層し、膜-電極接合体を得る工程
     工程(B2):積層体Aと電解質膜aとを、積層体Aの電解質膜と電解質膜aとが接するように積層し、その後、電解質膜aの積層体Aに接する側とは反対側に触媒層を配置し、膜-電極接合体を得る工程
  2.  下記工程(A’)と工程(B’)とを含む、膜-電極接合体の製造方法。
     工程(A’):電解質膜の片面に、互いに接していない2つ以上の触媒層をそれぞれ異なる位置に配置し、積層体A’を得る工程
     工程(B’):前記積層体A’を、触媒層が配置されていない位置で、触媒層を有しない面同士が対向するように折り曲げ、膜-電極接合体を得る工程
  3.  前記工程(B1)、工程(B’)、および、工程(B2)における積層体Aと電解質膜aとを積層する工程が、
     積層体Aを単に重ね合わせる工程、もしくは、積層体Aと電解質膜aとを単に重ね合わせる工程、または、
     用いる電解質膜に含まれる重合体のガラス転移温度より90℃低い温度からガラス転移温度未満の温度で加熱する工程を含む、
     請求項1または2に記載の膜-電極接合体の製造方法。
  4.  前記工程(A1)および工程(A’)が、基材付電解質膜の電解質膜の片面に触媒層を配置し、次いで、基材を剥離することでそれぞれ、積層体Aおよび積層体A’を得る工程である、請求項1~3のいずれか1項に記載の膜-電極接合体の製造方法。
  5.  下記工程(C)と工程(D)とを含む、膜-電極接合体の製造方法。
     工程(C):電解質膜を重ね合わせることで、または、
    電解質膜を積層し、当該積層後もしくは積層中に、該電解質膜に含まれる重合体のガラス転移温度より90℃低い温度からガラス転移温度未満の温度で加熱することで、
    積層体Cを得る工程
     工程(D):前記積層体Cの両面に触媒層を配置する工程
  6.  下記工程(A1)または(A2)と、工程(B1)または(B2)とを含む方法で得られる膜-電極接合体。
     工程(A1):電解質膜の片面に触媒層を配置し、積層体Aを得る工程
     工程(A2):触媒層に電解質膜形成用組成物を塗布し、触媒層と電解質膜とを有する積層体Aを得る工程
     工程(B1):積層体Aそれぞれの電解質膜側同士を対向させて積層し、膜-電極接合体を得る工程
     工程(B2):積層体Aと電解質膜aとを、積層体Aの電解質膜と電解質膜aとが接するように積層し、その後、電解質膜aの積層体Aに接する側とは反対側に触媒層を配置し、膜-電極接合体を得る工程
  7.  下記工程(A’)と工程(B’)とを含む方法で得られる膜-電極接合体。
     工程(A’):電解質膜の片面に、互いに接していない2つ以上の触媒層をそれぞれ異なる位置に配置し、積層体A’を得る工程
     工程(B’):前記積層体A’を、触媒層が配置されていない位置で、触媒層を有しない面同士が対向するように折り曲げ、膜-電極接合体を得る工程
  8.  前記工程(B1)、工程(B’)、および、工程(B2)における積層体Aと電解質膜aとを積層する工程が、
     積層体Aを単に重ね合わせる工程、もしくは、積層体Aと電解質膜aとを単に重ね合わせる工程、または、
     用いる電解質膜に含まれる重合体のガラス転移温度より90℃低い温度からガラス転移温度未満の温度で加熱する工程を含む、
     請求項6または7に記載の膜-電極接合体。
  9.  前記工程(A1)および工程(A’)が、基材付電解質膜の電解質膜の片面に触媒層を配置し、次いで、基材を剥離することでそれぞれ、積層体Aおよび積層体A’を得る工程である、請求項6~8のいずれか1項に記載の膜-電極接合体。
  10.  下記工程(C)と工程(D)とを含む方法で得られる膜-電極接合体。
     工程(C):電解質膜を重ね合わせることで、または、
    電解質膜を積層し、当該積層後もしくは積層中に、該電解質膜に含まれる重合体のガラス転移温度より90℃低い温度からガラス転移温度未満の温度で加熱することで、
    積層体Cを得る工程
     工程(D):前記積層体Cの両面に触媒層を配置する工程
  11.  電解質膜の片面に、互いに接していない2つ以上の触媒層をそれぞれ異なる位置に配置させた、膜-電極接合体形成用積層体。
  12.  電解質膜が折り曲げられており、その際に接する面とは反対側の両面に触媒層を有している、膜-電極接合体。
  13.  請求項6~10または12に記載の膜-電極接合体を有する固体高分子型燃料電池。
  14.  請求項6~10または12に記載の膜-電極接合体を有する水電解装置。
PCT/JP2013/082320 2012-12-03 2013-12-02 膜-電極接合体の製造方法、膜-電極接合体、膜-電極接合体形成用積層体、固体高分子型燃料電池および水電解装置 WO2014087958A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/649,002 US20150322578A1 (en) 2012-12-03 2013-12-02 Method for manufacturing membrane-electrode assembly, membrane-electrode assembly, laminate for forming membrane-electrode assembly, polymer electrolyte fuel cell and water-electrolysis device
EP13861211.4A EP2927998A4 (en) 2012-12-03 2013-12-02 METHOD FOR MANUFACTURING ELECTRODE-MEMBRANE ASSEMBLY, ELECTRODE-MEMBRANE ASSEMBLY, ELECTRODE-MEMBRANE ASSEMBLY FORMING LAMINATES, PROTON EXCHANGE MEMBRANE FUEL CELL, AND AQUEOUS ELECTROLYSIS DEVICE
JP2014551087A JPWO2014087958A1 (ja) 2012-12-03 2013-12-02 膜−電極接合体の製造方法、膜−電極接合体、膜−電極接合体形成用積層体、固体高分子型燃料電池および水電解装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012264164 2012-12-03
JP2012-264164 2012-12-03
JP2013143692 2013-07-09
JP2013-143692 2013-07-09

