[go: up one dir, main page]

WO2014081119A1 - 하드코팅층을 포함하는 광특성이 우수한 반사방지 필름 - Google Patents

하드코팅층을 포함하는 광특성이 우수한 반사방지 필름 Download PDF

Info

Publication number
WO2014081119A1
WO2014081119A1 PCT/KR2013/009123 KR2013009123W WO2014081119A1 WO 2014081119 A1 WO2014081119 A1 WO 2014081119A1 KR 2013009123 W KR2013009123 W KR 2013009123W WO 2014081119 A1 WO2014081119 A1 WO 2014081119A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflection film
refractive index
layer
formula
film
Prior art date
Application number
PCT/KR2013/009123
Other languages
English (en)
French (fr)
Inventor
양지연
조홍관
홍진기
김원국
Original Assignee
(주)엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘지하우시스 filed Critical (주)엘지하우시스
Priority to US14/443,645 priority Critical patent/US9606267B2/en
Priority to CN201380060944.1A priority patent/CN104813198B/zh
Priority to JP2015543955A priority patent/JP6642823B2/ja
Publication of WO2014081119A1 publication Critical patent/WO2014081119A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2383/00Polysiloxanes

Definitions

  • an antireflection film having excellent optical properties including a hard coat layer.
  • the image produced inside the display by the reflected light does not become vividly formed in the eye, resulting in a low contrast, which makes the screen difficult to see and the eyes feel tired. Or headaches. For this reason, the demand for antireflection is also very strong.
  • antireflection films having a high refractive index layer and a low refractive index layer have been developed in order to find a film structure having an antireflection effect in the visible light region, and research on reducing the number of layers is continuously conducted. come.
  • the antireflection film has been developed in a form in which a low refractive index layer is coated on the high refractive index layer, but there is still a difficulty in designing an antireflection film including a low refractive index layer and a high refractive index layer.
  • One embodiment of the present invention by using a hard coating layer, a high refractive index layer and a low refractive index layer to provide an excellent anti-reflection effect, and provides an anti-reflection film with individualized strength and optical properties.
  • a transparent substrate, a hard coating layer, a high refractive index layer and a low refractive layer of laminated structure is a silane compound represented by the formula (1) and the organosilane compound represented by the formula (2) A binder formed by polymerization; And it provides an anti-reflection film comprising hollow silica particles.
  • R 1 is an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms or an alkenyl group having 3 to 10 carbon atoms
  • R 2 is an alkyl group having 1 to 6 carbon atoms
  • x is 0 ⁇ x ⁇ 4. Represents an integer.
  • R 3 is a fluoroalkyl group having 1 to 12 carbon atoms
  • R 4 is an alkyl group having 1 to 6 carbon atoms
  • y represents an integer of 0 ⁇ x ⁇ 4.
  • the silane compound represented by the formula (1) is tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, tetra-tert- Butoxysilane, trimethoxysilane, triethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, Isobutyltriethoxysilane, cyclohexyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrime
  • the organosilane compound represented by the formula (2) is trifluoromethyltrimethoxysilane, trifluoromethyltriethoxysilane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, nonafluorobutylethyl Trimethoxysilane, nonafluorobutylethyltriethoxysilane, nonafluorohexyltrimethoxysilane, nonafluorohexyltriethoxysilane, tridecafluorooctyltrimethoxysilane, tridecafluorooctyltrie Methoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyltriethoxysilane, and combinations thereof.
  • the hollow silica particles may have a number average diameter of about 1 nm to about 1,000 nm.
  • the binder may include about 10 parts by weight to about 120 parts by weight based on 100 parts by weight of the hollow silica particles.
  • the refractive index of the hard coat layer may be about 1.5 to about 1.6.
  • the hard coating layer may have a thickness of about 50 nm to about 200 nm.
  • the hard coating layer may include inorganic nanoparticles, ultraviolet curable resin, a curing initiator and a solvent.
  • the refractive index of the low refractive layer may be about 1.2 to about 1.25.
  • the refractive index of the high refractive layer may be about 1.6 to about 1.7.
  • the pencil hardness of the anti-reflection film may be about B to about H.
  • the contact angle of the antireflection film with respect to water may be about 70 ° or less.
  • the reflectivity of the anti-reflection film may be less than 0.5% in the wavelength region of about 380nm to about 780nm.
  • the color a * value and the color b * value of the reflected light may be ⁇ 1 ⁇ a * ⁇ 2 and ⁇ 1 ⁇ b * ⁇ 1.
  • the antireflective film may have excellent strength and improved optical properties.
  • the anti-reflection film is excellent in the anti-reflection effect can be applied to various display devices such as a touch film.
  • FIG. 1 is a schematic view showing an antireflection film of an embodiment of the present invention.
  • FIG. 2 is a graph showing the antireflection film reflectance according to the wavelength region of the embodiment.
  • 3 is a graph showing the antireflection film reflectance according to the wavelength region of the comparative example.
  • a transparent substrate, a hard coating layer, a high refractive index layer and a low refractive layer of laminated structure is a silane compound represented by the formula (1) and the organosilane compound represented by the formula (2) A binder formed by polymerization; And it provides an anti-reflection film comprising hollow silica particles.
  • R 1 is an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms or an alkenyl group having 3 to 10 carbon atoms
  • R 2 is an alkyl group having 1 to 6 carbon atoms
  • x is 0 ⁇ x ⁇ 4. Represents an integer.
  • R 3 is a fluoroalkyl group having 1 to 12 carbon atoms
  • R 4 is an alkyl group having 1 to 6 carbon atoms
  • y represents an integer of 0 ⁇ x ⁇ 4.
  • the silane compound represented by Formula 1 is a tetrafunctional alkoxy silane having four alkoxy groups when x is 0, a trifunctional alkoxy silane having three alkoxy groups when x is 1 and two alkoxy when x is 2 It can be represented by a bifunctional alkoxy silane having a group.
  • x 3
  • an aryl group having 6 to 10 carbon atoms includes a phenyl group or a tolyl group
  • the alkenyl group having 3 to 10 carbon atoms includes an allyl group, 1-propenyl group, 1-butenyl group, 2-butenyl group, or 3- Butenyl groups and the like.
  • silane compound examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, tetra-sec-butoxysilane, tetra-tert-butoxysilane, Trimethoxysilane, triethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, isobutyltriethoxy Silane, cyclohexyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane
  • the organosilane compound represented by the formula (2) is trifluoromethyltrimethoxysilane, trifluoromethyltriethoxysilane, trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, nonnafluorobutyl Ethyltrimethoxysilane, nonafluorobutylethyltriethoxysilane, nonafluorohexyltrimethoxysilane, nonafluorohexyltriethoxysilane, tridecafluorooctyltrimethoxysilane, tridecafluorooctyl
  • One or more compounds selected from the group consisting of liethoxysilane, heptadecafluorodecyltrimethoxysilane, heptadecafluorodecyltriethoxysilane, and combinations thereof may be used, but are not limited thereto. Is advantageous in that
  • the silane compound represented by Formula 1 and the organosilane compound represented by Formula 2 are hydrolyzed and dehydrated condensation polymerized to form a siloxane compound.
  • an acid catalyst may be used for the hydrolysis and dehydration condensation reaction, and more specifically nitric acid, hydrochloric acid, sulfuric acid, or acetic acid may be used.
  • the organosilane compound represented by Formula 2 may be used in an amount of about 0.1 part by weight to about 50 parts by weight based on 100 parts by weight of the silane compound represented by Formula 1, and specifically about 1 part by weight to about 30 parts by weight. Parts, more specifically about 5 parts by weight to about 20 parts by weight are preferably used.
  • the organosilane compound is used in less than about 0.1 parts by weight, there is a problem in that the refractive index lowering effect is insignificant, and when used in excess of about 50 parts by weight, there is a problem in that the refractive index is increased.
  • the formed siloxane compound serves as an organic-inorganic hybrid binder to serve to treat the surface of the hollow silica particles.
  • the weight average molecular weight of the siloxane compound is preferably in the range of about 1,000 to about 100,000, specifically about 2,000 to about 50,000, more preferably about 5,000 to about 20,000.
  • the weight average molecular weight is less than about 1,000, it is difficult to form a coating layer having a desired low refractive index, and when the weight average molecular weight exceeds about 100,000, there is a problem of lowering the light transmittance of the antireflection film.
  • hollow silica particles are silica particles derived from a silicon compound or an organosilicon compound, and mean particles having a void space on the surface and / or inside of the silica particles.
  • the hollow silica particles may be included in a colloidal phase having a solid content of about 5% by weight to about 40% by weight in the form of a dispersion in a dispersion medium (water or an organic solvent).
  • the organic solvent usable as the dispersion medium may include alcohols such as methanol, isopropyl alcohol (IPA), ethylene glycol, butanol, etc .; Ketones such as methyl ethyl ketone and methyl iso butyl ketone (MIBK); Aromatic carbon hydrogens such as toluene and xylene; Amides such as dimethyl formamide, dimethyl acetamide and N-methyl pyrrolidone; Esters such as ethyl acetate, butyl acetate and ⁇ -butyrolactone; Ethers such as tetrahydrofuran and 1,4-dioxane; Or mixtures thereof.
  • alcohols such as methanol, isopropyl alcohol (IPA), ethylene
  • the number average diameter of the hollow silica particles is in the range of about 1nm to about 1,000nm, specifically about 5nm to about 500nm, more specifically about 10nm to about 100nm to use the antireflection while maintaining the transparency of the film It is advantageous to show the effect.
  • the binder of the siloxane compound is about 10 parts by weight to about 120 parts by weight, specifically about 20 parts by weight to about 100 parts by weight, and more specifically about 40 parts by weight to about 80 parts by weight based on 100 parts by weight of the hollow silica particles. It is better to use additional. If the binder is used in less than about 10 parts by weight, there is a problem that whitening phenomenon occurs in the coating surface, when used in excess of about 120 parts by weight there is a problem that the antireflection effect is significantly reduced.
  • the anti-reflective coating composition may include an acid catalyst to promote the surface treatment of the hollow silica particles by the binder, and the acid catalyst is not particularly limited as long as it is generally used in the art, but using nitric acid or hydrochloric acid It is good.
  • the acid catalyst may be used in an amount of about 0.1 parts by weight to about 20 parts by weight based on 100 parts by weight of the hollow silica particles.
  • the pH of the coating composition with the acid catalyst is advantageously adjusted in the range of about 2 to about 4.
  • the anti-reflection film 100 may include a transparent substrate 10, a hard coating layer 20, a high refractive layer 30, and a low refractive layer 40.
  • the transparent substrate 10 may be a variety of substrates used in a typical liquid crystal display device such as a transparent polymer resin, but as the substrate, polyethylene terephthalate (PET), polyethylenenaphthalate (PEN), polyethersulfone (PES), PC (Poly) carbonate), polypropylene (PP), norbornene-based resin, and the like may be used.
  • PET polyethylene terephthalate
  • PEN polyethylenenaphthalate
  • PES polyethersulfone
  • PC PC
  • PP polypropylene
  • norbornene-based resin and the like
  • the thickness of the PET film may be about 10 ⁇ m to about 200 ⁇ m, and specifically about 20 ⁇ m to about 100 ⁇ m. If the thickness of the transparent base material is less than about 10 mu m, there is a problem in the mechanical strength of the base material. If the thickness exceeds about 200 mu m, there is a case where improvement of the spot characteristic for the touch panel is not achieved.
  • the antireflection film 100 may include a hard coating layer in addition to the low refractive layer and the high refractive layer.
  • a hard coating layer in addition to the low refractive layer and the high refractive layer.
