[go: up one dir, main page]

WO2014075390A1 - 一种冶炼烟气中so2和重金属回收利用的方法 - Google Patents

一种冶炼烟气中so2和重金属回收利用的方法 Download PDF

Info

Publication number
WO2014075390A1
WO2014075390A1 PCT/CN2013/001389 CN2013001389W WO2014075390A1 WO 2014075390 A1 WO2014075390 A1 WO 2014075390A1 CN 2013001389 W CN2013001389 W CN 2013001389W WO 2014075390 A1 WO2014075390 A1 WO 2014075390A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
smelting
gas
sulfur
solution
Prior art date
Application number
PCT/CN2013/001389
Other languages
English (en)
French (fr)
Inventor
宁平
殷在飞
王学谦
Original Assignee
昆明理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆明理工大学 filed Critical 昆明理工大学
Publication of WO2014075390A1 publication Critical patent/WO2014075390A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/507Sulfur oxides by treating the gases with other liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/64Heavy metals or compounds thereof, e.g. mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/05Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by wet processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/20Methods for preparing sulfides or polysulfides, in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/24Sulfates of ammonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/608Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/025Other waste gases from metallurgy plants

Definitions

  • the invention relates to a method for recycling s3 ⁇ 4 and heavy metals in smelting flue gas, and belongs to the technical field of environmental protection.
  • China's non-ferrous metal refining industry has experienced rapid growth.
  • China's ten non-ferrous metal production groups all increased by 13.8%; ten typical non-ferrous metal productions have ranked first in the world for many years, among them, for zinc and lead.
  • the scale of production and consumption demand in the world is more than 40%, making an important contribution to China's economic development.
  • the non-ferrous smelting flue gas is derived from the process of drying, burning, sintering, smelting and refining of concentrates.
  • the amount of flue gas produced depends on the type of metallurgical kiln and different operation processes.
  • the dry dust collection needle process is performed under the fact that the smoke is extinguished more than the dew point cake, and all the collected dust is dry smoke.
  • more than 90% of heavy-duty metal smelting dust-containing flue gas uses dry dust collection.
  • Wet dust collection is suitable for purifying dusty flue gas with large moisture content (not suitable for dry dust collection).
  • flue gas treatment with concentrate and slag is the most used, because it uses dusty flue gas to contact with water. Drops, liquid films and bubbles generated by water separate the smoke from the flue gas.
  • the gaseous pollution in the smelting flue gas is mainly sulfur dioxide, and the flue gas with a sulfur dioxide concentration of more than 3.5% can be made into sulfuric acid by the method. If the flue gas contains mercury, a special mercury removal device should be installed in the purification process. For the low-concentration flue gas with sulfur dioxide below 3.5% and the tail gas emitted after the smelting flue gas is acidified, it can be treated by absorption, adsorption and catalytic oxidation.
  • Non-ferrous metals generally contain Hg, Pb, As, Cd and other accompanying organisms. In the smelting process, they are generally discharged with flue gas in particulate or volatile form.
  • Non-ferrous smelting and kiln flue gas are one of the important sources of heavy metals such as Hg, As, Pb and Cd in China. Especially in terms of mercury emissions, China's non-ferrous metal industry accounts for 45% of the total mercury emissions in China. , accounting for more than 15% of the world's total annual mercury emissions, with a huge environmental impact;
  • Non-ferrous metals generally contain Hg, Pb, As, Cd and other accompanying organisms. In the smelting process, they are generally discharged with flue gas in particulate or volatile form.
