WO2014057582A1 - Shaped oil-palm body, manufacturing method therefor, and laminated plywood - Google Patents
Shaped oil-palm body, manufacturing method therefor, and laminated plywood Download PDFInfo
- Publication number
- WO2014057582A1 WO2014057582A1 PCT/JP2012/076507 JP2012076507W WO2014057582A1 WO 2014057582 A1 WO2014057582 A1 WO 2014057582A1 JP 2012076507 W JP2012076507 W JP 2012076507W WO 2014057582 A1 WO2014057582 A1 WO 2014057582A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oil palm
- laminated
- compression
- materials
- palm material
- Prior art date
Links
- 235000001950 Elaeis guineensis Nutrition 0.000 title claims abstract description 1353
- 239000011120 plywood Substances 0.000 title claims abstract description 203
- 238000004519 manufacturing process Methods 0.000 title claims description 88
- 240000003133 Elaeis guineensis Species 0.000 title 1
- 239000000463 material Substances 0.000 claims abstract description 1115
- 238000007906 compression Methods 0.000 claims abstract description 288
- 230000006835 compression Effects 0.000 claims abstract description 245
- 239000000835 fiber Substances 0.000 claims abstract description 217
- 238000010438 heat treatment Methods 0.000 claims abstract description 194
- 239000000853 adhesive Substances 0.000 claims abstract description 130
- 230000001070 adhesive effect Effects 0.000 claims abstract description 124
- 238000001035 drying Methods 0.000 claims abstract description 112
- 241000512897 Elaeis Species 0.000 claims abstract 74
- 229920005989 resin Polymers 0.000 claims description 109
- 239000011347 resin Substances 0.000 claims description 109
- 235000000346 sugar Nutrition 0.000 claims description 82
- 238000010030 laminating Methods 0.000 claims description 70
- 241000218631 Coniferophyta Species 0.000 claims description 30
- 238000001816 cooling Methods 0.000 claims description 28
- 238000003475 lamination Methods 0.000 claims description 27
- 239000011122 softwood Substances 0.000 claims description 27
- 239000000126 substance Substances 0.000 claims description 19
- 244000097202 Rathbunia alamosensis Species 0.000 claims description 10
- 235000009776 Rathbunia alamosensis Nutrition 0.000 claims description 10
- 238000000748 compression moulding Methods 0.000 claims description 9
- 241000196324 Embryophyta Species 0.000 claims description 7
- 230000003100 immobilizing effect Effects 0.000 claims description 5
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 abstract description 129
- 208000008842 sick building syndrome Diseases 0.000 abstract description 39
- 238000005452 bending Methods 0.000 abstract description 11
- 231100000597 Sick building syndrome Toxicity 0.000 abstract 1
- 244000127993 Elaeis melanococca Species 0.000 description 1279
- 238000000034 method Methods 0.000 description 208
- 230000008569 process Effects 0.000 description 178
- 229910052751 metal Inorganic materials 0.000 description 128
- 239000002184 metal Substances 0.000 description 128
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 94
- 238000005304 joining Methods 0.000 description 78
- 238000000465 moulding Methods 0.000 description 66
- 241001133760 Acoelorraphe Species 0.000 description 60
- 239000002023 wood Substances 0.000 description 57
- 238000007596 consolidation process Methods 0.000 description 56
- 230000002792 vascular Effects 0.000 description 50
- 230000005484 gravity Effects 0.000 description 48
- 238000012545 processing Methods 0.000 description 48
- 229920005610 lignin Polymers 0.000 description 47
- 229920002488 Hemicellulose Polymers 0.000 description 37
- 238000003825 pressing Methods 0.000 description 36
- 238000005056 compaction Methods 0.000 description 34
- 229920002678 cellulose Polymers 0.000 description 32
- 239000001913 cellulose Substances 0.000 description 32
- 239000010410 layer Substances 0.000 description 28
- 230000007613 environmental effect Effects 0.000 description 26
- 230000008859 change Effects 0.000 description 25
- 238000005520 cutting process Methods 0.000 description 21
- 238000002474 experimental method Methods 0.000 description 21
- 210000004027 cell Anatomy 0.000 description 19
- 235000013399 edible fruits Nutrition 0.000 description 17
- 230000002093 peripheral effect Effects 0.000 description 17
- 239000003921 oil Substances 0.000 description 16
- 235000019198 oils Nutrition 0.000 description 16
- 150000008163 sugars Chemical class 0.000 description 16
- 238000007605 air drying Methods 0.000 description 14
- 230000008602 contraction Effects 0.000 description 14
- 239000004566 building material Substances 0.000 description 13
- 238000010521 absorption reaction Methods 0.000 description 12
- 230000001276 controlling effect Effects 0.000 description 12
- 230000006870 function Effects 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 238000011282 treatment Methods 0.000 description 12
- 230000009471 action Effects 0.000 description 10
- 238000003763 carbonization Methods 0.000 description 10
- 239000000498 cooling water Substances 0.000 description 10
- 238000005336 cracking Methods 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 9
- 239000011162 core material Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 230000000704 physical effect Effects 0.000 description 9
- 239000002699 waste material Substances 0.000 description 9
- 241000894006 Bacteria Species 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000001771 impaired effect Effects 0.000 description 8
- 235000019482 Palm oil Nutrition 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000002540 palm oil Substances 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 7
- 244000060011 Cocos nucifera Species 0.000 description 6
- 235000013162 Cocos nucifera Nutrition 0.000 description 6
- 235000011511 Diospyros Nutrition 0.000 description 6
- 244000236655 Diospyros kaki Species 0.000 description 6
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 6
- 239000000227 bioadhesive Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 150000001720 carbohydrates Chemical class 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000003925 fat Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 229930014626 natural product Natural products 0.000 description 6
- 235000015097 nutrients Nutrition 0.000 description 6
- 210000004738 parenchymal cell Anatomy 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 239000002344 surface layer Substances 0.000 description 6
- 229920003051 synthetic elastomer Polymers 0.000 description 6
- 229920003002 synthetic resin Polymers 0.000 description 6
- 239000000057 synthetic resin Substances 0.000 description 6
- 239000005061 synthetic rubber Substances 0.000 description 6
- 235000019197 fats Nutrition 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 230000008961 swelling Effects 0.000 description 5
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 4
- 235000017491 Bambusa tulda Nutrition 0.000 description 4
- 241000218645 Cedrus Species 0.000 description 4
- 244000082204 Phyllostachys viridis Species 0.000 description 4
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 4
- 239000011425 bamboo Substances 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 239000012466 permeate Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 235000013311 vegetables Nutrition 0.000 description 4
- 229930091371 Fructose Natural products 0.000 description 3
- 239000005715 Fructose Substances 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 241000446313 Lamella Species 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 235000013339 cereals Nutrition 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 239000003673 groundwater Substances 0.000 description 3
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 3
- 229960000367 inositol Drugs 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 3
- 235000015112 vegetable and seed oil Nutrition 0.000 description 3
- 239000008158 vegetable oil Substances 0.000 description 3
- 238000004078 waterproofing Methods 0.000 description 3
- 235000018060 Elaeis melanococca Nutrition 0.000 description 2
- 101000911772 Homo sapiens Hsc70-interacting protein Proteins 0.000 description 2
- 101001139126 Homo sapiens Krueppel-like factor 6 Proteins 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 244000088415 Raphanus sativus Species 0.000 description 2
- 235000006140 Raphanus sativus var sativus Nutrition 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003462 bioceramic Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 238000009408 flooring Methods 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000011497 hempcrete Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000002648 laminated material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000010815 organic waste Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 239000005871 repellent Substances 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 241000233788 Arecaceae Species 0.000 description 1
- 235000006549 Arenga pinnata Nutrition 0.000 description 1
- 244000208235 Borassus flabellifer Species 0.000 description 1
- 241000167854 Bourreria succulenta Species 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 240000002791 Brassica napus Species 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 101100002917 Caenorhabditis elegans ash-2 gene Proteins 0.000 description 1
- 235000014036 Castanea Nutrition 0.000 description 1
- 241001070941 Castanea Species 0.000 description 1
- 241000744472 Cinna Species 0.000 description 1
- 244000301850 Cupressus sempervirens Species 0.000 description 1
- 240000006055 Dacrydium cupressinum Species 0.000 description 1
- 235000018782 Dacrydium cupressinum Nutrition 0.000 description 1
- 241001608549 Elaeis oleifera Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 235000010469 Glycine max Nutrition 0.000 description 1
- 241000534018 Larix kaempferi Species 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 235000013697 Pinus resinosa Nutrition 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 241001148470 aerobic bacillus Species 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 235000019693 cherries Nutrition 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000011094 fiberboard Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000000077 insect repellent Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- -1 iron ion Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 235000013310 margarine Nutrition 0.000 description 1
- 239000003264 margarine Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27D—WORKING VENEER OR PLYWOOD
- B27D1/00—Joining wood veneer with any material; Forming articles thereby; Preparatory processing of surfaces to be joined, e.g. scoring
- B27D1/04—Joining wood veneer with any material; Forming articles thereby; Preparatory processing of surfaces to be joined, e.g. scoring to produce plywood or articles made therefrom; Plywood sheets
- B27D1/08—Manufacture of shaped articles; Presses specially designed therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B27—WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
- B27M—WORKING OF WOOD NOT PROVIDED FOR IN SUBCLASSES B27B - B27L; MANUFACTURE OF SPECIFIC WOODEN ARTICLES
- B27M1/00—Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching
- B27M1/02—Working of wood not provided for in subclasses B27B - B27L, e.g. by stretching by compressing
Definitions
- the present invention relates to a laminated plywood and an oil palm molded body using an adhesive or the like obtained from oil palm (oil palm), which is a kind of palm, and a method for producing the same.
- Oil formed by thinly peeling oil palm The present invention relates to a method for producing a laminated plywood using a palm material.
- This laminated plywood can be used for building floor materials and wall materials, building materials such as partition materials, furniture materials, ships including boats, other indoor and outdoor decks and playground equipment, exterior and interior of vehicle body bodies It is.
- it is related with the oil palm molded object which forms the laminated plywood with oil palm, and its manufacturing method.
- board is described as “thin timber thin and flat” or “thin metal or stone thin and flat” according to Kojien, but here, oil palm is made of wood. Although it does not have properties, it has properties close to bamboo, but in oil palm, “thinly flat” is called “thin plate”. Moreover, since there is no term which calls the material of an oil palm in detail, it shall treat like the wood.
- an oil palm tree consists of a single trunk and reaches a height of 10 to 20 m or more.
- the leaves are wing-shaped and about 3-5m long, about 30 young trees a year, and about 20 new trees grow over 10 years old.
- the flower is composed of 3 petals and 3 cocoons, each of which forms a small but dense group, and it takes about 6 months from fruiting until the fruit ripens.
- the fruit consists of fleshy flesh (medium pericarp) with a lot of oil and one seed that is also rich in oil, and the weight of the fruit is about 40-50 kg per bunch.
- palm oil a vegetable oil extracted from oil palm
- palm oil is more productive and cheaper than other vegetable oils such as soybeans and rapeseed. Therefore, it is used for foods such as margarine and oil for fried foods. It is also widely used in soaps and cosmetics.
- palm oil is also being exported to Japan from Southeast Asia such as Malaysia and Indonesia. Therefore, oil palm sometimes refers to the meaning of fats and oils that can be taken from the pulp and seeds and the trunk of the oil palm itself.
- oil palm is a collective term for plants classified into the genus Palmae, and is famous for two types: Elaeis guineensis, native to West Africa, and Elaeis oleifera, native to Latin America.
- oil palm oil palm (oil palm) which is a kind of palm used as a raw material for vegetable oils and fats, may be referred to as “oil palm”.
- oil palm can remove fats and oils from pulp and seeds, and the amount of fats and oils obtained per unit area outperforms other plants. Because agriculture is carried out, it may be becoming more prominent to call the oil and fat “oil palm”.
- it does not mean the oil palm of fats and oils that can be taken from the pulp and seeds, but the trunk of the oil palm itself or the whole plant is called oil palm.
- Patent applications dealing with this oil palm include those listed in Patent Document 1 (invention dealing with empty fruit bunch).
- Patent Document 1 the manufacturing method of the building material using oil palm is disclosed. Specifically, after the palm fiber is washed, it is dried so that the dry oil becomes 95%, and the dried palm fiber is blown and cut in units of 1 to 1.5 cm to produce a palm fiber chip.
- Pulverizing the dried palm fiber with a particle size of 200 mesh, pulverizing bamboo with a particle size of 200 mesh, the palm fiber chip, the palm fiber powder, the bamboo powder, and the bioceramic powder Are prepared in a ratio of 1: 1: 1: 1 to produce a main raw material, a step of extracting fly ash having a particle size of 200 mesh from coal carbide, a flame inhibitor and a heat resistant resin.
- a step of producing a binder by mixing and melting a flame retardant resin for curing at a ratio of 1: 1, 20-30% by weight of the produced binder, 50-60% by weight of the mixed main raw material, fly ash 2 Mixing a powder of ⁇ 25% by weight and kneading in a high liquid state, passing the kneading through a molding part that radiates a temperature of 150 to 200 ° C. and baking it first, and baking the molded product Rolling between a plurality of upper roller groups and lower roller groups that are arranged so that the distance between the upper roller group and the lower roller group gradually becomes narrower and gradually rolling to a smaller thickness; and A step of freezing at 0 to 4 ° C.
- palm fiber is not only harmless to the human body by using it as a main raw material, but palm fiber cut at 1 to 1.5 cm is used together with palm fiber powder. It becomes a solid building material by acting as a temporary bridge with other contents, and antibacterial and deodorizing functions can be realized by bamboo and bioceramics. Further, generation of far infrared rays and anions can be expected without generating mold. And nonflammable waste material can be recycled and manufacturing cost becomes cheap. Furthermore, since no toxic gas is generated from all the compositions, it is said to be highly safe as a building material.
- the plate-like body or molded body is made by attaching a resin having rubber-like elasticity to the oil palm fibers obtained by defibrating the empty fruit bunches of oil palm.
- the amount of cellulose and lignin contained in the fiber is relatively large, so that water resistance is excellent.
- the oil palm fiber has a high fiber strength, a large fiber diameter, and a long fiber length as compared with other palm fibers such as a coconut fiber, and therefore has excellent dimensional stability.
- the oil palm fiber has large irregularities on the surface and high bending strength, and the entanglement between the fibers is large, the dimensional stability is also enhanced by this. Therefore, this plate-shaped body or molded body is excellent in dimensional stability during water absorption and moisture absorption.
- the irregularities on the surface of the oil palm fiber are large, the resin exhibiting rubber-like elasticity penetrates into the voids on the surface of the oil palm fiber and solidifies or hardens, which acts like a nail or wedge, so-called anchor effect. Therefore, the oil palm fiber is strongly bonded to the resin having rubber-like elasticity. This is also considered to contribute to the improvement of dimensional stability at the time of water absorption and moisture absorption.
- the oil palm fiber is superior in elasticity recovery properties, for example, because the fiber has a large rigidity and strength, a large fiber diameter, and a long fiber length, compared to other palm fibers such as coconut fiber. Yes. Further, the oil palm fiber has high fiber bending strength and large entanglement between the fibers, so that the elastic recovery is improved. And the resin which shows rubber-like elasticity has high elastic recovery property. Therefore, a plate-like body or molded body in which oil palm fibers are connected by a resin exhibiting rubber-like elasticity exhibits excellent elastic recovery, good walking feeling and cushioning properties, and good sound insulation.
- this plate-like body or molded body uses oil palm fiber, less labor is required for defibration, etc., compared to other types of palm fiber, so that manufacturing costs and energy can be reduced, and the product is inexpensive.
- coconut fiber is immersed in water for a long period of time to soften the coconut shell, and then requires a great deal of energy for a long period of time to be mechanically fibrillated.
- oil palm defibrates empty fruit bunches that are originally in the form of fibers, so that there is no need for immersion in water, and very little energy is required for defibration.
- oil palm fibers have less dusting properties than coconut fibers, and the working environment can be prevented from deteriorating in handling.
- the palm plywood according to Patent Document 3 includes a plurality of veneers bonded with a resin adhesive, and at least one of the plurality of veneers is a palm veneer, and a palm veneer.
- a resin adhesive is made to permeate palm fibers exposed on the surface.
- the palm plywood of patent document 3 uses all the single veneers as palm veneers, uses only palm veneers that can be manufactured from palm trunks of inexpensive waste materials, and bonds them together with a resin adhesive. Also good.
- the resin adhesive permeated into the palm fiber at this time is the same type as the resin adhesive that bonds a plurality of single plates. Since the resin adhesive is the same system, the plywood can be manufactured at low cost.
- the term “same system” includes the same resin adhesive and a composition whose composition (for example, composition ratio) is changed.
- This plywood manufacturing method includes a step of bonding a plurality of veneers with an adhesive, a step of polishing a surface of the plurality of veneers that allows the adhesive to penetrate into exposed fibers, and a polished surface. Applying adhesive to infiltrate the adhesive into the fiber and drying the adhesive, which makes it possible to use a relatively good quality wood veneer as a face and back without using it Plywood can be manufactured at cost.
- a plywood, a palm plywood, and a plywood manufacturing method that can be manufactured at a low cost without using a single veneer of a tree having relatively good quality as a face and a back are disclosed. Yes.
- Patent Document 1 and Patent Document 2 both use oil palm fibers obtained by defibrating empty fruit bunches of oil palm fruits, and do not directly use oil palm trunks. Absent. However, the trunk of oil palm is 20 m or more in mature wood, and its use is desired because it has a volume ratio of 90 to 95% of the whole. Especially in Southeast Asia such as Malaysia, oil palm is cultivated for the production of palm oil, but the empty fruit bunch after palm oil collection contains a lot of fiber etc. Is used in various applications such as fiber boards. However, palm trunks that are harvested every year are not used effectively and are currently being disposed of.
- Patent Document 3 discloses a process in which at least one outermost single plate is bonded to a palm single plate with a plurality of resin adhesives, and the surface of the palm single plate is a resin adhesive on the exposed palm fibers.
- a method for manufacturing a plywood comprising: a step of polishing a surface that impregnates a surface; a step of applying a resin adhesive to the polished surface to infiltrate the resin adhesive into palm fibers; and a step of drying the resin adhesive. ing.
- lauan plywood called veneer wood
- Chinese plywood with cinna wood finished on the surface of the lauan plywood conifer plywood made of pine, cedar, etc.
- Lauan plywood has been used for a long time, but formaldehyde-based adhesives are used for the bonding, and the vaporized component is a cause of sick house syndrome that adversely affects the human body. Therefore, not only the shortage of raw materials, but also the formaldehyde adhesive is disliked.
- China plywood because it uses Lauan plywood.
- softwood plywood has a problem in that a large number of cracks are formed in the thin plate, and the use of an adhesive must be increased.
- the present invention has been made to solve such a problem, the laminated plywood itself can be molded into a desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed.
- the first object is to provide an oil palm molded body using components inherently possessed and a method for producing the oil palm molded body.
- it increases the mechanical strength of the laminated plywood itself, suppresses the use of formaldehyde-based adhesives that cause sick house syndrome, and uses the components that oil palm itself originally has, making it inexpensive. Is the second issue.
- An oil palm molded body according to the invention of claim 1 is obtained by drying, laminating and heating an oil palm material made of a thin plate of a predetermined length, and parallel to the surface of the laminated oil palm material. Compressed by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material, while maintaining the compression, cooling to lower the temperature, and fixing
- the laminated oil palm materials are overlapped with their fiber directions crossed to prevent the plurality of oil palm materials from being bent in a direction perpendicular to the surface. Is.
- the fiber directions of the laminated oil palm materials are crossed and overlapped, the plurality of oil palm materials can be prevented from being bent in a direction perpendicular to the surface, and the laminated The oil palm material can be prevented from bending.
- the mechanical strength of the oil palm molding can be determined by the shape of the surface to be compressed or the compression depth, and a desired oil palm molding can be obtained.
- the trunk of oil palm its varieties and production areas are not particularly limited. Usually, the trunk of which fruit productivity has dropped, the trunk of more than 20 years, replanting cultivation or planned cultivation Therefore, a trunk that is scheduled to be discarded is used, but a trunk that is young may be used.
- the drying method of the thin plate obtained as the oil palm material is not particularly limited, and may be naturally dried or artificially dried, but artificial drying is more expensive. is there.
- wood such as Lauan, which is generally used for building materials, forms a secondary xylem composed of cell (dead cell) tissue in which the movement of water and nutrients has stopped
- oil palm The trunk of this is composed only of primary tissues of vascular bundles and parenchymal cells, and most of the cells centering on parenchymal cells are living cells in which water and nutrients are actively transferred, so the water content is extremely high.
- the oil palm trunk is rich in saccharides (eg, fructose, glucose, fructooligosaccharides, inositol, etc.).
- Consolidation refers to compressing a base material such as the oil palm base material by applying a predetermined compressive force under a predetermined temperature condition, and lowering the temperature to a predetermined temperature after a predetermined time has elapsed. This is a process of compressing the base material at a predetermined compression rate by immobilization.
- the oil palm material has a thickness before the consolidation process in the range of 3 to 35 mm, and the thickness after the consolidation process is in the range of 1 to 12 mm.
- laminating a plurality of sheets in the direction perpendicular to the fiber (vascular bundle) direction of the oil palm material means that layers are laminated in a direction perpendicular to the fiber length direction, that is, a surface other than the end face and the end face of the tree.
- the fiber directions may be the same and may be laminated, the fiber directions may be perpendicular to each other, and the number of the fibers may be an odd number or an even number. Further, the number of stacked layers may be two or more.
- heating and compressing the entire thickness of the dried oil palm material by applying an external force in a direction perpendicular to the fiber direction in the heated state means compressing in the loading direction of the oil palm material and at least the end face This means that the area corresponding to is reduced, that is, the so-called compression direction is specified and consolidation processing is performed.
- This consolidation process can be formed by, for example, setting the moisture content of the oil palm material to be substantially uniform, heating and compressing under a predetermined condition, and fixing, and this is a predetermined condition at this time.
- the temperature, pressure, time, compression speed, and the like are determined in advance by experiments or the like using the target compression ratio and the like as parameters.
- the said oil palm material is joined by the said compaction process, and the whole air-dry specific gravity is 0.8 or more by the result obtained by experiment of inventors, etc., by a compaction process, without using an adhesive agent.
- the air-drying specific gravity of the whole laminated wood in a state where the thin plates laminated on each other are joined to each other is 0.8 or more.
- the air-dry specific gravity is the specific gravity when the wood is dried in the air, and is usually expressed by the specific gravity when the moisture content is 15%, and water having the same volume as the weight when the wood is dried. It is the value which compared the weight of. The larger the value, the heavier, the smaller the lighter.
- the air-drying specific gravity of the entire compacted by compaction processing is 0.8 or more, as a result of repeated experiments by the inventors, the oil palm material is highly compressed and the air-drying specific gravity is 0.8 or more As a result, the properties of the oil palm are changed and the hardness is remarkably increased, and the physical stability is increased with less variation in physical properties and characteristic values such as strength / hardness and dimensional change rate. It was set based on knowledge. In other words, it is a characteristic area where the strength and hardness are increased by compression and the variation in physical properties is reduced, indicating that it is a characteristic of compacted wood. In which the air-drying specific gravity does not exceed 0.8 is not included. More preferably, when the air-dry specific gravity is 0.9 or more, the hardness is remarkably increased, and the physical stability is further increased due to less variation in physical properties and characteristic values such as hardness and dimensional change rate. become.
- the air-drying specific gravity is ultimately set in consideration of cost, required strength and hardness, etc., but if the compression ratio is too high to increase the air-drying specific gravity, the wood is composed. Since the fiber to be broken is broken and a commercial property is lost, the value of the air-dry specific gravity measured immediately before the crack is generated by high compression becomes the maximum value. That is, the upper limit of the air-dry specific gravity in the present invention is the compression limit of the compacting process, and the maximum value is a finite value.
- the numerical value of the air-dry specific gravity is not required to be strict, but is approximate. Naturally, it is an approximate value including an error by measurement or the like, and does not deny an error of several percent.
- the oil palm molded body according to the invention of claim 2 is obtained by drying, laminating and heating a predetermined length of oil palm material, and extending in a parallel direction along the surface of the laminated oil palm material.
- the oil palm is formed by compressing by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material while regulating the temperature, and then maintaining the compression, cooling it at a reduced temperature, and fixing it.
- a plurality of the laminated oil palm materials are overlapped so that the plurality of oil palm materials can be bent only in a direction perpendicular to a specific direction with respect to the surface.
- a plurality of the laminated oil palm materials are overlapped, and the plurality of oil palm materials can be curved only in a direction perpendicular to a specific direction with respect to the surface,
- Some of the oil palm materials may be ones in which the lengths of the fibers intersect, and as long as a desired curve can be obtained as a result.
- the mechanical strength of the oil palm molding can be determined by the shape of the surface to be compressed or the compression depth, even if the oil palm molding has a structure that is curved only in a direction perpendicular to a specific direction with respect to the surface. A desired oil palm molding is obtained.
- the oil palm material obtained by laminating a plurality of oil palm molded bodies according to the invention of claim 3 is formed by forming one or more of a plane portion, a concave portion, and a convex portion by a mold.
- the formation of one or more of the flat portion, the concave portion, and the convex portion by the mold refers to the presence or absence of molding, and may be any as long as it is molded.
- a method for producing an oil palm molded body wherein a predetermined length of an oil palm trunk is rotated in the circumferential direction thereof and peeled to a predetermined thickness by a rotary race to form a plurality of oil palm materials,
- the formed oil palm material is dried, a plurality of the dried oil palm materials are laminated in a predetermined state, heated to increase the temperature of the laminated oil palm materials, and the heated the laminated While restricting the oil palm material to extend in a direction parallel to the surface of the oil palm material, a compressive force in a direction perpendicular to the surface of the oil palm material is applied between the upper mold and the lower mold of the mold.
- the laminated oil palm material compressed and molded for a predetermined time is cooled and fixed by lowering the temperature supplied in the heating step.
- the thin plate process is a process of forming a plurality of oil palm members by peeling a predetermined length of oil palm trunk to a predetermined thickness with a rotary race while rotating in the circumferential direction.
- the said drying process is a process of drying an oil palm material.
- the said lamination process is a process of laminating
- the said heating process is a process heated so that the temperature of the oil palm material laminated
- the compression step refers to the upper mold of the mold while restricting the laminated oil palm material heated by the heating step from extending in a direction parallel to the surface of the oil palm material. It is a step of compressing and forming for a predetermined time by applying a compression force in a direction perpendicular to the surface of the oil palm material with the lower mold.
- the immobilization step is a step of cooling and fixing the laminated oil palm material compressed in the compression step for a predetermined time by lowering the temperature supplied in the heating step.
- the fibers interact with each other to prevent warping deformation in a specific direction.
- a good balance state is obtained, the dimensional shape stability is improved, a tough laminated laminated plywood is obtained, and an oil palm molded body is obtained.
- the moisture content of the oil palm material is dried within the range of 5 to 30%, so that cracks, deformation, swelling, rupture and the like are prevented. Therefore, more stable dimensional shape is ensured and the yield is high.
- the moisture content is in a dry state within the range of 5% to 30%, it is also suitable for joining with Lauan thin plate, China thin plate, conifer thin plate and the like.
- the heating temperature in the heating step is in the range of 110 to 170 ° C.
- material deterioration such as immobilization failure in the consolidation process, poor joining between woods, surface carbonization, and low material strength. Can be prevented.
- the heating temperature is in the range of 110 ° C. to 170 ° C.
- it is suitable not only for joining with the oil palm material W but also for bonding with Lauan thin plate, China thin plate, conifer thin plate and the like.
- the predetermined compression pressure in the compression step is within the range of 1 to 100 kg / cm 2 , it is possible to prevent immobilization defects, poor bonding between woods, and occurrence of surface cracks in consolidation. .
- the time required for the heating step and the compression step is within a range of 10 to 120 minutes, it is possible to prevent immobilization failure, poor joining between woods, and surface carbonization in the compacting process.
- the shape or compression depth of the surface to be compressed can be determined, and a desired oil palm molded body can be obtained.
- the method for producing an oil palm molded body according to the invention of claim 5 is to form a plurality of oil palm materials by peeling the oil palm trunk of a predetermined length to a predetermined thickness with a rotary race while rotating the oil palm trunk in the circumferential direction,
- the formed oil palm material is dried, a plurality of the dried oil palm materials are laminated in a predetermined state, heated to increase the temperature of the laminated oil palm materials, and the heated the laminated Applying a compressive force in a direction perpendicular to the surface of the oil palm material between the upper mold and the lower mold of the mold while restricting the oil palm material to extend in the parallel direction along the surface of the oil palm material.
- the laminated oil palm material compressed and molded for a predetermined time is fixed by lowering the temperature supplied in the preliminary heating step and fixed.
- the surface of the laminated oil palm material in the upper mold and the lower mold while restricting the il palm material to extend in a parallel direction along the surface of the laminated oil palm material under predetermined humidity and temperature conditions And compressing and molding for a predetermined time by applying a compressive force in a direction perpendicular to the temperature, the temperature of the laminated oil palm material compression-molded for the predetermined time is lowered and fixed.
- the preliminary heating process, the preliminary compression process, and the preliminary fixing process are not different in basic operation from the heating process, the compression process, and the fixing process of claim 5.
- the processing temperature and / or compression force is different, or the oil palm molding processing content is different.
- this fixing process consists of the heating process, compression process, and fixing process of the said Claim 5.
- the thin plate step is a step of forming a plurality of oil palm materials by peeling a predetermined length of oil palm trunk to a predetermined thickness with a rotary race while rotating in the circumferential direction.
- the said drying process is a process of drying the oil palm material formed at the said thin-plate process.
- stacking process is a process of laminating
- the said preheating process is a process heated so that the temperature of the oil palm material laminated
- the pre-compression process may be performed by restricting the laminated oil palm material heated by the pre-heating process from extending in a parallel direction along the surface of the oil palm material, It is a step of compressing and molding for a predetermined time by applying a compressive force in a direction perpendicular to the surface of the oil palm material with the lower mold.
- the preliminary fixing step is a step of fixing the laminated oil palm material compression-molded for a predetermined time in the compression step by lowering the temperature supplied in the preliminary heating step.
- the preliminary oil palm molded body fixed in the preliminary fixing step extends in a parallel direction along a surface of the laminated oil palm material under a predetermined humidity and temperature condition.
- the laminated oil palm is subjected to compression molding for a predetermined time by applying a compression force in a direction perpendicular to the surface of the laminated oil palm material between the upper mold and the lower mold, and the compression molding for the predetermined time. This is a step of lowering the temperature of the material and fixing it.
- the water content of the oil palm material obtained by the drying step is dried within a range of 5 to 30%.
- the water content is less than 5%, sufficient chemical change cannot be caused by compaction processing, and the surface is too dry.
- the moisture content of the oil palm material, lauan thin plate, china thin plate, and softwood thin plate is in the range of 10 to 20%.
- the heating temperature in the preheating step is set within a range of 110 to 170 ° C.
- the inventors of the present invention have found that if the heating temperature is too low, sufficient compacting cannot be performed, resulting in immobilization failure or poor bonding between layers, while on the other hand, if the heating temperature is too high. Since the surface is carbonized and changes to black, the color tone and the inherent fragrance inherent to the plant may be impaired, or the material may deteriorate, resulting in a decrease in strength and embrittlement. Therefore, the heating temperature is preferably 110 to 170. It is necessary to perform consolidation within the range of ° C.
- the predetermined compression pressure in the preliminary compression step is set in the range of 1 to 100 kg / cm 2 .
- the inventors have found that if the applied pressure is too low, sufficient compacting is not performed, and immobilization failure or poor connection between woods occurs. On the other hand, if the pressure is too high, the surface may crack. Therefore, the present inventors have found that a pressurizing condition in the range of 1 to 100 kg / cm 2 is appropriate and completed the present invention based on this finding. More preferably, it is within the range of 10 to 50 kg / cm 2 .
- the time required for the preliminary heating step and the preliminary compression step is in the range of 10 to 120 minutes.
- the present inventors are able to prevent immobilization and poor bonding between woods by being sufficiently heat-compressed, and on the processing time of heat-compression that can prevent carbonization of the surface due to the treatment time being too long.
- the predetermined time is preferably in the range of 20 to 30 minutes.
- the preheating step, the precompression step, the prefixing step, or the main fixing step may include the preheating step, the precompression step, and the prefixing step.
- the preliminary process can be repeated one or more times, or the main immobilization process can be repeated one or more times as the main process.
- the laminated plywood according to the invention of claim 6 comprises an oil palm material made of one or more pieces formed by peeling a predetermined length of an oil palm trunk from the outer periphery to a predetermined thickness with a rotary race while rotating the oil palm trunk in the circumferential direction, and a predetermined length.
- One or more of lauan thin plate, Chinese thin plate, coniferous thin plate formed by peeling off the lauan or sina or coniferous trunk from the outer periphery with a rotary race while rotating in the circumferential direction is used as the oil palm material. They are placed facing each other and joined together. Further, a net is provided between the oil palm materials, and the net is joined between the oil palm materials.
- the one or more oil palm materials are thin plates formed by peeling a predetermined length of an oil palm trunk to a predetermined thickness with a rotary race while rotating in the circumferential direction. Moreover, since the quantity of the resin component and sugar component which the oil palm in the case of joining is ensured even if it does not use another adhesive agent, it is specified. Of course, since the oil palm material has the ability to be molded into a concave and convex surface opposite to the concave and convex surface generated during the formation, mechanical joining using the molding capability is also included.
- the compaction processing compresses the base material such as the oil palm material by applying a predetermined compressive force under a predetermined temperature condition, and maintaining the compressed compressibility after a predetermined time, This is a process of consolidating the base material to a predetermined compression rate by fixing the pressure by lowering the temperature to a predetermined temperature.
- the oil palm material has a thickness before the consolidation process in the range of 3 to 35 mm, and the thickness after the consolidation process is in the range of 1 to 12 mm.
- the trunk of the oil palm its varieties, production areas, etc. are not particularly limited. Usually, the trunk of which fruit productivity has dropped, the trunk of more than 20 years, replanting cultivation or planned cultivation Therefore, a trunk that is scheduled to be discarded is used, but a trunk that is young may be used.
- the drying method of the thin plate obtained as the oil palm material is not particularly limited, and may be naturally dried or artificially dried, but artificial drying is more expensive. is there.
- wood such as Lauan, which is generally used for building materials, forms a secondary xylem composed of cell (dead cell) tissue in which the movement of water and nutrients has stopped
- oil palm The trunk of this is composed only of primary tissues of vascular bundles and parenchymal cells, and most of the cells centering on parenchymal cells are living cells in which water and nutrients are actively transferred, so the water content is extremely high.
- the oil palm trunk is rich in saccharides (eg, fructose, glucose, fructooligosaccharides, inositol, etc.).
- the thickness of the oil palm material from the oil palm trunk is thick, bacteria such as mold are proliferated and corroded easily by natural drying, and productivity and commercial value are impaired.
- the cost becomes high. Therefore, according to the experimental study by the present inventors, by reducing the thickness of the oil palm material obtained from the oil palm trunk within the range of 15 mm to 35 mm, the product value and productivity are reduced by bacteria such as mold even in natural drying. It has been confirmed that the cost can be reduced without incurring cost.
- laminating a plurality of sheets in a direction perpendicular to the fiber direction of the oil palm material means that the layers are laminated in a direction perpendicular to the fiber length direction, that is, a surface other than the end face and the end face of the fiber.
- the layers may be laminated with the same direction, the fiber directions may be perpendicular to each other, and the number of the sheets may be an odd number or an even number. Further, the number of stacked layers may be two or more.
- heating and compressing the entire thickness of the dried oil palm material by applying an external force in a direction perpendicular to the fiber direction in the heated state means compressing in the loading direction of the oil palm material and at least the end face This means that the area corresponding to is reduced, that is, the so-called compression direction is specified and compacted.
- This consolidation process can be formed by, for example, setting the moisture content of the oil palm material to be substantially uniform, heating and compressing under a predetermined condition, and fixing, and this is a predetermined condition at this time.
- the temperature, pressure, time, compression speed, and the like are determined in advance by experiments or the like using the target compression ratio and the like as parameters.
- the said oil palm material is joined by the said compaction process, and the whole air-dry specific gravity is 0.8 or more, and the thin board laminated
- the air-drying specific gravity of the whole laminated wood in the state is 0.8 or more.
- the air-dry specific gravity is the specific gravity when the wood is dried in the air, and is usually expressed by the specific gravity when the moisture content is 15%, and water having the same volume as the weight when the wood is dried. It is the value which compared the weight of. The larger the value, the heavier, the smaller the lighter.
- the air-drying specific gravity of the entire compacted by compaction processing is 0.8 or more, as a result of repeated experiments by the inventors, the oil palm material is highly compressed and the air-drying specific gravity is 0.8 or more As a result, the properties of oil palm are changed and the hardness is remarkably increased. It was set based on knowledge. In other words, it is a characteristic area where the strength and hardness are increased by compression and the variation in physical properties is reduced, indicating that it is a characteristic of compacted wood. In which the air-drying specific gravity does not exceed 0.8 is not included.
- the air-dry specific gravity when the air-dry specific gravity is 0.9 or more, the hardness is remarkably increased, and the physical stability is further increased due to less variation in physical properties and characteristic values such as hardness and dimensional change rate. become.
- the air-drying specific gravity is ultimately set in consideration of cost, required strength and hardness, etc., but if the compression ratio is too high to increase the air-drying specific gravity, the wood is composed. Since the fiber to be broken is broken and a commercial property is lost, the value of the air-dry specific gravity measured immediately before the crack is generated by high compression becomes the maximum value. That is, the upper limit of the air-dry specific gravity in the present invention is the compression limit of the compacting process, and the maximum value is a finite value.
- the numerical value of the air-dry specific gravity is not required to be strict, but is approximate. Naturally, it is an approximate value including an error by measurement or the like, and does not deny an error of several percent.
- a net is disposed between the oil palm materials and the net is joined between the oil palm materials.
- the nets are joined and integrated between the oil palm materials, and the amount of the resin component and sugar component contained in the oil palm materials at the time of joining from the oil palm materials is different from that of the other. It is ensured without using any agent.
- the laminated plywood according to the invention of claim 7 is made of an oil palm material formed by rotating an oil palm trunk of a predetermined length in the circumferential direction and peeling it to a predetermined thickness with a rotary race, and a lauan, a china or a conifer of a predetermined length.
- a lauan thin plate, China thin plate, coniferous thin plate formed by peeling the trunk from the outer periphery to a predetermined thickness while rotating the trunk in the circumferential direction, facing the oil palm material Are integrally joined. Also in this case, a net is provided between the oil palm materials, and the net is joined between the oil palm materials.
- any one of Lauan thin plate, China thin plate, softwood thin plate formed by peeling to a predetermined thickness facing the oil palm material is a predetermined temperature condition using a resin component and a sugar component contained in the oil palm material below, it may be compressed and fixed and joined together, or it is pasted using any one of Lauan thin plate, China thin plate, conifer thin plate formed by peeling to a predetermined thickness facing the oil palm material and other adhesive They may be combined.
- a net is disposed between the oil palm materials and the net is joined between the oil palm materials.
- the nets are joined and integrated between the oil palm materials, and the amount of the resin component and sugar component contained in the oil palm itself at the time of joining from the oil palm materials is different from that of the other It is ensured without using any agent.
- the one or more oil palm materials are thin plates formed by peeling a predetermined length of an oil palm trunk to a predetermined thickness with a rotary race while rotating in the circumferential direction. Moreover, since the quantity of the resin component and sugar component which the oil palm material in the case of joining is ensured even if it does not use another adhesive agent, it is specified. Of course, since the oil palm material has the ability to be molded into a concave and convex surface opposite to the concave and convex surface generated during the formation, mechanical joining using the molding capability is also included.
- one or more of Lauan, China, or conifers having a predetermined length of Lauan or Sina or coniferous trunk formed in a plate shape in the length direction of the trunk are arranged facing the oil palm material, and
- integralally joining refers to joining any one of Lauan, China, and coniferous plates regardless of compression or compression. What is necessary is just to arrange
- the nets are joined and integrated between the oil palm materials, and the amount of the resin component and sugar component contained in the oil palm materials at the time of joining from the oil palm materials is different from that of the other. It is ensured without using any agent.
- a resin component and a sugar component contained in the oil palm material are bonded to one or more oil palm materials which are arranged facing the oil palm material and integrally bonded.
- other adhesives were used for the joint surface to be integrally joined with one or more of the Lauan thin plate, the Chinese thin plate or the softwood thin plate. Is.
- at least one of the lauan thin plate, the china thin plate, and the softwood thin plate to be joined to the one or more oil palm materials is contained in at least the joining surface of the oil palm material.
- a resin component and a sugar component are used.
- the number of the oil palm members of the laminated plywood according to the invention of claim 10 is larger than the number of thin plates other than the oil palm.
- the number of the oil palm material is larger than the number of the thin plates other than the oil palm means that the amount of the resin component and the sugar component contained in the oil palm material is 1/2 or less than the conventional amount. It is what.
- positioned between the said oil palm materials of the laminated plywood concerning invention of Claim 11, and joining between the said oil palm materials is made into the metal-mesh.
- the metal mesh can be any metal that can form a mesh made of stainless steel, brass, iron, or the like.
- positioned between the said oil palm materials of the laminated plywood concerning invention of Claim 12, and joined between the said oil palm materials is made into the net
- the chemical fiber or vegetable fiber net may be any net that can be integrated in a state where the net is not clearly defined. In the case of chemical fiber, it is necessary to use one having a melting temperature higher than the joining temperature between the oil palm materials.
- the oil palm molded body according to claim 1 dries a predetermined length of oil palm material, stacks a plurality of the oil palm materials, and regulates heating and extending in a parallel direction along the surface of the laminated oil palm material.
- the laminated The oil palm materials are stacked with their fiber directions crossing each other to prevent the plurality of oil palm materials from being bent in a direction perpendicular to the surface.
- the oil palm material is laminated with the fiber directions intersecting each other, the oil palm material is compressed by applying a compression force in a direction perpendicular to the surface of the laminated oil palm material. It can be molded according to the shape of the mold to be compressed. In particular, the mechanical strength can be determined by the shape or compression depth of the compressed surface of the oil palm molded body, and a desired oil palm molded body can be obtained. Therefore, the laminated plywood itself made of oil palm material can be molded into the desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and components inherent to oil palm are used. An oil palm molding that is environmentally friendly can be obtained.
- the oil palm molded body according to claim 2 is obtained by drying a predetermined length of oil palm material, laminating a plurality of sheets, and controlling heating and extending in a parallel direction along the surface of the laminated oil palm material, In the oil palm molded body formed by compressing by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material, and then maintaining the compression and lowering the temperature and fixing, A plurality of the laminated oil palm materials are overlapped so that the plurality of oil palm materials are curved only in a specific perpendicular direction to the surface.
- oil palm materials are laminated with each other in consideration of the fiber direction, and compressed by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm materials. It can be molded according to the shape of the mold. Further, when a plurality of the oil palm materials are overlapped, the plurality of oil palm materials are crossed so that only one or two of the fiber directions intersect, or the total number of the fiber palm materials are stacked so that the fiber directions are parallel, Since the surface is curved only in a specific perpendicular direction, it can be formed into a desired curved shape. In particular, the mechanical strength can be determined by the shape or compression depth of the compressed surface of the oil palm molded body, and a desired oil palm molded body can be obtained.
- the laminated plywood itself made of oil palm material can be molded into the desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and components inherent to oil palm are used.
- An oil palm molding that is environmentally friendly can be obtained.
- the oil palm molded body according to claim 3 is obtained by forming one or more of a plane portion, a concave portion, and a convex portion with a mold on the oil palm material of the predetermined length, and therefore the effect according to claim 1 or claim 2.
- an oil palm molding can be easily obtained.
- a method for producing an oil palm molded body in which a predetermined length of an oil palm trunk is stripped to a predetermined thickness with a rotary race in a circumferential direction in a thin plate process to form a plurality of oil palm materials.
- the oil palm material formed in the thin plate process is dried, and a plurality of oil palm materials dried in the drying process are laminated in a predetermined state in the lamination process.
- the plurality of oil palm materials formed by peeling to a predetermined thickness can be formed to a necessary thickness in the laminating step, and therefore the thickness can be determined according to the intended use.
- the heating step of heating to raise the temperature of the oil palm material laminated in the laminating step in particular, when a plurality of oil palm materials are heated with water vapor, resin components such as lignin and sugars such as cellulose and hemicellulose are produced. Since it is softened and bonded, a solid oil palm molded body can be obtained by the fixing process.
- the laminated oil palm material is perpendicular to the surface of the oil palm material between the upper mold and the lower mold of the mold while restricting the oil palm material from extending in a direction parallel to the surface of the oil palm material. Since the compression of the direction is applied and compression molding is performed for a predetermined time, it can be compression molded without increasing the area of the laminated oil palm material, so that it has a desired three-dimensional shape and a desired outer shape. An oil palm molded body having a diameter is obtained. In particular, from the mold, the temperature supplied in the heating step is lowered to cool and fix, so that the oil palm molded body can be easily taken out.
- an oil palm molded body made of laminated oil palm materials can be molded into a desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and oil palm inherently has components An oil palm molded body that is environmentally friendly is obtained.
- the temperature of the oil palm material laminated after the laminating step is heated to increase in the heating step, and the oil palm material heated in the compression step is restricted from extending in a direction parallel to the surface.
- the compression force applied in the compression process escapes in the direction parallel to the surface of the oil palm material because the compression force in the direction perpendicular to the surface of the oil palm material is applied and compressed for a predetermined time.
- the stretch of the oil palm material is effectively used, the outer dimensions of the oil palm material can be made uniform, and the compression rate of the whole oil palm material can be reduced. It can be set to a value according to the tree species, and waste is not produced from a plurality of oil palm materials during production.
- the use ratio of the resin component and sugar component contained in the oil palm material is increased, and a multilayer plywood bonded with a natural product can be obtained, the loss of the material used is reduced, the cost is reduced, and sick house syndrome is caused.
- a laminated plywood utilizing the components inherently possessed by oil palm can be obtained by suppressing the amount of formaldehyde-based adhesive used.
- the palm of the oil palm has no nodes or annual rings, when a thin plate is produced by peeling it off from the outer periphery with a rotary race, a uniform thin plate is obtained. As a result, the laminated plywood made of the thin plate is homogeneous. It will be something.
- the joining force is changed by the resin component and sugar component contained in the trunk of the oil palm itself depending on the applied temperature and compressive force, an arbitrary adhesive force can be obtained by controlling the applied temperature and compressive force.
- the temperature of the oil palm material laminated after the laminating step is heated to increase in the heating step, and the laminated oil palm material heated in the compression step is parallel to the surface of the oil palm material.
- the compression Since the compression is performed for a predetermined time by applying a compression force in a direction perpendicular to the surface of the oil palm material while restricting the extension, the compression force applied in the compression process is applied to the surface of the oil palm material. Elongation to escape in parallel direction is limited, the compressive force of all laminated oil palm materials can be used effectively, and the outer dimensions of oil palm materials can be made uniform, and all oil palm materials The compression ratio of the oil palm can be made uniform, and no waste is produced from the plurality of oil palm materials during the production.
- the plurality of thin plates are joined by a resin component and a sugar component contained in the trunk of the oil palm itself to form the laminated plywood, and other synthetic resins and synthetic rubbers are used as adhesives. Because it is not, it can be returned to nature and will not cause pollution problems. Furthermore, the compression force when joined by the resin component and sugar component contained in the oil palm itself eliminates the gaps in the thin plate, resulting in a dense structure, so that it has water resistance and is waterproof and insect-proof. It has a long service life even when used as a building material. In addition, since the oil palm material has the ability to be molded into a concave and convex surface opposite to the concave and convex surface generated during the formation, the mechanical joining using the molding capability is also included in the joining here. Yes.
- a plurality of oils each having a thickness of 1 mm or more when the oil palm trunk having a predetermined length is formed by peeling it to a predetermined thickness with a rotary race while rotating it in the circumferential direction and then compacting it.
- Palm material can be compressed and fixed at the same time and joined together.
- the temperature of the oil palm material laminated after the laminating step is heated to increase in the heating step, and the laminated oil palm material heated in the compression step is parallel to the surface of the oil palm material. Since the compression is applied for a predetermined time by applying a compression force in a direction perpendicular to the surface of the oil palm material while restricting the extension, the compression force applied in the compression process is applied to the surface of the oil palm material.
- the method for producing an oil palm molded body according to claim 5 is to form a plurality of oil palm materials by stripping a predetermined length of an oil palm trunk to a predetermined thickness with a rotary race in the circumferential direction in a thin plate process, and in the drying process, The oil palm material formed in the thin plate process is dried, and a plurality of oil palm materials dried in the drying process are laminated in a predetermined state in the lamination process. And it heats so that the temperature of the oil palm material laminated
- the upper mold and the lower mold of the mold are subjected to a compression force in a direction perpendicular to the surface of the oil palm material for compression for a predetermined time, and are subjected to a predetermined time in the compression process by a preliminary fixing process.
- the laminated oil palm material that has been compression-molded is cooled and fixed by lowering the temperature supplied in the preliminary heating step in the preliminary fixing step, and the laminated oil palm material is fixed in the final fixing step. While the palm material is controlled to extend in a parallel direction along the surface of the laminated oil palm material under predetermined humidity and temperature conditions, the lamination is performed between the upper mold and the lower mold of the mold.
- the preheating step, the precompression step, the prefixing step, or the main fixing step may include the preheating step, the precompression step, and the prefixing step.
- the preliminary process can be repeated one or more times, or the main immobilization process can be repeated one or more times as the main process.
- a thin plate process to be formed on a plurality of oil palm materials a drying process of the oil palm materials, a laminating process of laminating a plurality of oil palm materials, a preheating step of heating the oil palm materials, and the heating Applying a compression force in a direction perpendicular to the surface of the oil palm material between the upper mold and the lower mold of the mold while restricting extending in parallel along the surface of the oil palm material.
- the pre-compression process and the pre-fixing process in which the temperature supplied in the pre-heating process is lowered and cooled and fixed are the pre-molding process of the pre-oil palm molding.
- This oil palm molded body is a plate shape compressed at a compression ratio of 2/5 to 4/5, or a solid body compressed at a compression ratio of 2/5 to 4/5 with respect to the entire oil palm molded body. It may be a shape body. At this time, it is restricted from extending in the parallel direction along the surface of the heated oil palm material, and is molded into a finished dimension. Further, at this time, if the amount of water vapor pressure to be supplied is reduced and the molding is performed, it is easy to process the subsequent fixing step. In this way, the laminated oil palm material fixed in the preliminary immobilization process again extends in a parallel direction along the surface of the laminated oil palm material under predetermined humidity and temperature conditions.
- a compression force in a direction perpendicular to the surface of the laminated oil palm material is applied between the upper mold and the lower mold of the mold so as to compress and mold for a predetermined time, and then compressed and molded for the predetermined time
- the laminated oil palm material is cooled by lowering the temperature, and is permanently fixed in the final fixing step.
- a plurality of oil palm materials formed by peeling to a predetermined thickness can be formed to a necessary thickness in the laminating process, the thickness can be determined according to the intended use, and the preliminary molding process of the preliminary oil palm molded body
- the heating step of heating to raise the temperature of the oil palm material laminated in the laminating step in particular, when a plurality of oil palm materials are heated with water vapor, resin components such as lignin and sugars such as cellulose and hemicellulose are produced. Since it is softened and bonded, a solid molded body can be obtained by this fixing process.
- the laminated oil palm material is restricted to extend in a direction parallel to the surface of the oil palm material even in the final fixing step, and the oil palm material is formed between the upper mold and the lower mold of the mold. Since the compression force in a direction perpendicular to the surface of the material is applied and compression molding is performed for a predetermined time, the area of the laminated oil palm material can be compression-molded without being expanded, so that the desired three-dimensional shape can be obtained. There is obtained an oil palm molded body having a desired outer diameter. In particular, even in the preliminary fixing step or the main fixing step, the mold is cooled and fixed by lowering the temperature supplied in the heating step. The palm molding is easy to take out.
- the said thin-plate process of an oil palm molded object can suppress use of the formaldehyde type adhesive agent which causes a sick house syndrome at least compared with the conventional laminated plywood. Therefore, an oil palm molded body made of laminated oil palm materials can be molded into a desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and oil palm inherently has components An oil palm molded body that is environmentally friendly is obtained.
- the laminated plywood according to claim 6 includes one or more oil palm materials formed by peeling a trunk of a predetermined length of oil palm to a predetermined thickness while rotating a trunk of the oil palm in a circumferential direction thereof, One or more of Lauan thin plate, China thin plate, or conifer thin plate formed by peeling a conifer trunk in the circumferential direction while rotating it in the circumferential direction with a predetermined thickness facing the oil palm material They are placed, compressed, fixed and joined together. Therefore, since one or more oil palm materials are compressed and fixed simultaneously with the net and integrally joined together, a multilayer plywood joined with natural products using the resin component and sugar component contained in the oil palm material is obtained. can get.
- the nets are joined between the oil palm materials. Since the amount of the resin component and the sugar component contained in the oil palm material at the time of joining from between the oil palm materials is ensured without using another adhesive, the oil palm material is integrated. It is easy to join the material and the net, and even if the oil palm material tries to bend, the net does not expand or contract corresponding to the bend, so it can be provided as means for preventing the bend. Moreover, it becomes difficult to bend with respect to the surface which laminated
- the laminated plywood according to claim 7 includes one or more oil palm materials formed by peeling a trunk of a predetermined length of oil palm in a circumferential direction while rotating the trunk of the oil palm to a predetermined thickness with a rotary race, and a predetermined length of lauan or A lauan thin plate formed by peeling a trunk of a Chinese or coniferous tree in the circumferential direction while peeling it off from the outer periphery to a predetermined thickness, or one or more of a Chinese thin plate or a softwood thin plate facing the oil palm material Are arranged and joined together.
- At least one oil palm material that has been compacted and one or more of Lauan thin plate, China thin plate, and softwood thin plate are placed facing the oil palm material, and they are joined together. Therefore, when the resin component and sugar component contained in the oil palm material are insufficient, an adhesive is added and bonded to one or more of Lauan thin plate, China thin plate, and softwood thin plate. Thus, a desired laminated plywood is obtained.
- the nets are joined between the oil palm materials, and integrated Since the amount of the resin component and the sugar component contained in the oil palm material at the time of joining from between the oil palm materials is ensured without using other adhesives, the oil palm material and Joining with a net is easy, and even when the oil palm material is going to bend, the net does not expand or contract corresponding to the bend, so it can be provided as means for preventing the bend. Moreover, it becomes difficult to bend with respect to the surface which laminated
- the laminated plywood according to claim 8 includes one or more oil palm members formed by peeling a trunk of a predetermined length of oil palm in a circumferential direction while rotating the trunk of the predetermined length from the outer periphery to a predetermined thickness, and a predetermined length of lauan or One or more of lauan, china, and conifers, which are formed in the shape of a plate in the length direction of the trunk of a china or conifer, are placed facing the oil palm material and joined together. is there. Therefore, at least one compacted oil palm material and one or more plate materials of lauan, china, and conifer are arranged facing the oil palm material, and they are joined together. From the above, when the resin component and the sugar component contained in the oil palm material are insufficient, by adding an adhesive to one or more joining objects of Lauan, China, and coniferous trees, A laminated plywood is obtained.
- the nets are joined between the oil palm materials, and integrated Since the amount of the resin component and the sugar component contained in the oil palm material at the time of joining from between the oil palm materials is ensured without using other adhesives, the oil palm material and Joining with a net is easy, and even when the oil palm material is going to bend, the net does not expand or contract corresponding to the bend, so it can be provided as means for preventing the bend. Moreover, it becomes difficult to bend with respect to the surface which laminated
- another adhesive is added to the joint surface that is integrally joined to one or more of the thin plate, the Chinese thin plate, or the softwood thin plate.
- the resin component and the sugar component contained in the oil palm material are used for joining one or more oil palm materials, and the Lawan thin plate or the Chinese thin plate is further used.
- one or more of the softwood sheets can be firmly joined, so the use of formaldehyde adhesives that cause sick house syndrome is suppressed, and oil palm inherently has Laminated plywood using there ingredient.
- the laminated plywood according to claim 10 wherein the number of the oil palm materials is larger than the number of thin plates other than the oil palm, and in addition to the effect according to one of claims 6 to 9.
- the use of formaldehyde-based adhesive that causes sick house syndrome can be suppressed to 1 ⁇ 2 or less.
- positioned between the said oil palm materials of the laminated plywood concerning invention of Claim 11 and joining between the said oil palm materials is a wire net
- the molding temperature can be arbitrarily set. Also, the mechanical strength is increased.
- FIG. 1 is an explanatory diagram of a process for producing an oil palm material by a rotary race in the method for producing an oil palm molded body according to Embodiment 1 of the present invention.
- FIG. 2 is an explanatory diagram of a laminating process showing a laminating positional relationship of the oil palm material in the manufacturing method of the oil palm molded body according to Embodiment 1 of the present invention, and is an explanatory diagram of cutting out an oil palm material long on the vascular bundle side (a ) And an explanatory view (b) of cutting out an oil palm material short on the vascular bundle side.
- FIG. 1 is an explanatory diagram of a process for producing an oil palm material by a rotary race in the method for producing an oil palm molded body according to Embodiment 1 of the present invention.
- FIG. 2 is an explanatory diagram of a laminating process showing a laminating positional relationship of the oil palm material in the manufacturing method of the oil palm molded body according to Embodiment 1 of the
- FIG. 3 is an explanatory view showing a method for laminating an oil palm material in the method for producing an oil palm molded body according to Embodiment 1 of the present invention.
- FIG. 4 is an explanatory view showing a laminated state (a) and a compressed state (b) of the method for producing an oil palm molded body according to Embodiment 1 of the present invention.
- FIG. 5 is a cross-sectional view showing a schematic configuration of an oil palm molded body manufacturing apparatus employing the method for manufacturing an oil palm molded body according to Embodiment 1 of the present invention.
- 6A and 6B are explanatory diagrams of the method for producing the oil palm molded body according to Embodiment 1 of the present invention, in which FIG.
- FIG. 6A is an explanatory diagram of supply of unprocessed wood as a raw material
- FIG. (C) is explanatory drawing by a sealed heating compression start state
- (d) is explanatory drawing of the vapor pressure control processing by a sealed heating compression state
- (e) is explanatory drawing by a sealed cooling state
- (f) is an oil palm molded object It is explanatory drawing of taking out.
- FIG. 7 is an explanatory view of a frame used in the method for manufacturing an oil palm molded body according to Embodiment 1 of the present invention, and is a perspective view (a) and a cross-sectional view taken along a cutting line AA (b).
- FIG. 8 is a flowchart illustrating a method for manufacturing the oil palm molded body according to Embodiment 1 of the present invention.
- FIG. 9 is an explanatory view showing a laminated state (a), a compressed state (b), and a molded state (c) of the method for producing an oil palm molded body according to Embodiment 2 of the present invention.
- FIG. 10 is a flowchart of a preliminary process for explaining a method for producing an oil palm molded body according to Embodiment 2 of the present invention.
- FIG. 11 is a flowchart of the present immobilization step for explaining the method for producing an oil palm molded body according to Embodiment 2 of the present invention.
- FIG. 9 is an explanatory view showing a laminated state (a), a compressed state (b), and a molded state (c) of the method for producing an oil palm molded body according to Embodiment 2 of the present invention.
- FIG. 10 is a flowchart of a preliminary process for explaining
- FIG. 12 is an explanatory view showing a method for producing an oil palm molded body according to another embodiment (case 1) of the present invention, in which a plate-shaped preliminary oil palm molded body (a), a preformed leg (b), and an oil are formed. Palm molded body (c).
- FIG. 13 is an explanatory view showing a method for producing an oil palm molded body according to another embodiment (case 2) of the present invention, in which a plate-shaped preliminary oil palm molded body (a), a preformed leg (b), and an oil are formed. Palm molded body (c).
- FIG. 14 is an explanatory view showing a method for producing an oil palm molded body according to another embodiment (case 3) of the present invention.
- FIG. 15 is an explanatory view showing a method for producing an oil palm molded body according to another embodiment (case 4) of the present invention.
- FIG. 16 is an explanatory view showing a method for producing an oil palm molded body according to another embodiment (case 5) of the present invention.
- FIG. 17 is an explanatory view showing a method for producing an oil palm molded body according to another embodiment (case 6) of the present invention.
- FIG. 18 is an explanatory view showing the laminated positional relationship between the thin plate and the net for forming the laminated plywood according to the third embodiment of the present invention, and is an explanatory view (a) of cutting out the long oil palm material on the vascular bundle side. It is explanatory drawing (b) of cutting out a short oil palm material.
- FIG. 16 is an explanatory view showing a method for producing an oil palm molded body according to another embodiment (case 4) of the present invention.
- FIG. 16 is an explanatory view showing a method for producing an oil palm molded body according to another
- FIG. 19 is an explanatory diagram showing a method of laminating thin plates and nets to obtain a laminated plywood according to Embodiment 3 of the present invention.
- FIG. 20 is an explanatory view showing a laminated state (a) and a compressed state (b) of the laminated plywood according to Embodiment 3 of the present invention.
- FIG. 21 is an explanatory view showing a method for laminating an oil palm material and a net for obtaining a laminated plywood according to Embodiment 4 of the present invention.
- FIG. 22 is an explanatory diagram showing another method of laminating thin wood boards, oil palm materials, and nets to obtain laminated plywood according to Embodiment 5 of the present invention.
- FIG. 23 is an explanatory view showing a method of laminating a thin plate and a net for forming a laminated plywood according to Embodiment 6 of the present invention, in which (a) is a plywood, (b) is a leg of a joining component, and (c) is integrally formed. It is the formed oil palm molding.
- FIG. 24 is an explanatory diagram showing a method of laminating thin plates and nets to obtain a laminated plywood according to Embodiment 7 of the present invention.
- Oil palm trunk W, W1,..., W5 Oil palm material UWD Continuous thin plate Y1 Thin plate PW Laminated plywood NW Multi-layer material MC before press Compaction processing material manufacturing device EO Oil palm molding HW Preliminary oil palm molding IS Inside Space 10 Press panel 18 Positioning hole 20 Frame
- the oil palm material W cuts a single trunk that has grown for more than 20 years as an oil palm trunk WD of a predetermined length, and sets it in a device called a rotary race that peels in the circumferential direction similar to wig removal of a radish. . Then, the oil palm trunk WD is rotated to perform circumferential stripping with the blade CT.
- This is a thin plate process in which a predetermined length of the oil palm trunk WD is peeled off from the outer periphery to a predetermined thickness by a rotary race while being rotated in the circumferential direction to form a plurality of oil palm members W.
- the center of the oil palm trunk WD is rotated so as to be an axis, and a cutter CT having a predetermined width is applied to the outer peripheral side thereof, and a continuous thin plate UWD is formed by so-called stripping similar to wig stripping. . That is, the oil palm trunk WD is cut out from a continuous thin plate, ie, a continuous thin plate UWD, with a predetermined thickness like radish wig peeling. The continuous thin plate UWD is cut into a predetermined length and dried to produce an oil palm material W having a predetermined area and a predetermined thickness.
- Oil palm leaves, empty fruit bunches, roots, and the like are cut into chips and treated by an organic waste fermentation treatment method in which they are composted (composted) by aerobic bacteria treatment.
- empty fruit bunches may be subjected to other practical treatments. Further, it may be finely crushed, extracted with components such as cellulose, hemicellulose, lignin, etc., and used for joining assistance.
- drying is started when the continuous thin plate UWD is peeled off.
- drying may be performed after cutting the number of units to make a predetermined laminated plywood PW.
- the cutting is performed by a flow operation, it is desirable to start drying at the time when the continuous thin plate UWD is formed from the oil palm trunk WD from the viewpoint of securing the drying time.
- This drying process is a drying process after five pieces of oil palm materials W1,..., W5 having a predetermined area and a predetermined thickness are cut so as to overlap the pre-pressing multilayer material NW for creating the laminated plywood PW.
- the process of drying these oil palm materials W is a drying process.
- the oil palm material W having a predetermined area and a predetermined thickness is further cut as shown in FIGS. 2 (a) and 2 (b), and five oil palm materials W1,. .., W5 (specially, when the number of oil palm materials W is not intended, simply written as oil palm material W) is cut.
- the process of FIG. 1 is not different for a predetermined length of Lauan or Sina or conifer trunk.
- a Lawan thin plate, a Chinese thin plate, or a coniferous thin plate formed by peeling a lawan, a Chinese or coniferous trunk in a circumferential direction while rotating it in the circumferential direction, is formed by a similar process.
- the pre-pressing multilayer material NW includes oil palm materials W1, W3, W5 having short sides in the supply direction of the continuous thin plate UWD that has been peeled off the oil palm trunk WD described with reference to FIG. Oil palm materials W2 and W4 having long sides in the supply direction of the continuous thin plate UWD shown in FIG.
- the five oil palm members W1,..., W5 having a predetermined area and a predetermined thickness may be formed by cutting, or may be formed by cutting a fine toothed saw. Any of the properties of oil palm may be used, but cutting is more efficient from the viewpoint of workability.
- oil palm materials W1, W3, W5 with short sides in the supply direction of the continuous thin plate UWD from which the oil palm trunk WD has been peeled, and oil palm materials W2, with long sides in the supply direction of the continuous thin plate UWD are provided.
- W4 is formed of two types of rotary races, it may be set so that five oil palm materials W1,..., W5 are obtained with the width in the supply direction of the continuous thin plate UWD.
- oil palm materials W1, W3, W5 with short sides in the supply direction of continuous thin plate UWD and oil palm materials W2, W4 with long sides in the supply direction of continuous thin plate UWD are mutually connected.
- the oil palm materials W1, W3, W5 with short sides in the supply direction of the continuous thin plate UWD and the oil palm materials W2, W4 with long sides in the supply direction of the continuous thin plate UWD shown in FIG. are loaded with two oil palm materials W1, W3, W5 on the short side in the supply direction of the continuous thin plate UWD, and three oil palm materials W2, W4 on the long side in the supply direction of the continuous thin plate UWD. It can also be a combination.
- Five oil palm materials W1,..., W5 having a predetermined area and a predetermined thickness are cut and the humidity is adjusted until it is aligned with the stacked state of the multilayer material NW before pressurization as shown in FIG. Must be applied to both sides of the oil palm materials W1,..., W5 having a predetermined area and thickness. Since the five oil palm materials W1,..., W5 are dried before being sent to the production line where five oil palm materials W1,. In the dried state, as shown in FIG. 4A, it can be laminated as a multilayer material NW before pressurization. When this lamination is performed, in order to prevent the spread of the oil palm material W in the surface direction, a frame body 20 (see FIG. 7) for positioning each side of the five oil palm materials W1,.
- FIGS. 5 and 6 will be described with reference to the case of the positioning hole 18.
- a laminating process the process of laminating a plurality of oil palm materials W dried in the drying process in a predetermined state.
- the positioning hole 18 has an outer diameter that matches the outer shape of the oil palm material W, and the five oil palm materials W1,..., W5 are placed in the positioning hole 18. Then, the upper press panel 10A and the lower press are controlled while the positioning hole 18 restricts the oil palm material W heated in the heating process from extending in the parallel direction along the surface of the oil palm material W. A compression force in a direction perpendicular to the surface of the oil palm material W is applied to the board 10B and compression molding is performed for a predetermined time. Although not shown, the five oil palm members W1,..., W5 are compressed in the positioning hole 18.
- the surface of the upper press panel 10A that presses the five oil palm members W1,..., W5 is equal to the upper surface of the five oil palm members W1,. Naturally, the bottom surfaces of the five oil palm materials W1,..., W5 have the same dimensions so that they can be fitted to the lower press panel 10B.
- the compacted oil palm molded body EO shown in FIG. 4 (b) is compressed by applying a predetermined compressive force to a multi-layered material NW before pressurization under a predetermined temperature condition. After the elapse of time, the pressure is lowered to a predetermined temperature to fix the predetermined compression rate to be fixed in substantially the same manner as in the compressed state, and is fixed. That is, a compression step of applying a compression force in a direction perpendicular to the surface of the oil palm material W to the laminated oil palm materials W1,..., W5 heated by the heating step is performed.
- the temperature supplied in the heating step is lowered, and the compressed oil palm molded body EO is obtained through an immobilization step for maintaining the compressed state.
- the process of heating to raise the temperature of the laminated oil palm material W after the laminating process is called a heating process, and the surface of the laminated oil palm material W is heated by the heating process.
- the step of applying a compressive force in a right angle direction is called a compression step.
- the temperature supplied in the heating step is lowered, and the step of cooling and fixing at normal temperature or slightly lower than that is fixed in a consolidated state. This is called an immobilization process.
- the method of directly molding the oil palm molded body EO of FIG. 4B from the pre-pressing multilayer material NW of FIG. 4A includes the laminating step, the heating step, the compression step, and the fixing step. There is only one continuous process.
- FIG. 4 is one form of the oil palm molded body EO of FIG. 4B in which the pre-pressing multilayer material NW of FIG. 4A is consolidated with a mold.
- the oil palm molded body EO in order to finally form the oil palm molded body EO, it is compressed in a concavo-convex state from the beginning with a mold, directly from the multilayer material NW before pressurization of FIG.
- the flat part EP of the oil palm molding EO of FIG.4 (b), the recessed part EQ, and the convex part ER are formed with the same thickness.