  • the hard coating layer 20 may have a thickness of about 50 nm to about 200 nm.
  • the hard coating layer may be formed on the transparent substrate, and to ensure the strength of the anti-reflection film in relation to the high refractive index layer and the low refractive index layer, compared with the anti-reflection layer that does not include the hard coating layer.
  • Optical properties can be secured in a wide wavelength range, and surface hardness can be improved.
  • by maintaining the thickness of the hard coating layer it can prevent the occurrence of turbidity.
  • the refractive index of the hard coat layer 20 may be about 1.5 to about 1.6.
  • the refractive index of the hard coating layer may be smaller than the high refractive index layer refractive index, and larger than the low refractive index layer refractive index.
  • the hard coating layer 20 may include inorganic nanoparticles, ultraviolet curable resin, a curing initiator and a solvent.
  • the inorganic nanoparticles may be those that are surface treated with an acrylate compound relative to the particle surface area. When using the inorganic nanoparticles within the above range, it is possible to implement a hard coating layer having a uniform dispersibility and excellent transparency.
  • the inorganic nanoparticles are not particularly limited, but one or more selected from the group consisting of SiO 2, Al 2 O 3, CaCO 3, TiO 2, and combinations thereof may be used.
  • UV curable resins examples include ethylene glycol diacrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanedioldi (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol hexa (Meth) acrylate, polyol poly (meth) acrylate, di (meth) acrylate of bisphenol A- diglycidyl ether, polyhydric polyacrylates obtained by esterifying polyhydric alcohol and polyhydric carboxylic acid and its anhydride and acrylic acid Ester (meth) acrylate, polysiloxane polyacrylate, urethane (meth) acrylate, pentaerythritol tetramethacrylate, glycerin trimethacrylate, and the like, but are not necessarily limited thereto.
  • Curing initiators included in the hard coating layer include benzene, benzene ether compounds, benzyl ketal compounds, ⁇ -hydroxyalkylphenone compounds, ⁇ , ⁇ -dialkoxyacetophenone derivative compounds, ⁇ -hydroxyalkylphenone compounds, ⁇ -amino Alkylphenone derivative compound, ⁇ -hydroxyalkyl phenone high molecular compound, acrylposipine oxide compound, halogen compound, phenylglyxolate compound, banjophenone derivative compound, thioxanthone derivative compound, 1,2-diketone compound, water-soluble aromatic
  • ketone compounds, copolymer high molecular compounds, amine compounds, tinanocene compounds, thermal and photopolymerization initiators such as acid anhydrides and peroxides are exemplified.
  • the solvent may be used as long as it is commonly used, specifically, alcohols such as methanol, ethanol, propanol and isopropanol, ketones such as methyl isobutyl ketone and methyl ethyl ketone, esters such as methyl acetate and ethyl acetate, toluene, Aromatic compounds, such as xylene and benzene, Ether, such as diethyl ether, etc. are mentioned.
  • the high refractive index layer 20 may have a thickness of about 100 nm to about 500 nm, specifically about 150 nm to about 450 nm. By maintaining the thickness range of the high refractive layer, it is possible to easily implement the effect of improving the reflectance and visibility, and minimize the occurrence of cracks and curls due to the increase in stress. In addition, it is possible to provide an antireflection film in which the reflectance optical characteristic value is optimized in relation to the low refractive layer.
  • the refractive index of the high refractive index layer 30 may be about 1.6 to about 1.7.
  • the low refractive index layer 40 may have a thickness of about 50 nm to about 150 nm. By maintaining the thickness of the low refractive index layer in the above range, an improved antireflection effect can be exhibited, and excellent adhesion of the low refractive index layer can be maintained.
  • the refractive index of the low refractive index layer 40 may be about 1.2 to about 1.25, it is possible to improve the optical properties of the antireflection film due to the large refractive index difference with the high refractive index layer.
  • the return of some or all of the medium back to the original medium is called reflection. If there is a reflection of light, the amount of light transmitted by the amount of reflection is lost.
  • a film for preventing such reflection may be referred to as an antireflection film.
  • the antireflection film has a low reflectance, and it is important to secure optical characteristics such as no change in the chrominometer when light is transmitted.
  • the antireflection film 100 is, for example, about 1.62 to about PET film on top.
  • a high refractive layer having a thickness of about 1.70, a thickness of about 200 nm to about 450 nm, a refractive index of about 1.22 to about 1.25, and a thickness of about 90 nm to about 130 nm, reflectivity and optical properties can be optimized.
  • the pencil hardness of the anti-reflection film may be about B to about H.
  • the pencil hardness refers to the degree of scratches generated by drawing the pencil five times at a constant load at a 45 ° angle.
  • the hardness is indicated by H, F, HB, B, etc.The higher the number of H, the harder the hardness and the higher the hardness.
  • the B core of the number is softer, which means that the hardness is lower.
  • the anti-reflection film includes a hard coating layer in addition to the high refractive index layer and the low refractive index layer to secure the strength of the anti-reflection film, and the anti-reflection film is antireflection for the touch screen panel by maintaining the pencil hardness range of the above range.
  • a hardness of H or more When used as a film can be achieved a hardness of H or more.
  • the contact angle of the antireflection film with respect to water may be about 70 ° or less.
  • it can be a droplet maintaining a constant lens shape, wherein the surface of the water becomes a curved surface, whereby the surface of the solid and the surface of the water can maintain a constant angle, and the angle is measured inside the liquid. It is called the contact angle.
  • the contact angle means a constant angle formed by the surface of the anti-reflection film and water.
  • the contact angle of the anti-reflection film is less than about 70 ° has an advantageous effect in that the surface adhesion is excellent, there is no lower limit in the contact angle to the water, specifically, may be about 40 ° to about 70 ° have.
  • the reflectivity of the anti-reflection film may be less than about 0.5% in the wavelength region of about 380nm to about 780nm.
  • the reflectance refers to the ratio of the energy of the reflected light and the incident light, the lower the reflectance of the anti-reflection film, the less the amount of reflection can be affected by light. Therefore, the antireflection function can be sufficiently exhibited by maintaining the reflectance of less than about 0.5%, and the color of the reflected light may not be blue or reddish because the reflectance is low. In addition, there is an advantage in that it has a flat reflection spectrum and has a colorless color value.
  • the antireflection film may have a reflectance of less than about 0.3% in a wavelength region of about 450 nm to about 650 nm.
  • the wavelength range of about 450 nm to about 650 nm is a wavelength range smaller than about 380 nm to about 780 nm visible light, and the refractive index and thickness of the high refractive layer, the refractive index and thickness of the low refractive layer are adjusted, and the refractive index and thickness of the hard coating layer are adjusted.
  • the adjusted optical design can have optical properties with a reflectance of less than about 0.3%.
  • the color a * value and the color b * value of the reflected light may be ⁇ 1 ⁇ a * ⁇ 2 and ⁇ 1 ⁇ b * ⁇ 1.
  • CIE International Commission on Illumination
  • the color value of the reflected light is determined in the color space based on the CIE 10 ° standard observer (CIE 1964). It can be expressed as CIE L *, a *, b *, which defines the distance between two colors to match the degree of color difference seen by humans.
  • L * is the brightness
  • a * is Red-Green
  • b * is a value between Yellow-blue
  • the white light source (D65) is irradiated to the anti-reflection film in the wavelength region of about 380nm to about 780nm
  • the resulting value can be represented by the values of a * and b *.
  • the sensory difference between two colors is called a color difference, and the color difference can be measured by a color difference meter. Both are possible.
  • the antireflection film is a laminated structure of a transparent substrate, a hard coating layer, a high refractive index layer and a low refractive index layer, and by adjusting the thickness and refractive index of each layer, to design an antireflection film, the absolute value of the color value of the reflected light is constant Maintain the range. By maintaining the range of the color a * value and the color b * value it can implement the effect that the anti-reflection film has a colorless color without having a blue or reddish.
  • the reflectance is about 0.3 in the visible region. It is possible to infer the structure and thickness of each layer included in the antireflective film of less than% and having the color values of the reflected light of -1 ⁇ a * ⁇ 2 and -1 ⁇ b * ⁇ 1.
  • An antireflection film having a reflectance of less than about 0.3% and a color value of reflected light of ⁇ 1 ⁇ a * ⁇ 2 and ⁇ 1 ⁇ b * ⁇ 1 can be designed.
  • the antireflection coating composition for antireflection was prepared by stirring at room temperature. Solid content of the prepared antireflective coating composition for low refractive index was found to be 10% by weight, and the pH was found to be 2.5.
  • inorganic nanoparticles (trade name XBA-ST, Ilsan Chemical), 35 parts by weight of ultraviolet curable acrylate resin (Kyoeisha), 7 parts by weight of photoinitiator Irgacure-184 (Ciba), and a dilution solvent Dilution with methyl ethyl ketone (MEK) prepared a composition for antireflection hard coating. Solid content of the prepared anti-reflective hard coating composition was found to be 45% by weight.
  • the antireflective hard coating composition prepared above was coated on a 125 ⁇ m PET film using a Mayer bar so that the thickness of the hard coating layer was 90 nm, and cured by irradiating 300mJ UV with 180W high pressure mercury to form a hard coating layer.
  • a high refractive index layer having a thickness of 200 nm and a refractive index of 1.62 was formed on the hard coating layer, and after coating the prepared antireflection low refractive coating composition with a thickness of 105 nm using a Mayer bar on the high refractive layer, 130 It dried at 2 degreeC for 2 minutes, and formed the reflective coating layer.
  • the final antireflection film was prepared by aging for 24 hours in an oven at 60 ° C.
  • a final anti-reflection film was prepared in the same manner as in the above example except that a hard coating layer was not formed on the PET film.
  • the transmittance of the antireflective films of Examples and Comparative Examples was measured using a CM-5 spectrophotometer manufactured by Konica Minolta, and the reflectance was measured after blacking the reverse side of the antireflective film.
  • the white light source D65 and the CIE1964 observer is designated and the CIE L *, a *, b * values, specifically the transmission a *, the transmission b * and the reflection a *, the reflection b according to the antireflection film structure of the examples and the comparative examples. * The value was measured.
  • the pencil hardness of the antireflection film was measured according to JIS K 5600-5-4.
  • the antireflection film of the embodiment including the hard coating layer was measured to have a larger pencil hardness than the antireflection film of the comparative example does not include a hard coating layer, the strength of the antireflection film due to the hard coating layer It can be seen that the improved.
  • FIG. 2 is a graph showing the antireflection film reflectance according to the wavelength region of the embodiment
  • FIG. 3 is a graph of the antireflection film reflectance according to the wavelength region of the comparative example, and the reflectance of the comparative example is also less than 0.5% in the wavelength region of about 450 nm to about 650 nm. Although measured as, it can be seen that the reflectance of the Example has a reflectance of 0.3% or less more stably than the comparative example.
  • the color a * value of the reflected light of the anti-reflection film of the embodiment was measured to be between -1 to 2
  • the color b * value is between -1 to 1