Publications (1)

Publication Number Publication Date
WO2014087958A1 true WO2014087958A1 (ja) 2014-06-12

Family

ID=50883375

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/082320 WO2014087958A1 (ja) 2012-12-03 2013-12-02 膜-電極接合体の製造方法、膜-電極接合体、膜-電極接合体形成用積層体、固体高分子型燃料電池および水電解装置
PCT/JP2013/082319 WO2014087957A1 (ja) 2012-12-03 2013-12-02 電解質膜アセンブリー、膜-電極接合体、燃料電池、水電解セルおよび水電解装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082319 WO2014087957A1 (ja) 2012-12-03 2013-12-02 電解質膜アセンブリー、膜-電極接合体、燃料電池、水電解セルおよび水電解装置

Country Status (4)

Country Link
US (1) US20150322578A1 (ja)
EP (1) EP2927998A4 (ja)
JP (2) JPWO2014087958A1 (ja)
WO (2) WO2014087958A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194546A1 (ja) * 2014-06-20 2015-12-23 東京応化工業株式会社 多孔性のイミド系樹脂膜製造システム、セパレータ、及び多孔性のイミド系樹脂膜製造方法
JPWO2016039299A1 (ja) * 2014-09-10 2017-06-22 東京応化工業株式会社 多孔質ポリイミド膜の製造方法
JP2019185960A (ja) * 2018-04-05 2019-10-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 燃料電池用触媒およびその製造方法
JP2021515713A (ja) * 2018-02-28 2021-06-24 ジョンソン・アイピー・ホールディング・エルエルシー 酸ドープ膜の結合方法
WO2023233740A1 (ja) * 2022-06-03 2023-12-07 三菱パワー株式会社 膜電極接合体、電解セル、電解装置、及び膜電極接合体の製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106062631B (zh) 2014-03-20 2019-11-22 日本瑞翁株式会社 放射线敏感性树脂组合物及电子部件
ES2968670T3 (es) 2016-08-25 2024-05-13 Proton Energy Sys Inc Conjunto de electrodos de membrana y método de fabricación del mismo
GB201621963D0 (en) * 2016-12-22 2017-02-08 Johnson Matthey Plc Catalyst-coated membrane having a laminate structure
KR102392729B1 (ko) * 2017-05-19 2022-04-29 어드밴스드 배터리 컨셉츠, 엘엘씨 쌍극성 배터리 조립체에 유용한 배터리 플레이트 및 제조 방법
JP6802827B2 (ja) * 2018-09-18 2020-12-23 株式会社東芝 水素製造装置及び隔膜
JP7543924B2 (ja) 2021-01-18 2024-09-03 株式会社豊田中央研究所 拡散層
CN116917547A (zh) * 2021-02-02 2023-10-20 普拉格能源公司 质子交换膜水电解器膜电极组件
JP7543940B2 (ja) 2021-02-09 2024-09-03 株式会社豊田中央研究所 拡散層
WO2022241156A1 (en) * 2021-05-12 2022-11-17 Giner, Inc. Membrane electrode assembly and method for fabricating same
DE102021214923A1 (de) * 2021-12-22 2023-06-22 Siemens Energy Global GmbH & Co. KG Membranelektrodenanordnung und Verfahren zu deren Herstellung