- the flat part EP and the concave part EQ or the convex part ER may not be the same thickness but may be partially thick and thin.
- a predetermined length of the oil palm trunk WD is peeled to a predetermined thickness with a rotary race blade CT while rotating in the circumferential direction to form a plurality of oil palm members W.
- the oil palm material W having a thickness within the range of 3 mm to 20 mm is peeled from the oil palm trunk WD, and then in the drying process of Step S11, the moisture content is within the range of 5% to 30%. The dried oil palm material W is obtained.
- the drying method of the oil palm material W in the drying process includes artificial drying or natural drying (sun drying).
- artificial drying for example, hot air is supplied to the oil palm material W using a dryer such as a steam dryer having a high-temperature steam as a heat source and a dehumidifier including a refrigerator for removing humidity.
- a dryer such as a steam dryer having a high-temperature steam as a heat source and a dehumidifier including a refrigerator for removing humidity.
- Examples include an external heating method for heating from the outside of the oil palm material W by spraying or heating and squeezing with a press board, an internal heating method for heating the oil palm material W from the inside by applying dielectric heating,
- natural drying is less expensive than artificial drying.
- oil palm trunk WD oil palm trunk
- saccharides eg, fructose, glucose, fructooligosaccharides, inositol, etc.
- the thickness of the oil palm material W obtained from the trunk of the palm is thick, bacteria such as mold are proliferated and corroded easily in natural drying, and productivity and commercial value are impaired. Therefore, according to the experiments by the present inventors, by reducing the thickness of the oil palm material W obtained from the oil palm trunk WD to a range of 20 mm or less, the product value and productivity decrease due to bacteria such as mold even in natural drying. It has been confirmed that the cost can be reduced without incurring cost. Note that this thickness corresponds to a thickness of 3.5 mm to 7.0 mm after compaction when the compression ratio is 65%. If the compression ratio is 70%, the thickness corresponds to 3.0 mm to 6.0 mm after the consolidation.
- the thickness of the oil palm material W obtained from the oil palm trunk WD is less than 3 mm (when it is less than 0.9 to 1.1 after the consolidation process), the thickness Since it is thin, it is easy to cut when it is peeled off, and when it exceeds 20 mm, it is difficult to dry uniformly to the inside, and when it is stretched, it becomes easy to crack, so deformation and swelling are likely to occur after consolidation processing described later. It has also been confirmed that cracks and the like are likely to occur because the curved surface is replaced with a straight line.
- the oil palm material W having a thickness of 3 mm or more and 20 mm or less is peeled off from the oil palm trunk WD and can be dried at low cost without causing deterioration of the product value or productivity due to bacteria such as mold even by natural drying. Further, the cutting operation is easy, and the dimensional shape stability after the compacting process described later is high.
- the thickness of the oil palm material W from the oil palm trunk WD is in the range of 6 mm or more and 15 mm or less. This thickness corresponds to a thickness of 2.1 mm or more and 5.3 mm or less after the compacting when the compression ratio is 65%. If the compression ratio is 70%, the thickness corresponds to 1.8 to 4.5 mm after the consolidation.
- the term “drying within the range of 5 to 30% moisture content” is performed by compaction processing described later. Insufficient chemical change can be caused, and when the surface is too dry and wetted with water after consolidation, the compressed part returns to its original thickness shape, so-called immobilization failure.
- the moisture content exceeds 30% it is difficult to uniformly dry to the inside, and it has been confirmed that after consolidation, damage such as cracks, rupture, deformation, swelling, etc. are likely to occur. This is a setting based on this.
- the moisture content of the oil palm material W be substantially uniform over the entire thickness so that the entire thickness is compacted with a substantially uniform compression rate, and the moisture content is within a range of 5 to 30%. Is preferred. More preferably, the water content is in the range of 13 to 18%. In addition, a moisture content is measured using measuring instruments, such as a high frequency moisture content meter, for example.
- step S12 which laminates a plurality of dried oil palm materials W is performed. That is, it is a step of laminating a plurality of oil palm materials W dried in the drying step of Step S11 in a predetermined state.
- the pre-pressurized multilayer material NW is obtained by the lamination step in step S12.
- the multi-layer material NW before pressurization has the same outer shape, but the oil palm materials W in the stacking direction are merely overlapped by their own weight.
- the compacted material manufacturing apparatus MC that performs the compacting of the pre-pressing multilayer material NW formed by laminating the oil palm material W will be described with reference to FIG.
- the compacted material manufacturing apparatus MC for manufacturing the oil palm molded body EO of the present embodiment mainly includes an upper press 10 ⁇ / b> A including a flat part EP and a mold that forms a convex part EQ on the flat press part 10 ⁇ / b> A.
- the seal member 11 that seals the internal space IS and the positioning hole 18 in the range of the upper press board 10A is communicated with the internal space IS and the positioning hole 18 from the upper surface side of the upper press panel 10A.
- the piping 12 having a piping port 12a for supplying steam into the positioning hole 18, the valve V4 on the upstream side thereof, and the inner space IS and the positioning hole 18 from the side surface side of the lower press panel 10B.
- the pressure gauge P2 for detecting the vapor pressure in the pipe 13, the valve V5 on the downstream side thereof, and the valve V5 It consists of a drain pipe 14 and the like.
- the press panel 10 has a plane size capable of compressing the entire specific surface perpendicular to the surface of the multilayer material NW before pressurization, that is, the entire surface to be compressed of the multilayer material NW before pressurization,
- the material is not particularly limited, but, for example, it is formed of a material such as stainless steel or aluminum so that the wood is not blackened due to iron ion contamination, or the contact surface with the multilayer material NW before pressurization is plated. It is given.
- the material of the seal member 11 that seals the internal space IS and the positioning hole 18 is not particularly limited, but usually, silicon rubber, silicon resin, etc. excellent in heat resistance and water resistance are used.
- the mold of the press panel 10 may be any one having at least one of a flat portion, a concave portion, and a convex portion, and does not affect singular or plural picking.
- pipe lines 15 and 16 are formed for raising the temperature to a desired temperature by passing high-temperature steam.
- Pipes ST2 and ST3 branched from the steam supply side pipe ST1 and steam discharge side pipes ET1 and ET2 are connected to the paths 15 and 16, respectively.
- valves V1, V2, V3 and a pressure gauge P1 for detecting the steam pressure in the pipe ST1 are arranged, and the steam discharge side pipes ET1, ET2 Is connected to the drain pipe 14 via a valve V6.
- steam to piping ST1 and the press raising / lowering apparatus containing the hydraulic mechanism for raising / lowering and pressurizing the upper press board 10A with respect to the lower press board 10B of the fixed side of the press board 10 are abbreviate
- the internal space IS formed by the upper press board 10A and the lower press board 10B of the press board 10 and the piping 12 connected to the valve V4 for heating the inside of the positioning hole 18 are used.
- water vapor is introduced, high frequency heating, microwave heating, or the like can also be used.
- a method of heating from the center of wood at a high frequency slightly lower than that of microwave is preferable to dielectric overheating by microwave.
- a cooling water supply side that cools to a desired temperature by passing low-temperature cooling water in place of water vapor through the pipes 15 and 16 formed in the upper press board 10A and the lower press board 10B.
- Pipes ST12 and ST13 branched from the pipe ST11 are connected to the pipes ST2 and ST3, respectively.
- valves V11, V12, V13 are arranged in the middle of the pipes ST11, ST12, ST13 on the cooling water supply side.
- the cooling water supply apparatus which supplies cooling water to piping ST11 is abbreviate
- a compressive force is applied in a direction perpendicular to the surface of the five oil palm members W of the multilayer material NW before pressurization in the press-pressing direction of the press board 10. .
- the oil palm molded body EO is manufactured from the pre-pressurized multilayer material NW by the compacted material manufacturing apparatus MC configured as described above, first, as shown in FIG.
- the upper press machine 10A is raised with respect to the lower press machine 10B on the fixed side of the press machine 10 in FIG.
- the internal space IS and the positioning hole 18 are placed.
- the pre-pressing multilayer material NW that is a raw material of the oil palm molded body EO is formed in a predetermined dimension (thickness, width, length), and a total of five sheets
- the surface sides of the oil palm materials W1,..., W5 are opposed to the upper press board 10A and the lower press board 10B of the press board 10, and are placed in the positioning holes 18 of the lower press board 10B.
- step S13 timer control by the timer I is started. Looking at the timer I in step S13, it is determined whether it is the heating timing in step S14, and it is determined whether it is the compression timing in step S15.
- step S14 steam at a predetermined temperature (eg, 110 to 180 ° C.) is passed through the piping path 15 of the upper press panel 10A and the piping path 16 of the lower press panel 10B in step S16, and the interior space IS and the positioning holes 18 are passed. Is maintained at a predetermined temperature (for example, 110 to 180 ° C.).
- a predetermined temperature for example, 110 to 180 ° C.
- step S17 the compression force of the upper press board 10A is set to a predetermined pressure (for example, 20 to 50 kg / cm 2 ) with respect to the lower press board 10B on the fixed side, and the multilayer material NW before pressurization is the upper press board. 10A and the lower press panel 10B are heated and compressed for a predetermined time (for example, 5 to 40 min). Also, in step S18, it is determined whether the heating / compression is completed, and the routine processing from step S13 to step S18 is repeated until the end time is reached.
- a predetermined pressure for example, 20 to 50 kg / cm 2
- the compressive force in step S17 is the temperature rise of the multilayer material NW before pressurization, that is, the internal temperature state of the multilayer material NW before pressurization according to the elapsed time of the timer I in step S18. It is desirable to gradually increase with the passage of time, and it is preferable to set the heating and compression time in consideration of the heating time.
- the compression force from the upper press board 10A and the lower press board 10B is maintained, and the temperature reaches a predetermined temperature (for example, 150 to 210 ° C.) based on the timer I in step S13. Be raised.
- a predetermined temperature for example, 150 to 210 ° C.
- the dimension interval in the vertical direction of the positioning holes 18 is set to the finished dimension in the thickness direction when the pre-pressing multilayer material NW becomes an oil palm molded body EO having a compression rate of 70% by the press board 10.
- the compression ratio of the entire thickness of the multilayer material NW before pressurization that is, the change in the plate thickness due to the compression of the multilayer material NW before pressurization, is that the peripheral portion 10a of the upper press panel 10A is It will be decided by contacting.
- the compressive force of the upper press board 10A and the lower press board 10B is maintained, and the internal space IS and the positioning hole 18 are kept at a predetermined temperature (for example, a heat treatment is performed to form an oil palm molded body EO that is held for a predetermined time (for example, 30 to 120 minutes) and is not returned after the cooling compression is released. Is called.
- a predetermined temperature For example, a heat treatment is performed to form an oil palm molded body EO that is held for a predetermined time (for example, 30 to 120 minutes) and is not returned after the cooling compression is released. Is called.
- a predetermined time for example, 30 to 120 minutes
- high-temperature and high-pressure vapor pressure is generated between the surrounding surface of the pre-pressurized multilayer material NW and the inside thereof through the internal space IS and the positioning hole 18 which are sealed by the upper press board 10A and the lower press board 10B. You can go in and out.
- the upper press board 10A and the lower press board 10B are in surface contact with the front and back surfaces of the pre-pressurized multilayer material NW and are held in the sealed internal space IS and the positioning holes 18. Therefore, the multilayer material NW before pressurization is sufficiently heated in its entire thickness, and is efficiently compressed and deformed.
- a predetermined vapor pressure can be supplied to the internal space IS through the pipe 12 and the pipe port 12a (FIG. 5) connected to the valve V4.
- the valve V5 is opened as a vapor pressure control process immediately before shifting from the heating compression to the cooling compression by the upper press panel 10A and the lower press panel 10B, so that the internal space passes through the piping port 13a and the piping 13. High-temperature and high-pressure steam is discharged from the IS and positioning hole 18 to the drain pipe 14 side.
- step S18 If it is determined in step S18 that the heating process in step S16 and the compression process in step S17 based on the operation of the timer I in step S13 are completed, the fixing process is started in step S19.
- normal temperature cooling water or ground water is passed through the piping path 15 of the upper press panel 10A and the piping path 16 of the lower press panel 10B based on the timer II of step S20, as shown in FIG.
- the upper press board 10A and the lower press board 10B are cooled to around room temperature and held for a predetermined time (for example, 10 to 120 minutes for oil palm) depending on the material.
- the compression force of the upper press disk 10A with respect to the lower press disk 10B on the fixed side is maintained at a predetermined pressure (for example, 20 to 50 kg / cm 2 ) that is the same as the pressure at the time of heat compression.
- the board 10A and the lower press board 10B are cooled.
- the pressure releasing process is started in step S 21, the upper press platen 10 A is raised with respect to the fixed-side lower press platen 10 B, and the internal space IS and the positioning hole 18 are used.
- the compacted material manufacturing apparatus MC for manufacturing the oil palm molded body EO of the present embodiment will be described in more detail.
- the press machine 10 is mainly provided with a press machine 10 in which the internal space IS and the positioning hole 18 are formed by a structure divided into two parts, that is, an upper press machine 10A and a lower press machine 10B.
- the movement restriction of the outer periphery of the multilayer material NW can be the frame body 20.
- the frame 20 as the movement restriction of the outer periphery of the pre-pressurized multilayer material NW is determined as a structure that can move up and down or a fixed structure depending on the dimensions of the upper press panel 10A.
- the frame body 20 shown in FIG. 7 is a modification of the first embodiment and has a vertically movable structure.
- the frame body 20 is disposed on the lower press panel 10B of FIGS. 5 and 6 and is positioned. It replaces the hole 18.
- an outer lower press disk 10Ba and an inner lower press disk 10Bb having the same height are disposed on the base plate 25 of the lower press disk 10B, and a frame groove 21 is formed therebetween.
- a plurality of coil springs 22 are disposed on the base plate 25 side of the frame body groove 21, and a square movable frame 23 is disposed above the coil springs 22.
- a cutout is formed on the inner surface of the movable frame 23 to form a fluid path 24 that guides fluid such as water vapor from the side surface of the pre-pressurized multilayer material NW.
- the inner periphery of the square movable frame 23 is substantially equal to the outer periphery of the multilayer material NW before pressurization.
- the movable frame 23 becomes elastic to the plurality of coil springs 22. It descends against it and responds to the compression of the multilayer material NW before pressurization. Then, the compression of the pre-pressurized multilayer material NW is completed at the movement limit of the plurality of coil springs 22.
- the movable frame 23 can be fixedly arranged on the lower press board 10B. That is, the movable frame 23 of the lower press panel 10B can be fixed and compressed by the upper press panel 10A inserted into the movable frame 23.
- the thickness of the oil palm materials W1,..., W5 is heated and compressed by the external force applied in the direction perpendicular to the length direction of the fibers of the oil palm material W, and the whole is compressed and compressed.
- An oil palm molded body EO having a rate of 60% or more is manufactured. At this time, the elongation in the direction parallel to the plane of the oil palm material W is caused by the compressive force in the thickness direction of the oil palm materials W1,. It is restricted by the movable frame 23 and does not extend. Therefore, the oil palm molded body EO is subjected to a die processing with a uniform compressive force.
- the pressure is gradually released to release the internal vapor pressure, and the water vapor pressure in the pre-pressurized multilayer material NW is lowered and fixed by cooling.
- the oil palm molded body EO having no surface deformation called bulging deformation or puncture. That is, the oil palm molded body EO manufactured in the present embodiment does not cause bulging deformation or surface cracking after being released from compression, and stable quality is ensured.
- the upper palm 10A and the lower press 10B are compressed and fixed to obtain an oil palm molded body EO.
- a normal microwave oven is used. The oil palm molded body EO can be obtained even if the multilayer material NW before pressurization is heated and compressed by dielectric heating at a high frequency slightly lower than the frequency band of the microwave to be fixed.
- the fiber directions such as the vascular bundle may be laminated in the same direction, or the fiber directions may be laminated so as to be orthogonal to each other.
- the wood fibers softened in the consolidation process are easily entangled with the other wood surface layer fibers of the same fiber direction adjacent to the lamination direction (longitudinal direction), The wood fixed in the intertwined state is firmly joined.
- the expansion rate and contraction rate at the joint surface can be made completely equal, no stress is applied to the joint surface even if the ambient environment conditions change.
- the oil palm material W becomes the fiber direction of the original oil palm trunk WD, and the oil palm material W is different.
- the vascular bundle enters the parenchyma between the vascular bundles of the partner oil palm material W and is fixed there, it can be integrated in a natural joined state. Accordingly, the bonding strength is high and the mechanical strength is high, and a stable dimensional shape after consolidation is ensured.
- the woods interact with each other to prevent warping deformation in a specific direction Is done.
- the fiber direction of the single plate is parallel and the cross section is symmetric on the front and back, so distortion due to changes in ambient environmental conditions is prevented.
- the fiber directions on the front and back sides are laminated by laminating the fiber directions at the same part in the inside and laminating the other with the fiber directions orthogonal to each other.
- the vascular bundles of the oil palm materials W are in a cross state, it is desirable that the vascular bundles of each other be in a state of being involved.
- Cellulose, hemicellulose, and lignin are hydrogen-bonded by compaction under this entrainment condition, and especially the oil palm trunk contains a lot of sugars, lignin, plastic components, etc., so these components are decomposed and softened. Then, it oozes out around the vascular bundle and is then recrystallized and recombined to function as a binder and to be integrated.
- the dried oil palm molded body EO it is preferable to arrange and laminate materials having a small air-dry specific gravity after drying on the front and back.
- wood having a small air-drying specific gravity after drying is disposed on the front and back layers in contact with the upper press platen 10A and the lower press platen 10B, and compaction processing is performed. Therefore, the air-drying specific gravity after drying is small.
- the wood is sufficiently heated and compressed by the upper press board 10A and the lower press board 10B to reduce the difference in specific gravity between the woods, and the difference in the rate of dimensional change after production. Therefore, the stability of the dimensional shape after commercialization increases.
- the upper press board 10A is subjected to a predetermined pressure (for example, 0.5 to 3 kg / second) with respect to the plurality of laminated pre-pressing multilayer materials NW placed on the lower press board 10B on the fixed side. cm 2 ) and brought into contact with the upper surface of the laminated pre-pressing multilayer material NW, that is, a plane perpendicular to the fiber length direction.
- a predetermined pressure for example, 0.5 to 3 kg / second
- the valve V1, the valve V2, and the valve V3 FIG. 2
- the piping 15 of the upper press panel 10A from the boiler device (not shown).
- the water vapor for heating is passed through the pipe line 16 of the lower press panel 10B, the interior space IS and the positioning hole 18 are maintained at a predetermined heating temperature, and the laminated multilayer material NW before pressurization is heated.
- the heating temperature in the heating process in the initial stage of compression is in the range of 110 to 160 ° C. If the heating temperature is too low, sufficient compacting will not be achieved, resulting in insufficient strength, poor bonding between wood, and dimensional shape deformation due to hygroscopic drying after product production, while the heating temperature is too high.
- the surface may be carbonized to change to black and the color tone or scent peculiar to wood may be impaired, or the material may deteriorate and the strength may be lowered and become brittle. According to the experiments by the present inventors, it has been found that an appropriate temperature condition is in the range of 110 to 160 ° C.
- the heating temperature in the heating step in the initial stage of compression is in the range of 120 to 140 ° C.
- the specific set temperature is set according to the moisture content of the oil palm material W and the like.
- the compression pressure of the upper press board 10A is set to a predetermined pressure with respect to the lower press board 10B on the fixed side, and the pre-pressing multilayer material NW becomes the upper press board 10A and lower press board 10B. And heated and compressed for a predetermined time.
- the seal member 11 disposed on the peripheral portion 10a of the upper press panel 10A.
- the internal space IS and the positioning hole 18 formed by the upper press board 10A and the lower press board 10B are sealed.
- the predetermined pressure for compressing the multilayer material NW before pressurization is preferably in the range of 1 to 100 kg / cm 2 . If the pressure is too low, immobilization will be poor in the compacting process, while if the pressure is too high, cracks may occur on the surface. According to the inventors' experiments, suitable pressure conditions are in the range of 1-100 kg / cm 2 . By adopting this pressurizing condition, it is possible to prevent immobilization defects and occurrence of cracks in consolidation. More preferably, it is in the range of 10 to 50 kg / cm 2 .
- the time for heating and compressing is within a range of 10 to 40 minutes. This time condition can prevent subsequent immobilization due to the treatment time being too short and carbonization of the surface due to the treatment time being too long. More preferably, the predetermined compression time is in the range of 20 to 30 minutes. In addition, it is preferable to set also the time of this heat compression considering the transmission state (time) of the temperature inside the multilayer material NW before pressurization.
- the internal space IS and the positioning hole 18 formed by the upper press board 10A and the lower press board 10B of the press board 10 are hermetically sealed via the seal member 11, and the vertical direction of the internal space IS and the positioning hole 18 is as follows.
- the dimension interval is set to the finished dimension in the thickness direction when the plurality of laminated multi-layered pre-pressurized materials NW are compacted to form an oil palm molded body EO having an air-dry specific gravity of 0.8 or more.
- the compression ratio of the entire thickness of the laminated multilayer material NW before pressurization that is, the change in thickness due to the compression of the plurality of laminated multilayer materials NW before pressurization is determined by the peripheral portion 10a of the upper press panel 10A. This is determined by contacting the peripheral edge portion 10b of the lower press panel 10B.
- the predetermined compression pressure (preferably within the range of 1 to 100 kg / cm 2 ) by the upper press board 10A and the lower press board 10B is maintained in the sealed state of the internal space IS and the positioning hole 18 shown in FIG. 6 (c).
- the temperature is raised to a specific heating temperature by the piping 15 of the upper press panel 10A and the piping 16 of the lower pressing panel 10B, and the internal space IS and the positioning hole 18 are maintained at the predetermined heating temperature for a predetermined time.
- a high-temperature and high-pressure vapor pressure is generated between the surrounding surface of the pre-pressurized multilayer material NW and the inside thereof through the internal space IS and the positioning hole 18 which are sealed by the upper press platen 11 and the lower press platen 21.
- the vapor pressure control process detects the vapor pressure of the internal space IS and the positioning hole 18 with the pressure gauge P2. As shown in (d), the vapor pressure of the second heating temperature is supplied to the internal space IS through the pipe 12 and the pipe port 12a connected to the valve V4, or the valve V5 is appropriately opened and closed. Then, high-temperature and high-pressure water vapor is discharged from the internal space IS to the drain pipe 14 side through the pipe port 13a and the pipe 13, whereby the vapor pressure of the internal space IS and the positioning hole 18 is controlled to a predetermined value.
- a plurality of laminated oil palm materials W are heated and compressed. That is, by making the peripheral surface of the oil palm material W laminated and the inside thereof the same temperature, pressure, and vapor pressure state as the internal space IS and the positioning hole 18, the entire multilayer material NW before pressurization is made uniform, There is no processing strain, and shrinkage and expansion due to a change in the restoring force after molding and the surrounding environmental conditions are remarkably suppressed.
- the vapor pressure by discharging or introducing water vapor while maintaining a predetermined pressure state, the surface is prevented from being carbonized, uniformly heated and compressed, and further, the surface is prevented from drying. Smooth fixation is achieved, and recovery, return, deformation, etc. after molding are suppressed.
- the final heating temperature for maintaining the heating and compression state for compaction is in the range of 120 to 210 ° C. If the heating temperature is too low, the immobilization becomes sweet and chemical changes due to the action of water vapor cannot be caused sufficiently, resulting in improper immobilization, which tends to occur due to moisture absorption or deformation due to drying, while the heating temperature is high. If it is too much, the surface may be carbonized to change to black, and the color tone or scent peculiar to wood may be impaired, or the material may deteriorate and the strength may be lowered and become brittle. According to our experiments, suitable temperature conditions are in the range of 120-210 ° C. By setting this temperature condition, it is possible to prevent immobilization failure in the compacting process, maintain dimensional shape stability, and prevent material deterioration such as surface carbonization and material strength reduction. More preferably, the heating temperature is in the range of 120 to 140 ° C.
- the compression time immediately before immobilization is preferably within the range of 10 to 120 minutes. By this time condition, it is possible to prevent immobilization failure due to the treatment time being too short and carbonization of the surface due to the treatment time being too long. More preferably, the predetermined time is in the range of 30 to 90 minutes.
- the specific set time for performing the heating / compression process immediately before the immobilization is set in consideration of the moisture content of the multilayer material NW before pressurization.
- the start of the vapor pressure control in the internal space IS and the positioning hole 18 in the sealed state due to the introduction or discharge of water vapor is performed after the temperature of the upper press panel 10A and the lower press panel 10B reaches a specific heating temperature. It is desirable to be done. If it does in this way, water vapor can osmose
- the excess internal space IS based on the rate and the moisture in the positioning hole 18 are difficult to be removed, and the moisture content of the wood increases, so that return due to moisture absorption, deformation due to drying, and the like easily occur.
- the temperature of the upper press panel 10A and the lower press panel 10B reaches a specific heating temperature. It is preferable to introduce a water vapor pressure and temperature equal to or lower than the water vapor pressure and temperature in the internal space IS and the positioning hole 18.
- the pressure and temperature of the introduced water vapor are higher than the water pressure and temperature in the internal space IS and the positioning hole 18, the water is condensed and the internal space IS and the positioning hole 18 in a sealed state are filled with water.
- the moisture content of the oil palm material W increases, and as a result, return due to moisture absorption, deformation due to drying, and the like easily occur.
- the high temperature in the internal space IS and the positioning hole 18 By appropriately discharging high-pressure water vapor, the pressure is adjusted to a predetermined vapor pressure.
- step S19 is performed while maintaining the same predetermined pressure (preferably within the range of 1 to 100 kg / cm 2 ) as the pressure in the heating process in step S16 and the compression process in step S17.
- V11, valve V12, and valve V13 (FIG. 5) are opened, and normal temperature cooling water is passed from a boiler device (not shown) through the piping path 15 of the upper press panel 10A and the piping path 16 of the lower press panel 10B.
- the upper press board 10A and the lower press board 10B are cooled to around room temperature and held for a predetermined time (eg, 10 to 120 minutes).
- a predetermined time eg, 10 to 120 minutes.
- the upper press disk 10A is gradually raised and separated from the fixed-side lower press disk 10B.
- a series of processing steps are completed by releasing the pressure and the sealed state and taking out the finished oil palm molded body EO from the internal space IS and the positioning hole 18.
- the oil palm molded body EO can be liquefied and removed, and there is no bulging deformation, cracking, puncture or the like when the cooling and compression are released. That is, according to the oil palm molded body EO of the present embodiment, stable quality is ensured without causing bulging deformation, cracking, destruction, and the like after compression release.
- an oil palm molded body EO having a dry specific gravity of 0.8 or higher and a specific gravity of 1.2 or higher is usually manufactured.
- the oil palm molded object EO obtained by doing in this way has oil palm material W joined firmly by the compaction process. This is because cellulose, hemicellulose, and lignin are hydrogen-bonded by compaction processing, and especially the palm of an oil palm contains many sugars, lignin, plastic components, etc., and these components are decomposed and softened by compaction processing.
- the oil palm material W functions as a binder by being recrystallized and recombined after moving between the oil palm materials W, and further, the fibers of the surface layer of the oil palm material W are softened by the consolidation process, and the lamination direction It is considered that the timbers are firmly joined together by being intertwined with the fibers of the wood adjacent to the wood.
- wood is joined without using an artificial adhesive or environmental adhesive due to formaldehyde or the like, or a natural adhesive having a high cost. It is environmentally friendly and can reduce costs.
- the oil palm material W is joined by using an adhesive, it is common to apply the adhesive and then to press the adhesive to cure the adhesive. While the tightening process is necessary, according to the oil palm molded body EO of the present embodiment, the woods are joined together without using an adhesive by compaction processing, so that the separate joining process is unnecessary. Yes, the manufacturing process can be simplified.
- the oil palm molding EO obtained in this way is compacted to reduce the gap in the oil palm material W, and the lignin, hemicellulose, etc. constituting the cell wall are softened, decomposed and recombined. -It is recrystallized, the cell density is increased, the disadvantage of the oil palm material W, which is low in specific gravity and low in strength and easily deformed, is complemented, and high strength and stable dimensional shape are ensured.
- the entire thickness of the laminated oil palm material W is uniformly compressed by carrying out the consolidation process so that the air-dry specific gravity is 0.8 or more, the properties of the oil palm material W are changed, and the hardness and the like are remarkable.
- the physical properties are stable, the quality between products is small, and the commercial value is high. Furthermore, it is consolidated in a state where a plurality of dried oil palm materials W are stacked, and the expansion rate and contraction rate due to changes in ambient environmental conditions are substantially uniform on the bonding surface, so that stable bonding is maintained. In addition, a stable dimensional shape is ensured without causing distortion, deformation, cracks, and the like due to stress applied to the joint surface due to changes in ambient environmental conditions.
- the fibers of the surface layer softened in the consolidation process are entangled with the fibers of the oil palm material W adjacent in the longitudinal direction with the same fiber direction. It is easy and the oil palm material W fixed in the entangled state is firmly joined.
- the expansion rate and contraction rate at the joint surface can be made completely equal, no stress is applied to the joint surface when the ambient environmental conditions change. Therefore, the bonding strength is high, the mechanical strength is also high, and high dimensional shape stability is ensured.
- the multilayered material NW before pressurization is laminated with the fiber directions orthogonal to each other, even if expansion and contraction force is generated due to changes in the surrounding environmental conditions after the consolidation process, the mutual woods interact with each other and specify Directional warpage deformation is prevented.
- the fiber direction of the single plate is parallel and the cross section is symmetric on the front and back, preventing distortion due to changes in ambient environmental conditions, etc. Is done.
- a tough joining state can be obtained by increasing the compressive force with the same fiber direction in consolidation.
- the same fiber direction is laminated in a part of the inside, and the others are laminated with the fiber directions orthogonal to each other, so that the front and back fiber directions are aligned and the ambient environmental conditions It is possible to prevent distortion and the like due to the change of.
- the oil palm molding EO of this Embodiment is the outer surface even if it does not use the natural adhesive agent which the oil palm material W is densified by the compaction process on the front and back surfaces made into the compression surface, and the oil palm material W is expensive.
- the surface quality is good. That is, peeling from the fiber surface can be suppressed without using an artificial adhesive or a high-cost natural adhesive, which is environmentally friendly and can reduce costs.
- since the entire thickness is compacted, even if a large chamfering process or curved surface process is applied to the ridgeline on the thickness side surface, high hardness is ensured on the end surface.
- the strength can be increased by compaction processing, or temperature and compression control are performed in compaction processing.
- excess water can be discharged, and the water vapor pressure inside the multilayer material NW before pressurization is uniformly and suitably adjusted, so that bulge deformation after compression processing and the like are also suppressed. Therefore, it is possible to form the oil palm molded body EO having sufficient strength and stable dimensional shape. Therefore, effective utilization of the entire trunk of oil palm can be achieved.
- the oil palm material W is dried and disposed on the front and back surfaces having a small air-dry specific gravity
- the front and back layers contacting the upper press panel 10A and the lower press panel 10B as described above. Since a material having a small air-dry specific gravity after drying is disposed and compaction processing is performed, sufficient heat compression is performed by the upper press panel 10A and the lower press panel 10B in the material having a small air-dry specific gravity after drying.
- the difference in specific gravity between the woods is reduced, and the difference in the dimensional change rate after commercialization is also reduced. Therefore, the stability of the dimensional shape after commercialization increases.
- the oil palm molded body EO is formed by peeling a trunk of a soft oil palm having a high moisture content as an oil palm material W, and then drying and further stacking and compacting a plurality of sheets.
- the strength and hardness of the entire plate thickness are greatly improved, and a wide range of applications such as flooring materials, waistboard materials, indoor furniture materials, and housing exterior materials used by surface coating are expected.
- the surface hardness is increased by compaction processing and sufficient strength and hardness can be ensured even if the thickness is small, the thickness can be reduced in commercialization.
- the oil palm molded body EO shown in FIG. 4 is formed by compressing the upper mold and the lower mold of the mold directly from the multilayer material NW before pressurization. This can also be molded. That is, as shown in FIG. 9, first, the pre-pressing multilayer material NW of FIG. 9A is subjected to 50% consolidation of FIG. 9B to obtain a plate-like preliminary oil palm molded body HW, This is formed by compressing the upper mold and the lower mold with a predetermined mold, and molding the oil palm molded body EO of FIG. 9C. The manufacturing method of the oil palm molding is demonstrated using the flowchart of FIG.10 and FIG.11.
- the manufacturing method of the oil palm molded body EO which carries out the main shaping
- the rotary palm blade CT is peeled to a predetermined thickness to form a plurality of oil palm members W.
- the oil palm material W having a thickness in the range of 3 mm to 20 mm is peeled from the oil palm trunk WD, and then dried in the range of 5% to 30% in the moisture content in the drying process in step S31.
- the dried oil palm material W is obtained.
- an upper press board 10A made of a mold formed on a flat surface of the compacted material manufacturing apparatus MC and a lower press board 10B made of a mold formed on a flat surface are used.
- a plurality of oil palm materials W dried in the drying step of step S31 are stacked in a predetermined state in step S32 using the compacted material manufacturing apparatus MC.
- the multi-layer material NW before pressurization in the pre-molding is obtained by the stacking process of step S32.
- the multi-layered material NW before pressurization has the same outer shape, but the oil palm materials W in the stacking direction are merely overlapped by their own weight.
- the upper press board 10A is lowered at a predetermined pressure with respect to the pre-pressing multilayer material NW placed on the positioning hole 18 of the lower press board 10B on the fixed side.
- step S33 the timer I is viewed under the timer control by the timer I, and it is determined whether it is the heating timing in step S34, and it is determined whether it is the compression timing in step S35.
- water vapor of a predetermined temperature for example, 110 to 150 ° C.
- a predetermined temperature for example, 110 to 150 ° C.
- step S37 a compression process of 50% compression is entered in step S37.
- the pre-compression process in step S37 has a compression rate of 50%.
- the compression rate may be in the range of 20 to 80% in the first pre-molding.
- step S37 the compression force of the upper press board 10A is set to a predetermined pressure (for example, 20 to 30 kg / cm 2 ) with respect to the lower press board 10B on the fixed side, and the multilayer material NW before press is used as the upper press machine. 10A and the lower press panel 10B are heated and compressed for a predetermined time (for example, 5 to 20 minutes). Also, in step S38, it is determined whether the heating / compression is completed, and the routine processing from step S33 to step S38 is performed until the end time is reached.
- a predetermined pressure for example, 20 to 30 kg / cm 2
- the compression rate in step S37 is determined based on the temperature rise of the multilayer material NW before pressurization, that is, the internal temperature state of the multilayer material NW before pressurization according to the elapsed time of the timer I in step S38, heating It is desirable to gradually increase with the passage of time, and it is preferable to set the heating and compression time in consideration of the heating time.
- step S38 If it is determined in step S38 that the preliminary heating process in step S36 based on the operation of the timer I in step S33 and the preliminary compression process in step S37 are completed, the preliminary fixing process is entered in step S39.
- normal temperature cooling water or ground water is passed through the piping path 15 of the upper press panel 10A and the piping path 16 of the lower press panel 10B on the basis of the timer II in step S40.
- the lower press panel 10B is cooled to around normal temperature and held for a predetermined time (for example, 10 to 60 minutes for oil palm) depending on the material.
- a predetermined time for example, 10 to 60 minutes for oil palm
- the compression force of the upper press disk 10A with respect to the lower press disk 10B on the fixed side is maintained at a predetermined pressure (for example, 20 to 50 kg / cm 2 ) that is the same as the pressure at the time of heat compression.
- the board 10A and the lower press board 10B are cooled.
- the pressure releasing process is entered in step S41, the upper press board 10A is raised with respect to the lower press board 10B on the fixed side, and the oil palm molded body EO which is a finished product from the internal space IS and the positioning hole 18 is obtained.
- a series of preliminary molding is completed, and a compacted preliminary oil palm molded body HW is obtained which is compressed into a plate shape at a compression rate of about 50% and consolidated.
- the mold of the compacted material manufacturing apparatus MC is composed of an upper press 10A composed of a mold for forming the flat part EP and the convex part EQ on the flat part EP, and a mold for forming the concave part ER on the flat part EP and above.
- the lower press panel 10B is assumed.
- a preliminary oil palm molded body HW is set in the positioning hole 18 of the compacted material manufacturing apparatus MC. In this first molding, the preforms have the same outer shape, and the oil palm materials W in the stacking direction are joined to each other.
- the upper press board 10A is lowered at a predetermined pressure with respect to the preliminary oil palm molded body HW placed on the positioning hole 18 of the fixed lower press board 10B, and the upper surface of the preliminary oil palm molded body HW, ie, the main In the embodiment, the oil palm materials W1,...
- the timer III is viewed under the timer control by the timer III, and it is determined whether it is the heating timing in step S43, and it is determined whether it is the compression timing in step S44.
- step S43 steam at a predetermined temperature (for example, 110 to 170 [° C.]) is passed through the piping path 15 of the upper press panel 10A and the piping path 16 of the lower press panel 10B in step S45, and the internal space IS and the positioning holes 18 is maintained at a predetermined temperature (for example, 110 to 170 [° C.]).
- a predetermined temperature for example, 110 to 170 [° C.]
- step S46 the compression force of the upper press board 10A is set to a predetermined pressure (for example, 20 to 30 kg / cm 2 ) with respect to the lower press board 10B on the fixed side, and the preliminary oil palm molded body HW becomes the upper press board. 10A and the lower press panel 10B are heated and compressed for a predetermined time (for example, 5 to 20 [min]).
- step S47 it is determined whether or not the main heating / compression is completed, and the routine processing from step S42 to step S47 is performed until the end time is reached.
- the compression force in step S46 is the temperature rise of the preliminary oil palm molded body HW, that is, the temperature state inside the preliminary oil palm molded body HW according to the elapsed time of the timer I in step S42, heating It is desirable to gradually increase with the passage of time, and it is preferable to set the heating and compression time in consideration of the heating time.
- step S47 If it is determined in step S47 that the main heating process in step S45 based on the operation of the timer III in step S42 and the main compression process in step S46 have been completed, the main fixing process is entered in step S48. In this immobilization process, normal temperature cooling water or ground water is passed through the piping path 15 of the upper press panel 10A and the piping path 16 of the lower press panel 10B on the basis of the timer IV in step S49.
- a predetermined temperature eg, 140 to 160 ° C.
- the lower press panel 10B is cooled to around room temperature and held for a predetermined time (for example, 10 to 60 minutes for oil palm) depending on the material.
- a predetermined time for example, 10 to 60 minutes for oil palm
- the compression force of the upper press disk 10A with respect to the lower press disk 10B on the fixed side is maintained at a predetermined pressure (for example, 20 to 50 kg / cm 2 ) that is the same as the pressure at the time of heat compression.
- the board 10A and the lower press board 10B are cooled.
- the pressure releasing process is entered in step S50, and the upper press disk 10A is raised relative to the fixed-side lower press disk 10B, and the finished oil palm molded body EO from the internal space IS and the positioning hole 18 is obtained.
- the series of main molding is taken out and a compacted oil palm molded body EO is obtained.
- the oil palm molded body EO of this embodiment is an oil palm molded body EO having a temperature and a compressive force immediately before entering the original fixation of the temperature and the compressive force. It is.
- die may form not the same thickness even if the plane part EP of the oil palm molded object EO, the recessed part EQ, and the convex part ER are formed with the same thickness.
- the temperature and compressive force have been described on the premise that compaction of about 50% is performed as the temperature and compressive force immediately before entering the original immobilization. It is only necessary to obtain a preliminary oil palm molded body HW having about 20 to 80% and to perform the main molding.
- FIG. 12 (a) a plate-like preliminary oil palm molded body HW is formed, and then the preliminary oil palm molded body HW is subjected to consolidation processing for lifting.
- the leg JW shown in FIG. 12B is integrally joined with the compacted material manufacturing apparatus MC to form an oil palm molded body EO as shown in FIG. 12C.
- the joining strength can be increased.
- the compression rate when forming the preliminary oil palm molded body HW, the compression rate may be about 20 to 80%, or it is fixed at the compression rate in the state of the specific oil palm molded body EO, and only the leg JW is used. May be joined at a compression rate of about 20 to 80%. Of course, the opposite may be possible.
- the plate-like preliminary oil palm molded body HW is compressed into the flat part EP, the concave part EQ, and the convex part ER with the compression ratio as the oil palm molded body EO.
- the leg JW shown in FIG. 13 (b) for lifting the preliminary oil palm molded body HW is integrally joined with the compacted material manufacturing apparatus MC, as shown in FIG. 13 (c). It is. At this time, if the preliminary oil palm molded body HW and the leg JW are joined so that the joining surfaces thereof are in the same fiber length direction, the joining strength can be increased.
- the compression rate when forming the preliminary oil palm molded body HW, the compression rate may be about 20 to 80%, or it is fixed at the compression rate in the state of the specific oil palm molded body EO, and only the leg JW is used. May be joined at a compression rate of about 20 to 80%. Of course, the opposite may be possible.
- a convex portion ER having a small compression rate is formed on a plate-shaped oil palm molded body EO.
- the flat part EP of the oil palm molded body EO is buffered by the convex part ER that is convex downward.
- a compression rate of about 0 to 20% it is possible to provide a stable thickness and a stable life by applying a compression rate of about 0 to 20%.
- a flat oil palm molding EO is formed on the upper surface of a plate-shaped oil palm molding EO, and the preliminary oil palm molding is formed.
- the leg JW for lifting the HW is integrally joined by the compacted material manufacturing apparatus MC.
- the compression ratio may be about 20 to 80% as the preliminary oil palm molded body HW, or the compression ratio in the state of the specific oil palm molded body EO It may be fixed and only the legs JW may be joined with a compression rate of about 20 to 80%. Of course, the opposite may be possible.
- the fine convex part ER on the upper surface functions as a slip stopper
- an oil palm molded body EO having a predetermined thickness integrally holds the oil palm materials W stacked in a plurality of layers only by the recess EQ. Locations other than the concave portion EQ may be subjected to consolidation processing, or the superposed state may be maintained.
- the use is suitable for an attic of a house, a heat insulating material of a wall, and the like.
- an oil palm molded body EO having a predetermined thickness integrally holds the oil palm material W stacked in a plurality of layers only by the recess EQ. Locations other than the concave portion EQ may be subjected to consolidation processing, or the superposed state may be maintained.
- the use is suitable for an attic of a house, a heat insulating material of a wall, and the like.
- the five oil palm materials W1,..., W5 in the present embodiment have a thickness of 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, 4.5 mm. , 5.0 mm, 5.5 mm, and 6.0 mm are compressed from the pre-pressing multilayer material NW in which five oil palm materials W having the same thickness are arranged so that the fiber lengths intersect at right angles.
- a laminated plywood was produced in place of the oil palm molded body EO.
- a compacting process with a compression ratio of 20 to 80% was performed on the thickness of the multilayer material NW before compression before compression.
- the temperature of the supplied steam is raised to 110 to 210 degrees, and the compression force applied during that time is 20 to 50 kg / cm 2 .
- the compression force applied during that time is 20 to 50 kg / cm 2 .
- a 7.5 mm pre-pressurized multilayer material NW is obtained, but when compressed at a predetermined compression rate at the laboratory level, Due to the expansion after decompression, it is several percent or less, but an error is present.
- the five oil palm materials W in the present embodiment have a thickness of 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, 4.5 mm. , 5.0 mm, 5.5 mm, and 6.0 mm are compressed from the pre-pressing multilayer material NW in which five oil palm materials W of the same thickness are arranged so that the fiber lengths are parallel to each other.
- a laminated plywood corresponding to the oil palm molded body EO was produced. Similar to the former, a laminated plywood was obtained in place of the oil palm molded body EO, which was subjected to consolidation processing with a compression rate of about 20 to 80% with respect to the thickness of the multilayer material NW before compression basically before compression. .
- the temperature of the supplied steam is raised to 110 to 210 ° C., and the compression force applied during that time is 20 to 50 kg / cm 2 .
- Table 1 the pre-pressing multilayer material NW in which five oil palm materials W of the same thickness are arranged so that the fiber (vascular bundle) length intersects at right angles is indicated as “cross-bonded state”, and the fiber length is The parallel multi-layer material NW before pressurization was shown as “parallel joined state”.
- Table 1 shows the results of the endurance test. Placed in a place where sunlight is used for three months from April to June, and 30 minutes of water at 10 and 4 o'clock on sunny days under natural weather conditions. Sprayed for a minute. In the “cross-bonded state” 1.5 mm and 2.0 mm laminated plywood PW, the surface was partially not flush, and there was a possibility that bubbles were generated and peeled inside. That is, it has been found that the usage environment conditions are restricted.
- the reaction start temperature of hemicellulose is 60 ° C. or higher. It turned out to be a material.
- the laminated plywood A1 corresponding to the oil palm molded body EO is composed of four oil palm materials W of 3.0 mm of oil palm materials W1,..., W4, and the thickness of the oil palm material W is set to 3.0 mm.
- the laminated plywood B is composed of four oil palm materials W, and the thickness of the oil palm material W is 3.0 mm + 2.5 mm + 2.5 mm + 3.0 mm.
- the laminated plywood C1 is made of three oil palm materials W, and the thickness of the oil palm material W is 2.5 mm + 3.0 mm + 2.5 mm.
- the laminated plywood D1 is composed of three 3.0 mm oil palm materials W, and the thickness of the oil palm material W is 3.0 mm + 3.0 mm + 3.0 mm.
- the compression ratio of the multilayer material NW before pressurization and the laminated plywood PW was calculated by the formula ⁇ (thickness of the multilayer material NW before pressurization) ⁇ (thickness of the laminated plywood PW) ⁇ / thickness of the multilayer material NW before pressurization. .
- the laminated plywood A1 and laminated plywood B1 did not change within 90 minutes even when applied to 30 ° C. hot water.
- the laminated plywood B1 softened in 45 minutes, and the laminated plywood A1 softened in 60 minutes.
- the laminated surface softened in 30 minutes even when it was immersed in hot water at 30 ° C. That is, this is not a problem of 60 ° C. or higher of the reaction start temperature of hemicellulose, but it can be estimated that the influence of compressive force is exerted.
- the compressive force When the compressive force is increased, the air inside the laminated plywood C1 disappears and dense bonding is performed. However, if the compressive force is weak, only formal bonding is performed without crushing the fibers. It is estimated that the whole was softened. Naturally, the laminated surface of the laminated plywood C1 softened within 15 minutes even when it was immersed in hot water at 60 ° C. And the laminated plywood D1 is joined to hot water at 30 ° C. for 45 minutes or less by increasing the thickness of the oil palm material W and increasing the compressive force, and 15 minutes even with hot water at 60 ° C. I endure below. Therefore, it is a necessary requirement to increase the compression force. From the viewpoint of the compression rate, a compression rate of 60% or more, more preferably 65% or more is desirable. In particular, when the compression rate is 70% or more, the safety is increased. When the compression rate is low, it is desirable to apply a water-repellent coating agent to the surface.
- the oil palm material W is a multilayer material NW before pressurization in which the fiber (vascular bundle) lengths intersect with each other at right angles, and Since the thickness of the oil palm material W has a boundary line at 2.5 mm, it is preferably 2.5 mm or more. In particular, there are no conditions in which the laminated plywood PW is immersed in hot water at 30 ° C. in nature. However, if the thickness of the oil palm material W is 2.5 mm and the compression rate is 65% or more, it can be used. Show. The conditions under which the oil palm molded body EO is immersed in hot water at 60 ° C.
- the compression ratio is 65% or more. This means that it is also difficult to appear.
- the boundary line of the compressibility is about 65%, in mass production, it is desirably 65% or more, and the thickness of the oil palm material W is also 3.0 mm or more. A thickness of 1 mm or more is desirable for the thickness after consolidation.
- the inventors made three experiments in which the oil palm material W is orthogonal, each having a thickness of 4 mm, and conducted experiments similar to those in Tables 2 and 3 on the laminated plywood E1, the laminated plywood F1, and the laminated plywood G1. I went there. It was confirmed that the compression ratio was 48.75%, which was 50%, and it was not immersed in hot water at 60 ° C. That is, as shown in Table 5, the compression rate of the laminated plywood E1 and the laminated plywood F1 may be 50% or more, and if the compression rate including the laminated plywood G1 is 40% or more, there is a practical problem. It was confirmed that it did not occur.
- the laminated plywood corresponding to the oil palm molded body EO of the present embodiment is formed by peeling a predetermined length of the oil palm trunk WD to a predetermined thickness with a rotary race while rotating it in the circumferential direction.
- one piece of oil palm material W having a thickness of 1 mm or more is compressed and fixed by a mold formed with one or more of a flat part, a concave part, and a convex part, and integrated. It is joined.
- this oil palm trunk WD has no nodes and no annual rings, when the oil palm material W is created by peeling off from the outer periphery to a predetermined thickness by a rotary race, a uniform oil palm material W is obtained. As a result, the oil palm material is obtained.
- the oil palm molded body EO made of W is homogeneous.
- the joining force is changed by the resin component and sugar component contained in the oil palm trunk WD itself depending on the applied temperature and pressure, an arbitrary adhesive force can be obtained by controlling the applied temperature and pressure.
- other synthetic resin and synthetic rubber are used as an adhesive. Because it is not, it can be returned to nature and does not cause pollution problems.
- the oil palm material W has almost no voids due to the compressive force when joined by the action of a resin component such as lignin contained in the oil palm itself and sugars such as cellulose and hemicellulose.
- a resin component such as lignin contained in the oil palm itself and sugars such as cellulose and hemicellulose.
- hemicellulose has a function of binding lignin and cellulose, and it is unclear how much they interfere with each other when the oil palm trunk WD is naturally cultivated.
- a predetermined temperature for example, 80 ° C. or more of the reaction start temperature of lignin, the reaction start temperature of hemicellulose was 60 ° C. or more, and they reacted with each other to become firm characteristics.
- the oil palm molded body of the above embodiment is formed by peeling a predetermined length of oil palm trunk WD from the outer periphery with a rotary race while rotating it in the circumferential direction, and the thickness of one piece obtained by compacting it.
- Two or more oil palm materials W of 1 mm or more are integrally joined. Therefore, at least two oil palm materials W that have been compacted are arranged so as to face each other, and they are joined together. Therefore, when the resin component and sugar component contained in the oil palm material W are insufficient.
- the desired oil palm molded body EO is manufactured by adding and bonding an adhesive to the objects to be joined.
- the oil palm molded body EO is a process of forming the oil palm material W by peeling the oil palm trunk WD having a predetermined length from the outer periphery to the predetermined thickness with the blade CT while rotating the oil palm trunk WD in the circumferential direction. It can be set as the thin plate process of step S10 and step S30.
- the process of drying the oil palm material W may be the same process as the process of forming the oil palm material W or may be a separate process, and this may be the drying process of step S11 and step S31. it can.
- the process of laminating the dried oil palm material W in a predetermined state as the multilayer material NW before pressurization is usually used by laminating in units of 2 to 5 sheets, but in principle Two or more layers may be stacked, and this can be set as the stacking step of Step S12 and Step S32.
- Step S12 and Step S32 Two or more layers may be stacked, and this can be set as the stacking step of Step S12 and Step S32.
- the process of heating to raise the temperature of the oil palm material W laminated after the lamination process of step S12 and step S32 can be set as the heating process of step S16, step S36, and step S45.
- the step of applying a compression force in the direction perpendicular to the surface of the oil palm material W to the laminated oil palm material W heated by the heating process of step S16, step S36, and step S45 is a predetermined compression. It is only necessary to compress the oil palm material W at a rate, that is, to compress the multilayer material NW before pressurization. This process can be a compression process of step S17, step S37, and step S46.
- Step S19, Step S39, and Step S48 After compressing for a predetermined time in the compression step, the temperature supplied in the heating step is lowered, the compression state of the oil palm molded body EO is fixed, and the compression force compressed at a predetermined compression rate is applied. The pressure is released, and this can be captured from the oil palm molded body EO and used as the fixing step of Step S19, Step S39, and Step S48.
- the manufacturing method of the oil palm molded body of the above-described embodiment is performed by rotating a predetermined length of the oil palm material W in the circumferential direction with a rotary race from the outer periphery to a predetermined thickness with a blade CT.
- step S10 The thin plate process of step S10 to be formed on the oil palm material W, the drying process of step S11 for drying the oil palm material W, and the step of laminating a plurality of oil palm materials W dried in the drying process in a predetermined state
- the heating step of S16 for heating to raise the temperature of the laminated oil palm material W after the laminating step, and the laminated oil palm material W heated by the heating step Applying a compressive force in a direction perpendicular to the surface of the oil palm material W while restricting extending in a direction parallel to the surface of the oil palm material W
- a step of compressing step S17 to compress a predetermined time, after pressing a predetermined time, the compression step is one comprising the step of immobilizing step S19 for immobilizing by lowering the temperature which has been supplied in the heating step.
- the oil palm trunk WD used in these steps has no nodes and no annual rings, when the oil palm material W is created by peeling off from the outer periphery to a predetermined thickness with a rotary race, a homogeneous oil palm material W is obtained, As a result, the oil palm molded body EO made of the oil palm material W becomes homogeneous.
- the bonding force can be changed by the action of resin components such as lignin contained in the oil palm trunk WD itself and sugars such as cellulose and hemicellulose, depending on the applied temperature and compressive force, the control of the applied temperature and compressive force is possible. Arbitrary adhesive strength can be obtained.
- an oil palm molded body EO is formed. Since synthetic resin and synthetic rubber are not used as adhesives, they can be returned to nature and cause no pollution problems. Furthermore, due to the compressive force when the oil palm trunk WD itself contains resin components such as lignin and the sugars such as cellulose and hemicellulose, the gap between the lauan thin plate L and the oil palm material W is almost eliminated, and the dense Since it becomes an organization, it is water-resistant, and is water-proof and insect-proof, and has a long service life even when used as a building material.
- a plurality of oil palm materials W are peeled off with a cutter CT from the outer periphery to a predetermined thickness with a rotary race while rotating the oil palm trunk WD of a predetermined length in the circumferential direction.
- a thin plate process comprising steps S10 and S32, a drying step comprising steps S11 and S31 for drying the oil palm material W formed in the thin plate process, and an oil palm material W dried in the drying step.
- the surface of the oil palm material to the laminated oil palm material heated by the heating step A compression process comprising steps S17 and S37, in which a compression force in a direction perpendicular to the surface of the oil palm material is applied and compressed for a predetermined time while being restricted by the positioning hole 18 or the frame body 20 from extending in the parallel direction.
- the oil palm material W compressed for a predetermined time in the compression step is made to be a method comprising a fixing step consisting of steps S19 and S39 for fixing the oil palm material W by lowering the temperature supplied in the heating step. it can.
- the frame body 20 or the positioning hole 18 is a frame body 20 or the positioning hole 18 that regulates a predetermined stacking surface, and regulates the top and bottom and the left and right of the surface of the plurality of thin plates W. Therefore, the thin plate W is prevented from extending in a direction perpendicular to the surface to which the compressive force is applied, cracks due to fiber breakage and the like, and a thick portion and a thin portion are not generated depending on the position.
- the oil palm molded body of the above embodiment regulates drying of a predetermined length of the oil palm material W, stacking of a plurality of sheets, and extending in the parallel direction along the surface of the heated oil palm material W.
- the oil palm molded body EO formed by compressing by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material W, then maintaining the compression and lowering the temperature and fixing,
- the laminated oil palm materials W are stacked with their fiber directions intersecting each other to prevent the plurality of oil palm materials W from being bent in a direction perpendicular to the surface thereof.
- the oil palm material W is laminated with the fiber directions intersecting each other, it is compressed by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material W.
- the oil palm molded body of the above-described embodiment is obtained by drying a predetermined length of the oil palm material W, laminating a plurality of sheets, heating and extending in a parallel direction along the surface of the laminated oil palm material W.
- An oil palm molded body EO that is compressed by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material W while regulating, and then maintaining the compression and lowering the temperature to fix it.
- a plurality of the laminated oil palm materials W are overlapped so that the plurality of oil palm materials W are curved only in a specific perpendicular direction to the surface.
- the oil palm material W is laminated and laminated in consideration of the fiber direction, and compressed by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material W. It can be molded according to the shape of the mold. Further, when a plurality of oil palm materials W are overlapped, the plurality of oil palm materials W are stacked so that the fiber directions intersect only one or two or all the fiber directions are parallel to each other. Since it is curved only in a specific perpendicular direction to the surface, it can be formed into a desired curved shape.
- the plywood itself made of laminated oil palm material W can be molded into a desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and the components that oil palm inherently has An oil palm molded body EO that is environmentally friendly is obtained.
- the oil palm molded body of the above-described embodiment is obtained by forming one or more of the plane portion EP, the concave portion EQ, and the convex portion ER with a mold on the oil palm material W having the predetermined length. EO is obtained.
- the concave EQ or the convex ER formed in the oil palm material W having the predetermined length is formed to have the same thickness as that of the other flat portion EP.
- the thickness of the obtained oil palm material W is uniform, and the mechanical strength is also increased. In addition, the entire oil palm molded body EO is not overwhelmed.
- the front and back recesses EQ formed on a plurality of laminated oil palm materials W are compressed with a large compressive force, and the plurality of laminated oil palm materials W Since the recesses EQ are integrated at the positions of the recesses EQ, the front and back recesses EQ formed in the plurality of laminated oil palm materials W are fixed integrally therewith. Therefore, it is possible to perform the joining independent of the compression of the planar portion EP, and since it can be integrated only there, it is possible to use a buffering agent, a heat insulating material, and the like.
- the oil palm trunk WD having a predetermined length is peeled off at a predetermined thickness by a rotary race in the circumferential direction in the thin plate process of step S10 and step S30.
- the oil palm material W formed in the palm material W and dried in the thin plate process of step S10 and step S30 in the drying process of step S11 and step S31 is dried, and in the stacking process of step S12 and step S32, the steps S11 and S31 are performed.
- a plurality of oil palm materials W dried in the drying step are laminated in a predetermined state.
- step S16 and step S36 it heats so that the temperature of the oil palm material laminated
- the upper mold planar portion EP and upper On the surface of the oil palm material W with the upper press board 10A made of a mold that forms a convex part EQ on the lower die (the lower press board 10B made of a mold that forms a concave part ER on the flat part EP and the upper part).
- Step S19 and Step S39 A compression force in a right angle direction is applied and compression molding is performed for a predetermined time.
- Step S17 and Step The laminated oil palm material W compressed for a predetermined time in the compression step of S37 is cooled and fixed by lowering the temperature supplied in the heating step of steps S16 and S36.
- the plurality of oil palm materials W peeled to have a predetermined thickness can be formed in a necessary thickness in the stacking process of Step S12 and Step S32. Therefore, the thickness can be determined according to the intended use.
- the heating process of Step S16 and Step S36 for heating to increase the temperature of the oil palm material W stacked in the stacking process of Step S12 and Step S32 particularly when a plurality of oil palm materials W are heated with water vapor, lignin Since resin components such as cellulose and sugars such as cellulose and hemicellulose soften and bond, a firm oil palm molded body EO is obtained by the immobilization process in steps S19 and S39.
- the laminated oil palm material W forms a convex portion EQ on the flat surface portion EP of the mold made of the press board 10 and restricts the oil palm material W from extending in a direction parallel to the surface of the oil palm material W. Compressing for a predetermined time by applying a compressive force in a direction perpendicular to the surface of the oil palm material W between the upper mold of the upper press panel 10A and the lower mold of the lower press panel 10B on which the flat part EP and the concave part ER are formed. Since the molded oil palm material W is molded, it can be compression-molded without increasing the area of the laminated oil palm material W, so that an oil palm molded body EO having a desired three-dimensional shape and a desired outer diameter is obtained.
- the oil palm molded body EO can be easily taken out from the mold because the temperature supplied in the heating process of step S16 and step S36 is lowered to be cooled and fixed. Therefore, the plywood itself made of laminated oil palm material W can be molded into a desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and the components that oil palm inherently has An oil palm molded body EO that is environmentally friendly is obtained.
- the temperature of the oil palm material W laminated after the laminating process of step S12 and step S32 is heated to increase in the heating process of step S16 and step S36, and the heat heated in the compression process of step S17 and step S37.
- the compressed oil palm material W is restricted from extending in a direction parallel to the surface thereof, a compression force in a direction perpendicular to the surface of the oil palm material W is applied to compress the oil palm material W for a predetermined time.
- the extension that the compression force applied in the compression process of S17 and Step S37 escapes in a direction parallel to the surface of the oil palm material W is limited, and the compression force of all the laminated oil palm materials W is effectively used.
- the outer dimensions of the oil palm material W can be made uniform, and the compression rate of the entire oil palm material W is set to a value corresponding to the tree species. It can, will not be put out waste from the plurality of oil palm material W during manufacture. Therefore, the use ratio of the resin component and sugar component contained in the oil palm material W is increased, and a multilayer plywood bonded with a natural product can be obtained, the loss of the material used is reduced, the cost is reduced, and sick house syndrome is caused.
- a laminated plywood utilizing the components inherently possessed by oil palm can be obtained by suppressing the amount of formaldehyde-based adhesive used.
- the palm of the oil palm has no nodes and no annual rings
- the oil palm material W is created by peeling it off from the outer periphery with a rotary race
- a uniform thin plate is obtained.
- the oil palm material W The resulting oil palm molded body EO is homogeneous.
- the joining force is changed by the resin component and sugar component contained in the trunk of the oil palm itself depending on the applied temperature and compressive force, an arbitrary adhesive force can be obtained by controlling the applied temperature and compressive force.
- step S17 and step S37 is performed by applying a compressive force in a direction perpendicular to the surface of the oil palm molded body EO while restricting extending in a direction parallel to the surface of W.
- the extension that the compressive force applied in the process escapes in a direction parallel to the surface of the oil palm material W is limited, the compressive force of all the laminated oil palm materials W is effectively used, and the oil palm
- the outer dimensions of the material W can be made uniform, and the compression rate of all the oil palm materials W can be made uniform, and waste is produced from the plurality of oil palm materials W during production. Theft is not.
- the plurality of oil palm materials W are joined by a resin component and a sugar component contained in the trunk of the oil palm itself to form the laminated plywood, and other synthetic resins and synthetic rubbers are used as adhesives. Since it is not used, it can be returned to nature and will not cause pollution problems. Furthermore, because of the compressive force when joined by the resin component and sugar component contained in the trunk of the oil palm itself, there is almost no void in the thin plate, resulting in a dense structure, water resistance, and waterproofing. It is rich in insect repellent and has a long service life even when used as a building material. In addition, since the joining here has the ability to mold from the oil palm trunk to the concave / convex surface opposite to the concave / convex surface generated when the oil palm material thin plate is formed, mechanical joining using the molding ability is also possible. include.
- a predetermined length of the oil palm trunk WD is formed by peeling off to a predetermined thickness with a rotary race while rotating in the circumferential direction, and when one of them is consolidated, a plurality of sheets each having a thickness of 1 mm or more
- the oil palm material W can be compressed and fixed simultaneously and joined together.
- the temperature of the oil palm material W laminated after the lamination process of step S12 and step S32 is heated to increase in the heating process of step S16 and step S36, and the heat heated in the compression process of step S17 and step S37.
- the laminated oil palm material W is compressed for a predetermined time by applying a compressive force in a direction perpendicular to the surface of the oil palm material W while restricting extending in a direction parallel to the surface of the oil palm material W. Therefore, the extension that the compressive force applied in the compression process of steps S17 and S37 escapes in a direction parallel to the surface of the oil palm material W is limited, and the compressive force of all the laminated oil palm materials W is limited. Can be used effectively, and the compression ratio of all the oil palm materials W can be made uniform, and waste from a plurality of oil palm materials W is produced during production. That there is no.
- an oil palm molded body EO joined with a natural product can be obtained, the loss of the material used is reduced, the cost is reduced, and the cause of sick house syndrome
- the use of the formaldehyde-based adhesive is suppressed, and a laminated plywood using the components that oil palm originally has is obtained.
- the thin plate process of step S10 and step S30 of the manufacturing method of the oil palm molded body EO uses the oil palm material W, at least compared with the conventional plywood, formaldehyde that causes sick house syndrome Use of adhesive can be suppressed.
- a plurality of oil palm members W are formed by peeling a predetermined length of an oil palm trunk to a predetermined thickness with a rotary race in the circumferential direction in the thin plate process of step S30.
- the oil palm material W formed in the thin plate process in step S30 in the drying process in step S31 is dried, and a plurality of oil palm materials W dried in the drying process in step S31 in the stacking process in step S32 are stacked in a predetermined state.
- step S36 heats so that the temperature of the oil palm material W laminated
- the upper and lower molds of the mold are subjected to a compression force in a direction perpendicular to the surface of the oil palm material W and are compressed for a predetermined period of time, while preliminarily extending in parallel to
- the temperature of the laminated oil palm material W compression-molded for a predetermined time in the preliminary compression process in step S37 by the fixing process is decreased in the preliminary heating process in step S36 in the preliminary fixing process in step S39.
- the molding comprises step S42 to step S49 in which the temperature of the laminated oil palm material W that has been compression-molded and compression-molded for the predetermined time is lowered and fixed.
- the preliminary molding including the preheating process in step S36, the preliminary compression process in step S37, the preliminary fixing process in step S39, and the main molding including steps S42 to S49. Is one or more times as pre-molding the pre-heating process in step S36, the pre-compression process in step S37, and the pre-fixing process in step S39, or one or more times as the main fixing process consisting of steps S42 to S49 as the main molding. Can be executed repeatedly.
- step S30 formed on a plurality of oil palm materials W
- the drying process of step S31 of the oil palm materials W the stacking process of step S32 of laminating a plurality of oil palm materials W
- the oil Oil palm material W between the upper mold and the lower mold of the mold while regulating the preheating step of step S36 for heating the palm material W and extending in the parallel direction along the surface of the heated oil palm material W
- Step S39 in which the temperature supplied in the step S37 for compressing and molding for a predetermined time by applying a compressive force in a direction perpendicular to the surface and the temperature supplied in the preheating step in Step S36 is cooled and fixed.
- This preliminary fixing step is a preliminary molding of the preliminary oil palm molded body HW.
- the preliminary oil palm molded body HW is a plate shape compressed at a compression rate of 20 to 80%, or a three-dimensional shape body compressed at a compression rate of 20 to 80% with respect to the entire oil palm molded body EO. Also good. At this time, it is restricted from extending in the parallel direction along the surface of the heated oil palm material W, and is molded into a finished dimension. Further, at this time, if the molding is performed by reducing the amount of water vapor pressure to be supplied, the main molding process including the subsequent steps S42 to S49 can be easily performed.
- the laminated oil palm material W fixed in the preliminary fixing process in step S39 is again parallel along the surface of the laminated oil palm material W under predetermined humidity and temperature conditions. While restricting extending in the direction, the upper and lower molds are molded by compressing for a predetermined time by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material W, and The temperature of the laminated oil palm material W molded by time compression is lowered and cooled, and is permanently fixed by the main molding in step S48.
- the plurality of oil palm materials W formed by peeling to a predetermined thickness can be formed to a necessary thickness in the stacking process of step S32, and the thickness can be determined according to the intended use.
- step S36 for heating to increase the temperature of the oil palm material W laminated in the laminating step of step S32, in particular, when a plurality of oil palm materials W are heated with steam, a resin component such as lignin and the like Since saccharides such as cellulose and hemicellulose are softened and bonded, a solid molded body is obtained by the main immobilization process including steps S42 to S49.
- the laminated oil palm material W is controlled to extend in a direction parallel to the surface of the oil palm material W even in the main fixing step including Step S42 to Step S49, and the upper mold of the mold.
- the lower mold are compressed for a predetermined time by applying a compression force in a direction perpendicular to the surface of the oil palm material W, so that the area of the laminated oil palm material W is compressed without being expanded. Since it can be molded, an oil palm molded body EO having a desired three-dimensional shape and a desired outer diameter is obtained. In particular, whether it is the preliminary fixing process in step S39 or the main fixing process consisting of steps S42 to S49, the temperature supplied in the heating process of step S36 is lowered from the mold.
- the oil palm molded body EO Because it is cooled and fixed, the oil palm molded body EO is easy to take out. Since the thin plate process in step S30 of the oil palm molded body EO uses the oil palm material W, it is possible to suppress the use of formaldehyde-based adhesives that cause sick house syndrome at least as compared with conventional plywood. it can. Therefore, the oil palm molded body EO itself made of the laminated oil palm material W can be molded into a desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and oil palm inherently has An oil palm molded body that is environmentally friendly using the ingredients that are present.
- the length direction of the fibers is an array of thin plates that are orthogonal to each other, but the use is determined as a multilayer plywood PW for bending, the entire fiber (vascular bundle) direction is the same, One or two of the multi-layered sheets can have different fiber directions.
- a net for example, a wire net can be inserted therein.
- a metal lath M1 and a metal lath M2 known as a wire mesh are formed to have the same outer shape as the oil palm materials W1,. It is overlaid on the upper surfaces of the palm material W2 and the oil palm material W4.
- the metal lath M is simply referred to as the metal lath M in the general theory that does not matter the number of sheets, but when it means individual arrangement, it is expressed separately as a specific metal lath M1 and a metal lath M2.
- the metal lath M1 and the metal lath M2 are obtained by cutting a wound material into a predetermined size, and the cutting may be performed in another place or just before lamination.