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

투명기재, 하드코팅층, 고굴절층 및 저굴절층의 적층구조인 반사방지필름을 제공하고, 보다 구체적으로, 상기 저굴절층은 플루오로알킬기를 가지는 오르가노실란(organosilane)과 알콕시 실란을 반응시켜 합성된 실록산 화합물을 바인더로 포함할 수 있다.

Description

하드코팅층을 포함하는 광특성이 우수한 반사방지 필름
하드코팅층을 포함하는 광특성이 우수한 반사방지 필름을 제공한다.
디스플레이가 각종 조명 및 자연광 등의 외광에 노출되는 경우 반사광에 의해 디스플레이 내부에서 만들어지는 이미지가 눈에 선명하게 맺히지 못함에 따른 컨트라스트(contrast)의 저하로 화면 보기가 어려워질 뿐 아니라 눈이 피로감을 느끼거나 두통을 유발하게 된다. 이러한 이유로 반사방지에 대한 요구도 매우 강해지고 있다.
반사방지에 대한 필요성이 강조되면서, 가시광선 영역에서 반사방지 효과를 갖는 필름 구조를 찾기 위해 고굴절층과 저굴절층이 반복되는 반사방지 필름이 개발되어 왔으며 층의 수를 줄이는 연구가 계속적으로 진행되어 왔다. 나아가, 반사방지 필름은 고굴절층 상부에 저굴절층이 코팅되는 형태로 발전해왔으나, 저굴절층 및 고굴절층을 포함하는 반사방지필름 설계에는 여전히 어려움이 있다.
본 발명의 일 구현예는 하드코팅층, 고굴절층 및 저굴절층을 이용하여 탁월한 반사방지 효과를 나타내고, 강도 및 광학특성이 개성된 반사방지 필름을 제공한다.
본 발명의 일 구현예에서, 투명기재, 하드코팅층, 고굴절층 및 저굴절층의 적층구조이고, 상기 저굴절층이 하기 화학식 1로 표시되는 실란 화합물과 하기 화학식 2로 표시되는 오르가노실란 화합물이 중합되어 형성되는 바인더; 및 중공실리카 입자를 포함하는 반사 방지 필름을 제공한다.
[화학식 1]
R1 xSi(OR2)4-x
상기 화학식 1에서, R1은 탄소수 1 ~ 10의 알킬기, 탄소수 6 ~ 10 의 아릴기 또는 탄소수 3 ~ 10의 알케닐기이고, R2 는 탄소수 1 ~ 6의 알킬기이며, x는 0≤x<4의 정수를 나타낸다.
[화학식 2]
R3 ySi(OR4)4-y
상기 화학식 2에서, R3은 탄소수 1 ~ 12의 플루오로알킬기이고, R4는 탄소수 1 ~ 6의 알킬기이며, y는 0≤x<4의 정수를 나타낸다.
상기 화학식 1로 표시되는 실란 화합물은 테트라메톡시실란, 테트라에톡시실란, 테트라프로폭시실란, 테트라이소프로폭시실란, 테트라-n-부톡시실란, 테트라-sec-부톡시실란, 테트라-tert-부톡시실란, 트리메톡시실란, 트리에톡시실란, 메틸트리메톡시실란, 메틸트리에톡시실란, 에틸트리메톡시실란, 에틸트리에톡시실란, 프로필트리메톡시실란, 프로필트리에톡시실란, 이소부틸트리에톡시실란, 시클로헥실트리메톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 알릴트리메톡시실란 알릴트리에톡시실란, 디메틸디메톡시실란, 디메틸디에톡시실란, 디페닐디메톡시실란, 디페닐디에톡시실란 및 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상의 화합물일 수 있다.
상기 화학식 2로 표시되는 오르가노실란 화합물은 트리플루오로메틸트리메톡시실란, 트리플루오로메틸트리에톡시실란, 트리플루오르프로필트리메톡시실란, 트리플루오르프로필트리에톡시실란, 노나플루오로부틸에틸트리메톡시실란, 노나플루오로부틸에틸트리에톡시실란, 노나플루오로헥실트리메톡시실란, 노나플루오로헥실트리에톡시실란, 트리데카플루오로옥틸트리메톡시실란, 트리데카플루오로옥틸트리에톡시실란, 헵타데카플루오로데실트리메톡시실란, 헵타데카플루오로데실트리에톡시실란 및 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상의 화합물일 수 있다.
상기 중공 실리카 입자는 수평균 직경이 약 1nm 내지 약 1,000 nm일 수 있다.
상기 바인더는 상기 중공 실리카 입자 100 중량부에 대하여 약 10중량부 내지 약 120중량부 포함할 수 있다.
상기 하드코팅층의 굴절률은 약 1.5 내지 약 1.6일 수 있다.
상기 하드코팅층의 두께는 약 50nm 내지 약 200nm일 수 있다.
상기 하드코팅층은 무기물 나노입자, 자외선 경화형 수지, 경화개시제 및 용매를 포함할 수 있다.
상기 저굴절층의 굴절율은 약 1.2 내지 약 1.25일 수 있다.
상기 고굴절층의 굴절율은 약 1.6 내지 약 1.7일 수 있다.
상기 반사 방지 필름의 연필경도가 약 B 내지 약 H일 수 있다.
상기 반사 방지 필름의 물에 대한 접촉각이 약 70°이하일 수 있다.
상기 반사 방지 필름의 반사율은 약 380nm 내지 약 780nm 파장영역에서 0.5%미만일 수 있다.
상기 반사 방지 필름에 백색광을 조사할 때 반사광의 색상 a*값 및 색상 b* 값이 -1<a*<2, -1<b*<1일 수 있다.
상기 반사 방지 필름은 우수한 강도 및 개선된 광학특성을 가질 수 있다.
또한, 상기 반사 방지 필름은 반사 방지 효과가 우수하여 터치 필름 등 다양한 디스플레이 기기에 적용될 수 있다.
도 1은 본 발명의 일 구현예인 반사방지필름을 도식화하여 나타낸 것이다.
도 2는 실시예의 파장영역에 따른 반사방지 필름 반사율을 그래프로 나타낸 것이다.
도 3은 비교예의 파장영역에 따른 반사방지 필름 반사율을 그래프로 나타낸 것이다.
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.
본 발명의 일 구현예에서, 투명기재, 하드코팅층, 고굴절층 및 저굴절층의 적층구조이고, 상기 저굴절층이 하기 화학식 1로 표시되는 실란 화합물과 하기 화학식 2로 표시되는 오르가노실란 화합물이 중합되어 형성되는 바인더; 및 중공실리카 입자를 포함하는 반사 방지 필름을 제공한다.
[화학식 1]
R1 xSi(OR2)4-x
상기 화학식 1에서, R1은 탄소수 1 ~ 10의 알킬기, 탄소수 6 ~ 10 의 아릴기 또는 탄소수 3 ~ 10의 알케닐기이고, R2 는 탄소수 1 ~ 6의 알킬기이며, x는 0≤x<4의 정수를 나타낸다.
[화학식 2]
R3 ySi(OR4)4-y
상기 화학식 2에서, R3은 탄소수 1 ~ 12의 플루오로알킬기이고, R4는 탄소수 1 ~ 6의 알킬기이며, y는 0≤x<4의 정수를 나타낸다.
통상의 경우 저굴절층의 굴절율이 고굴절층의 굴절률과 차이가 클수록 반사방지 효과에 탁월하다. 이에, 저굴절 재료인 중공형 실리카 입자의 개발로 굴절률이 매우 낮은 저굴절 코팅재에 대한 연구가 계속적으로 진행되어 왔으나, 기존 아크릴계 수지를 이용하여 개발된 저굴절 코팅재의 경우 굴절률이 반사방지에 대한 상기 이론적 최적값인 약 1.22 내지 약 1.24에 이르지 못하였다.
그러나, 상기 저굴절층에 플루오로알킬기를 갖는 오르가노 실란과 알콕시 실란과 반응시켜 합성된 실록산 화합물을 바인더로 포함하는 코팅액을 사용하는 경우 높은 투과율 및 낮은 반사율을 구현할 수 있고, 상기 저굴절층 및 고굴절층과의 광학설계를 통해 광특성이 향상된 반사방지 필름을 제공할 수 있다. 또한, 하드코팅층을 동시에 포함함으로써 반사방지 필름의 강도를 확보할 수 있고, 일정 파장 영역대에서 탁월하게 감소된 반사율을 구현할 수 있다.
상기 화학식 1로 표시되는 실란 화합물은, x가 0인 경우 4개의 알콕시기를 가지는 사작용기성 알콕시 실란, x가 1인 경우 3개의 알콕시기를 가지는 삼작용기성 알콕시 실란 및 x가 2인 경우 2개의 알콕시기를 가지는 이작용기성 알콕시 실란으로 나타날 수 있다. x가 3인 경우에는 작용기인 알콕시기가 하나만 있어 상기 화학식 2로 표시되는 오르가노실란 화합물과의 축합 반응이 이루어지기에 어려움이 있다.