  • Non-ferrous smelting and kiln flue gas are one of the important sources of heavy metals such as Hg, As, Pb and Cd in China. Especially in terms of mercury emissions, China's non-
  • the present invention provides a method for synchronously removing sa and heavy metals in a non-ferrous smelting flue gas, and the technology for recovering the same is directed to a high S concentration in a colored smelting flue gas, a large fluctuation in gas volume, and a Hg, As, Cd, Pb and other heavy metals are characterized by the use of (N3 ⁇ 4) solution absorption method to remove S and Hg, As, Cd, Pb, etc., and the sulfur resources and ⁇ resources in the flue gas are recycled, which is the non-ferrous smelting tobacco in China.
  • the gas pollution 3 ⁇ 4 control proposes a traversable path.
  • the object of the present invention is to provide a method for recycling and utilizing heavy metals in smelting flue gas.
  • ammonium sulfide solution is used to absorb SO ⁇ Hg, As, Cd, Pb, etc. in flue gas.
  • the absorption liquid, the sulfide, the ammonium sulfide and the sulfur are treated by the separation process technology to achieve the purpose of clearing the metallurgical flue gas; the technology can be used to recycle the S (3 ⁇ 4 and its heavy metal) in the Jt ⁇ . Technologies such as energy conservation and emission reduction, environment and comprehensive utilization of resources are major breakthroughs.
  • the present invention is implemented by the following processes:
  • the flue gas is further increased from 3 ⁇ 43 ⁇ 4 to less than 40'C;
  • ammonium sulfide is formulated into a solution with a concentration of 3-5% by mass, and is atomized by a special vortex nozzle in the absorption tower, and the smelting flue gas 3 ⁇ 431 atomized sulphur sulphide solution is subjected to purification and absorption treatment 'S(3 ⁇ 4 ⁇ Heavy metal oxides such as Hg, As, Cd, and Pb are washed and washed, and the discharged solution is called a rich liquid;
  • the rich liquid is treated in the original tank of oxygen t2 for 20-30, and the sulfur is reacted;
  • the self-oxidation reduction tank is used as a sedimentation tank at the same time, and the bottom sediment is taken out, separated by a « or centrifuge, and the sediment is returned to the raw material pool for use as a raw material, and the filtrate is used for regeneration;
  • the solution is evaporated to recover ammonium sulfate:
  • the solution from the centrifuge is concentrated in the evaporator, and the solution (( ⁇ ) ⁇ ) « is transferred to the original solution volume 6 and the evaporation solution is placed in the crystallization tank.
  • the crystals were cooled to 40 ° C, and the magnetic enthalpy product was separated by a centrifuge.
  • the ammonium polysulfide solution is heated, and the ⁇ 3 ⁇ 4 sulfonate and the ammonium sulfide solution are separated, and the reaction is as follows:
  • the smelting flue gas in the present invention refers to the exhaust gas generated in the smelting of non-ferrous metals.
  • (1) 5 (3 ⁇ 4) in the smelting flue gas is synchronously removed with the heavy metal oxide, the removal efficiency is high, and the flue gas can reach the standard discharge.
  • the desulfurization efficiency is 95%, and the S0 2 content in the outlet flue gas is 400 mg/m 3 ;
  • the removal efficiency of the four heavy metals of arsenic, cadmium and lead is more than 90%, and the Hg of the flue gas is 0. 012mg/m ⁇ As ⁇ O. 5mg/m 3 , Cd ⁇ O. 5mg/m ⁇ Pb ⁇ O. 7mg/m 3.
  • the purity of by-product sulfur is 98%, the comprehensive recovery rate of mercury is more than 80%, and the comprehensive recovery rate of lead, arsenic and cadmium is more than 65%.
  • the invention is a key technology for solving the purification and utilization of smelting flue gas, which is suitable for industrial use.
  • the invention can recover heavy metals in the smelting flue gas, realize the resource utilization of the metal sulfides, and at the same time avoid the smelting flue gas genus 3 ⁇ 4 3 ⁇ 4 which is transferred to the secondary pollution of the wastewater.
  • Figure 1 is a schematic view of the process of the present invention
  • Example 1 The method for recycling S (3 ⁇ 4 and heavy metals) in zinc smelting flue gas, the details are as follows:
  • the flue gas to be treated is zinc smelting flue gas
  • the flue gas volume is 10000 m 3 /h
  • the flue gas in the kiln mouth contains S (3 ⁇ 4 : 4-6%, Hg: 0.2 mg/m 3 , As: l-5mg/m 3 , Pb: 10-15 mg m 3 , Cd: 2-7 mg ⁇ m 3
  • Zinc refining flue gas 1 enters the cooler 2 after dust removal, and cools the flue gas S to 40 °C the following;
  • the rich liquid of S (3 ⁇ 4 and heavy metal) is taken into the auto-oxidation reduction reactor 5, and the auto-oxidation reduction reaction is carried out in the reactor.
  • the reaction time is 20 min, and the metal sulfide precipitates such as mercury, lead, arsenic and cadmium are deposited in the process of 3 ⁇ 4 lt.
  • the precipitated clear liquid in the reactor is sent to the absorption tower 3 for atomization by the circulation pump 14; the sediment at the bottom of the reactor is filtered by «6, «that is, the sulfide 15 is returned to the raw material library ⁇ ffl, and the filter eXIOf 7 Then, it is boiled by steaming at 0.35 MPa in the dissolved solution 8.
  • the ammonium sulfide is decomposed in the line, and the H 2 S and the NH 3 aA condenser are decomposed into 9 parts of ammonium sulfide and returned to the front part of the reaction tank and the clear liquid.
  • the flue gas desulfurization efficiency is 95%
  • the S ( 3 ⁇ 4 content is 400mg/m 3 in the outlet flue gas ;
  • the removal efficiency of the four heavy metals of mercury, arsenic, cadmium and lead is more than 0%
  • the Hg 0.012mg m in the outlet flue gas 3 As ⁇ 0.5mg/m 3 Cd 0.5mg m 3 , Pb 0.7mg m 3 ; by-product sulfur purity 99%, lead resource utilization rate greater than 65%, mercury comprehensive recovery rate is greater than 75%.
  • Example 2 Method for recycling S0 2 and heavy metals in lead smelting flue gas, the specific contents are as follows:
  • the flue gas to be treated is lead smelting flue gas
  • the flue gas volume is 50000 m 3 /h
  • the flue gas in the kiln mouth contains S02: 8-15%, Hg: OAmg/ 3 , As: l- 5mg m 3 , Pb: 35 ⁇ 5mg m 3 , Cd: 1-3 mg m 3 ;
  • the cooling flue gas as is less than 4o. c ;
  • Ammonia sulfide solution with a mass percentage concentration of 5% is atomized through a vortex nozzle in the absorption tower, and the smelting flue gas ita atomized ammonium sulfide solution is subjected to purification and absorption treatment, purifying flue gas discharge, and absorbing S (3 ⁇ 4 and heavy metal).
  • the rich liquid enters the auto-oxidation reduction reactor, and the rich liquid is treated in the reactor for 30 min.
  • metal sulfides such as mercury, lead, arsenic and cadmium are precipitated on the bottom of the reactor.
  • the sediment is filtered, and the slag is returned to the raw material storage; the filtrate is heated and decomposed under 0.36 MPa of cattle, and the decomposition product ammonia gas and hydrogen sulfide are cooled and then the ammonium chloride solution is mixed and returned to the system for recycling; the sulfur centrifuge which is separated during the decomposition process Separating to produce sulfur with a water content of 1%;
  • Example 3 Method for recycling S02 and heavy metals in nickel smelting flue gas, the specific contents are as follows:
  • the flue gas to be treated is nickel smelting flue gas
  • the flue gas volume is 36000 m 3 /h
  • the flue gas collected by the converter contains S02: 0.8-1.1%, Hg: 0.2 mg/m 3 , As: 3 -5mg m 3 , Pb: 10-25mg m 3 , Cd: 1-3 mg m 3 ;
  • the flue gas temperature is lower than 40. C ;
  • mercury, lead, arsenic and cadmium are sulfide precipitates, and the sediment at the bottom of the reactor is filtered to obtain a return to the raw material reservoir; Heating under the 0.4Mpa cake, the product ammonia gas and hydrogen sulfide are cooled and mixed to obtain the ammonium sulfide solution, and returned to the system for recycling; the sulfur precipitated during the decomposition process is separated by a centrifuge to obtain sulfur having a water content of 2%;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种冶炼烟气(1)中SO2和重金属回收利用的方法,将冶炼烟气(1)经预处理后,采用硫化铵溶液同时脱除烟气(1)中的SO2和重金属,并对重金属和硫产物进行回收利用。该方法简单、易操作、脱硫率高且成本低,适于工业化应用。