- the metal lath M (simply referred to as the metal lath M when the number of sheets does not matter) is overlapped on the continuous thin plate UWD and simultaneously cut to form the metal lath M1 and the metal lath M2.
- the metal lath M1 and the metal lath M2 cut at different places may be stacked on the upper surfaces of the cut oil palm material W2 and oil palm material W4.
- description will be made on the premise that the metal lath M1 and the metal lath M2 are used as the wire mesh. In any case, it is desirable that the net used here is formed thin, and that having mechanical strength is desirable.
- the multilayer material NW before pressurization includes oil palm materials W1, W3, W5 having short sides in the supply direction of the continuous thin plate UWD that has been peeled off the oil palm trunk WD described with reference to FIG.
- the thin plates W2 and W4 having long sides in the supply direction of the continuous thin plate UWD shown in b) and the metal lath M1 and the metal lath M2 placed on the upper surface thereof are laminated.
- the outer shapes of the five oil palm members W1,..., W5 having a predetermined area and a predetermined thickness may be formed by cutting, or may be formed by cutting a fine tooth saw. Any of the properties of oil palm may be used, but cutting is more efficient from the viewpoint of workability.
- the metal lath M1 and the metal lath M2 are preferably formed by cutting.
- oil palm materials W1, W3, W5 having short sides in the supply direction of the continuous thin plate UWD from which the oil palm trunk WD has been peeled, and thin plates W2, W4 having long sides in the supply direction of the continuous thin plate UWD are provided.
- the metal lath M1 and the metal lath M2 are formed by cutting. As a result, the arrangement is made in a laminated relationship with the oil palm materials W1,..., W5 before the multilayer material NW before pressurization is stacked. It only needs to be completed.
- oil palm materials W1, W3, W5 with short sides in the supply direction of continuous thin plate UWD and oil palm materials W2, W4 with long sides in the supply direction of continuous thin plate UWD are mutually connected. What is necessary is just to load the multilayer material NW before pressurization so that the length direction of the fiber intersects. Further, the metal lath M1 and the metal lath M2 formed by cutting do not have to be disposed on the upper surfaces of the oil palm materials W2 and W4, and any position in the oil palm materials W1,..., W5. One sheet, two sheets, or three sheets may be disposed on the surface.
- the oil palm materials W1, W3, W5 with short sides in the supply direction of the continuous thin plate UWD and the oil palm materials W2, W4 with long sides in the supply direction of the continuous thin plate UWD shown in FIG. Can be combined with two oil palm materials W having a short side in the supply direction of the continuous thin plate UWD and three oil palm materials W having a long side in the supply direction of the continuous thin plate UWD. .
- the frame body 20 for positioning each side of the five oil palm materials W1,..., W5 (see FIG. 7).
- the description of the positioning hole 18 is the same as in FIGS.
- the step of laminating a plurality of oil palm materials W, metal laths M1, and metal laths M2 dried in the drying step in a predetermined state is called a laminating step here.
- the positioning hole 18 has an outer diameter that matches the outer shape of the oil palm material W, and the five oil palm materials W1,..., W5 and the two metal laths M1 and M2 are mounted in the positioning hole 18. Placed. Then, the upper press panel 10A and the lower press are controlled while the positioning hole 18 restricts the oil palm material W heated in the heating process from extending in the parallel direction along the surface of the oil palm material W. A compression force in a direction perpendicular to the surface of the oil palm material W is applied to the board 10B and compression molding is performed for a predetermined time. Although not shown, the five oil palm members W1,..., W5 and the metal laths M1 and M2 are compressed in the positioning hole 18.
- the surface of the upper press panel 10A that presses the five oil palm materials W1,..., W5 and the metal laths M1, M2 is on the upper surface of the five oil palm materials W1,. Are equal. Naturally, the bottom surfaces of the five oil palm members W1,..., W5 and the metal laths M1, M2 have the same size and shape so that they can be fitted to the lower press board 10B.
- the consolidated laminated plywood PW shown in FIG. 20B is compressed by applying a predetermined compressive force under a predetermined temperature condition to a multilayer laminated material NW before pressurization, for a predetermined time. After a lapse of time, the temperature is lowered to a predetermined temperature, fixed, and then decompressed. That is, a compression step of applying a compression force in a direction perpendicular to the surface of the oil palm material W to the laminated oil palm materials W1,..., W5 and the metal laths M1, M2 heated by the heating step is performed. After pressing for a predetermined time at a predetermined temperature in the compression process, the temperature supplied in the heating process is lowered, and through a fixing process for maintaining the compressed state, a consolidated laminated plywood PW is obtained.
- the step of heating to raise the temperature of the laminated oil palm material W after the laminating step is called a heating step, and the surface of the laminated oil palm material W is heated by the heating step.
- the step of applying a compressive force in a right angle direction is called a compression step.
- the temperature supplied in the heating step is lowered, and the step of cooling and fixing at normal temperature or slightly lower than that is fixed in a consolidated state. In this sense, it is called an immobilization process.
- the method of directly molding the laminated plywood PW of FIG. 20B from the pre-pressing multilayer material NW of FIG. 20A is performed once in the laminating step, heating step, compression step, and fixing step. This is only a continuous process.
- the multilayer material NW before pressurization in FIG. 20B the multilayer material NW before pressurization in FIG.
- the laminate plywood PW is finally compressed with a mold to form the laminated plywood PW.
- the metal lath in FIG. An oil palm material W sandwiching M1 and M2 is consolidated into a laminated plywood PW.
- the compacted material manufacturing apparatus MC for manufacturing the laminated plywood PW sandwiching the metal laths M1 and M2 of the present embodiment will be briefly described.
- the press machine 10 is mainly provided with the press machine 10 in which the internal space IS and the positioning hole 18 are formed by the divided structure of the upper press machine 10A and the lower press machine 10B.
- the movement restriction of the outer periphery of the multilayer material NW can be the frame 20 shown in FIG.
- the frame 20 as the movement restriction of the outer periphery of the pre-pressurized multilayer material NW is determined as a structure that can move up and down or a fixed structure depending on the dimensions of the upper press panel 10A.
- the frame body 20 shown in FIG. 7 is a modified example of the compacted material manufacturing apparatus MC of the embodiment, and has a vertically movable structure, and is disposed on the lower press panel 10B of FIGS. In place of the positioning hole 18.
- an outer lower press disk 10Ba and an inner lower press disk 10Bb having the same height are disposed on the base plate 25 of the lower press disk 10B, and a frame groove 21 is formed therebetween.
- a plurality of coil springs 22 are disposed on the base plate 25 side of the frame body groove 21, and a square movable frame 23 is disposed above the coil springs 22.
- a cutout is formed on the inner surface of the movable frame 23 to form a fluid path 24 that guides fluid such as water vapor from the side surface of the pre-pressurized multilayer material NW.
- the inner periphery of the square movable frame 23 is substantially equal to the outer periphery of the pre-pressing multilayer material NW.
- the movable frame 23 becomes elastic to the plurality of coil springs 22. It descends against it and responds to the compression of the multilayer material NW before pressurization. Then, the compression of the pre-pressurized multilayer material NW is completed at the movement limit of the plurality of coil springs 22.
- the movable frame 23 can be fixedly arranged on the lower press board 10B. That is, the movable frame 23 of the lower press panel 10B can be fixed and compressed by the upper press panel 10A inserted into the movable frame 23.
- the thickness of the oil palm materials W1,..., W5 is heated and compressed by the external force applied in the direction perpendicular to the length direction of the fibers of the oil palm material W, and the whole is compressed and compressed.
- a laminated plywood PW having a rate of 60% or more is manufactured.
- the elongation in the direction parallel to the plane of the oil palm material W is caused by the compressive force in the thickness direction of the oil palm materials W1,. It is regulated by 23 and does not grow. Therefore, the laminated plywood PW sandwiching the metal laths M1 and M2 is subjected to a die processing with a uniform compressive force.
- the internal vapor pressure is gradually released by releasing the vapor pressure, and the vapor pressure in the pre-pressurized multilayer material NW is lowered and fixed by cooling.
- a laminated plywood PW having no surface deformation called bulging deformation or puncture can be formed. That is, the laminated plywood PW sandwiched with the metal laths M1 and M2 as the nets manufactured in the present embodiment does not cause bulging deformation and surface cracks after being released from compression, and ensures stable quality.
- the laminated plywood PW is obtained by compressing and fixing using the upper press board 10A and the lower press board 10B.
- a microwave used by a normal microwave oven is used. The laminated plywood PW can be obtained even if the multilayer material NW before pressurization is heated and compressed by dielectric heating at a high frequency slightly lower than the wave frequency band, and is fixed.
- the fiber directions of the vascular bundle or the like may be laminated in the same direction, or the fiber directions may be laminated to be orthogonal to each other.
- fibers such as vascular bundles of the wood surface layer softened in the consolidation process have the same fiber direction adjacent to the lamination direction (longitudinal direction).
- the vascular bundle enters the parenchyma between the vascular bundles of the counterpart oil palm material W, and the oil palm materials W fixed in the entangled state are firmly joined to each other. Is done.
- the expansion rate and contraction rate of the joint surface can be made completely equal, no stress is applied to the joint surface even if the ambient environment conditions change.
- the fiber directions of the vascular bundles and the like are laminated with the same direction, when compressive force is applied thereto, the oil palm material W becomes the fiber direction of the original oil palm trunk WD, and the oil palm material W is different.
- the vascular bundle enters between the vascular bundles of the oil palm material W as the counterpart material and is fixed there, it can be integrated in a natural joined state. Accordingly, the bonding strength is high and the mechanical strength is high, and a stable dimensional shape after consolidation is ensured.
- the metal lath M1 and the metal lath M2 as the metal mesh do not extend in the plane direction of the oil palm material W, and the oil palm material W1 and the oil palm material W2 between which the metal lath M1 and the metal lath M2 are sandwiched, the oil It enters into the direction which is applying the pressure of the surface of palm material W3 and oil palm material W4.
- a metal lath M1 or a metal lath M2 is disposed between the oil palm material W1 and the oil palm material W2, and between the oil palm material W3 and the oil palm material W4, and the metal laths M1 and M2 are joined between the oil palm materials W.
- the amount of the resin component and the sugar component contained in the oil palm material W at the time of joining from between the oil palm materials W is not required to use other adhesives. Is also secured.
- the metal laths M1 and M2 are embedded as inserts in the resin component and sugar component contained in the oil palm material W, the oil palm material W and other wood are not only integrated with the oil palm material W. Even if they exist.
- one metal lath M1, M2 at the center of the plurality of oil palm materials W or at a position other than the center, it acts as an insert, and the surface of the laminated plywood PW is bent. Even when an external force is applied, the surface of the laminated plywood PW can be prevented from being bent by the action of the metal laths M1 and M2.
- the oil palm material W and the metal laths M1 and M2 to be laminated according to the present embodiment even if the fiber directions of the vascular bundles and the like are laminated, the bending can be prevented. Curving can be prevented even when the layers are stacked with their directions orthogonal to each other.
- the oil palm material W Since one or more nets, that is, metal laths M1 and M2 are disposed between the oil palm materials W and the metal lath M1 or metal lath M2 is joined between the oil palm materials W, the oil palm material W Since the nets are joined and integrated with each other, the amount of the resin component and the sugar component contained in the oil palm material W at the time of joining from between the oil palm materials W is not required to use other adhesives.
- the metal lath M1 and the metal lath M2 are not expanded or contracted corresponding to the bending even if the oil palm material W tries to bend. Can be provided.
- it is a surface cut parallel to the fibers of the oil palm material W to be laminated and the tree heart side surfaces, or a surface cut parallel to the fibers and the bark side surfaces face each other for lamination.
- the oil palm material W is divided at a linear position passing through the tree core of the oil palm trunk WD and arranged so as to face each other, the tree heart side surfaces or the bark side surfaces face each other.
- the heating temperature in the heating process in the initial stage of compression is in the range of 110 to 160 ° C. If the heating temperature is too low, sufficient compacting will not be achieved, resulting in insufficient strength, poor bonding between wood, and dimensional shape deformation due to hygroscopic drying after product production, while the heating temperature is too high.
- the surface may be carbonized to change to black and the color tone or scent peculiar to wood may be impaired, or the material may deteriorate and the strength may be lowered and become brittle. According to the experiments by the present inventors, it has been found that an appropriate temperature condition is in the range of 110 to 160 ° C.
- the heating temperature in the heating step in the initial stage of compression is in the range of 120 to 140 ° C.
- the specific set temperature is set according to the moisture content of the oil palm material W and the like.
- the laminated plywood of this Embodiment is processed with the compacting material manufacturing apparatus MC which manufactures the oil palm molded object EO of Embodiment 1.
- FIG. As shown in the flowchart of FIG. 8, in the compression process of step S17, the compression pressure of the upper press board 10A is set to a predetermined pressure with respect to the lower press board 10B on the fixed side, and the multilayer material NW before pressurization is the upper press board 10A. Then, it is heated and compressed for a predetermined time by the lower press panel 10B. At this time, as shown in FIG.
- the dried wood DW can be freely diffused and discharged through the internal space IS and the positioning hole 18, so that the entire thickness is efficiently and uniformly heated and compressed.
- the surface is prevented from being carbonized, uniformly heated and compressed, and further, the surface is prevented from drying. Smooth fixation is achieved, and recovery, return, deformation, etc. after molding are suppressed.
- the start of the vapor pressure control in the internal space IS and the positioning hole 18 in the sealed state due to the introduction or discharge of water vapor is performed after the temperature of the upper press panel 10A and the lower press panel 10B reaches a specific heating temperature. It is desirable to be done. If it does in this way, water vapor can osmose
- the excess internal space IS based on the rate and the moisture in the positioning hole 18 are difficult to be removed, and the moisture content of the wood increases, so that return due to moisture absorption, deformation due to drying, and the like easily occur.
- step S19 is performed while the valve V11 is kept at the same predetermined pressure (preferably within the range of 1 to 100 kg / cm 2 ) as the pressure in the heating process in step S16 and the compression process in step S17.
- the valve V12 and the valve V13 (FIG. 5) are opened, and normal temperature cooling water is passed from the boiler device (not shown) through the piping 15 of the upper press panel 10A and the piping 16 of the lower press panel 10B.
- the upper press board 10A and the lower press board 10B are cooled to around room temperature and held for a predetermined time (for example, 10 to 120 [min]).
- a predetermined time for example, 10 to 120 [min]
- the upper press disk 10A is gradually raised and separated from the fixed-side lower press disk 10B.
- the pressure and the sealed state are released, and the laminated plywood PW sandwiching the finished metal laths M1 and M2 is taken out from the internal space IS and the positioning hole 18 to complete the series of processing steps.
- the thickness of the laminated multilayer material before pressurization NW as a whole is heated and compressed by an external force applied in a direction perpendicular to the length direction of the fibers of the multilayer material before pressurization NW laminated with the metal laths M1 and M2 sandwiched, and compacted.
- a laminated plywood PW having a specific gravity of 1.2 or more is manufactured.
- the laminated plywood PW sandwiched between the metal laths M1 and M2 obtained in this way is firmly joined to the oil palm materials W and the metal laths M1 and M2 by consolidation.
- the oil palm material W functions as a binder by being recrystallized and recombined after moving between the oil palm materials W, and further, the fibers of the surface layer of the oil palm material W are softened by the consolidation process, and the lamination direction It is considered that the timbers are firmly joined together by being intertwined with the fibers of the wood adjacent to the wood.
- wood can be joined together without using an artificial adhesive or environmental adhesive due to formaldehyde or a natural adhesive that is expensive. Therefore, it is environmentally friendly and the cost can be reduced.
- the oil palm material W is joined by using an adhesive, it is common to apply the adhesive and then to press the adhesive to cure the adhesive.
- the wood is joined without using an adhesive by compaction processing. A joining process is unnecessary, and the manufacturing process can be simplified.
- the laminated plywood PW sandwiched between the metal laths M1 and M2 obtained in this way is compacted to reduce the gap in the oil palm material W, and soften lignin, hemicellulose, etc. constituting the cell wall.
- -Decomposition, recombination, and recrystallization increase cell density, compensate for the disadvantage of oil palm material W, which is low in specific gravity, low in strength, and easily deformed, ensuring high strength and stable dimensional shape.
- the entire thickness of the laminated oil palm material W is uniformly compressed by performing the compacting process so that the air-dry specific gravity is 0.8 or more, the properties of the oil palm material W are changed, and the metal lath M1,
- the M2 insert significantly increases the hardness and the like, and the variation in physical properties and characteristic values such as hardness is reduced.
- the variation in the expansion rate and the drying rate due to changes in ambient environmental conditions is also small, and deformation due to it.
- the dimensional shape stability is increased. Therefore, the physical properties are stable, the quality between products is small, and the commercial value is high.
- a plurality of dried oil palm materials W are laminated and the whole is consolidated in a state where the metal laths M1 and M2 are sandwiched, and the expansion rate and contraction rate due to changes in ambient environment conditions are substantially uniform at the joint surface. Therefore, stable bondability is maintained, and stable dimensional shape is ensured without causing distortion, deformation, cracks, and the like due to stress applied to the bonding surface due to changes in ambient environmental conditions.
- the fibers of the surface layer softened in the consolidation process are the fibers of the oil palm material W that are adjacent in the longitudinal direction with the same fiber direction, Moreover, the oil palm material W fixed easily in the state in which the metal laths M1 and M2 are easily entangled and entangled with each other is firmly joined.
- the expansion rate and contraction rate at the joint surface can be made completely equal, no stress is applied to the joint surface when the ambient environmental conditions change. Therefore, the bonding strength is high, the mechanical strength is also high, and high dimensional shape stability is ensured.
- the multilayered material NW before pressurization is laminated with the fiber directions orthogonal to each other, even if expansion and contraction force is generated due to changes in the surrounding environmental conditions after the consolidation process, the mutual woods interact with each other and specify Directional warpage deformation is prevented.
- the fiber direction of the single plate is parallel and the cross section is symmetric on the front and back, preventing distortion due to changes in ambient environmental conditions, etc. Is done.
- a tough joining state can be obtained by increasing the compressive force with the same fiber direction in consolidation.
- the same fiber direction is laminated in a part of the inside, and the others are laminated with the fiber directions orthogonal to each other, so that the front and back fiber directions are aligned and the ambient environmental conditions It is possible to prevent distortion and the like due to the change of.
- the laminated plywood PW of the present embodiment is densified from the outer surface even when the compressed surface is densified by compaction processing and the oil palm material W does not use an expensive natural adhesive.
- the surface quality is good. That is, peeling from the fiber surface can be suppressed without using an artificial adhesive or a high-cost natural adhesive, which is environmentally friendly and can reduce costs. Furthermore, since the entire thickness is compacted, even if a large chamfering process or curved surface process is applied to the ridgeline on the thickness side surface, high hardness is ensured on the end surface.
- metal laths M1, M2 can be embedded by consolidation to increase the strength, or consolidation
- the temperature and compression during processing it is possible to discharge excess moisture, the water vapor pressure inside the multilayer material NW before pressurization is uniformly and suitably adjusted, and the deformation of the metal laths M1 and M2 is difficult. Therefore, swell deformation and the like after compression processing are also suppressed. Therefore, it is possible to form the laminated plywood PW having sufficient strength and stable dimensional shape. Therefore, effective utilization of the entire trunk of oil palm can be achieved.
- the oil palm material W is dried and disposed on the front and back surfaces having a small air-dry specific gravity
- the front and back layers contacting the upper press panel 10A and the lower press panel 10B as described above. Since a material having a small air-dry specific gravity after drying is disposed and compaction processing is performed, sufficient heat compression is performed by the upper press panel 10A and the lower press panel 10B in the material having a small air-dry specific gravity after drying.
- the difference in specific gravity between the woods is reduced, and the difference in the dimensional change rate after commercialization is also reduced. Therefore, the stability of the dimensional shape after commercialization increases.
- the laminated plywood PW according to the present embodiment is obtained by peeling the trunk of a soft oil palm having a high moisture content as the oil palm material W, and then drying, further laminating a plurality of sheets, and compacting the surface. Not only the strength and hardness of the entire plate thickness are greatly improved, but a wide range of applications such as flooring materials, waistboard materials, indoor furniture materials, and housing exterior materials used by surface coating are expected. In particular, since the surface hardness is increased by compaction processing and sufficient strength and hardness can be ensured even if the thickness is small, the thickness can be reduced in commercialization.
- the fiber directions are laminated so as to be orthogonal to each other, even if expansion and contraction force occurs due to changes in the ambient environmental conditions after consolidation, the mutual oil palm materials W interact with each other and warp deformation in a specific direction occurs. Is prevented.
- the vascular bundles of the oil palm material W are in a crossed state, the vascular bundles of each other are wound, and the metal laths M1 and M2 protect the crossed state of the vascular bundle of the oil palm material W. That is, cellulose, hemicellulose, and lignin are hydrogen-bonded by compaction under the entrained state of the oil palm material W.
- oil palm tree trunks contain a large amount of sugars, lignin, plastic components, etc. As the components of the composition break down and soften, they ooze out around the vascular bundle and form a space for recrystallization and recombination to enhance the binder function.
- the laminated plywood PW shown in FIG. 19 is laminated by crossing the fiber directions such as the vascular bundle of the oil palm material W from the multilayer material NW before pressurization, and directly compressed by the upper die and the lower die of the flat plate mold.
- the fiber direction of the vascular bundle of the oil palm material W is made parallel to each other, as shown in FIG. It can also be laminated and used as the multilayer material NW before pressurization.
- the oil palm material W1, the metal lath M1, the oil palm material W2, the oil palm material W3, the metal lath M2, the oil palm material W4, and the oil palm material W5 are stacked in this order from the top.
- the fiber bundles such as vascular bundles are laminated in parallel, one or more nets, that is, metal laths M are disposed between the oil palm materials W, and the metal laths M are disposed between the oil palm materials W. It is joined.
- the net between the oil palm materials W, for example, the metal lath M, is secured even if the resin component and sugar component contained in the oil palm material W are not used, and the mutual oil palm material W. Since the vascular bundle is in a parallel state, the vascular bundle on the opposite surface enters between the vascular bundles at high temperature and under pressure, and cellulose, hemicellulose, and lignin are hydrogen-bonded by compaction processing in this entrained state.
- oil palm tree trunks contain a lot of sugar, lignin, plastic components, etc., so these components decompose and soften and ooze out around the vascular bundle, and then recrystallize and recombine. As a result, it functions as a binder and is integrated. Therefore, it is easy to join the oil palm material W and the net such as the metal lath M, and even if the oil palm material W tries to bend, the metal lath M does not expand or contract corresponding to the bend. Can be provided. Moreover, it becomes difficult to bend with respect to the surface which laminated
- the metal lath M prevents the deformation. That is, even when the total number of oil palm materials W is an odd number, distortion caused by changes in ambient environmental conditions can be prevented in the same manner as when the fiber directions are stacked with the fiber directions orthogonal to each other.
- it is a plane cut parallel to the fibers of the oil palm material W to be laminated, and the side surfaces of the tree cores, or a plane cut parallel to the fibers and the side of the bark.
- the layers are laminated to face each other. That is, when the oil palm material W is divided at a linear position passing through the tree core of the oil palm trunk WD and arranged so as to face each other, the tree heart side surfaces or the bark side surfaces face each other. By joining together, warpage deformation in a specific direction due to the difference in cell density between the tree heart side and the bark side can be prevented.
- the laminated plywood PW sandwiching the metal lath M shown in FIG. 19 is laminated from the multilayer material NW before pressurizing with the fiber direction of the vascular bundle of the oil palm material W intersecting, and directly, the upper mold and the lower mold of the flat plate mold 22 is formed by compression with a mold, and is laminated by crossing the fiber directions of the oil palm material W vascular bundle or the like, but as shown in FIG. It is also possible to laminate in parallel directions, laminate one side or both sides of the laminated exposed design surface as a plate material other than the oil palm material W, and use it as the pre-pressurized multilayer material NW.
- one piece can be selected from any one of Lauan thin plate, China thin plate, and softwood thin plate peeled off by wig.
- one thin plate made of wood other than oil palm material W is, for example, persimmon, cedar, rice bran, persimmon leaves, rice cedar, Karamatsu, red pine, chestnut, persimmon, persimmon, persimmon, cherry, persimmon, It is also possible to use a thin plate that makes use of the grain of firewood.
- the thin plate Y1.
- Oil palm material W2, metal lath M1, oil palm material W3, oil palm material W4, metal lath M2, and oil palm material W5 are stacked in this order.
- fiber bundles such as vascular bundles are laminated in parallel, and one or more nets, that is, metal laths M1 and M2 are disposed between the oil palm materials W2,.
- a metal lath M1 or a metal lath M2 is joined between the materials W2,..., W5.
- the network between the oil palm materials W2,..., W5 is ensured even if the resin components and sugar components contained in the oil palm materials W2,. Since the vascular bundles of the respective oil palm materials W are in a parallel state, the vascular bundle on the opposite surface enters between the vascular bundles in a high-temperature pressurized state.
- Hemicellulose and lignin are hydrogen-bonded, and especially the trunk of oil palm contains a lot of saccharides, lignin, plastic components, etc., so these components decompose and soften and ooze out around the vascular bundle.
- it functions as a binder and is integrated. Therefore, it is easy to join the oil palm material W to the net such as the metal lath M1, the metal lath M2, and even if the oil palm material W tries to bend, the metal lath M1 and the metal lath M2 do not expand or contract corresponding to the curve. It can be provided as a means for preventing bending.
- by arranging the nets at a plurality of locations it becomes difficult for the surface on which the oil palm materials W2,.
- the oil palm materials W2,..., W5 interact with each other even if expansion and contraction force occurs due to changes in the ambient environmental conditions after consolidation. Even if warpage deformation in a specific direction occurs, the metal lath M1 and metal lath M2 prevent the deformation. That is, even when the total number of oil palm materials W is an odd number, distortion caused by changes in ambient environmental conditions can be prevented in the same manner as when the fiber directions are stacked with the fiber directions orthogonal to each other. Also in the case of this embodiment, preferably, it is a plane cut parallel to the fibers of the oil palm material W to be laminated, and the side surfaces of the tree cores, or a plane cut parallel to the fibers and the side of the bark.
- the layers are laminated to face each other. That is, when the oil palm material W is divided at a linear position passing through the tree core of the oil palm trunk WD and arranged so as to face each other, the tree heart side surfaces or the bark side surfaces face each other. By joining together, warpage deformation in a specific direction due to the difference in cell density between the tree heart side and the bark side can be prevented.
- the thin plate Y1 is secured without the use of other adhesives for the resin component and sugar component contained in the oil palm material W2, and the fiber directions of the oil palm material W are parallel to each other. Fibers on the surfaces facing each other in the direction of the fibers in the pressurized state enter, and by compacting under this state, cellulose, hemicellulose, lignin are hydrogen-bonded, especially sugar palm, lignin, Since many plastic components are contained, these components decompose and soften and ooze out around the vascular bundle, and then recrystallize and recombine to function as a binder and integrate. It will be. Therefore, the thin plate Y1, the oil palm materials W2,..., W5 and the metal lath M1, the metal lath M2, etc.
- the heel thin plate Y1 and the metal lath M1, M2 can be provided as means for preventing the curvature.
- a plate-like laminated plywood PW is formed, and the laminated plywood PW is lifted and shown in FIG. 23 (b).
- the leg JW is integrally joined by the compacted material manufacturing apparatus MC to form an oil palm molded body as shown in FIG.
- the compression rate may be about 20 to 80%, or the compression rate in the state of the specific laminated plywood PW is fixed, and only the leg JW has a compression rate of 20%. Bonding may be performed at about 80%. Of course, the opposite may be possible.
- the total load of the laminated plywood PW is applied to the leg JW, but the concentrated load is dispersed by the metal lath M, and stable mechanical strength can be maintained.
- the laminated plywood PW having a predetermined thickness integrally holds the oil palm materials W1,..., W5 stacked in a plurality of layers only by the recess EQ, and other than the recess EQ. These locations may be compacted or maintained in an overlapped state.
- the use is suitable for an attic of a house, a heat insulating material of a wall, and the like.
- the metal lath M1 and the metal lath M2 are arranged on both surfaces of the oil palm material W3 which is the center, or the whole is made into four oil palm materials W1,. It is preferable to arrange one metal lath M1.
- the inventors conducted the experiments shown in Tables 1 to 5 above, but the same result was obtained for the laminated plywood sandwiched between the metal laths M1 and M2, and the compression ratio should be 50% or more. It was confirmed that practically no problem occurred if the rate was 40% or more.
- the laminated plywood according to the present embodiment is formed by stripping a predetermined length of oil palm trunk WD to a predetermined thickness with a rotary race while rotating it in the circumferential direction, and then compressing it.
- a lauan formed by peeling one or more oil palm materials W having a thickness of 1 mm or more and a lauan trunk, a china trunk or a coniferous trunk having a predetermined length in a circumferential direction while rotating the lauan trunk, a china trunk or a conifer tree trunk from the outer periphery to a predetermined thickness.
- One or more of a thin plate, a Chinese thin plate, or a softwood thin plate is disposed facing the oil palm material W, and these are compressed, fixed, and integrally joined. Moreover, a net such as a metal lath M is disposed between the oil palm materials W, and a net such as the metal lath M is joined between the oil palm materials W.
- a net made of metal lath M is arranged between the oil palm materials W, and the nets are joined between the oil palm materials W.
- the nets are joined and integrated between the oil palm materials W. Therefore, the amount of the resin component and the sugar component contained in the oil palm material W at the time of joining from between the oil palm materials W can be ensured without using another adhesive.
- one or more oil palm materials W and one or more of Lauan thin plate, China thin plate, and softwood thin plate are arranged facing the oil palm material W, and they are compressed, fixed, and joined together. Since it is a thing, the laminated plywood PW joined by the natural thing using the resin component and sugar component which the oil palm material W contains is obtained.
- Lauan thin plate, China thin plate, and softwood thin plate can be used as a core material and used as a design surface
- a laminated plywood PW suitable for the application can be manufactured. Therefore, even if a thermosetting resin is applied to the surface of the thin plate Y1 facing the oil palm material W2 in advance, the use of a formaldehyde-based adhesive that causes a sick house syndrome becomes a quarter of the usage fee of the adhesive.
- the laminated plywood PW using the components inherently held by the oil palm is obtained.
- the nets are connected between the oil palm materials W. Since it joins and integrates, since the amount of the resin component and sugar component which oil palm contains at the time of joining from between oil palm materials W is secured without using other adhesives, oil palm Joining of the material W and the net is easy, and even if the oil palm material W tries to bend, the net does not expand or contract corresponding to the bend, so it can be provided as means for preventing the bend. Moreover, it becomes difficult to produce a bending with respect to the surface which laminated
- the laminated plywood of the present embodiment is formed by peeling a predetermined length of oil palm trunk WD to a predetermined thickness with a rotary race while rotating it in the circumferential direction, and then compacting it.
- a lauan formed by peeling off a predetermined length of lauan trunk, china trunk, or conifer trunk from the outer circumference to a predetermined thickness with a rotary race while rotating at least one oil palm material W having a thickness of 1 mm or more and a lauan trunk, a china trunk, or a conifer trunk in a circumferential direction.
- One or more of a thin plate, a Chinese thin plate, or a softwood thin plate is disposed facing the oil palm material W, and these are compressed, fixed, and integrally joined.
- a net is disposed between the oil palm materials W, and the net is joined between the oil palm materials W.
- Lauan thin plate, China thin plate, and softwood thin plate can be used as a core material and used as a design surface, a laminated plywood PW suitable for the application can be manufactured. Therefore, the use of the formaldehyde-based adhesive that causes sick house syndrome is suppressed, and a laminated plywood PW using the components that oil palm originally has is obtained.
- this oil palm trunk WD has no nodes and no annual rings, when the oil palm material W is created by peeling off from the outer periphery to a predetermined thickness by a rotary race, a uniform oil palm material W is obtained. As a result, the oil palm material is obtained.
- a laminated plywood PW sandwiched with a net according to the situation of a metal, chemical fiber, natural fiber, or the like made of W becomes homogeneous.
- the joining force is changed by the resin component and sugar component contained in the oil palm trunk WD itself depending on the applied temperature and pressure, an arbitrary adhesive force can be obtained by controlling the applied temperature and pressure.
- the oil palm trunk WD itself contains a resin component such as lignin and the compressive force when joined by the action of sugars such as cellulose and hemicellulose
- the oil palm material W is almost free of voids and becomes a dense structure. It is water-resistant and has excellent waterproofing and insect-proofing properties, and even if used as a building material, it has a long service life.
- hemicellulose has a function of binding lignin and cellulose, and it is unclear how much they interfere with each other when oil palm is naturally cultivated.
- a predetermined temperature for example, 80 ° C. or more of the reaction start temperature of lignin
- the nets are connected between the oil palm materials W. Since it joins and integrates, since the quantity of the resin component and sugar component which oil palm material W contains in the case of joining from between oil palm materials W is secured, without using other adhesives, It is easy to join the oil palm material W and the net, and even if the oil palm material W tries to bend, the net does not expand or contract corresponding to the bend, so it can be provided as means for preventing the bend. Moreover, it becomes difficult to bend with respect to the surface which laminated
- the laminated plywood PW of the above embodiment is formed by peeling a predetermined length of the oil palm trunk WD from the outer periphery with a rotary race while rotating it in the circumferential direction, and then compacting it.
- One or more oil palm materials W each having a length of 1 mm or more, and a lauan thin plate, a Chinese thin plate, or a coniferous thin plate in which a predetermined length of lauan or china or conifer trunk is formed in a plate shape in the length direction of the trunk
- One or more of them are arranged facing the oil palm material and joined together.
- a net is provided between the oil palm materials, and the net is joined between the oil palm materials.
- the oil palm materials W are Since the nets are joined and integrated, the amount of the resin component and the sugar component contained in the oil palm material W at the time of joining from between the oil palm materials W is ensured without using other adhesives. Therefore, it is easy to join the oil palm material W and the net, and even if the oil palm material W tries to bend, the net does not expand or contract corresponding to the bend, so it can be provided as a means for preventing the bend.
- At least one oil palm material W that has been compacted and one or more of Lauan thin plate, China thin plate, and softwood thin plate are placed facing the oil palm material W, and they are joined together. Therefore, when the resin component and the sugar component contained in the oil palm material W are insufficient, an adhesive is added and bonded to one or more of the Lawan thin plate, the China thin plate, and the conifer thin plate. Thus, a desired laminated plywood PW is manufactured. Therefore, since the adhesive is used when the resin component and the sugar component contained in the oil palm material W are insufficient, the use of the formaldehyde-based adhesive that causes sick house syndrome is suppressed, A laminated plywood PW utilizing the components it has is obtained.
- the laminated plywood PW of the above embodiment is formed by peeling a predetermined length of the oil palm trunk WD from the outer periphery with a rotary race while rotating it in the circumferential direction, and then compacting it.
- At least one of Lawan, Sina, or conifer is one or more of Lawan, Sina, or conifer, which has a predetermined length of Lauan or Sina or conifer tree trunks formed in a plate shape in the length direction of the trunk. It is also possible to arrange the plates facing the oil palm material and join them together. At this time, the joint may be compressed as a position process of the consolidation process, or may be compression for joining separately from the consolidation process.
- the laminated plywood PW of the above embodiment is formed by peeling a predetermined length of the oil palm trunk WD from the outer periphery with a rotary race while rotating the oil palm trunk WD in the circumferential direction, and then compacting it.
- One or more pieces of wood such as the like can be arranged facing the oil palm material W, and they can be integrally joined.
- At least one compacted oil palm material W and one or more plates of lauan, china, conifer are arranged facing the oil palm material W, and they are joined together. Therefore, when the resin component and the sugar component contained in the oil palm material W are insufficient, it is desired to add an adhesive to one or more joining objects of Lauan, China, and conifers, The laminated plywood PW is obtained. Therefore, the use of the formaldehyde-based adhesive that causes sick house syndrome is suppressed, and a laminated plywood PW using the components that oil palm originally has is obtained.
- One or more oil palm materials W arranged facing the oil palm material W of the above-described embodiment and integrally joined, and one or more of the Lauan thin plate, the China thin plate, or the softwood thin plate are integrally joined.
- the laminated plywood PW sandwiched between the metal laths M1 and M2 is obtained by using a resin component and a sugar component contained in the oil palm material W for joining, compressing and fixing them, and joining them integrally. Therefore, one or more oil palm materials W and one or more of Lauan thin plate, China thin plate, or softwood thin plate are used as laminated plywood PW, and sandwiched between the resin component and sugar component contained in oil palm material W. Since the metal lath M can be joined together, the use of a formaldehyde-based adhesive that causes sick house syndrome is suppressed, and a laminated plywood PW using the components that the oil palm trunk WD originally has is obtained.
- a resin component and a sugar component contained in the oil palm material W are used.
- other adhesives are added to the joint surface that is integrally joined to one or more of the China thin plate or the softwood thin plate.
- resin components and sugar components contained in the oil palm material W are used, and furthermore, one or more of either lauan thin plate, china thin plate or softwood thin plate is firmly joined. Therefore, the use of a formaldehyde adhesive that causes sick house syndrome can be suppressed, and a laminated plywood PW using components inherently possessed by oil palm can be obtained.
- the thin plate process is a process in which the oil palm trunk WD having the predetermined length according to the above embodiment is rotated in the circumferential direction and peeled with the blade CT to a predetermined thickness from the outer periphery with a rotary race to form the lauan thin plate and the oil palm material W.
- the process of drying the lauan thin plate and the oil palm material W may be the same process as the process of forming the lauan thin plate and the oil palm material W or may be a separate process, and this may be a drying process. it can.
- the process of laminating the dried lauan thin plate and the oil palm material W in a predetermined state as the multilayer material NW before pressurization is usually used by laminating in units of 2 to 5 sheets. Specifically, it may be a lamination process of two or more sheets, and this can be used as a lamination process. In particular, by reducing the number of lauan thin plates than the number of oil palm materials W, the use of formaldehyde-based adhesives that cause sick house syndrome is suppressed to 1/2 or less compared to at least conventional laminated plywood. Can do.
- the molding temperature of the oil palm material W can be arbitrarily set. Also, the mechanical strength can be increased.
- the net made of the metal lath M disposed between the oil palm materials W and joined between the oil palm materials W is a net of chemical fibers or plant fibers.
- network which consists of a chemical fiber or a vegetable fiber can make use of the net
- the mechanical strength is increased.
- chemical fibers if they are joined at the joining temperature between the oil palm materials W and the melting temperature of the melting temperature of the chemical fibers, a strong integration is possible due to a synergistic effect.
- a step of heating to raise the temperature of the oil palm material W and the metal lath M, which are laminated after the laminating step, and if necessary, the temperature of the thin plate Y1 a step of introducing water vapor or electric heat and heating with a hot plate Can be a heating process since heating energy is supplied. Furthermore, a compressive force in a direction perpendicular to the surfaces of the thin plate Y1, the oil palm material W and the metal laths M1 and M2 with respect to the laminated thin plate Y1, the oil palm material W and the metal lath M heated by the heating step.
- the step of adding may be performed by compressing the thin plate Y1, the oil palm material W, and the metal lath M, that is, compressing the multilayer material NW before pressurization at a predetermined compression rate.
- This step can be a compression step.
- the temperature supplied in the heating step is lowered, the compression state of the laminated plywood PW is fixed, and the compression force compressed at a predetermined compression rate is released. This can be taken from the laminated plywood PW and used as an immobilization process.
- the laminated plywood PW of the above-described embodiment is a plurality of oil palm materials W that are peeled off with a cutter CT from the outer periphery to a predetermined thickness with a rotary race while rotating the oil palm material W of a predetermined length in the circumferential direction.
- the drying step consisting of the step S11 for drying the oil palm material W, and the oil palm material W formed in the predetermined step.
- a laminating step a heating step comprising heating to increase the temperature of the lauan thin plate and oil palm material W laminated after the laminating step, and the laminated oil palm heated by the heating step.
- a compression step comprising step S17 of compressing for a predetermined time by applying an angular compression force, and a step of lowering and cooling and fixing the temperature supplied in the heating step after pressing for a predetermined time in the compression step
- the immobilization process which consists of S19 is comprised.
- the oil palm trunk WD used in these steps has no nodes and no annual rings, when the oil palm material W is created by peeling off from the outer periphery to a predetermined thickness with a rotary race, a homogeneous oil palm material W is obtained, As a result, the laminated plywood PW made of the oil palm material W becomes homogeneous.
- the bonding force can be changed by the action of resin components such as lignin contained in the oil palm trunk WD itself and sugars such as cellulose and hemicellulose, depending on the applied temperature and compressive force, the control of the applied temperature and compressive force is possible. Arbitrary adhesive strength can be obtained.
- the lauan thin plate and the oil palm material W are joined by the action of a resin component such as lignin contained in the oil palm trunk WD itself and sugars such as cellulose and hemicellulose, the laminated plywood PW is formed. Since other synthetic resins and synthetic rubbers are not used as adhesives, they can be returned to nature without causing pollution problems. Furthermore, since the oil palm trunk WD itself contains a resin component such as lignin and the compressive force when joined by the action of sugars such as cellulose and hemicellulose, the oil palm material W is almost free of voids and becomes a dense structure. It is water-resistant and has excellent waterproofing and insect-proofing properties, and even if used as a building material, it has a long service life.
- a resin component such as lignin contained in the oil palm trunk WD itself and sugars such as cellulose and hemicellulose
- Manufacture of the laminated plywood of the said embodiment can be generalized as embodiment of the manufacturing method of a laminated plywood as follows.
- a thin plate process comprising step S10 comprising a step of rotating a lauan stem in the circumferential direction with a rotary race to a predetermined thickness from the outer periphery with a cutter CT and forming it into a thin plate such as a single lauan thin plate
- the thin plate Drying step consisting of step S11 for drying other thin plates such as oil palm material W and lauan thin plate formed in the process, and other thin plates such as oil palm material W and lauan thin plate dried in the drying step in a predetermined state
- the heating process comprising step S16 for heating to increase the temperature of the oil palm material W and the other thin plates such as the laminar oil palm material W and lauan thin plate heated in the heating step, Compressive force in a direction perpendicular to the surfaces of other thin plates such as the oil palm material W and the cocoon thin plate Y1 while being restricted by the positioning holes 18 or the frame 20 from extending in the direction parallel to the surface of the other thin plates.
- the compression process comprising step S17 for compressing for a predetermined period of time, and the oil palm material W compressed in the compression process for a predetermined period of time and the other thin plates such as the cocoon thin plate Y1 are lowered in the heating process.
- the method for producing a laminated plywood comprising the immobilization step consisting of step S19 for immobilization.
- the frame 20 or the positioning hole 18 for positioning each side of the oil palm materials W2,..., W5, and the metal lath M is the frame 20 or the positioning hole 18 for regulating a predetermined loading surface, and a plurality of thin plates
- the upper and lower sides and the right and left sides of the W surface are restricted. Therefore, the thin plate W is prevented from extending in a direction perpendicular to the surface to which the compressive force is applied, and a thick portion and a thin portion are not generated depending on the position of the laminated plywood PW.
- one thin plate W1 of the oil palm members W1,..., W5, which is a plurality of laminated ones is any one of Lauan thin plate, China thin plate, or softwood thin plate other than the oil palm material W.
- One or more of Lauan thin plate, China thin plate or softwood thin plate other than the oil palm material W are joined together as a laminated plywood PW including the metal lath M.
- the thin plate Y1 can be joined with the adhesive ability of the oil palm materials W1,. Moreover, it can be set as the design which utilized the grain arrange
- one or both end surfaces of one surface of the plural thin sheets Y1 and the oil palm material W laminated. are made of wood other than the oil palm material W, etc., and are joined together as a laminated plywood PW including a thin plate other than the oil palm material W.
- the oil palm material W can be 1 or more.
- the wood other than the oil palm material W can be a thin plate Y1, or a Chinese thin plate or a coniferous thin plate in place of the thin plate Y1. Alternatively, one or a combination of the two can be used.
- step S11 of the method for manufacturing the laminated plywood according to the present embodiment is to dry the moisture content of the oil palm material W within a range of 10% to 30%, and since a net enters as an insert, cracks, Deformation, swelling, rupture, etc. are prevented. Therefore, more stable dimensional shape is ensured and the yield is high. Further, when the moisture content is in a dry state within the range of 10% to 30%, it is also suitable for joining with a Lauan thin plate, a Chinese thin plate, a conifer thin plate, or the like.
- the heating temperature in the heating process of step S16 in the production of the laminated plywood of the present embodiment is in the range of 110 ° C. to 170 ° C.
- immobilization failure in the consolidation process poor bonding between the woods, Material deterioration such as surface carbonization and lowering of material strength can be prevented.
- the heating temperature is in the range of 110 ° C. to 170 ° C., it is also suitable for joining a net, for example, a metal lath M and a lauan thin plate, a Chinese thin plate, a conifer thin plate, or the like.
- the predetermined compression pressure in the compression process of step S17 is in the range of 1 to 100 kg / cm 2 , so that immobilization failure or poor bonding between woods is caused in the consolidation process. Moreover, generation
- the time required for the heating process in step S16 and the compression process in step S17 is in the range of 10 minutes to 120 minutes. Bonding failure and carbonization of the surface can be prevented. It has been confirmed by the inventors' experiment that there is no problem in joining the lauan thin plate, the Chinese thin plate, the coniferous thin plate and the like to the net as an insert.
- the composition that contributes to the consolidation of the oil palm base material W of the present embodiment includes resin components such as lignin and the cellulose, hemicellulose, etc., which the oil palm base material W made from the oil palm trunk WD having a predetermined length. The sugar component.
- the inventors' analysis has recognized that the resin component such as lignin and the saccharide component such as cellulose and hemicellulose are the main compositions, the involvement of other components cannot be denied if the analysis ability is improved. Even if it is small, it cannot be denied that there may be other components that contribute to consolidation.
- oil palm leaves, empty fruit bunches, roots, etc. are cut into chips and may be treated by an organic waste fermentation treatment method that is composted (composted) by aerobic bacterial treatment,
- the empty fruit bunch may be subjected to other practical treatments.
- it can also grind
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Wood Science & Technology (AREA)
- Forests & Forestry (AREA)
- Manufacturing & Machinery (AREA)
- Veneer Processing And Manufacture Of Plywood (AREA)
- Dry Formation Of Fiberboard And The Like (AREA)
Abstract
To make it possible to form laminated plywood into a desired shape, reduce the use of formaldehyde adhesives, which are a cause of sick building syndrome, and make use of components that are naturally present in oil palms. This shaped oil-palm body (EO) is obtained by drying an oil-palm material (W) of a prescribed length, layering together a plurality of sheets thereof, compressing the layered oil-palm material (W) by applying a compressing force perpendicularly to the surfaces thereof while heating the layered oil-palm material (W) and restricting expansion parallel to the surfaces thereof, and then maintaining said compression while lowering the temperature and fixing the oil-palm material in place. The sheets of oil-palm material (W) are stacked such that the fiber directions thereof cross, preventing the sheets from bending perpendicularly to the surfaces thereof.
Description
本発明は、ヤシの一種であるオイルパーム(油椰子;oil palm)から得られた接着剤等による積層合板及びオイルパーム成型体及びその製造方法に関するもので、オイルパームを薄く剥いて形成したオイルパーム材を用いた積層合板の製造方法に関するものである。この積層合板は、家屋の床材及び壁材、隔壁材等の建築材料、家具材料、ボートを含む船舶、その他の屋内・屋外のデッキ及び遊具、車両のボディ本体の外装及び内装に使用できるものである。また、その積層合板をオイルパームで形成するオイルパーム成型体及びその製造方法に関するものである。なお、一般に「板」とは、広辞苑によれば「材木を薄く平たくひきわったもの」、「金属や石などを薄く平たくしたもの」等として説明されるが、ここでは、オイルパームが木材の性状を有するものではなく、竹材に近い性状もつものであるが、オイルパームにおいても「薄く平たくしたもの」を「薄板」と呼ぶこととする。また、オイルパームの材料を仔細に呼称する用語がないので、木材と同様に扱うこととする。
The present invention relates to a laminated plywood and an oil palm molded body using an adhesive or the like obtained from oil palm (oil palm), which is a kind of palm, and a method for producing the same. Oil formed by thinly peeling oil palm The present invention relates to a method for producing a laminated plywood using a palm material. This laminated plywood can be used for building floor materials and wall materials, building materials such as partition materials, furniture materials, ships including boats, other indoor and outdoor decks and playground equipment, exterior and interior of vehicle body bodies It is. Moreover, it is related with the oil palm molded object which forms the laminated plywood with oil palm, and its manufacturing method. In general, “board” is described as “thin timber thin and flat” or “thin metal or stone thin and flat” according to Kojien, but here, oil palm is made of wood. Although it does not have properties, it has properties close to bamboo, but in oil palm, “thinly flat” is called “thin plate”. Moreover, since there is no term which calls the material of an oil palm in detail, it shall treat like the wood.
一般に、オイルパームの成木は単一の幹からなり高さ10~20m以上に達する。葉は羽状で長さ3~5m程度、若木で年間に約30枚、樹齢10年以上の木では約20枚が新しく生えている。花は3枚の花弁と3枚のがく(萼)からなり、個々には小さいが密集した集団を形成し、受粉してから果実が成熟するまでは約6ヶ月を要している。果実は油分の多い多肉質の果肉(中果皮)と、同じく油分に富んだ1つの種子からなり、果実の重さは1房あたり40~50kg程度になる。
In general, an oil palm tree consists of a single trunk and reaches a height of 10 to 20 m or more. The leaves are wing-shaped and about 3-5m long, about 30 young trees a year, and about 20 new trees grow over 10 years old. The flower is composed of 3 petals and 3 cocoons, each of which forms a small but dense group, and it takes about 6 months from fruiting until the fruit ripens. The fruit consists of fleshy flesh (medium pericarp) with a lot of oil and one seed that is also rich in oil, and the weight of the fruit is about 40-50 kg per bunch.
19世紀後半から東南アジアのプランテーションで栽培されるようになり、オイルパームから採れる植物性油脂のヤシ油(palm oil)は、大豆や菜種等他の植物性油脂よりも生産性が高く、安価であることから、マーガリン、揚げ物用の油等の食用に使用されている。また、石鹸、化粧品等にも多用されている。近年、ヤシ油(palm oil)は、マレーシやインドネシア等の東南アジアから日本への輸出される量も増大している。したがって、オイルパームといえば、果肉と種子から取れる油脂の意味と、油椰子の幹自体を指す場合もある。
It has been cultivated in plantations in Southeast Asia since the latter half of the 19th century, and palm oil (palm oil), a vegetable oil extracted from oil palm, is more productive and cheaper than other vegetable oils such as soybeans and rapeseed. Therefore, it is used for foods such as margarine and oil for fried foods. It is also widely used in soaps and cosmetics. In recent years, palm oil (palm oil) is also being exported to Japan from Southeast Asia such as Malaysia and Indonesia. Therefore, oil palm sometimes refers to the meaning of fats and oils that can be taken from the pulp and seeds and the trunk of the oil palm itself.
通常、学術的にはオイルパームは、ヤシ科アブラヤシ属に分類される植物の総称で、西アフリカを原産とするギニアアブラヤシ(Elaeis guineensis)と、中南米原産のアメリカアブラヤシ(Elaeis oleifera)の2種類が有名であり、栽培品種の中にはギニアアブラヤシとアメリカアブラヤシの交配品種も存在する。特に、植物性油脂の原料となる椰子の一種であるアブラヤシ(油椰子)を「オイルパーム」と呼ぶ場合もある。
即ち、オイルパームは、果肉と種子から油脂が取れ、単位面積当たり得られる油脂の量は他の植物を群を抜いていることから、商業作物としてマレーシア等の東南アジア諸国を中心に大規模なプランテーション農業が行われているので、油脂の方を「オイルパーム」と呼ぶ方が著名になりつつあるかもしれない。
しかし、本発明においては、果肉と種子から取れる油脂のオイルパームを意味するものではなく、油椰子の幹自体または植物の個体全体をオイルパームと呼ぶこととする。 In general, oil palm is a collective term for plants classified into the genus Palmae, and is famous for two types: Elaeis guineensis, native to West Africa, and Elaeis oleifera, native to Latin America. Among the cultivars, there is a hybrid of Guinea oil palm and American oil palm. In particular, oil palm (oil palm), which is a kind of palm used as a raw material for vegetable oils and fats, may be referred to as “oil palm”.
In other words, oil palm can remove fats and oils from pulp and seeds, and the amount of fats and oils obtained per unit area outperforms other plants. Because agriculture is carried out, it may be becoming more prominent to call the oil and fat “oil palm”.
However, in the present invention, it does not mean the oil palm of fats and oils that can be taken from the pulp and seeds, but the trunk of the oil palm itself or the whole plant is called oil palm.
即ち、オイルパームは、果肉と種子から油脂が取れ、単位面積当たり得られる油脂の量は他の植物を群を抜いていることから、商業作物としてマレーシア等の東南アジア諸国を中心に大規模なプランテーション農業が行われているので、油脂の方を「オイルパーム」と呼ぶ方が著名になりつつあるかもしれない。
しかし、本発明においては、果肉と種子から取れる油脂のオイルパームを意味するものではなく、油椰子の幹自体または植物の個体全体をオイルパームと呼ぶこととする。 In general, oil palm is a collective term for plants classified into the genus Palmae, and is famous for two types: Elaeis guineensis, native to West Africa, and Elaeis oleifera, native to Latin America. Among the cultivars, there is a hybrid of Guinea oil palm and American oil palm. In particular, oil palm (oil palm), which is a kind of palm used as a raw material for vegetable oils and fats, may be referred to as “oil palm”.
In other words, oil palm can remove fats and oils from pulp and seeds, and the amount of fats and oils obtained per unit area outperforms other plants. Because agriculture is carried out, it may be becoming more prominent to call the oil and fat “oil palm”.
However, in the present invention, it does not mean the oil palm of fats and oils that can be taken from the pulp and seeds, but the trunk of the oil palm itself or the whole plant is called oil palm.
このオイルパームを扱った特許出願には、特許文献1(空果房を扱った発明)に掲載のものがある。特許文献1では、オイルパームを利用した建築材料の製造方法を開示している。具体的には、パーム繊維を洗滌した後乾燥油が95%になるように乾燥する段階と、前記乾燥したパーム繊維を1~1.5cm単位で破送・切断してパーム繊維チップを製造する段階と、前記乾燥したパーム繊維を200メッシュの粒経で粉碎する段階と、竹を200メッシュの粒経で粉碎する段階と、前記パーム繊維チップ、前記パーム繊維粉末、前記竹粉末、バイオセラミック粉末を1:1:1:1の比率で混合して主原料を製造する段階と、石炭の炭化物から200メッシュの粒経を有するフライアッシュを抽出する段階と、火炎防止剤と耐熱性樹脂である硬化用難燃樹脂を1:1の比率で混合・溶融してバインダーを製造する段階と、前記製造されたバインダー20~30重量%、前記混合した主原料50~60重量%、フライアッシュ20~25重量%の粉末を混合して高液状で練る段階と、前記練りを150~200℃の温度を発散する成形部間を通過させて1次で焼く段階と、前記焼かれた成形物を多数の上部ローラー群と下部ローラー群が後側に行くほどその間隔が徐々に細くなるように配置された圧延部の間を通過させて徐徐に薄い厚さで圧延する段階と、前記成形物を多数の上部ローラー群と下部ローラー群からなった冷却部を通過させながら0~4℃で冷凍させる段階と、切断シリンダーによって昇降する刃により前記成形物を一定な長さ単位で切断する段階との工程から成り立っている。
Patent applications dealing with this oil palm include those listed in Patent Document 1 (invention dealing with empty fruit bunch). In patent document 1, the manufacturing method of the building material using oil palm is disclosed. Specifically, after the palm fiber is washed, it is dried so that the dry oil becomes 95%, and the dried palm fiber is blown and cut in units of 1 to 1.5 cm to produce a palm fiber chip. Pulverizing the dried palm fiber with a particle size of 200 mesh, pulverizing bamboo with a particle size of 200 mesh, the palm fiber chip, the palm fiber powder, the bamboo powder, and the bioceramic powder Are prepared in a ratio of 1: 1: 1: 1 to produce a main raw material, a step of extracting fly ash having a particle size of 200 mesh from coal carbide, a flame inhibitor and a heat resistant resin. A step of producing a binder by mixing and melting a flame retardant resin for curing at a ratio of 1: 1, 20-30% by weight of the produced binder, 50-60% by weight of the mixed main raw material, fly ash 2 Mixing a powder of ˜25% by weight and kneading in a high liquid state, passing the kneading through a molding part that radiates a temperature of 150 to 200 ° C. and baking it first, and baking the molded product Rolling between a plurality of upper roller groups and lower roller groups that are arranged so that the distance between the upper roller group and the lower roller group gradually becomes narrower and gradually rolling to a smaller thickness; and A step of freezing at 0 to 4 ° C. while passing through a cooling unit composed of a number of upper roller groups and a lower roller group, and a step of cutting the molded product in a unit of a certain length by a blade that is raised and lowered by a cutting cylinder. It consists of processes.
この特許文献1では、パーム繊維を主原料として利用することにより人体に無害であるだけではなく、パーム繊維を1~1.5cmで切断したものをパーム繊維粉末とともに使用するので、パーム繊維が周辺の他の内容物との仮橋役を成して堅固な建築材料となり、竹とバイオセラミックにより抗菌及び脱臭機能を具現化することができる。また、カビが発生しないで、遠赤外線、陰イオンの発生が期待できる。そして、不燃性廃材をリサイクルすることができ、製作コストが安くなる。更に、全ての組成物から有毒性ガスが発生しないので建築材料として安全性が高いとされている。
In this patent document 1, palm fiber is not only harmless to the human body by using it as a main raw material, but palm fiber cut at 1 to 1.5 cm is used together with palm fiber powder. It becomes a solid building material by acting as a temporary bridge with other contents, and antibacterial and deodorizing functions can be realized by bamboo and bioceramics. Further, generation of far infrared rays and anions can be expected without generating mold. And nonflammable waste material can be recycled and manufacturing cost becomes cheap. Furthermore, since no toxic gas is generated from all the compositions, it is said to be highly safe as a building material.
また、特許文献2(空果房を扱った発明)では、板状体または成形体は、油ヤシの空果房を解繊して得た油ヤシ繊維にゴム状弾性を示す樹脂を付着し、圧縮成形することにより得られた板状体または成形体である。
したがって、オイルパームの空果房を解繊して得た油ヤシ繊維は、例えば、ココヤシ繊維等の他のヤシ繊維に比して、繊維表面にパームオイルが付着しているために繊維の撥水性が優れていると共に、繊維中に含まれるセルロース及びリグニンの量が相対的に多いので、耐水性に優れる。加えて、油ヤシ繊維は、ココヤシ繊維等の他のヤシ繊維に比して、繊維強度が大であると共に、繊維径が大きく、かつ、繊維長が長いので、寸法安定性が優れている。また、油ヤシ繊維は、その表面の凹凸が大きいと共に屈曲の強度が大きくて繊維同士のからみあいが大きいから、このことによっても寸法安定性が高められる。そのため、この板状体または成形体は、吸水、吸湿時における寸法安定性が優れている。
そして、油ヤシ繊維表面の凹凸が大きいので、ゴム状弾性を示す樹脂が油ヤシ繊維の表面の空隙に侵入して固化又は硬化し、これが釘または楔のように作用して、所謂、アンカー効果を発揮するから、油ヤシ繊維はゴム状弾性を示す樹脂により強く結合する。このことも吸水、吸湿時における寸法安定性の向上に寄与していると考えられる。 Further, in Patent Document 2 (invention dealing with empty fruit bunches), the plate-like body or molded body is made by attaching a resin having rubber-like elasticity to the oil palm fibers obtained by defibrating the empty fruit bunches of oil palm. A plate-like body or a molded body obtained by compression molding.
Therefore, the oil palm fiber obtained by defibrating the empty fruit bunch of oil palm has a fiber repellent property because, for example, palm oil adheres to the fiber surface compared to other palm fibers such as coconut palm fiber. In addition to being excellent in water, the amount of cellulose and lignin contained in the fiber is relatively large, so that water resistance is excellent. In addition, the oil palm fiber has a high fiber strength, a large fiber diameter, and a long fiber length as compared with other palm fibers such as a coconut fiber, and therefore has excellent dimensional stability. In addition, since the oil palm fiber has large irregularities on the surface and high bending strength, and the entanglement between the fibers is large, the dimensional stability is also enhanced by this. Therefore, this plate-shaped body or molded body is excellent in dimensional stability during water absorption and moisture absorption.
And since the irregularities on the surface of the oil palm fiber are large, the resin exhibiting rubber-like elasticity penetrates into the voids on the surface of the oil palm fiber and solidifies or hardens, which acts like a nail or wedge, so-called anchor effect. Therefore, the oil palm fiber is strongly bonded to the resin having rubber-like elasticity. This is also considered to contribute to the improvement of dimensional stability at the time of water absorption and moisture absorption.
したがって、オイルパームの空果房を解繊して得た油ヤシ繊維は、例えば、ココヤシ繊維等の他のヤシ繊維に比して、繊維表面にパームオイルが付着しているために繊維の撥水性が優れていると共に、繊維中に含まれるセルロース及びリグニンの量が相対的に多いので、耐水性に優れる。加えて、油ヤシ繊維は、ココヤシ繊維等の他のヤシ繊維に比して、繊維強度が大であると共に、繊維径が大きく、かつ、繊維長が長いので、寸法安定性が優れている。また、油ヤシ繊維は、その表面の凹凸が大きいと共に屈曲の強度が大きくて繊維同士のからみあいが大きいから、このことによっても寸法安定性が高められる。そのため、この板状体または成形体は、吸水、吸湿時における寸法安定性が優れている。
そして、油ヤシ繊維表面の凹凸が大きいので、ゴム状弾性を示す樹脂が油ヤシ繊維の表面の空隙に侵入して固化又は硬化し、これが釘または楔のように作用して、所謂、アンカー効果を発揮するから、油ヤシ繊維はゴム状弾性を示す樹脂により強く結合する。このことも吸水、吸湿時における寸法安定性の向上に寄与していると考えられる。 Further, in Patent Document 2 (invention dealing with empty fruit bunches), the plate-like body or molded body is made by attaching a resin having rubber-like elasticity to the oil palm fibers obtained by defibrating the empty fruit bunches of oil palm. A plate-like body or a molded body obtained by compression molding.
Therefore, the oil palm fiber obtained by defibrating the empty fruit bunch of oil palm has a fiber repellent property because, for example, palm oil adheres to the fiber surface compared to other palm fibers such as coconut palm fiber. In addition to being excellent in water, the amount of cellulose and lignin contained in the fiber is relatively large, so that water resistance is excellent. In addition, the oil palm fiber has a high fiber strength, a large fiber diameter, and a long fiber length as compared with other palm fibers such as a coconut fiber, and therefore has excellent dimensional stability. In addition, since the oil palm fiber has large irregularities on the surface and high bending strength, and the entanglement between the fibers is large, the dimensional stability is also enhanced by this. Therefore, this plate-shaped body or molded body is excellent in dimensional stability during water absorption and moisture absorption.
And since the irregularities on the surface of the oil palm fiber are large, the resin exhibiting rubber-like elasticity penetrates into the voids on the surface of the oil palm fiber and solidifies or hardens, which acts like a nail or wedge, so-called anchor effect. Therefore, the oil palm fiber is strongly bonded to the resin having rubber-like elasticity. This is also considered to contribute to the improvement of dimensional stability at the time of water absorption and moisture absorption.
油ヤシ繊維は、例えば、ココヤシ繊維等の他のヤシ繊維に比して、繊維の剛性及び強度が大であると共に、繊維径が大きく、かつ、繊維長が長いので、弾性回復性に優れている。また、油ヤシ繊維は、繊維の屈曲の強度が大きくて繊維同士のからみあいが大きいので、弾性回復性が高められる。そして、ゴム状弾性を示す樹脂は弾性回復性が高い。そのため、油ヤシ繊維がゴム状弾性を示す樹脂により連結されている板状体または成形体は、優れた弾性回復性を示し、歩行感及びクッション性が良く、しかも、遮音性が良い。
この板状体または成形体では、油ヤシ繊維を使用するから、他の種類のヤシ繊維に比して解繊等に要する労力が少なく、そのため、製造コスト及びエネルギーが節減でき、製品が安価となる。例えば、ココヤシ繊維では、ヤシ殻を軟化させるために長期間水中に浸漬し、その後に機械的に繊維状に解繊するために長期間多大のエネルギーを必要とする。これに対してオイルパームは、もともと繊維状のままで集合体となっている空果房を解繊するから、水中浸漬の必要はなく、解繊のために要するエネルギーも非常に少なくて済む。また、油ヤシ繊維はココヤシ繊維に比して発塵性が少なく、その取り扱いにおいて作業環境の悪化が避けられる。
更に、油ヤシ繊維の繊維間に大きな隙間が形成されるので、噴霧または浸漬によりゴム状弾性を示す樹脂を供給したときには、樹脂が上記隙間を介して全繊維に均等に付着し、強度分布が均一になるという板状態が得られる。 The oil palm fiber is superior in elasticity recovery properties, for example, because the fiber has a large rigidity and strength, a large fiber diameter, and a long fiber length, compared to other palm fibers such as coconut fiber. Yes. Further, the oil palm fiber has high fiber bending strength and large entanglement between the fibers, so that the elastic recovery is improved. And the resin which shows rubber-like elasticity has high elastic recovery property. Therefore, a plate-like body or molded body in which oil palm fibers are connected by a resin exhibiting rubber-like elasticity exhibits excellent elastic recovery, good walking feeling and cushioning properties, and good sound insulation.
Since this plate-like body or molded body uses oil palm fiber, less labor is required for defibration, etc., compared to other types of palm fiber, so that manufacturing costs and energy can be reduced, and the product is inexpensive. Become. For example, coconut fiber is immersed in water for a long period of time to soften the coconut shell, and then requires a great deal of energy for a long period of time to be mechanically fibrillated. On the other hand, oil palm defibrates empty fruit bunches that are originally in the form of fibers, so that there is no need for immersion in water, and very little energy is required for defibration. In addition, oil palm fibers have less dusting properties than coconut fibers, and the working environment can be prevented from deteriorating in handling.
Furthermore, since a large gap is formed between the fibers of the oil palm fiber, when a resin exhibiting rubber-like elasticity is supplied by spraying or dipping, the resin adheres evenly to all the fibers through the gap, and the strength distribution is A plate state of being uniform is obtained.
この板状体または成形体では、油ヤシ繊維を使用するから、他の種類のヤシ繊維に比して解繊等に要する労力が少なく、そのため、製造コスト及びエネルギーが節減でき、製品が安価となる。例えば、ココヤシ繊維では、ヤシ殻を軟化させるために長期間水中に浸漬し、その後に機械的に繊維状に解繊するために長期間多大のエネルギーを必要とする。これに対してオイルパームは、もともと繊維状のままで集合体となっている空果房を解繊するから、水中浸漬の必要はなく、解繊のために要するエネルギーも非常に少なくて済む。また、油ヤシ繊維はココヤシ繊維に比して発塵性が少なく、その取り扱いにおいて作業環境の悪化が避けられる。
更に、油ヤシ繊維の繊維間に大きな隙間が形成されるので、噴霧または浸漬によりゴム状弾性を示す樹脂を供給したときには、樹脂が上記隙間を介して全繊維に均等に付着し、強度分布が均一になるという板状態が得られる。 The oil palm fiber is superior in elasticity recovery properties, for example, because the fiber has a large rigidity and strength, a large fiber diameter, and a long fiber length, compared to other palm fibers such as coconut fiber. Yes. Further, the oil palm fiber has high fiber bending strength and large entanglement between the fibers, so that the elastic recovery is improved. And the resin which shows rubber-like elasticity has high elastic recovery property. Therefore, a plate-like body or molded body in which oil palm fibers are connected by a resin exhibiting rubber-like elasticity exhibits excellent elastic recovery, good walking feeling and cushioning properties, and good sound insulation.
Since this plate-like body or molded body uses oil palm fiber, less labor is required for defibration, etc., compared to other types of palm fiber, so that manufacturing costs and energy can be reduced, and the product is inexpensive. Become. For example, coconut fiber is immersed in water for a long period of time to soften the coconut shell, and then requires a great deal of energy for a long period of time to be mechanically fibrillated. On the other hand, oil palm defibrates empty fruit bunches that are originally in the form of fibers, so that there is no need for immersion in water, and very little energy is required for defibration. In addition, oil palm fibers have less dusting properties than coconut fibers, and the working environment can be prevented from deteriorating in handling.
Furthermore, since a large gap is formed between the fibers of the oil palm fiber, when a resin exhibiting rubber-like elasticity is supplied by spraying or dipping, the resin adheres evenly to all the fibers through the gap, and the strength distribution is A plate state of being uniform is obtained.