상기 화학식 1에서, 탄소수 6 ~ 10 의 아릴기는 페닐기 또는 톨릴기 등이 포함되며, 탄소수 3 ~ 10의 알케닐기로는 알릴기, 1-프로페닐기, 1-부테닐기, 2-부테닐기 또는 3-부테닐기 등이 포함될 수 있다.
상기 실란화합물로는 테트라메톡시실란, 테트라에톡시실란, 테트라프로폭시실란, 테트라이소프로폭시실란, 테트라-n-부톡시실란, 테트라-sec-부톡시실란, 테트라-tert-부톡시실란, 트리메톡시실란, 트리에톡시실란, 메틸트리메톡시실란, 메틸트리에톡시실란, 에틸트리메톡시실란, 에틸트리에톡시실란, 프로필트리메톡시실란, 프로필트리에톡시실란, 이소부틸트리에톡시실란, 시클로헥실트리메톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 알릴트리메톡시실란 알릴트리에톡시실란, 디메틸디메톡시실란, 디메틸디에톡시실란, 디페닐디메톡시실란, 디페닐디에톡시실란 및 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상의 화합물이 사용될 수 있으나, 이에 한정되지는 아니한다.
또한 상기 화학식 2로 표시되는 오르가노실란 화합물은 트리플루오로메틸트리메톡시실란, 트리플루오로메틸트리에톡시실란, 트리플루오르프로필트리메톡시실란, 트리플루오르프로필트리에톡시실란, 노나플루오로부틸에틸트리메톡시실란, 노나플루오로부틸에틸트리에톡시실란, 노나플루오로헥실트리메톡시실란, 노나플루오로헥실트리에톡시실란, 트리데카플루오로옥틸트리메톡시실란, 트리데카플루오로옥틸트리에톡시실란, 헵타데카플루오로데실트리메톡시실란, 헵타데카플루오로데실트리에톡시실란 및 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상의 화합물이 사용될 수 있으나, 이에 한정되지는 아니하며, 보다 구체적으로는 R3은 탄소수 3 ~ 5의 플루오로알킬기를 사용하는 것이 상 분리를 발생시키지 않는 점에서 유리하다.
상기 화학식 1로 표시되는 실란 화합물과 상기 화학식 2로 표시되는 오르가노실란 화합물은 가수분해된 후 탈수 축합 중합되어 실록산 화합물이 형성된다. 한편 상기 가수분해 및 탈수 축합 반응에는 산 촉매가 사용될 수 있으며, 보다 구체적으로는 질산, 염산, 황산 또는 초산 등이 사용될 수 있다.
한편, 상기 화학식 2로 표시되는 오르가노실란 화합물은 상기 화학식 1로 표시되는 실란 화합물 100 중량부에 대하여 약 0.1 중량부 내지 약 50 중량부가 사용될 수 있고, 구체적으로는 약 1 중량부 내지 약 30 중량부, 보다 구체적으로는 약 5 중량부 내지 약 20 중량부가 사용되는 것이 좋다. 상기 오르가노실란 화합물이 약 0.1 중량부 미만으로 사용되는 경우 굴절률 저하효과가 미미한 문제가 있으며, 약 50 중량부를 초과하여 사용되는 경우 오히려 굴절률을 증가시키는 문제가 있다.
상기 형성된 실록산 화합물은 유무기 하이브리드 바인더로 작용하여 중공 실리카 입자의 표면을 처리하는 역할을 한다.
상기 실록산 화합물의 중량평균분자량은 약 1,000 내지 약 100,000, 구체적으로는 약 2,000 내지 약 50,000, 더욱 바람직하게는 약 5,000 내지 약 20,000 범위에 있는 것이 좋다. 상기 중량평균분자량이 약 1,000 미만이면 목적하는 낮은 굴절률을 갖는 코팅층을 형성하기 어려우며, 약 100,000을 초과하는 경우 반사 방지 필름의 광 투과도를 저하시키는 문제가 있다.
한편, 중공 실리카 입자(hollow silica particles)라 함은 규소 화합물 또는 유기 규소 화합물로부터 도출되는 실리카 입자로서, 상기 실리카 입자의 표면 및/또는 내부에 빈 공간이 존재하는 형태의 입자를 의미한다.
상기 중공 실리카 입자는 분산매(물 또는 유기용매)에 분산된 형태로서 고형분 함량이 약 5중량% 내지 약 40 중량%인 콜로이드상으로 포함될 수 있다. 여기서, 상기 분산매로 사용 가능한 유기용매로는 메탄올(methanol), 이소프로필 알코올(isoproply alcohol, IPA), 에틸렌 글리콜(ethylene glycol), 부탄올(butanol) 등의 알콜류; 메틸 에틸 케톤(methyl ethyl ketone), 메틸 이소 부틸 케톤(methyl iso butyl ketone, MIBK) 등의 케톤류; 톨루엔(toluene), 크실렌(xylene) 등의 방향족 탄소수소류; 디메틸 포름 아미드(dimethyl formamide), 디메틸 아세트아미드(dimethyl acetamide), N-메틸 피롤리돈(methyl pyrrolidone) 등의 아미드류; 초산에틸, 초산부틸, γ-부티로락톤 등의 에스터(ester)류; 테트라하이드로퓨란(tetrahydrofuran), 1,4-디옥산 등의 에테르(ether)류; 또는 이들의 혼합물을 사용할 수 있다. 다만, 상기와 같이 분산매에 분산된 콜로이드 용액의 형태로 사용될 경우 고형분 함량 등을 고려하여 중공 실리카 입자의 함량이 전술한 범위에 해당되도록 조절할 수 있다.
또한 상기 중공 실리카 입자의 수평균 직경은 약 1nm 내지 약 1,000nm, 구체적으로는 약 5nm 내지 약 500nm, 보다 구체적으로는 약 10nm 내지 약 100nm 의 범위의 것을 사용하는 것이 필름의 투명성을 유지하면서도 반사 방지 효과를 나타내는데 유리하다.
상기 실록산 화합물의 바인더는 상기 중공 실리카 입자 100 중량부에 대하여 약 10중량부 내지 약 120중량부, 구체적으로는 약 20중량부 내지 약 100중량부, 보다 구체적으로는 약 40중량부 내지 약 80중량부가 사용되는 것이 좋다. 바인더가 약 10중량부 미만으로 사용되는 경우 코팅면에서 백화현상이 발생하는 문제가 있으며, 약 120중량부를 초과하여 사용되는 경우 반사방지 효과가 현저히 감소하는 문제가 있다.
한편 상기 반사 방지 코팅 조성물은 바인더에 의한 중공 실리카 입자의 표면 처리를 촉진하기 위하여 산 촉매를 포함할 수 있으며, 상기 산촉매는 당업계에서 일반적으로 사용되는 것이라면 특별히 한정되지 않으나, 질산 또는 염산을 사용하는 것이 좋다. 상기 산촉매는 상기 중공 실리카 입자 100 중량부에 대하여 약 0.1중량부 내지 약 20 중량부가 사용될 수 있다. 상기 산 촉매를 사용하여 코팅 조성물의 pH 는 약 2 내지 약 4 범위로 조절되는 것이 유리하다.
도 1을 참고하면, 상기 반사방지필름(100)은 투명기재(10), 하드코팅층(20), 고굴절층(30), 저굴절층(40)을 포함할 수 있다.
상기 투명기재(10)는 투명 고분자 수지 등 통상의 액정표시장치 등에서 사용되는 다양한 종류의 기판이 사용될 수 있으나, 상기 기재로서는 PET(polyethylene terephthalate), PEN(polyethylenenaphthalate), PES(polyethersulfone), PC(Poly carbonate), PP(poly propylene), 노보르넨계 수지 등이 사용될 수 있다.
상기 기재의 재질로 PET를 사용하는 경우, PET 필름의 두께는 약 10㎛ 내지 약 200㎛이며, 구체적으로 약 20㎛ 내지 약 100㎛이내일 수 있다. 투명기재의 두께가 약 10㎛ 미만이면 기재의 기계적 강도에 문제가 있으며, 두께가 약 200㎛를 초과하면, 터치 패널용으로서의 타점 특성의 향상이 도모되지 않는 경우가 있다.