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176317A (ja) * 1993-12-20 1995-07-14 Sanyo Electric Co Ltd 電極/イオン交換薄膜接合体の製造方法、及び電極/イオン交換薄膜/電極接合体の製造方法
WO2002005372A1 (fr) * 2000-07-06 2002-01-17 Matsushita Electric Industrial Co., Ltd. Procede pour realiser la jonction entre un film d'electrolyte et une electrode
JP2002093424A (ja) * 2000-07-10 2002-03-29 Toray Ind Inc 膜−電極接合体の製造方法
JP2002216789A (ja) * 2001-01-19 2002-08-02 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池の製造方法
JP2004137444A (ja) 2002-08-22 2004-05-13 Jsr Corp 新規な芳香族スルホン酸エステル誘導体、ポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびにプロトン伝導膜およびその製造方法
JP2004164861A (ja) * 2002-11-08 2004-06-10 Dainippon Printing Co Ltd 燃料電池用触媒層形成シート、該シートの製造方法及び触媒層−電解質膜積層体の製造方法
JP2004523063A (ja) * 2000-11-10 2004-07-29 イオン パワー インコーポレーテッド 燃料電池用電極接合体の形成法
JP2004345997A (ja) 2003-05-21 2004-12-09 Jsr Corp 新規な芳香族スルホン酸エステル誘導体、ポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
JP2004346163A (ja) 2003-05-21 2004-12-09 Jsr Corp 新規な芳香族スルホン酸エステル誘導体、ポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
JP2006155924A (ja) 2004-11-25 2006-06-15 Asahi Kasei Chemicals Corp 高分子電解質積層膜
JP2006156295A (ja) 2004-12-01 2006-06-15 Ricoh Co Ltd 複合電解質膜、その製造方法、燃料電池および携帯機器
WO2007010731A1 (ja) 2005-07-15 2007-01-25 Jsr Corporation 含窒素芳香族化合物およびその製造方法、重合体およびプロトン伝導膜
JP2007018906A (ja) * 2005-07-08 2007-01-25 Gs Yuasa Corporation:Kk 固体高分子形燃料電池用膜/電極接合体の製造方法およびそれを備えた固体高分子形燃料電池
JP2007273280A (ja) 2006-03-31 2007-10-18 Dainippon Printing Co Ltd 燃料電池用触媒層及び触媒層−電解質膜積層体
JP2008053167A (ja) * 2006-08-28 2008-03-06 Toyota Motor Corp 燃料電池の製造方法
JP2009505364A (ja) * 2005-08-16 2009-02-05 ビーエーエスエフ ソシエタス・ヨーロピア 触媒被覆膜の製造方法
JP2009070675A (ja) * 2007-09-13 2009-04-02 Fuji Electric Holdings Co Ltd 固体高分子形燃料電池用膜電極接合体
JP2010135282A (ja) 2008-10-28 2010-06-17 Jsr Corp プロトン伝導膜およびその製造方法、膜−電極接合体、固体高分子型燃料電池
JP2010174179A (ja) 2009-01-30 2010-08-12 Jsr Corp ポリアリーレン系共重合体、プロトン伝導膜および固体高分子電解質型燃料電池
JP2010238374A (ja) 2009-03-30 2010-10-21 Jsr Corp 高分子電解質膜および固体高分子電解質型燃料電池
JP2011023225A (ja) 2009-07-16 2011-02-03 Dainippon Printing Co Ltd 燃料電池の触媒層−電解質膜積層体、電解質膜−電極接合体及び燃料電池
JP2011089036A (ja) 2009-10-22 2011-05-06 Jsr Corp 新規な芳香族化合物および側鎖にスルホン酸基を含む芳香環を有するポリアリーレン系共重合体
JP2012067216A (ja) 2010-09-24 2012-04-05 Jsr Corp 芳香族系共重合体、ならびにその用途
WO2013018677A1 (ja) 2011-07-29 2013-02-07 Jsr株式会社 プロトン伝導性基を有する芳香族系共重合体およびその用途

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5000289B2 (ja) * 2006-12-27 2012-08-15 本田技研工業株式会社 固体高分子型燃料電池用膜−電極構造体
JP5716677B2 (ja) * 2009-12-25 2015-05-13 Jsr株式会社 水素燃料型燃料電池