そして、特許文献3(オイルパーム幹の発明)では、接着剤で貼り合わされた複数の単板の表面に露出している繊維に接着剤を浸透させた合板の技術を開示している。
特許文献3に係るパーム合板は、樹脂接着剤で貼り合わされた複数の単板を備え、複数の単板のうちの最も外側の少なくとも1枚の単板は、パーム単板であり、パーム単板の表面に露出しているパーム繊維に樹脂接着剤が浸透させたものである。これにより、品質が比較的良好な樹木の単板をフェイスとバックとして使用せずに、安価な廃棄材のヤシの幹から製造可能なパーム単板を使用して表面を樹脂接着剤で処理することで、低コストで合板を製造する。
また、特許文献3のパーム合板は、複数の単板を全てパーム単板とし、安価な廃棄材のヤシの幹から製造可能なパーム単板のみを使用し、互いを樹脂接着剤で接着してもよい。このときのパーム繊維に浸透させてある樹脂接着剤は、複数の単板を貼り合わせる樹脂接着剤と同系のものである。樹脂接着剤が同系であるため、安価に合板を製造することができる。なお、ここで、同系とは、同一の樹脂接着剤、配合(例えば、配合比率)を変えたものを含む。 And in patent document 3 (invention of an oil palm trunk), the technique of the plywood which made the adhesive penetrate | infiltrate the fiber exposed on the surface of the several single board bonded together with the adhesive agent is disclosed.
The palm plywood according toPatent Document 3 includes a plurality of veneers bonded with a resin adhesive, and at least one of the plurality of veneers is a palm veneer, and a palm veneer. A resin adhesive is made to permeate palm fibers exposed on the surface. By using a palm veneer that can be manufactured from a palm trunk of inexpensive waste material, the surface is treated with a resin adhesive without using a veneer veneer with relatively good quality as a face and a back. Therefore, plywood is manufactured at low cost.
Moreover, the palm plywood ofpatent document 3 uses all the single veneers as palm veneers, uses only palm veneers that can be manufactured from palm trunks of inexpensive waste materials, and bonds them together with a resin adhesive. Also good. The resin adhesive permeated into the palm fiber at this time is the same type as the resin adhesive that bonds a plurality of single plates. Since the resin adhesive is the same system, the plywood can be manufactured at low cost. Here, the term “same system” includes the same resin adhesive and a composition whose composition (for example, composition ratio) is changed.
特許文献3に係るパーム合板は、樹脂接着剤で貼り合わされた複数の単板を備え、複数の単板のうちの最も外側の少なくとも1枚の単板は、パーム単板であり、パーム単板の表面に露出しているパーム繊維に樹脂接着剤が浸透させたものである。これにより、品質が比較的良好な樹木の単板をフェイスとバックとして使用せずに、安価な廃棄材のヤシの幹から製造可能なパーム単板を使用して表面を樹脂接着剤で処理することで、低コストで合板を製造する。
また、特許文献3のパーム合板は、複数の単板を全てパーム単板とし、安価な廃棄材のヤシの幹から製造可能なパーム単板のみを使用し、互いを樹脂接着剤で接着してもよい。このときのパーム繊維に浸透させてある樹脂接着剤は、複数の単板を貼り合わせる樹脂接着剤と同系のものである。樹脂接着剤が同系であるため、安価に合板を製造することができる。なお、ここで、同系とは、同一の樹脂接着剤、配合(例えば、配合比率)を変えたものを含む。 And in patent document 3 (invention of an oil palm trunk), the technique of the plywood which made the adhesive penetrate | infiltrate the fiber exposed on the surface of the several single board bonded together with the adhesive agent is disclosed.
The palm plywood according to
Moreover, the palm plywood of
そして、特許文献3のパーム合板は、パーム繊維に樹脂接着剤を浸透させる面を研磨した後に、パーム繊維に樹脂接着剤を浸透させ、合板表面から突出するパーム繊維を少なくし、パーム繊維に樹脂接着剤を浸透させるものである。この合板製造方法は、複数の単板を接着剤で貼り合わせる工程と、複数の単板の表面であり、露出している繊維に接着剤を浸透させる面を研磨する工程と、研磨した面に接着剤を塗布して繊維に接着剤を浸透させる工程と、接着剤を乾燥させる工程とを備え、これにより、品質が比較的良好な樹木の単板をフェイスとバックとして使用することなく、低いコストで合板を製造することができる。
このように、特許文献3によれば、品質が比較的良好な樹木の単板をフェイスとバックとして使用せずに、低いコストで製造が可能な合板およびパーム合板、合板製造方法が開示されている。 And the palm plywood ofpatent document 3 makes the palm fiber penetrate | infiltrate a resin adhesive after grind | polishing the surface which makes a palm fiber osmose | permeate a resin adhesive, reduces the palm fiber which protrudes from the plywood surface, and resin to palm fiber The adhesive is permeated. This plywood manufacturing method includes a step of bonding a plurality of veneers with an adhesive, a step of polishing a surface of the plurality of veneers that allows the adhesive to penetrate into exposed fibers, and a polished surface. Applying adhesive to infiltrate the adhesive into the fiber and drying the adhesive, which makes it possible to use a relatively good quality wood veneer as a face and back without using it Plywood can be manufactured at cost.
Thus, according toPatent Document 3, a plywood, a palm plywood, and a plywood manufacturing method that can be manufactured at a low cost without using a single veneer of a tree having relatively good quality as a face and a back are disclosed. Yes.
このように、特許文献3によれば、品質が比較的良好な樹木の単板をフェイスとバックとして使用せずに、低いコストで製造が可能な合板およびパーム合板、合板製造方法が開示されている。 And the palm plywood of
Thus, according to
このように、特許文献1及び特許文献2は、何れもオイルパームの果実の空果房を解繊して得た油ヤシ繊維の利用であり、直接的にオイルパームの幹を利用するものではない。しかし、オイルパームの幹は成木で20m以上となり、全体の90~95%を占める容積率であることからその利用が望まれていた。
特に、マレーシア等の東南アジア等では、パームオイルの生産のためにオイルパームが栽培されているが、パームオイル採取後の空果房には繊維等が多く含まれていることから、その空果房は繊維ボード等種々の用途に活用されている。しかし、毎年伐採されているヤシの幹は有効に活用されておらず、廃棄処分されているのが現状である。
また、特許文献3には、最も外側の少なくとも1枚の単板がパーム単板を複数樹脂接着剤で貼り合わせる工程と、パーム単板の表面であり、露出しているパーム繊維に樹脂接着剤を浸透させる面を研磨する工程と、研磨した面に樹脂接着剤を塗布してパーム繊維に樹脂接着剤を浸透させる工程と、樹脂接着剤を乾燥させる工程とを備えた合板製造方法を開示している。しかし、オイルパームの単板に如何に樹脂接着剤を塗布するか、露出しているパーム繊維に樹脂接着剤を浸透させるかについては説明されておらず不明であり、具体的な合板の製造方法が不明である。少なくとも、オイルパームの単板を複数樹脂接着剤で貼り合わせるという樹脂接着剤の使用を前提としている。 As described above,Patent Document 1 and Patent Document 2 both use oil palm fibers obtained by defibrating empty fruit bunches of oil palm fruits, and do not directly use oil palm trunks. Absent. However, the trunk of oil palm is 20 m or more in mature wood, and its use is desired because it has a volume ratio of 90 to 95% of the whole.
Especially in Southeast Asia such as Malaysia, oil palm is cultivated for the production of palm oil, but the empty fruit bunch after palm oil collection contains a lot of fiber etc. Is used in various applications such as fiber boards. However, palm trunks that are harvested every year are not used effectively and are currently being disposed of.
Patent Document 3 discloses a process in which at least one outermost single plate is bonded to a palm single plate with a plurality of resin adhesives, and the surface of the palm single plate is a resin adhesive on the exposed palm fibers. Disclosed is a method for manufacturing a plywood, comprising: a step of polishing a surface that impregnates a surface; a step of applying a resin adhesive to the polished surface to infiltrate the resin adhesive into palm fibers; and a step of drying the resin adhesive. ing. However, it is unclear how to apply the resin adhesive to the oil palm veneer or to penetrate the exposed palm fiber, and a specific method for manufacturing plywood Is unknown. At least, it is premised on the use of a resin adhesive in which a single plate of oil palm is bonded with a plurality of resin adhesives.
特に、マレーシア等の東南アジア等では、パームオイルの生産のためにオイルパームが栽培されているが、パームオイル採取後の空果房には繊維等が多く含まれていることから、その空果房は繊維ボード等種々の用途に活用されている。しかし、毎年伐採されているヤシの幹は有効に活用されておらず、廃棄処分されているのが現状である。
また、特許文献3には、最も外側の少なくとも1枚の単板がパーム単板を複数樹脂接着剤で貼り合わせる工程と、パーム単板の表面であり、露出しているパーム繊維に樹脂接着剤を浸透させる面を研磨する工程と、研磨した面に樹脂接着剤を塗布してパーム繊維に樹脂接着剤を浸透させる工程と、樹脂接着剤を乾燥させる工程とを備えた合板製造方法を開示している。しかし、オイルパームの単板に如何に樹脂接着剤を塗布するか、露出しているパーム繊維に樹脂接着剤を浸透させるかについては説明されておらず不明であり、具体的な合板の製造方法が不明である。少なくとも、オイルパームの単板を複数樹脂接着剤で貼り合わせるという樹脂接着剤の使用を前提としている。 As described above,
Especially in Southeast Asia such as Malaysia, oil palm is cultivated for the production of palm oil, but the empty fruit bunch after palm oil collection contains a lot of fiber etc. Is used in various applications such as fiber boards. However, palm trunks that are harvested every year are not used effectively and are currently being disposed of.
一般に合板と呼ばれているものに、ベニヤ材と呼ばれているラワン(lauan)合板、そのラワン合板の表面にシナ材が仕上げに貼られているシナ合板、松、杉等からなる針葉樹合板等がある。ラワン合板は長期にわたって使用されてきたが、ホルムアルデヒド系接着剤がその接合に使用されており、気化成分が人体に悪影響を与えるシックハウス症候群の原因とされている。そこで、原材料のラワンの品不足のみではなく、当該ホルムアルデヒド系接着剤が嫌われる要因となっている。シナ合板についても、ラワン合板を使用しているから同じである。また、針葉樹合板は薄板に多数のクラックが入り、接着剤の使用は多くならざるを得ないという問題がある。
したがって、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑えた多層合板の存在が望まれている。また、接着剤でシックハウス症候群の原因となるホルムアルデヒド系接着剤とは異なる接着剤を使用すると、コストが高くなるという問題点がある。また、従来の積層合板には、板状合板とする技術はあっても、その積層合板自体を成型するという技術は存在していない。 What is commonly called plywood, lauan plywood called veneer wood, Chinese plywood with cinna wood finished on the surface of the lauan plywood, conifer plywood made of pine, cedar, etc. There is. Lauan plywood has been used for a long time, but formaldehyde-based adhesives are used for the bonding, and the vaporized component is a cause of sick house syndrome that adversely affects the human body. Therefore, not only the shortage of raw materials, but also the formaldehyde adhesive is disliked. The same is true for China plywood because it uses Lauan plywood. In addition, softwood plywood has a problem in that a large number of cracks are formed in the thin plate, and the use of an adhesive must be increased.
Therefore, the presence of a multilayer plywood that suppresses the use of formaldehyde-based adhesives that cause sick house syndrome is desired. In addition, when an adhesive different from a formaldehyde adhesive that causes sick house syndrome is used, the cost increases. Moreover, even if there exists the technique used as the plate-shaped plywood in the conventional laminated plywood, the technique of shape | molding the laminated plywood itself does not exist.
したがって、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑えた多層合板の存在が望まれている。また、接着剤でシックハウス症候群の原因となるホルムアルデヒド系接着剤とは異なる接着剤を使用すると、コストが高くなるという問題点がある。また、従来の積層合板には、板状合板とする技術はあっても、その積層合板自体を成型するという技術は存在していない。 What is commonly called plywood, lauan plywood called veneer wood, Chinese plywood with cinna wood finished on the surface of the lauan plywood, conifer plywood made of pine, cedar, etc. There is. Lauan plywood has been used for a long time, but formaldehyde-based adhesives are used for the bonding, and the vaporized component is a cause of sick house syndrome that adversely affects the human body. Therefore, not only the shortage of raw materials, but also the formaldehyde adhesive is disliked. The same is true for China plywood because it uses Lauan plywood. In addition, softwood plywood has a problem in that a large number of cracks are formed in the thin plate, and the use of an adhesive must be increased.
Therefore, the presence of a multilayer plywood that suppresses the use of formaldehyde-based adhesives that cause sick house syndrome is desired. In addition, when an adhesive different from a formaldehyde adhesive that causes sick house syndrome is used, the cost increases. Moreover, even if there exists the technique used as the plate-shaped plywood in the conventional laminated plywood, the technique of shape | molding the laminated plywood itself does not exist.
そこで、本発明は、かかる不具合を解決すべくなされたものであって、積層合板自体が所望の形状に成型でき、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用したオイルパーム成型体及びその製造方法の提供を第1の課題とするものである。
そして、積層合板自体の機械的強度を強くし、かつ、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパーム自体が本来的に有している成分を利用し、廉価な積層合板の提供を第2の課題とするものである。 Therefore, the present invention has been made to solve such a problem, the laminated plywood itself can be molded into a desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed. The first object is to provide an oil palm molded body using components inherently possessed and a method for producing the oil palm molded body.
In addition, it increases the mechanical strength of the laminated plywood itself, suppresses the use of formaldehyde-based adhesives that cause sick house syndrome, and uses the components that oil palm itself originally has, making it inexpensive. Is the second issue.
そして、積層合板自体の機械的強度を強くし、かつ、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパーム自体が本来的に有している成分を利用し、廉価な積層合板の提供を第2の課題とするものである。 Therefore, the present invention has been made to solve such a problem, the laminated plywood itself can be molded into a desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed. The first object is to provide an oil palm molded body using components inherently possessed and a method for producing the oil palm molded body.
In addition, it increases the mechanical strength of the laminated plywood itself, suppresses the use of formaldehyde-based adhesives that cause sick house syndrome, and uses the components that oil palm itself originally has, making it inexpensive. Is the second issue.
請求項1の発明にかかるオイルパーム成型体は、所定長の薄板からなるオイルパーム材を乾燥し、複数枚積層し、加熱し、かつ、前記積層されたオイルパーム材の面に沿って平行方向に伸びるのを規制しながら、前記積層されたオイルパーム材の面に対して直角方向の圧縮力を加えて圧縮し、その後、前記圧縮を維持し、温度を低下させて冷却し、固定化してなるオイルパーム成型体において、前記複数枚のオイルパーム材がその面に対して直角方向に湾曲するのを防止すべく、前記積層されたオイルパーム材を互いに繊維方向を交差させて重ね合わせてなるものである。
ここで、前記積層されたオイルパーム材の繊維方向を交差させて重ね合わせているから、前記複数枚のオイルパーム材がその面に対して直角方向に湾曲するのを防止でき、前記積層されたオイルパーム材の湾曲を防止できる。
殊に、圧縮する面の形状または圧縮深さによってオイルパーム成型体の機械的強度が決定でき、所望のオイルパーム成型体が得られる。 An oil palm molded body according to the invention ofclaim 1 is obtained by drying, laminating and heating an oil palm material made of a thin plate of a predetermined length, and parallel to the surface of the laminated oil palm material. Compressed by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material, while maintaining the compression, cooling to lower the temperature, and fixing In the molded oil palm body, the laminated oil palm materials are overlapped with their fiber directions crossed to prevent the plurality of oil palm materials from being bent in a direction perpendicular to the surface. Is.
Here, since the fiber directions of the laminated oil palm materials are crossed and overlapped, the plurality of oil palm materials can be prevented from being bent in a direction perpendicular to the surface, and the laminated The oil palm material can be prevented from bending.
In particular, the mechanical strength of the oil palm molding can be determined by the shape of the surface to be compressed or the compression depth, and a desired oil palm molding can be obtained.
ここで、前記積層されたオイルパーム材の繊維方向を交差させて重ね合わせているから、前記複数枚のオイルパーム材がその面に対して直角方向に湾曲するのを防止でき、前記積層されたオイルパーム材の湾曲を防止できる。
殊に、圧縮する面の形状または圧縮深さによってオイルパーム成型体の機械的強度が決定でき、所望のオイルパーム成型体が得られる。 An oil palm molded body according to the invention of
Here, since the fiber directions of the laminated oil palm materials are crossed and overlapped, the plurality of oil palm materials can be prevented from being bent in a direction perpendicular to the surface, and the laminated The oil palm material can be prevented from bending.
In particular, the mechanical strength of the oil palm molding can be determined by the shape of the surface to be compressed or the compression depth, and a desired oil palm molding can be obtained.
一般に、オイルパームの樹幹としては、その品種や生産地等が特に限定されるものではなく、通常、果実生産性が落ちた樹幹、20年以上経過した樹幹、再植栽培や計画的な栽培のために廃棄予定の樹幹が使用されるが、樹齢の若い樹幹であってもよい。
また、オイルパーム材として得た薄板の乾燥は、その乾燥方法が特に問われるものではなく、天然乾燥させてもよいし、人工的に乾燥させてもよいが、人工乾燥の方が高コストである。
ここで、建築材料等に一般的に使用されているラワン等の木材が水や養分の移動が停止した細胞(死細胞)組織から成る二次木部を形成しているのに対し、オイルパームの樹幹は維管束及び柔細胞の一次組織のみで構成され、柔細胞を中心とする殆どの細胞が水や養分の移動が盛んに行われている生活細胞であるため、含水率が極めて高い。その上、オイルパーム幹には、糖類(例えば、フラクト-ス、グルコ-ス、フラクトオリゴ糖、イノシト-ル等)が多く含まれている。このため、オイルパーム幹からオイルパーム材の厚みが厚い場合、天然乾燥ではカビ等の細菌が繁殖して腐食しやすく生産性や商品価値が損なわれる。一方で、人工的に乾燥させる場合には、コスト高となる。そこで、本発明者らの実験研究によれば、オイルパーム幹から得るオイルパーム材の厚みを3~35mmの範囲内とすることで、天然乾燥でもカビ等の細菌による商品価値や生産性の低下を招くことなく、低コストにできることが確認されている。
また、圧密化とは、前記オイルパーム基材等の基材を所定の温度条件下で所定の圧縮力を加えて圧縮し、所定の時間経過後、前記温度を所定の温度まで降下させて解圧する固定化によって、基材を所定の圧縮率で圧縮する加工である。
そして、オイルパーム材とは、圧密加工前の厚みを3~35mmの範囲内としたもので、厚密加工後の厚みは、1~12mmの範囲内のものである。 In general, as the trunk of oil palm, its varieties and production areas are not particularly limited. Usually, the trunk of which fruit productivity has dropped, the trunk of more than 20 years, replanting cultivation or planned cultivation Therefore, a trunk that is scheduled to be discarded is used, but a trunk that is young may be used.
Moreover, the drying method of the thin plate obtained as the oil palm material is not particularly limited, and may be naturally dried or artificially dried, but artificial drying is more expensive. is there.
Here, wood such as Lauan, which is generally used for building materials, forms a secondary xylem composed of cell (dead cell) tissue in which the movement of water and nutrients has stopped, whereas oil palm The trunk of this is composed only of primary tissues of vascular bundles and parenchymal cells, and most of the cells centering on parenchymal cells are living cells in which water and nutrients are actively transferred, so the water content is extremely high. In addition, the oil palm trunk is rich in saccharides (eg, fructose, glucose, fructooligosaccharides, inositol, etc.). For this reason, when the thickness of the oil palm material from the oil palm trunk is thick, bacteria such as mold are proliferated and corroded easily by natural drying, and productivity and commercial value are impaired. On the other hand, when artificially drying, the cost becomes high. Therefore, according to the experimental study by the present inventors, by reducing the thickness of the oil palm material obtained from the oil palm trunk within the range of 3 to 35 mm, the product value and productivity are reduced by bacteria such as mold even in natural drying. It has been confirmed that the cost can be reduced without incurring cost.
Consolidation refers to compressing a base material such as the oil palm base material by applying a predetermined compressive force under a predetermined temperature condition, and lowering the temperature to a predetermined temperature after a predetermined time has elapsed. This is a process of compressing the base material at a predetermined compression rate by immobilization.
The oil palm material has a thickness before the consolidation process in the range of 3 to 35 mm, and the thickness after the consolidation process is in the range of 1 to 12 mm.
また、オイルパーム材として得た薄板の乾燥は、その乾燥方法が特に問われるものではなく、天然乾燥させてもよいし、人工的に乾燥させてもよいが、人工乾燥の方が高コストである。
ここで、建築材料等に一般的に使用されているラワン等の木材が水や養分の移動が停止した細胞(死細胞)組織から成る二次木部を形成しているのに対し、オイルパームの樹幹は維管束及び柔細胞の一次組織のみで構成され、柔細胞を中心とする殆どの細胞が水や養分の移動が盛んに行われている生活細胞であるため、含水率が極めて高い。その上、オイルパーム幹には、糖類(例えば、フラクト-ス、グルコ-ス、フラクトオリゴ糖、イノシト-ル等)が多く含まれている。このため、オイルパーム幹からオイルパーム材の厚みが厚い場合、天然乾燥ではカビ等の細菌が繁殖して腐食しやすく生産性や商品価値が損なわれる。一方で、人工的に乾燥させる場合には、コスト高となる。そこで、本発明者らの実験研究によれば、オイルパーム幹から得るオイルパーム材の厚みを3~35mmの範囲内とすることで、天然乾燥でもカビ等の細菌による商品価値や生産性の低下を招くことなく、低コストにできることが確認されている。
また、圧密化とは、前記オイルパーム基材等の基材を所定の温度条件下で所定の圧縮力を加えて圧縮し、所定の時間経過後、前記温度を所定の温度まで降下させて解圧する固定化によって、基材を所定の圧縮率で圧縮する加工である。
そして、オイルパーム材とは、圧密加工前の厚みを3~35mmの範囲内としたもので、厚密加工後の厚みは、1~12mmの範囲内のものである。 In general, as the trunk of oil palm, its varieties and production areas are not particularly limited. Usually, the trunk of which fruit productivity has dropped, the trunk of more than 20 years, replanting cultivation or planned cultivation Therefore, a trunk that is scheduled to be discarded is used, but a trunk that is young may be used.
Moreover, the drying method of the thin plate obtained as the oil palm material is not particularly limited, and may be naturally dried or artificially dried, but artificial drying is more expensive. is there.
Here, wood such as Lauan, which is generally used for building materials, forms a secondary xylem composed of cell (dead cell) tissue in which the movement of water and nutrients has stopped, whereas oil palm The trunk of this is composed only of primary tissues of vascular bundles and parenchymal cells, and most of the cells centering on parenchymal cells are living cells in which water and nutrients are actively transferred, so the water content is extremely high. In addition, the oil palm trunk is rich in saccharides (eg, fructose, glucose, fructooligosaccharides, inositol, etc.). For this reason, when the thickness of the oil palm material from the oil palm trunk is thick, bacteria such as mold are proliferated and corroded easily by natural drying, and productivity and commercial value are impaired. On the other hand, when artificially drying, the cost becomes high. Therefore, according to the experimental study by the present inventors, by reducing the thickness of the oil palm material obtained from the oil palm trunk within the range of 3 to 35 mm, the product value and productivity are reduced by bacteria such as mold even in natural drying. It has been confirmed that the cost can be reduced without incurring cost.
Consolidation refers to compressing a base material such as the oil palm base material by applying a predetermined compressive force under a predetermined temperature condition, and lowering the temperature to a predetermined temperature after a predetermined time has elapsed. This is a process of compressing the base material at a predetermined compression rate by immobilization.
The oil palm material has a thickness before the consolidation process in the range of 3 to 35 mm, and the thickness after the consolidation process is in the range of 1 to 12 mm.
更に、オイルパーム材の繊維(維管束)方向に対する面の垂直方向に複数枚積層するとは、繊維の長さ方向に対する垂直方向の面、即ち、木口面及び木端面以外の面で積層することを意味し、繊維方向を互いに同一にして積層してもよいし、繊維方向を互いに直交させて積層してもよく、その枚数も奇数枚であってもよいし偶数枚であってもよい。また、その積層枚数も2枚以上であればよい。
また、上記加熱状態で繊維方向に対して垂直方向に外力を加えることによって、前記乾燥させたオイルパーム材の全体の厚みを加熱圧縮するとは、オイルパーム材の積載方向に圧縮して少なくとも木口面に相当する面積を小さくすること、所謂、圧縮の方向性を特定して圧密加工したことを意味する。この圧密加工は、例えば、オイルパーム材の含水率を略均一となるように設定し、所定の条件で加熱圧縮し、固定化することによって形成することができ、このときの所定の条件となる温度、圧力、時間、圧縮スピード等については、目的とする圧縮率等をパラメータとして予め実験等によって決定される。 Furthermore, laminating a plurality of sheets in the direction perpendicular to the fiber (vascular bundle) direction of the oil palm material means that layers are laminated in a direction perpendicular to the fiber length direction, that is, a surface other than the end face and the end face of the tree. This means that the fiber directions may be the same and may be laminated, the fiber directions may be perpendicular to each other, and the number of the fibers may be an odd number or an even number. Further, the number of stacked layers may be two or more.
In addition, heating and compressing the entire thickness of the dried oil palm material by applying an external force in a direction perpendicular to the fiber direction in the heated state means compressing in the loading direction of the oil palm material and at least the end face This means that the area corresponding to is reduced, that is, the so-called compression direction is specified and consolidation processing is performed. This consolidation process can be formed by, for example, setting the moisture content of the oil palm material to be substantially uniform, heating and compressing under a predetermined condition, and fixing, and this is a predetermined condition at this time. The temperature, pressure, time, compression speed, and the like are determined in advance by experiments or the like using the target compression ratio and the like as parameters.
また、上記加熱状態で繊維方向に対して垂直方向に外力を加えることによって、前記乾燥させたオイルパーム材の全体の厚みを加熱圧縮するとは、オイルパーム材の積載方向に圧縮して少なくとも木口面に相当する面積を小さくすること、所謂、圧縮の方向性を特定して圧密加工したことを意味する。この圧密加工は、例えば、オイルパーム材の含水率を略均一となるように設定し、所定の条件で加熱圧縮し、固定化することによって形成することができ、このときの所定の条件となる温度、圧力、時間、圧縮スピード等については、目的とする圧縮率等をパラメータとして予め実験等によって決定される。 Furthermore, laminating a plurality of sheets in the direction perpendicular to the fiber (vascular bundle) direction of the oil palm material means that layers are laminated in a direction perpendicular to the fiber length direction, that is, a surface other than the end face and the end face of the tree. This means that the fiber directions may be the same and may be laminated, the fiber directions may be perpendicular to each other, and the number of the fibers may be an odd number or an even number. Further, the number of stacked layers may be two or more.
In addition, heating and compressing the entire thickness of the dried oil palm material by applying an external force in a direction perpendicular to the fiber direction in the heated state means compressing in the loading direction of the oil palm material and at least the end face This means that the area corresponding to is reduced, that is, the so-called compression direction is specified and consolidation processing is performed. This consolidation process can be formed by, for example, setting the moisture content of the oil palm material to be substantially uniform, heating and compressing under a predetermined condition, and fixing, and this is a predetermined condition at this time. The temperature, pressure, time, compression speed, and the like are determined in advance by experiments or the like using the target compression ratio and the like as parameters.
そして、上記圧密加工により前記オイルパーム材が接合され、全体の気乾比重を0.8以上とは、発明者等の実験により得られた結果で、接着剤が使用されることなく圧密加工によって、複数枚に積層した薄板が互いに接合された状態にある積層木材全体の気乾比重が0.8以上であることを意味する。
ここで、気乾比重とは、木材を大気中で乾燥した時の比重で、通常、含水率15%の時の比重で表すものであり、木材を乾燥させた時の重さと同じ体積の水の重さを比べた値である。数値が大きいほど重く、小さいほど軽いことを表す。
また、圧密加工により全体の圧密加工した気乾比重を0.8以上とは、本発明者らが、実験を重ねた結果、オイルパーム材を高圧縮して気乾比重を0.8以上とすることによって、オイルパームの性質が変化して硬度が顕著に硬くなると共に、強度・硬度や、寸法変化率等の物性値や特性値のばらつきが少なく物理的安定性が増すことを見出し、この知見に基づいて設定されたものである。即ち、圧縮により、強度や硬度等を増大させ、かつ、物理的性質のバラつきを少なくした特性領域であり、圧密加工された木材としての特性であることを示すもので、圧密加工により気乾比重を0.8以上にできないもの、気乾比重が0.8以上にならないものは含まれない。より好ましくは、気乾比重が0.9以上とすることによって、硬度が顕著に高くなり、硬度及び寸法変化率等の物性値や特性値のばらつきが少なくなって物理的安定性がさらに増すことになる。 And the said oil palm material is joined by the said compaction process, and the whole air-dry specific gravity is 0.8 or more by the result obtained by experiment of inventors, etc., by a compaction process, without using an adhesive agent. This means that the air-drying specific gravity of the whole laminated wood in a state where the thin plates laminated on each other are joined to each other is 0.8 or more.
Here, the air-dry specific gravity is the specific gravity when the wood is dried in the air, and is usually expressed by the specific gravity when the moisture content is 15%, and water having the same volume as the weight when the wood is dried. It is the value which compared the weight of. The larger the value, the heavier, the smaller the lighter.
In addition, the air-drying specific gravity of the entire compacted by compaction processing is 0.8 or more, as a result of repeated experiments by the inventors, the oil palm material is highly compressed and the air-drying specific gravity is 0.8 or more As a result, the properties of the oil palm are changed and the hardness is remarkably increased, and the physical stability is increased with less variation in physical properties and characteristic values such as strength / hardness and dimensional change rate. It was set based on knowledge. In other words, it is a characteristic area where the strength and hardness are increased by compression and the variation in physical properties is reduced, indicating that it is a characteristic of compacted wood. In which the air-drying specific gravity does not exceed 0.8 is not included. More preferably, when the air-dry specific gravity is 0.9 or more, the hardness is remarkably increased, and the physical stability is further increased due to less variation in physical properties and characteristic values such as hardness and dimensional change rate. become.
ここで、気乾比重とは、木材を大気中で乾燥した時の比重で、通常、含水率15%の時の比重で表すものであり、木材を乾燥させた時の重さと同じ体積の水の重さを比べた値である。数値が大きいほど重く、小さいほど軽いことを表す。
また、圧密加工により全体の圧密加工した気乾比重を0.8以上とは、本発明者らが、実験を重ねた結果、オイルパーム材を高圧縮して気乾比重を0.8以上とすることによって、オイルパームの性質が変化して硬度が顕著に硬くなると共に、強度・硬度や、寸法変化率等の物性値や特性値のばらつきが少なく物理的安定性が増すことを見出し、この知見に基づいて設定されたものである。即ち、圧縮により、強度や硬度等を増大させ、かつ、物理的性質のバラつきを少なくした特性領域であり、圧密加工された木材としての特性であることを示すもので、圧密加工により気乾比重を0.8以上にできないもの、気乾比重が0.8以上にならないものは含まれない。より好ましくは、気乾比重が0.9以上とすることによって、硬度が顕著に高くなり、硬度及び寸法変化率等の物性値や特性値のばらつきが少なくなって物理的安定性がさらに増すことになる。 And the said oil palm material is joined by the said compaction process, and the whole air-dry specific gravity is 0.8 or more by the result obtained by experiment of inventors, etc., by a compaction process, without using an adhesive agent. This means that the air-drying specific gravity of the whole laminated wood in a state where the thin plates laminated on each other are joined to each other is 0.8 or more.
Here, the air-dry specific gravity is the specific gravity when the wood is dried in the air, and is usually expressed by the specific gravity when the moisture content is 15%, and water having the same volume as the weight when the wood is dried. It is the value which compared the weight of. The larger the value, the heavier, the smaller the lighter.
In addition, the air-drying specific gravity of the entire compacted by compaction processing is 0.8 or more, as a result of repeated experiments by the inventors, the oil palm material is highly compressed and the air-drying specific gravity is 0.8 or more As a result, the properties of the oil palm are changed and the hardness is remarkably increased, and the physical stability is increased with less variation in physical properties and characteristic values such as strength / hardness and dimensional change rate. It was set based on knowledge. In other words, it is a characteristic area where the strength and hardness are increased by compression and the variation in physical properties is reduced, indicating that it is a characteristic of compacted wood. In which the air-drying specific gravity does not exceed 0.8 is not included. More preferably, when the air-dry specific gravity is 0.9 or more, the hardness is remarkably increased, and the physical stability is further increased due to less variation in physical properties and characteristic values such as hardness and dimensional change rate. become.
なお、上記気乾比重は、最終的には、コストや、必要とされる強度・硬度等を考慮して設定されるが、気乾比重を大きくするために圧縮率を余りに高くすると木材を構成する繊維が破壊されてクラックが生じ商品性が失われることになるから、高圧縮によりクラックが発生する直前に測定される気乾比重の値が最大値となる。即ち、本発明における気乾比重の上限は圧密加工の圧縮限界で、最大値は有限値となる。また、上記気乾比重の数値は、厳格であることを要求するものではなくて概ねであり、当然、測定等により誤差を含む概略値であり、数割の誤差を否定するものではない。
The air-drying specific gravity is ultimately set in consideration of cost, required strength and hardness, etc., but if the compression ratio is too high to increase the air-drying specific gravity, the wood is composed. Since the fiber to be broken is broken and a commercial property is lost, the value of the air-dry specific gravity measured immediately before the crack is generated by high compression becomes the maximum value. That is, the upper limit of the air-dry specific gravity in the present invention is the compression limit of the compacting process, and the maximum value is a finite value. In addition, the numerical value of the air-dry specific gravity is not required to be strict, but is approximate. Naturally, it is an approximate value including an error by measurement or the like, and does not deny an error of several percent.
請求項2の発明にかかるオイルパーム成型体は、所定長のオイルパーム材を乾燥し、複数枚積層し、加熱し、かつ、前記積層されたオイルパーム材の面に沿って平行方向に伸びるのを規制しながら、前記積層されたオイルパーム材の面に対して直角方向の圧縮力を加えて圧縮し、その後、前記圧縮を維持し、温度を低下させて冷却し、固定化してなるオイルパーム成型体において、前記複数枚のオイルパーム材がその面に対して特定方向の直角方向にのみ湾曲することが自在なように、前記積層されたオイルパーム材を複数枚重ね合わせたものである。
ここで、前記積層されたオイルパーム材を複数枚重ね合わせ、前記複数枚のオイルパーム材がその面に対して特定方向の直角方向にのみ湾曲することを自在としたものは、前記複数枚のオイルパーム材の内の何枚かを繊維の長さが交差するものであってもよく、結果的に所望の湾曲が可能なものであればよい。
殊に、オイルパーム成型体が、その面に対して特定方向の直角方向にのみ湾曲する構造であっても、圧縮する面の形状または圧縮深さによってオイルパーム成型体の機械的強度が決定でき、所望のオイルパーム成型体が得られる。 The oil palm molded body according to the invention ofclaim 2 is obtained by drying, laminating and heating a predetermined length of oil palm material, and extending in a parallel direction along the surface of the laminated oil palm material. The oil palm is formed by compressing by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material while regulating the temperature, and then maintaining the compression, cooling it at a reduced temperature, and fixing it. In the molded body, a plurality of the laminated oil palm materials are overlapped so that the plurality of oil palm materials can be bent only in a direction perpendicular to a specific direction with respect to the surface.
Here, a plurality of the laminated oil palm materials are overlapped, and the plurality of oil palm materials can be curved only in a direction perpendicular to a specific direction with respect to the surface, Some of the oil palm materials may be ones in which the lengths of the fibers intersect, and as long as a desired curve can be obtained as a result.
In particular, the mechanical strength of the oil palm molding can be determined by the shape of the surface to be compressed or the compression depth, even if the oil palm molding has a structure that is curved only in a direction perpendicular to a specific direction with respect to the surface. A desired oil palm molding is obtained.
ここで、前記積層されたオイルパーム材を複数枚重ね合わせ、前記複数枚のオイルパーム材がその面に対して特定方向の直角方向にのみ湾曲することを自在としたものは、前記複数枚のオイルパーム材の内の何枚かを繊維の長さが交差するものであってもよく、結果的に所望の湾曲が可能なものであればよい。
殊に、オイルパーム成型体が、その面に対して特定方向の直角方向にのみ湾曲する構造であっても、圧縮する面の形状または圧縮深さによってオイルパーム成型体の機械的強度が決定でき、所望のオイルパーム成型体が得られる。 The oil palm molded body according to the invention of
Here, a plurality of the laminated oil palm materials are overlapped, and the plurality of oil palm materials can be curved only in a direction perpendicular to a specific direction with respect to the surface, Some of the oil palm materials may be ones in which the lengths of the fibers intersect, and as long as a desired curve can be obtained as a result.
In particular, the mechanical strength of the oil palm molding can be determined by the shape of the surface to be compressed or the compression depth, even if the oil palm molding has a structure that is curved only in a direction perpendicular to a specific direction with respect to the surface. A desired oil palm molding is obtained.
請求項3の発明にかかるオイルパーム成型体の複数枚積層したオイルパーム材には、金型によって平面部、凹部、凸部のうちの1つ以上を形成したものである。
ここで、金型によって平面部、凹部、凸部の1つ以上を形成したとは、成型の有無をいうものであり、成型がされているものであればよい。 The oil palm material obtained by laminating a plurality of oil palm molded bodies according to the invention ofclaim 3 is formed by forming one or more of a plane portion, a concave portion, and a convex portion by a mold.
Here, the formation of one or more of the flat portion, the concave portion, and the convex portion by the mold refers to the presence or absence of molding, and may be any as long as it is molded.
ここで、金型によって平面部、凹部、凸部の1つ以上を形成したとは、成型の有無をいうものであり、成型がされているものであればよい。 The oil palm material obtained by laminating a plurality of oil palm molded bodies according to the invention of
Here, the formation of one or more of the flat portion, the concave portion, and the convex portion by the mold refers to the presence or absence of molding, and may be any as long as it is molded.
請求項4の発明にかかるオイルパーム成型体の製造方法は、所定長のオイルパーム幹をその周方向に回転させながらロータリーレースで所定の厚みに剥いて複数枚のオイルパーム材に形成し、前記形成したオイルパーム材を乾燥し、前記乾燥させたオイルパーム材を所定の状態に複数枚積層し、前記積層されたオイルパーム材の温度を上昇させるべく加熱し、前記加熱された前記積層されたオイルパーム材に前記オイルパーム材の面に対して平行方向に伸びるのを規制しながら、金型の上型と下型とで前記オイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮成型し、前記所定時間圧縮した前記積層されたオイルパーム材を、前記加熱工程で供給していた温度を降下させて冷却し、固定化させるものである。
ここで、上記薄板工程とは、所定長のオイルパーム幹をその周方向に回転させながらロータリーレースで所定の厚みに剥いて複数枚のオイルパーム材に形成する工程である。
また、上記乾燥工程とは、オイルパーム材を乾燥する工程である。
そして、上記積層工程とは、前記乾燥工程で乾燥させたオイルパーム材を所定の状態に複数枚積層する工程である。
更に、上記加熱工程とは、前記積層工程で積層されたオイルパーム材の温度を上昇させるべく加熱する工程である。
更にまた、上記圧縮工程とは、前記加熱工程によって加熱された前記積層されたオイルパーム材に、前記オイルパーム材の面に対して平行方向に伸びるのを規制しながら、金型の上型と下型とで前記オイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮形成する工程である。
加えて、上記固定化工程とは、前記圧縮工程で所定時間圧縮した前記積層されたオイルパーム材を、前記加熱工程で供給していた温度を降下させて冷却し、固定化させる工程である。 According to a fourth aspect of the present invention, there is provided a method for producing an oil palm molded body, wherein a predetermined length of an oil palm trunk is rotated in the circumferential direction thereof and peeled to a predetermined thickness by a rotary race to form a plurality of oil palm materials, The formed oil palm material is dried, a plurality of the dried oil palm materials are laminated in a predetermined state, heated to increase the temperature of the laminated oil palm materials, and the heated the laminated While restricting the oil palm material to extend in a direction parallel to the surface of the oil palm material, a compressive force in a direction perpendicular to the surface of the oil palm material is applied between the upper mold and the lower mold of the mold. The laminated oil palm material compressed and molded for a predetermined time is cooled and fixed by lowering the temperature supplied in the heating step.
Here, the thin plate process is a process of forming a plurality of oil palm members by peeling a predetermined length of oil palm trunk to a predetermined thickness with a rotary race while rotating in the circumferential direction.
Moreover, the said drying process is a process of drying an oil palm material.
And the said lamination process is a process of laminating | stacking two or more oil palm materials dried at the said drying process in a predetermined state.
Furthermore, the said heating process is a process heated so that the temperature of the oil palm material laminated | stacked at the said lamination process may be raised.
Furthermore, the compression step refers to the upper mold of the mold while restricting the laminated oil palm material heated by the heating step from extending in a direction parallel to the surface of the oil palm material. It is a step of compressing and forming for a predetermined time by applying a compression force in a direction perpendicular to the surface of the oil palm material with the lower mold.
In addition, the immobilization step is a step of cooling and fixing the laminated oil palm material compressed in the compression step for a predetermined time by lowering the temperature supplied in the heating step.
ここで、上記薄板工程とは、所定長のオイルパーム幹をその周方向に回転させながらロータリーレースで所定の厚みに剥いて複数枚のオイルパーム材に形成する工程である。
また、上記乾燥工程とは、オイルパーム材を乾燥する工程である。
そして、上記積層工程とは、前記乾燥工程で乾燥させたオイルパーム材を所定の状態に複数枚積層する工程である。
更に、上記加熱工程とは、前記積層工程で積層されたオイルパーム材の温度を上昇させるべく加熱する工程である。
更にまた、上記圧縮工程とは、前記加熱工程によって加熱された前記積層されたオイルパーム材に、前記オイルパーム材の面に対して平行方向に伸びるのを規制しながら、金型の上型と下型とで前記オイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮形成する工程である。
加えて、上記固定化工程とは、前記圧縮工程で所定時間圧縮した前記積層されたオイルパーム材を、前記加熱工程で供給していた温度を降下させて冷却し、固定化させる工程である。 According to a fourth aspect of the present invention, there is provided a method for producing an oil palm molded body, wherein a predetermined length of an oil palm trunk is rotated in the circumferential direction thereof and peeled to a predetermined thickness by a rotary race to form a plurality of oil palm materials, The formed oil palm material is dried, a plurality of the dried oil palm materials are laminated in a predetermined state, heated to increase the temperature of the laminated oil palm materials, and the heated the laminated While restricting the oil palm material to extend in a direction parallel to the surface of the oil palm material, a compressive force in a direction perpendicular to the surface of the oil palm material is applied between the upper mold and the lower mold of the mold. The laminated oil palm material compressed and molded for a predetermined time is cooled and fixed by lowering the temperature supplied in the heating step.
Here, the thin plate process is a process of forming a plurality of oil palm members by peeling a predetermined length of oil palm trunk to a predetermined thickness with a rotary race while rotating in the circumferential direction.
Moreover, the said drying process is a process of drying an oil palm material.
And the said lamination process is a process of laminating | stacking two or more oil palm materials dried at the said drying process in a predetermined state.
Furthermore, the said heating process is a process heated so that the temperature of the oil palm material laminated | stacked at the said lamination process may be raised.
Furthermore, the compression step refers to the upper mold of the mold while restricting the laminated oil palm material heated by the heating step from extending in a direction parallel to the surface of the oil palm material. It is a step of compressing and forming for a predetermined time by applying a compression force in a direction perpendicular to the surface of the oil palm material with the lower mold.
In addition, the immobilization step is a step of cooling and fixing the laminated oil palm material compressed in the compression step for a predetermined time by lowering the temperature supplied in the heating step.
上記積層工程は、その繊維方向を互いに同一方向として積層したものでは、本来の幹の長さ方向に沿った接合となり、圧密加工において軟化した繊維が、繊維方向を同一として積層方向に隣接する他の繊維と絡み易く、その絡み合った状態で固定化される。即ち、圧密加工によって互いの繊維同士が絡み合い、接合強度が高くなる。よって、機械的強度が高く、圧密化後の安定した寸法形状性が確保される。更に、互いの繊維方向を同一にして積層することで、接合面における膨張率及び収縮率を完全に同一にすることができて、ストレスがかかることなく、寸法形状安定性がより高いものとなる。
In the above laminating process, when the fiber directions are laminated in the same direction, joining is performed along the length direction of the original trunk, and the fibers softened in the consolidation process are adjacent to each other in the laminating direction with the same fiber direction. It is easy to get entangled with the fiber and is fixed in the entangled state. That is, the fibers are entangled with each other by the consolidation process, and the bonding strength is increased. Therefore, the mechanical strength is high, and a stable dimensional shape after consolidation is ensured. Furthermore, by laminating the fibers in the same fiber direction, the expansion rate and contraction rate at the joint surface can be made completely the same, and the dimensional shape stability is higher without applying stress. .
また、その繊維方向を互いに直交する積層工程では、圧密加工後の周囲環境条件の変化によって膨張収縮力が生じても、互いの繊維同士が相互に作用し合って特定方向の反り変形が防止され、良好なバランス状態となり、寸法形状安定性が向上し、強靭な板状の積層合板となり、オイルパーム成型体となる。
上記乾燥工程は、オイルパーム材の含水率を5~30%の範囲内に乾燥させるものであるから、クラック、変形、膨らみ、破裂等が防止される。よって、より安定した寸法形状性が確保され、歩留りも高いものとなる。また、含水率を5%~30%の範囲内の乾燥状態であると、ラワン薄板、シナ薄板、針葉樹薄板等との接合にも好適である。 In addition, in the laminating process in which the fiber directions are orthogonal to each other, even if expansion and contraction force is generated due to changes in ambient environmental conditions after consolidation, the fibers interact with each other to prevent warping deformation in a specific direction. Thus, a good balance state is obtained, the dimensional shape stability is improved, a tough laminated laminated plywood is obtained, and an oil palm molded body is obtained.
In the above drying step, the moisture content of the oil palm material is dried within the range of 5 to 30%, so that cracks, deformation, swelling, rupture and the like are prevented. Therefore, more stable dimensional shape is ensured and the yield is high. Further, when the moisture content is in a dry state within the range of 5% to 30%, it is also suitable for joining with Lauan thin plate, China thin plate, conifer thin plate and the like.
上記乾燥工程は、オイルパーム材の含水率を5~30%の範囲内に乾燥させるものであるから、クラック、変形、膨らみ、破裂等が防止される。よって、より安定した寸法形状性が確保され、歩留りも高いものとなる。また、含水率を5%~30%の範囲内の乾燥状態であると、ラワン薄板、シナ薄板、針葉樹薄板等との接合にも好適である。 In addition, in the laminating process in which the fiber directions are orthogonal to each other, even if expansion and contraction force is generated due to changes in ambient environmental conditions after consolidation, the fibers interact with each other to prevent warping deformation in a specific direction. Thus, a good balance state is obtained, the dimensional shape stability is improved, a tough laminated laminated plywood is obtained, and an oil palm molded body is obtained.
In the above drying step, the moisture content of the oil palm material is dried within the range of 5 to 30%, so that cracks, deformation, swelling, rupture and the like are prevented. Therefore, more stable dimensional shape is ensured and the yield is high. Further, when the moisture content is in a dry state within the range of 5% to 30%, it is also suitable for joining with Lauan thin plate, China thin plate, conifer thin plate and the like.
上記加熱工程における加熱温度は、110~170℃の範囲内としたものであるから、圧密加工における固定化不良や木材間の接合不良、また、表面炭化、材質強度の低化等の材質劣化を防止することができる。また、加熱温度が110℃~170℃の範囲内であると、オイルパーム材Wのみではなく、ラワン薄板、シナ薄板、針葉樹薄板等との接合にも好適である。
上記圧縮工程による所定の圧縮圧力は、1~100kg/cm2の範囲内としたものであるから、圧密加工における固定化不良や木材間の接合不良、また表面クラックの発生を防止することができる。
上記加熱工程及び圧縮工程に要する時間は、10~120分間の範囲内であることから、圧密加工における固定化不良や木材間の接合不良、表面の炭化を防止できる。
ところで、オイルパーム成型体の面に対して特定方向の直角方向にのみ湾曲する構造、即ち、繊維方向が交差しておらず平行する積層方法であっても、圧縮する面の形状または圧縮深さによってオイルパーム成型体の機械的強度が決定でき、所望のオイルパーム成型体が得られる。 Since the heating temperature in the heating step is in the range of 110 to 170 ° C., there is a problem of material deterioration such as immobilization failure in the consolidation process, poor joining between woods, surface carbonization, and low material strength. Can be prevented. Further, when the heating temperature is in the range of 110 ° C. to 170 ° C., it is suitable not only for joining with the oil palm material W but also for bonding with Lauan thin plate, China thin plate, conifer thin plate and the like.
Since the predetermined compression pressure in the compression step is within the range of 1 to 100 kg / cm 2 , it is possible to prevent immobilization defects, poor bonding between woods, and occurrence of surface cracks in consolidation. .
Since the time required for the heating step and the compression step is within a range of 10 to 120 minutes, it is possible to prevent immobilization failure, poor joining between woods, and surface carbonization in the compacting process.
By the way, even if it is a lamination method which curves only in the direction perpendicular to a specific direction with respect to the surface of the oil palm molded body, that is, a lamination method in which the fiber directions do not intersect and are parallel, the shape or compression depth of the surface to be compressed Thus, the mechanical strength of the oil palm molded body can be determined, and a desired oil palm molded body can be obtained.
上記圧縮工程による所定の圧縮圧力は、1~100kg/cm2の範囲内としたものであるから、圧密加工における固定化不良や木材間の接合不良、また表面クラックの発生を防止することができる。
上記加熱工程及び圧縮工程に要する時間は、10~120分間の範囲内であることから、圧密加工における固定化不良や木材間の接合不良、表面の炭化を防止できる。
ところで、オイルパーム成型体の面に対して特定方向の直角方向にのみ湾曲する構造、即ち、繊維方向が交差しておらず平行する積層方法であっても、圧縮する面の形状または圧縮深さによってオイルパーム成型体の機械的強度が決定でき、所望のオイルパーム成型体が得られる。 Since the heating temperature in the heating step is in the range of 110 to 170 ° C., there is a problem of material deterioration such as immobilization failure in the consolidation process, poor joining between woods, surface carbonization, and low material strength. Can be prevented. Further, when the heating temperature is in the range of 110 ° C. to 170 ° C., it is suitable not only for joining with the oil palm material W but also for bonding with Lauan thin plate, China thin plate, conifer thin plate and the like.
Since the predetermined compression pressure in the compression step is within the range of 1 to 100 kg / cm 2 , it is possible to prevent immobilization defects, poor bonding between woods, and occurrence of surface cracks in consolidation. .
Since the time required for the heating step and the compression step is within a range of 10 to 120 minutes, it is possible to prevent immobilization failure, poor joining between woods, and surface carbonization in the compacting process.
By the way, even if it is a lamination method which curves only in the direction perpendicular to a specific direction with respect to the surface of the oil palm molded body, that is, a lamination method in which the fiber directions do not intersect and are parallel, the shape or compression depth of the surface to be compressed Thus, the mechanical strength of the oil palm molded body can be determined, and a desired oil palm molded body can be obtained.
請求項5の発明にかかるオイルパーム成型体の製造方法は、所定長のオイルパーム幹をその周方向に回転させながらロータリーレースで所定の厚みに剥いて複数枚のオイルパーム材に形成し、前記形成したオイルパーム材を乾燥し、前記乾燥させたオイルパーム材を所定の状態に複数枚積層し、前記積層されたオイルパーム材の温度を上昇させるべく加熱し、前記加熱された前記積層されたオイルパーム材に前記オイルパーム材の面に沿って平行方向に伸びるのを規制しながら、金型の上型と下型とで前記オイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮成型し、前記所定時間圧縮成型した前記積層されたオイルパーム材を、前記予備加熱工程で供給していた温度を降下させて固定化させ、前記固定化した前記積層されたオイルパーム材を所定の湿度及び温度条件下で、前記積層されたオイルパーム材の面に沿って平行方向に延びるのを規制しながら、上型と下型とで前記積層されたオイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮成型し、前記所定時間圧縮成型した前記積層されたオイルパーム材の温度を降下させて固定化させるものである。
ここで、上記予備加熱工程、予備圧縮工程、予備固定化工程は、上記請求項5の加熱工程、圧縮工程、固定化工程と基本的動作が相違するものではない。処理する温度及び/または圧縮力が異なるか、オイルパーム成型処理内容が異なるものである。また、本固定化工程は、上記請求項5の加熱工程、圧縮工程、固定化工程とからなるものである。
上記薄板工程は、所定長のオイルパーム幹をその周方向に回転させながらロータリーレースで所定の厚みに剥いて複数枚のオイルパーム材に形成する工程である。また、上記乾燥工程は、前記薄板工程で形成したオイルパーム材を乾燥する工程である。そして、上記積層工程は、前記乾燥工程で乾燥させたオイルパーム材を所定の状態に複数枚積層する工程である。 The method for producing an oil palm molded body according to the invention ofclaim 5 is to form a plurality of oil palm materials by peeling the oil palm trunk of a predetermined length to a predetermined thickness with a rotary race while rotating the oil palm trunk in the circumferential direction, The formed oil palm material is dried, a plurality of the dried oil palm materials are laminated in a predetermined state, heated to increase the temperature of the laminated oil palm materials, and the heated the laminated Applying a compressive force in a direction perpendicular to the surface of the oil palm material between the upper mold and the lower mold of the mold while restricting the oil palm material to extend in the parallel direction along the surface of the oil palm material. The laminated oil palm material compressed and molded for a predetermined time is fixed by lowering the temperature supplied in the preliminary heating step and fixed. The surface of the laminated oil palm material in the upper mold and the lower mold while restricting the il palm material to extend in a parallel direction along the surface of the laminated oil palm material under predetermined humidity and temperature conditions And compressing and molding for a predetermined time by applying a compressive force in a direction perpendicular to the temperature, the temperature of the laminated oil palm material compression-molded for the predetermined time is lowered and fixed.
Here, the preliminary heating process, the preliminary compression process, and the preliminary fixing process are not different in basic operation from the heating process, the compression process, and the fixing process ofclaim 5. The processing temperature and / or compression force is different, or the oil palm molding processing content is different. Moreover, this fixing process consists of the heating process, compression process, and fixing process of the said Claim 5.
The thin plate step is a step of forming a plurality of oil palm materials by peeling a predetermined length of oil palm trunk to a predetermined thickness with a rotary race while rotating in the circumferential direction. Moreover, the said drying process is a process of drying the oil palm material formed at the said thin-plate process. And the said lamination | stacking process is a process of laminating | stacking the oil palm material dried at the said drying process in a predetermined state.
ここで、上記予備加熱工程、予備圧縮工程、予備固定化工程は、上記請求項5の加熱工程、圧縮工程、固定化工程と基本的動作が相違するものではない。処理する温度及び/または圧縮力が異なるか、オイルパーム成型処理内容が異なるものである。また、本固定化工程は、上記請求項5の加熱工程、圧縮工程、固定化工程とからなるものである。
上記薄板工程は、所定長のオイルパーム幹をその周方向に回転させながらロータリーレースで所定の厚みに剥いて複数枚のオイルパーム材に形成する工程である。また、上記乾燥工程は、前記薄板工程で形成したオイルパーム材を乾燥する工程である。そして、上記積層工程は、前記乾燥工程で乾燥させたオイルパーム材を所定の状態に複数枚積層する工程である。 The method for producing an oil palm molded body according to the invention of
Here, the preliminary heating process, the preliminary compression process, and the preliminary fixing process are not different in basic operation from the heating process, the compression process, and the fixing process of
The thin plate step is a step of forming a plurality of oil palm materials by peeling a predetermined length of oil palm trunk to a predetermined thickness with a rotary race while rotating in the circumferential direction. Moreover, the said drying process is a process of drying the oil palm material formed at the said thin-plate process. And the said lamination | stacking process is a process of laminating | stacking the oil palm material dried at the said drying process in a predetermined state.
更に、上記予備加熱工程は、前記積層工程で積層されたオイルパーム材の温度を上昇させるべく加熱する工程である。
更にまた、上記予備圧縮工程は、前記予備加熱工程によって加熱された前記積層されたオイルパーム材に前記オイルパーム材の面に沿って平行方向に伸びるのを規制しながら、金型の上型と下型とで前記オイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮成型する工程である。
加えて、上記予備固定化工程は、前記圧縮工程で所定時間圧縮成型した前記積層されたオイルパーム材を、前記予備加熱工程で供給していた温度を降下させて固定化させる工程である。
また、上記本固定化工程は、前記予備固定化工程で固定化した予備オイルパーム成型体を所定の湿度及び温度条件下で、前記積層されたオイルパーム材の面に沿って平行方向に延びるのを規制しながら、上型と下型とで前記積層されたオイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮成型し、前記所定時間圧縮成型した前記積層されたオイルパーム材の温度を降下させて固定化させる工程である。 Furthermore, the said preheating process is a process heated so that the temperature of the oil palm material laminated | stacked by the said lamination process may be raised.
Furthermore, the pre-compression process may be performed by restricting the laminated oil palm material heated by the pre-heating process from extending in a parallel direction along the surface of the oil palm material, It is a step of compressing and molding for a predetermined time by applying a compressive force in a direction perpendicular to the surface of the oil palm material with the lower mold.
In addition, the preliminary fixing step is a step of fixing the laminated oil palm material compression-molded for a predetermined time in the compression step by lowering the temperature supplied in the preliminary heating step.
Further, in the main fixing step, the preliminary oil palm molded body fixed in the preliminary fixing step extends in a parallel direction along a surface of the laminated oil palm material under a predetermined humidity and temperature condition. The laminated oil palm is subjected to compression molding for a predetermined time by applying a compression force in a direction perpendicular to the surface of the laminated oil palm material between the upper mold and the lower mold, and the compression molding for the predetermined time. This is a step of lowering the temperature of the material and fixing it.
更にまた、上記予備圧縮工程は、前記予備加熱工程によって加熱された前記積層されたオイルパーム材に前記オイルパーム材の面に沿って平行方向に伸びるのを規制しながら、金型の上型と下型とで前記オイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮成型する工程である。
加えて、上記予備固定化工程は、前記圧縮工程で所定時間圧縮成型した前記積層されたオイルパーム材を、前記予備加熱工程で供給していた温度を降下させて固定化させる工程である。
また、上記本固定化工程は、前記予備固定化工程で固定化した予備オイルパーム成型体を所定の湿度及び温度条件下で、前記積層されたオイルパーム材の面に沿って平行方向に延びるのを規制しながら、上型と下型とで前記積層されたオイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮成型し、前記所定時間圧縮成型した前記積層されたオイルパーム材の温度を降下させて固定化させる工程である。 Furthermore, the said preheating process is a process heated so that the temperature of the oil palm material laminated | stacked by the said lamination process may be raised.
Furthermore, the pre-compression process may be performed by restricting the laminated oil palm material heated by the pre-heating process from extending in a parallel direction along the surface of the oil palm material, It is a step of compressing and molding for a predetermined time by applying a compressive force in a direction perpendicular to the surface of the oil palm material with the lower mold.
In addition, the preliminary fixing step is a step of fixing the laminated oil palm material compression-molded for a predetermined time in the compression step by lowering the temperature supplied in the preliminary heating step.
Further, in the main fixing step, the preliminary oil palm molded body fixed in the preliminary fixing step extends in a parallel direction along a surface of the laminated oil palm material under a predetermined humidity and temperature condition. The laminated oil palm is subjected to compression molding for a predetermined time by applying a compression force in a direction perpendicular to the surface of the laminated oil palm material between the upper mold and the lower mold, and the compression molding for the predetermined time. This is a step of lowering the temperature of the material and fixing it.
一般に、上記乾燥工程による前記オイルパーム材の含水率は、5~30%の範囲内に乾燥させたものである。ここで、本発明者らは実験を重ねた結果、一般に、含水率が5%未満の場合は、圧密加工によって十分な化学変化を起こさせることができず、また、表面が乾燥し過ぎて、圧密加工後において水に濡れた場合に圧縮した部分が元の厚さ形状に戻る現象、所謂、固定化不良が起こり易くなる。一方、含水率が30%を超えると、内部まで均一に乾燥され難く、圧密加工の固定化処理において木材中に含まれる高温・高圧の水蒸気の作用によってプレス圧に抗する内圧が発生し、プレス圧を除いた後に、割れ・破壊(パンク)等の損傷や変形・膨らみ等が生じ易くなることを見出し、この知見に基づいて本発明を完成したものである。より好ましくは、前記オイルパーム材、ラワン薄板、シナ薄板、針葉樹薄板の含水率は10~20%の範囲内である。
In general, the water content of the oil palm material obtained by the drying step is dried within a range of 5 to 30%. Here, as a result of repeated experiments by the inventors, generally, when the water content is less than 5%, sufficient chemical change cannot be caused by compaction processing, and the surface is too dry. A phenomenon in which the compressed portion returns to the original thickness when it gets wet with water after the consolidation process, that is, a so-called immobilization defect, is likely to occur. On the other hand, when the moisture content exceeds 30%, it is difficult to dry uniformly to the inside, and an internal pressure that resists the pressing pressure is generated by the action of high-temperature and high-pressure steam contained in the wood in the consolidation process of compaction processing, After removing the pressure, it was found that damage such as cracking / breaking (puncture), deformation / bulging, and the like were likely to occur, and the present invention was completed based on this finding. More preferably, the water content of the oil palm material, lauan thin plate, china thin plate, and softwood thin plate is in the range of 10 to 20%.
また、上記予備加熱工程における加熱温度は、110~170℃の範囲内としたものである。ここで、本発明者らは実験を重ねた結果、加熱温度が低過ぎると十分な圧密加工がなされず、固定化不良や層間の接合不良が生じることがあり、一方、加熱温度が高過ぎると表面が炭化して黒色に変化し、色調や植物本来の特有の香りが損なわれたり、材質が劣化して強度が低化し脆くなったりすることがあるので、好ましくは、加熱温度が110~170℃の範囲内で圧密加工する必要がある。
Further, the heating temperature in the preheating step is set within a range of 110 to 170 ° C. Here, as a result of repeated experiments, the inventors of the present invention have found that if the heating temperature is too low, sufficient compacting cannot be performed, resulting in immobilization failure or poor bonding between layers, while on the other hand, if the heating temperature is too high. Since the surface is carbonized and changes to black, the color tone and the inherent fragrance inherent to the plant may be impaired, or the material may deteriorate, resulting in a decrease in strength and embrittlement. Therefore, the heating temperature is preferably 110 to 170. It is necessary to perform consolidation within the range of ° C.
そして、上記予備圧縮工程による所定の圧縮圧力は、1~100kg/cm2の範囲内としたものである。ここで、本発明者らは実験を重ねた結果、加圧力が低過ぎると十分な圧密加工がなされず、固定化不良や木材間の接合不良が生じる。一方、加圧力が高過ぎると表面にクラックが生じることがある。したがって、1~100kg/cm2の範囲内の加圧条件が適切であることを見出し、この知見に基づいて本発明を完成したものである。なお、より好ましくは、10~50kg/cm2の範囲内である。
The predetermined compression pressure in the preliminary compression step is set in the range of 1 to 100 kg / cm 2 . Here, as a result of repeated experiments, the inventors have found that if the applied pressure is too low, sufficient compacting is not performed, and immobilization failure or poor connection between woods occurs. On the other hand, if the pressure is too high, the surface may crack. Therefore, the present inventors have found that a pressurizing condition in the range of 1 to 100 kg / cm 2 is appropriate and completed the present invention based on this finding. More preferably, it is within the range of 10 to 50 kg / cm 2 .
更に、上記予備加熱工程及び上記予備圧縮工程に要する時間は、10~120分間の範囲内である。ここで、本発明者らは、十分な加熱圧縮がなされて固定化不良や木材間の接合不良を防止できる一方で、処理時間が長過ぎることによる表面の炭化を防止できる加熱圧縮の処理時間について実験を重ねた結果、薄板の材料によって時間の違いがあるものの、適切な温度を加える所定時間が10~120分間の範囲内の時間条件が適切であることを見出し、この知見に基づいて本発明を完成したものである。なお、好ましくは、所定時間が20~30分間の範囲内である。
なお、オイルパーム成型体の形態または使用対象によっては、上記予備加熱工程、予備圧縮工程、予備固定化工程、または上記本固定化工程は、上記予備加熱工程、予備圧縮工程、予備固定化工程を予備工程として1回以上、または本固定化工程を本工程として1回以上繰り返し実行することができる。 Further, the time required for the preliminary heating step and the preliminary compression step is in the range of 10 to 120 minutes. Here, the present inventors are able to prevent immobilization and poor bonding between woods by being sufficiently heat-compressed, and on the processing time of heat-compression that can prevent carbonization of the surface due to the treatment time being too long. As a result of repeated experiments, it was found that although the time varies depending on the material of the thin plate, a time condition within a range of 10 to 120 minutes for applying an appropriate temperature is appropriate, and the present invention is based on this finding. Is completed. The predetermined time is preferably in the range of 20 to 30 minutes.
In addition, depending on the form or use object of the oil palm molded body, the preheating step, the precompression step, the prefixing step, or the main fixing step may include the preheating step, the precompression step, and the prefixing step. The preliminary process can be repeated one or more times, or the main immobilization process can be repeated one or more times as the main process.
なお、オイルパーム成型体の形態または使用対象によっては、上記予備加熱工程、予備圧縮工程、予備固定化工程、または上記本固定化工程は、上記予備加熱工程、予備圧縮工程、予備固定化工程を予備工程として1回以上、または本固定化工程を本工程として1回以上繰り返し実行することができる。 Further, the time required for the preliminary heating step and the preliminary compression step is in the range of 10 to 120 minutes. Here, the present inventors are able to prevent immobilization and poor bonding between woods by being sufficiently heat-compressed, and on the processing time of heat-compression that can prevent carbonization of the surface due to the treatment time being too long. As a result of repeated experiments, it was found that although the time varies depending on the material of the thin plate, a time condition within a range of 10 to 120 minutes for applying an appropriate temperature is appropriate, and the present invention is based on this finding. Is completed. The predetermined time is preferably in the range of 20 to 30 minutes.
In addition, depending on the form or use object of the oil palm molded body, the preheating step, the precompression step, the prefixing step, or the main fixing step may include the preheating step, the precompression step, and the prefixing step. The preliminary process can be repeated one or more times, or the main immobilization process can be repeated one or more times as the main process.
請求項6の発明にかかる積層合板は、所定長のオイルパーム幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成した1枚以上からなるオイルパーム材と、所定長のラワンまたはシナまたは針葉樹の幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成したラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上を前記オイルパーム材に面して配置し、それらを一体に接合したものである。また、前記オイルパーム材相互間に網を配設し、前記オイルパーム材相互間で網を接合したものである。
ここで、上記1枚以上のオイルパーム材は、所定長のオイルパーム幹をその周方向に回転させながらロータリーレースで所定の厚みに剥いて形成した薄板である。また、接合の際のオイルパームが含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保されるものであるから、それを特定したものである。勿論、ここには、オイルパーム材は、その形成の際に生じる凹凸面に対して逆の凸凹面に成型する能力があることから、その成形能力を利用した機械的接合も含まれている。
また、圧密加工とは、前記オイルパーム材等の基材を所定の温度条件下で所定の圧縮力を加えて圧縮し、所定の時間経過後、圧縮していた圧縮率を維持しながら、前記温度を所定の温度まで降下させて解圧する固定化によって、基材を所定の圧縮率として圧密化する加工である。
そして、オイルパーム材とは、圧密加工前の厚みを3~35mmの範囲内としたもので、厚密加工後の厚みは、1~12mmの範囲内のものである。 The laminated plywood according to the invention ofclaim 6 comprises an oil palm material made of one or more pieces formed by peeling a predetermined length of an oil palm trunk from the outer periphery to a predetermined thickness with a rotary race while rotating the oil palm trunk in the circumferential direction, and a predetermined length. One or more of lauan thin plate, Chinese thin plate, coniferous thin plate formed by peeling off the lauan or sina or coniferous trunk from the outer periphery with a rotary race while rotating in the circumferential direction is used as the oil palm material. They are placed facing each other and joined together. Further, a net is provided between the oil palm materials, and the net is joined between the oil palm materials.
Here, the one or more oil palm materials are thin plates formed by peeling a predetermined length of an oil palm trunk to a predetermined thickness with a rotary race while rotating in the circumferential direction. Moreover, since the quantity of the resin component and sugar component which the oil palm in the case of joining is ensured even if it does not use another adhesive agent, it is specified. Of course, since the oil palm material has the ability to be molded into a concave and convex surface opposite to the concave and convex surface generated during the formation, mechanical joining using the molding capability is also included.
In addition, the compaction processing compresses the base material such as the oil palm material by applying a predetermined compressive force under a predetermined temperature condition, and maintaining the compressed compressibility after a predetermined time, This is a process of consolidating the base material to a predetermined compression rate by fixing the pressure by lowering the temperature to a predetermined temperature.
The oil palm material has a thickness before the consolidation process in the range of 3 to 35 mm, and the thickness after the consolidation process is in the range of 1 to 12 mm.
ここで、上記1枚以上のオイルパーム材は、所定長のオイルパーム幹をその周方向に回転させながらロータリーレースで所定の厚みに剥いて形成した薄板である。また、接合の際のオイルパームが含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保されるものであるから、それを特定したものである。勿論、ここには、オイルパーム材は、その形成の際に生じる凹凸面に対して逆の凸凹面に成型する能力があることから、その成形能力を利用した機械的接合も含まれている。
また、圧密加工とは、前記オイルパーム材等の基材を所定の温度条件下で所定の圧縮力を加えて圧縮し、所定の時間経過後、圧縮していた圧縮率を維持しながら、前記温度を所定の温度まで降下させて解圧する固定化によって、基材を所定の圧縮率として圧密化する加工である。
そして、オイルパーム材とは、圧密加工前の厚みを3~35mmの範囲内としたもので、厚密加工後の厚みは、1~12mmの範囲内のものである。 The laminated plywood according to the invention of
Here, the one or more oil palm materials are thin plates formed by peeling a predetermined length of an oil palm trunk to a predetermined thickness with a rotary race while rotating in the circumferential direction. Moreover, since the quantity of the resin component and sugar component which the oil palm in the case of joining is ensured even if it does not use another adhesive agent, it is specified. Of course, since the oil palm material has the ability to be molded into a concave and convex surface opposite to the concave and convex surface generated during the formation, mechanical joining using the molding capability is also included.