상기 반사방지필름(100)은 저굴절층, 고굴절층 외에 하드코팅층을 포함할 수 있다. 상기 저굴절층 및 고굴절층과 하드코팅층을 동시에 포함함으로써 반사방지 필름의 강도를 확보할 수 있고, 일정 파장 영역대에서 탁월하게 감소된 반사율을 구현할 수 있다.
상기 하드코팅층(20)의 두께는 약 50nm 내지 약 200nm일 수 있다. 상기 하드코팅층은 상기 투명기재 상에 형성될 수 있고, 고굴절층 및 저굴절층과의 관계에서 상기 반사방지필름의 강도를 확보하게 할 수 있게 하는바, 하드코팅층을 포함하지 않는 반사방지층에 비해 더 넓은 파장영역 대에서 광학적 특성을 확보할 수 있고, 표면 경도를 향상시킬 수 있다. 또한, 상기 하드코팅층이 두께를 유지함으로써 혼탁현상 발생을 저지할 수 있다.
상기 하드코팅층(20)의 굴절율은 약 1.5 내지 약 1.6일 수 있다. 상기 하드코팅층의 굴절율은 고굴절층 굴절율 보다 작고, 저굴절층 굴절율 보다 클 수 있다. 상기 하드코팅층을 포함함으로써 반사방지필름의 광특성을 더욱 향상시킬 수 있다는 면에서 장점을 가진다.
상기 하드코팅층(20)은 무기물 나노입자, 자외선 경화형 수지, 경화개시제 및 용매를 포함할 수 있다. 상기 무기물 나노입자는 입자 표면적 대비 아크릴레이트 화합물로 10~50% 표면처리 된 것을 사용할 수 있다. 상기 범위 내의 무기물 나노입자를 사용하는 경우, 균일한 분산성 및 우수한 투명성을 가지는 하드코팅층을 구현할 수 있다. 상기 무기물 나노입자는 특별히 제한되지 않으나 SiO2, Al2O3, CaCO3, TiO2 및 이들의 조합으로 이루어진 군에서 선택되는 하나 이상을 사용할 수 있다.
상기 자외선 경화형 수지의 예로는 에틸렌 글리콜 디아크릴레이트, 네오펜틸글리콜디(메타)아크릴레이트, 1,6-헥산디올디(메타)아크릴레이트, 트리메틸올프로판트리(메타)아크릴레이트, 디펜타에리스리톨 헥사(메타)아크릴레이트, 폴리올폴리(메타)아크릴레이트, 비스페놀A-디글리시딜에테르의 디(메타)아크릴레이트, 다가 알코올과 다가 카르복실산 및 그 무수물과 아크릴산을 에스테르화함으로써 얻을 수 있는 폴리에스테르(메타)아크릴레이트, 폴리실옥산폴리아크릴레이트, 우레탄(메타)아크릴레이트, 펜타에리트리톨 테트라메타크릴레이트, 글리세린 트리메타크릴레이트 등을 들 수 있으나, 반드시 이들로 제한되는 것은 아니다.
상기 하드코팅층이 포함하는 경화개시제로는 벤젠과 벤젠 에테르 화합물, 벤질케탈화합물, α-하이드록시알킬페논 화합물, α,α-디알콕시아세토페논 유도체 화합물, α-하이드록시알킬페논 화합물, α-아미노알킬페논 유도체 화합물, α-히드록시알킬페논 고분자 화합물, 아크릴포시핀 옥사이드 화합물, 할로겐 화합물, 페닐글리옥소레이트 화합물, 밴조페논 유도체 화합물, 티옥산톤 유도체 화합물, 1,2-디케톤 화합물, 수용성 방향족 케톤 화합물, 공중합체 고분자 화합물, 아민 화합물, 티나노센 화합물, 무수 산(acid anhydride)과 과산화물(peroxide) 등의 열ㆍ광중합 개시제를 예로 들 수 있다.
상기 용매는 통상적으로 사용하는 것이라면 모두 사용 가능하며, 구체적으로 메탄올, 에탄올, 프로판올, 이소프로판올 등의 알코올, 메틸이소부틸케톤, 메틸에틸케톤 등의 케톤류, 초산메틸, 초산에틸 등의 에스테르류, 톨루엔, 크실렌, 벤젠 등의 방향족 화합물, 디에틸에테르 등의 에테르류 등을 들 수 있다.
상기 고굴절층(20)의 두께는 약 100nm 내지 약 500nm, 구체적으로 약 150nm 내지 약 450nm일 수 있다. 상기 고굴절층이 상기 두께범위를 유지함으로써 반사율 및 시인성 향상 효과를 용이하게 구현할 수 있고, 응력증가로 인한 크랙 및 컬 발생을 최소화 할 수 있다. 또한, 저굴절층과의 관계에 있어서 반사율 광특성 값이 최적화 되는 반사방지 필름을 제공할 수 있다.
상기 고굴절층(30)의 굴절율은 약 1.6 내지 약 1.7일 수 있다. 고굴절층과 저굴절층과의 굴절률 차이가 클수록 반사방지 필름의 반사방지 효과가 탁월한 바, 상기 고굴절층이 상기 범위의 굴절율을 유지함으로서 반사방지 필름의 광학특성을 향상시킬 수 있다.
상기 저굴절층(40)의 두께는 약 50nm 내지 약 150nm일 수 있다. 상기 저굴절층이 상기 범위의 두께를 유지함으로써 개선된 반사방지 효과가 나타날 수 있고, 상기 저굴절층의 탁월한 부착성을 유지할 수 있다. 또한, 상기 저굴절층(40)의 굴절율은 약 1.2 내지 약 1.25일 수 있고, 상기 고굴절층과의 큰 굴절율 차로 인해 반사방지 필름의 광학특성을 개선되게 할 수 있다.
광이 어떤 매질 중에 진행하여 굴절률이 다른 매질과의 경계면에 도달될 때, 그 일부분 또는 전부가 원래의 매질중으로 돌아오는 것을 반사라고 하는바, 광의 반사가 존재하는 경우 반사량만큼 투과되는 광량이 손실을 받게되며, 광원에 작용한 출력을 불안정하게 할 수 있어 이러한 반사를 방지 하기 위한 필름을 반사방지 필름이라 할 수 있다.
그러므로 반사 방지 필름은 반사율이 작고, 빛의 투과시 색차계의 변화가 없는 등의 광학특성의 확보여부가 중요한바, 상기 반사방지 필름(100)은, 예를 들어, PET필름 상부에 약 1.62 내지 약 1.70이고, 두께가 약 200nm 내지 약 450nm인 고굴절층, 굴절률 약 1.22 내지 약 1.25이고, 두께가 약 90nm 내지 약 130nm인 저굴절층을 형성함으로써, 반사율 및 광학 특성 최적화 할 수 있다.
상기 반사 방지 필름의 연필경도가 약 B 내지 약 H일 수 있다. 연필경도란 45°각도로 연필을 일정한 하중으로 5회 그어서 스크래치가 발생된 정도를 일컫는바, H, F, HB, B 등으로 경도를 표시하며, 높은 숫자의 H일수록 딱딱하여 경도가 높고, 높은 숫자의 B심일수록 부드러워 경도가 낮음을 의미한다.
상기 반사 방지 필름은 고굴절층 및 저굴절층 외에 하드코팅층을 포함함으로써, 반사방지 필름의 강도를 확보할 수 있는바, 상기 반사방지필름이 상기 범위의 연필경도 범위를 유지함으로써 터치스크린 패널용 반사방지 필름으로 이용하는 경우 H이상의 경도를 구현할 수 있다.
상기 반사 방지 필름의 물에 대한 접촉각이 약 70°이하일 수 있다. 물을 수평인 고체 표면 위에 놓으면 일정한 렌즈 모양을 유지하는 방울이 될 수 있고, 이때 물의 표면은 곡면이 되는바, 고체표면과 물의 표면이 일정한 각도를 유지할 수 있고, 상기 각도를 액체 안쪽에서 측정한 것을 접촉각이라 한다. 구체적으로, 상기 접촉각은 반사 방지 필름과 물의 표면이 이루는 일정한 각도를 의미한다.
상기 반사 방지 필름의 물에 대한 접촉각이 약 70°이하인 경우 표면 부착력이 우수하다는 점에서 유리한 효과를 가지는바, 물에 대한 접촉각에 하한이 있는 것은 아니나, 구체적으로 약 40° 내지 약 70°일 수 있다.
상기 반사 방지 필름의 반사율은 약 380nm 내지 약 780nm 파장영역에서 약 0.5%미만일 수 있다. 상기 반사율은 반사광의 에너지와 입사광의 에너지 비율을 일컫는바, 반사방지 필름의 반사율이 낮을수록, 반사되는 양이 적어 빛에 의한 영향을 적게 받을 수 있다. 그러므로, 상기 반사율이 약 0.5%미만을 유지함으로써 반사 방지기능을 충분히 발휘할 수 있고, 반사율이 낮아 반사광의 색조가 푸른빛 또는 붉은 빛을 띠지 않을 수 있다. 또한, 플랫(flat)한 반사 스펙트럼을 가지며 무색의 색상값을 가진다는 점에서 장점이 있다.