Description

一种冶 «气中 和¾ ^属回收利用的
技术领域
本发明涉及一种冶炼烟气中 s¾和重金属回收利用的方法, 属于环境保护技术领域。
背景
我国有色金属 炼行业簾迅猛, "十一五"期间, 我国十种有色金属产群均增长 13. 8%; 十种典型有色金属产量已连续多年位列世界第一, 其中, 对锌、 铅的生产和消费需求规模在世界 的占比均超过 40%, 为我国经济发展做出重要贡献。
有色冶炼烟气来源于精矿千燥、 烧、 烧结、 熔炼 灭法精炼等过程, 所产烟气量的大小决 定于冶金窑炉的类型和不同的作业过程。
目前, 有色冶炼烟气的治理, 一舰用如下两类技术:
(一)烟气收尘
烟气收尘奸式和湿式两类。干式收尘的針作 程都是在烟气滅大于露点餅下迸行, 所收下的都是干烟尘。 目前, 重有色金属冶炼含尘烟气 90%以上都采用干式收尘。
湿式收尘适用于净化含湿量大(不宜用干式收尘)的含尘烟气, 如精矿和渣干燥的烟气治理 用得最多, 因其是利用含尘烟气与水接触, 靠水产生的液滴、 液膜和气泡将烟尘从烟气中分离出 来。
(二) 炼气制酸和脱硫
冶炼烟气中的气态污勵主要是二氧化硫, 二氧化硫浓度在 3. 5%以上的烟气, 可采用嫌法 制成硫酸。 若烟气中含汞, 需在净化过程中设专门的除汞装置。 而对二氧化硫在 3. 5%以下的低浓 度烟气和冶炼烟气制酸后排放的尾气, 则可用吸收、 吸附、 催化氧化體技木迸行治理。
但有色冶炼行业的烟气治理还存在以下问题: (1 )有色金属'矿中一般含 Hg、 Pb、 As、 Cd等伴 生物, 冶炼 程中, 一般以颗粒物或挥发性形式随烟气排放。 有色冶炼、炉窑烟气是我国大气重金 属 Hg、 As、 Pb、 Cd等重要排放源之一, 特别在汞排放方面, 我国有色金属行业每年排放的汞量占 我国大气汞排放总量的 45%, 约占世界每年总汞排放量的 15%以上, 环境影响巨大; (2)有色金属
1
确认本 矿多以硫化物的形态存在,有色冶炼过程中会产生大量 SC烟气(0. 05¾Γ25%),我国每年约有排放 二氧化硫总量的 8%是由有色冶炼烟气所排放的, 还没有很好的回收。 随着其它行业二氧化硫减排 的曰见成效, 迫切要求加强有色行业的二氧化硫减排。
随着冶炼烟气制麵气 S¾排放标准限值的提高和铅、锌等冶炼工程中汞、铅等 属污膽 排放标准的日趋严格, 有色冶炼烟气重金属控制和 s 资源化利用技术己成为有色行业急需的技 术。
现有旅雜以下问题: ( 1 )现有技术仅仅针对烟气中高浓度 s 进行回收,未考虑低浓度 sa 和重金属的脱除; (2)用硫化钠溶液吸收二氧化硫, 未考虑硫磺与重金属的分离, 重金属不回收, 易产生重金属二次污染。
针对上述问题,本发明提出一种有色冶炼烟气中 sa及重金属同步脱除的方法, 并将其回收的 技术, 针对有色冶炼烟气中 S 浓度高、气量波动大、 同时含有 Hg、 As、 Cd、 Pb等多种重金属的 特征, 采用 (N¾) 溶液吸收法同吋脱除 S 和 Hg、 As、 Cd、 Pb等, 烟气中硫资源和^ 资源的 得到回收利用, 为我国有色冶炼烟气污¾ 1控制提出一条可4 径。
发明内容
本发明的目的是提供一种冶炼烟气中 和重金属回收利用的方法, 有色冶金烟气经预处理 后, 采用硫化铵溶液吸收烟气中的 SO^ Hg、 As、 Cd、 Pb等 S ^属; 吸收液、 属硫化物、硫 化铵、硫磺通过分离工艺技术处理, 以达到有色冶金烟气清 ¾ί#放之目的; 用该技术可回收利用 生产排放 Jt^中的 S(¾及其重金属, 对节能减排, 环境 , 资源综合利用等技术都是重大突破。
本发明 如下工艺实现的:
(1)将冶炼烟气初步除尘后, 进一步将烟气 ¾¾ 至 40'C以下;
(2)将硫化铵配制成质量百分比浓度为 3-5%的溶液, 在吸收塔内由特制的漩涡喷头雾化, 冶 炼烟气 ¾31雾状硫化钹溶液进行净化吸收处理' 将 S(¾和 Hg、 As、 Cd、 Pb等重金属氧化物吸 洗涤下来, 排出的溶液称为富液;
(3)富液在自氧t2原槽中停留处理 20-30 , 充^ S行析硫反应; (4) 自氧化还原槽同时作为沉淀槽用, 将底部沉淀物抽出, 用过«或离心机分离, 沉淀物 返回原料库, 作原料用, 滤液作再生;
(5)滤液再生: 滤液(多硫化铵富液)用 0.35-0.4Mpa的直接蒸汽加热分解,分解所得的氨、 硫化氢和水蒸气一起冷凝下来, 重新得到硫化铵溶液, 返回系统循环使用: 而含有一些水的固体 硫, 则自蒸发器底部放出, 在离心机中分离得到的硫为颗粒状, 含水量为 1-2%:
(6)分离硫固体后溶液蒸发回收硫酸铵: 由离心机来的溶液在蒸发器中浓缩, 将溶液 ((Ν^)^) «至原溶液体积的 6 , 再将蒸发溶液在结晶槽中冷却至 40°C结晶,用离心机分离 磁瞧产品。
冶炼烟气 S(¾与重金属污染物同步脱除原理如下:
(1)吸收: 采用 (ΝΗ,) 溶液吸 气中的 S(¾, 伺时(N1U 及收液能够有效的去除 Hg、 As、 Cd、 Pb等重金属氧化物。 B及收反 /¾¾程如下:
Figure imgf000005_0001
H2SQi+ ( U S -* (NH4) HSO3+ HzS
¾S + (N¾) S— (風) HS ' 2 (NH4) HS + 2S02= (N¾)2S(¾+ S + H20
(NH4)2Sft+ 0.502 = (NH4)2S04
(NH4) 2S+Pb(HH20→PbS I +2 (N¾) OH
(NH4) 2S + HgO + H20 → HgS i + 2 (ΝΗ,) OH
Figure imgf000005_0002
(M ) 2S + CdO + H20 → CdS I + 2 (N¾) OH
4 (N¾) S + As2ft+ 3H,0 → + 3 (Ν¾) OH + (N¾) HS
(Nft) 2S + PbO + HO → PbS I + 2 (N¾) OH
NH4OH + sa = NitHsa
(2) 自氧 原反应, 将其还原为 S单质, 单质硫再与硫化铵反应 多硫化铵溶液, 同时 单质硫与溶液中的液态汞反应生成硫化汞, 将零价汞除去, 其反应如下:
2 (N¾) HS ► S + (NH^C H20
S + Hg = HgS i
( ) S + (n-l) S― (NH,)^
(3) Hg、 As、 Cd、 Pb的重金属硫化物均为沉淀物, ffiilil滤将沉淀物除去, 沉淀物与原料混 合重新利用。
(4)硫化铵溶液再生
多硫化铵溶液加热 , ^¾磺和硫化铵溶液分开, 其反应如下:
= H2S + 2 NH, + (n-l)S
本发明中冶炼烟气是指有色金属冶炼中产生的废气。
本发明的优点如下:
(1)冶炼烟气中的 5(¾与重金属的氧化物同步脱除, 脱除效率高, 烟气可以达标排放。 脱硫 效率 95%, 出口烟气中 S02含量 400mg/m3 ; 汞、 砷、镉、铅四种重金属去除效率稳定大于 90%, 出口烟气中 Hg 0. 012mg/m\ As^O. 5mg/m3、 Cd^O. 5mg/m\ Pb^O. 7mg/m3,副产品硫磺纯度 98%, 汞的综合回收率大于 80%, 铅、砷、 镉的综合回收率大于 65%。
(2)从冶炼烟气中的 S(¾制取硫磺和硫赚等副产品, 脱硫率高, 运行成本低, 赚磺与其 它硫产品相比具有用途广泛, 易于贮存和运 点。 因此, 本发明是解决冶炼烟气净化与利用 的关键技术, 其适于工业 用。
(3)本发明可回收冶炼烟气中的重金属, 实现金属硫化物的资源化利用, 同时避免了冶炼烟 气的 属排 ¾ ¾其转移到废水二次污染。
附图说明
图 1是本发明工艺 示意图。
图中: 1是待处理冶炼 2是 器; 3是吸收塔; 4是净化后烟气; 5是自氧條原反 应器; 6是过«; 7是贮槽; 8是加热器; 9是冷凝器; 10是离心机; 11是蒸发器; 12是结晶槽; 13是离心机; 14是循环泵; 15是重金属硫化物; 16是固体硫; 17是硫瞧。 具体实 »式
下面通实施例对本发明作进一步详细说明, 但本发明 范围不局限于所述内容。
实施例 1: 锌冶炼烟气中 S(¾和重金属回收利用的方法, 具体内容如下:
( 1 ) 本实施例中待处理烟气为锌冶炼烟气, 烟气量为 10000m3/h, 炉窑口烟气中含 S(¾: 4-6%, Hg: 0.2mg/m3, As: l-5mg/m3, Pb: 10-15 mg m3, Cd: 2-7 mg^m3; 锌 炼烟气 1经除尘 后进入冷却器 2, 将烟气 S冷却至 40°C以下;
(2) 将质量百分比浓度为 3%的硫化铵溶¾¾吸收塔 3内的漩涡喷头雾化, 冷却后烟气 进入吸收塔 3逆流与 的硫化铵溶液充分接触, 对含 S(¾冶'炼烟气进行高效吸收, 同时有效的 吸收烟气中的汞、 铅、砷、 镉等金属氧化物, 净化烟气 4从塔顶排出;