In addition, the compaction processing compresses the base material such as the oil palm material by applying a predetermined compressive force under a predetermined temperature condition, and maintaining the compressed compressibility after a predetermined time, This is a process of consolidating the base material to a predetermined compression rate by fixing the pressure by lowering the temperature to a predetermined temperature.
The oil palm material has a thickness before the consolidation process in the range of 3 to 35 mm, and the thickness after the consolidation process is in the range of 1 to 12 mm.
ところで、オイルパームの樹幹としては、その品種や生産地等が特に限定されるものではなく、通常、果実生産性が落ちた樹幹、20年以上経過した樹幹、再植栽培や計画的な栽培のために廃棄予定の樹幹が使用されるが、樹齢の若い樹幹であってもよい。
また、オイルパーム材として得た薄板の乾燥は、その乾燥方法が特に問われるものではなく、天然乾燥させてもよいし、人工的に乾燥させてもよいが、人工乾燥の方が高コストである。
ここで、建築材料等に一般的に使用されているラワン等の木材が水や養分の移動が停止した細胞(死細胞)組織から成る二次木部を形成しているのに対し、オイルパームの樹幹は維管束及び柔細胞の一次組織のみで構成され、柔細胞を中心とする殆どの細胞が水や養分の移動が盛んに行われている生活細胞であるため、含水率が極めて高い。その上、オイルパーム幹には、糖類(例えば、フラクト-ス、グルコ-ス、フラクトオリゴ糖、イノシト-ル等)が多く含まれている。このため、オイルパーム幹からオイルパーム材の厚みが厚い場合、天然乾燥ではカビ等の細菌が繁殖して腐食しやすく生産性や商品価値が損なわれる。一方で、人工的に乾燥させる場合には、コスト高となる。そこで、本発明者らの実験研究によれば、オイルパーム幹から得るオイルパーム材の厚みを15mm~35mmの範囲内とすることで、天然乾燥でもカビ等の細菌による商品価値や生産性の低下を招くことなく、低コストにできることが確認されている。 By the way, as the trunk of the oil palm, its varieties, production areas, etc. are not particularly limited. Usually, the trunk of which fruit productivity has dropped, the trunk of more than 20 years, replanting cultivation or planned cultivation Therefore, a trunk that is scheduled to be discarded is used, but a trunk that is young may be used.
Moreover, the drying method of the thin plate obtained as the oil palm material is not particularly limited, and may be naturally dried or artificially dried, but artificial drying is more expensive. is there.
Here, wood such as Lauan, which is generally used for building materials, forms a secondary xylem composed of cell (dead cell) tissue in which the movement of water and nutrients has stopped, whereas oil palm The trunk of this is composed only of primary tissues of vascular bundles and parenchymal cells, and most of the cells centering on parenchymal cells are living cells in which water and nutrients are actively transferred, so the water content is extremely high. In addition, the oil palm trunk is rich in saccharides (eg, fructose, glucose, fructooligosaccharides, inositol, etc.). For this reason, when the thickness of the oil palm material from the oil palm trunk is thick, bacteria such as mold are proliferated and corroded easily by natural drying, and productivity and commercial value are impaired. On the other hand, when artificially drying, the cost becomes high. Therefore, according to the experimental study by the present inventors, by reducing the thickness of the oil palm material obtained from the oil palm trunk within the range of 15 mm to 35 mm, the product value and productivity are reduced by bacteria such as mold even in natural drying. It has been confirmed that the cost can be reduced without incurring cost.
また、オイルパーム材として得た薄板の乾燥は、その乾燥方法が特に問われるものではなく、天然乾燥させてもよいし、人工的に乾燥させてもよいが、人工乾燥の方が高コストである。
ここで、建築材料等に一般的に使用されているラワン等の木材が水や養分の移動が停止した細胞(死細胞)組織から成る二次木部を形成しているのに対し、オイルパームの樹幹は維管束及び柔細胞の一次組織のみで構成され、柔細胞を中心とする殆どの細胞が水や養分の移動が盛んに行われている生活細胞であるため、含水率が極めて高い。その上、オイルパーム幹には、糖類(例えば、フラクト-ス、グルコ-ス、フラクトオリゴ糖、イノシト-ル等)が多く含まれている。このため、オイルパーム幹からオイルパーム材の厚みが厚い場合、天然乾燥ではカビ等の細菌が繁殖して腐食しやすく生産性や商品価値が損なわれる。一方で、人工的に乾燥させる場合には、コスト高となる。そこで、本発明者らの実験研究によれば、オイルパーム幹から得るオイルパーム材の厚みを15mm~35mmの範囲内とすることで、天然乾燥でもカビ等の細菌による商品価値や生産性の低下を招くことなく、低コストにできることが確認されている。 By the way, as the trunk of the oil palm, its varieties, production areas, etc. are not particularly limited. Usually, the trunk of which fruit productivity has dropped, the trunk of more than 20 years, replanting cultivation or planned cultivation Therefore, a trunk that is scheduled to be discarded is used, but a trunk that is young may be used.
Moreover, the drying method of the thin plate obtained as the oil palm material is not particularly limited, and may be naturally dried or artificially dried, but artificial drying is more expensive. is there.
Here, wood such as Lauan, which is generally used for building materials, forms a secondary xylem composed of cell (dead cell) tissue in which the movement of water and nutrients has stopped, whereas oil palm The trunk of this is composed only of primary tissues of vascular bundles and parenchymal cells, and most of the cells centering on parenchymal cells are living cells in which water and nutrients are actively transferred, so the water content is extremely high. In addition, the oil palm trunk is rich in saccharides (eg, fructose, glucose, fructooligosaccharides, inositol, etc.). For this reason, when the thickness of the oil palm material from the oil palm trunk is thick, bacteria such as mold are proliferated and corroded easily by natural drying, and productivity and commercial value are impaired. On the other hand, when artificially drying, the cost becomes high. Therefore, according to the experimental study by the present inventors, by reducing the thickness of the oil palm material obtained from the oil palm trunk within the range of 15 mm to 35 mm, the product value and productivity are reduced by bacteria such as mold even in natural drying. It has been confirmed that the cost can be reduced without incurring cost.
更に、オイルパーム材の繊維方向に対する面の垂直方向に複数枚積層するとは、繊維の長さ方向に対する垂直方向の面、即ち、木口面及び木端面以外の面で積層することを意味し、繊維方向を互いに同一にして積層してもよいし、繊維方向を互いに直交させて積層してもよく、その枚数も奇数枚であってもよいし偶数枚であってもよい。また、その積層枚数も2枚以上であればよい。
また、上記加熱状態で繊維方向に対して垂直方向に外力を加えることによって、前記乾燥させたオイルパーム材の全体の厚みを加熱圧縮するとは、オイルパーム材の積載方向に圧縮して少なくとも木口面に相当する面積を小さくしたこと、所謂、圧縮の方向性を特定して圧密加工したことを意味する。この圧密加工は、例えば、オイルパーム材の含水率を略均一となるように設定し、所定の条件で加熱圧縮し、固定化することによって形成することができ、このときの所定の条件となる温度、圧力、時間、圧縮スピード等については、目的とする圧縮率等をパラメータとして予め実験等によって決定される。 Furthermore, laminating a plurality of sheets in a direction perpendicular to the fiber direction of the oil palm material means that the layers are laminated in a direction perpendicular to the fiber length direction, that is, a surface other than the end face and the end face of the fiber. The layers may be laminated with the same direction, the fiber directions may be perpendicular to each other, and the number of the sheets may be an odd number or an even number. Further, the number of stacked layers may be two or more.
In addition, heating and compressing the entire thickness of the dried oil palm material by applying an external force in a direction perpendicular to the fiber direction in the heated state means compressing in the loading direction of the oil palm material and at least the end face This means that the area corresponding to is reduced, that is, the so-called compression direction is specified and compacted. This consolidation process can be formed by, for example, setting the moisture content of the oil palm material to be substantially uniform, heating and compressing under a predetermined condition, and fixing, and this is a predetermined condition at this time. The temperature, pressure, time, compression speed, and the like are determined in advance by experiments or the like using the target compression ratio and the like as parameters.
また、上記加熱状態で繊維方向に対して垂直方向に外力を加えることによって、前記乾燥させたオイルパーム材の全体の厚みを加熱圧縮するとは、オイルパーム材の積載方向に圧縮して少なくとも木口面に相当する面積を小さくしたこと、所謂、圧縮の方向性を特定して圧密加工したことを意味する。この圧密加工は、例えば、オイルパーム材の含水率を略均一となるように設定し、所定の条件で加熱圧縮し、固定化することによって形成することができ、このときの所定の条件となる温度、圧力、時間、圧縮スピード等については、目的とする圧縮率等をパラメータとして予め実験等によって決定される。 Furthermore, laminating a plurality of sheets in a direction perpendicular to the fiber direction of the oil palm material means that the layers are laminated in a direction perpendicular to the fiber length direction, that is, a surface other than the end face and the end face of the fiber. The layers may be laminated with the same direction, the fiber directions may be perpendicular to each other, and the number of the sheets may be an odd number or an even number. Further, the number of stacked layers may be two or more.
In addition, heating and compressing the entire thickness of the dried oil palm material by applying an external force in a direction perpendicular to the fiber direction in the heated state means compressing in the loading direction of the oil palm material and at least the end face This means that the area corresponding to is reduced, that is, the so-called compression direction is specified and compacted. This consolidation process can be formed by, for example, setting the moisture content of the oil palm material to be substantially uniform, heating and compressing under a predetermined condition, and fixing, and this is a predetermined condition at this time. The temperature, pressure, time, compression speed, and the like are determined in advance by experiments or the like using the target compression ratio and the like as parameters.
そして、上記圧密加工により前記オイルパーム材が接合され、全体の気乾比重を0.8以上とは、接着剤が使用されることなく圧密加工によって、複数枚に積層した薄板が互いに接合された状態にある積層木材全体の気乾比重が0.8以上であることを意味する。
ここで、気乾比重とは、木材を大気中で乾燥した時の比重で、通常、含水率15%の時の比重で表すものであり、木材を乾燥させた時の重さと同じ体積の水の重さを比べた値である。数値が大きいほど重く、小さいほど軽いことを表す。
また、圧密加工により全体の圧密加工した気乾比重を0.8以上とは、本発明者らが、実験を重ねた結果、オイルパーム材を高圧縮して気乾比重を0.8以上とすることによって、オイルパームの性質が変化して硬度が顕著に高くなると共に、強度・硬度や、寸法変化率等の物性値や特性値のばらつきが少なく物理的安定性が増すことを見出し、この知見に基づいて設定されたものである。即ち、圧縮により、強度や硬度等を増大させ、かつ、物理的性質のバラつきを少なくした特性領域であり、圧密加工された木材としての特性であることを示すもので、圧密加工により気乾比重を0.8以上にできないもの、気乾比重が0.8以上にならないものは含まれない。より好ましくは、気乾比重が0.9以上とすることによって、硬度が顕著に高くなり、硬度及び寸法変化率等の物性値や特性値のばらつきが少なくなって物理的安定性がさらに増すことになる。
なお、上記気乾比重は、最終的には、コストや、必要とされる強度・硬度等を考慮して設定されるが、気乾比重を大きくするために圧縮率を余りに高くすると木材を構成する繊維が破壊されてクラックが生じ商品性が失われることになるから、高圧縮によりクラックが発生する直前に測定される気乾比重の値が最大値となる。即ち、本発明における気乾比重の上限は圧密加工の圧縮限界で、最大値は有限値となる。また、上記気乾比重の数値は、厳格であることを要求するものではなくて概ねであり、当然、測定等により誤差を含む概略値であり、数割の誤差を否定するものではない。 And the said oil palm material is joined by the said compaction process, and the whole air-dry specific gravity is 0.8 or more, and the thin board laminated | stacked on the several sheets was joined mutually by the compaction process, without using an adhesive agent. It means that the air-drying specific gravity of the whole laminated wood in the state is 0.8 or more.
Here, the air-dry specific gravity is the specific gravity when the wood is dried in the air, and is usually expressed by the specific gravity when the moisture content is 15%, and water having the same volume as the weight when the wood is dried. It is the value which compared the weight of. The larger the value, the heavier, the smaller the lighter.
In addition, the air-drying specific gravity of the entire compacted by compaction processing is 0.8 or more, as a result of repeated experiments by the inventors, the oil palm material is highly compressed and the air-drying specific gravity is 0.8 or more As a result, the properties of oil palm are changed and the hardness is remarkably increased. It was set based on knowledge. In other words, it is a characteristic area where the strength and hardness are increased by compression and the variation in physical properties is reduced, indicating that it is a characteristic of compacted wood. In which the air-drying specific gravity does not exceed 0.8 is not included. More preferably, when the air-dry specific gravity is 0.9 or more, the hardness is remarkably increased, and the physical stability is further increased due to less variation in physical properties and characteristic values such as hardness and dimensional change rate. become.
The air-drying specific gravity is ultimately set in consideration of cost, required strength and hardness, etc., but if the compression ratio is too high to increase the air-drying specific gravity, the wood is composed. Since the fiber to be broken is broken and a commercial property is lost, the value of the air-dry specific gravity measured immediately before the crack is generated by high compression becomes the maximum value. That is, the upper limit of the air-dry specific gravity in the present invention is the compression limit of the compacting process, and the maximum value is a finite value. In addition, the numerical value of the air-dry specific gravity is not required to be strict, but is approximate. Naturally, it is an approximate value including an error by measurement or the like, and does not deny an error of several percent.
ここで、気乾比重とは、木材を大気中で乾燥した時の比重で、通常、含水率15%の時の比重で表すものであり、木材を乾燥させた時の重さと同じ体積の水の重さを比べた値である。数値が大きいほど重く、小さいほど軽いことを表す。
また、圧密加工により全体の圧密加工した気乾比重を0.8以上とは、本発明者らが、実験を重ねた結果、オイルパーム材を高圧縮して気乾比重を0.8以上とすることによって、オイルパームの性質が変化して硬度が顕著に高くなると共に、強度・硬度や、寸法変化率等の物性値や特性値のばらつきが少なく物理的安定性が増すことを見出し、この知見に基づいて設定されたものである。即ち、圧縮により、強度や硬度等を増大させ、かつ、物理的性質のバラつきを少なくした特性領域であり、圧密加工された木材としての特性であることを示すもので、圧密加工により気乾比重を0.8以上にできないもの、気乾比重が0.8以上にならないものは含まれない。より好ましくは、気乾比重が0.9以上とすることによって、硬度が顕著に高くなり、硬度及び寸法変化率等の物性値や特性値のばらつきが少なくなって物理的安定性がさらに増すことになる。
なお、上記気乾比重は、最終的には、コストや、必要とされる強度・硬度等を考慮して設定されるが、気乾比重を大きくするために圧縮率を余りに高くすると木材を構成する繊維が破壊されてクラックが生じ商品性が失われることになるから、高圧縮によりクラックが発生する直前に測定される気乾比重の値が最大値となる。即ち、本発明における気乾比重の上限は圧密加工の圧縮限界で、最大値は有限値となる。また、上記気乾比重の数値は、厳格であることを要求するものではなくて概ねであり、当然、測定等により誤差を含む概略値であり、数割の誤差を否定するものではない。 And the said oil palm material is joined by the said compaction process, and the whole air-dry specific gravity is 0.8 or more, and the thin board laminated | stacked on the several sheets was joined mutually by the compaction process, without using an adhesive agent. It means that the air-drying specific gravity of the whole laminated wood in the state is 0.8 or more.
Here, the air-dry specific gravity is the specific gravity when the wood is dried in the air, and is usually expressed by the specific gravity when the moisture content is 15%, and water having the same volume as the weight when the wood is dried. It is the value which compared the weight of. The larger the value, the heavier, the smaller the lighter.
In addition, the air-drying specific gravity of the entire compacted by compaction processing is 0.8 or more, as a result of repeated experiments by the inventors, the oil palm material is highly compressed and the air-drying specific gravity is 0.8 or more As a result, the properties of oil palm are changed and the hardness is remarkably increased. It was set based on knowledge. In other words, it is a characteristic area where the strength and hardness are increased by compression and the variation in physical properties is reduced, indicating that it is a characteristic of compacted wood. In which the air-drying specific gravity does not exceed 0.8 is not included. More preferably, when the air-dry specific gravity is 0.9 or more, the hardness is remarkably increased, and the physical stability is further increased due to less variation in physical properties and characteristic values such as hardness and dimensional change rate. become.
The air-drying specific gravity is ultimately set in consideration of cost, required strength and hardness, etc., but if the compression ratio is too high to increase the air-drying specific gravity, the wood is composed. Since the fiber to be broken is broken and a commercial property is lost, the value of the air-dry specific gravity measured immediately before the crack is generated by high compression becomes the maximum value. That is, the upper limit of the air-dry specific gravity in the present invention is the compression limit of the compacting process, and the maximum value is a finite value. In addition, the numerical value of the air-dry specific gravity is not required to be strict, but is approximate. Naturally, it is an approximate value including an error by measurement or the like, and does not deny an error of several percent.
前記オイルパーム材相互間に網を配設し、前記オイルパーム材相互間で網を接合するものであればよい。特に、前記オイルパーム材相互間で網を接合し、一体化するものであり、前記オイルパーム材相互間から接合の際のオイルパーム材が含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保されるものである。
It is sufficient that a net is disposed between the oil palm materials and the net is joined between the oil palm materials. In particular, the nets are joined and integrated between the oil palm materials, and the amount of the resin component and sugar component contained in the oil palm materials at the time of joining from the oil palm materials is different from that of the other. It is ensured without using any agent.
請求項7の発明にかかる積層合板は、所定長のオイルパーム幹をその周方向に回転させてロータリーレースで所定の厚みに剥いて形成したオイルパーム材と、所定長のラワンまたはシナまたは針葉樹の幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成したラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上を前記オイルパーム材に面して配置し、それらを一体に接合したものである。この場合においても、前記オイルパーム材相互間に網を配設し、前記オイルパーム材相互間で網を接合したものである。
ここで、オイルパーム材に面した所定の厚みに剥いて形成したラワン薄板、シナ薄板、針葉樹薄板の何れかは、前記オイルパーム材が含有する樹脂成分及び糖成分を使用して所定の温度条件下で、圧縮及び固定化して一体に接合してもよいし、オイルパーム材に面した所定の厚みに剥いて形成したラワン薄板、シナ薄板、針葉樹薄板の何れかと他の接着剤を用いて貼り合せてもよい。 The laminated plywood according to the invention of claim 7 is made of an oil palm material formed by rotating an oil palm trunk of a predetermined length in the circumferential direction and peeling it to a predetermined thickness with a rotary race, and a lauan, a china or a conifer of a predetermined length. Arrange one or more of Lauan thin plate, China thin plate, coniferous thin plate formed by peeling the trunk from the outer periphery to a predetermined thickness while rotating the trunk in the circumferential direction, facing the oil palm material, Are integrally joined. Also in this case, a net is provided between the oil palm materials, and the net is joined between the oil palm materials.
Here, any one of Lauan thin plate, China thin plate, softwood thin plate formed by peeling to a predetermined thickness facing the oil palm material is a predetermined temperature condition using a resin component and a sugar component contained in the oil palm material Below, it may be compressed and fixed and joined together, or it is pasted using any one of Lauan thin plate, China thin plate, conifer thin plate formed by peeling to a predetermined thickness facing the oil palm material and other adhesive They may be combined.
ここで、オイルパーム材に面した所定の厚みに剥いて形成したラワン薄板、シナ薄板、針葉樹薄板の何れかは、前記オイルパーム材が含有する樹脂成分及び糖成分を使用して所定の温度条件下で、圧縮及び固定化して一体に接合してもよいし、オイルパーム材に面した所定の厚みに剥いて形成したラワン薄板、シナ薄板、針葉樹薄板の何れかと他の接着剤を用いて貼り合せてもよい。 The laminated plywood according to the invention of claim 7 is made of an oil palm material formed by rotating an oil palm trunk of a predetermined length in the circumferential direction and peeling it to a predetermined thickness with a rotary race, and a lauan, a china or a conifer of a predetermined length. Arrange one or more of Lauan thin plate, China thin plate, coniferous thin plate formed by peeling the trunk from the outer periphery to a predetermined thickness while rotating the trunk in the circumferential direction, facing the oil palm material, Are integrally joined. Also in this case, a net is provided between the oil palm materials, and the net is joined between the oil palm materials.
Here, any one of Lauan thin plate, China thin plate, softwood thin plate formed by peeling to a predetermined thickness facing the oil palm material is a predetermined temperature condition using a resin component and a sugar component contained in the oil palm material Below, it may be compressed and fixed and joined together, or it is pasted using any one of Lauan thin plate, China thin plate, conifer thin plate formed by peeling to a predetermined thickness facing the oil palm material and other adhesive They may be combined.
前記オイルパーム材相互間に網を配設し、前記オイルパーム材相互間で網を接合するものであればよい。特に、前記オイルパーム材相互間で網を接合し、一体化するものであり、前記オイルパーム材相互間から接合の際のオイルパーム自体が含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保されるものである。
It is sufficient that a net is disposed between the oil palm materials and the net is joined between the oil palm materials. In particular, the nets are joined and integrated between the oil palm materials, and the amount of the resin component and sugar component contained in the oil palm itself at the time of joining from the oil palm materials is different from that of the other It is ensured without using any agent.
請求項8の発明にかかる積層合板において、所定長のオイルパームの幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成した複数枚のオイルパーム材と、所定長のラワンまたはシナまたは針葉樹の幹をその幹の長さ方向に板状に形成したラワン薄板、またはシナ薄板、または針葉樹薄板の何れかの1枚以上を前記オイルパーム材に面して配置し、それらを一体に接合したものである。また、前記オイルパーム材相互間に網を配設し、前記オイルパーム材相互間で網を接合したものである。
ここで、上記1枚以上のオイルパーム材は、所定長のオイルパーム幹をその周方向に回転させながらロータリーレースで所定の厚みに剥いて形成した薄板である。また、接合の際のオイルパーム材が含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保されるものであるから、それを特定したものである。勿論、ここには、オイルパーム材は、その形成の際に生じる凹凸面に対して逆の凸凹面に成型する能力があることから、その成形能力を利用した機械的接合も含まれている。 In the laminated plywood according to the invention ofclaim 8, a plurality of oil palm materials formed by peeling off a predetermined length of oil palm trunk from the outer periphery to a predetermined thickness while rotating the trunk of the oil palm in the circumferential direction, and a predetermined length Lauan or Sina or coniferous trunks are arranged in the form of a plate in the length direction of the lauan lamella, or one or more of sina lamella or coniferous lamella, facing the oil palm material, and Are integrally joined. Further, a net is provided between the oil palm materials, and the net is joined between the oil palm materials.
Here, the one or more oil palm materials are thin plates formed by peeling a predetermined length of an oil palm trunk to a predetermined thickness with a rotary race while rotating in the circumferential direction. Moreover, since the quantity of the resin component and sugar component which the oil palm material in the case of joining is ensured even if it does not use another adhesive agent, it is specified. Of course, since the oil palm material has the ability to be molded into a concave and convex surface opposite to the concave and convex surface generated during the formation, mechanical joining using the molding capability is also included.
ここで、上記1枚以上のオイルパーム材は、所定長のオイルパーム幹をその周方向に回転させながらロータリーレースで所定の厚みに剥いて形成した薄板である。また、接合の際のオイルパーム材が含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保されるものであるから、それを特定したものである。勿論、ここには、オイルパーム材は、その形成の際に生じる凹凸面に対して逆の凸凹面に成型する能力があることから、その成形能力を利用した機械的接合も含まれている。 In the laminated plywood according to the invention of
Here, the one or more oil palm materials are thin plates formed by peeling a predetermined length of an oil palm trunk to a predetermined thickness with a rotary race while rotating in the circumferential direction. Moreover, since the quantity of the resin component and sugar component which the oil palm material in the case of joining is ensured even if it does not use another adhesive agent, it is specified. Of course, since the oil palm material has the ability to be molded into a concave and convex surface opposite to the concave and convex surface generated during the formation, mechanical joining using the molding capability is also included.
また、所定長のラワンまたはシナまたは針葉樹の幹をその幹の長さ方向に板状に形成したラワン、シナ、針葉樹の何れかの1枚以上を前記オイルパーム材に面して配置し、それらを一体に接合とは、ラワン、シナ、針葉樹の何れかの板材を圧密加工の圧縮またはそれと関係なく接合するものである。
前記オイルパーム材相互間に網を配設し、前記オイルパーム材相互間で網を接合するものであればよい。特に、前記オイルパーム材相互間で網を接合し、一体化するものであり、前記オイルパーム材相互間から接合の際のオイルパーム材が含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保されるものである。 In addition, one or more of Lauan, China, or conifers having a predetermined length of Lauan or Sina or coniferous trunk formed in a plate shape in the length direction of the trunk are arranged facing the oil palm material, and The term “integrally joining” refers to joining any one of Lauan, China, and coniferous plates regardless of compression or compression.
What is necessary is just to arrange | position a net | network between the said oil palm materials, and to join a net | network between the said oil palm materials. In particular, the nets are joined and integrated between the oil palm materials, and the amount of the resin component and sugar component contained in the oil palm materials at the time of joining from the oil palm materials is different from that of the other. It is ensured without using any agent.
前記オイルパーム材相互間に網を配設し、前記オイルパーム材相互間で網を接合するものであればよい。特に、前記オイルパーム材相互間で網を接合し、一体化するものであり、前記オイルパーム材相互間から接合の際のオイルパーム材が含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保されるものである。 In addition, one or more of Lauan, China, or conifers having a predetermined length of Lauan or Sina or coniferous trunk formed in a plate shape in the length direction of the trunk are arranged facing the oil palm material, and The term “integrally joining” refers to joining any one of Lauan, China, and coniferous plates regardless of compression or compression.
What is necessary is just to arrange | position a net | network between the said oil palm materials, and to join a net | network between the said oil palm materials. In particular, the nets are joined and integrated between the oil palm materials, and the amount of the resin component and sugar component contained in the oil palm materials at the time of joining from the oil palm materials is different from that of the other. It is ensured without using any agent.
請求項9の発明にかかる積層合板において、前記オイルパーム材に面して配置し、一体に接合する1枚以上のオイルパーム材の接合には、前記オイルパーム材が含有する樹脂成分及び糖成分とし、ラワン薄板またはシナ薄板または針葉樹薄板の何れかの1枚以上と一体に接合する接合面には、前記オイルパーム材が含有する樹脂成分及び糖成分の他に、他の接着剤を使用したものである。
ここで、上記1枚以上のオイルパーム材と接合されるラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上との接合は、少なくとも両者の接合面には、前記オイルパーム材が含有する樹脂成分及び糖成分を使用するものである。しかし、ラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上との接合の場合には、オイルパーム材が含有している樹脂成分及び糖成分の量には限界があるので、それ以上の強度を出そうとした場合に他の接着剤の使用が必要となる。また、オイルパーム材は、その形成の際に生じる凹凸面に対して逆の凸凹面に成型する能力があることから、その成形能力を利用した機械的接合も含まれている。 In the laminated plywood according to the invention of claim 9, a resin component and a sugar component contained in the oil palm material are bonded to one or more oil palm materials which are arranged facing the oil palm material and integrally bonded. In addition to the resin component and the sugar component contained in the oil palm material, other adhesives were used for the joint surface to be integrally joined with one or more of the Lauan thin plate, the Chinese thin plate or the softwood thin plate. Is.
Here, at least one of the lauan thin plate, the china thin plate, and the softwood thin plate to be joined to the one or more oil palm materials is contained in at least the joining surface of the oil palm material. A resin component and a sugar component are used. However, in the case of joining with one or more of Lauan thin plate, China thin plate, and softwood thin plate, the amount of resin component and sugar component contained in the oil palm material is limited. When trying to increase the strength, it is necessary to use another adhesive. Moreover, since oil palm material has the capability to shape | mold on the uneven surface opposite to the uneven surface produced in the case of the formation, the mechanical joining using the shaping | molding capability is also included.
ここで、上記1枚以上のオイルパーム材と接合されるラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上との接合は、少なくとも両者の接合面には、前記オイルパーム材が含有する樹脂成分及び糖成分を使用するものである。しかし、ラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上との接合の場合には、オイルパーム材が含有している樹脂成分及び糖成分の量には限界があるので、それ以上の強度を出そうとした場合に他の接着剤の使用が必要となる。また、オイルパーム材は、その形成の際に生じる凹凸面に対して逆の凸凹面に成型する能力があることから、その成形能力を利用した機械的接合も含まれている。 In the laminated plywood according to the invention of claim 9, a resin component and a sugar component contained in the oil palm material are bonded to one or more oil palm materials which are arranged facing the oil palm material and integrally bonded. In addition to the resin component and the sugar component contained in the oil palm material, other adhesives were used for the joint surface to be integrally joined with one or more of the Lauan thin plate, the Chinese thin plate or the softwood thin plate. Is.
Here, at least one of the lauan thin plate, the china thin plate, and the softwood thin plate to be joined to the one or more oil palm materials is contained in at least the joining surface of the oil palm material. A resin component and a sugar component are used. However, in the case of joining with one or more of Lauan thin plate, China thin plate, and softwood thin plate, the amount of resin component and sugar component contained in the oil palm material is limited. When trying to increase the strength, it is necessary to use another adhesive. Moreover, since oil palm material has the capability to shape | mold on the uneven surface opposite to the uneven surface produced in the case of the formation, the mechanical joining using the shaping | molding capability is also included.
請求項10の発明にかかる積層合板の前記オイルパーム材の枚数は、前記オイルパーム以外の薄板の枚数よりも多くしたものである。
ここで、前記オイルパーム材の枚数が、前記オイルパーム以外の薄板の枚数よりも多いことは、オイルパーム材が含有している樹脂成分及び糖成分の量を従来に比較して1/2以下とするものである。 The number of the oil palm members of the laminated plywood according to the invention ofclaim 10 is larger than the number of thin plates other than the oil palm.
Here, the number of the oil palm material is larger than the number of the thin plates other than the oil palm means that the amount of the resin component and the sugar component contained in the oil palm material is 1/2 or less than the conventional amount. It is what.
ここで、前記オイルパーム材の枚数が、前記オイルパーム以外の薄板の枚数よりも多いことは、オイルパーム材が含有している樹脂成分及び糖成分の量を従来に比較して1/2以下とするものである。 The number of the oil palm members of the laminated plywood according to the invention of
Here, the number of the oil palm material is larger than the number of the thin plates other than the oil palm means that the amount of the resin component and the sugar component contained in the oil palm material is 1/2 or less than the conventional amount. It is what.
請求項11の発明にかかる積層合板の前記オイルパーム材相互間に配設し、前記オイルパーム材相互間で接合した網は、金網としたものである。
ここで、前記金網は、ステンレス製、真鍮製、鉄製等の網を構成できる如何なる金属の使用も可能である。 The net | network arrange | positioned between the said oil palm materials of the laminated plywood concerning invention ofClaim 11, and joining between the said oil palm materials is made into the metal-mesh.
Here, the metal mesh can be any metal that can form a mesh made of stainless steel, brass, iron, or the like.
ここで、前記金網は、ステンレス製、真鍮製、鉄製等の網を構成できる如何なる金属の使用も可能である。 The net | network arrange | positioned between the said oil palm materials of the laminated plywood concerning invention of
Here, the metal mesh can be any metal that can form a mesh made of stainless steel, brass, iron, or the like.
請求項12の発明にかかる積層合板の前記オイルパーム材相互間に配設し、前記オイルパーム材相互間で接合した網は、化学繊維または植物繊維の網としたものである。
ここで、前記化学繊維または植物繊維の網は、網の存在が明確にならない状態で一体化できるものであればよい。化学繊維の場合には、溶融温度を前記オイルパーム材相互間の接合温度よりも高いものの使用が必要である。 The net | network arrange | positioned between the said oil palm materials of the laminated plywood concerning invention ofClaim 12, and joined between the said oil palm materials is made into the net | network of a chemical fiber or a vegetable fiber.
Here, the chemical fiber or vegetable fiber net may be any net that can be integrated in a state where the net is not clearly defined. In the case of chemical fiber, it is necessary to use one having a melting temperature higher than the joining temperature between the oil palm materials.
ここで、前記化学繊維または植物繊維の網は、網の存在が明確にならない状態で一体化できるものであればよい。化学繊維の場合には、溶融温度を前記オイルパーム材相互間の接合温度よりも高いものの使用が必要である。 The net | network arrange | positioned between the said oil palm materials of the laminated plywood concerning invention of
Here, the chemical fiber or vegetable fiber net may be any net that can be integrated in a state where the net is not clearly defined. In the case of chemical fiber, it is necessary to use one having a melting temperature higher than the joining temperature between the oil palm materials.
請求項1のオイルパーム成型体は、所定長のオイルパーム材を乾燥し、複数枚積層し、加熱及び前記積層された薄板のオイルパーム材の面に沿って平行方向に伸びるのを規制しながら、前記積層されたオイルパーム材の面に対して直角方向の圧縮力を加えて圧縮し、その後、前記圧縮を維持し、温度を低下させて固定化してなるオイルパーム成型体において、前記積層されたオイルパーム材を互いに繊維方向を交差させて重ね合わせ、前記複数枚のオイルパーム材がその面に対して直角方向に湾曲するのを防止してなるものである。
このように、オイルパーム材を互いに繊維方向を交差させて重ね合わせて積層したものであるから、前記積層されたオイルパーム材の面に対して直角方向の圧縮力を加えて圧縮しているときには圧縮する金型の形状に応じて成型することができる。殊に、オイルパーム成型体として圧縮する面の形状または圧縮深さによって機械的強度が決定でき、所望のオイルパーム成型体が得られる。
したがって、積層されたオイルパーム材からなる合板自体が所望の形状に成型でき、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した環境にやさしいオイルパーム成型体が得られる。 The oil palm molded body according toclaim 1 dries a predetermined length of oil palm material, stacks a plurality of the oil palm materials, and regulates heating and extending in a parallel direction along the surface of the laminated oil palm material. In the oil palm molded body formed by compressing by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material, and then maintaining the compression and fixing by reducing the temperature, the laminated The oil palm materials are stacked with their fiber directions crossing each other to prevent the plurality of oil palm materials from being bent in a direction perpendicular to the surface.
In this way, since the oil palm material is laminated with the fiber directions intersecting each other, the oil palm material is compressed by applying a compression force in a direction perpendicular to the surface of the laminated oil palm material. It can be molded according to the shape of the mold to be compressed. In particular, the mechanical strength can be determined by the shape or compression depth of the compressed surface of the oil palm molded body, and a desired oil palm molded body can be obtained.
Therefore, the laminated plywood itself made of oil palm material can be molded into the desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and components inherent to oil palm are used. An oil palm molding that is environmentally friendly can be obtained.
このように、オイルパーム材を互いに繊維方向を交差させて重ね合わせて積層したものであるから、前記積層されたオイルパーム材の面に対して直角方向の圧縮力を加えて圧縮しているときには圧縮する金型の形状に応じて成型することができる。殊に、オイルパーム成型体として圧縮する面の形状または圧縮深さによって機械的強度が決定でき、所望のオイルパーム成型体が得られる。
したがって、積層されたオイルパーム材からなる合板自体が所望の形状に成型でき、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した環境にやさしいオイルパーム成型体が得られる。 The oil palm molded body according to
In this way, since the oil palm material is laminated with the fiber directions intersecting each other, the oil palm material is compressed by applying a compression force in a direction perpendicular to the surface of the laminated oil palm material. It can be molded according to the shape of the mold to be compressed. In particular, the mechanical strength can be determined by the shape or compression depth of the compressed surface of the oil palm molded body, and a desired oil palm molded body can be obtained.
Therefore, the laminated plywood itself made of oil palm material can be molded into the desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and components inherent to oil palm are used. An oil palm molding that is environmentally friendly can be obtained.
請求項2のオイルパーム成型体は、所定長のオイルパーム材を乾燥し、複数枚積層し、加熱及び前記積層されたオイルパーム材の面に沿って平行方向に伸びるのを規制しながら、前記積層されたオイルパーム材の面に対して直角方向の圧縮力を加えて圧縮し、その後、前記圧縮を維持し、温度を低下させて固定化してなるオイルパーム成型体において、
前記積層されたオイルパーム材を複数枚重ね合わせ、前記複数枚のオイルパーム材がその面に対して特定の直角方向にのみ湾曲するようにしたものである。
このように、オイルパーム材を互いに繊維方向を考慮して重ね合わせて積層したものであり、前記積層されたオイルパーム材の面に対して直角方向の圧縮力を加えて圧縮し、圧縮する金型の形状に応じて成型することができる。また、前記オイルパーム材を複数枚重ね合わせるとき、前記複数枚のオイルパーム材がその繊維方向を1枚または2枚だけ交差するようにするか、全枚数繊維方向が平行するように積層し、その面に対して特定の直角方向にのみ湾曲するようにしたものであるから、所望の湾曲形状に形成できる。殊に、オイルパーム成型体として圧縮する面の形状または圧縮深さによって機械的強度が決定でき、所望のオイルパーム成型体が得られる。
したがって、積層されたオイルパーム材からなる合板自体が所望の形状に成型でき、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した環境にやさしいオイルパーム成型体が得られる。 The oil palm molded body according toclaim 2 is obtained by drying a predetermined length of oil palm material, laminating a plurality of sheets, and controlling heating and extending in a parallel direction along the surface of the laminated oil palm material, In the oil palm molded body formed by compressing by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material, and then maintaining the compression and lowering the temperature and fixing,
A plurality of the laminated oil palm materials are overlapped so that the plurality of oil palm materials are curved only in a specific perpendicular direction to the surface.
In this way, oil palm materials are laminated with each other in consideration of the fiber direction, and compressed by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm materials. It can be molded according to the shape of the mold. Further, when a plurality of the oil palm materials are overlapped, the plurality of oil palm materials are crossed so that only one or two of the fiber directions intersect, or the total number of the fiber palm materials are stacked so that the fiber directions are parallel, Since the surface is curved only in a specific perpendicular direction, it can be formed into a desired curved shape. In particular, the mechanical strength can be determined by the shape or compression depth of the compressed surface of the oil palm molded body, and a desired oil palm molded body can be obtained.
Therefore, the laminated plywood itself made of oil palm material can be molded into the desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and components inherent to oil palm are used. An oil palm molding that is environmentally friendly can be obtained.
前記積層されたオイルパーム材を複数枚重ね合わせ、前記複数枚のオイルパーム材がその面に対して特定の直角方向にのみ湾曲するようにしたものである。
このように、オイルパーム材を互いに繊維方向を考慮して重ね合わせて積層したものであり、前記積層されたオイルパーム材の面に対して直角方向の圧縮力を加えて圧縮し、圧縮する金型の形状に応じて成型することができる。また、前記オイルパーム材を複数枚重ね合わせるとき、前記複数枚のオイルパーム材がその繊維方向を1枚または2枚だけ交差するようにするか、全枚数繊維方向が平行するように積層し、その面に対して特定の直角方向にのみ湾曲するようにしたものであるから、所望の湾曲形状に形成できる。殊に、オイルパーム成型体として圧縮する面の形状または圧縮深さによって機械的強度が決定でき、所望のオイルパーム成型体が得られる。
したがって、積層されたオイルパーム材からなる合板自体が所望の形状に成型でき、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した環境にやさしいオイルパーム成型体が得られる。 The oil palm molded body according to
A plurality of the laminated oil palm materials are overlapped so that the plurality of oil palm materials are curved only in a specific perpendicular direction to the surface.
In this way, oil palm materials are laminated with each other in consideration of the fiber direction, and compressed by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm materials. It can be molded according to the shape of the mold. Further, when a plurality of the oil palm materials are overlapped, the plurality of oil palm materials are crossed so that only one or two of the fiber directions intersect, or the total number of the fiber palm materials are stacked so that the fiber directions are parallel, Since the surface is curved only in a specific perpendicular direction, it can be formed into a desired curved shape. In particular, the mechanical strength can be determined by the shape or compression depth of the compressed surface of the oil palm molded body, and a desired oil palm molded body can be obtained.
Therefore, the laminated plywood itself made of oil palm material can be molded into the desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and components inherent to oil palm are used. An oil palm molding that is environmentally friendly can be obtained.
請求項3のオイルパーム成型体は、前記所定長のオイルパーム材に金型で平面部、凹部、凸部の1以上を形成したものであるから、請求項1または請求項2に記載の効果に加えて、簡単にオイルパーム成型体が得られる。
The oil palm molded body according to claim 3 is obtained by forming one or more of a plane portion, a concave portion, and a convex portion with a mold on the oil palm material of the predetermined length, and therefore the effect according to claim 1 or claim 2. In addition, an oil palm molding can be easily obtained.
請求項4のオイルパーム成型体の製造方法は、薄板工程で所定長のオイルパーム幹をその周方向にロータリーレースで所定の厚みに剥いて複数枚のオイルパーム材に形成し、乾燥工程において前記薄板工程で形成したオイルパーム材を乾燥させ、積層工程において前記乾燥工程で乾燥させたオイルパーム材を所定の状態に複数枚積層する。そして、加熱工程において前記積層工程で積層されたオイルパーム材の温度を上昇させるべく加熱し、圧縮工程によって前記加熱工程によって加熱された前記積層されたオイルパーム材に前記オイルパーム材の面に対して平行方向に伸びるのを規制しながら、金型の上型と下型とで前記オイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮成型し、固定化工程において前記圧縮工程で所定時間圧縮した前記積層されたオイルパーム材を、前記加熱工程で供給していた温度を降下させて冷却し、固定化させる。
このように、所定の厚みに剥いて形成した複数枚のオイルパーム材は、積層工程において必要な厚みに形成できるので、目的用途に応じてその厚みを決定できる。前記積層工程で積層されたオイルパーム材の温度を上昇させるべく加熱する加熱工程では、特に、水蒸気によって複数枚のオイルパーム材を加熱すると、リグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類とが、軟化し結合するから固定化工程によって、堅固なオイルパーム成型体が得られる。
また、前記積層されたオイルパーム材は、前記オイルパーム材の面に対して平行方向に伸びるのを規制しながら、金型の上型と下型とで前記オイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮成型するものであるから、前記積層されたオイルパーム材の面積が拡大されることなく、圧縮成型できるから、所望の立体形状であり、かつ、所望の外径のオイルパーム成型体が得られる。特に、金型からは、前記加熱工程で供給していた温度を降下させて冷却し、固定化させるものであるから、オイルパーム成型体が取り出し易い。
したがって、積層されたオイルパーム材からなるオイルパーム成型体が所望の形状に成型でき、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した環境にやさしいオイルパーム成型体が得られる。 According to a fourth aspect of the present invention, there is provided a method for producing an oil palm molded body, in which a predetermined length of an oil palm trunk is stripped to a predetermined thickness with a rotary race in a circumferential direction in a thin plate process to form a plurality of oil palm materials. The oil palm material formed in the thin plate process is dried, and a plurality of oil palm materials dried in the drying process are laminated in a predetermined state in the lamination process. And it heats to raise the temperature of the oil palm material laminated | stacked at the said lamination | stacking process in a heating process, With respect to the surface of the said oil palm material to the said laminated | stacked oil palm material heated by the said heating process by the compression process The upper and lower molds of the mold are compressed in a direction perpendicular to the surface of the oil palm material while being restricted from extending in the parallel direction, and compression-molded for a predetermined time. The laminated oil palm material compressed for a predetermined time in the process is cooled and fixed by lowering the temperature supplied in the heating process.
As described above, the plurality of oil palm materials formed by peeling to a predetermined thickness can be formed to a necessary thickness in the laminating step, and therefore the thickness can be determined according to the intended use. In the heating step of heating to raise the temperature of the oil palm material laminated in the laminating step, in particular, when a plurality of oil palm materials are heated with water vapor, resin components such as lignin and sugars such as cellulose and hemicellulose are produced. Since it is softened and bonded, a solid oil palm molded body can be obtained by the fixing process.
The laminated oil palm material is perpendicular to the surface of the oil palm material between the upper mold and the lower mold of the mold while restricting the oil palm material from extending in a direction parallel to the surface of the oil palm material. Since the compression of the direction is applied and compression molding is performed for a predetermined time, it can be compression molded without increasing the area of the laminated oil palm material, so that it has a desired three-dimensional shape and a desired outer shape. An oil palm molded body having a diameter is obtained. In particular, from the mold, the temperature supplied in the heating step is lowered to cool and fix, so that the oil palm molded body can be easily taken out.
Therefore, an oil palm molded body made of laminated oil palm materials can be molded into a desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and oil palm inherently has components An oil palm molded body that is environmentally friendly is obtained.
このように、所定の厚みに剥いて形成した複数枚のオイルパーム材は、積層工程において必要な厚みに形成できるので、目的用途に応じてその厚みを決定できる。前記積層工程で積層されたオイルパーム材の温度を上昇させるべく加熱する加熱工程では、特に、水蒸気によって複数枚のオイルパーム材を加熱すると、リグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類とが、軟化し結合するから固定化工程によって、堅固なオイルパーム成型体が得られる。
また、前記積層されたオイルパーム材は、前記オイルパーム材の面に対して平行方向に伸びるのを規制しながら、金型の上型と下型とで前記オイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮成型するものであるから、前記積層されたオイルパーム材の面積が拡大されることなく、圧縮成型できるから、所望の立体形状であり、かつ、所望の外径のオイルパーム成型体が得られる。特に、金型からは、前記加熱工程で供給していた温度を降下させて冷却し、固定化させるものであるから、オイルパーム成型体が取り出し易い。
したがって、積層されたオイルパーム材からなるオイルパーム成型体が所望の形状に成型でき、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した環境にやさしいオイルパーム成型体が得られる。 According to a fourth aspect of the present invention, there is provided a method for producing an oil palm molded body, in which a predetermined length of an oil palm trunk is stripped to a predetermined thickness with a rotary race in a circumferential direction in a thin plate process to form a plurality of oil palm materials. The oil palm material formed in the thin plate process is dried, and a plurality of oil palm materials dried in the drying process are laminated in a predetermined state in the lamination process. And it heats to raise the temperature of the oil palm material laminated | stacked at the said lamination | stacking process in a heating process, With respect to the surface of the said oil palm material to the said laminated | stacked oil palm material heated by the said heating process by the compression process The upper and lower molds of the mold are compressed in a direction perpendicular to the surface of the oil palm material while being restricted from extending in the parallel direction, and compression-molded for a predetermined time. The laminated oil palm material compressed for a predetermined time in the process is cooled and fixed by lowering the temperature supplied in the heating process.
As described above, the plurality of oil palm materials formed by peeling to a predetermined thickness can be formed to a necessary thickness in the laminating step, and therefore the thickness can be determined according to the intended use. In the heating step of heating to raise the temperature of the oil palm material laminated in the laminating step, in particular, when a plurality of oil palm materials are heated with water vapor, resin components such as lignin and sugars such as cellulose and hemicellulose are produced. Since it is softened and bonded, a solid oil palm molded body can be obtained by the fixing process.
The laminated oil palm material is perpendicular to the surface of the oil palm material between the upper mold and the lower mold of the mold while restricting the oil palm material from extending in a direction parallel to the surface of the oil palm material. Since the compression of the direction is applied and compression molding is performed for a predetermined time, it can be compression molded without increasing the area of the laminated oil palm material, so that it has a desired three-dimensional shape and a desired outer shape. An oil palm molded body having a diameter is obtained. In particular, from the mold, the temperature supplied in the heating step is lowered to cool and fix, so that the oil palm molded body can be easily taken out.
Therefore, an oil palm molded body made of laminated oil palm materials can be molded into a desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and oil palm inherently has components An oil palm molded body that is environmentally friendly is obtained.
特に、積層工程以降で積層されたオイルパーム材の温度を加熱工程で上昇させるべく加熱し、圧縮工程で加熱された前記積層されたオイルパーム材にその面に対して平行方向に延びるのを規制しながら、前記オイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮するものであるから、圧縮工程で付与される圧縮力がオイルパーム材の面に対して平行方向に逃げるという延びが制限され、全ての積層されたオイルパーム材の圧縮力が有効的に使用され、かつ、オイルパーム材の外形寸法を均一にすることができ、また、全オイルパーム材の圧縮率を樹種に応じた値にすることができ、製造中に複数のオイルパーム材から無駄を出すことがない。
よって、前記オイルパーム材が含有する樹脂成分及び糖成分の使用割合を多くし、自然物で接合した多層合板が得られ、使用する材料のロスが少なくコストを抑え、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用量を抑え、オイルパームが本来的に有している成分を利用した積層合板が得られる。 In particular, the temperature of the oil palm material laminated after the laminating step is heated to increase in the heating step, and the oil palm material heated in the compression step is restricted from extending in a direction parallel to the surface. However, the compression force applied in the compression process escapes in the direction parallel to the surface of the oil palm material because the compression force in the direction perpendicular to the surface of the oil palm material is applied and compressed for a predetermined time. The stretch of the oil palm material is effectively used, the outer dimensions of the oil palm material can be made uniform, and the compression rate of the whole oil palm material can be reduced. It can be set to a value according to the tree species, and waste is not produced from a plurality of oil palm materials during production.
Therefore, the use ratio of the resin component and sugar component contained in the oil palm material is increased, and a multilayer plywood bonded with a natural product can be obtained, the loss of the material used is reduced, the cost is reduced, and sick house syndrome is caused. A laminated plywood utilizing the components inherently possessed by oil palm can be obtained by suppressing the amount of formaldehyde-based adhesive used.
よって、前記オイルパーム材が含有する樹脂成分及び糖成分の使用割合を多くし、自然物で接合した多層合板が得られ、使用する材料のロスが少なくコストを抑え、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用量を抑え、オイルパームが本来的に有している成分を利用した積層合板が得られる。 In particular, the temperature of the oil palm material laminated after the laminating step is heated to increase in the heating step, and the oil palm material heated in the compression step is restricted from extending in a direction parallel to the surface. However, the compression force applied in the compression process escapes in the direction parallel to the surface of the oil palm material because the compression force in the direction perpendicular to the surface of the oil palm material is applied and compressed for a predetermined time. The stretch of the oil palm material is effectively used, the outer dimensions of the oil palm material can be made uniform, and the compression rate of the whole oil palm material can be reduced. It can be set to a value according to the tree species, and waste is not produced from a plurality of oil palm materials during production.
Therefore, the use ratio of the resin component and sugar component contained in the oil palm material is increased, and a multilayer plywood bonded with a natural product can be obtained, the loss of the material used is reduced, the cost is reduced, and sick house syndrome is caused. A laminated plywood utilizing the components inherently possessed by oil palm can be obtained by suppressing the amount of formaldehyde-based adhesive used.
また、オイルパームの幹は節、年輪がないからロータリーレースで外周から所定の厚みに剥いて薄板を作成する場合、均質な薄板が得られ、結果的に、その前記薄板からなる積層合板は均質なものとなる。また、加える温度と圧縮力によって前記オイルパームの幹自体が含有する樹脂成分及び糖成分によってその接合力を変化させるから、加える温度と圧縮力の制御によって任意の接着力が得られる。
また、積層工程以降で積層されたオイルパーム材の温度を加熱工程で上昇させるべく加熱し、圧縮工程で加熱された前記積層されたオイルパーム材に、オイルパーム材の面に対して平行方向に延びるのを規制しながら、前記オイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮するものであるから、圧縮工程で付与される圧縮力がオイルパーム材の面に対して平行方向に逃げるという延びが制限され、全ての積層されたオイルパーム材の圧縮力が有効的に使用され、かつ、オイルパーム材の外形寸法を均一にすることができ、また、全オイルパーム材の圧縮率を均一にすることができ、製造中に複数のオイルパーム材から無駄を出すことがない。 In addition, since the palm of the oil palm has no nodes or annual rings, when a thin plate is produced by peeling it off from the outer periphery with a rotary race, a uniform thin plate is obtained. As a result, the laminated plywood made of the thin plate is homogeneous. It will be something. Moreover, since the joining force is changed by the resin component and sugar component contained in the trunk of the oil palm itself depending on the applied temperature and compressive force, an arbitrary adhesive force can be obtained by controlling the applied temperature and compressive force.
Also, the temperature of the oil palm material laminated after the laminating step is heated to increase in the heating step, and the laminated oil palm material heated in the compression step is parallel to the surface of the oil palm material. Since the compression is performed for a predetermined time by applying a compression force in a direction perpendicular to the surface of the oil palm material while restricting the extension, the compression force applied in the compression process is applied to the surface of the oil palm material. Elongation to escape in parallel direction is limited, the compressive force of all laminated oil palm materials can be used effectively, and the outer dimensions of oil palm materials can be made uniform, and all oil palm materials The compression ratio of the oil palm can be made uniform, and no waste is produced from the plurality of oil palm materials during the production.
また、積層工程以降で積層されたオイルパーム材の温度を加熱工程で上昇させるべく加熱し、圧縮工程で加熱された前記積層されたオイルパーム材に、オイルパーム材の面に対して平行方向に延びるのを規制しながら、前記オイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮するものであるから、圧縮工程で付与される圧縮力がオイルパーム材の面に対して平行方向に逃げるという延びが制限され、全ての積層されたオイルパーム材の圧縮力が有効的に使用され、かつ、オイルパーム材の外形寸法を均一にすることができ、また、全オイルパーム材の圧縮率を均一にすることができ、製造中に複数のオイルパーム材から無駄を出すことがない。 In addition, since the palm of the oil palm has no nodes or annual rings, when a thin plate is produced by peeling it off from the outer periphery with a rotary race, a uniform thin plate is obtained. As a result, the laminated plywood made of the thin plate is homogeneous. It will be something. Moreover, since the joining force is changed by the resin component and sugar component contained in the trunk of the oil palm itself depending on the applied temperature and compressive force, an arbitrary adhesive force can be obtained by controlling the applied temperature and compressive force.
Also, the temperature of the oil palm material laminated after the laminating step is heated to increase in the heating step, and the laminated oil palm material heated in the compression step is parallel to the surface of the oil palm material. Since the compression is performed for a predetermined time by applying a compression force in a direction perpendicular to the surface of the oil palm material while restricting the extension, the compression force applied in the compression process is applied to the surface of the oil palm material. Elongation to escape in parallel direction is limited, the compressive force of all laminated oil palm materials can be used effectively, and the outer dimensions of oil palm materials can be made uniform, and all oil palm materials The compression ratio of the oil palm can be made uniform, and no waste is produced from the plurality of oil palm materials during the production.
そして、前記複数枚の薄板を前記オイルパームの幹自体が含有する樹脂成分及び糖成分によって接合して前記積層合板を形成するものであり、他の合成樹脂、合成ゴムを接着材として使用していないから、自然に戻すことができ公害問題を引き起こすことがない。更に、前記オイルパーム自体が含有する樹脂成分及び糖成分によって接合されるときの圧縮力によって、前記薄板の空隙が殆どなくなり、緻密な組織になるから、耐水性があり、かつ、防水、防虫性に富み、建築材料として使用しても耐用年数が長くなる。なお、ここにおける接合には、オイルパーム材は、その形成の際に生じる凹凸面に対して逆の凸凹面に成型する能力があることから、その成形能力を利用した機械的接合も含まれている。
The plurality of thin plates are joined by a resin component and a sugar component contained in the trunk of the oil palm itself to form the laminated plywood, and other synthetic resins and synthetic rubbers are used as adhesives. Because it is not, it can be returned to nature and will not cause pollution problems. Furthermore, the compression force when joined by the resin component and sugar component contained in the oil palm itself eliminates the gaps in the thin plate, resulting in a dense structure, so that it has water resistance and is waterproof and insect-proof. It has a long service life even when used as a building material. In addition, since the oil palm material has the ability to be molded into a concave and convex surface opposite to the concave and convex surface generated during the formation, the mechanical joining using the molding capability is also included in the joining here. Yes.
このように、所定長のオイルパーム幹をその周方向に回転させながらロータリーレースで所定の厚みに剥いて形成し、それを圧密加工したときの1枚の厚みが1mm以上からなる複数枚のオイルパーム材を同時に圧縮、固定化し、一体に接合できる。特に、積層工程以降で積層されたオイルパーム材の温度を加熱工程で上昇させるべく加熱し、圧縮工程で加熱された前記積層されたオイルパーム材に、オイルパーム材の面に対して平行方向に延びるのを規制しながら、前記オイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮するものであるから、圧縮工程で付与される圧縮力がオイルパーム材の面に対して平行方向に逃げるという延びが制限され、全ての積層されたオイルパーム材の圧縮力が有効的に使用され、かつ、全オイルパーム材の圧縮率を均一にすることができ、製造中に複数のオイルパーム材から無駄を出すことがない。
よって、前記オイルパーム材が含有する樹脂成分及び糖成分を使用し、自然物で接合した多層合板が得られ、使用する材料のロスが少なくコストを抑え、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用したオイルパーム成型体が得られる。少なくとも従来の積層合板に比較して、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑えることができる。 In this way, a plurality of oils each having a thickness of 1 mm or more when the oil palm trunk having a predetermined length is formed by peeling it to a predetermined thickness with a rotary race while rotating it in the circumferential direction and then compacting it. Palm material can be compressed and fixed at the same time and joined together. In particular, the temperature of the oil palm material laminated after the laminating step is heated to increase in the heating step, and the laminated oil palm material heated in the compression step is parallel to the surface of the oil palm material. Since the compression is applied for a predetermined time by applying a compression force in a direction perpendicular to the surface of the oil palm material while restricting the extension, the compression force applied in the compression process is applied to the surface of the oil palm material. Elongation of escape in parallel direction is limited, the compression force of all laminated oil palm materials can be used effectively, and the compression rate of all oil palm materials can be made uniform, There is no waste from oil palm material.
Therefore, using the resin component and sugar component contained in the oil palm material, a multi-layer plywood bonded with natural products can be obtained, the cost of the material used is reduced, the cost is reduced, and formaldehyde-based adhesion that causes sick house syndrome The use of the agent is suppressed, and an oil palm molded body using components inherent in oil palm is obtained. Compared to at least conventional laminated plywood, the use of formaldehyde-based adhesive that causes sick house syndrome can be suppressed.
よって、前記オイルパーム材が含有する樹脂成分及び糖成分を使用し、自然物で接合した多層合板が得られ、使用する材料のロスが少なくコストを抑え、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用したオイルパーム成型体が得られる。少なくとも従来の積層合板に比較して、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑えることができる。 In this way, a plurality of oils each having a thickness of 1 mm or more when the oil palm trunk having a predetermined length is formed by peeling it to a predetermined thickness with a rotary race while rotating it in the circumferential direction and then compacting it. Palm material can be compressed and fixed at the same time and joined together. In particular, the temperature of the oil palm material laminated after the laminating step is heated to increase in the heating step, and the laminated oil palm material heated in the compression step is parallel to the surface of the oil palm material. Since the compression is applied for a predetermined time by applying a compression force in a direction perpendicular to the surface of the oil palm material while restricting the extension, the compression force applied in the compression process is applied to the surface of the oil palm material. Elongation of escape in parallel direction is limited, the compression force of all laminated oil palm materials can be used effectively, and the compression rate of all oil palm materials can be made uniform, There is no waste from oil palm material.
Therefore, using the resin component and sugar component contained in the oil palm material, a multi-layer plywood bonded with natural products can be obtained, the cost of the material used is reduced, the cost is reduced, and formaldehyde-based adhesion that causes sick house syndrome The use of the agent is suppressed, and an oil palm molded body using components inherent in oil palm is obtained. Compared to at least conventional laminated plywood, the use of formaldehyde-based adhesive that causes sick house syndrome can be suppressed.
請求項5のオイルパーム成型体の製造方法は、薄板工程で所定長のオイルパーム幹をその周方向にロータリーレースで所定の厚みに剥いて複数枚のオイルパーム材に形成し、乾燥工程において前記薄板工程で形成したオイルパーム材を乾燥させ、積層工程において前記乾燥工程で乾燥させたオイルパーム材を所定の状態に複数枚積層する。そして、予備加熱工程において積層されたオイルパーム材の温度を上昇させるべく加熱し、前記予備加熱工程によって加熱された前記積層されたオイルパーム材に前記オイルパーム材の面に沿って平行方向に伸びるのを規制しながら、金型の上型と下型とで前記オイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮成型し、予備固定化工程によって前記圧縮工程で所定時間圧縮成型した前記積層されたオイルパーム材を、前記予備固定化工程において前記予備加熱工程で供給していた温度を降下させて冷却して固定化させ、本固定化工程において、前記積層されたオイルパーム材を所定の湿度及び温度条件下で、前記積層されたオイルパーム材の面に沿って平行方向に延びるのを規制しながら、金型の上型と下型とで前記積層されたオイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮成型し、前記所定時間圧縮成型した前記積層されたオイルパーム材の温度を降下させて固定化させるものである。
なお、オイルパーム成型体の形態または使用対象によっては、上記予備加熱工程、予備圧縮工程、予備固定化工程、または上記本固定化工程は、上記予備加熱工程、予備圧縮工程、予備固定化工程を予備工程として1回以上、または本固定化工程を本工程として1回以上繰り返し実行することができる。 The method for producing an oil palm molded body according toclaim 5 is to form a plurality of oil palm materials by stripping a predetermined length of an oil palm trunk to a predetermined thickness with a rotary race in the circumferential direction in a thin plate process, and in the drying process, The oil palm material formed in the thin plate process is dried, and a plurality of oil palm materials dried in the drying process are laminated in a predetermined state in the lamination process. And it heats so that the temperature of the oil palm material laminated | stacked in the preheating process may be raised, and it extends in the parallel direction along the surface of the said oil palm material to the said laminated oil palm material heated by the said preheating process. The upper mold and the lower mold of the mold are subjected to a compression force in a direction perpendicular to the surface of the oil palm material for compression for a predetermined time, and are subjected to a predetermined time in the compression process by a preliminary fixing process. The laminated oil palm material that has been compression-molded is cooled and fixed by lowering the temperature supplied in the preliminary heating step in the preliminary fixing step, and the laminated oil palm material is fixed in the final fixing step. While the palm material is controlled to extend in a parallel direction along the surface of the laminated oil palm material under predetermined humidity and temperature conditions, the lamination is performed between the upper mold and the lower mold of the mold. Is a predetermined time compression molded by adding a compressive force in the direction perpendicular to the plane of the oil palm material was, but for immobilizing by lowering the temperature of the laminated oil palm material was compression-molded the predetermined time.
In addition, depending on the form or use object of the oil palm molded body, the preheating step, the precompression step, the prefixing step, or the main fixing step may include the preheating step, the precompression step, and the prefixing step. The preliminary process can be repeated one or more times, or the main immobilization process can be repeated one or more times as the main process.
なお、オイルパーム成型体の形態または使用対象によっては、上記予備加熱工程、予備圧縮工程、予備固定化工程、または上記本固定化工程は、上記予備加熱工程、予備圧縮工程、予備固定化工程を予備工程として1回以上、または本固定化工程を本工程として1回以上繰り返し実行することができる。 The method for producing an oil palm molded body according to
In addition, depending on the form or use object of the oil palm molded body, the preheating step, the precompression step, the prefixing step, or the main fixing step may include the preheating step, the precompression step, and the prefixing step. The preliminary process can be repeated one or more times, or the main immobilization process can be repeated one or more times as the main process.
このように、複数枚のオイルパーム材に形成する薄板工程、そのオイルパーム材の乾燥工程、そのオイルパーム材を複数枚積層する積層工程、そのオイルパーム材を加熱する予備加熱工程、前記加熱されたオイルパーム材の面に沿って平行方向に伸びるのを規制しながら、金型の上型と下型とで前記オイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮成型する予備圧縮工程と、前記予備加熱工程で供給していた温度を降下させて冷却し、固定化させる予備固定化工程は、予備オイルパーム成型体の予備成型工程となる。このオイルパーム成型体は2/5~4/5の圧縮率で圧縮した板状としたもの、或いは、全体のオイルパーム成型体に対して2/5~4/5の圧縮率で圧縮した立体形状体としてもよい。このときの前記加熱されたオイルパーム材の面に沿って平行方向には伸びるのを規制し、仕上げ寸法に成型される。また、このときには、供給する水蒸気圧の量を少なくして成形すると、後の本固定化工程の加工が容易である。
このように予備固定化工程で固定化された前記積層されたオイルパーム材は、所定の湿度及び温度条件下で、再度、前記積層されたオイルパーム材の面に沿って平行方向に延びるのを規制しながら、金型の上型と下型とで前記積層されたオイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮して成型し、前記所定時間圧縮して成型した前記積層されたオイルパーム材の温度を降下させて冷却し、本固定化工程で恒久的な固定化をさせるものである。 Thus, a thin plate process to be formed on a plurality of oil palm materials, a drying process of the oil palm materials, a laminating process of laminating a plurality of oil palm materials, a preheating step of heating the oil palm materials, and the heating Applying a compression force in a direction perpendicular to the surface of the oil palm material between the upper mold and the lower mold of the mold while restricting extending in parallel along the surface of the oil palm material. The pre-compression process and the pre-fixing process in which the temperature supplied in the pre-heating process is lowered and cooled and fixed are the pre-molding process of the pre-oil palm molding. This oil palm molded body is a plate shape compressed at a compression ratio of 2/5 to 4/5, or a solid body compressed at a compression ratio of 2/5 to 4/5 with respect to the entire oil palm molded body. It may be a shape body. At this time, it is restricted from extending in the parallel direction along the surface of the heated oil palm material, and is molded into a finished dimension. Further, at this time, if the amount of water vapor pressure to be supplied is reduced and the molding is performed, it is easy to process the subsequent fixing step.
In this way, the laminated oil palm material fixed in the preliminary immobilization process again extends in a parallel direction along the surface of the laminated oil palm material under predetermined humidity and temperature conditions. While being regulated, a compression force in a direction perpendicular to the surface of the laminated oil palm material is applied between the upper mold and the lower mold of the mold so as to compress and mold for a predetermined time, and then compressed and molded for the predetermined time The laminated oil palm material is cooled by lowering the temperature, and is permanently fixed in the final fixing step.
このように予備固定化工程で固定化された前記積層されたオイルパーム材は、所定の湿度及び温度条件下で、再度、前記積層されたオイルパーム材の面に沿って平行方向に延びるのを規制しながら、金型の上型と下型とで前記積層されたオイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮して成型し、前記所定時間圧縮して成型した前記積層されたオイルパーム材の温度を降下させて冷却し、本固定化工程で恒久的な固定化をさせるものである。 Thus, a thin plate process to be formed on a plurality of oil palm materials, a drying process of the oil palm materials, a laminating process of laminating a plurality of oil palm materials, a preheating step of heating the oil palm materials, and the heating Applying a compression force in a direction perpendicular to the surface of the oil palm material between the upper mold and the lower mold of the mold while restricting extending in parallel along the surface of the oil palm material. The pre-compression process and the pre-fixing process in which the temperature supplied in the pre-heating process is lowered and cooled and fixed are the pre-molding process of the pre-oil palm molding. This oil palm molded body is a plate shape compressed at a compression ratio of 2/5 to 4/5, or a solid body compressed at a compression ratio of 2/5 to 4/5 with respect to the entire oil palm molded body. It may be a shape body. At this time, it is restricted from extending in the parallel direction along the surface of the heated oil palm material, and is molded into a finished dimension. Further, at this time, if the amount of water vapor pressure to be supplied is reduced and the molding is performed, it is easy to process the subsequent fixing step.
In this way, the laminated oil palm material fixed in the preliminary immobilization process again extends in a parallel direction along the surface of the laminated oil palm material under predetermined humidity and temperature conditions. While being regulated, a compression force in a direction perpendicular to the surface of the laminated oil palm material is applied between the upper mold and the lower mold of the mold so as to compress and mold for a predetermined time, and then compressed and molded for the predetermined time The laminated oil palm material is cooled by lowering the temperature, and is permanently fixed in the final fixing step.
したがって、所定の厚みに剥いて形成した複数枚のオイルパーム材は、積層工程において必要な厚みに形成でき、目的用途に応じてその厚みを決定でき、また、予備オイルパーム成型体の予備成型工程を成型過程に設けることにより、本固定化工程で精度の高い成型体を得ることができる。前記積層工程で積層されたオイルパーム材の温度を上昇させるべく加熱する加熱工程では、特に、水蒸気によって複数枚のオイルパーム材を加熱すると、リグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類とが、軟化し結合するから本固定化工程によって、堅固な成型体が得られる。
Therefore, a plurality of oil palm materials formed by peeling to a predetermined thickness can be formed to a necessary thickness in the laminating process, the thickness can be determined according to the intended use, and the preliminary molding process of the preliminary oil palm molded body By providing in the molding process, a highly accurate molded body can be obtained in the present immobilization process. In the heating step of heating to raise the temperature of the oil palm material laminated in the laminating step, in particular, when a plurality of oil palm materials are heated with water vapor, resin components such as lignin and sugars such as cellulose and hemicellulose are produced. Since it is softened and bonded, a solid molded body can be obtained by this fixing process.