구체적으로, 상기 방사방지 필름의 반사율은 약 450nm 내지 약 650nm 파장영역에서 약 0.3%미만일 수 있다. 상기 약 450nm 내지 약 650nm 파장영역은 약 380nm 내지 약 780nm 가시광선 영역보다 작은 파장영역으로, 전술한 고굴절층의 굴절률 및 두께, 저굴절층의 굴절률 및 두께를 조절하고, 하드코팅층의 굴절률 및 두께를 조절한 광학설계를 통해 반사율이 약 0.3%미만인 광특성 값을 가질 수 있다.
상기 반사 방지 필름에 백색광을 조사할 때 반사광의 색상 a*값 및 색상 b*값이 -1<a*<2, -1<b*<1일 수 있다. 국제조명위원회(CIE)에서 제정한 측색 시스템에 의하여 상기 반사 방지 필름에 백색광(D65)을 조사하는 경우 반사광의 의한 색상값은 CIE 10° 표준 관찰자(CIE 1964)를 기준으로 할 때, 색상 공간에서 두 색상 사이의 거리가 사람에게 보이는 색상의 차이 정도와 일치하도록 정의한 CIE L*, a*, b*로 표현될 수 있다. 이때, 상기 L*은 밝기, 상기 a*는 Red-Green, 상기 b*는 Yellow-blue 사이의 값을 나타내는바, 약 380nm 내지 약 780nm의 파장영역에서 반사방지 필름에 백색광원(D65) 조사시 나오는 값을 a*, b*의 값으로 나타낼 수 있다.
상기 색상값의 절대값이 작을수록 광원에 의한 색차의 변화가 없음을 일컫는바, 두개의 색의 감각적인 차를 색차라고 하고, 상기 색차를 색차계로 측정 할 수 있고, 측정은 반사 색차 및 투과 색차 양자가 가능하다.
상기 반사 방지 필름은 투명기재, 하드코팅층, 고굴절층 및 저굴절층의 적층구조이고, 각각의 층의 두께 및 굴절율을 조절함으로써, 반사 방지 필름을 설계하는바, 반사광의 색상 값의 절대값이 일정범위를 유지할 수 있다. 상기 색상 a*값 및 색상 b*값의 범위를 유지함으로써 반사방지 필름이 푸른빛 또는 붉은빛을 띠지 않고 무색의 색상을 가지는 효과를 구현할 수 있다.
구체적으로, 하드코팅층, 고굴절층 및 저굴절층의 굴절율을 프리즘 커플러를 통해 확인하고, PET필름을 기재로 하고 광학설계 툴을 이용하여 각 층을 시뮬레이션 한 경우, 가시광선 영역 내에서 반사율이 약0.3%미만이고, 반사광의 색상 값이 -1<a*<2, -1<b*<1인 반사방지 필름이 포함하는 각 층의 구조 및 두께 등을 유추할 수 있다.
그러므로, 상기 시뮬레이션을 통하여, PET필름을 두께가 약 50nm 내지 약 200nm인 하드코팅층, 두께가 약 200nm 내지 약 450nm인 고굴절층 및 두께가 약 50nm 내지 약 150nm인 저굴절층으로 코팅할 구조 일 때, 반사율이 약 0.3%미만이고, 반사광의 색상값이 -1<a*<2, -1<b*<1인 반사방지 필름을 설계할 수 있다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.
<실시예 및 비교예>
실시예
1. 반사방지 저굴절용 코팅 조성물의 제조
물 100 중량부, 이소프로판올 433 중량부 및 0.1M HNO3 36 중량부를 반응기에 넣고, 10분간 교반하였다. 다음 테트라에톡시실란(테트라에틸 오르쏘실리케이트, TEOS) 372 중량부 및 (3,3,3-트리플루오로프로필)트리에톡시실란 29 중량부를 깔대기를 통하여 30분간 천천히 투입하였다. 다음 2시간 동안 50℃에서 교반한 후 상온으로 냉각한 후, 다시 24시간 동안 200 rpm의 속도로 교반하여 투명한 바인더 용액을 얻었다. 상기 용액의 고형분은 13 중량%로 나타났으며, pH는 2.2로 확인되었다. 상기 투명한 용액을 별도의 정제 과정 없이 다음 단계의 코팅 조성물의 제조에 사용하였다.
상기 제조된 바인더 용액 65 중량부, 이소프로판올 100 중량부 및 수평균 직경 60nm의 중공 실리카 입자-이소프로판올 분산 졸(20% w/w, JGC C&C사, Thrylya 4110) 65 중량부를 반응기에 넣고, 24시간 동안 상온에서 교반시킴으로써 반사 방지 저굴절용 코팅 조성물을 제조하였다. 상기 제조된 반사 방지 저굴절용 코팅 조성물의 고형분은 10 중량%로 나타났으며, pH는 2.5로 확인되었다.
2, 반사방지 하드코팅용 조성물의 제조
고형분 100 중량부를 기준으로 무기 나노입자 15 중량부(상품명 XBA-ST, 일산 화학), 자외선 경화형 아크릴레이트 수지 35 중량부(Kyoeisha), 광개시제 Irgacure-184 7 중량부(Ciba사)를 혼합하고 희석용제 메틸에틸케톤(MEK)으로 희석하여 반사방지 하드코팅용 조성물을 제조하였다. 상기 제조된 반사 방지 하드코팅용 조성물의 고형분은 45중량%로 나타났다.
3. 반사 방지 필름의 제조
상기 제조된 반사방지 하드코팅용 조성물을 Mayer bar를 이용해 125㎛ PET필름 상에, 하드코팅층의 두께가 90nm가 되도록 도포하고, 180W 고압수은으로 300mJ의 자외선을 조사하여 경화시켜 하드코팅층을 형성하였다.
상기 하드코팅층 상부에 두께가 200nm이고, 굴절율이 1.62인 고굴절층을 형성하였고, 상기 고굴절층 상에 Mayer bar를 이용하여 105nm의 두께로 상기 제조된 반사 방지 저굴절용 코팅 조성물을 도포한 후, 130℃에서 2 분간 건조하여 반사 코팅층을 형성하였다. 다음, 60℃의 오븐에서 24시간 동안 에이징 하여 최종 반사 방지 필름을 제조하였다.
비교예
PET필름 상에 하드코팅층을 형성하지 않는 것을 제외하고는 상기 실시예와 동일한 방법으로 최종 반사 방지 필름을 제조하였다.
표 1
구성 실시예 비교예
저굴절층 굴절률 1.23 1.23
두께(nm) 105 105
고굴절층 굴절률 1.64 1.64
두께(nm) 200 200
하드코팅층 굴절률 1.52 -
두께(nm) 90 -
PET 굴절률 1.66 1.66
두께(㎛) 125 125
<실험예> - 반사방지 필름의 광학적 특성
Konica Minolta사의 CM-5 Spectrophotometer를 이용하여 상기 실시예 및 비교예의 반사방지 필름의 투과율을 측정하였으며, 반사 방지 필름의 뒷면을 흑색 처리한 후 반사율을 측정하였다. 또한, 백색광원 D65와 CIE1964관찰자를 지정하여 상기 실시예 및 비교예의 반사방지 필름 구조에 따라 CIE L*, a*, b* 값, 구체적으로 투과 a*, 투과 b* 및 반사 a*, 반사 b* 값을 측정하였다.
또한, JIS K 5600-5-4에 준하여 반사방지 필름의 연필경도를 측정하였다.
표 2
구성 실시예 비교예
투과율(%) 99.64 98.93
반사율(%) 0.205 0.493
연필경도 H 2B
투과 a* -0.28 -0.03
투과 b* 0.34 0.18
반사 a* 1.99 -0.05
반사 b* -0.10 1.02
상기 표 2를 참고하면, 하드코팅층을 포함하고 있는 실시예의 반사방지 필름이 하드코팅층을 포함하고 있지 않은 비교예의 반사방지 필름 보다 연필경도가 더 크게 측정되었는바, 하드코팅층으로 인하여 반사방지 필름의 강도가 개선됨을 알 수 있었다.
도 2는 실시예의 파장영역에 따른 반사방지 필름 반사율을, 도 3은 비교예의 파장영역에 따른 반사방지 필름 반사율을 그래프로 나타낸 것으로, 약 450nm 내지 약 650nm의 파장영역에서 비교예의 반사율도 0.5%이하로 측정되기는 하였으나, 실시예의 반사율이 상기 비교예에 비해 보다 안정적으로 0.3%이하의 반사율을 가짐을 알 수 있었다.
또한, 실시예의 반사방지 필름의 반사광의 색상 a*값이 -1 내지 2 사이, 색상 b*값이 -1 내지 1 사이로 측정되었는바, 반사광에 의한 색차가 미미하게 존재함을 알 수 있었고, 비교예의 반사방지 필름에 비해 우수한 반사 방지 특성을 나타냄을 확인하였다.