(3 ) 吸收了 S(¾和重金属的富液进入自氧化还原反应器 5, 在反应器中进行自氧化还原反 应,反应时间 20min, ¾ltbl程中汞、铅、砷和镉等金属硫化物沉淀,反应器中经沉淀后的澄清液, 用循环泵 14送入吸收塔 3雾化; 反应器底部沉淀物用 « 6进行过滤, «即为 属 硫化物 15返回原料库^ ffl , 滤 eXIOf 7, 然后用 入溶 8中在 0.35Mpa下蒸汽加 热沸腾, 硫化铵在«行分解, 分解出来的 H2S和 NH3aA冷凝器 9重 ff^成硫化铵返回到反应 槽前部与澄清液混合循环棚; 分解过程中析出的硫趁热用离心机 10分离, 得到固体硫 16产品, 含水量为 2
(4) 分离硫后的母液送入蒸发器 11, 将母液髓至原溶液体积的 60%, 方[A结晶槽 12中 冷却至 40'C结晶, 硫赚结晶用离心机 13分离, 即赚瞧 17产品。 (见图 1 )
¾il实施上述方法, 烟气脱硫效率 95%, 出口烟气中 S(¾含量 400mg/m3 ; 汞、 砷、镉、 铅四种重金属去除效率稳定大于 0%, 出口烟气中 Hg 0.012mg m3、 As^0.5mg/m3 Cd 0.5mg m3、 Pb 0.7mg m3 ; 副产品硫磺纯度 99%, 铅的资源化率大于 65%, 汞的综合回收 率大于 75%。
实施例 2: 铅冶炼烟气中 S02和重金属回收利用的方法, 具体内容如下:
( 1 )本实施例中待处理烟气为铅冶炼烟气, 烟气量为 50000m3/h, 炉窑口烟气中含 S02: 8-15%, Hg: OAmg/ 3, As: l-5mg m3, Pb: 35^5mg m3, Cd: 1-3 mg m3; 将冶炼烟气初步除尘 后, 冷却烟气 as低于 4o。c;
(2)将质量百分比浓度为 5%的硫化铵溶液通过吸收塔内的漩涡喷头雾化, 冶炼烟气 ita雾 状硫化铵溶液进行净化吸收处理, 净化烟气排出, 吸收了 S(¾和重金属的富液进入自氧化还原反 应器, 富液在反应器中处理 30min, 在 J¾a程中汞、铅、砷和镉等金属硫化物沉淀,对反应器底部 的沉淀物进行过滤, 渣返回原料库; 滤液在 0.36Mpa 牛下进行加热分解, 分解产物氨气、硫 化氢冷却后混 滅化铵溶液, 返回系统循环使用; 分解过程中析出的硫疆离心机分离制得 含水量在 1%的硫;
(3)分离硫固体后的液体加热浓缩至原溶液体积的 60%,再于 40'C结晶,分离制得硫酸铵。 ffiil实施上述方法, 烟气脱硫效率 96%, 出口烟气中 S02含量 350mg m3; 汞、砷、 镉、 铅四种重金属去除效率稳定大于 90%, 出口烟气中 Hg 0.010mg/m3、 As^O.lmg m3 , Cd^O.lmg/m3, Pb 0.6mgto3 ; 副产品硫磺纯度 99%, 铅的资源化率大于 70%, 汞的综合回收 率大于 90%。
实施例 3: 镍冶炼烟气中 S02和重金属回收利用的方法, 具体内容如下:
( 1 )本实施例中待处理烟气为镍冶炼烟气, 烟气量 36000m3/h, 转炉收集的烟气中含 S02: 0.8-1.1%, Hg: 0.2mg/m3, As: 3-5mg m3, Pb: 10-25mg m3, Cd: 1-3 mg m3; ¾台炼烟气初步除 尘后, 烟气温度低于 40。C ;
(2)将质量百分比浓度为 4%的硫化铵溶 «a吸收塔内的漩涡喷头雾化,冶炼烟气 雾 状硫化铰溶液进行净化吸收处理, 净化烟气排出, 吸收了 S(¾和重金属的富液进入自氧化还原反 应器, 富液在反应器中处理 25min, ¾Μ程中汞、铅、砷和镉 属硫化物沉淀,对反应器底部 的沉淀物进行过滤, 赚返回原料库; 滤液在 0.4Mpa餅下进行加热 , 产物氨气、硫化 氢冷却后混^ ^得硫化铵溶液, 返回系统循环使用; 分解过程中析出的硫通过离心机分离制得含 水量在 2%的硫;
(3)分离硫固体后的液体加热 «至原溶液体积的 60%,再于 40°C结晶,分离制得硫酸铵。 通过实施上述方法, 烟气脱硫效率 95%, 出口烟气中 S02含量 400mg/m3; 汞、 砷、镉、 铅四 种重金属去除效率稳定大于 90%, 出口烟气中 Hg 0.010mg/m3、 As 0.1mg m3、 Cd 0.1mg m3、 Pb^0.6mg/m3; 副产品硫磺纯度 99%, 铅的资源化率大于 70%, 汞的综合回收率大于 90%。