また、前記積層されたオイルパーム材は、本固定化工程においても、前記オイルパーム材の面に対して平行方向に伸びるのを規制しながら、金型の上型と下型とで前記オイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮成型するものであるから、前記積層されたオイルパーム材の面積が拡大されることなく、圧縮成型できるから、所望の立体形状であり、かつ、所望の外径のオイルパーム成型体が得られる。特に、予備固定化工程であっても、本固定化工程であっても、金型からは、前記加熱工程で供給していた温度を降下させて冷却し、固定化させるものであるから、オイルパーム成型体が取り出し易い。また、オイルパーム成型体の前記薄板工程は、少なくとも従来の積層合板に比較して、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑えることができる。
したがって、積層されたオイルパーム材からなるオイルパーム成型体が所望の形状に成型でき、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した環境にやさしいオイルパーム成型体が得られる。 In addition, the laminated oil palm material is restricted to extend in a direction parallel to the surface of the oil palm material even in the final fixing step, and the oil palm material is formed between the upper mold and the lower mold of the mold. Since the compression force in a direction perpendicular to the surface of the material is applied and compression molding is performed for a predetermined time, the area of the laminated oil palm material can be compression-molded without being expanded, so that the desired three-dimensional shape can be obtained. There is obtained an oil palm molded body having a desired outer diameter. In particular, even in the preliminary fixing step or the main fixing step, the mold is cooled and fixed by lowering the temperature supplied in the heating step. The palm molding is easy to take out. Moreover, the said thin-plate process of an oil palm molded object can suppress use of the formaldehyde type adhesive agent which causes a sick house syndrome at least compared with the conventional laminated plywood.
Therefore, an oil palm molded body made of laminated oil palm materials can be molded into a desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and oil palm inherently has components An oil palm molded body that is environmentally friendly is obtained.
したがって、積層されたオイルパーム材からなるオイルパーム成型体が所望の形状に成型でき、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した環境にやさしいオイルパーム成型体が得られる。 In addition, the laminated oil palm material is restricted to extend in a direction parallel to the surface of the oil palm material even in the final fixing step, and the oil palm material is formed between the upper mold and the lower mold of the mold. Since the compression force in a direction perpendicular to the surface of the material is applied and compression molding is performed for a predetermined time, the area of the laminated oil palm material can be compression-molded without being expanded, so that the desired three-dimensional shape can be obtained. There is obtained an oil palm molded body having a desired outer diameter. In particular, even in the preliminary fixing step or the main fixing step, the mold is cooled and fixed by lowering the temperature supplied in the heating step. The palm molding is easy to take out. Moreover, the said thin-plate process of an oil palm molded object can suppress use of the formaldehyde type adhesive agent which causes a sick house syndrome at least compared with the conventional laminated plywood.
Therefore, an oil palm molded body made of laminated oil palm materials can be molded into a desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and oil palm inherently has components An oil palm molded body that is environmentally friendly is obtained.
請求項6の積層合板は、所定長のオイルパームの幹をその周方向に回転させながらロータリーレースで所定の厚みに剥いて形成した1枚以上のオイルパーム材と、所定長のラワンまたはシナまたは針葉樹の幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成したラワン薄板、またはシナ薄板、または針葉樹薄板の何れかの1枚以上を前記オイルパーム材に面して配置し、それらを圧縮、固定化し、一体に接合したものである。
したがって、1枚以上のオイルパーム材を網と同時に圧縮、固定化し、一体に接合したものであるから、前記オイルパーム材が含有する樹脂成分及び糖成分を使用し、自然物で接合した多層合板が得られる。特に、前記オイルパーム材相互間に1枚以上の網を配設し、前記オイルパーム材相互間で1枚以上の網を接合したものであるから、前記オイルパーム材相互間で網を接合し、一体化するから、前記オイルパーム材相互間から接合の際のオイルパーム材が含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保されるから、前記オイルパーム材と網との接合が容易であり、前記オイルパーム材が湾曲しようとしても、網がその湾曲に対応する伸縮が生じないから、湾曲を防止する手段として設けることができる。また、複数の個所に網を配設することにより、前記オイルパーム材を積層した面に対して曲げが生じ難くなる。
よって、積層合板自体の機械的強度を強くし、かつ、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用し、廉価な積層合板が得られる。 The laminated plywood according toclaim 6 includes one or more oil palm materials formed by peeling a trunk of a predetermined length of oil palm to a predetermined thickness while rotating a trunk of the oil palm in a circumferential direction thereof, One or more of Lauan thin plate, China thin plate, or conifer thin plate formed by peeling a conifer trunk in the circumferential direction while rotating it in the circumferential direction with a predetermined thickness facing the oil palm material They are placed, compressed, fixed and joined together.
Therefore, since one or more oil palm materials are compressed and fixed simultaneously with the net and integrally joined together, a multilayer plywood joined with natural products using the resin component and sugar component contained in the oil palm material is obtained. can get. Particularly, since one or more nets are arranged between the oil palm materials and one or more nets are joined between the oil palm materials, the nets are joined between the oil palm materials. Since the amount of the resin component and the sugar component contained in the oil palm material at the time of joining from between the oil palm materials is ensured without using another adhesive, the oil palm material is integrated. It is easy to join the material and the net, and even if the oil palm material tries to bend, the net does not expand or contract corresponding to the bend, so it can be provided as means for preventing the bend. Moreover, it becomes difficult to bend with respect to the surface which laminated | stacked the said oil palm material by arrange | positioning a net | network in a several location.
Therefore, the mechanical strength of the laminated plywood itself is increased, and the use of formaldehyde-based adhesives that cause sick house syndrome is suppressed. can get.
したがって、1枚以上のオイルパーム材を網と同時に圧縮、固定化し、一体に接合したものであるから、前記オイルパーム材が含有する樹脂成分及び糖成分を使用し、自然物で接合した多層合板が得られる。特に、前記オイルパーム材相互間に1枚以上の網を配設し、前記オイルパーム材相互間で1枚以上の網を接合したものであるから、前記オイルパーム材相互間で網を接合し、一体化するから、前記オイルパーム材相互間から接合の際のオイルパーム材が含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保されるから、前記オイルパーム材と網との接合が容易であり、前記オイルパーム材が湾曲しようとしても、網がその湾曲に対応する伸縮が生じないから、湾曲を防止する手段として設けることができる。また、複数の個所に網を配設することにより、前記オイルパーム材を積層した面に対して曲げが生じ難くなる。
よって、積層合板自体の機械的強度を強くし、かつ、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用し、廉価な積層合板が得られる。 The laminated plywood according to
Therefore, since one or more oil palm materials are compressed and fixed simultaneously with the net and integrally joined together, a multilayer plywood joined with natural products using the resin component and sugar component contained in the oil palm material is obtained. can get. Particularly, since one or more nets are arranged between the oil palm materials and one or more nets are joined between the oil palm materials, the nets are joined between the oil palm materials. Since the amount of the resin component and the sugar component contained in the oil palm material at the time of joining from between the oil palm materials is ensured without using another adhesive, the oil palm material is integrated. It is easy to join the material and the net, and even if the oil palm material tries to bend, the net does not expand or contract corresponding to the bend, so it can be provided as means for preventing the bend. Moreover, it becomes difficult to bend with respect to the surface which laminated | stacked the said oil palm material by arrange | positioning a net | network in a several location.
Therefore, the mechanical strength of the laminated plywood itself is increased, and the use of formaldehyde-based adhesives that cause sick house syndrome is suppressed. can get.
請求項7の積層合板は、所定長のオイルパームの幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成した1枚以上のオイルパーム材と、所定長のラワンまたはシナまたは針葉樹の幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成したラワン薄板、またはシナ薄板、または針葉樹薄板の何れかの1枚以上を前記オイルパーム材に面して配置し、それらを一体に接合したものである。
したがって、少なくとも圧密加工した1枚以上のオイルパーム材と、ラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上を前記オイルパーム材に面して配置し、それらを一体に接合したものであるから、前記オイルパーム材が含有する樹脂成分及び糖成分が不足した場合には、ラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上の接合対象に接着剤を追加して貼り合せることにより、所望の積層合板が得られる。 The laminated plywood according to claim 7 includes one or more oil palm materials formed by peeling a trunk of a predetermined length of oil palm in a circumferential direction while rotating the trunk of the oil palm to a predetermined thickness with a rotary race, and a predetermined length of lauan or A lauan thin plate formed by peeling a trunk of a Chinese or coniferous tree in the circumferential direction while peeling it off from the outer periphery to a predetermined thickness, or one or more of a Chinese thin plate or a softwood thin plate facing the oil palm material Are arranged and joined together.
Therefore, at least one oil palm material that has been compacted and one or more of Lauan thin plate, China thin plate, and softwood thin plate are placed facing the oil palm material, and they are joined together. Therefore, when the resin component and sugar component contained in the oil palm material are insufficient, an adhesive is added and bonded to one or more of Lauan thin plate, China thin plate, and softwood thin plate. Thus, a desired laminated plywood is obtained.
したがって、少なくとも圧密加工した1枚以上のオイルパーム材と、ラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上を前記オイルパーム材に面して配置し、それらを一体に接合したものであるから、前記オイルパーム材が含有する樹脂成分及び糖成分が不足した場合には、ラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上の接合対象に接着剤を追加して貼り合せることにより、所望の積層合板が得られる。 The laminated plywood according to claim 7 includes one or more oil palm materials formed by peeling a trunk of a predetermined length of oil palm in a circumferential direction while rotating the trunk of the oil palm to a predetermined thickness with a rotary race, and a predetermined length of lauan or A lauan thin plate formed by peeling a trunk of a Chinese or coniferous tree in the circumferential direction while peeling it off from the outer periphery to a predetermined thickness, or one or more of a Chinese thin plate or a softwood thin plate facing the oil palm material Are arranged and joined together.
Therefore, at least one oil palm material that has been compacted and one or more of Lauan thin plate, China thin plate, and softwood thin plate are placed facing the oil palm material, and they are joined together. Therefore, when the resin component and sugar component contained in the oil palm material are insufficient, an adhesive is added and bonded to one or more of Lauan thin plate, China thin plate, and softwood thin plate. Thus, a desired laminated plywood is obtained.
前記オイルパーム材相互間に1枚以上の網を配設し、前記オイルパーム材相互間で1枚以上の網を接合したものであるから、前記オイルパーム材相互間で網を接合し、一体化するから、前記オイルパーム材相互間から接合の際のオイルパーム材が含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保されるから、前記オイルパーム材と網との接合が容易であり、前記オイルパーム材が湾曲しようとしても、網がその湾曲に対応する伸縮が生じないから、湾曲を防止する手段として設けることができる。また、複数の個所に網を配設することにより、前記オイルパーム材を積層した面に対して曲げが生じ難くなる。
よって、積層合板自体の機械的強度を強くし、かつ、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用し、廉価な積層合板が得られる。 Since one or more nets are arranged between the oil palm materials, and one or more nets are joined between the oil palm materials, the nets are joined between the oil palm materials, and integrated Since the amount of the resin component and the sugar component contained in the oil palm material at the time of joining from between the oil palm materials is ensured without using other adhesives, the oil palm material and Joining with a net is easy, and even when the oil palm material is going to bend, the net does not expand or contract corresponding to the bend, so it can be provided as means for preventing the bend. Moreover, it becomes difficult to bend with respect to the surface which laminated | stacked the said oil palm material by arrange | positioning a net | network in a several location.
Therefore, the mechanical strength of the laminated plywood itself is increased, and the use of formaldehyde-based adhesives that cause sick house syndrome is suppressed. can get.
よって、積層合板自体の機械的強度を強くし、かつ、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用し、廉価な積層合板が得られる。 Since one or more nets are arranged between the oil palm materials, and one or more nets are joined between the oil palm materials, the nets are joined between the oil palm materials, and integrated Since the amount of the resin component and the sugar component contained in the oil palm material at the time of joining from between the oil palm materials is ensured without using other adhesives, the oil palm material and Joining with a net is easy, and even when the oil palm material is going to bend, the net does not expand or contract corresponding to the bend, so it can be provided as means for preventing the bend. Moreover, it becomes difficult to bend with respect to the surface which laminated | stacked the said oil palm material by arrange | positioning a net | network in a several location.
Therefore, the mechanical strength of the laminated plywood itself is increased, and the use of formaldehyde-based adhesives that cause sick house syndrome is suppressed. can get.
請求項8の積層合板は、所定長のオイルパームの幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成した1枚以上のオイルパーム材と、所定長のラワンまたはシナまたは針葉樹の幹をその幹の長さ方向に板状に形成したラワン、シナ、針葉樹の何れかの1枚以上を前記オイルパーム材に面して配置し、それらを一体に接合したものである。
したがって、少なくとも圧密加工した1枚以上のオイルパーム材と、ラワン、シナ、針葉樹の何れかの1枚以上の板材が前記オイルパーム材に面して配置され、それらを一体に接合したものであるから、前記オイルパーム材が含有する樹脂成分及び糖成分が不足した場合には、ラワン、シナ、針葉樹の何れかの1枚以上の接合対象に接着剤を追加して貼り合せることにより、所望の積層合板が得られる。 The laminated plywood according toclaim 8 includes one or more oil palm members formed by peeling a trunk of a predetermined length of oil palm in a circumferential direction while rotating the trunk of the predetermined length from the outer periphery to a predetermined thickness, and a predetermined length of lauan or One or more of lauan, china, and conifers, which are formed in the shape of a plate in the length direction of the trunk of a china or conifer, are placed facing the oil palm material and joined together. is there.
Therefore, at least one compacted oil palm material and one or more plate materials of lauan, china, and conifer are arranged facing the oil palm material, and they are joined together. From the above, when the resin component and the sugar component contained in the oil palm material are insufficient, by adding an adhesive to one or more joining objects of Lauan, China, and coniferous trees, A laminated plywood is obtained.
したがって、少なくとも圧密加工した1枚以上のオイルパーム材と、ラワン、シナ、針葉樹の何れかの1枚以上の板材が前記オイルパーム材に面して配置され、それらを一体に接合したものであるから、前記オイルパーム材が含有する樹脂成分及び糖成分が不足した場合には、ラワン、シナ、針葉樹の何れかの1枚以上の接合対象に接着剤を追加して貼り合せることにより、所望の積層合板が得られる。 The laminated plywood according to
Therefore, at least one compacted oil palm material and one or more plate materials of lauan, china, and conifer are arranged facing the oil palm material, and they are joined together. From the above, when the resin component and the sugar component contained in the oil palm material are insufficient, by adding an adhesive to one or more joining objects of Lauan, China, and coniferous trees, A laminated plywood is obtained.
前記オイルパーム材相互間に1枚以上の網を配設し、前記オイルパーム材相互間で1枚以上の網を接合したものであるから、前記オイルパーム材相互間で網を接合し、一体化するから、前記オイルパーム材相互間から接合の際のオイルパーム材が含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保されるから、前記オイルパーム材と網との接合が容易であり、前記オイルパーム材が湾曲しようとしても、網がその湾曲に対応する伸縮が生じないから、湾曲を防止する手段として設けることができる。また、複数の個所に網を配設することにより、前記オイルパーム材を積層した面に対して曲げが生じ難くなる。
よって、積層合板自体の機械的強度を強くし、かつ、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用し、廉価な積層合板が得られる。 Since one or more nets are arranged between the oil palm materials, and one or more nets are joined between the oil palm materials, the nets are joined between the oil palm materials, and integrated Since the amount of the resin component and the sugar component contained in the oil palm material at the time of joining from between the oil palm materials is ensured without using other adhesives, the oil palm material and Joining with a net is easy, and even when the oil palm material is going to bend, the net does not expand or contract corresponding to the bend, so it can be provided as means for preventing the bend. Moreover, it becomes difficult to bend with respect to the surface which laminated | stacked the said oil palm material by arrange | positioning a net | network in a several location.
Therefore, the mechanical strength of the laminated plywood itself is increased, and the use of formaldehyde-based adhesives that cause sick house syndrome is suppressed. can get.
よって、積層合板自体の機械的強度を強くし、かつ、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用し、廉価な積層合板が得られる。 Since one or more nets are arranged between the oil palm materials, and one or more nets are joined between the oil palm materials, the nets are joined between the oil palm materials, and integrated Since the amount of the resin component and the sugar component contained in the oil palm material at the time of joining from between the oil palm materials is ensured without using other adhesives, the oil palm material and Joining with a net is easy, and even when the oil palm material is going to bend, the net does not expand or contract corresponding to the bend, so it can be provided as means for preventing the bend. Moreover, it becomes difficult to bend with respect to the surface which laminated | stacked the said oil palm material by arrange | positioning a net | network in a several location.
Therefore, the mechanical strength of the laminated plywood itself is increased, and the use of formaldehyde-based adhesives that cause sick house syndrome is suppressed. can get.
請求項9の積層合板において、前記オイルパーム材に面して配置し、一体に接合する1枚以上のオイルパーム材の接合には、前記オイルパーム材が含有する樹脂成分及び糖成分とし、ラワン薄板またはシナ薄板または針葉樹薄板の何れかの1枚以上と一体に接合する接合面には、前記オイルパーム材が含有する樹脂成分及び糖成分の他に、他の接着剤を付加したものであるから、請求項7または請求項8の効果に加えて、1枚以上のオイルパーム材の接合には、前記オイルパーム材が含有する樹脂成分及び糖成分を使用し、更に、ラワン薄板またはシナ薄板または針葉樹薄板の何れかの1枚以上の接合も堅固に行うことができるから、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板が得られる。
The laminated plywood according to claim 9, wherein the resin palm and the sugar component contained in the oil palm material are used for joining one or more oil palm materials which are arranged facing the oil palm material and are integrally joined together. In addition to the resin component and the sugar component contained in the oil palm material, another adhesive is added to the joint surface that is integrally joined to one or more of the thin plate, the Chinese thin plate, or the softwood thin plate. In addition to the effects of claim 7 or claim 8, the resin component and the sugar component contained in the oil palm material are used for joining one or more oil palm materials, and the Lawan thin plate or the Chinese thin plate is further used. Or, one or more of the softwood sheets can be firmly joined, so the use of formaldehyde adhesives that cause sick house syndrome is suppressed, and oil palm inherently has Laminated plywood using there ingredient.
請求項10の積層合板において、前記オイルパーム材の枚数は、前記オイルパーム以外の薄板の枚数よりも多くしたものであるから、請求項6乃至請求項9の1つに記載の効果に加えて、少なくとも従来の積層合板に比較して、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を1/2以下に抑えることができる。
The laminated plywood according to claim 10, wherein the number of the oil palm materials is larger than the number of thin plates other than the oil palm, and in addition to the effect according to one of claims 6 to 9. In comparison with at least conventional laminated plywood, the use of formaldehyde-based adhesive that causes sick house syndrome can be suppressed to ½ or less.
請求項11の発明にかかる積層合板の前記オイルパーム材相互間に配設し、前記オイルパーム材相互間で接合した網は、金網としたものであるから、請求項6乃至請求項10の1つに記載の効果に加えて、成型温度を任意に設定できる。また、機械的強度も大きくなる。
Since the net | network arrange | positioned between the said oil palm materials of the laminated plywood concerning invention of Claim 11 and joining between the said oil palm materials is a wire net | network, 1 of Claim 6 thru | or 10 In addition to the effects described above, the molding temperature can be arbitrarily set. Also, the mechanical strength is increased.
請求項12の発明にかかる積層合板の前記オイルパーム材相互間に配設し、前記オイルパーム材相互間で接合した網は、化学繊維または植物繊維の網としたものであるから、請求項6乃至請求項11の1つに記載の効果に加えて、化学繊維または植物繊維の網の使用を目立たなくできる。また、機械的強度も大きくなる。化学繊維の場合は、前記オイルパーム材相互間の接合温度と化学繊維の溶融温度の溶解温度で接合すると、相乗効果により強靭な一体化が可能となる。
Since the net | network arrange | positioned between the said oil palm materials of the laminated plywood concerning invention of Claim 12 and joining between the said oil palm materials is made into the net | network of a chemical fiber or a vegetable fiber, Claim 6 In addition to the effect of one of the thirteenth to eleventh aspects, the use of a net of chemical fibers or plant fibers can be made inconspicuous. Also, the mechanical strength is increased. In the case of chemical fibers, if they are bonded at the bonding temperature between the oil palm materials and the melting temperature of the melting temperature of the chemical fibers, a strong integration becomes possible due to a synergistic effect.
WD オイルパーム幹
W、W1,・・・,W5 オイルパーム材
UWD 連続薄板
Y1 桧薄板
PW 積層合板
NW 加圧前多層材
MC 圧密加工材製造装置
EO オイルパーム成型体
HW 予備オイルパーム成型体
IS 内部空間
10 プレス盤
18 位置決め孔
20 枠体 WD Oil palm trunk W, W1,..., W5 Oil palm material UWD Continuous thin plate Y1 Thin plate PW Laminated plywood NW Multi-layer material MC before press Compaction processing material manufacturing device EO Oil palm molding HW Preliminary oil palm molding IS InsideSpace 10 Press panel 18 Positioning hole 20 Frame
W、W1,・・・,W5 オイルパーム材
UWD 連続薄板
Y1 桧薄板
PW 積層合板
NW 加圧前多層材
MC 圧密加工材製造装置
EO オイルパーム成型体
HW 予備オイルパーム成型体
IS 内部空間
10 プレス盤
18 位置決め孔
20 枠体 WD Oil palm trunk W, W1,..., W5 Oil palm material UWD Continuous thin plate Y1 Thin plate PW Laminated plywood NW Multi-layer material MC before press Compaction processing material manufacturing device EO Oil palm molding HW Preliminary oil palm molding IS Inside
以下、本発明の実施の形態について、図面に基づいて説明する。なお、実施の形態において、図中の同一記号及び同一符号は、同一または相当する機能部分であるから、ここではその重複する説明を省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that, in the embodiments, the same symbols and the same reference numerals in the drawings are the same or corresponding functional parts, and therefore, redundant description thereof is omitted here.
[実施の形態1]
まず、この発明の実施の形態で使用するオイルパーム幹WDは、木材の板目と柾目を製材するように板取りを行うと、何れも柾目状に繊維(維管束)が並ぶ面になる。即ち、国産材の桧や杉のように年輪がなく、畳表の藺草のように0.4~1.2mmの維管束繊維がオイルパーム幹WDの長さ方向に延びている。
オイルパーム幹WDの成分は産地によって若干違いがあるが、その差は僅かであり、一般にセルロース30.6重量%、ヘミセルロース33.2重量%、リグニン(総リグニン28.5重量%=クラーソンリグニン24.7重量%+酸可溶性リグニン3.8重量%)、抽出成分3.6重量%、灰分4.1重量%といわれており、Characterization in Chemical Composition of the Oil Palm (Elaeis guineensis) (Journal of the Japan Institute of Energy,87,383-388(2008))にも記載がある。
視認できる0.4~1.2mmの繊維、即ち、維管束と維管束の間は柔細胞で、リグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類、少ない空孔によって一体になっている。 [Embodiment 1]
First, when the oil palm trunk WD used in the embodiment of the present invention is cut so that the wood grain and the grid are made, the fibers (vascular bundles) are arranged in a grid pattern. That is, there are no annual rings like Japanese timber and cedar, and vascular bundle fibers of 0.4 to 1.2 mm extend in the length direction of the oil palm trunk WD, like cypresses.
The components of oil palm trunk WD are slightly different depending on the place of production, but the difference is slight, generally 30.6% by weight of cellulose, 33.2% by weight of hemicellulose, lignin (total lignin 28.5% by weight = Klarson lignin 24.7% by weight + acid-soluble lignin (3.8% by weight), extracted component 3.6% by weight, ash content 4.1% by weight, Characterization in Chemical Composition of the Oil Palm (Elaeis guineensis) (Journal of the Japan Institute of Energy, 87, 383-388 (2008)).
Visible fibers of 0.4 to 1.2 mm, that is, between the vascular bundles are parenchyma cells, which are united by resin components such as lignin, sugars such as cellulose and hemicellulose, and a small number of pores.
まず、この発明の実施の形態で使用するオイルパーム幹WDは、木材の板目と柾目を製材するように板取りを行うと、何れも柾目状に繊維(維管束)が並ぶ面になる。即ち、国産材の桧や杉のように年輪がなく、畳表の藺草のように0.4~1.2mmの維管束繊維がオイルパーム幹WDの長さ方向に延びている。
オイルパーム幹WDの成分は産地によって若干違いがあるが、その差は僅かであり、一般にセルロース30.6重量%、ヘミセルロース33.2重量%、リグニン(総リグニン28.5重量%=クラーソンリグニン24.7重量%+酸可溶性リグニン3.8重量%)、抽出成分3.6重量%、灰分4.1重量%といわれており、Characterization in Chemical Composition of the Oil Palm (Elaeis guineensis) (Journal of the Japan Institute of Energy,87,383-388(2008))にも記載がある。
視認できる0.4~1.2mmの繊維、即ち、維管束と維管束の間は柔細胞で、リグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類、少ない空孔によって一体になっている。 [Embodiment 1]
First, when the oil palm trunk WD used in the embodiment of the present invention is cut so that the wood grain and the grid are made, the fibers (vascular bundles) are arranged in a grid pattern. That is, there are no annual rings like Japanese timber and cedar, and vascular bundle fibers of 0.4 to 1.2 mm extend in the length direction of the oil palm trunk WD, like cypresses.
The components of oil palm trunk WD are slightly different depending on the place of production, but the difference is slight, generally 30.6% by weight of cellulose, 33.2% by weight of hemicellulose, lignin (total lignin 28.5% by weight = Klarson lignin 24.7% by weight + acid-soluble lignin (3.8% by weight), extracted component 3.6% by weight, ash content 4.1% by weight, Characterization in Chemical Composition of the Oil Palm (Elaeis guineensis) (Journal of the Japan Institute of Energy, 87, 383-388 (2008)).
Visible fibers of 0.4 to 1.2 mm, that is, between the vascular bundles are parenchyma cells, which are united by resin components such as lignin, sugars such as cellulose and hemicellulose, and a small number of pores.
本実施の形態にかかるオイルパーム成型体を構成する薄板からなるオイルパーム材の形成について図1を用いて説明する。
オイルパーム材Wは、20年以上成長した単一の幹を所定長のオイルパーム幹WDとして切断し、それを大根のかつら剥きと同様の周方向の剥きを行うロータリーレースと呼ばれる装置にセットする。そして、オイルパーム幹WDを回転させ刃物CTによって周方向の剥きを行う。これは、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて複数枚のオイルパーム材Wに形成する薄板工程となる。 Formation of the oil palm material which consists of a thin plate which comprises the oil palm molded object concerning this Embodiment is demonstrated using FIG.
The oil palm material W cuts a single trunk that has grown for more than 20 years as an oil palm trunk WD of a predetermined length, and sets it in a device called a rotary race that peels in the circumferential direction similar to wig removal of a radish. . Then, the oil palm trunk WD is rotated to perform circumferential stripping with the blade CT. This is a thin plate process in which a predetermined length of the oil palm trunk WD is peeled off from the outer periphery to a predetermined thickness by a rotary race while being rotated in the circumferential direction to form a plurality of oil palm members W.
オイルパーム材Wは、20年以上成長した単一の幹を所定長のオイルパーム幹WDとして切断し、それを大根のかつら剥きと同様の周方向の剥きを行うロータリーレースと呼ばれる装置にセットする。そして、オイルパーム幹WDを回転させ刃物CTによって周方向の剥きを行う。これは、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて複数枚のオイルパーム材Wに形成する薄板工程となる。 Formation of the oil palm material which consists of a thin plate which comprises the oil palm molded object concerning this Embodiment is demonstrated using FIG.
The oil palm material W cuts a single trunk that has grown for more than 20 years as an oil palm trunk WD of a predetermined length, and sets it in a device called a rotary race that peels in the circumferential direction similar to wig removal of a radish. . Then, the oil palm trunk WD is rotated to perform circumferential stripping with the blade CT. This is a thin plate process in which a predetermined length of the oil palm trunk WD is peeled off from the outer periphery to a predetermined thickness by a rotary race while being rotated in the circumferential direction to form a plurality of oil palm members W.
図1に示すように、オイルパーム幹WDの中心を軸芯となるように回転させ、その外周側に所定幅の刃物CTを当て、所謂、かつら剥き同様の剥きにより連続薄板UWDが形成される。即ち、オイルパーム幹WDは大根のかつら剥きのように所定の厚みで連続した薄板、即ち、連続薄板UWDが削り出される。この連続薄板UWDを所定の長さにカットし、乾燥させることで所定の面積、所定の厚みのオイルパーム材Wが作られる。
なお、オイルパームの葉、空果房、根等は、チップ状に裁断され、好気性細菌処理によってコンポスト化(堆肥化)する有機廃棄物発酵処理方法によって処理される。特に、空果房は他の実用性のある処理を行ってもよい。また、細かく破砕し、セルロース、ヘミセルロース、リグニン等の成分抽出を行って、接合補助にそれを利用してもよい。 As shown in FIG. 1, the center of the oil palm trunk WD is rotated so as to be an axis, and a cutter CT having a predetermined width is applied to the outer peripheral side thereof, and a continuous thin plate UWD is formed by so-called stripping similar to wig stripping. . That is, the oil palm trunk WD is cut out from a continuous thin plate, ie, a continuous thin plate UWD, with a predetermined thickness like radish wig peeling. The continuous thin plate UWD is cut into a predetermined length and dried to produce an oil palm material W having a predetermined area and a predetermined thickness.
Oil palm leaves, empty fruit bunches, roots, and the like are cut into chips and treated by an organic waste fermentation treatment method in which they are composted (composted) by aerobic bacteria treatment. In particular, empty fruit bunches may be subjected to other practical treatments. Further, it may be finely crushed, extracted with components such as cellulose, hemicellulose, lignin, etc., and used for joining assistance.
なお、オイルパームの葉、空果房、根等は、チップ状に裁断され、好気性細菌処理によってコンポスト化(堆肥化)する有機廃棄物発酵処理方法によって処理される。特に、空果房は他の実用性のある処理を行ってもよい。また、細かく破砕し、セルロース、ヘミセルロース、リグニン等の成分抽出を行って、接合補助にそれを利用してもよい。 As shown in FIG. 1, the center of the oil palm trunk WD is rotated so as to be an axis, and a cutter CT having a predetermined width is applied to the outer peripheral side thereof, and a continuous thin plate UWD is formed by so-called stripping similar to wig stripping. . That is, the oil palm trunk WD is cut out from a continuous thin plate, ie, a continuous thin plate UWD, with a predetermined thickness like radish wig peeling. The continuous thin plate UWD is cut into a predetermined length and dried to produce an oil palm material W having a predetermined area and a predetermined thickness.
Oil palm leaves, empty fruit bunches, roots, and the like are cut into chips and treated by an organic waste fermentation treatment method in which they are composted (composted) by aerobic bacteria treatment. In particular, empty fruit bunches may be subjected to other practical treatments. Further, it may be finely crushed, extracted with components such as cellulose, hemicellulose, lignin, etc., and used for joining assistance.
通常、連続薄板UWDが剥かれた時点でその乾燥が開始される。しかし、所定の積層合板PWを作る単位の枚数の切断の後に乾燥を行ってもよい。一般に、切断は流れ作業で行われるので、オイルパーム幹WDから連続薄板UWDが形成された時点で乾燥開始するのが乾燥時間の確保からは望ましい。この乾燥工程は、積層合板PWを作成する加圧前多層材NWに重ね合わせるように5枚の所定面積、所定厚さのオイルパーム材W1,・・・,W5が切断されてからの乾燥であると、連続薄板UWDの切断時にその端部の切りくずが出にくくなるので望ましいが、オイルパーム幹WDから連続薄板UWDが形成された時点以降であれば大きな差異はない。何れにせよ、これらのオイルパーム材Wを乾燥する工程は、乾燥工程となる。
所定の面積、所定の厚みのオイルパーム材Wは、図2(a)及び図2(b)に示すように、更に切断され、5枚の所定面積、所定厚さのオイルパーム材W1,・・・,W5(格別、オイルパーム材Wの枚数を意図しない場合には、単にオイルパーム材Wと記す)が切断される。
この図1の工程は、所定長のラワンまたはシナまたは針葉樹の幹でも相違するものではない。ラワンまたはシナまたは針葉樹の幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成したラワン薄板、またはシナ薄板、または針葉樹薄板も同様の工程によって形成される。 Usually, drying is started when the continuous thin plate UWD is peeled off. However, drying may be performed after cutting the number of units to make a predetermined laminated plywood PW. In general, since the cutting is performed by a flow operation, it is desirable to start drying at the time when the continuous thin plate UWD is formed from the oil palm trunk WD from the viewpoint of securing the drying time. This drying process is a drying process after five pieces of oil palm materials W1,..., W5 having a predetermined area and a predetermined thickness are cut so as to overlap the pre-pressing multilayer material NW for creating the laminated plywood PW. If it exists, it is desirable because chips at the end of the continuous thin plate UWD are difficult to be produced, but there is no significant difference after the time when the continuous thin plate UWD is formed from the oil palm trunk WD. In any case, the process of drying these oil palm materials W is a drying process.
The oil palm material W having a predetermined area and a predetermined thickness is further cut as shown in FIGS. 2 (a) and 2 (b), and five oil palm materials W1,. .., W5 (specially, when the number of oil palm materials W is not intended, simply written as oil palm material W) is cut.
The process of FIG. 1 is not different for a predetermined length of Lauan or Sina or conifer trunk. A Lawan thin plate, a Chinese thin plate, or a coniferous thin plate formed by peeling a lawan, a Chinese or coniferous trunk in a circumferential direction while rotating it in the circumferential direction, is formed by a similar process.
所定の面積、所定の厚みのオイルパーム材Wは、図2(a)及び図2(b)に示すように、更に切断され、5枚の所定面積、所定厚さのオイルパーム材W1,・・・,W5(格別、オイルパーム材Wの枚数を意図しない場合には、単にオイルパーム材Wと記す)が切断される。
この図1の工程は、所定長のラワンまたはシナまたは針葉樹の幹でも相違するものではない。ラワンまたはシナまたは針葉樹の幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成したラワン薄板、またはシナ薄板、または針葉樹薄板も同様の工程によって形成される。 Usually, drying is started when the continuous thin plate UWD is peeled off. However, drying may be performed after cutting the number of units to make a predetermined laminated plywood PW. In general, since the cutting is performed by a flow operation, it is desirable to start drying at the time when the continuous thin plate UWD is formed from the oil palm trunk WD from the viewpoint of securing the drying time. This drying process is a drying process after five pieces of oil palm materials W1,..., W5 having a predetermined area and a predetermined thickness are cut so as to overlap the pre-pressing multilayer material NW for creating the laminated plywood PW. If it exists, it is desirable because chips at the end of the continuous thin plate UWD are difficult to be produced, but there is no significant difference after the time when the continuous thin plate UWD is formed from the oil palm trunk WD. In any case, the process of drying these oil palm materials W is a drying process.
The oil palm material W having a predetermined area and a predetermined thickness is further cut as shown in FIGS. 2 (a) and 2 (b), and five oil palm materials W1,. .., W5 (specially, when the number of oil palm materials W is not intended, simply written as oil palm material W) is cut.
The process of FIG. 1 is not different for a predetermined length of Lauan or Sina or conifer trunk. A Lawan thin plate, a Chinese thin plate, or a coniferous thin plate formed by peeling a lawan, a Chinese or coniferous trunk in a circumferential direction while rotating it in the circumferential direction, is formed by a similar process.
次いで、図3に示すように、所定の面積、所定の厚み(薄板)のオイルパーム材W1,・・・,W5の計5枚を積層し、加圧前多層材NWとする事例で説明する。
加圧前多層材NWは、図2(a)を用いて説明したオイルパーム幹WDをかつら剥きされた連続薄板UWDの供給方向に短い辺のオイルパーム材W1,W3,W5と、図2(b)に示す連続薄板UWDの供給方向に長い辺のオイルパーム材W2,W4が積層配置される。
この5枚の所定面積、所定厚さのオイルパーム材W1,・・・,W5は、裁断によって形成してもよいし、歯の細かな鋸の切断によって形成してもよい。オイルパームの性質上何れでもよいが、裁断の方が作業性からみると効率的である。 Next, as shown in FIG. 3, a case where a total of five oil palm materials W1,..., W5 having a predetermined area and a predetermined thickness (thin plate) are laminated to form a multilayer material NW before pressurization will be described. .
The pre-pressing multilayer material NW includes oil palm materials W1, W3, W5 having short sides in the supply direction of the continuous thin plate UWD that has been peeled off the oil palm trunk WD described with reference to FIG. Oil palm materials W2 and W4 having long sides in the supply direction of the continuous thin plate UWD shown in FIG.
The five oil palm members W1,..., W5 having a predetermined area and a predetermined thickness may be formed by cutting, or may be formed by cutting a fine toothed saw. Any of the properties of oil palm may be used, but cutting is more efficient from the viewpoint of workability.
加圧前多層材NWは、図2(a)を用いて説明したオイルパーム幹WDをかつら剥きされた連続薄板UWDの供給方向に短い辺のオイルパーム材W1,W3,W5と、図2(b)に示す連続薄板UWDの供給方向に長い辺のオイルパーム材W2,W4が積層配置される。
この5枚の所定面積、所定厚さのオイルパーム材W1,・・・,W5は、裁断によって形成してもよいし、歯の細かな鋸の切断によって形成してもよい。オイルパームの性質上何れでもよいが、裁断の方が作業性からみると効率的である。 Next, as shown in FIG. 3, a case where a total of five oil palm materials W1,..., W5 having a predetermined area and a predetermined thickness (thin plate) are laminated to form a multilayer material NW before pressurization will be described. .
The pre-pressing multilayer material NW includes oil palm materials W1, W3, W5 having short sides in the supply direction of the continuous thin plate UWD that has been peeled off the oil palm trunk WD described with reference to FIG. Oil palm materials W2 and W4 having long sides in the supply direction of the continuous thin plate UWD shown in FIG.
The five oil palm members W1,..., W5 having a predetermined area and a predetermined thickness may be formed by cutting, or may be formed by cutting a fine toothed saw. Any of the properties of oil palm may be used, but cutting is more efficient from the viewpoint of workability.
本実施の形態では、オイルパーム幹WDをかつら剥きされた連続薄板UWDの供給方向に短い辺のオイルパーム材W1,W3,W5と、連続薄板UWDの供給方向に長い辺のオイルパーム材W2,W4を2種類のロータリーレースで形成しているが、連続薄板UWDの供給方向の幅で5枚のオイルパーム材W1,・・・,W5が得られるように設定してもよい。何れにせよ、図3に示すように、連続薄板UWDの供給方向に短い辺のオイルパーム材W1,W3,W5と、連続薄板UWDの供給方向に長い辺のオイルパーム材W2,W4を互いの繊維の長さ方向が直角になるように加圧前多層材NWを積載するものであればよい。
勿論、図3に示す連続薄板UWDの供給方向に短い辺のオイルパーム材W1,W3,W5と、連続薄板UWDの供給方向に長い辺のオイルパーム材W2,W4を繊維の長さ方向が直角になるように積載すれば、連続薄板UWDの供給方向に短い辺のオイルパーム材W1,W3,W5を2枚、連続薄板UWDの供給方向に長い辺のオイルパーム材W2,W4を3枚の組み合わせとすることもできる。 In the present embodiment, oil palm materials W1, W3, W5 with short sides in the supply direction of the continuous thin plate UWD from which the oil palm trunk WD has been peeled, and oil palm materials W2, with long sides in the supply direction of the continuous thin plate UWD are provided. Although W4 is formed of two types of rotary races, it may be set so that five oil palm materials W1,..., W5 are obtained with the width in the supply direction of the continuous thin plate UWD. In any case, as shown in FIG. 3, oil palm materials W1, W3, W5 with short sides in the supply direction of continuous thin plate UWD and oil palm materials W2, W4 with long sides in the supply direction of continuous thin plate UWD are mutually connected. What is necessary is just to load the multilayer material NW before pressurization so that the length direction of the fiber becomes a right angle.
Of course, the oil palm materials W1, W3, W5 with short sides in the supply direction of the continuous thin plate UWD and the oil palm materials W2, W4 with long sides in the supply direction of the continuous thin plate UWD shown in FIG. Are loaded with two oil palm materials W1, W3, W5 on the short side in the supply direction of the continuous thin plate UWD, and three oil palm materials W2, W4 on the long side in the supply direction of the continuous thin plate UWD. It can also be a combination.
勿論、図3に示す連続薄板UWDの供給方向に短い辺のオイルパーム材W1,W3,W5と、連続薄板UWDの供給方向に長い辺のオイルパーム材W2,W4を繊維の長さ方向が直角になるように積載すれば、連続薄板UWDの供給方向に短い辺のオイルパーム材W1,W3,W5を2枚、連続薄板UWDの供給方向に長い辺のオイルパーム材W2,W4を3枚の組み合わせとすることもできる。 In the present embodiment, oil palm materials W1, W3, W5 with short sides in the supply direction of the continuous thin plate UWD from which the oil palm trunk WD has been peeled, and oil palm materials W2, with long sides in the supply direction of the continuous thin plate UWD are provided. Although W4 is formed of two types of rotary races, it may be set so that five oil palm materials W1,..., W5 are obtained with the width in the supply direction of the continuous thin plate UWD. In any case, as shown in FIG. 3, oil palm materials W1, W3, W5 with short sides in the supply direction of continuous thin plate UWD and oil palm materials W2, W4 with long sides in the supply direction of continuous thin plate UWD are mutually connected. What is necessary is just to load the multilayer material NW before pressurization so that the length direction of the fiber becomes a right angle.
Of course, the oil palm materials W1, W3, W5 with short sides in the supply direction of the continuous thin plate UWD and the oil palm materials W2, W4 with long sides in the supply direction of the continuous thin plate UWD shown in FIG. Are loaded with two oil palm materials W1, W3, W5 on the short side in the supply direction of the continuous thin plate UWD, and three oil palm materials W2, W4 on the long side in the supply direction of the continuous thin plate UWD. It can also be a combination.
5枚の所定面積、所定厚さのオイルパーム材W1,・・・,W5が切断され、それを図3のように加圧前多層材NWの積載状態に位置合わせを行うまでには、湿度の低い温風を所定面積、所定厚さのオイルパーム材W1,・・・,W5の両面に当てて乾燥させる必要がある。加圧前多層材NWとしてオイルパーム材W1,・・・,W5の5枚を積層する生産ラインに送るまでには、5枚のオイルパーム材W1,・・・,W5の乾燥が進行するので、その乾燥状態で図4(a)に示すように、加圧前多層材NWとして積層することができる。この積層を行うときには、オイルパーム材Wの面方向の広がりを防止するために、5枚のオイルパーム材W1,・・・,W5の各辺を位置決めする枠体20(図7参照)または位置決め孔18(図5参照)等の設定が望ましい。簡単化のために、図5及び図6では位置決め孔18の事例で説明する。
このように、前記乾燥工程で乾燥させたオイルパーム材Wを所定の状態に複数枚積層する工程を、ここでは積層工程と呼ぶ。 Five oil palm materials W1,..., W5 having a predetermined area and a predetermined thickness are cut and the humidity is adjusted until it is aligned with the stacked state of the multilayer material NW before pressurization as shown in FIG. Must be applied to both sides of the oil palm materials W1,..., W5 having a predetermined area and thickness. Since the five oil palm materials W1,..., W5 are dried before being sent to the production line where five oil palm materials W1,. In the dried state, as shown in FIG. 4A, it can be laminated as a multilayer material NW before pressurization. When this lamination is performed, in order to prevent the spread of the oil palm material W in the surface direction, a frame body 20 (see FIG. 7) for positioning each side of the five oil palm materials W1,. It is desirable to set holes 18 (see FIG. 5). For the sake of simplicity, FIGS. 5 and 6 will be described with reference to the case of thepositioning hole 18.
Thus, the process of laminating a plurality of oil palm materials W dried in the drying process in a predetermined state is referred to herein as a laminating process.
このように、前記乾燥工程で乾燥させたオイルパーム材Wを所定の状態に複数枚積層する工程を、ここでは積層工程と呼ぶ。 Five oil palm materials W1,..., W5 having a predetermined area and a predetermined thickness are cut and the humidity is adjusted until it is aligned with the stacked state of the multilayer material NW before pressurization as shown in FIG. Must be applied to both sides of the oil palm materials W1,..., W5 having a predetermined area and thickness. Since the five oil palm materials W1,..., W5 are dried before being sent to the production line where five oil palm materials W1,. In the dried state, as shown in FIG. 4A, it can be laminated as a multilayer material NW before pressurization. When this lamination is performed, in order to prevent the spread of the oil palm material W in the surface direction, a frame body 20 (see FIG. 7) for positioning each side of the five oil palm materials W1,. It is desirable to set holes 18 (see FIG. 5). For the sake of simplicity, FIGS. 5 and 6 will be described with reference to the case of the
Thus, the process of laminating a plurality of oil palm materials W dried in the drying process in a predetermined state is referred to herein as a laminating process.
位置決め孔18は、その外径をオイルパーム材Wの外形に一致させており、5枚のオイルパーム材W1,・・・,W5は位置決め孔18内に載置される。そして、加熱工程によって加熱された積層されたオイルパーム材Wに対して、前記オイルパーム材Wの面に沿って平行方向に伸びるのを位置決め孔18で規制しながら、上プレス盤10Aと下プレス盤10Bとでオイルパーム材Wの面に対して直角方向の圧縮力を加えて所定時間圧縮成型される。図示されていないが、5枚のオイルパーム材W1,・・・,W5は位置決め孔18内で圧縮される。5枚のオイルパーム材W1,・・・,W5を押圧する上プレス盤10Aの面は、5枚のオイルパーム材W1,・・・,W5の上面に等しくなっている。当然、5枚のオイルパーム材W1,・・・,W5の下面は、下プレス盤10Bに嵌め合せが可能なように同じ寸法になっている。
The positioning hole 18 has an outer diameter that matches the outer shape of the oil palm material W, and the five oil palm materials W1,..., W5 are placed in the positioning hole 18. Then, the upper press panel 10A and the lower press are controlled while the positioning hole 18 restricts the oil palm material W heated in the heating process from extending in the parallel direction along the surface of the oil palm material W. A compression force in a direction perpendicular to the surface of the oil palm material W is applied to the board 10B and compression molding is performed for a predetermined time. Although not shown, the five oil palm members W1,..., W5 are compressed in the positioning hole 18. The surface of the upper press panel 10A that presses the five oil palm members W1,..., W5 is equal to the upper surface of the five oil palm members W1,. Naturally, the bottom surfaces of the five oil palm materials W1,..., W5 have the same dimensions so that they can be fitted to the lower press panel 10B.
まず、先に、図4(a)の加圧前多層材NWから、直接、図4(b)のオイルパーム成型体EOを成型する方法を説明する。
ここで、図4(b)に示す圧密化したオイルパーム成型体EOとは、加圧前多層材NWとして積層したものに、所定の温度条件下で所定の圧縮力を加えて圧縮し、所定の時間経過した後、固定する所定の圧縮率を圧縮状態の形態と略同じように固定すべく温度を所定の温度まで降下させて解圧し、固定化したものである。
即ち、加熱工程によって加熱した積層されたオイルパーム材W1,・・・,W5に、そのオイルパーム材Wの面に対して直角方向の圧縮力を加える圧縮工程を行い、その圧縮工程で所定の温度で所定時間押圧した後、加熱工程で供給していた温度を降下させ、その圧縮状態を維持させる固定化工程を経て、圧密化したオイルパーム成型体EOを得るものである。
ここで、前記積層工程以降で前記積層されたオイルパーム材Wの温度を上昇させるべく加熱する工程を加熱工程と呼び、また、加熱工程によって加熱され、積層されたオイルパーム材Wの面に対して直角方向の圧縮力を加える工程を、圧縮工程と呼ぶ。そして、前記圧縮工程で所定時間押圧した後、前記加熱工程で供給していた温度を降下させ、常温またはそれよりも若干温度を下げて冷却して固定化する工程を、圧密化した状態を固定化する意味で固定化工程と呼ぶ。
また、この図4(a)の加圧前多層材NWから、直接、図4(b)のオイルパーム成型体EOを成型する方法は、前記積層工程、加熱工程、圧縮工程、固定化工程は1回の連続工程のみとなる。 First, a method for molding the oil palm molded body EO of FIG. 4B directly from the pre-pressing multilayer material NW of FIG. 4A will be described first.
Here, the compacted oil palm molded body EO shown in FIG. 4 (b) is compressed by applying a predetermined compressive force to a multi-layered material NW before pressurization under a predetermined temperature condition. After the elapse of time, the pressure is lowered to a predetermined temperature to fix the predetermined compression rate to be fixed in substantially the same manner as in the compressed state, and is fixed.
That is, a compression step of applying a compression force in a direction perpendicular to the surface of the oil palm material W to the laminated oil palm materials W1,..., W5 heated by the heating step is performed. After pressing for a predetermined time at the temperature, the temperature supplied in the heating step is lowered, and the compressed oil palm molded body EO is obtained through an immobilization step for maintaining the compressed state.
Here, the process of heating to raise the temperature of the laminated oil palm material W after the laminating process is called a heating process, and the surface of the laminated oil palm material W is heated by the heating process. The step of applying a compressive force in a right angle direction is called a compression step. Then, after pressing for a predetermined time in the compression step, the temperature supplied in the heating step is lowered, and the step of cooling and fixing at normal temperature or slightly lower than that is fixed in a consolidated state. This is called an immobilization process.
Moreover, the method of directly molding the oil palm molded body EO of FIG. 4B from the pre-pressing multilayer material NW of FIG. 4A includes the laminating step, the heating step, the compression step, and the fixing step. There is only one continuous process.
ここで、図4(b)に示す圧密化したオイルパーム成型体EOとは、加圧前多層材NWとして積層したものに、所定の温度条件下で所定の圧縮力を加えて圧縮し、所定の時間経過した後、固定する所定の圧縮率を圧縮状態の形態と略同じように固定すべく温度を所定の温度まで降下させて解圧し、固定化したものである。
即ち、加熱工程によって加熱した積層されたオイルパーム材W1,・・・,W5に、そのオイルパーム材Wの面に対して直角方向の圧縮力を加える圧縮工程を行い、その圧縮工程で所定の温度で所定時間押圧した後、加熱工程で供給していた温度を降下させ、その圧縮状態を維持させる固定化工程を経て、圧密化したオイルパーム成型体EOを得るものである。
ここで、前記積層工程以降で前記積層されたオイルパーム材Wの温度を上昇させるべく加熱する工程を加熱工程と呼び、また、加熱工程によって加熱され、積層されたオイルパーム材Wの面に対して直角方向の圧縮力を加える工程を、圧縮工程と呼ぶ。そして、前記圧縮工程で所定時間押圧した後、前記加熱工程で供給していた温度を降下させ、常温またはそれよりも若干温度を下げて冷却して固定化する工程を、圧密化した状態を固定化する意味で固定化工程と呼ぶ。
また、この図4(a)の加圧前多層材NWから、直接、図4(b)のオイルパーム成型体EOを成型する方法は、前記積層工程、加熱工程、圧縮工程、固定化工程は1回の連続工程のみとなる。 First, a method for molding the oil palm molded body EO of FIG. 4B directly from the pre-pressing multilayer material NW of FIG. 4A will be described first.
Here, the compacted oil palm molded body EO shown in FIG. 4 (b) is compressed by applying a predetermined compressive force to a multi-layered material NW before pressurization under a predetermined temperature condition. After the elapse of time, the pressure is lowered to a predetermined temperature to fix the predetermined compression rate to be fixed in substantially the same manner as in the compressed state, and is fixed.
That is, a compression step of applying a compression force in a direction perpendicular to the surface of the oil palm material W to the laminated oil palm materials W1,..., W5 heated by the heating step is performed. After pressing for a predetermined time at the temperature, the temperature supplied in the heating step is lowered, and the compressed oil palm molded body EO is obtained through an immobilization step for maintaining the compressed state.
Here, the process of heating to raise the temperature of the laminated oil palm material W after the laminating process is called a heating process, and the surface of the laminated oil palm material W is heated by the heating process. The step of applying a compressive force in a right angle direction is called a compression step. Then, after pressing for a predetermined time in the compression step, the temperature supplied in the heating step is lowered, and the step of cooling and fixing at normal temperature or slightly lower than that is fixed in a consolidated state. This is called an immobilization process.
Moreover, the method of directly molding the oil palm molded body EO of FIG. 4B from the pre-pressing multilayer material NW of FIG. 4A includes the laminating step, the heating step, the compression step, and the fixing step. There is only one continuous process.
図4(a)の加圧前多層材NWを金型で圧密化した図4(b)のオイルパーム成型体EOの1つの形態である。特に、本実施の形態においては、最終的にオイルパーム成型体EOを形成すべく金型で最初から凹凸状態で圧縮したもので、図4(a)の加圧前多層材NWから、直接、図4(b)のオイルパーム成型体EOの平面部EPと凹部EQ、凸部ERが同じ厚みで形成されたものである。なお、本発明を実施する場合には、平面部EPと凹部EQまたは凸部ERと同じ厚みでなく、部分的に厚い薄いが形成されてもよい。
4 is one form of the oil palm molded body EO of FIG. 4B in which the pre-pressing multilayer material NW of FIG. 4A is consolidated with a mold. In particular, in the present embodiment, in order to finally form the oil palm molded body EO, it is compressed in a concavo-convex state from the beginning with a mold, directly from the multilayer material NW before pressurization of FIG. The flat part EP of the oil palm molding EO of FIG.4 (b), the recessed part EQ, and the convex part ER are formed with the same thickness. In the case of carrying out the present invention, the flat part EP and the concave part EQ or the convex part ER may not be the same thickness but may be partially thick and thin.
まず、本発明の実施の形態のオイルパーム成型体EOを製造する手順について、図5乃至図8を参照して説明する。
図8のフローチャートに示されるように、最初に、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースの刃物CTで所定の厚みに剥いて複数枚のオイルパーム材Wに形成するステップS10の薄板工程において、オイルパーム幹WDから3mm~20mmの範囲内の材厚のオイルパーム材Wが剥かれ、次いで、ステップS11の乾燥工程において、含水率5%~30%の範囲内に乾燥され、乾燥されたオイルパーム材Wとなる。 First, the procedure for producing the oil palm molded body EO according to the embodiment of the present invention will be described with reference to FIGS.
As shown in the flowchart of FIG. 8, first, a predetermined length of the oil palm trunk WD is peeled to a predetermined thickness with a rotary race blade CT while rotating in the circumferential direction to form a plurality of oil palm members W. In the thin plate process of Step S10, the oil palm material W having a thickness within the range of 3 mm to 20 mm is peeled from the oil palm trunk WD, and then in the drying process of Step S11, the moisture content is within the range of 5% to 30%. The dried oil palm material W is obtained.
図8のフローチャートに示されるように、最初に、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースの刃物CTで所定の厚みに剥いて複数枚のオイルパーム材Wに形成するステップS10の薄板工程において、オイルパーム幹WDから3mm~20mmの範囲内の材厚のオイルパーム材Wが剥かれ、次いで、ステップS11の乾燥工程において、含水率5%~30%の範囲内に乾燥され、乾燥されたオイルパーム材Wとなる。 First, the procedure for producing the oil palm molded body EO according to the embodiment of the present invention will be described with reference to FIGS.
As shown in the flowchart of FIG. 8, first, a predetermined length of the oil palm trunk WD is peeled to a predetermined thickness with a rotary race blade CT while rotating in the circumferential direction to form a plurality of oil palm members W. In the thin plate process of Step S10, the oil palm material W having a thickness within the range of 3 mm to 20 mm is peeled from the oil palm trunk WD, and then in the drying process of Step S11, the moisture content is within the range of 5% to 30%. The dried oil palm material W is obtained.
ここで、乾燥工程におけるオイルパーム材Wの乾燥方法には、人工乾燥または天然乾燥(天日乾燥)がある。人工乾燥としては、例えば、高温蒸気を熱源とし、かつ、湿度を除去するための冷凍機等からなる除湿機を内蔵する蒸気式乾燥機等の乾燥機を使用して熱風をオイルパーム材Wに吹き付けたり、プレス盤で加熱圧搾したりすることによってオイルパーム材Wの外部から加熱する外部加熱方式や、オイルパーム材Wに誘電加熱を施して内側から加熱する内部加熱方式等が挙げられるが、周知のように、一般的には、人工乾燥よりも天然乾燥の方が低コストで済む。
Here, the drying method of the oil palm material W in the drying process includes artificial drying or natural drying (sun drying). As the artificial drying, for example, hot air is supplied to the oil palm material W using a dryer such as a steam dryer having a high-temperature steam as a heat source and a dehumidifier including a refrigerator for removing humidity. Examples include an external heating method for heating from the outside of the oil palm material W by spraying or heating and squeezing with a press board, an internal heating method for heating the oil palm material W from the inside by applying dielectric heating, As is well known, in general, natural drying is less expensive than artificial drying.
しかし、オイルパーム材Wを天然乾燥する場合、特に、オイルパーム材Wの厚みが厚いと、カビ等の細菌が繁殖して腐食しやすく、生産性や商品価値が損なわれる。これは、建築材料等に一般的に使用されている、例えば、ラワン材が水や養分の移動が停止した細胞(死細胞)組織から成る二次木部を形成しているのに対し、オイルパーム幹WDは維管束及び柔細胞の一次組織のみで構成され、柔細胞を中心とする殆どの細胞が水や養分の移動がなされる生活細胞であり、含水率が極めて高いためである。更に、オイルパーム幹WD(オイルパームの樹幹)には、糖類(例えば、フラクト-ス、グルコ-ス、フラクトオリゴ糖、イノシト-ル等)が多く含まれていることが判明し、このため、オイルパームの樹幹から得たオイルパーム材Wの厚みが厚い場合、天然乾燥ではカビ等の細菌が繁殖して腐食しやすく生産性や商品価値が損なわれる。
そこで、本発明者らの実験によれば、オイルパーム幹WDから得たオイルパーム材Wの厚みを20mm以下の範囲とすることで、天然乾燥でもカビ等の細菌による商品価値や生産性の低下を招くことなく、低コストにできることが確認されている。なお、この厚みは、圧縮率65%とすると圧密加工後の3.5mm~7.0mmの厚みに相当する。また、圧縮率70%とすると圧密加工後の3.0mm~6.0mmに相当する厚みとなる。 However, when the oil palm material W is naturally dried, in particular, when the oil palm material W is thick, bacteria such as mold are prone to grow and corrode, and productivity and commercial value are impaired. This is commonly used for building materials, for example, Lauan wood forms a secondary xylem composed of cell (dead cell) tissue in which the movement of water and nutrients has stopped. This is because palm stem WD is composed only of primary tissues of vascular bundles and parenchymal cells, and most cells centering on parenchymal cells are living cells in which water and nutrients are transferred, and the moisture content is extremely high. Furthermore, it has been found that oil palm trunk WD (oil palm trunk) is rich in saccharides (eg, fructose, glucose, fructooligosaccharides, inositol, etc.). When the thickness of the oil palm material W obtained from the trunk of the palm is thick, bacteria such as mold are proliferated and corroded easily in natural drying, and productivity and commercial value are impaired.
Therefore, according to the experiments by the present inventors, by reducing the thickness of the oil palm material W obtained from the oil palm trunk WD to a range of 20 mm or less, the product value and productivity decrease due to bacteria such as mold even in natural drying. It has been confirmed that the cost can be reduced without incurring cost. Note that this thickness corresponds to a thickness of 3.5 mm to 7.0 mm after compaction when the compression ratio is 65%. If the compression ratio is 70%, the thickness corresponds to 3.0 mm to 6.0 mm after the consolidation.
そこで、本発明者らの実験によれば、オイルパーム幹WDから得たオイルパーム材Wの厚みを20mm以下の範囲とすることで、天然乾燥でもカビ等の細菌による商品価値や生産性の低下を招くことなく、低コストにできることが確認されている。なお、この厚みは、圧縮率65%とすると圧密加工後の3.5mm~7.0mmの厚みに相当する。また、圧縮率70%とすると圧密加工後の3.0mm~6.0mmに相当する厚みとなる。 However, when the oil palm material W is naturally dried, in particular, when the oil palm material W is thick, bacteria such as mold are prone to grow and corrode, and productivity and commercial value are impaired. This is commonly used for building materials, for example, Lauan wood forms a secondary xylem composed of cell (dead cell) tissue in which the movement of water and nutrients has stopped. This is because palm stem WD is composed only of primary tissues of vascular bundles and parenchymal cells, and most cells centering on parenchymal cells are living cells in which water and nutrients are transferred, and the moisture content is extremely high. Furthermore, it has been found that oil palm trunk WD (oil palm trunk) is rich in saccharides (eg, fructose, glucose, fructooligosaccharides, inositol, etc.). When the thickness of the oil palm material W obtained from the trunk of the palm is thick, bacteria such as mold are proliferated and corroded easily in natural drying, and productivity and commercial value are impaired.
Therefore, according to the experiments by the present inventors, by reducing the thickness of the oil palm material W obtained from the oil palm trunk WD to a range of 20 mm or less, the product value and productivity decrease due to bacteria such as mold even in natural drying. It has been confirmed that the cost can be reduced without incurring cost. Note that this thickness corresponds to a thickness of 3.5 mm to 7.0 mm after compaction when the compression ratio is 65%. If the compression ratio is 70%, the thickness corresponds to 3.0 mm to 6.0 mm after the consolidation.
更に、本発明者らの実験によれば、オイルパーム幹WDから得るオイルパーム材Wの厚みが3mm未満の場合(圧密加工後には0.9~1.1未満の場合)には、厚さが薄いので剥くときに切れやすく、また、20mmを超える厚みの場合、内部まで均一に乾燥され難く、また、伸ばすとクラックが入り切れ易くなるから、後述する圧密加工後において変形、膨らみが起こり易く、また、曲面を直線に置き直すことから、クラック等が生じやすいことも確認されている。なお、クラックについては圧密加工時に密着状態に接合され、クラック発生個所にカビが生じない限り問題はない。
このため、オイルパーム幹WDから厚み3mm以上、20mm以下の範囲内のオイルパーム材Wを剥き、天然乾燥でもカビ等の細菌による商品価値や生産性の低下を招くことなく、低コストで乾燥でき、更に、切り出し作業が容易で、後述する圧密加工後の寸法形状安定性も高いものとなる。
なお、好ましくは、オイルパーム幹WDからオイルパーム材Wの厚みが、6mm以上、15mm以下の範囲内である。この厚みは、圧縮率65%とすると圧密加工後の2.1mm以上、5.3mm以下の厚みに相当する。また、圧縮率70%とすると圧密加工後の1.8~4.5mmに相当する厚みとなる。 Furthermore, according to the experiments by the present inventors, when the thickness of the oil palm material W obtained from the oil palm trunk WD is less than 3 mm (when it is less than 0.9 to 1.1 after the consolidation process), the thickness Since it is thin, it is easy to cut when it is peeled off, and when it exceeds 20 mm, it is difficult to dry uniformly to the inside, and when it is stretched, it becomes easy to crack, so deformation and swelling are likely to occur after consolidation processing described later. It has also been confirmed that cracks and the like are likely to occur because the curved surface is replaced with a straight line. In addition, about a crack, it joins in a close_contact | adherence state at the time of a compaction process, and there is no problem as long as a mold | fungi does not arise in the crack generating location.
For this reason, the oil palm material W having a thickness of 3 mm or more and 20 mm or less is peeled off from the oil palm trunk WD and can be dried at low cost without causing deterioration of the product value or productivity due to bacteria such as mold even by natural drying. Further, the cutting operation is easy, and the dimensional shape stability after the compacting process described later is high.
Preferably, the thickness of the oil palm material W from the oil palm trunk WD is in the range of 6 mm or more and 15 mm or less. This thickness corresponds to a thickness of 2.1 mm or more and 5.3 mm or less after the compacting when the compression ratio is 65%. If the compression ratio is 70%, the thickness corresponds to 1.8 to 4.5 mm after the consolidation.
このため、オイルパーム幹WDから厚み3mm以上、20mm以下の範囲内のオイルパーム材Wを剥き、天然乾燥でもカビ等の細菌による商品価値や生産性の低下を招くことなく、低コストで乾燥でき、更に、切り出し作業が容易で、後述する圧密加工後の寸法形状安定性も高いものとなる。
なお、好ましくは、オイルパーム幹WDからオイルパーム材Wの厚みが、6mm以上、15mm以下の範囲内である。この厚みは、圧縮率65%とすると圧密加工後の2.1mm以上、5.3mm以下の厚みに相当する。また、圧縮率70%とすると圧密加工後の1.8~4.5mmに相当する厚みとなる。 Furthermore, according to the experiments by the present inventors, when the thickness of the oil palm material W obtained from the oil palm trunk WD is less than 3 mm (when it is less than 0.9 to 1.1 after the consolidation process), the thickness Since it is thin, it is easy to cut when it is peeled off, and when it exceeds 20 mm, it is difficult to dry uniformly to the inside, and when it is stretched, it becomes easy to crack, so deformation and swelling are likely to occur after consolidation processing described later. It has also been confirmed that cracks and the like are likely to occur because the curved surface is replaced with a straight line. In addition, about a crack, it joins in a close_contact | adherence state at the time of a compaction process, and there is no problem as long as a mold | fungi does not arise in the crack generating location.
For this reason, the oil palm material W having a thickness of 3 mm or more and 20 mm or less is peeled off from the oil palm trunk WD and can be dried at low cost without causing deterioration of the product value or productivity due to bacteria such as mold even by natural drying. Further, the cutting operation is easy, and the dimensional shape stability after the compacting process described later is high.
Preferably, the thickness of the oil palm material W from the oil palm trunk WD is in the range of 6 mm or more and 15 mm or less. This thickness corresponds to a thickness of 2.1 mm or more and 5.3 mm or less after the compacting when the compression ratio is 65%. If the compression ratio is 70%, the thickness corresponds to 1.8 to 4.5 mm after the consolidation.
また、含水率5~30%の範囲内に乾燥とは、本発明者らが実験を重ねた結果、乾燥させたオイルパーム材Wの含水率が5%未満の場合は、後述する圧密加工によって十分な化学変化を起こさせることができず、また、表面が乾燥し過ぎて、圧密化後において水に濡れた場合に圧縮した部分が元の厚さ形状に戻る現象、所謂、固定化不良が起こり易くなり、一方、含水率が30%を超えるものでは、内部まで均一に乾燥され難く、圧密化後においてクラック、破裂等の損傷や、変形、膨らみ等が起こり易くなることを確認したことから、これに基づいて設定をしたものである。即ち、オイルパーム材Wの含水率が厚み全体で略均一となるようにして、厚み全体が略均一な圧縮率で圧密加工されるようにするのが望ましく、含水率5~30%の範囲内が好適である。より好ましくは、含水率が13~18%の範囲内である。なお、含水率は、例えば、高周波含水率計等の測定器を使用して測定される。
In addition, when the moisture content of the dried oil palm material W is less than 5% as a result of repeated experiments by the present inventors, the term “drying within the range of 5 to 30% moisture content” is performed by compaction processing described later. Insufficient chemical change can be caused, and when the surface is too dry and wetted with water after consolidation, the compressed part returns to its original thickness shape, so-called immobilization failure. On the other hand, when the moisture content exceeds 30%, it is difficult to uniformly dry to the inside, and it has been confirmed that after consolidation, damage such as cracks, rupture, deformation, swelling, etc. are likely to occur. This is a setting based on this. In other words, it is desirable that the moisture content of the oil palm material W be substantially uniform over the entire thickness so that the entire thickness is compacted with a substantially uniform compression rate, and the moisture content is within a range of 5 to 30%. Is preferred. More preferably, the water content is in the range of 13 to 18%. In addition, a moisture content is measured using measuring instruments, such as a high frequency moisture content meter, for example.
次に、乾燥させたオイルパーム材Wを複数枚積層するステップS12の積層工程を行う。即ち、ステップS11の乾燥工程で乾燥させたオイルパーム材Wを所定の状態に複数枚積層する工程である。このステップS12の積層工程によって加圧前多層材NWとなる。この加圧前多層材NWは、外形は全枚数一致しているが、何ら積載方向のオイルパーム材W相互は自重で重ねられているにすぎない。
ここで、オイルパーム材Wを積層してなる加圧前多層材NWの圧密加工を行う圧密加工材製造装置MCについて図5を参照して説明する。 Next, the lamination process of step S12 which laminates a plurality of dried oil palm materials W is performed. That is, it is a step of laminating a plurality of oil palm materials W dried in the drying step of Step S11 in a predetermined state. The pre-pressurized multilayer material NW is obtained by the lamination step in step S12. The multi-layer material NW before pressurization has the same outer shape, but the oil palm materials W in the stacking direction are merely overlapped by their own weight.
Here, the compacted material manufacturing apparatus MC that performs the compacting of the pre-pressing multilayer material NW formed by laminating the oil palm material W will be described with reference to FIG.
ここで、オイルパーム材Wを積層してなる加圧前多層材NWの圧密加工を行う圧密加工材製造装置MCについて図5を参照して説明する。 Next, the lamination process of step S12 which laminates a plurality of dried oil palm materials W is performed. That is, it is a step of laminating a plurality of oil palm materials W dried in the drying step of Step S11 in a predetermined state. The pre-pressurized multilayer material NW is obtained by the lamination step in step S12. The multi-layer material NW before pressurization has the same outer shape, but the oil palm materials W in the stacking direction are merely overlapped by their own weight.