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176317A (ja) * 1993-12-20 1995-07-14 Sanyo Electric Co Ltd 電極/イオン交換薄膜接合体の製造方法、及び電極/イオン交換薄膜/電極接合体の製造方法
WO2002005372A1 (fr) * 2000-07-06 2002-01-17 Matsushita Electric Industrial Co., Ltd. Procede pour realiser la jonction entre un film d'electrolyte et une electrode
JP2002093424A (ja) * 2000-07-10 2002-03-29 Toray Ind Inc 膜−電極接合体の製造方法
JP2004523063A (ja) * 2000-11-10 2004-07-29 イオン パワー インコーポレーテッド 燃料電池用電極接合体の形成法
JP2002216789A (ja) * 2001-01-19 2002-08-02 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池の製造方法
JP2004137444A (ja) 2002-08-22 2004-05-13 Jsr Corp 新規な芳香族スルホン酸エステル誘導体、ポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびにプロトン伝導膜およびその製造方法
JP2004164861A (ja) * 2002-11-08 2004-06-10 Dainippon Printing Co Ltd 燃料電池用触媒層形成シート、該シートの製造方法及び触媒層−電解質膜積層体の製造方法
JP2004345997A (ja) 2003-05-21 2004-12-09 Jsr Corp 新規な芳香族スルホン酸エステル誘導体、ポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
JP2004346163A (ja) 2003-05-21 2004-12-09 Jsr Corp 新規な芳香族スルホン酸エステル誘導体、ポリアリーレン、スルホン酸基を有するポリアリーレンおよびその製造方法、ならびに高分子固体電解質およびプロトン伝導膜
JP2006155924A (ja) 2004-11-25 2006-06-15 Asahi Kasei Chemicals Corp 高分子電解質積層膜
JP2006156295A (ja) 2004-12-01 2006-06-15 Ricoh Co Ltd 複合電解質膜、その製造方法、燃料電池および携帯機器
JP2007018906A (ja) * 2005-07-08 2007-01-25 Gs Yuasa Corporation:Kk 固体高分子形燃料電池用膜/電極接合体の製造方法およびそれを備えた固体高分子形燃料電池
WO2007010731A1 (ja) 2005-07-15 2007-01-25 Jsr Corporation 含窒素芳香族化合物およびその製造方法、重合体およびプロトン伝導膜
JP2009505364A (ja) * 2005-08-16 2009-02-05 ビーエーエスエフ ソシエタス・ヨーロピア 触媒被覆膜の製造方法
JP2007273280A (ja) 2006-03-31 2007-10-18 Dainippon Printing Co Ltd 燃料電池用触媒層及び触媒層−電解質膜積層体
JP2008053167A (ja) * 2006-08-28 2008-03-06 Toyota Motor Corp 燃料電池の製造方法
JP2009070675A (ja) * 2007-09-13 2009-04-02 Fuji Electric Holdings Co Ltd 固体高分子形燃料電池用膜電極接合体
JP2010135282A (ja) 2008-10-28 2010-06-17 Jsr Corp プロトン伝導膜およびその製造方法、膜−電極接合体、固体高分子型燃料電池
JP2010174179A (ja) 2009-01-30 2010-08-12 Jsr Corp ポリアリーレン系共重合体、プロトン伝導膜および固体高分子電解質型燃料電池
JP2010238374A (ja) 2009-03-30 2010-10-21 Jsr Corp 高分子電解質膜および固体高分子電解質型燃料電池
JP2011023225A (ja) 2009-07-16 2011-02-03 Dainippon Printing Co Ltd 燃料電池の触媒層−電解質膜積層体、電解質膜−電極接合体及び燃料電池
JP2011089036A (ja) 2009-10-22 2011-05-06 Jsr Corp 新規な芳香族化合物および側鎖にスルホン酸基を含む芳香環を有するポリアリーレン系共重合体
JP2012067216A (ja) 2010-09-24 2012-04-05 Jsr Corp 芳香族系共重合体、ならびにその用途
WO2013018677A1 (ja) 2011-07-29 2013-02-07 Jsr株式会社 プロトン伝導性基を有する芳香族系共重合体およびその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2927998A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015194546A1 (ja) * 2014-06-20 2015-12-23 東京応化工業株式会社 多孔性のイミド系樹脂膜製造システム、セパレータ、及び多孔性のイミド系樹脂膜製造方法
JPWO2015194546A1 (ja) * 2014-06-20 2017-04-20 東京応化工業株式会社 多孔性のイミド系樹脂膜製造システム、セパレータ、及び多孔性のイミド系樹脂膜製造方法
JPWO2016039299A1 (ja) * 2014-09-10 2017-06-22 東京応化工業株式会社 多孔質ポリイミド膜の製造方法
JP2021515713A (ja) * 2018-02-28 2021-06-24 ジョンソン・アイピー・ホールディング・エルエルシー 酸ドープ膜の結合方法
JP7247208B2 (ja) 2018-02-28 2023-03-28 ジェイテック・エナジー・インコーポレーテッド 酸ドープ膜の結合方法
US11631877B2 (en) 2018-02-28 2023-04-18 Jtec Energy, Inc. Method of bonding acid-doped membranes and a bonded polybenzimidazole membrane structure
JP2019185960A (ja) * 2018-04-05 2019-10-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 燃料電池用触媒およびその製造方法
JP7093666B2 (ja) 2018-04-05 2022-06-30 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 燃料電池用触媒およびその製造方法
WO2023233740A1 (ja) * 2022-06-03 2023-12-07 三菱パワー株式会社 膜電極接合体、電解セル、電解装置、及び膜電極接合体の製造方法