Claims

i、 一种冶炼烟气中 sa和重金属回收利用的方法, 其特征在按如下步«行:
(1 )将冶炼烟气初步除尘后, 冷却烟气讓氏于 40。C;
(2)将质量百分比浓度为 3- 5%的硫化铵溶 «31吸收塔内的漩涡喷头雾化,冶炼 气131 雾状硫化铵溶液进行净化吸收处理,净化烟气排出, 吸收了 s 和重金属的富液进入自氧化还原反 应器, 富液在反应器中处理 20~30min, 对反应器底部的沉淀物进行过滤, 赚返回原料库; 滤液 在 0. 35-0. 4Mpa 牛下进行加热分解, 分解产物氨气、 硫化氢冷却后混^ ^ί#¾化铵溶液, 返回 系统循环 ftffl; 分解过程中析出的 iil离心机分离制得含水量在 1-2%的硫;
(3)分离硫固体后的液体加热«至原溶液体积的 60%,再于 40Ό结晶,分离制得硫酸铵。
PCT/CN2013/001389 2012-11-16 2013-11-18 一种冶炼烟气中so2和重金属回收利用的方法 WO2014075390A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210461109.6 2012-11-16
CN201210461109.6A CN102949926B (zh) 2012-11-16 2012-11-16 一种冶炼烟气中so2和重金属回收利用的方法

Publications (1)

Publication Number Publication Date
WO2014075390A1 true WO2014075390A1 (zh) 2014-05-22

Family

ID=47759656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001389 WO2014075390A1 (zh) 2012-11-16 2013-11-18 一种冶炼烟气中so2和重金属回收利用的方法

Country Status (3)

Country Link
CN (1) CN102949926B (zh)
AU (1) AU2013257463B2 (zh)
WO (1) WO2014075390A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11286162B2 (en) * 2018-08-03 2022-03-29 Shandong University System and method for recovering sulfur in copper smelting process

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102949926B (zh) * 2012-11-16 2014-10-01 昆明理工大学 一种冶炼烟气中so2和重金属回收利用的方法
CN103432877B (zh) * 2013-09-06 2015-11-25 武汉国力通能源环保有限公司 超重力络合亚铁烟气湿法除尘脱硫脱硝脱汞脱砷一体化的方法
CN103768910B (zh) * 2014-01-16 2015-09-16 昆明理工大学 一种冶炼烟气中so2和重金属协同净化方法及装置
CN105214455B (zh) * 2015-09-17 2017-12-01 昆明理工大学 一种同时脱硝脱重金属的方法
CN106582247A (zh) * 2016-12-26 2017-04-26 合肥天翔环境工程有限公司 冶金烟气脱硫脱金属方法
CN107008126A (zh) * 2017-04-27 2017-08-04 昆明理工大学 一种同时脱除还原气氛烟气中硫化氢和重金属的方法
CN114653190A (zh) * 2022-04-07 2022-06-24 中山大学 一种烟气脱硫/脱硝/脱镉的膜生物反应器处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029739A (en) * 1975-01-06 1977-06-14 Fuji Kasui Engineering Co., Ltd. Process for removing nitrogen oxides from waste gas
JPS53110983A (en) * 1977-03-09 1978-09-28 Unitika Ltd Treating method for metals-containing exhaust gas
US20070154374A1 (en) * 2006-01-05 2007-07-05 Envirosolv Energy Llc Method for removing sulfur dioxide and other acid gases, mercury, and nitrogen oxides from a gas stream with the optional production of ammonia based fertilizers
CN101157003A (zh) * 2007-08-02 2008-04-09 武汉凯迪电力环保有限公司 联合脱硫脱汞的湿式氨法烟气净化工艺及其系统
CN101842147A (zh) * 2007-08-23 2010-09-22 卡尔斯鲁厄技术研究院 净化尾气的方法
CN102949926A (zh) * 2012-11-16 2013-03-06 昆明理工大学 一种冶炼烟气中so2和重金属回收利用的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1505169A (en) * 1974-11-02 1978-03-30 Fuji Kasui Eng Co Ltd Process for removing nitrogen oxides from waste gas
US4083944A (en) * 1976-12-17 1978-04-11 Arthur G. Mckee & Company Regenerative process for flue gas desulfurization
DE4123907A1 (de) * 1991-07-18 1993-01-21 Gea Wiegand Gmbh Verfahren zur abscheidung von quecksilber und/oder quecksilber enthaltenden verbindungen aus rauch
US6719828B1 (en) * 2001-04-30 2004-04-13 John S. Lovell High capacity regenerable sorbent for removal of mercury from flue gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4029739A (en) * 1975-01-06 1977-06-14 Fuji Kasui Engineering Co., Ltd. Process for removing nitrogen oxides from waste gas
JPS53110983A (en) * 1977-03-09 1978-09-28 Unitika Ltd Treating method for metals-containing exhaust gas
US20070154374A1 (en) * 2006-01-05 2007-07-05 Envirosolv Energy Llc Method for removing sulfur dioxide and other acid gases, mercury, and nitrogen oxides from a gas stream with the optional production of ammonia based fertilizers
CN101157003A (zh) * 2007-08-02 2008-04-09 武汉凯迪电力环保有限公司 联合脱硫脱汞的湿式氨法烟气净化工艺及其系统
CN101842147A (zh) * 2007-08-23 2010-09-22 卡尔斯鲁厄技术研究院 净化尾气的方法
CN102949926A (zh) * 2012-11-16 2013-03-06 昆明理工大学 一种冶炼烟气中so2和重金属回收利用的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11286162B2 (en) * 2018-08-03 2022-03-29 Shandong University System and method for recovering sulfur in copper smelting process