Here, the compacted material manufacturing apparatus MC that performs the compacting of the pre-pressing multilayer material NW formed by laminating the oil palm material W will be described with reference to FIG.
図5において、本実施の形態のオイルパーム成型体EOを製造する圧密加工材製造装置MCは、主として、平面部EP及び上に凸部EQを形成する金型からなる上プレス盤10Aと、平面部EP及び上に凹部ERを形成する金型からなる下プレス盤10Bとの2分割された構造体によって内部空間IS及び位置決め孔18を形成するプレス盤10と、下プレス盤10Bの周縁部10bに対向する上プレス盤10Aの周縁部10aに配設され、下プレス盤10Bには加圧前多層材NWの位置を定め規制する位置決め孔18が形成され、上プレス盤10Aの所定の上下動の範囲で内部空間IS及び位置決め孔18を密閉状態とするシール部材11と、上プレス盤10Aの上面側から内部空間IS及び位置決め孔18内に連通され、内部空間IS及び位置決め孔18内に蒸気を供給するための配管口12aを有する配管12と、その上流側のバルブV4と、下プレス盤10Bの側面側から内部空間IS及び位置決め孔18内に連通され、内部空間IS及び位置決め孔18内から水蒸気を排出するための配管口13aを有する配管13と、配管13内の蒸気圧を検出する圧力計P2と、その下流側のバルブV5と、バルブV5に接続されたドレン配管14等から構成されている。
In FIG. 5, the compacted material manufacturing apparatus MC for manufacturing the oil palm molded body EO of the present embodiment mainly includes an upper press 10 </ b> A including a flat part EP and a mold that forms a convex part EQ on the flat press part 10 </ b> A. The press panel 10 in which the internal space IS and the positioning hole 18 are formed by the structure divided into the part EP and the lower press panel 10B made of a mold on which the recess ER is formed, and the peripheral portion 10b of the lower press panel 10B Is positioned on the peripheral edge portion 10a of the upper press panel 10A, and the lower press panel 10B is formed with a positioning hole 18 for determining and regulating the position of the multilayer material NW before pressurization. The seal member 11 that seals the internal space IS and the positioning hole 18 in the range of the upper press board 10A is communicated with the internal space IS and the positioning hole 18 from the upper surface side of the upper press panel 10A. And the piping 12 having a piping port 12a for supplying steam into the positioning hole 18, the valve V4 on the upstream side thereof, and the inner space IS and the positioning hole 18 from the side surface side of the lower press panel 10B. Connected to the pipe 13 having a pipe port 13a for discharging water vapor from the space IS and the positioning hole 18, the pressure gauge P2 for detecting the vapor pressure in the pipe 13, the valve V5 on the downstream side thereof, and the valve V5 It consists of a drain pipe 14 and the like.
なお、プレス盤10においては、加圧前多層材NWの面に対して直角な特定の面全体、即ち、加圧前多層材NWの圧縮される面全体を圧縮可能な平面サイズを有し、その材質は特に問われるものでないが、木材が鉄イオン汚染により黒色化しないように、例えば、ステンレス鋼、アルミニウム等の材質によって形成されたり、加圧前多層材NWとの接触表面にメッキ加工が施されたりする。更に、内部空間IS及び位置決め孔18を密閉状態とするシール部材11においても、その材質は特に問われるものでないが、通常、耐熱性や耐水性に優れたシリコンゴム、シリコン樹脂等が使用される。
当然ながら、プレス盤10の金型についても、平面部、凹部、凸部の1以上を有するものであればよく、単数取り、複数取りを左右するものではない。 Thepress panel 10 has a plane size capable of compressing the entire specific surface perpendicular to the surface of the multilayer material NW before pressurization, that is, the entire surface to be compressed of the multilayer material NW before pressurization, The material is not particularly limited, but, for example, it is formed of a material such as stainless steel or aluminum so that the wood is not blackened due to iron ion contamination, or the contact surface with the multilayer material NW before pressurization is plated. It is given. Furthermore, the material of the seal member 11 that seals the internal space IS and the positioning hole 18 is not particularly limited, but usually, silicon rubber, silicon resin, etc. excellent in heat resistance and water resistance are used. .
Of course, the mold of thepress panel 10 may be any one having at least one of a flat portion, a concave portion, and a convex portion, and does not affect singular or plural picking.
当然ながら、プレス盤10の金型についても、平面部、凹部、凸部の1以上を有するものであればよく、単数取り、複数取りを左右するものではない。 The
Of course, the mold of the
また、プレス盤10の上プレス盤10A及び下プレス盤10B内には、それらを高温の水蒸気を通すことによって所望の温度に昇温するための配管路15,16が形成されており、これら配管路15,16には蒸気供給側の配管ST1から分岐された配管ST2,ST3、蒸気排出側の配管ET1,ET2がそれぞれ接続されている。そして、蒸気供給側の配管ST1,ST2,ST3の途中にはバルブV1,V2,V3、配管ST1内の蒸気圧を検出する圧力計P1が配設されており、蒸気排出側の配管ET1,ET2は、バルブV6を介してドレン配管14に接続されている。
Further, in the upper press board 10A and the lower press board 10B of the press board 10, pipe lines 15 and 16 are formed for raising the temperature to a desired temperature by passing high-temperature steam. Pipes ST2 and ST3 branched from the steam supply side pipe ST1 and steam discharge side pipes ET1 and ET2 are connected to the paths 15 and 16, respectively. Further, in the middle of the steam supply side pipes ST1, ST2, ST3, valves V1, V2, V3 and a pressure gauge P1 for detecting the steam pressure in the pipe ST1 are arranged, and the steam discharge side pipes ET1, ET2 Is connected to the drain pipe 14 via a valve V6.
なお、配管ST1に水蒸気を供給するボイラ装置、また、プレス盤10の固定側の下プレス盤10Bに対して上プレス盤10Aを上昇/下降させ加圧するための油圧機構を含むプレス昇降装置は省略されている。
本実施の形態1では、プレス盤10の上プレス盤10A及び下プレス盤10Bで形成される内部空間IS及び位置決め孔18内を加熱するためにバルブV4に接続された配管12を用いて高温の水蒸気を導入しているが、この他、高周波加熱、マイクロ波加熱等を用いることも可能である。特に、木材に対する高周波加熱は、マイクロ波による誘電過熱よりも、マイクロ波よりも若干周波数の低い高周波で、木材の中心から加熱する方法が好適である。 In addition, the boiler apparatus which supplies water vapor | steam to piping ST1, and the press raising / lowering apparatus containing the hydraulic mechanism for raising / lowering and pressurizing theupper press board 10A with respect to the lower press board 10B of the fixed side of the press board 10 are abbreviate | omitted. Has been.
In the first embodiment, the internal space IS formed by theupper press board 10A and the lower press board 10B of the press board 10 and the piping 12 connected to the valve V4 for heating the inside of the positioning hole 18 are used. Although water vapor is introduced, high frequency heating, microwave heating, or the like can also be used. In particular, for the high-frequency heating of wood, a method of heating from the center of wood at a high frequency slightly lower than that of microwave is preferable to dielectric overheating by microwave.
本実施の形態1では、プレス盤10の上プレス盤10A及び下プレス盤10Bで形成される内部空間IS及び位置決め孔18内を加熱するためにバルブV4に接続された配管12を用いて高温の水蒸気を導入しているが、この他、高周波加熱、マイクロ波加熱等を用いることも可能である。特に、木材に対する高周波加熱は、マイクロ波による誘電過熱よりも、マイクロ波よりも若干周波数の低い高周波で、木材の中心から加熱する方法が好適である。 In addition, the boiler apparatus which supplies water vapor | steam to piping ST1, and the press raising / lowering apparatus containing the hydraulic mechanism for raising / lowering and pressurizing the
In the first embodiment, the internal space IS formed by the
更に、プレス盤10には、上プレス盤10A及び下プレス盤10B内に形成された配管路15,16に水蒸気に換えて低温の冷却水を通すことによって所望の温度に冷却する冷却水供給側の配管ST11から分岐された配管ST12,ST13が、上記配管ST2,ST3にそれぞれ接続されている。また、冷却水供給側の配管ST11,ST12,ST13の途中にはバルブV11,V12,V13が配設されている。なお、配管ST11に冷却水を供給する冷却水供給装置は省略されている。
勿論、本発明を実施する場合には、プレス盤10にてプレス圧縮される方向は、加圧前多層材NWの5枚のオイルパーム材Wの面に対して直角方向に圧縮力が加えられる。 Further, on thepress board 10, a cooling water supply side that cools to a desired temperature by passing low-temperature cooling water in place of water vapor through the pipes 15 and 16 formed in the upper press board 10A and the lower press board 10B. Pipes ST12 and ST13 branched from the pipe ST11 are connected to the pipes ST2 and ST3, respectively. Further, valves V11, V12, V13 are arranged in the middle of the pipes ST11, ST12, ST13 on the cooling water supply side. In addition, the cooling water supply apparatus which supplies cooling water to piping ST11 is abbreviate | omitted.
Of course, when the present invention is carried out, a compressive force is applied in a direction perpendicular to the surface of the five oil palm members W of the multilayer material NW before pressurization in the press-pressing direction of thepress board 10. .
勿論、本発明を実施する場合には、プレス盤10にてプレス圧縮される方向は、加圧前多層材NWの5枚のオイルパーム材Wの面に対して直角方向に圧縮力が加えられる。 Further, on the
Of course, when the present invention is carried out, a compressive force is applied in a direction perpendicular to the surface of the five oil palm members W of the multilayer material NW before pressurization in the press-pressing direction of the
そして、このように構成される圧密加工材製造装置MCによって加圧前多層材NWからオイルパーム成型体EOを製造するにあたり、まず、図6(a)に示すように、圧密加工材製造装置MCにおけるプレス盤10の固定側の下プレス盤10Bに対して上プレス盤10Aが上昇し、予め所定の条件に乾燥させた加圧前多層材NWが、上プレス盤10A及び下プレス盤10Bで形成される内部空間IS及び位置決め孔18内に載置される。
ここで、本実施の形態においては、オイルパーム成型体EOの原材料となる加圧前多層材NWは、所定の寸法(厚み・幅・長さ)に形成されたものであり、計5枚のオイルパーム材W1,・・・,W5の面側をプレス盤10の上プレス盤10A及び下プレス盤10Bに対向させ、下プレス盤10Bの位置決め孔18に載置される。 When the oil palm molded body EO is manufactured from the pre-pressurized multilayer material NW by the compacted material manufacturing apparatus MC configured as described above, first, as shown in FIG. Theupper press machine 10A is raised with respect to the lower press machine 10B on the fixed side of the press machine 10 in FIG. The internal space IS and the positioning hole 18 are placed.
Here, in the present embodiment, the pre-pressing multilayer material NW that is a raw material of the oil palm molded body EO is formed in a predetermined dimension (thickness, width, length), and a total of five sheets The surface sides of the oil palm materials W1,..., W5 are opposed to theupper press board 10A and the lower press board 10B of the press board 10, and are placed in the positioning holes 18 of the lower press board 10B.
ここで、本実施の形態においては、オイルパーム成型体EOの原材料となる加圧前多層材NWは、所定の寸法(厚み・幅・長さ)に形成されたものであり、計5枚のオイルパーム材W1,・・・,W5の面側をプレス盤10の上プレス盤10A及び下プレス盤10Bに対向させ、下プレス盤10Bの位置決め孔18に載置される。 When the oil palm molded body EO is manufactured from the pre-pressurized multilayer material NW by the compacted material manufacturing apparatus MC configured as described above, first, as shown in FIG. The
Here, in the present embodiment, the pre-pressing multilayer material NW that is a raw material of the oil palm molded body EO is formed in a predetermined dimension (thickness, width, length), and a total of five sheets The surface sides of the oil palm materials W1,..., W5 are opposed to the
続いて、図6(b)に示すように、固定側の下プレス盤10Bの位置決め孔18上に載置された加圧前多層材NWに対して上プレス盤10Aを所定圧力にて下降させて加圧前多層材NWの上面、即ち、本実施の形態においては、オイルパーム材W1,・・・,W5の面に対して垂直方向に当接させる。そして、ステップS13でタイマIによるタイマ制御が開始される。ステップS13のタイマIを見て、ステップS14で加熱タイミングであるか判断し、ステップS15で圧縮タイミングであるかを判断する。
加熱タイミングのとき、ステップS16で上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に所定温度(例えば、110~180℃)の水蒸気が通され、内部空間IS及び位置決め孔18内が所定温度(例えば、110~180℃)に保持される。ステップS14で加熱タイミングでないと判断したとき、ステップS15で圧縮タイミングであるかを判断し、圧縮タイミングのとき、ステップS17で圧縮工程に入る。 Subsequently, as shown in FIG. 6B, theupper press platen 10A is lowered at a predetermined pressure with respect to the pre-pressing multilayer material NW placed on the positioning hole 18 of the fixed-side lower press platen 10B. In this embodiment, the upper surface of the pre-pressurized multilayer material NW, that is, the surfaces of the oil palm materials W1,. In step S13, timer control by the timer I is started. Looking at the timer I in step S13, it is determined whether it is the heating timing in step S14, and it is determined whether it is the compression timing in step S15.
At the heating timing, steam at a predetermined temperature (eg, 110 to 180 ° C.) is passed through the pipingpath 15 of the upper press panel 10A and the piping path 16 of the lower press panel 10B in step S16, and the interior space IS and the positioning holes 18 are passed. Is maintained at a predetermined temperature (for example, 110 to 180 ° C.). When it is determined in step S14 that it is not the heating timing, it is determined in step S15 whether it is the compression timing, and when it is the compression timing, the compression process is started in step S17.
加熱タイミングのとき、ステップS16で上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に所定温度(例えば、110~180℃)の水蒸気が通され、内部空間IS及び位置決め孔18内が所定温度(例えば、110~180℃)に保持される。ステップS14で加熱タイミングでないと判断したとき、ステップS15で圧縮タイミングであるかを判断し、圧縮タイミングのとき、ステップS17で圧縮工程に入る。 Subsequently, as shown in FIG. 6B, the
At the heating timing, steam at a predetermined temperature (eg, 110 to 180 ° C.) is passed through the piping
即ち、ステップS17では、固定側の下プレス盤10Bに対して上プレス盤10Aの圧縮力が所定圧力(例えば、20~50kg/cm2)に設定され、加圧前多層材NWが上プレス盤10A及び下プレス盤10Bにて所定時間(例えば、5~40min)加熱圧縮される。また、ステップS18で加熱・圧縮の終了であるか判断し、終了タイムになるまでステップS13からステップS18のルーチンの処理を繰り返し行う。
ステップS17の圧縮力は、割れを防止するために、加圧前多層材NWの温度上昇、即ち、ステップS18のタイマIの経過時間に応じて加圧前多層材NWの内部の温度状態、加熱時間の経過に応じて徐々に大きくするのが望ましく、加熱圧縮の時間も加熱時間を考慮して設定するのが好ましい。 That is, in step S17, the compression force of theupper press board 10A is set to a predetermined pressure (for example, 20 to 50 kg / cm 2 ) with respect to the lower press board 10B on the fixed side, and the multilayer material NW before pressurization is the upper press board. 10A and the lower press panel 10B are heated and compressed for a predetermined time (for example, 5 to 40 min). Also, in step S18, it is determined whether the heating / compression is completed, and the routine processing from step S13 to step S18 is repeated until the end time is reached.
In order to prevent cracking, the compressive force in step S17 is the temperature rise of the multilayer material NW before pressurization, that is, the internal temperature state of the multilayer material NW before pressurization according to the elapsed time of the timer I in step S18. It is desirable to gradually increase with the passage of time, and it is preferable to set the heating and compression time in consideration of the heating time.
ステップS17の圧縮力は、割れを防止するために、加圧前多層材NWの温度上昇、即ち、ステップS18のタイマIの経過時間に応じて加圧前多層材NWの内部の温度状態、加熱時間の経過に応じて徐々に大きくするのが望ましく、加熱圧縮の時間も加熱時間を考慮して設定するのが好ましい。 That is, in step S17, the compression force of the
In order to prevent cracking, the compressive force in step S17 is the temperature rise of the multilayer material NW before pressurization, that is, the internal temperature state of the multilayer material NW before pressurization according to the elapsed time of the timer I in step S18. It is desirable to gradually increase with the passage of time, and it is preferable to set the heating and compression time in consideration of the heating time.
更に、図6(c)に示すように、上プレス盤10Aの周縁部10aが下プレス盤10Bの周縁部10bに当接すると上プレス盤10Aの周縁部10aに配設されたシール部材11によって、上プレス盤10A及び下プレス盤10Bにて形成される内部空間IS及び位置決め孔18が密閉状態となる。ここで、内部空間IS及び位置決め孔18内に配管12の配管口12aによって蒸気が供給される。このとき水蒸気は、乾燥状態にあったオイルパーム基材Wまたは加圧前接合加圧前多層材NWを同時に所定の湿度にバランス良く湿潤させる。そして、内部空間IS及び位置決め孔18の密閉状態で上プレス盤10A及び下プレス盤10Bによる圧縮力が保持されたまま、ステップS13のタイマIを基準に所定温度(例えば、150~210℃)まで上昇される。
Furthermore, as shown in FIG. 6 (c), when the peripheral edge portion 10a of the upper press board 10A comes into contact with the peripheral edge part 10b of the lower press board 10B, the seal member 11 disposed on the peripheral edge part 10a of the upper press board 10A. The internal space IS and the positioning hole 18 formed by the upper press board 10A and the lower press board 10B are hermetically sealed. Here, steam is supplied into the internal space IS and the positioning hole 18 through the pipe port 12 a of the pipe 12. At this time, the water vapor simultaneously wets the oil palm base material W or the pre-pressing multi-layer material NW before pressurization to a predetermined humidity with a good balance. Then, with the internal space IS and the positioning hole 18 sealed, the compression force from the upper press board 10A and the lower press board 10B is maintained, and the temperature reaches a predetermined temperature (for example, 150 to 210 ° C.) based on the timer I in step S13. Be raised.
なお、本実施の形態1において、プレス盤10の上プレス盤10A及び下プレス盤10Bによって形成される内部空間IS及び位置決め孔18がシール部材11を介して密閉状態となったときにおける内部空間IS及び位置決め孔18の上下方向の寸法間隔は、プレス盤10によって加圧前多層材NWが圧縮率70%のオイルパーム成型体EOとなるときの厚み方向の仕上がり寸法に設定されている。このため、加圧前多層材NWの厚み全体の圧縮率、即ち、加圧前多層材NWの圧縮による板厚の変化は、上プレス盤10Aの周縁部10aが下プレス盤10Bの周縁部10bに当接することで決まることとなる。
In the first embodiment, the internal space IS when the internal space IS and the positioning hole 18 formed by the upper press board 10A and the lower press board 10B of the press board 10 are in a sealed state via the seal member 11. The dimension interval in the vertical direction of the positioning holes 18 is set to the finished dimension in the thickness direction when the pre-pressing multilayer material NW becomes an oil palm molded body EO having a compression rate of 70% by the press board 10. For this reason, the compression ratio of the entire thickness of the multilayer material NW before pressurization, that is, the change in the plate thickness due to the compression of the multilayer material NW before pressurization, is that the peripheral portion 10a of the upper press panel 10A is It will be decided by contacting.
そして、図6(c)に示す内部空間IS及び位置決め孔18の密閉状態で、上プレス盤10A及び下プレス盤10Bの圧縮力が維持され、かつ、内部空間IS及び位置決め孔18が所定温度(例えば、150~210℃)のまま、所定時間(例えば、30~120min)保持され、この後の冷却圧縮を解除したときに、戻りのないオイルパーム成型体EOを形成するための加熱処理が行われる。このとき、上プレス盤10A及び下プレス盤10Bで密閉状態とされている内部空間IS及び位置決め孔18を介して、加圧前多層材NWの周囲面とその内部とでは高温高圧の蒸気圧が出入り自在となっている。
なお、このように、本実施の形態においては、加圧前多層材NWの表裏面に上プレス盤10A及び下プレス盤10Bが面接触し、密閉状態の内部空間IS及び位置決め孔18に保持されるため、加圧前多層材NWは、厚み全体が十分に加熱され、効率よく圧縮変形されることになる。 Then, in the sealed state of the internal space IS and thepositioning hole 18 shown in FIG. 6C, the compressive force of the upper press board 10A and the lower press board 10B is maintained, and the internal space IS and the positioning hole 18 are kept at a predetermined temperature ( For example, a heat treatment is performed to form an oil palm molded body EO that is held for a predetermined time (for example, 30 to 120 minutes) and is not returned after the cooling compression is released. Is called. At this time, high-temperature and high-pressure vapor pressure is generated between the surrounding surface of the pre-pressurized multilayer material NW and the inside thereof through the internal space IS and the positioning hole 18 which are sealed by the upper press board 10A and the lower press board 10B. You can go in and out.
As described above, in the present embodiment, theupper press board 10A and the lower press board 10B are in surface contact with the front and back surfaces of the pre-pressurized multilayer material NW and are held in the sealed internal space IS and the positioning holes 18. Therefore, the multilayer material NW before pressurization is sufficiently heated in its entire thickness, and is efficiently compressed and deformed.
なお、このように、本実施の形態においては、加圧前多層材NWの表裏面に上プレス盤10A及び下プレス盤10Bが面接触し、密閉状態の内部空間IS及び位置決め孔18に保持されるため、加圧前多層材NWは、厚み全体が十分に加熱され、効率よく圧縮変形されることになる。 Then, in the sealed state of the internal space IS and the
As described above, in the present embodiment, the
次に、図6(d)に示すように、内部空間IS及び位置決め孔18の密閉状態で加熱圧縮処理が行われているときに、蒸気圧制御処理として圧力計P2で内部空間IS及び位置決め孔18の蒸気圧が検出され、バルブV5が適宜、開閉される。これにより、配管口13a、配管13を通って内部空間IS及び位置決め孔18からドレン配管14側に高温高圧の水蒸気が排出されることで、特に、加圧前多層材NWの外層部分の含水率に基づく余分な内部空間IS及び位置決め孔18内の水分が除去され、内部空間IS及び位置決め孔18内が所定の蒸気圧となるように調節される。また、必要に応じて、バルブV4に接続された配管12、配管口12a(図5)を介して内部空間ISに所定の蒸気圧を供給することができる。これらにより、木材の加熱圧縮処理の定着、所謂、木材の固定化がより促進されることとなる。
更に、上プレス盤10A及び下プレス盤10Bによる加熱圧縮から冷却圧縮へと移行する直前に、蒸気圧制御処理としてバルブV5が開状態とされることで配管口13a、配管13を通って内部空間IS及び位置決め孔18からドレン配管14側に高温高圧の水蒸気が排出される。 Next, as shown in FIG. 6D, when the heat compression process is performed in a sealed state of the internal space IS and thepositioning hole 18, the internal space IS and the positioning hole are detected by the pressure gauge P2 as a vapor pressure control process. 18 vapor pressure is detected, and the valve V5 is appropriately opened and closed. Thereby, high-temperature and high-pressure water vapor is discharged from the internal space IS and the positioning hole 18 to the drain pipe 14 side through the pipe port 13a and the pipe 13, and in particular, the moisture content of the outer layer portion of the multilayer material NW before pressurization. Therefore, the excess internal space IS and moisture in the positioning hole 18 are removed, and the internal space IS and the positioning hole 18 are adjusted to have a predetermined vapor pressure. Further, if necessary, a predetermined vapor pressure can be supplied to the internal space IS through the pipe 12 and the pipe port 12a (FIG. 5) connected to the valve V4. As a result, the fixing of the heat compression treatment of the wood, that is, the so-called immobilization of the wood is further promoted.
Furthermore, the valve V5 is opened as a vapor pressure control process immediately before shifting from the heating compression to the cooling compression by theupper press panel 10A and the lower press panel 10B, so that the internal space passes through the piping port 13a and the piping 13. High-temperature and high-pressure steam is discharged from the IS and positioning hole 18 to the drain pipe 14 side.
更に、上プレス盤10A及び下プレス盤10Bによる加熱圧縮から冷却圧縮へと移行する直前に、蒸気圧制御処理としてバルブV5が開状態とされることで配管口13a、配管13を通って内部空間IS及び位置決め孔18からドレン配管14側に高温高圧の水蒸気が排出される。 Next, as shown in FIG. 6D, when the heat compression process is performed in a sealed state of the internal space IS and the
Furthermore, the valve V5 is opened as a vapor pressure control process immediately before shifting from the heating compression to the cooling compression by the
ステップS18でステップS13のタイマIの動作に基づくステップS16の加熱工程及びステップS17の圧縮工程が終了したことが判断されると、ステップS19で固定化工程に入る。固定化工程では、ステップS20のタイマIIに基づき、図6(e)に示すように、上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に常温の冷却水または地下水が通されることによって、上プレス盤10A及び下プレス盤10Bが常温前後まで冷却され、材料によって異なる所定時間(例えば、オイルパームでは10~120min)保持される。なお、このときの固定側の下プレス盤10Bに対する上プレス盤10Aの圧縮力は、加熱圧縮の際の圧力と同じ所定圧力(例えば、20~50kg/cm2)に保持されたまま、上プレス盤10A及び下プレス盤10Bが冷却される。
そして、最後に、図6(f)に示すように、ステップS21で解圧工程に入り、固定側の下プレス盤10Bに対して上プレス盤10Aを上昇させ、内部空間IS及び位置決め孔18から仕上がり品であるオイルパーム成型体EOが取出されることで一連の処理工程が終了する。 If it is determined in step S18 that the heating process in step S16 and the compression process in step S17 based on the operation of the timer I in step S13 are completed, the fixing process is started in step S19. In the immobilization process, normal temperature cooling water or ground water is passed through the pipingpath 15 of the upper press panel 10A and the piping path 16 of the lower press panel 10B based on the timer II of step S20, as shown in FIG. As a result, the upper press board 10A and the lower press board 10B are cooled to around room temperature and held for a predetermined time (for example, 10 to 120 minutes for oil palm) depending on the material. At this time, the compression force of the upper press disk 10A with respect to the lower press disk 10B on the fixed side is maintained at a predetermined pressure (for example, 20 to 50 kg / cm 2 ) that is the same as the pressure at the time of heat compression. The board 10A and the lower press board 10B are cooled.
Finally, as shown in FIG. 6 (f), the pressure releasing process is started instep S 21, the upper press platen 10 A is raised with respect to the fixed-side lower press platen 10 B, and the internal space IS and the positioning hole 18 are used. By taking out the finished oil palm molded body EO, a series of processing steps is completed.
そして、最後に、図6(f)に示すように、ステップS21で解圧工程に入り、固定側の下プレス盤10Bに対して上プレス盤10Aを上昇させ、内部空間IS及び位置決め孔18から仕上がり品であるオイルパーム成型体EOが取出されることで一連の処理工程が終了する。 If it is determined in step S18 that the heating process in step S16 and the compression process in step S17 based on the operation of the timer I in step S13 are completed, the fixing process is started in step S19. In the immobilization process, normal temperature cooling water or ground water is passed through the piping
Finally, as shown in FIG. 6 (f), the pressure releasing process is started in
本実施の形態のオイルパーム成型体EOを製造する圧密加工材製造装置MCについて更に詳しく説明する。
主として、上プレス盤10Aと下プレス盤10Bとの2分割された構造体によって内部空間IS及び位置決め孔18を形成するプレス盤10を具備しているが、本発明を実施する場合の加圧前多層材NWの外周の移動規制は、枠体20とすることもできる。この加圧前多層材NWの外周の移動規制としての枠体20は、上プレス盤10Aの寸法によって、上下動自在な構造とするか、固定構造とするかが決定される。 The compacted material manufacturing apparatus MC for manufacturing the oil palm molded body EO of the present embodiment will be described in more detail.
Thepress machine 10 is mainly provided with a press machine 10 in which the internal space IS and the positioning hole 18 are formed by a structure divided into two parts, that is, an upper press machine 10A and a lower press machine 10B. The movement restriction of the outer periphery of the multilayer material NW can be the frame body 20. The frame 20 as the movement restriction of the outer periphery of the pre-pressurized multilayer material NW is determined as a structure that can move up and down or a fixed structure depending on the dimensions of the upper press panel 10A.
主として、上プレス盤10Aと下プレス盤10Bとの2分割された構造体によって内部空間IS及び位置決め孔18を形成するプレス盤10を具備しているが、本発明を実施する場合の加圧前多層材NWの外周の移動規制は、枠体20とすることもできる。この加圧前多層材NWの外周の移動規制としての枠体20は、上プレス盤10Aの寸法によって、上下動自在な構造とするか、固定構造とするかが決定される。 The compacted material manufacturing apparatus MC for manufacturing the oil palm molded body EO of the present embodiment will be described in more detail.
The
なお、図7に示す枠体20は、実施の形態1の変形例で、上下動自在な構造としたもので、図5及び図6の下プレス盤10Bに配設されるものであり、位置決め孔18に代わるものである。
図7において、下プレス盤10Bのベース板25に同一高さの外側下プレス盤10Ba及び内側下プレス盤10Bbを配設し、その間に枠体溝21を形成する。枠体溝21のベース板25側には複数のコイルスプリング22が配設され、その上部に四角の可動枠23が配設されている。可動枠23の内面には、切欠きが形成されていて加圧前多層材NWの側面からの水蒸気等の流体を導く流体路24となっている。四角の可動枠23の内周は加圧前多層材NWの外周に略等しくなっており、四角の可動枠23に加圧前多層材NWが入るとラワン薄板L1及び薄板のオイルパーム材W2,・・・,W5に位置ずれが生じないようになっている。したがって、上プレス盤10Aが下降した時、それが下プレス盤10Bの寸法以上の広さを有していても、可動枠23と当接すると、可動枠23が複数のコイルスプリング22の弾性に抗して下降し、加圧前多層材NWの圧縮に応答する。そして、複数のコイルスプリング22の移動限界で加圧前多層材NWの圧縮が終了する。勿論、下プレス盤10Bの可動枠23に対して上プレス盤10Aが挿入される構造である場合には、下プレス盤10Bに可動枠23を固定配置とすることができる。即ち、下プレス盤10Bの可動枠23を固定し、可動枠23の内部に挿入される上プレス盤10Aによって圧縮することもできる。 Theframe body 20 shown in FIG. 7 is a modification of the first embodiment and has a vertically movable structure. The frame body 20 is disposed on the lower press panel 10B of FIGS. 5 and 6 and is positioned. It replaces the hole 18.
In FIG. 7, an outer lower press disk 10Ba and an inner lower press disk 10Bb having the same height are disposed on thebase plate 25 of the lower press disk 10B, and a frame groove 21 is formed therebetween. A plurality of coil springs 22 are disposed on the base plate 25 side of the frame body groove 21, and a square movable frame 23 is disposed above the coil springs 22. A cutout is formed on the inner surface of the movable frame 23 to form a fluid path 24 that guides fluid such as water vapor from the side surface of the pre-pressurized multilayer material NW. The inner periphery of the square movable frame 23 is substantially equal to the outer periphery of the multilayer material NW before pressurization. When the multilayer material NW before pressurization enters the square movable frame 23, the lauan thin plate L1 and the thin oil palm material W2, ..., no positional deviation occurs in W5. Therefore, when the upper press board 10A is lowered, even if it has a width larger than the size of the lower press board 10B, when the upper press board 10A comes into contact with the movable frame 23, the movable frame 23 becomes elastic to the plurality of coil springs 22. It descends against it and responds to the compression of the multilayer material NW before pressurization. Then, the compression of the pre-pressurized multilayer material NW is completed at the movement limit of the plurality of coil springs 22. Of course, when the upper press board 10A is inserted into the movable frame 23 of the lower press board 10B, the movable frame 23 can be fixedly arranged on the lower press board 10B. That is, the movable frame 23 of the lower press panel 10B can be fixed and compressed by the upper press panel 10A inserted into the movable frame 23.
図7において、下プレス盤10Bのベース板25に同一高さの外側下プレス盤10Ba及び内側下プレス盤10Bbを配設し、その間に枠体溝21を形成する。枠体溝21のベース板25側には複数のコイルスプリング22が配設され、その上部に四角の可動枠23が配設されている。可動枠23の内面には、切欠きが形成されていて加圧前多層材NWの側面からの水蒸気等の流体を導く流体路24となっている。四角の可動枠23の内周は加圧前多層材NWの外周に略等しくなっており、四角の可動枠23に加圧前多層材NWが入るとラワン薄板L1及び薄板のオイルパーム材W2,・・・,W5に位置ずれが生じないようになっている。したがって、上プレス盤10Aが下降した時、それが下プレス盤10Bの寸法以上の広さを有していても、可動枠23と当接すると、可動枠23が複数のコイルスプリング22の弾性に抗して下降し、加圧前多層材NWの圧縮に応答する。そして、複数のコイルスプリング22の移動限界で加圧前多層材NWの圧縮が終了する。勿論、下プレス盤10Bの可動枠23に対して上プレス盤10Aが挿入される構造である場合には、下プレス盤10Bに可動枠23を固定配置とすることができる。即ち、下プレス盤10Bの可動枠23を固定し、可動枠23の内部に挿入される上プレス盤10Aによって圧縮することもできる。 The
In FIG. 7, an outer lower press disk 10Ba and an inner lower press disk 10Bb having the same height are disposed on the
このようにして、オイルパーム材Wの繊維の長さ方向に対して垂直方向に加えた外力によって、オイルパーム材W1,・・・,W5の厚みが加熱圧縮され、全体が圧密加工されて圧縮率60%以上としたオイルパーム成型体EOが製造され、このとき、オイルパーム材W1,・・・,W5の厚み方向への圧縮力によってオイルパーム材Wの平面に平行な方向の伸びは、可動枠23に規制され、伸びることがない。
したがって、オイルパーム成型体EOは、均一な圧縮力の金型処理されたものとなる。 In this way, the thickness of the oil palm materials W1,..., W5 is heated and compressed by the external force applied in the direction perpendicular to the length direction of the fibers of the oil palm material W, and the whole is compressed and compressed. An oil palm molded body EO having a rate of 60% or more is manufactured. At this time, the elongation in the direction parallel to the plane of the oil palm material W is caused by the compressive force in the thickness direction of the oil palm materials W1,. It is restricted by themovable frame 23 and does not extend.
Therefore, the oil palm molded body EO is subjected to a die processing with a uniform compressive force.
したがって、オイルパーム成型体EOは、均一な圧縮力の金型処理されたものとなる。 In this way, the thickness of the oil palm materials W1,..., W5 is heated and compressed by the external force applied in the direction perpendicular to the length direction of the fibers of the oil palm material W, and the whole is compressed and compressed. An oil palm molded body EO having a rate of 60% or more is manufactured. At this time, the elongation in the direction parallel to the plane of the oil palm material W is caused by the compressive force in the thickness direction of the oil palm materials W1,. It is restricted by the
Therefore, the oil palm molded body EO is subjected to a die processing with a uniform compressive force.
本実施の形態においては、蒸気圧を制御した後、徐々に解圧して内部蒸気圧を開放し、また、冷却によって加圧前多層材NW内の水蒸気圧を下げて定着させるので、冷却圧縮を解除したときに膨らみ変形やパンクと呼ばれる表面割れのないオイルパーム成型体EOを形成できる。即ち、本実施の形態で製造したオイルパーム成型体EOは、圧縮解除後に膨らみ変形や表面割れを生じることがなく、安定した品質が確保されている。本実施の形態では、上プレス盤10A及び下プレス盤10Bを用いて圧縮し、定着してオイルパーム成型体EOを得ているが、本発明を実施する場合には、通常の電子レンジが使用するマイクロ波の周波数帯域よりも若干周波数の低い高周波で誘電加熱して加圧前多層材NWを加熱圧縮し、定着しても、オイルパーム成型体EOを得ることができる。
In this embodiment, after controlling the vapor pressure, the pressure is gradually released to release the internal vapor pressure, and the water vapor pressure in the pre-pressurized multilayer material NW is lowered and fixed by cooling. When released, it is possible to form an oil palm molded body EO having no surface deformation called bulging deformation or puncture. That is, the oil palm molded body EO manufactured in the present embodiment does not cause bulging deformation or surface cracking after being released from compression, and stable quality is ensured. In the present embodiment, the upper palm 10A and the lower press 10B are compressed and fixed to obtain an oil palm molded body EO. However, when the present invention is carried out, a normal microwave oven is used. The oil palm molded body EO can be obtained even if the multilayer material NW before pressurization is heated and compressed by dielectric heating at a high frequency slightly lower than the frequency band of the microwave to be fixed.
本実施の形態の積層させるオイルパーム材Wにおいては、その維管束等の繊維方向を同一にして積層してもよいし、その繊維方向を互いに直交させて積層してもよい。
繊維方向を同一にして積層した場合には、圧密加工において軟化した木材表面層の木繊維が、積層方向(縦方向)に隣接する繊維方向が同一の他の木材表層の木繊維と絡み易く、その絡み合った状態で固定化された木材同士は強固に接合される。しかも、接合面における膨張率及び収縮率を完全に等しくできることから周囲環境条件が変化しても接合面にストレスが掛かることがない。特に、その維管束等の繊維方向を同一にして積層した場合、そこに圧縮力を加えると、オイルパーム材Wが本来のオイルパーム幹WDの繊維方向になり、オイルパーム材Wが異なっていても、維管束が相手材のオイルパーム材Wの維管束間の柔細胞に入り込みそこで固定化されるから、自然な接合状態で一体化ができる。
したがって、接合強度が高くて機械的強度も高く、圧密化後の安定した寸法形状性が確保される。 In the oil palm material W to be laminated according to the present embodiment, the fiber directions such as the vascular bundle may be laminated in the same direction, or the fiber directions may be laminated so as to be orthogonal to each other.
When laminated with the same fiber direction, the wood fibers softened in the consolidation process are easily entangled with the other wood surface layer fibers of the same fiber direction adjacent to the lamination direction (longitudinal direction), The wood fixed in the intertwined state is firmly joined. Moreover, since the expansion rate and contraction rate at the joint surface can be made completely equal, no stress is applied to the joint surface even if the ambient environment conditions change. In particular, when the fiber directions of the vascular bundle and the like are laminated with the same direction, when compressive force is applied thereto, the oil palm material W becomes the fiber direction of the original oil palm trunk WD, and the oil palm material W is different. However, since the vascular bundle enters the parenchyma between the vascular bundles of the partner oil palm material W and is fixed there, it can be integrated in a natural joined state.
Accordingly, the bonding strength is high and the mechanical strength is high, and a stable dimensional shape after consolidation is ensured.
繊維方向を同一にして積層した場合には、圧密加工において軟化した木材表面層の木繊維が、積層方向(縦方向)に隣接する繊維方向が同一の他の木材表層の木繊維と絡み易く、その絡み合った状態で固定化された木材同士は強固に接合される。しかも、接合面における膨張率及び収縮率を完全に等しくできることから周囲環境条件が変化しても接合面にストレスが掛かることがない。特に、その維管束等の繊維方向を同一にして積層した場合、そこに圧縮力を加えると、オイルパーム材Wが本来のオイルパーム幹WDの繊維方向になり、オイルパーム材Wが異なっていても、維管束が相手材のオイルパーム材Wの維管束間の柔細胞に入り込みそこで固定化されるから、自然な接合状態で一体化ができる。
したがって、接合強度が高くて機械的強度も高く、圧密化後の安定した寸法形状性が確保される。 In the oil palm material W to be laminated according to the present embodiment, the fiber directions such as the vascular bundle may be laminated in the same direction, or the fiber directions may be laminated so as to be orthogonal to each other.
When laminated with the same fiber direction, the wood fibers softened in the consolidation process are easily entangled with the other wood surface layer fibers of the same fiber direction adjacent to the lamination direction (longitudinal direction), The wood fixed in the intertwined state is firmly joined. Moreover, since the expansion rate and contraction rate at the joint surface can be made completely equal, no stress is applied to the joint surface even if the ambient environment conditions change. In particular, when the fiber directions of the vascular bundle and the like are laminated with the same direction, when compressive force is applied thereto, the oil palm material W becomes the fiber direction of the original oil palm trunk WD, and the oil palm material W is different. However, since the vascular bundle enters the parenchyma between the vascular bundles of the partner oil palm material W and is fixed there, it can be integrated in a natural joined state.
Accordingly, the bonding strength is high and the mechanical strength is high, and a stable dimensional shape after consolidation is ensured.
一方、繊維方向を互いに直交させて積層した場合には、圧密加工後の周囲環境条件の変化によって膨張収縮力が生じても互いの木材同士が相互に作用し合って特定方向の反り変形が防止される。
特に、全枚数が奇数枚の場合には、繊維方向を互いに直交させて積層したとき表裏で単板の繊維方向が平行で断面が対称となるため、周囲環境条件の変化による歪み等が防止される。また、全枚数を4枚以上の偶数枚とする場合には、内部の一部にて繊維方向を同一にして積層しその他は繊維方向を互いに直交させて積層することによって、表裏の繊維方向を合わせ周囲環境条件の変化による歪み等を防止することも可能となる。
このとき、互いのオイルパーム材Wの維管束はクロス状態になるから、互いの維管束が巻き込む状態となるのが望ましい。この巻き込み状態下で圧密加工することにより、セルロース、ヘミセルロース、リグニンが水素結合し、特に、アブラヤシの樹幹には糖類、リグニン、プラスチック成分等が多く含まれているから、これらの成分が分解や軟化して維管束の周囲に染み出し、その後に再結晶化・再結合化されることでバインダーとして機能し、一体化が行われる。 On the other hand, when laminated with the fiber directions orthogonal to each other, even if expansion and contraction force occurs due to changes in the surrounding environmental conditions after consolidation, the woods interact with each other to prevent warping deformation in a specific direction Is done.
In particular, when the total number of sheets is an odd number, when laminated with the fiber directions orthogonal to each other, the fiber direction of the single plate is parallel and the cross section is symmetric on the front and back, so distortion due to changes in ambient environmental conditions is prevented. The In addition, when the total number of sheets is an even number of four or more, the fiber directions on the front and back sides are laminated by laminating the fiber directions at the same part in the inside and laminating the other with the fiber directions orthogonal to each other. It is also possible to prevent distortion and the like due to changes in the ambient environmental conditions.
At this time, since the vascular bundles of the oil palm materials W are in a cross state, it is desirable that the vascular bundles of each other be in a state of being involved. Cellulose, hemicellulose, and lignin are hydrogen-bonded by compaction under this entrainment condition, and especially the oil palm trunk contains a lot of sugars, lignin, plastic components, etc., so these components are decomposed and softened. Then, it oozes out around the vascular bundle and is then recrystallized and recombined to function as a binder and to be integrated.
特に、全枚数が奇数枚の場合には、繊維方向を互いに直交させて積層したとき表裏で単板の繊維方向が平行で断面が対称となるため、周囲環境条件の変化による歪み等が防止される。また、全枚数を4枚以上の偶数枚とする場合には、内部の一部にて繊維方向を同一にして積層しその他は繊維方向を互いに直交させて積層することによって、表裏の繊維方向を合わせ周囲環境条件の変化による歪み等を防止することも可能となる。
このとき、互いのオイルパーム材Wの維管束はクロス状態になるから、互いの維管束が巻き込む状態となるのが望ましい。この巻き込み状態下で圧密加工することにより、セルロース、ヘミセルロース、リグニンが水素結合し、特に、アブラヤシの樹幹には糖類、リグニン、プラスチック成分等が多く含まれているから、これらの成分が分解や軟化して維管束の周囲に染み出し、その後に再結晶化・再結合化されることでバインダーとして機能し、一体化が行われる。 On the other hand, when laminated with the fiber directions orthogonal to each other, even if expansion and contraction force occurs due to changes in the surrounding environmental conditions after consolidation, the woods interact with each other to prevent warping deformation in a specific direction Is done.
In particular, when the total number of sheets is an odd number, when laminated with the fiber directions orthogonal to each other, the fiber direction of the single plate is parallel and the cross section is symmetric on the front and back, so distortion due to changes in ambient environmental conditions is prevented. The In addition, when the total number of sheets is an even number of four or more, the fiber directions on the front and back sides are laminated by laminating the fiber directions at the same part in the inside and laminating the other with the fiber directions orthogonal to each other. It is also possible to prevent distortion and the like due to changes in the ambient environmental conditions.
At this time, since the vascular bundles of the oil palm materials W are in a cross state, it is desirable that the vascular bundles of each other be in a state of being involved. Cellulose, hemicellulose, and lignin are hydrogen-bonded by compaction under this entrainment condition, and especially the oil palm trunk contains a lot of sugars, lignin, plastic components, etc., so these components are decomposed and softened. Then, it oozes out around the vascular bundle and is then recrystallized and recombined to function as a binder and to be integrated.
また、積層させるオイルパーム材Wの繊維に対して平行に切断した面であって樹心側面同士、または繊維に対して平行に切断した面であって樹皮側面同士を対向させて積層するのが好ましい。即ち、オイルパーム幹WDの樹芯を通る直線位置でオイルパーム材Wを分割し、対向させる配置にすると、互いの樹心側面同士または互いの樹皮側面同士が対向するようになり、圧密加工により接合させることによって、樹心側面と樹皮側面で細胞密度が異なることによる特定方向の反り変形が防止できる。
Moreover, it is the surface cut | disconnected in parallel with respect to the fiber of the oil palm material W to laminate | stack, and it is the surface cut | disconnected in parallel with the bark side surfaces, or the bark side surfaces, and is laminated | stacked. preferable. That is, when the oil palm material W is divided at a linear position passing through the tree core of the oil palm trunk WD and arranged to face each other, the mutual tree heart side surfaces or the mutual bark side surfaces face each other. By joining, warp deformation in a specific direction due to the difference in cell density between the tree heart side and the bark side can be prevented.
更には、乾燥させたオイルパーム成型体EOのうち、乾燥後の気乾比重が小さい材料を表裏に配置して積層することが好ましい。これによって、上プレス盤10A及び下プレス盤10Bに接触する表裏層に乾燥後の気乾比重が小さい木材が配設され、圧密加工がなされることになるから、乾燥後の気乾比重が小さい木材において上プレス盤10A及び下プレス盤10Bによって十分な加熱圧縮がされて木材相互間の比重の差が小さくなり、製品化後における寸法変化率の差も小さくなる。よって、製品化後における寸法形状の安定性が増す。
Furthermore, among the dried oil palm molded body EO, it is preferable to arrange and laminate materials having a small air-dry specific gravity after drying on the front and back. As a result, wood having a small air-drying specific gravity after drying is disposed on the front and back layers in contact with the upper press platen 10A and the lower press platen 10B, and compaction processing is performed. Therefore, the air-drying specific gravity after drying is small. The wood is sufficiently heated and compressed by the upper press board 10A and the lower press board 10B to reduce the difference in specific gravity between the woods, and the difference in the rate of dimensional change after production. Therefore, the stability of the dimensional shape after commercialization increases.
ステップS17の圧縮工程では、固定側の下プレス盤10B上に載置された積層した複数枚の加圧前多層材NWに対して上プレス盤10Aを所定圧力(例えば、0.5~3kg/cm2)にて下降させ、積層した加圧前多層材NWの上面、即ち、繊維の長さ方向に対する垂直方向の平面に当接させる。そして、圧密加工の最初は、まず、加熱工程(ステップ16)における加熱を開始し、バルブV1,バルブV2,バルブV3(図2)が開かれ図示しないボイラ装置から上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に加熱用の水蒸気が通されて内部空間IS及び位置決め孔18内が所定の加熱温度に保持され、積層した加圧前多層材NWが加熱される。
In the compression step of step S17, the upper press board 10A is subjected to a predetermined pressure (for example, 0.5 to 3 kg / second) with respect to the plurality of laminated pre-pressing multilayer materials NW placed on the lower press board 10B on the fixed side. cm 2 ) and brought into contact with the upper surface of the laminated pre-pressing multilayer material NW, that is, a plane perpendicular to the fiber length direction. Then, at the beginning of the compacting process, first, heating in the heating process (step 16) is started, and the valve V1, the valve V2, and the valve V3 (FIG. 2) are opened, and the piping 15 of the upper press panel 10A from the boiler device (not shown). And the water vapor for heating is passed through the pipe line 16 of the lower press panel 10B, the interior space IS and the positioning hole 18 are maintained at a predetermined heating temperature, and the laminated multilayer material NW before pressurization is heated.
ここで、圧縮初期の加熱工程の加熱温度は、110~160℃の範囲内とするのが好ましい。加熱温度が低過ぎると十分な圧密加工がなされず、強度不足や木材間が接合不良となったり、製品化後において吸湿乾燥による寸法形状変形が生じ易くなったりし、一方、加熱温度が高過ぎると表面が炭化して黒色に変化し色調や木材特有の香りが損なわれたり、材質が劣化して強度が低化し脆くなったりすることがある。本発明者らの実験によれば、適切な温度条件は110~160℃の範囲内であることが判明した。この温度条件にすることによって、圧密加工における固定化不良や、表面炭化、材質強度の低化等の材質劣化を防止することができる。より好ましくは、圧縮初期の加熱工程の加熱温度は120~140℃の範囲内である。なお、具体的な設定温度は、オイルパーム材Wの含水率等に応じて設定される。
Here, it is preferable that the heating temperature in the heating process in the initial stage of compression is in the range of 110 to 160 ° C. If the heating temperature is too low, sufficient compacting will not be achieved, resulting in insufficient strength, poor bonding between wood, and dimensional shape deformation due to hygroscopic drying after product production, while the heating temperature is too high. The surface may be carbonized to change to black and the color tone or scent peculiar to wood may be impaired, or the material may deteriorate and the strength may be lowered and become brittle. According to the experiments by the present inventors, it has been found that an appropriate temperature condition is in the range of 110 to 160 ° C. By using this temperature condition, it is possible to prevent improper fixing in the compacting process, and material deterioration such as surface carbonization and lowering of material strength. More preferably, the heating temperature in the heating step in the initial stage of compression is in the range of 120 to 140 ° C. The specific set temperature is set according to the moisture content of the oil palm material W and the like.
また、ステップS17のかあつ圧縮工程では、固定側の下プレス盤10Bに対して上プレス盤10Aの圧縮圧力が所定圧力に設定され、加圧前多層材NWが上プレス盤10A及び下プレス盤10Bにて所定時間加熱圧縮される。このとき、図6(c)に示すように、上プレス盤10Aの周縁部10aが下プレス盤10Bの周縁部10bに当接すると上プレス盤10Aの周縁部10aに配設されたシール部材11によって、上プレス盤10A及び下プレス盤10Bにて形成される内部空間IS及び位置決め孔18が密閉状態となる。
このように、プレス盤の面接触によって加熱圧縮することで、特には、加熱温度に加熱した後に加圧することによって、加圧前多層材NWにおいて乾燥時の反り変形が生じている場合でも破壊、割れ、クラック等を生じさせることなく平坦にすることができ、効率良く加熱圧縮を行うことができる。更には、加圧前多層材NWが加熱圧縮され、内部空間IS及び位置決め孔18が密閉状態に保持されている間に、加圧前多層材NWに元々含まれている水蒸気が蒸気圧となって内部空間IS及び位置決め孔18を介して乾燥木材DWに侵入拡散、排出自在となることから、厚み全体において効率よくかつ均一に加熱圧縮が行われる。 In the hot compression process of step S17, the compression pressure of theupper press board 10A is set to a predetermined pressure with respect to the lower press board 10B on the fixed side, and the pre-pressing multilayer material NW becomes the upper press board 10A and lower press board 10B. And heated and compressed for a predetermined time. At this time, as shown in FIG. 6C, when the peripheral portion 10a of the upper press panel 10A comes into contact with the peripheral portion 10b of the lower press panel 10B, the seal member 11 disposed on the peripheral portion 10a of the upper press panel 10A. As a result, the internal space IS and the positioning hole 18 formed by the upper press board 10A and the lower press board 10B are sealed.
Thus, by heating and compressing by surface contact of the press panel, in particular, by applying pressure after heating to the heating temperature, even when warp deformation during drying occurs in the multilayer material NW before pressurization, Flattening can be achieved without causing cracks, cracks, etc., and heat compression can be performed efficiently. Furthermore, while the multilayer material NW before pressurization is heated and compressed and the internal space IS and thepositioning hole 18 are kept in a sealed state, the water vapor originally contained in the multilayer material NW before pressurization becomes the vapor pressure. Thus, the dried wood DW can be freely diffused and discharged through the internal space IS and the positioning hole 18, so that the entire thickness is efficiently and uniformly heated and compressed.
このように、プレス盤の面接触によって加熱圧縮することで、特には、加熱温度に加熱した後に加圧することによって、加圧前多層材NWにおいて乾燥時の反り変形が生じている場合でも破壊、割れ、クラック等を生じさせることなく平坦にすることができ、効率良く加熱圧縮を行うことができる。更には、加圧前多層材NWが加熱圧縮され、内部空間IS及び位置決め孔18が密閉状態に保持されている間に、加圧前多層材NWに元々含まれている水蒸気が蒸気圧となって内部空間IS及び位置決め孔18を介して乾燥木材DWに侵入拡散、排出自在となることから、厚み全体において効率よくかつ均一に加熱圧縮が行われる。 In the hot compression process of step S17, the compression pressure of the
Thus, by heating and compressing by surface contact of the press panel, in particular, by applying pressure after heating to the heating temperature, even when warp deformation during drying occurs in the multilayer material NW before pressurization, Flattening can be achieved without causing cracks, cracks, etc., and heat compression can be performed efficiently. Furthermore, while the multilayer material NW before pressurization is heated and compressed and the internal space IS and the
ここで、加圧前多層材NWを圧縮する所定圧力は、1~100kg/cm2の範囲内であることが好ましい。加圧力が低過ぎると圧密加工において固定化不良となり、一方、加圧力が高過ぎると表面にクラックが生じることがある。本発明者らの実験によれば、適切な加圧条件は1~100kg/cm2の範囲内である。この加圧条件にすることによって、圧密加工における固定化不良や、クラックの発生を防止することができる。より好ましくは、10~50kg/cm2の範囲内である。
なお、このときの圧縮速度が速い場合には、加圧前多層材NW内の水蒸気や空気が抜けにくく、加圧前多層材NWに作用する圧力も高くなるため、クラックが生じたり、また、軟化が不十分で内部割れが生じたりする恐れがある。一方で、圧縮速度が遅い場合には、上プレス盤10A及び下プレス盤10Bに接触している面への負担が大きくなりクラック等が生じる可能性がある。そこで、このときの圧縮圧力は、加圧前多層材NWの内部の温度の伝達状態に応じて徐々に大きくするのが望ましい。 Here, the predetermined pressure for compressing the multilayer material NW before pressurization is preferably in the range of 1 to 100 kg / cm 2 . If the pressure is too low, immobilization will be poor in the compacting process, while if the pressure is too high, cracks may occur on the surface. According to the inventors' experiments, suitable pressure conditions are in the range of 1-100 kg / cm 2 . By adopting this pressurizing condition, it is possible to prevent immobilization defects and occurrence of cracks in consolidation. More preferably, it is in the range of 10 to 50 kg / cm 2 .
In addition, when the compression speed at this time is high, water vapor and air in the multilayer material NW before pressurization are difficult to escape, and the pressure acting on the multilayer material NW before pressurization increases, so that cracks occur, There is a risk of internal cracking due to insufficient softening. On the other hand, when the compression speed is low, the load on the surface in contact with theupper press board 10A and the lower press board 10B is increased, and cracks or the like may occur. Therefore, it is desirable that the compression pressure at this time be gradually increased according to the temperature transmission state inside the pre-pressurized multilayer material NW.
なお、このときの圧縮速度が速い場合には、加圧前多層材NW内の水蒸気や空気が抜けにくく、加圧前多層材NWに作用する圧力も高くなるため、クラックが生じたり、また、軟化が不十分で内部割れが生じたりする恐れがある。一方で、圧縮速度が遅い場合には、上プレス盤10A及び下プレス盤10Bに接触している面への負担が大きくなりクラック等が生じる可能性がある。そこで、このときの圧縮圧力は、加圧前多層材NWの内部の温度の伝達状態に応じて徐々に大きくするのが望ましい。 Here, the predetermined pressure for compressing the multilayer material NW before pressurization is preferably in the range of 1 to 100 kg / cm 2 . If the pressure is too low, immobilization will be poor in the compacting process, while if the pressure is too high, cracks may occur on the surface. According to the inventors' experiments, suitable pressure conditions are in the range of 1-100 kg / cm 2 . By adopting this pressurizing condition, it is possible to prevent immobilization defects and occurrence of cracks in consolidation. More preferably, it is in the range of 10 to 50 kg / cm 2 .
In addition, when the compression speed at this time is high, water vapor and air in the multilayer material NW before pressurization are difficult to escape, and the pressure acting on the multilayer material NW before pressurization increases, so that cracks occur, There is a risk of internal cracking due to insufficient softening. On the other hand, when the compression speed is low, the load on the surface in contact with the
更に、本発明者らの実験によれば、加熱圧縮する時間は、10~40分間の範囲内とするのが好ましい。この時間条件によって、処理時間が短過ぎることによるその後の固定化不良や、処理時間が長過ぎることによる表面の炭化を防止することができる。より好ましくは、圧縮している所定時間が20~30分間の範囲内である。なお、この加熱圧縮の時間も加圧前多層材NWの内部の温度の伝達状態(時間)を考慮して設定するのが好ましい。
Furthermore, according to the experiments by the present inventors, it is preferable that the time for heating and compressing is within a range of 10 to 40 minutes. This time condition can prevent subsequent immobilization due to the treatment time being too short and carbonization of the surface due to the treatment time being too long. More preferably, the predetermined compression time is in the range of 20 to 30 minutes. In addition, it is preferable to set also the time of this heat compression considering the transmission state (time) of the temperature inside the multilayer material NW before pressurization.
なお、プレス盤10の上プレス盤10A及び下プレス盤10Bによって形成される内部空間IS及び位置決め孔18がシール部材11を介して密閉状態となったときにおける内部空間IS及び位置決め孔18の上下方向の寸法間隔は、積層された複数枚の加圧前多層材NWが圧密加工されて気乾比重0.8以上のオイルパーム成型体EOとなるときの厚み方向の仕上がり寸法に設定されている。このため、積層された加圧前多層材NWの厚み全体の圧縮率、即ち、積層された複数枚の加圧前多層材NWの圧縮による厚みの変化は、上プレス盤10Aの周縁部10aが下プレス盤10Bの周縁部10bに当接することで決まることとなる。
Note that the internal space IS and the positioning hole 18 formed by the upper press board 10A and the lower press board 10B of the press board 10 are hermetically sealed via the seal member 11, and the vertical direction of the internal space IS and the positioning hole 18 is as follows. The dimension interval is set to the finished dimension in the thickness direction when the plurality of laminated multi-layered pre-pressurized materials NW are compacted to form an oil palm molded body EO having an air-dry specific gravity of 0.8 or more. For this reason, the compression ratio of the entire thickness of the laminated multilayer material NW before pressurization, that is, the change in thickness due to the compression of the plurality of laminated multilayer materials NW before pressurization is determined by the peripheral portion 10a of the upper press panel 10A. This is determined by contacting the peripheral edge portion 10b of the lower press panel 10B.
次いで、図6(c)に示す内部空間IS及び位置決め孔18の密閉状態で上プレス盤10A及び下プレス盤10Bによる上記所定の圧縮圧力(1~100kg/cm2の範囲内が好ましい)が保持されたまま、上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16によって、特定の加熱温度まで上昇され、内部空間IS及び位置決め孔18が所定の加熱温度のまま、所定時間保持される。このとき、上プレス盤11及び下プレス盤21で密閉状態とされている内部空間IS及び位置決め孔18を介して、加圧前多層材NWの周囲面とその内部とで高温高圧の蒸気圧が出入り自在となっている。
そして、この内部空間IS及び位置決め孔18の密閉状態で加熱圧縮処理が行われているときに、蒸気圧制御処理として圧力計P2で内部空間IS及び位置決め孔18の蒸気圧が検出され、図6(d)に示されるように、バルブV4に接続された配管12、配管口12aを介して内部空間ISに第2の加熱温度の蒸気圧が供給されることによって、または、バルブV5が適宜開閉されて配管口13a、配管13を通って内部空間ISからドレン配管14側に高温高圧の水蒸気が排出されることによって、内部空間IS及び位置決め孔18の蒸気圧が所定値に制御される。 Next, the predetermined compression pressure (preferably within the range of 1 to 100 kg / cm 2 ) by theupper press board 10A and the lower press board 10B is maintained in the sealed state of the internal space IS and the positioning hole 18 shown in FIG. 6 (c). As it is, the temperature is raised to a specific heating temperature by the piping 15 of the upper press panel 10A and the piping 16 of the lower pressing panel 10B, and the internal space IS and the positioning hole 18 are maintained at the predetermined heating temperature for a predetermined time. The At this time, a high-temperature and high-pressure vapor pressure is generated between the surrounding surface of the pre-pressurized multilayer material NW and the inside thereof through the internal space IS and the positioning hole 18 which are sealed by the upper press platen 11 and the lower press platen 21. You can go in and out.
When the heat compression process is performed in a sealed state of the internal space IS and thepositioning hole 18, the vapor pressure control process detects the vapor pressure of the internal space IS and the positioning hole 18 with the pressure gauge P2. As shown in (d), the vapor pressure of the second heating temperature is supplied to the internal space IS through the pipe 12 and the pipe port 12a connected to the valve V4, or the valve V5 is appropriately opened and closed. Then, high-temperature and high-pressure water vapor is discharged from the internal space IS to the drain pipe 14 side through the pipe port 13a and the pipe 13, whereby the vapor pressure of the internal space IS and the positioning hole 18 is controlled to a predetermined value.
そして、この内部空間IS及び位置決め孔18の密閉状態で加熱圧縮処理が行われているときに、蒸気圧制御処理として圧力計P2で内部空間IS及び位置決め孔18の蒸気圧が検出され、図6(d)に示されるように、バルブV4に接続された配管12、配管口12aを介して内部空間ISに第2の加熱温度の蒸気圧が供給されることによって、または、バルブV5が適宜開閉されて配管口13a、配管13を通って内部空間ISからドレン配管14側に高温高圧の水蒸気が排出されることによって、内部空間IS及び位置決め孔18の蒸気圧が所定値に制御される。 Next, the predetermined compression pressure (preferably within the range of 1 to 100 kg / cm 2 ) by the
When the heat compression process is performed in a sealed state of the internal space IS and the
このように、内部空間IS及び位置決め孔18の蒸気圧を制御することによって、複数枚積層したオイルパーム材Wの加熱圧縮が行われる。即ち、複数枚積層したオイルパーム材Wの周囲面及びその内部を内部空間IS及び位置決め孔18と同様の温度・圧力・蒸気圧状態とし加圧前多層材NW全体が均一化されることによって、加工歪が入らず、成形後の復元力及び周囲環境条件の変化による収縮膨張が顕著に抑制される。特に、所定の加圧状態を保ったまま加熱して水蒸気の排出または導入によって蒸気圧制御を行うことによって、表面の炭化が防止され、均一に加熱圧縮され、更に、表面の乾燥を防いで均一な固定化がスムースに達成され、成形加工後の回復、戻り、変形等が抑制される。
In this way, by controlling the vapor pressure of the internal space IS and the positioning hole 18, a plurality of laminated oil palm materials W are heated and compressed. That is, by making the peripheral surface of the oil palm material W laminated and the inside thereof the same temperature, pressure, and vapor pressure state as the internal space IS and the positioning hole 18, the entire multilayer material NW before pressurization is made uniform, There is no processing strain, and shrinkage and expansion due to a change in the restoring force after molding and the surrounding environmental conditions are remarkably suppressed. In particular, by controlling the vapor pressure by discharging or introducing water vapor while maintaining a predetermined pressure state, the surface is prevented from being carbonized, uniformly heated and compressed, and further, the surface is prevented from drying. Smooth fixation is achieved, and recovery, return, deformation, etc. after molding are suppressed.
ここで、圧密加工する加熱及び圧縮状態を維持する最終加熱温度は、120~210℃の範囲内とするのが好ましい。加熱温度が低過ぎると固定化が甘くなり水蒸気の作用による化学変化を十分に起こさせることができなくなって固定化不良となり、吸湿による戻りや乾燥による変形等が生じ易く、一方、加熱温度が高過ぎると表面が炭化して黒色に変化し色調や木材特有の香りが損なわれたり、材質が劣化して強度が低化し脆くなったりすることがある。本発明者らの実験によれば、適切な温度条件は120~210℃の範囲内である。この温度条件にすることによって、圧密加工における固定化不良を防止して寸法形状安定性を維持し、表面炭化、材質強度の低化等の材質劣化を防止することができる。より好ましくは、加熱温度が120~140℃の範囲内である。
Here, it is preferable that the final heating temperature for maintaining the heating and compression state for compaction is in the range of 120 to 210 ° C. If the heating temperature is too low, the immobilization becomes sweet and chemical changes due to the action of water vapor cannot be caused sufficiently, resulting in improper immobilization, which tends to occur due to moisture absorption or deformation due to drying, while the heating temperature is high. If it is too much, the surface may be carbonized to change to black, and the color tone or scent peculiar to wood may be impaired, or the material may deteriorate and the strength may be lowered and become brittle. According to our experiments, suitable temperature conditions are in the range of 120-210 ° C. By setting this temperature condition, it is possible to prevent immobilization failure in the compacting process, maintain dimensional shape stability, and prevent material deterioration such as surface carbonization and material strength reduction. More preferably, the heating temperature is in the range of 120 to 140 ° C.
また、本発明者らの実験研究によれば、固定化する直前の圧縮時間は、10~120分間の範囲内とするのが好ましい。この時間条件によって、処理時間が短過ぎることによる固定化不良や、処理時間が長過ぎることによる表面の炭化を防止することができる。より好ましくは、所定時間が30~90分間の範囲内である。なお、この固定化の直前の加熱・圧縮処理を行う具体的な設定時間は、加圧前多層材NWの含水率等を考慮して設定される。
Further, according to the experimental study by the present inventors, the compression time immediately before immobilization is preferably within the range of 10 to 120 minutes. By this time condition, it is possible to prevent immobilization failure due to the treatment time being too short and carbonization of the surface due to the treatment time being too long. More preferably, the predetermined time is in the range of 30 to 90 minutes. The specific set time for performing the heating / compression process immediately before the immobilization is set in consideration of the moisture content of the multilayer material NW before pressurization.
因みに、水蒸気導入または水蒸気の排出による密閉状態にある内部空間IS及び位置決め孔18内の蒸気圧制御の開始は、上プレス盤10A及び下プレス盤10Bの温度が特定の加熱温度に到達してから行われるのが望ましい。このようにすれば、加圧前多層材NW内に水蒸気を浸透させ、それによってオイルパーム材Wの化学変化を十分起こさせることができ、その結果、オイルパーム材Wを十分かつ均一に固定化することができ、吸湿による戻りや乾燥による変形等が少ないものとなる。即ち、上プレス盤10A及び下プレス盤10Bの温度が特定の加熱温度に到達する前に密閉状態にある内部空間IS及び位置決め孔18内の水蒸気導入を開始した場合には、水蒸気が凝縮して密閉状態にある内部空間IS及び位置決め孔18内が水で満たされた状態となり、木材の含水率が多くなってしまい、その結果、吸湿による戻りや乾燥による変形等が生じ易い。また、上プレス盤10A及び下プレス盤10Bの温度が第2の加熱温度に到達する前に密閉状態にある内部空間IS及び位置決め孔18内の水蒸気排出を開始した場合においても、外層部分の含水率に基づく余分な内部空間IS及び位置決め孔18内の水分が除去され難くて木材の含水率が多くなってしまい、吸湿による戻りや乾燥による変形等が生じ易くなる。
なお、後述の冷却開始前にその蒸気圧制御を終了させるのが好ましい。後述の冷却開始前にその蒸気圧制御を終了しない場合には、冷却処理効率が低下する。 Incidentally, the start of the vapor pressure control in the internal space IS and thepositioning hole 18 in the sealed state due to the introduction or discharge of water vapor is performed after the temperature of the upper press panel 10A and the lower press panel 10B reaches a specific heating temperature. It is desirable to be done. If it does in this way, water vapor can osmose | permeate in the multilayer material NW before pressurization, and, thereby, the chemical change of the oil palm material W can fully be caused, As a result, the oil palm material W is fully and uniformly fixed. Therefore, there is little return due to moisture absorption, deformation due to drying, and the like. That is, when the introduction of water vapor in the closed internal space IS and the positioning hole 18 is started before the temperatures of the upper press board 10A and the lower press board 10B reach a specific heating temperature, the water vapor is condensed. The interior space IS and the positioning hole 18 in the sealed state are filled with water, and the moisture content of the wood increases, and as a result, return due to moisture absorption, deformation due to drying, and the like are likely to occur. Further, even when the discharge of water vapor in the internal space IS and the positioning hole 18 in the sealed state is started before the temperatures of the upper press board 10A and the lower press board 10B reach the second heating temperature, the water content of the outer layer portion is also increased. The excess internal space IS based on the rate and the moisture in the positioning hole 18 are difficult to be removed, and the moisture content of the wood increases, so that return due to moisture absorption, deformation due to drying, and the like easily occur.
In addition, it is preferable to end the vapor pressure control before starting the cooling described later. If the vapor pressure control is not finished before starting the cooling described later, the cooling processing efficiency is lowered.