Also Published As

Publication number Publication date
US20150322578A1 (en) 2015-11-12
JPWO2014087958A1 (ja) 2017-01-05
EP2927998A1 (en) 2015-10-07
EP2927998A4 (en) 2016-08-03
JPWO2014087957A1 (ja) 2017-01-05
WO2014087957A1 (ja) 2014-06-12

Similar Documents

Publication Publication Date Title
WO2014087958A1 (ja) 膜-電極接合体の製造方法、膜-電極接合体、膜-電極接合体形成用積層体、固体高分子型燃料電池および水電解装置
TWI671942B (zh) 複合高分子電解質膜以及使用其之附有觸媒層的電解質膜、膜電極複合物、固體高分子形燃料電池、氫壓縮裝置及複合高分子電解質膜之製造方法
JP7359139B2 (ja) 積層電解質膜、膜電極複合体、および、水電解式水素発生装置、ならびに、積層電解質膜の製造方法
JP2011103295A (ja) 高分子電解質膜、膜−電極接合体、及び固体高分子形燃料電池
WO2013027758A1 (ja) バナジウム系レドックス電池用イオン交換膜、複合体、及びバナジウム系レドックス電池
WO2015005370A1 (ja) 電解質膜、膜-電極接合体および固体高分子型燃料電池
JP5315878B2 (ja) 高分子電解質材料およびそれを用いた高分子電解質型燃料電池
JPWO2014157389A1 (ja) 電解質膜用組成物、固体高分子電解質膜、該電解質膜の製造方法、膜−電極接合体、固体高分子型燃料電池、水電解セルおよび水電解装置
JP2009021234A (ja) 膜−電極接合体及びその製造方法、並びに固体高分子形燃料電池
JP2009021233A (ja) 膜−電極接合体及びその製造方法、並びに固体高分子形燃料電池
JP2015228292A (ja) 固体高分子電解質膜、膜−電極接合体、燃料電池、水電解セルおよび水電解装置
JP5458765B2 (ja) プロトン伝導膜およびその製造方法、膜−電極接合体、固体高分子型燃料電池
JP5352128B2 (ja) 固体高分子型燃料電池用膜−電極構造体
JP4554568B2 (ja) 固体高分子型燃料電池用膜−電極構造体
JP2010135279A (ja) プロトン伝導膜およびその製造方法、膜−電極接合体、固体高分子型燃料電池
JP5309822B2 (ja) 芳香族スルホン酸誘導体、スルホン化ポリマーならびにそれを用いた高分子電解質材料および高分子電解質型燃料電池
WO2022244660A1 (ja) 電解質膜積層体、触媒層付電解質膜、膜電極接合体、水電解式水素発生装置および触媒層付電解質膜の製造方法
JP2015228291A (ja) 電解質膜アセンブリー、膜−電極接合体、燃料電池、水電解セルおよび水電解装置
JP5315877B2 (ja) 高分子電解質材料、ならびにそれを用いた高分子電解質型燃料電池
JP2021051995A (ja) 複合高分子電解質膜およびそれを用いた触媒層付電解質膜、膜電極複合体および固体高分子型燃料電池
JP2015220018A (ja) 炭化水素系高分子電解質膜、膜−電極接合体および燃料電池
JP2015008060A (ja) 電解質膜、膜−電極接合体および固体高分子型燃料電池
EP4497848A1 (en) Electrolyte membrane, electrolyte membrane with catalyst layer, membrane electrode assembly, and water electrolysis device
WO2011125735A1 (ja) 固体高分子電解質複合膜およびその製造方法
JP2019061863A (ja) 触媒層付き電解質膜、中間層インク、中間層デカールおよび固体高分子形燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861211

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014551087

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14649002

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013861211

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013861211

Country of ref document: EP