Claims (14)

  1. 투명기재, 하드코팅층, 고굴절층 및 저굴절층의 적층구조이고,
    상기 저굴절층이 하기 화학식 1로 표시되는 실란 화합물과 하기 화학식 2로 표시되는 오르가노실란 화합물이 중합되어 형성되는 바인더; 및 중공실리카 입자를 포함하는 반사 방지 필름.
    [화학식 1]
    R1 xSi(OR2)4-x
    상기 화학식 1에서, R1은 탄소수 1 ~ 10의 알킬기, 탄소수 6 ~ 10 의 아릴기 또는 탄소수 3 ~ 10의 알케닐기이고, R2 는 탄소수 1 ~ 6의 알킬기이며, x는 0≤x<4의 정수를 나타낸다.
    [화학식 2]
    R3 ySi(OR4)4-y
    상기 화학식 2에서, R3은 탄소수 1 ~ 12의 플루오로알킬기이고, R4는 탄소수 1 ~ 6의 알킬기이며, y는 0≤x<4의 정수를 나타낸다.
  2. 제 1항에 있어서,
    상기 화학식 1로 표시되는 실란 화합물은 테트라메톡시실란, 테트라에톡시실란, 테트라프로폭시실란, 테트라이소프로폭시실란, 테트라-n-부톡시실란, 테트라-sec-부톡시실란, 테트라-tert-부톡시실란, 트리메톡시실란, 트리에톡시실란, 메틸트리메톡시실란, 메틸트리에톡시실란, 에틸트리메톡시실란, 에틸트리에톡시실란, 프로필트리메톡시실란, 프로필트리에톡시실란, 이소부틸트리에톡시실란, 시클로헥실트리메톡시실란, 페닐트리메톡시실란, 페닐트리에톡시실란, 비닐트리메톡시실란, 비닐트리에톡시실란, 알릴트리메톡시실란 알릴트리에톡시실란, 디메틸디메톡시실란, 디메틸디에톡시실란, 디페닐디메톡시실란, 디페닐디에톡시실란 및 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상의 화합물인
    반사 방지 필름.
  3. 제 1항에 있어서,
    상기 화학식 2로 표시되는 오르가노실란 화합물은 트리플루오로메틸트리메톡시실란, 트리플루오로메틸트리에톡시실란, 트리플루오르프로필트리메톡시실란, 트리플루오르프로필트리에톡시실란, 노나플루오로부틸에틸트리메톡시실란, 노나플루오로부틸에틸트리에톡시실란, 노나플루오로헥실트리메톡시실란, 노나플루오로헥실트리에톡시실란, 트리데카플루오로옥틸트리메톡시실란, 트리데카플루오로옥틸트리에톡시실란, 헵타데카플루오로데실트리메톡시실란, 헵타데카플루오로데실트리에톡시실란 및 이들의 조합으로 이루어진 군으로부터 선택되는 하나 이상의 화합물인
    반사 방지 필름.
  4. 제 1항에 있어서,
    상기 중공 실리카 입자는 수평균 직경이 1nm 내지 1,000 nm인
    반사 방지 필름.
  5. 제 1항에 있어서,
    상기 바인더는 상기 중공 실리카 입자 100 중량부에 대하여 10중량부 내지 120중량부 포함되는
    반사 방지 필름.
  6. 제 1항에 있어서,
    상기 하드코팅층의 굴절률은 1.5 내지 1.6인
    반사 방지 필름.
  7. 제 1항에 있어서,
    상기 하드코팅층의 두께는 50nm 내지 200nm인
    반사 방지 필름.
  8. 제 1항에 있어서,
    상기 하드코팅층은 무기물 나노입자, 자외선 경화형 수지, 경화개시제 및 용매를 포함하는
    반사방지 필름.
  9. 제 1항에 있어서,
    상기 저굴절층의 굴절율은 1.2 내지 1.25인
    반사 방지 필름.
  10. 제 1항에 있어서,
    상기 고굴절층의 굴절율은 1.6 내지 1.7인
    반사 방지 필름.
  11. 제 1항에 있어서,
    상기 반사 방지 필름의 연필경도가 B 내지 H인
    반사방지 필름.
  12. 제 1항에 있어서,
    상기 반사 방지 필름의 물에 대한 접촉각이 70°이하인
    반사 방지 필름.
  13. 제 1항에 있어서,
    상기 반사 방지 필름의 반사율은 380nm 내지 780nm 파장영역에서 0.5%미만인
    반사 방지 필름.
  14. 제 1항에 있어서,
    상기 반사 방지 필름에 백색광을 조사할 때 반사광의 색상 a*값 및 색상 b* 값이 -1<a*<2, -1<b*<1인
    반사 방지 필름.
PCT/KR2013/009123 2012-11-21 2013-10-14 하드코팅층을 포함하는 광특성이 우수한 반사방지 필름 WO2014081119A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/443,645 US9606267B2 (en) 2012-11-21 2013-10-14 Anti-reflective film, comprising hard coating layer, having superb optical characteristics
CN201380060944.1A CN104813198B (zh) 2012-11-21 2013-10-14 包含硬涂层的光特性优秀的防反射膜
JP2015543955A JP6642823B2 (ja) 2012-11-21 2013-10-14 ハードコーティング層を含む光特性に優れた反射防止フィルム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0132542 2012-11-21
KR1020120132542A KR101526649B1 (ko) 2012-11-21 2012-11-21 하드코팅층을 포함하는 광특성이 우수한 반사방지 필름

Publications (1)

Publication Number Publication Date
WO2014081119A1 true WO2014081119A1 (ko) 2014-05-30

Family

ID=50776262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009123 WO2014081119A1 (ko) 2012-11-21 2013-10-14 하드코팅층을 포함하는 광특성이 우수한 반사방지 필름

Country Status (6)

Country Link
US (1) US9606267B2 (ko)
JP (1) JP6642823B2 (ko)
KR (1) KR101526649B1 (ko)
CN (1) CN104813198B (ko)
TW (1) TWI609783B (ko)
WO (1) WO2014081119A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3333598A4 (en) * 2015-08-05 2018-06-13 Panasonic Intellectual Property Management Co., Ltd. Composition for optical films, base having optical film, molded body and method for producing molded body

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9353268B2 (en) 2009-04-30 2016-05-31 Enki Technology, Inc. Anti-reflective and anti-soiling coatings for self-cleaning properties
US9376593B2 (en) 2009-04-30 2016-06-28 Enki Technology, Inc. Multi-layer coatings
KR101523821B1 (ko) * 2012-10-30 2015-05-28 (주)엘지하우시스 실록산 화합물을 포함하는 반사 방지 코팅 조성물, 이를 이용하여 표면 에너지가 조절된 반사 방지 필름
KR20150143974A (ko) * 2014-06-13 2015-12-24 (주)엘지하우시스 고굴절 조성물, 반사방지 필름 및 제조방법
US9399720B2 (en) 2014-07-14 2016-07-26 Enki Technology, Inc. High gain durable anti-reflective coating
US9598586B2 (en) 2014-07-14 2017-03-21 Enki Technology, Inc. Coating materials and methods for enhanced reliability
WO2016011071A2 (en) * 2014-07-14 2016-01-21 Enki Technology, Inc. High gain durable anti-reflective coating
KR101807208B1 (ko) 2015-08-18 2017-12-08 주식회사 엘지화학 저굴절층 및 이를 포함하는 반사 방지 필름
KR102077797B1 (ko) * 2016-02-19 2020-02-14 주식회사 엘지화학 저굴절층 형성용 광경화성 코팅 조성물
KR101951864B1 (ko) 2016-03-14 2019-02-25 주식회사 엘지화학 반사 방지 필름 및 디스플레이 장치
KR101948821B1 (ko) 2016-03-14 2019-02-15 주식회사 엘지화학 반사 방지 필름 및 디스플레이 장치
KR101951863B1 (ko) 2016-03-14 2019-02-25 주식회사 엘지화학 반사 방지 필름 및 디스플레이 장치
CN110632686B (zh) 2016-07-14 2021-10-29 株式会社Lg化学 防反射膜
JP6650368B2 (ja) * 2016-07-28 2020-02-19 日本板硝子株式会社 低反射コーティング付ガラス板、低反射コーティング付基材を製造する方法、及び低反射コーティング付基材の低反射コーティングを形成するためのコーティング液
JP6884045B2 (ja) * 2017-06-13 2021-06-09 リンテック株式会社 防眩性ハードコートフィルム及び防眩性ハードコートフィルムの製造方法
US10241377B1 (en) * 2017-09-18 2019-03-26 Amazon Technologies, Inc. Self-healing flexible electrophoretic displays
JP6580101B2 (ja) 2017-09-29 2019-09-25 日東電工株式会社 空隙層、積層体、空隙層の製造方法、光学部材および光学装置
KR102457537B1 (ko) 2017-12-05 2022-10-20 엘지디스플레이 주식회사 플렉서블 기판과 이를 포함하는 플렉서블 표시장치
KR102267506B1 (ko) * 2017-12-22 2021-06-21 주식회사 엘지화학 저굴절 실리카 코팅층을 포함하는 광학 부재의 제조방법 및 이를 이용하여 제조된 광학 부재
KR102126058B1 (ko) * 2017-12-28 2020-06-23 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치
KR101998311B1 (ko) * 2018-01-10 2019-07-09 주식회사 씨엔피솔루션즈 반사방지 필름
KR20190111743A (ko) * 2018-03-22 2019-10-02 스미토모 세이카 가부시키가이샤 복합부재 및 그 제조방법
CN112334549A (zh) 2018-06-20 2021-02-05 美国圣戈班性能塑料公司 具有抗反射涂层的复合膜
CN109870748A (zh) * 2018-12-28 2019-06-11 张家港康得新光电材料有限公司 一种柔性盖板
KR102594548B1 (ko) * 2019-01-02 2023-10-27 삼성디스플레이 주식회사 윈도우, 윈도우의 제조 방법 및 윈도우를 포함하는 표시 장치
WO2021045453A1 (ko) * 2019-09-04 2021-03-11 삼성에스디아이 주식회사 경화형 수지 조성물, 그로부터 형성된 경화막, 및 상기 경화막을 갖는 전자 장치
KR102636059B1 (ko) * 2019-09-04 2024-02-13 삼성에스디아이 주식회사 경화형 수지 조성물, 그로부터 형성된 경화막, 및 상기 경화막을 갖는 전자 장치
KR102703629B1 (ko) * 2020-03-16 2024-09-04 주식회사 엘지화학 반사 방지 필름
JP2023519045A (ja) 2020-03-16 2023-05-10 エルジー・ケム・リミテッド 反射防止フィルム
EP4024092A4 (en) * 2020-03-16 2022-11-30 LG Chem, Ltd. Anti-reflective film
KR102703630B1 (ko) * 2020-03-16 2024-09-04 주식회사 엘지화학 반사 방지 필름
JP6956909B2 (ja) * 2020-03-23 2021-11-02 デクセリアルズ株式会社 光学積層体および物品
US12174341B2 (en) 2020-04-29 2024-12-24 Samsung Display Co., Ltd. Anti-reflective film and display device including the same
KR102436008B1 (ko) 2020-11-04 2022-08-25 존스미디어 주식회사 시인성이 향상된 장식패널 및 그의 제조방법
JP7551924B2 (ja) * 2020-12-09 2024-09-17 サン-ゴバン パフォーマンス プラスティックス コーポレイション 反射防止コーティング付き複合フィルム
CN115302879A (zh) * 2021-05-06 2022-11-08 天材创新材料科技(厦门)有限公司 透明隔热薄膜
KR20230081800A (ko) * 2021-11-29 2023-06-08 삼성디스플레이 주식회사 전자 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317152A (ja) * 2001-02-16 2002-10-31 Toppan Printing Co Ltd 低屈折率コーティング剤および反射防止フィルム
JP2003057415A (ja) * 2001-08-21 2003-02-26 Fuji Photo Film Co Ltd 光拡散フィルム、その製造方法、偏光板および液晶表示装置
JP2006106715A (ja) * 2004-09-13 2006-04-20 Fuji Photo Film Co Ltd 反射防止フィルム、偏光板、および液晶表示装置
KR20090060265A (ko) * 2006-09-06 2009-06-11 도레이 카부시키가이샤 디스플레이용 필터와 그 제조 방법, 및 디스플레이의 제조 방법
KR20090119968A (ko) * 2007-03-12 2009-11-23 코니카 미놀타 옵토 인코포레이티드 방현성 반사 방지 필름의 제조 방법, 방현성 반사 방지 필름, 편광판 및 표시 장치