Also Published As

Publication number Publication date
CN102949926B (zh) 2014-10-01
CN102949926A (zh) 2013-03-06
AU2013257463B2 (en) 2015-09-10

Similar Documents

Publication Publication Date Title
WO2014075390A1 (zh) 一种冶炼烟气中so2和重金属回收利用的方法
TWI751430B (zh) 酸性氣處理
CN105540973B (zh) 高砷污酸废水净化及循环利用的方法
CN105600990B (zh) 一种利用焦炉煤气脱硫脱氰废液资源化回收硫磺、硫铵及催化剂的方法
CN110090548B (zh) 一种铜渣尾矿协同锌冶炼除尘灰湿法脱硫并回收硫酸锌的方法
CN102910590B (zh) 一种二氧化硫烟气净化催化回收硫的方法及催化剂的应用
CN103768910B (zh) 一种冶炼烟气中so2和重金属协同净化方法及装置
US4133650A (en) Removing sulfur dioxide from exhaust air
CN106669360B (zh) 一种烟气脱硫并生产硫酸的方法与装置
CN106669361A (zh) 一种烟气脱硫生产硫酸及硫酸提纯的方法与装置
CN106310943A (zh) 一种亚硫酸钠脱硫液再生及回收二氧化硫装置与应用
CA1193073A (en) Process for removal of sulfur oxides from hot gases
CN106582155B (zh) 炼锌尾气氨水协同脱除金属锌及重金属的资源化利用方法
CN111013363A (zh) 一种工业烟气钠法除尘脱硫零排放改造系统及方法
CN101979130A (zh) 资源化脱除工业气体中硫化氢的方法
CN112403186B (zh) 一种多污染物烟气协同治理及回收亚硫酸亚铁铵的方法
CN102658011A (zh) 一种低浓度so2烟气浓缩-转化回收处理方法
CN111729474A (zh) 利用有机酸镁溶液循环烟气脱硫及回收二氧化硫的方法
CN104740982A (zh) 一种用贫锰矿和菱锰矿对含硫烟气的处理方法及装置
CN205517223U (zh) 一种烟气脱硫零排放资源处理系统
CN110252090B (zh) 一种利用三乙醇胺提高亚硫酸钠脱硫工艺吸收容量和利用率的方法
CN211770757U (zh) 一种活性炭解吸用热风炉的尾气净化及余热利用装置
CN107970744A (zh) 硫酸铝/氧化锌组合脱硫同时回收二氧化硫及硫酸锌方法
CN214437776U (zh) 一种一体式节能环保型氨法脱硫结晶系统
CN211585994U (zh) 一种工业烟气钠法除尘脱硫零排放改造系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13854623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13854623

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 11281) EPC ( EPO FORM 1205A DATED 19-10-2015 )