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3540452B2 (ja) * 1995-07-31 2004-07-07 東レ・ダウコーニング・シリコーン株式会社 硬化性シリコーン組成物
JP3657869B2 (ja) * 1999-10-29 2005-06-08 株式会社巴川製紙所 低反射部材
TW468053B (en) * 1999-12-14 2001-12-11 Nissan Chemical Ind Ltd Antireflection film, process for forming the antireflection film, and antireflection glass
KR100883949B1 (ko) * 2001-04-10 2009-02-18 후지필름 가부시키가이샤 반사방지 필름, 편광판, 및 이미지 디스플레이용 장치
JP3953922B2 (ja) 2001-10-18 2007-08-08 日東電工株式会社 反射防止フィルム、光学素子および表示装置
JP4378972B2 (ja) * 2003-02-25 2009-12-09 パナソニック電工株式会社 反射防止膜、反射防止膜の製造方法、反射防止部材
TWI341931B (en) * 2003-12-24 2011-05-11 Fujifilm Corp Antireflection film, polarizing plate and liquid crystal display device
TWI388876B (zh) * 2003-12-26 2013-03-11 Fujifilm Corp 抗反射膜、偏光板,其製造方法,液晶顯示元件,液晶顯示裝置,及影像顯示裝置
US20070266896A1 (en) * 2004-06-11 2007-11-22 Toray Industries, Inc. Siloxane-Based Coating Material, Optical Article, and Production Method of Siloxane-Based Coating Material
JP4887612B2 (ja) * 2004-10-20 2012-02-29 日油株式会社 減反射材及びそれを用いた電子画像表示装置
US20060181774A1 (en) 2005-02-16 2006-08-17 Konica Minolta Opto, Inc. Antireflection film, production method of the same, polarizing plate and display
US7419707B2 (en) * 2005-02-21 2008-09-02 Fujifilm Corporation Coating composition for the formation of low refractive index layer, antireflection film, polarizing plate and liquid crystal display device
JP2007065191A (ja) * 2005-08-30 2007-03-15 Nippon Zeon Co Ltd 偏光板及び液晶表示装置
JP2007133386A (ja) * 2005-10-13 2007-05-31 Toray Ind Inc 反射防止フィルムおよびそれを備えた光学フィルター
JP2007156391A (ja) * 2005-11-14 2007-06-21 Sumitomo Osaka Cement Co Ltd 反射防止膜付き透明基材
JP2008052088A (ja) * 2006-08-25 2008-03-06 Bridgestone Corp ディスプレイ用反射防止フィルム、および、これを用いたディスプレイ
JP5271575B2 (ja) * 2007-03-20 2013-08-21 富士フイルム株式会社 反射防止フィルム、偏光板、および画像表示装置
JP2010085579A (ja) * 2008-09-30 2010-04-15 Toray Ind Inc 反射防止光学物品およびシロキサン系樹脂組成物の製造方法
JP5659494B2 (ja) * 2009-02-17 2015-01-28 凸版印刷株式会社 反射防止フィルム及びその製造方法、偏光板、透過型液晶ディスプレイ
KR101523821B1 (ko) * 2012-10-30 2015-05-28 (주)엘지하우시스 실록산 화합물을 포함하는 반사 방지 코팅 조성물, 이를 이용하여 표면 에너지가 조절된 반사 방지 필름
KR101526650B1 (ko) * 2012-11-21 2015-06-05 (주)엘지하우시스 광학특성이 우수한 반사방지 필름

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002317152A (ja) * 2001-02-16 2002-10-31 Toppan Printing Co Ltd 低屈折率コーティング剤および反射防止フィルム
JP2003057415A (ja) * 2001-08-21 2003-02-26 Fuji Photo Film Co Ltd 光拡散フィルム、その製造方法、偏光板および液晶表示装置
JP2006106715A (ja) * 2004-09-13 2006-04-20 Fuji Photo Film Co Ltd 反射防止フィルム、偏光板、および液晶表示装置
KR20090060265A (ko) * 2006-09-06 2009-06-11 도레이 카부시키가이샤 디스플레이용 필터와 그 제조 방법, 및 디스플레이의 제조 방법
KR20090119968A (ko) * 2007-03-12 2009-11-23 코니카 미놀타 옵토 인코포레이티드 방현성 반사 방지 필름의 제조 방법, 방현성 반사 방지 필름, 편광판 및 표시 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3333598A4 (en) * 2015-08-05 2018-06-13 Panasonic Intellectual Property Management Co., Ltd. Composition for optical films, base having optical film, molded body and method for producing molded body

Also Published As

Publication number Publication date
JP2015537249A (ja) 2015-12-24
CN104813198B (zh) 2016-10-12
CN104813198A (zh) 2015-07-29
JP6642823B2 (ja) 2020-02-12
US20150301231A1 (en) 2015-10-22
TWI609783B (zh) 2018-01-01
KR20140065250A (ko) 2014-05-29
KR101526649B1 (ko) 2015-06-05
US9606267B2 (en) 2017-03-28
TW201420351A (zh) 2014-06-01

Similar Documents

Publication Publication Date Title
WO2014081119A1 (ko) 하드코팅층을 포함하는 광특성이 우수한 반사방지 필름
WO2014081120A1 (ko) 광학특성이 우수한 반사방지 필름
WO2014038760A1 (ko) 실록산 화합물을 포함하는 반사 방지 코팅 조성물, 이를 이용한 반사 방지 필름
WO2014069808A1 (ko) 실록산 화합물을 포함하는 반사 방지 코팅 조성물, 이를 이용하여 표면 에너지가 조절된 반사 방지 필름
JP6795572B2 (ja) 光学機能層形成用組成物、これを用いた固体撮像素子およびカメラモジュール
WO2014073815A1 (ko) 실록산 화합물을 포함하는 초친수성 반사방지 코팅 조성물, 이를 이용한 초친수성 반사방지 필름 및 이의 제조방법
KR20090043397A (ko) 알콕시 실란계 중합체 용액과 이를 이용한 저굴절 코팅조성물, 고굴절 대전방지 하드코팅 조성물 및 이들을 사용한 반사방지 코팅 필름
WO2016017526A1 (ja) レンズアレイ部材及びその製造方法、レンズユニット及びその製造方法、ならびにカメラモジュール及びその製造方法、レンズアレイ部材の製造キット
KR20150143974A (ko) 고굴절 조성물, 반사방지 필름 및 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856590

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14443645

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015543955

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13856590

Country of ref document: EP

Kind code of ref document: A1