なお、後述の冷却開始前にその蒸気圧制御を終了させるのが好ましい。後述の冷却開始前にその蒸気圧制御を終了しない場合には、冷却処理効率が低下する。 Incidentally, the start of the vapor pressure control in the internal space IS and the
In addition, it is preferable to end the vapor pressure control before starting the cooling described later. If the vapor pressure control is not finished before starting the cooling described later, the cooling processing efficiency is lowered.
また、密閉状態にある内部空間IS及び位置決め孔18内に水蒸気を導入して蒸気圧を制御する場合には、上プレス盤10A及び下プレス盤10Bの温度が特定の加熱温度に到達した時における内部空間IS及び位置決め孔18内の水蒸気圧力及び温度と同等以下の水蒸気圧及び温度の水蒸気を導入するのが好ましい。導入する水蒸気の圧力及び温度が内部空間IS及び位置決め孔18内の水蒸気圧力及び温度より高い場合には、水蒸気が凝縮して密閉状態にある内部空間IS及び位置決め孔18内が水で満たされた状態となり、オイルパーム材Wの含水率が多くなってしまい、その結果、吸湿による戻りや乾燥による変形等が生じ易くなる。なお、密閉状態にある内部空間IS及び位置決め孔18内において、加圧前多層材NWの外層部分の含水率に基づく余分な水分が存在する場合には、内部空間IS及び位置決め孔18内の高温高圧の水蒸気を適宜排出することによって、所定の蒸気圧となるように調節される。
Further, when steam is introduced into the internal space IS and the positioning hole 18 in a sealed state to control the vapor pressure, the temperature of the upper press panel 10A and the lower press panel 10B reaches a specific heating temperature. It is preferable to introduce a water vapor pressure and temperature equal to or lower than the water vapor pressure and temperature in the internal space IS and the positioning hole 18. When the pressure and temperature of the introduced water vapor are higher than the water pressure and temperature in the internal space IS and the positioning hole 18, the water is condensed and the internal space IS and the positioning hole 18 in a sealed state are filled with water. As a result, the moisture content of the oil palm material W increases, and as a result, return due to moisture absorption, deformation due to drying, and the like easily occur. In addition, in the internal space IS and the positioning hole 18 in a sealed state, when excess moisture based on the moisture content of the outer layer portion of the multilayer material NW before pressurization exists, the high temperature in the internal space IS and the positioning hole 18 By appropriately discharging high-pressure water vapor, the pressure is adjusted to a predetermined vapor pressure.
続いて、ステップS19の固定化工程は、ステップS16の加熱工程、ステップS17の圧縮工程の際の圧力と同じ所定圧力(1~100kg/cm2の範囲内が好ましい)に保持されたまま、バルブV11,バルブV12,バルブV13(図5)が開かれ図示しないボイラ装置から上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に常温の冷却水が通されることによって、図6(e)に示すように、上プレス盤10A及び下プレス盤10Bが常温前後まで冷却され、所定時間(例えば、10~120min)保持される。
そして、最後に、ステップS19の固定化工程において解圧し、図6(f)に示すように、固定側の下プレス盤10Bに対して上プレス盤10Aを徐々に上昇させて離間させることによってプレス圧力及び密閉状態を開放し、内部空間IS及び位置決め孔18から仕上がり品であるオイルパーム成型体EOが取出されることで一連の処理工程が終了する。 Subsequently, the immobilization process in step S19 is performed while maintaining the same predetermined pressure (preferably within the range of 1 to 100 kg / cm 2 ) as the pressure in the heating process in step S16 and the compression process in step S17. V11, valve V12, and valve V13 (FIG. 5) are opened, and normal temperature cooling water is passed from a boiler device (not shown) through the pipingpath 15 of the upper press panel 10A and the piping path 16 of the lower press panel 10B. As shown in (e), the upper press board 10A and the lower press board 10B are cooled to around room temperature and held for a predetermined time (eg, 10 to 120 minutes).
Finally, the pressure is released in the fixing step of step S19, and as shown in FIG. 6 (f), theupper press disk 10A is gradually raised and separated from the fixed-side lower press disk 10B. A series of processing steps are completed by releasing the pressure and the sealed state and taking out the finished oil palm molded body EO from the internal space IS and the positioning hole 18.
そして、最後に、ステップS19の固定化工程において解圧し、図6(f)に示すように、固定側の下プレス盤10Bに対して上プレス盤10Aを徐々に上昇させて離間させることによってプレス圧力及び密閉状態を開放し、内部空間IS及び位置決め孔18から仕上がり品であるオイルパーム成型体EOが取出されることで一連の処理工程が終了する。 Subsequently, the immobilization process in step S19 is performed while maintaining the same predetermined pressure (preferably within the range of 1 to 100 kg / cm 2 ) as the pressure in the heating process in step S16 and the compression process in step S17. V11, valve V12, and valve V13 (FIG. 5) are opened, and normal temperature cooling water is passed from a boiler device (not shown) through the piping
Finally, the pressure is released in the fixing step of step S19, and as shown in FIG. 6 (f), the
このように、変形が生じることのない圧力状態下で冷却することによって圧密状態の定着が安定する。そして、加圧状態で冷却した後、加圧を解除することによって、即ち、冷却によって加圧前多層材NW内の水蒸気圧を下げた後、徐々に解圧して内部蒸気圧を開放することによって、余分な水蒸気を液化して除くことができて冷却圧縮を解除したときに膨らみ変形、割れ、破壊(パンク)等がないオイルパーム成型体EOとなる。即ち、本実施の形態のオイルパーム成型体EOによれば、圧縮解除後に膨らみ変形、割れ、破壊等が生じることなく安定した品質が確保されたものである。
In this way, fixing in a consolidated state is stabilized by cooling under a pressure state in which deformation does not occur. And after cooling in a pressurized state, by releasing the pressurization, that is, by lowering the water vapor pressure in the multilayer material NW before pressurization by cooling, gradually releasing the pressure to release the internal vapor pressure In addition, the oil palm molded body EO can be liquefied and removed, and there is no bulging deformation, cracking, puncture or the like when the cooling and compression are released. That is, according to the oil palm molded body EO of the present embodiment, stable quality is ensured without causing bulging deformation, cracking, destruction, and the like after compression release.
このようにして、積層した加圧前多層材NWの繊維の長さ方向に対して垂直方向に加えた外力によって、積層した加圧前多層材NW全体の厚みが加熱圧縮され、圧密加工により気乾比重を0.8以上、本実施の形態では、通常は、比重1.2以上としたオイルパーム成型体EOが製造される。そして、このようにして得られたオイルパーム成型体EOは、圧密加工によりオイルパーム材W同士が強固に接合されている。これは、圧密加工によってセルロースや、ヘミセルロースや、リグニンが水素結合し、特に、アブラヤシの樹幹には糖類、リグニン、プラスチック成分等が多く含まれていて、圧密加工によりこれらの成分が分解や軟化して染み出し、オイルパーム材W相互間を移動した後に再結晶化・再結合化されることでバインダーとして機能し、更には、圧密加工によりオイルパーム材Wの表層の繊維が軟化して積層方向に隣接する木材の繊維と絡み合うことによって、木材同士が強固に接合したものと考えられる。
In this way, the entire thickness of the laminated multilayer material NW before pressurization is heated and compressed by an external force applied in a direction perpendicular to the length direction of the fibers of the laminated multilayer material NW before pressurization. In the present embodiment, an oil palm molded body EO having a dry specific gravity of 0.8 or higher and a specific gravity of 1.2 or higher is usually manufactured. And the oil palm molded object EO obtained by doing in this way has oil palm material W joined firmly by the compaction process. This is because cellulose, hemicellulose, and lignin are hydrogen-bonded by compaction processing, and especially the palm of an oil palm contains many sugars, lignin, plastic components, etc., and these components are decomposed and softened by compaction processing. The oil palm material W functions as a binder by being recrystallized and recombined after moving between the oil palm materials W, and further, the fibers of the surface layer of the oil palm material W are softened by the consolidation process, and the lamination direction It is considered that the timbers are firmly joined together by being intertwined with the fibers of the wood adjacent to the wood.
このように本実施の形態のオイルパーム成型体EOによれば、ホルムアルデヒド等による環境負荷が懸念される人工接着剤やコストが高い天然接着剤を使用することなく木材同士が接合されることから、環境に優しく、また、コストを抑えることができる。
しかも、接着剤の使用によってオイルパーム材Wを接合する場合には、接着剤を塗布等した後、圧締して接着剤を硬化するのが一般的であり、接着剤塗布等の工程及び圧締工程が必要であるのに対し、本実施の形態のオイルパーム成型体EOによれば、圧密加工によって接着剤を使用することなく木材同士が接合されるため、上記別個の接合工程が不要であり、製造工程の簡略化を図ることができる。 As described above, according to the oil palm molded body EO of the present embodiment, wood is joined without using an artificial adhesive or environmental adhesive due to formaldehyde or the like, or a natural adhesive having a high cost. It is environmentally friendly and can reduce costs.
In addition, when the oil palm material W is joined by using an adhesive, it is common to apply the adhesive and then to press the adhesive to cure the adhesive. While the tightening process is necessary, according to the oil palm molded body EO of the present embodiment, the woods are joined together without using an adhesive by compaction processing, so that the separate joining process is unnecessary. Yes, the manufacturing process can be simplified.
しかも、接着剤の使用によってオイルパーム材Wを接合する場合には、接着剤を塗布等した後、圧締して接着剤を硬化するのが一般的であり、接着剤塗布等の工程及び圧締工程が必要であるのに対し、本実施の形態のオイルパーム成型体EOによれば、圧密加工によって接着剤を使用することなく木材同士が接合されるため、上記別個の接合工程が不要であり、製造工程の簡略化を図ることができる。 As described above, according to the oil palm molded body EO of the present embodiment, wood is joined without using an artificial adhesive or environmental adhesive due to formaldehyde or the like, or a natural adhesive having a high cost. It is environmentally friendly and can reduce costs.
In addition, when the oil palm material W is joined by using an adhesive, it is common to apply the adhesive and then to press the adhesive to cure the adhesive. While the tightening process is necessary, according to the oil palm molded body EO of the present embodiment, the woods are joined together without using an adhesive by compaction processing, so that the separate joining process is unnecessary. Yes, the manufacturing process can be simplified.
そして、このようにして得たオイルパーム成型体EOは、圧密加工されたことによって、オイルパーム材Wの空隙が小さくなって、また、細胞壁を構成するリグニン、ヘミセルロース等が軟化・分解及び再結合・再結晶化され細胞密度が高まり、比重が小さくて強度が小さく変形しやすいというオイルパーム材Wの欠点が補完され、高い強度及び安定した寸法形状性が確保される。特に、気乾比重が0.8以上となるように圧密加工することで、積層したオイルパーム材Wの厚み全体が均一に圧縮され、オイルパーム材Wの性質が変化して硬度等が顕著に高くなり、また、硬度等の物性値・特性値のばらつきが少なくなり、更には、周囲環境条件の変化による膨張率及び乾燥率のばらつきも少なくそれによる変形等が抑えられ、寸法形状安定性が増す。したがって、物性的に安定して製品間の品質にばらつきが少なく商品価値が高いものとなる。更に、乾燥させたオイルパーム材Wを複数枚積層した状態で全体を圧密化しており、接合面において周囲環境条件の変化による膨張率及び収縮率は略均一となることから安定した接合性が維持され、周囲環境条件の変化で接合面にストレスがかかることによる歪み、変形、クラック等が生じることなく、安定した寸法形状性が確保される。
The oil palm molding EO obtained in this way is compacted to reduce the gap in the oil palm material W, and the lignin, hemicellulose, etc. constituting the cell wall are softened, decomposed and recombined. -It is recrystallized, the cell density is increased, the disadvantage of the oil palm material W, which is low in specific gravity and low in strength and easily deformed, is complemented, and high strength and stable dimensional shape are ensured. In particular, the entire thickness of the laminated oil palm material W is uniformly compressed by carrying out the consolidation process so that the air-dry specific gravity is 0.8 or more, the properties of the oil palm material W are changed, and the hardness and the like are remarkable. In addition, there is less variation in physical properties and characteristic values such as hardness, and there is also little variation in expansion rate and drying rate due to changes in ambient environmental conditions, so that deformation and the like can be suppressed, thereby improving dimensional shape stability. Increase. Therefore, the physical properties are stable, the quality between products is small, and the commercial value is high. Furthermore, it is consolidated in a state where a plurality of dried oil palm materials W are stacked, and the expansion rate and contraction rate due to changes in ambient environmental conditions are substantially uniform on the bonding surface, so that stable bonding is maintained. In addition, a stable dimensional shape is ensured without causing distortion, deformation, cracks, and the like due to stress applied to the joint surface due to changes in ambient environmental conditions.
特に、オイルパーム材Wの繊維方向を同一にして積層した場合においては、圧密加工において軟化した表面層の繊維が、繊維方向を同一として縦方向に隣接しているオイルパーム材Wの繊維と絡み易く、その絡み合った状態で固定化されたオイルパーム材Wは強固に接合される。しかも、接合面における膨張率及び収縮率を完全に等しくできることから周囲環境条件が変化した場合において接合面に全くストレスが掛かることがない。したがって、接合強度が高くて機械的強度も高く、高い寸法形状安定性が確保される。
一方、加圧前多層材NWの繊維方向を互いに直交させて積層した場合には、圧密加工後の周囲環境条件の変化によって膨張収縮力が生じでも互いの木材同士が相互に作用し合って特定方向の反り変形が防止される。殊に、全枚数が奇数枚の場合には、繊維方向を互いに直交させて積層したとき表裏で単板の繊維方向が平行で断面が対称となるため、周囲環境条件の変化による歪み等が防止される。このとき、圧密加工において繊維方向を同一とした圧縮力よりも大きくすることにより、強靭な接合状態が得られる。
また、全枚数を偶数枚とする場合には、内部の一部にて繊維方向を同一にして積層しその他は繊維方向を互いに直交させて積層することによって、表裏の繊維方向を合わせ周囲環境条件の変化による歪み等を防止することが可能となる。 In particular, in the case of laminating with the same fiber direction of the oil palm material W, the fibers of the surface layer softened in the consolidation process are entangled with the fibers of the oil palm material W adjacent in the longitudinal direction with the same fiber direction. It is easy and the oil palm material W fixed in the entangled state is firmly joined. In addition, since the expansion rate and contraction rate at the joint surface can be made completely equal, no stress is applied to the joint surface when the ambient environmental conditions change. Therefore, the bonding strength is high, the mechanical strength is also high, and high dimensional shape stability is ensured.
On the other hand, when the multilayered material NW before pressurization is laminated with the fiber directions orthogonal to each other, even if expansion and contraction force is generated due to changes in the surrounding environmental conditions after the consolidation process, the mutual woods interact with each other and specify Directional warpage deformation is prevented. In particular, when the total number of sheets is an odd number, when laminated with the fiber directions orthogonal to each other, the fiber direction of the single plate is parallel and the cross section is symmetric on the front and back, preventing distortion due to changes in ambient environmental conditions, etc. Is done. At this time, a tough joining state can be obtained by increasing the compressive force with the same fiber direction in consolidation.
If the total number of sheets is an even number, the same fiber direction is laminated in a part of the inside, and the others are laminated with the fiber directions orthogonal to each other, so that the front and back fiber directions are aligned and the ambient environmental conditions It is possible to prevent distortion and the like due to the change of.
一方、加圧前多層材NWの繊維方向を互いに直交させて積層した場合には、圧密加工後の周囲環境条件の変化によって膨張収縮力が生じでも互いの木材同士が相互に作用し合って特定方向の反り変形が防止される。殊に、全枚数が奇数枚の場合には、繊維方向を互いに直交させて積層したとき表裏で単板の繊維方向が平行で断面が対称となるため、周囲環境条件の変化による歪み等が防止される。このとき、圧密加工において繊維方向を同一とした圧縮力よりも大きくすることにより、強靭な接合状態が得られる。
また、全枚数を偶数枚とする場合には、内部の一部にて繊維方向を同一にして積層しその他は繊維方向を互いに直交させて積層することによって、表裏の繊維方向を合わせ周囲環境条件の変化による歪み等を防止することが可能となる。 In particular, in the case of laminating with the same fiber direction of the oil palm material W, the fibers of the surface layer softened in the consolidation process are entangled with the fibers of the oil palm material W adjacent in the longitudinal direction with the same fiber direction. It is easy and the oil palm material W fixed in the entangled state is firmly joined. In addition, since the expansion rate and contraction rate at the joint surface can be made completely equal, no stress is applied to the joint surface when the ambient environmental conditions change. Therefore, the bonding strength is high, the mechanical strength is also high, and high dimensional shape stability is ensured.
On the other hand, when the multilayered material NW before pressurization is laminated with the fiber directions orthogonal to each other, even if expansion and contraction force is generated due to changes in the surrounding environmental conditions after the consolidation process, the mutual woods interact with each other and specify Directional warpage deformation is prevented. In particular, when the total number of sheets is an odd number, when laminated with the fiber directions orthogonal to each other, the fiber direction of the single plate is parallel and the cross section is symmetric on the front and back, preventing distortion due to changes in ambient environmental conditions, etc. Is done. At this time, a tough joining state can be obtained by increasing the compressive force with the same fiber direction in consolidation.
If the total number of sheets is an even number, the same fiber direction is laminated in a part of the inside, and the others are laminated with the fiber directions orthogonal to each other, so that the front and back fiber directions are aligned and the ambient environmental conditions It is possible to prevent distortion and the like due to the change of.
そして、本実施の形態のオイルパーム成型体EOは、その圧縮面とされた表裏面においても圧密加工により緻密化されてオイルパーム材Wが高価な天然接着剤を使用しなくても、外表面から剥離し難くなっていて、表面の品質が良い。即ち、人工接着剤やコストが高い天然接着剤を使用しなくても繊維の表面からの剥離が抑制できることから、環境に優しく、コストを抑えることができる。
更に、厚み全体が圧密加工されたものであることから、厚み側面の稜線に対して大きな面取り加工や曲面加工を施したとしてもその端面では、高い硬度が確保される。 And the oil palm molding EO of this Embodiment is the outer surface even if it does not use the natural adhesive agent which the oil palm material W is densified by the compaction process on the front and back surfaces made into the compression surface, and the oil palm material W is expensive. The surface quality is good. That is, peeling from the fiber surface can be suppressed without using an artificial adhesive or a high-cost natural adhesive, which is environmentally friendly and can reduce costs.
Furthermore, since the entire thickness is compacted, even if a large chamfering process or curved surface process is applied to the ridgeline on the thickness side surface, high hardness is ensured on the end surface.
更に、厚み全体が圧密加工されたものであることから、厚み側面の稜線に対して大きな面取り加工や曲面加工を施したとしてもその端面では、高い硬度が確保される。 And the oil palm molding EO of this Embodiment is the outer surface even if it does not use the natural adhesive agent which the oil palm material W is densified by the compaction process on the front and back surfaces made into the compression surface, and the oil palm material W is expensive. The surface quality is good. That is, peeling from the fiber surface can be suppressed without using an artificial adhesive or a high-cost natural adhesive, which is environmentally friendly and can reduce costs.
Furthermore, since the entire thickness is compacted, even if a large chamfering process or curved surface process is applied to the ridgeline on the thickness side surface, high hardness is ensured on the end surface.
因みに、オイルパームにおいて特に含水率が高く軟質な樹心付近のオイルパーム材Wを使用した場合であっても、圧密加工によって強度を高めることができ、または、圧密加工において温度及び圧縮制御を行うことで、余分な水分の排出が可能で、加圧前多層材NW内部の水蒸気圧が均一に好適に調節されることから、圧縮加工後の膨らみ変形等も抑制される。よって、十分な強度が確保され安定した寸法形状性を有するオイルパーム成型体EOを形成することが可能である。したがって、オイルパームの樹幹全体の有効活用を図ることができる。
特に、乾燥させたオイルパーム材Wのうち、乾燥後の気乾比重が小さい表裏に配置して積層した場合には、上述したように、上プレス盤10A及び下プレス盤10Bに接触する表裏層に乾燥後の気乾比重が小さい材料が配設され、圧密加工がなされることになるから、乾燥後の気乾比重が小さい材料において上プレス盤10A及び下プレス盤10Bによって十分な加熱圧縮がされて木材相互間の比重の差が小さくなり、製品化後における寸法変化率の差も小さくなる。よって、製品化後における寸法形状の安定性が増す。 Incidentally, even in the case of using an oil palm material W in the vicinity of a soft tree core having a high water content particularly in oil palm, the strength can be increased by compaction processing, or temperature and compression control are performed in compaction processing. In this way, excess water can be discharged, and the water vapor pressure inside the multilayer material NW before pressurization is uniformly and suitably adjusted, so that bulge deformation after compression processing and the like are also suppressed. Therefore, it is possible to form the oil palm molded body EO having sufficient strength and stable dimensional shape. Therefore, effective utilization of the entire trunk of oil palm can be achieved.
In particular, when the oil palm material W is dried and disposed on the front and back surfaces having a small air-dry specific gravity, the front and back layers contacting theupper press panel 10A and the lower press panel 10B as described above. Since a material having a small air-dry specific gravity after drying is disposed and compaction processing is performed, sufficient heat compression is performed by the upper press panel 10A and the lower press panel 10B in the material having a small air-dry specific gravity after drying. Thus, the difference in specific gravity between the woods is reduced, and the difference in the dimensional change rate after commercialization is also reduced. Therefore, the stability of the dimensional shape after commercialization increases.
特に、乾燥させたオイルパーム材Wのうち、乾燥後の気乾比重が小さい表裏に配置して積層した場合には、上述したように、上プレス盤10A及び下プレス盤10Bに接触する表裏層に乾燥後の気乾比重が小さい材料が配設され、圧密加工がなされることになるから、乾燥後の気乾比重が小さい材料において上プレス盤10A及び下プレス盤10Bによって十分な加熱圧縮がされて木材相互間の比重の差が小さくなり、製品化後における寸法変化率の差も小さくなる。よって、製品化後における寸法形状の安定性が増す。 Incidentally, even in the case of using an oil palm material W in the vicinity of a soft tree core having a high water content particularly in oil palm, the strength can be increased by compaction processing, or temperature and compression control are performed in compaction processing. In this way, excess water can be discharged, and the water vapor pressure inside the multilayer material NW before pressurization is uniformly and suitably adjusted, so that bulge deformation after compression processing and the like are also suppressed. Therefore, it is possible to form the oil palm molded body EO having sufficient strength and stable dimensional shape. Therefore, effective utilization of the entire trunk of oil palm can be achieved.
In particular, when the oil palm material W is dried and disposed on the front and back surfaces having a small air-dry specific gravity, the front and back layers contacting the
このように本実施の形態に係るオイルパーム成型体EOは、本来含水率が高く軟質なオイルパームの樹幹をオイルパーム材Wとして剥いた後、乾燥させ、更に複数枚積層し圧密加工することによって、表面のみならず板厚全体における強度及び硬度が大きく向上され、床材、腰板材、屋内家具材、表面塗装して使用する住宅用外装材等、広範な用途が見込まれる。殊に、圧密加工によって表面硬度が高められ、厚みが薄くても十分な強度及び硬度が確保できることから、製品化において厚みを薄くすることが可能である。
As described above, the oil palm molded body EO according to the present embodiment is formed by peeling a trunk of a soft oil palm having a high moisture content as an oil palm material W, and then drying and further stacking and compacting a plurality of sheets. In addition to the surface, the strength and hardness of the entire plate thickness are greatly improved, and a wide range of applications such as flooring materials, waistboard materials, indoor furniture materials, and housing exterior materials used by surface coating are expected. In particular, since the surface hardness is increased by compaction processing and sufficient strength and hardness can be ensured even if the thickness is small, the thickness can be reduced in commercialization.
[実施の形態2]
図4に示したオイルパーム成型体EOは、加圧前多層材NWから直接、金型の上型と下型とで圧縮形成したものであるが、1回目で予備成型したものを2回目で本成型することもできる。
即ち、図9に示すように、まず、図9(a)の加圧前多層材NWから、図9(b)の50%圧密加工して板状の予備オイルパーム成型体HWとし、次いで、それを所定の金型で上型と下型とで圧縮形成し、図9(c)のオイルパーム成型体EOを成型したものである。
そのオイルパーム成型体の製造方法について図10及び図11のフローチャートを用いて説明する。 [Embodiment 2]
The oil palm molded body EO shown in FIG. 4 is formed by compressing the upper mold and the lower mold of the mold directly from the multilayer material NW before pressurization. This can also be molded.
That is, as shown in FIG. 9, first, the pre-pressing multilayer material NW of FIG. 9A is subjected to 50% consolidation of FIG. 9B to obtain a plate-like preliminary oil palm molded body HW, This is formed by compressing the upper mold and the lower mold with a predetermined mold, and molding the oil palm molded body EO of FIG. 9C.
The manufacturing method of the oil palm molding is demonstrated using the flowchart of FIG.10 and FIG.11.
図4に示したオイルパーム成型体EOは、加圧前多層材NWから直接、金型の上型と下型とで圧縮形成したものであるが、1回目で予備成型したものを2回目で本成型することもできる。
即ち、図9に示すように、まず、図9(a)の加圧前多層材NWから、図9(b)の50%圧密加工して板状の予備オイルパーム成型体HWとし、次いで、それを所定の金型で上型と下型とで圧縮形成し、図9(c)のオイルパーム成型体EOを成型したものである。
そのオイルパーム成型体の製造方法について図10及び図11のフローチャートを用いて説明する。 [Embodiment 2]
The oil palm molded body EO shown in FIG. 4 is formed by compressing the upper mold and the lower mold of the mold directly from the multilayer material NW before pressurization. This can also be molded.
That is, as shown in FIG. 9, first, the pre-pressing multilayer material NW of FIG. 9A is subjected to 50% consolidation of FIG. 9B to obtain a plate-like preliminary oil palm molded body HW, This is formed by compressing the upper mold and the lower mold with a predetermined mold, and molding the oil palm molded body EO of FIG. 9C.
The manufacturing method of the oil palm molding is demonstrated using the flowchart of FIG.10 and FIG.11.
1回目で予備成型したものを2回目で本成型するオイルパーム成型体EOの製造方法について説明する。
実施の形態1と同様に、最初に、ステップS30で所定長のオイルパーム幹WDをその周方向に回転させながら、ロータリーレースの刃物CTで所定の厚みに剥いて複数枚のオイルパーム材Wに形成する薄板工程において、オイルパーム幹WDから3mm~20mmの範囲内の厚みのオイルパーム材Wが剥かれ、次いで、ステップS31の乾燥工程において、含水率5%~30%の範囲内に乾燥され、乾燥されたオイルパーム材Wとなる。ここで、圧密加工材製造装置MCの平坦な面で形成された金型からなる上プレス盤10Aと、平坦な面で形成された金型からなる下プレス盤10Bとする。 The manufacturing method of the oil palm molded body EO which carries out the main shaping | molding by the 2nd time what was preformed at the 1st time is demonstrated.
As in the first embodiment, first, while rotating the oil palm trunk WD having a predetermined length in the circumferential direction in step S30, the rotary palm blade CT is peeled to a predetermined thickness to form a plurality of oil palm members W. In the thin plate process to be formed, the oil palm material W having a thickness in the range of 3 mm to 20 mm is peeled from the oil palm trunk WD, and then dried in the range of 5% to 30% in the moisture content in the drying process in step S31. The dried oil palm material W is obtained. Here, anupper press board 10A made of a mold formed on a flat surface of the compacted material manufacturing apparatus MC and a lower press board 10B made of a mold formed on a flat surface are used.
実施の形態1と同様に、最初に、ステップS30で所定長のオイルパーム幹WDをその周方向に回転させながら、ロータリーレースの刃物CTで所定の厚みに剥いて複数枚のオイルパーム材Wに形成する薄板工程において、オイルパーム幹WDから3mm~20mmの範囲内の厚みのオイルパーム材Wが剥かれ、次いで、ステップS31の乾燥工程において、含水率5%~30%の範囲内に乾燥され、乾燥されたオイルパーム材Wとなる。ここで、圧密加工材製造装置MCの平坦な面で形成された金型からなる上プレス盤10Aと、平坦な面で形成された金型からなる下プレス盤10Bとする。 The manufacturing method of the oil palm molded body EO which carries out the main shaping | molding by the 2nd time what was preformed at the 1st time is demonstrated.
As in the first embodiment, first, while rotating the oil palm trunk WD having a predetermined length in the circumferential direction in step S30, the rotary palm blade CT is peeled to a predetermined thickness to form a plurality of oil palm members W. In the thin plate process to be formed, the oil palm material W having a thickness in the range of 3 mm to 20 mm is peeled from the oil palm trunk WD, and then dried in the range of 5% to 30% in the moisture content in the drying process in step S31. The dried oil palm material W is obtained. Here, an
ステップS31の乾燥工程で乾燥させたオイルパーム材Wを、圧密加工材製造装置MCを用いて、ステップS32で所定の状態に複数枚積層する。このステップS32の積層工程によって予備成型における加圧前多層材NWとなる。この加圧前多層材NWは、外形は全枚数一致しているが、積載方向のオイルパーム材W相互は自重で重ねられているにすぎない。固定側の下プレス盤10Bの位置決め孔18上に載置された加圧前多層材NWに対して上プレス盤10Aを所定圧力にて下降させて加圧前多層材NWの上面、即ち、本実施の形態においては、オイルパーム材W1,・・・,W5の面に対して垂直方向に当接させる。そして、ステップS33でタイマIによるタイマ制御の下に、当該タイマIを見て、ステップS34で加熱タイミングであるか判断し、ステップS35で圧縮タイミングであるかを判断する。
加熱タイミングのとき、ステップS36で上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に所定温度(例えば、110~150℃)の水蒸気が通され、内部空間IS及び位置決め孔18内が所定温度(例えば、110~150℃)に保持される。ステップS34で加熱タイミングでないと判断したとき、ステップS35で圧縮タイミングであるかを判断し、圧縮タイミングのときステップS37で50%圧縮の圧縮工程に入る。このステップS37の予備圧縮工程は、50%の圧縮率としているが、本発明を実施する場合には、1回目の予備成型では、圧縮率20~80%の範囲であればよい。 A plurality of oil palm materials W dried in the drying step of step S31 are stacked in a predetermined state in step S32 using the compacted material manufacturing apparatus MC. The multi-layer material NW before pressurization in the pre-molding is obtained by the stacking process of step S32. The multi-layered material NW before pressurization has the same outer shape, but the oil palm materials W in the stacking direction are merely overlapped by their own weight. Theupper press board 10A is lowered at a predetermined pressure with respect to the pre-pressing multilayer material NW placed on the positioning hole 18 of the lower press board 10B on the fixed side. In the embodiment, the oil palm materials W1,... Then, in step S33, the timer I is viewed under the timer control by the timer I, and it is determined whether it is the heating timing in step S34, and it is determined whether it is the compression timing in step S35.
At the heating timing, water vapor of a predetermined temperature (for example, 110 to 150 ° C.) is passed through the pipingpath 15 of the upper press panel 10A and the piping path 16 of the lower press panel 10B in step S36, and the interior space IS and the positioning hole 18 Is maintained at a predetermined temperature (for example, 110 to 150 ° C.). If it is determined in step S34 that it is not the heating timing, it is determined in step S35 whether it is the compression timing. If it is the compression timing, a compression process of 50% compression is entered in step S37. The pre-compression process in step S37 has a compression rate of 50%. However, when the present invention is carried out, the compression rate may be in the range of 20 to 80% in the first pre-molding.
加熱タイミングのとき、ステップS36で上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に所定温度(例えば、110~150℃)の水蒸気が通され、内部空間IS及び位置決め孔18内が所定温度(例えば、110~150℃)に保持される。ステップS34で加熱タイミングでないと判断したとき、ステップS35で圧縮タイミングであるかを判断し、圧縮タイミングのときステップS37で50%圧縮の圧縮工程に入る。このステップS37の予備圧縮工程は、50%の圧縮率としているが、本発明を実施する場合には、1回目の予備成型では、圧縮率20~80%の範囲であればよい。 A plurality of oil palm materials W dried in the drying step of step S31 are stacked in a predetermined state in step S32 using the compacted material manufacturing apparatus MC. The multi-layer material NW before pressurization in the pre-molding is obtained by the stacking process of step S32. The multi-layered material NW before pressurization has the same outer shape, but the oil palm materials W in the stacking direction are merely overlapped by their own weight. The
At the heating timing, water vapor of a predetermined temperature (for example, 110 to 150 ° C.) is passed through the piping
即ち、ステップS37では、固定側の下プレス盤10Bに対して上プレス盤10Aの圧縮力が所定圧力(例えば、20~30kg/cm2)に設定され、加圧前多層材NWが上プレス盤10A及び下プレス盤10Bにて所定時間(例えば、5~20min)加熱圧縮される。また、ステップS38で加熱・圧縮の終了であるか判断し、終了タイムになるまでステップS33からステップS38のルーチンの処理を行う。
ステップS37の圧縮率は、割れを防止するために、加圧前多層材NWの温度上昇、即ち、ステップS38のタイマIの経過時間に応じて加圧前多層材NWの内部の温度状態、加熱時間の経過に応じて徐々に大きくするのが望ましく、加熱圧縮の時間も加熱時間を考慮して設定するのが好ましい。 That is, in step S37, the compression force of theupper press board 10A is set to a predetermined pressure (for example, 20 to 30 kg / cm 2 ) with respect to the lower press board 10B on the fixed side, and the multilayer material NW before press is used as the upper press machine. 10A and the lower press panel 10B are heated and compressed for a predetermined time (for example, 5 to 20 minutes). Also, in step S38, it is determined whether the heating / compression is completed, and the routine processing from step S33 to step S38 is performed until the end time is reached.
In order to prevent cracking, the compression rate in step S37 is determined based on the temperature rise of the multilayer material NW before pressurization, that is, the internal temperature state of the multilayer material NW before pressurization according to the elapsed time of the timer I in step S38, heating It is desirable to gradually increase with the passage of time, and it is preferable to set the heating and compression time in consideration of the heating time.
ステップS37の圧縮率は、割れを防止するために、加圧前多層材NWの温度上昇、即ち、ステップS38のタイマIの経過時間に応じて加圧前多層材NWの内部の温度状態、加熱時間の経過に応じて徐々に大きくするのが望ましく、加熱圧縮の時間も加熱時間を考慮して設定するのが好ましい。 That is, in step S37, the compression force of the
In order to prevent cracking, the compression rate in step S37 is determined based on the temperature rise of the multilayer material NW before pressurization, that is, the internal temperature state of the multilayer material NW before pressurization according to the elapsed time of the timer I in step S38, heating It is desirable to gradually increase with the passage of time, and it is preferable to set the heating and compression time in consideration of the heating time.
更に、内部空間IS及び位置決め孔18の密閉状態で上プレス盤10A及び下プレス盤10Bによる圧縮力が保持されたまま、ステップS33のタイマI基準に所定温度(例えば、140~160℃)まで上昇される。
ステップS38でステップS33のタイマIの動作に基づくステップS36の予備加熱工程及びステップS37の予備圧縮工程が終了したことが判断されると、ステップS39で予備固定化工程に入る。予備固定化工程では、ステップS40のタイマIIに基づき、上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に常温の冷却水または地下水が通されることによって、上プレス盤10A及び下プレス盤10Bが常温前後まで冷却され、材料によって異なる所定時間(例えば、オイルパームでは10~60min)保持される。なお、このときの固定側の下プレス盤10Bに対する上プレス盤10Aの圧縮力は、加熱圧縮の際の圧力と同じ所定圧力(例えば、20~50kg/cm2)に保持されたまま、上プレス盤10A及び下プレス盤10Bが冷却される。
そして、最後に、ステップS41で解圧工程に入り、固定側の下プレス盤10Bに対して上プレス盤10Aを上昇させ、内部空間IS及び位置決め孔18から仕上がり品であるオイルパーム成型体EOが取出されることで一連の予備成型が終了し、板状に圧縮率50%程度に圧縮し、圧密化した予備オイルパーム成型体HWが得られる。 Further, while the internal space IS and thepositioning hole 18 are hermetically sealed, the compression force by the upper press board 10A and the lower press board 10B is maintained, and the temperature rises to a predetermined temperature (eg, 140 to 160 ° C.) based on the timer I reference in step S33. Is done.
If it is determined in step S38 that the preliminary heating process in step S36 based on the operation of the timer I in step S33 and the preliminary compression process in step S37 are completed, the preliminary fixing process is entered in step S39. In the preliminary immobilization process, normal temperature cooling water or ground water is passed through the pipingpath 15 of the upper press panel 10A and the piping path 16 of the lower press panel 10B on the basis of the timer II in step S40. The lower press panel 10B is cooled to around normal temperature and held for a predetermined time (for example, 10 to 60 minutes for oil palm) depending on the material. At this time, the compression force of the upper press disk 10A with respect to the lower press disk 10B on the fixed side is maintained at a predetermined pressure (for example, 20 to 50 kg / cm 2 ) that is the same as the pressure at the time of heat compression. The board 10A and the lower press board 10B are cooled.
Finally, the pressure releasing process is entered in step S41, theupper press board 10A is raised with respect to the lower press board 10B on the fixed side, and the oil palm molded body EO which is a finished product from the internal space IS and the positioning hole 18 is obtained. By taking out, a series of preliminary molding is completed, and a compacted preliminary oil palm molded body HW is obtained which is compressed into a plate shape at a compression rate of about 50% and consolidated.
ステップS38でステップS33のタイマIの動作に基づくステップS36の予備加熱工程及びステップS37の予備圧縮工程が終了したことが判断されると、ステップS39で予備固定化工程に入る。予備固定化工程では、ステップS40のタイマIIに基づき、上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に常温の冷却水または地下水が通されることによって、上プレス盤10A及び下プレス盤10Bが常温前後まで冷却され、材料によって異なる所定時間(例えば、オイルパームでは10~60min)保持される。なお、このときの固定側の下プレス盤10Bに対する上プレス盤10Aの圧縮力は、加熱圧縮の際の圧力と同じ所定圧力(例えば、20~50kg/cm2)に保持されたまま、上プレス盤10A及び下プレス盤10Bが冷却される。
そして、最後に、ステップS41で解圧工程に入り、固定側の下プレス盤10Bに対して上プレス盤10Aを上昇させ、内部空間IS及び位置決め孔18から仕上がり品であるオイルパーム成型体EOが取出されることで一連の予備成型が終了し、板状に圧縮率50%程度に圧縮し、圧密化した予備オイルパーム成型体HWが得られる。 Further, while the internal space IS and the
If it is determined in step S38 that the preliminary heating process in step S36 based on the operation of the timer I in step S33 and the preliminary compression process in step S37 are completed, the preliminary fixing process is entered in step S39. In the preliminary immobilization process, normal temperature cooling water or ground water is passed through the piping
Finally, the pressure releasing process is entered in step S41, the
本実施の形態のオイルパーム成型体EOを製造するには、更に、予備オイルパーム成型体HWに対して同様の処理工程を行う。
まず、圧密加工材製造装置MCの金型は、平面部EP及び上に凸部EQを形成する金型からなる上プレス盤10Aと、平面部EP及び上に凹部ERを形成する金型からなる下プレス盤10Bとする。当該圧密加工材製造装置MCの位置決め孔18内に予備オイルパーム成型体HWが設定される。この1回目で予備成型は、外形が全枚数一致し、かつ、積載方向のオイルパーム材W相互は接合されている。固定側の下プレス盤10Bの位置決め孔18上に載置された予備オイルパーム成型体HWに対して上プレス盤10Aを所定圧力にて下降させて予備オイルパーム成型体HWの上面、即ち、本実施の形態においては、オイルパーム材W1,・・・,W5の面に対して垂直方向に当接させる。そして、ステップS42でタイマIIIによるタイマ制御の下に、当該タイマIIIを見て、ステップS43で加熱タイミングであるか判断し、ステップS44で圧縮タイミングであるかを判断する。
加熱タイミングのとき、ステップS45で上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に所定温度(例えば、110~170〔℃〕)の水蒸気が通され、内部空間IS及び位置決め孔18内が所定温度(例えば、110~170〔℃〕)に保持される。ステップS43で加熱タイミングでないと判断したとき、ステップS44で圧縮タイミングであるかを判断し、圧縮タイミングのときステップS46で本圧縮工程に入る。 In order to manufacture the oil palm molded body EO of the present embodiment, the same processing steps are further performed on the preliminary oil palm molded body HW.
First, the mold of the compacted material manufacturing apparatus MC is composed of anupper press 10A composed of a mold for forming the flat part EP and the convex part EQ on the flat part EP, and a mold for forming the concave part ER on the flat part EP and above. The lower press panel 10B is assumed. A preliminary oil palm molded body HW is set in the positioning hole 18 of the compacted material manufacturing apparatus MC. In this first molding, the preforms have the same outer shape, and the oil palm materials W in the stacking direction are joined to each other. The upper press board 10A is lowered at a predetermined pressure with respect to the preliminary oil palm molded body HW placed on the positioning hole 18 of the fixed lower press board 10B, and the upper surface of the preliminary oil palm molded body HW, ie, the main In the embodiment, the oil palm materials W1,... Then, in step S42, the timer III is viewed under the timer control by the timer III, and it is determined whether it is the heating timing in step S43, and it is determined whether it is the compression timing in step S44.
At the heating timing, steam at a predetermined temperature (for example, 110 to 170 [° C.]) is passed through the pipingpath 15 of the upper press panel 10A and the piping path 16 of the lower press panel 10B in step S45, and the internal space IS and the positioning holes 18 is maintained at a predetermined temperature (for example, 110 to 170 [° C.]). When it is determined at step S43 that it is not the heating timing, it is determined at step S44 whether it is the compression timing, and when it is the compression timing, the main compression process is entered at step S46.
まず、圧密加工材製造装置MCの金型は、平面部EP及び上に凸部EQを形成する金型からなる上プレス盤10Aと、平面部EP及び上に凹部ERを形成する金型からなる下プレス盤10Bとする。当該圧密加工材製造装置MCの位置決め孔18内に予備オイルパーム成型体HWが設定される。この1回目で予備成型は、外形が全枚数一致し、かつ、積載方向のオイルパーム材W相互は接合されている。固定側の下プレス盤10Bの位置決め孔18上に載置された予備オイルパーム成型体HWに対して上プレス盤10Aを所定圧力にて下降させて予備オイルパーム成型体HWの上面、即ち、本実施の形態においては、オイルパーム材W1,・・・,W5の面に対して垂直方向に当接させる。そして、ステップS42でタイマIIIによるタイマ制御の下に、当該タイマIIIを見て、ステップS43で加熱タイミングであるか判断し、ステップS44で圧縮タイミングであるかを判断する。
加熱タイミングのとき、ステップS45で上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に所定温度(例えば、110~170〔℃〕)の水蒸気が通され、内部空間IS及び位置決め孔18内が所定温度(例えば、110~170〔℃〕)に保持される。ステップS43で加熱タイミングでないと判断したとき、ステップS44で圧縮タイミングであるかを判断し、圧縮タイミングのときステップS46で本圧縮工程に入る。 In order to manufacture the oil palm molded body EO of the present embodiment, the same processing steps are further performed on the preliminary oil palm molded body HW.
First, the mold of the compacted material manufacturing apparatus MC is composed of an
At the heating timing, steam at a predetermined temperature (for example, 110 to 170 [° C.]) is passed through the piping
即ち、ステップS46では、固定側の下プレス盤10Bに対して上プレス盤10Aの圧縮力が所定圧力(例えば、20~30kg/cm2)に設定され、予備オイルパーム成型体HWが上プレス盤10A及び下プレス盤10Bにて所定時間(例えば、5~20〔min〕)加熱圧縮される。また、ステップS47で本加熱・圧縮の終了であるか判断し、終了タイムになるまでステップS42からステップS47のルーチンの処理を行う。
ステップS46の圧縮力は、割れを防止するために、予備オイルパーム成型体HWの温度上昇、即ち、ステップS42のタイマIの経過時間に応じて予備オイルパーム成型体HWの内部の温度状態、加熱時間の経過に応じて徐々に大きくするのが望ましく、加熱圧縮の時間も加熱時間を考慮して設定するのが好ましい。 That is, in step S46, the compression force of theupper press board 10A is set to a predetermined pressure (for example, 20 to 30 kg / cm 2 ) with respect to the lower press board 10B on the fixed side, and the preliminary oil palm molded body HW becomes the upper press board. 10A and the lower press panel 10B are heated and compressed for a predetermined time (for example, 5 to 20 [min]). In step S47, it is determined whether or not the main heating / compression is completed, and the routine processing from step S42 to step S47 is performed until the end time is reached.
In order to prevent cracking, the compression force in step S46 is the temperature rise of the preliminary oil palm molded body HW, that is, the temperature state inside the preliminary oil palm molded body HW according to the elapsed time of the timer I in step S42, heating It is desirable to gradually increase with the passage of time, and it is preferable to set the heating and compression time in consideration of the heating time.
ステップS46の圧縮力は、割れを防止するために、予備オイルパーム成型体HWの温度上昇、即ち、ステップS42のタイマIの経過時間に応じて予備オイルパーム成型体HWの内部の温度状態、加熱時間の経過に応じて徐々に大きくするのが望ましく、加熱圧縮の時間も加熱時間を考慮して設定するのが好ましい。 That is, in step S46, the compression force of the
In order to prevent cracking, the compression force in step S46 is the temperature rise of the preliminary oil palm molded body HW, that is, the temperature state inside the preliminary oil palm molded body HW according to the elapsed time of the timer I in step S42, heating It is desirable to gradually increase with the passage of time, and it is preferable to set the heating and compression time in consideration of the heating time.
更に、内部空間IS及び位置決め孔18の密閉状態で上プレス盤10A及び下プレス盤10Bによる圧縮力が保持されたまま、ステップS42のタイマIIIを基準に所定温度(例えば、140~160℃)まで上昇される。
ステップS47でステップS42のタイマIIIの動作に基づくステップS45の本加熱工程及びステップS46の本圧縮工程が終了したことが判断されると、ステップS48で本固定化工程に入る。本固定化工程では、ステップS49のタイマIVに基づき、上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に常温の冷却水または地下水が通されることによって、上プレス盤10A及び下プレス盤10Bが常温前後まで冷却され、材料によって異なる所定時間(例えば、オイルパームでは10~60min)保持される。なお、このときの固定側の下プレス盤10Bに対する上プレス盤10Aの圧縮力は、加熱圧縮の際の圧力と同じ所定圧力(例えば、20~50kg/cm2)に保持されたまま、上プレス盤10A及び下プレス盤10Bが冷却される。
そして、最後に、ステップS50で解圧工程に入り、固定側の下プレス盤10Bに対して上プレス盤10Aを上昇させ、内部空間IS及び位置決め孔18から仕上がり品であるオイルパーム成型体EOが取出され一連の本成型が終了し、圧密化したオイルパーム成型体EOが得られる。 Further, with the internal space IS and thepositioning hole 18 sealed, the compression force from the upper press board 10A and the lower press board 10B is maintained, and the temperature reaches a predetermined temperature (eg, 140 to 160 ° C.) based on the timer III in step S42. Be raised.
If it is determined in step S47 that the main heating process in step S45 based on the operation of the timer III in step S42 and the main compression process in step S46 have been completed, the main fixing process is entered in step S48. In this immobilization process, normal temperature cooling water or ground water is passed through the pipingpath 15 of the upper press panel 10A and the piping path 16 of the lower press panel 10B on the basis of the timer IV in step S49. The lower press panel 10B is cooled to around room temperature and held for a predetermined time (for example, 10 to 60 minutes for oil palm) depending on the material. At this time, the compression force of the upper press disk 10A with respect to the lower press disk 10B on the fixed side is maintained at a predetermined pressure (for example, 20 to 50 kg / cm 2 ) that is the same as the pressure at the time of heat compression. The board 10A and the lower press board 10B are cooled.
Finally, the pressure releasing process is entered in step S50, and theupper press disk 10A is raised relative to the fixed-side lower press disk 10B, and the finished oil palm molded body EO from the internal space IS and the positioning hole 18 is obtained. The series of main molding is taken out and a compacted oil palm molded body EO is obtained.
ステップS47でステップS42のタイマIIIの動作に基づくステップS45の本加熱工程及びステップS46の本圧縮工程が終了したことが判断されると、ステップS48で本固定化工程に入る。本固定化工程では、ステップS49のタイマIVに基づき、上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に常温の冷却水または地下水が通されることによって、上プレス盤10A及び下プレス盤10Bが常温前後まで冷却され、材料によって異なる所定時間(例えば、オイルパームでは10~60min)保持される。なお、このときの固定側の下プレス盤10Bに対する上プレス盤10Aの圧縮力は、加熱圧縮の際の圧力と同じ所定圧力(例えば、20~50kg/cm2)に保持されたまま、上プレス盤10A及び下プレス盤10Bが冷却される。
そして、最後に、ステップS50で解圧工程に入り、固定側の下プレス盤10Bに対して上プレス盤10Aを上昇させ、内部空間IS及び位置決め孔18から仕上がり品であるオイルパーム成型体EOが取出され一連の本成型が終了し、圧密化したオイルパーム成型体EOが得られる。 Further, with the internal space IS and the
If it is determined in step S47 that the main heating process in step S45 based on the operation of the timer III in step S42 and the main compression process in step S46 have been completed, the main fixing process is entered in step S48. In this immobilization process, normal temperature cooling water or ground water is passed through the piping
Finally, the pressure releasing process is entered in step S50, and the
この実施の形態のオイルパーム成型体EOは、図9(c)に示す形態では、それを温度及び圧縮力を本来の固定化に入る直前の温度及び圧縮力としてオイルパーム成型体EOとしたものである。このとき、金型で形成した凹凸は、オイルパーム成型体EOの平面部EPと凹部EQ、凸部ERが同じ厚みで形成されても、同じ厚みでなく形成してもよい。このためには、温度及び圧縮力を本来の固定化に入る直前の温度及び圧縮力として、50%程度の圧密を行うことを前提に説明したが、本発明を実施する場合には、圧縮率を20~80%程度とした予備オイルパーム成型体HWを得て、本成型が行えればよい。
In the embodiment shown in FIG. 9C, the oil palm molded body EO of this embodiment is an oil palm molded body EO having a temperature and a compressive force immediately before entering the original fixation of the temperature and the compressive force. It is. At this time, the unevenness | corrugation formed with the metal mold | die may form not the same thickness even if the plane part EP of the oil palm molded object EO, the recessed part EQ, and the convex part ER are formed with the same thickness. For this purpose, the temperature and compressive force have been described on the premise that compaction of about 50% is performed as the temperature and compressive force immediately before entering the original immobilization. It is only necessary to obtain a preliminary oil palm molded body HW having about 20 to 80% and to perform the main molding.
[実施の形態の展開]
また、図12(a)の他の実施の形態(事例1)に示すように、板状の予備オイルパーム成型体HWを形成しておき、その予備オイルパーム成型体HWを持ち上げる圧密加工してなる図12(b)に示してなる脚JWを圧密加工材製造装置MCで一体に接合して図12(c)のようにオイルパーム成型体EOとしたものである。このとき、予備オイルパーム成型体HWと脚JWとは、その接合面が同一繊維長の方向となるようにして接合すると接合強度を上げることができる。
この実施の形態においても、予備オイルパーム成型体HWを形成するときに圧縮率を20~80%程度としてもよいし、特定のオイルパーム成型体EOの状態の圧縮率で固定化し、脚JWのみを圧縮率を20~80%程度として接合してもよい。当然、その逆であってもよい。 [Deployment of the embodiment]
Further, as shown in another embodiment (case 1) of FIG. 12 (a), a plate-like preliminary oil palm molded body HW is formed, and then the preliminary oil palm molded body HW is subjected to consolidation processing for lifting. The leg JW shown in FIG. 12B is integrally joined with the compacted material manufacturing apparatus MC to form an oil palm molded body EO as shown in FIG. 12C. At this time, if the preliminary oil palm molded body HW and the leg JW are joined so that the joining surfaces thereof are in the same fiber length direction, the joining strength can be increased.
Also in this embodiment, when forming the preliminary oil palm molded body HW, the compression rate may be about 20 to 80%, or it is fixed at the compression rate in the state of the specific oil palm molded body EO, and only the leg JW is used. May be joined at a compression rate of about 20 to 80%. Of course, the opposite may be possible.
また、図12(a)の他の実施の形態(事例1)に示すように、板状の予備オイルパーム成型体HWを形成しておき、その予備オイルパーム成型体HWを持ち上げる圧密加工してなる図12(b)に示してなる脚JWを圧密加工材製造装置MCで一体に接合して図12(c)のようにオイルパーム成型体EOとしたものである。このとき、予備オイルパーム成型体HWと脚JWとは、その接合面が同一繊維長の方向となるようにして接合すると接合強度を上げることができる。
この実施の形態においても、予備オイルパーム成型体HWを形成するときに圧縮率を20~80%程度としてもよいし、特定のオイルパーム成型体EOの状態の圧縮率で固定化し、脚JWのみを圧縮率を20~80%程度として接合してもよい。当然、その逆であってもよい。 [Deployment of the embodiment]
Further, as shown in another embodiment (case 1) of FIG. 12 (a), a plate-like preliminary oil palm molded body HW is formed, and then the preliminary oil palm molded body HW is subjected to consolidation processing for lifting. The leg JW shown in FIG. 12B is integrally joined with the compacted material manufacturing apparatus MC to form an oil palm molded body EO as shown in FIG. 12C. At this time, if the preliminary oil palm molded body HW and the leg JW are joined so that the joining surfaces thereof are in the same fiber length direction, the joining strength can be increased.
Also in this embodiment, when forming the preliminary oil palm molded body HW, the compression rate may be about 20 to 80%, or it is fixed at the compression rate in the state of the specific oil palm molded body EO, and only the leg JW is used. May be joined at a compression rate of about 20 to 80%. Of course, the opposite may be possible.
図13(a)の他の実施の形態(事例2)に示すように、板状の予備オイルパーム成型体HWにオイルパーム成型体EOとしての圧縮率で平面部EPと凹部EQ、凸部ERを形成しておき、その予備オイルパーム成型体HWを持ち上げる図13(b)に示してなる脚JWを圧密加工材製造装置MCで一体に接合し、図13(c)に示すようにしたものである。このとき、予備オイルパーム成型体HWと脚JWとは、その接合面が同一繊維長の方向となるようにして接合すると接合強度を上げることができる。
この実施の形態においても、予備オイルパーム成型体HWを形成するときに圧縮率を20~80%程度としてもよいし、特定のオイルパーム成型体EOの状態の圧縮率で固定化し、脚JWのみを圧縮率を20~80%程度として接合してもよい。当然、その逆であってもよい。 As shown in another embodiment (case 2) of FIG. 13A, the plate-like preliminary oil palm molded body HW is compressed into the flat part EP, the concave part EQ, and the convex part ER with the compression ratio as the oil palm molded body EO. The leg JW shown in FIG. 13 (b) for lifting the preliminary oil palm molded body HW is integrally joined with the compacted material manufacturing apparatus MC, as shown in FIG. 13 (c). It is. At this time, if the preliminary oil palm molded body HW and the leg JW are joined so that the joining surfaces thereof are in the same fiber length direction, the joining strength can be increased.
Also in this embodiment, when forming the preliminary oil palm molded body HW, the compression rate may be about 20 to 80%, or it is fixed at the compression rate in the state of the specific oil palm molded body EO, and only the leg JW is used. May be joined at a compression rate of about 20 to 80%. Of course, the opposite may be possible.
この実施の形態においても、予備オイルパーム成型体HWを形成するときに圧縮率を20~80%程度としてもよいし、特定のオイルパーム成型体EOの状態の圧縮率で固定化し、脚JWのみを圧縮率を20~80%程度として接合してもよい。当然、その逆であってもよい。 As shown in another embodiment (case 2) of FIG. 13A, the plate-like preliminary oil palm molded body HW is compressed into the flat part EP, the concave part EQ, and the convex part ER with the compression ratio as the oil palm molded body EO. The leg JW shown in FIG. 13 (b) for lifting the preliminary oil palm molded body HW is integrally joined with the compacted material manufacturing apparatus MC, as shown in FIG. 13 (c). It is. At this time, if the preliminary oil palm molded body HW and the leg JW are joined so that the joining surfaces thereof are in the same fiber length direction, the joining strength can be increased.
Also in this embodiment, when forming the preliminary oil palm molded body HW, the compression rate may be about 20 to 80%, or it is fixed at the compression rate in the state of the specific oil palm molded body EO, and only the leg JW is used. May be joined at a compression rate of about 20 to 80%. Of course, the opposite may be possible.
図14の他の実施の形態(事例3)に示すように、板状のオイルパーム成型体EOに圧縮率の小さい凸部ERを形成したものである。オイルパーム成型体EOの平面部EPを下に凸の凸部ERで緩衝させている。この実施の形態では、凸部ERについてもその密度を上げる目的で、圧縮率を0~20%程度付与した方が安定した厚み、安定した寿命となる。
図15の他の実施の形態(事例4)に示すように、板状のオイルパーム成型体EOの上面に、平面部EPと細かな凸部ERを形成しておき、その予備オイルパーム成型体HWを持ち上げる脚JWを圧密加工材製造装置MCで一体に接合したものである。このとき、予備オイルパーム成型体HWと脚JWとは、その接合面が同一繊維長の方向となるようにして接合すると接合強度を上げることができる。
この実施の形態においても、オイルパーム成型体EOを形成するときに予備オイルパーム成型体HWとして圧縮率を20~80%程度としてもよいし、特定のオイルパーム成型体EOの状態の圧縮率で固定化し、脚JWのみを圧縮率を20~80%程度として接合してもよい。当然、その逆であってもよい。上面の細かな凸部ERは滑り止めとして機能する As shown in another embodiment of FIG. 14 (Case 3), a convex portion ER having a small compression rate is formed on a plate-shaped oil palm molded body EO. The flat part EP of the oil palm molded body EO is buffered by the convex part ER that is convex downward. In this embodiment, for the purpose of increasing the density of the convex portions ER, it is possible to provide a stable thickness and a stable life by applying a compression rate of about 0 to 20%.
As shown in another embodiment of FIG. 15 (Case 4), a flat oil palm molding EO is formed on the upper surface of a plate-shaped oil palm molding EO, and the preliminary oil palm molding is formed. The leg JW for lifting the HW is integrally joined by the compacted material manufacturing apparatus MC. At this time, if the preliminary oil palm molded body HW and the leg JW are joined so that the joining surfaces thereof are in the same fiber length direction, the joining strength can be increased.
Also in this embodiment, when forming the oil palm molded body EO, the compression ratio may be about 20 to 80% as the preliminary oil palm molded body HW, or the compression ratio in the state of the specific oil palm molded body EO It may be fixed and only the legs JW may be joined with a compression rate of about 20 to 80%. Of course, the opposite may be possible. The fine convex part ER on the upper surface functions as a slip stopper
図15の他の実施の形態(事例4)に示すように、板状のオイルパーム成型体EOの上面に、平面部EPと細かな凸部ERを形成しておき、その予備オイルパーム成型体HWを持ち上げる脚JWを圧密加工材製造装置MCで一体に接合したものである。このとき、予備オイルパーム成型体HWと脚JWとは、その接合面が同一繊維長の方向となるようにして接合すると接合強度を上げることができる。
この実施の形態においても、オイルパーム成型体EOを形成するときに予備オイルパーム成型体HWとして圧縮率を20~80%程度としてもよいし、特定のオイルパーム成型体EOの状態の圧縮率で固定化し、脚JWのみを圧縮率を20~80%程度として接合してもよい。当然、その逆であってもよい。上面の細かな凸部ERは滑り止めとして機能する As shown in another embodiment of FIG. 14 (Case 3), a convex portion ER having a small compression rate is formed on a plate-shaped oil palm molded body EO. The flat part EP of the oil palm molded body EO is buffered by the convex part ER that is convex downward. In this embodiment, for the purpose of increasing the density of the convex portions ER, it is possible to provide a stable thickness and a stable life by applying a compression rate of about 0 to 20%.
As shown in another embodiment of FIG. 15 (Case 4), a flat oil palm molding EO is formed on the upper surface of a plate-shaped oil palm molding EO, and the preliminary oil palm molding is formed. The leg JW for lifting the HW is integrally joined by the compacted material manufacturing apparatus MC. At this time, if the preliminary oil palm molded body HW and the leg JW are joined so that the joining surfaces thereof are in the same fiber length direction, the joining strength can be increased.
Also in this embodiment, when forming the oil palm molded body EO, the compression ratio may be about 20 to 80% as the preliminary oil palm molded body HW, or the compression ratio in the state of the specific oil palm molded body EO It may be fixed and only the legs JW may be joined with a compression rate of about 20 to 80%. Of course, the opposite may be possible. The fine convex part ER on the upper surface functions as a slip stopper
図16の他の実施の形態(事例5)に示すように、所定の厚みのオイルパーム成型体EOが、凹部EQのみで複数層に重ねたオイルパーム材W相互を一体に保持している。凹部EQ以外の箇所は圧密加工してもよいし、重ね合せた状態を維持してもよい。本実施の形態では家屋の屋根裏、壁の断熱材等に使用が好適の実施の形態となる。
図17の他の実施の形態(事例6)に示すように、所定の厚みのオイルパーム成型体EOが、凹部EQのみで複数層に重ねたオイルパーム材Wを一体に保持している。凹部EQ以外の箇所は圧密加工してもよいし、重ね合せた状態を維持してもよい。本実施の形態では家屋の屋根裏、壁の断熱材等に使用が好適の実施の形態となる。 As shown in another embodiment of FIG. 16 (Case 5), an oil palm molded body EO having a predetermined thickness integrally holds the oil palm materials W stacked in a plurality of layers only by the recess EQ. Locations other than the concave portion EQ may be subjected to consolidation processing, or the superposed state may be maintained. In this embodiment, the use is suitable for an attic of a house, a heat insulating material of a wall, and the like.
As shown in another embodiment (case 6) in FIG. 17, an oil palm molded body EO having a predetermined thickness integrally holds the oil palm material W stacked in a plurality of layers only by the recess EQ. Locations other than the concave portion EQ may be subjected to consolidation processing, or the superposed state may be maintained. In this embodiment, the use is suitable for an attic of a house, a heat insulating material of a wall, and the like.
図17の他の実施の形態(事例6)に示すように、所定の厚みのオイルパーム成型体EOが、凹部EQのみで複数層に重ねたオイルパーム材Wを一体に保持している。凹部EQ以外の箇所は圧密加工してもよいし、重ね合せた状態を維持してもよい。本実施の形態では家屋の屋根裏、壁の断熱材等に使用が好適の実施の形態となる。 As shown in another embodiment of FIG. 16 (Case 5), an oil palm molded body EO having a predetermined thickness integrally holds the oil palm materials W stacked in a plurality of layers only by the recess EQ. Locations other than the concave portion EQ may be subjected to consolidation processing, or the superposed state may be maintained. In this embodiment, the use is suitable for an attic of a house, a heat insulating material of a wall, and the like.
As shown in another embodiment (case 6) in FIG. 17, an oil palm molded body EO having a predetermined thickness integrally holds the oil palm material W stacked in a plurality of layers only by the recess EQ. Locations other than the concave portion EQ may be subjected to consolidation processing, or the superposed state may be maintained. In this embodiment, the use is suitable for an attic of a house, a heat insulating material of a wall, and the like.
本実施の形態における5枚のオイルパーム材W1,・・・,W5は、その厚みを1.5mm,2.0mm,2.5mm,3.0mm,3.5mm,4.0mm,4.5mm,5.0mm,5.5mm,6.0mmのものを、その繊維長が直角に交差するように各同一厚さの5枚のオイルパーム材Wを配置した加圧前多層材NWから圧縮してオイルパーム成型体EOに代わる積層合板を製造した。
基本的に圧縮前の加圧前多層材NWの厚みに対して、圧縮率20~80%の圧密加工を行った。供給する水蒸気の温度は、110~210度に上昇させ、その間に加えた圧縮力は20~50kg/cm2である。ここで、1.5mmのオイルパーム材Wは5枚積層することにより、7.5mmの加圧前多層材NWとなるが、実験室レベルでの所定の圧縮率で圧縮した場合の圧縮誤差及び解圧後の膨張によって数%以下であるが誤差が介在している。 The five oil palm materials W1,..., W5 in the present embodiment have a thickness of 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, 4.5 mm. , 5.0 mm, 5.5 mm, and 6.0 mm are compressed from the pre-pressing multilayer material NW in which five oil palm materials W having the same thickness are arranged so that the fiber lengths intersect at right angles. Thus, a laminated plywood was produced in place of the oil palm molded body EO.
Basically, a compacting process with a compression ratio of 20 to 80% was performed on the thickness of the multilayer material NW before compression before compression. The temperature of the supplied steam is raised to 110 to 210 degrees, and the compression force applied during that time is 20 to 50 kg / cm 2 . Here, by laminating five 1.5 mm oil palm materials W, a 7.5 mm pre-pressurized multilayer material NW is obtained, but when compressed at a predetermined compression rate at the laboratory level, Due to the expansion after decompression, it is several percent or less, but an error is present.
基本的に圧縮前の加圧前多層材NWの厚みに対して、圧縮率20~80%の圧密加工を行った。供給する水蒸気の温度は、110~210度に上昇させ、その間に加えた圧縮力は20~50kg/cm2である。ここで、1.5mmのオイルパーム材Wは5枚積層することにより、7.5mmの加圧前多層材NWとなるが、実験室レベルでの所定の圧縮率で圧縮した場合の圧縮誤差及び解圧後の膨張によって数%以下であるが誤差が介在している。 The five oil palm materials W1,..., W5 in the present embodiment have a thickness of 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, 4.5 mm. , 5.0 mm, 5.5 mm, and 6.0 mm are compressed from the pre-pressing multilayer material NW in which five oil palm materials W having the same thickness are arranged so that the fiber lengths intersect at right angles. Thus, a laminated plywood was produced in place of the oil palm molded body EO.
Basically, a compacting process with a compression ratio of 20 to 80% was performed on the thickness of the multilayer material NW before compression before compression. The temperature of the supplied steam is raised to 110 to 210 degrees, and the compression force applied during that time is 20 to 50 kg / cm 2 . Here, by laminating five 1.5 mm oil palm materials W, a 7.5 mm pre-pressurized multilayer material NW is obtained, but when compressed at a predetermined compression rate at the laboratory level, Due to the expansion after decompression, it is several percent or less, but an error is present.
また、念のため、本実施の形態における5枚のオイルパーム材Wは、その厚みを1.5mm,2.0mm,2.5mm,3.0mm,3.5mm,4.0mm,4.5mm,5.0mm,5.5mm,6.0mmのものを、その繊維長が平行になるように各同一厚さの5枚のオイルパーム材Wを配置した加圧前多層材NWから圧縮してオイルパーム成型体EOに相当する積層合板を製造した。
前者と同様に、基本的に圧縮前の加圧前多層材NWの厚みに対して、圧縮率を20~80%程度とした圧密加工を行ったオイルパーム成型体EOに代わる積層合板を得た。供給する水蒸気の温度は、110~210℃に上昇させ、その間に加えた圧縮力は20~50kg/cm2である。 Also, as a precaution, the five oil palm materials W in the present embodiment have a thickness of 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, 4.5 mm. , 5.0 mm, 5.5 mm, and 6.0 mm are compressed from the pre-pressing multilayer material NW in which five oil palm materials W of the same thickness are arranged so that the fiber lengths are parallel to each other. A laminated plywood corresponding to the oil palm molded body EO was produced.
Similar to the former, a laminated plywood was obtained in place of the oil palm molded body EO, which was subjected to consolidation processing with a compression rate of about 20 to 80% with respect to the thickness of the multilayer material NW before compression basically before compression. . The temperature of the supplied steam is raised to 110 to 210 ° C., and the compression force applied during that time is 20 to 50 kg / cm 2 .
前者と同様に、基本的に圧縮前の加圧前多層材NWの厚みに対して、圧縮率を20~80%程度とした圧密加工を行ったオイルパーム成型体EOに代わる積層合板を得た。供給する水蒸気の温度は、110~210℃に上昇させ、その間に加えた圧縮力は20~50kg/cm2である。 Also, as a precaution, the five oil palm materials W in the present embodiment have a thickness of 1.5 mm, 2.0 mm, 2.5 mm, 3.0 mm, 3.5 mm, 4.0 mm, 4.5 mm. , 5.0 mm, 5.5 mm, and 6.0 mm are compressed from the pre-pressing multilayer material NW in which five oil palm materials W of the same thickness are arranged so that the fiber lengths are parallel to each other. A laminated plywood corresponding to the oil palm molded body EO was produced.
Similar to the former, a laminated plywood was obtained in place of the oil palm molded body EO, which was subjected to consolidation processing with a compression rate of about 20 to 80% with respect to the thickness of the multilayer material NW before compression basically before compression. . The temperature of the supplied steam is raised to 110 to 210 ° C., and the compression force applied during that time is 20 to 50 kg / cm 2 .
表1では、繊維(維管束)長が直角に交差するように各同一厚さの5枚のオイルパーム材Wを配置した加圧前多層材NWを「交差接合状態」と示し、繊維長が平行する加圧前多層材NWを「平行接合状態」として示した。表1は耐久試験の結果であり、4月~6月の3か月間太陽光が使用者される場所に置き、自然の天候条件下で、晴れの日には10時と4時に水を30分間噴霧したものである。「交差接合状態」の1.5mmと2.0mmの積層合板PWでは、部分的に表面が面一でなくなり、内部で気泡の発生、剥離等が発生している可能性があった。即ち、使用環境条件の拘束を受けることが判明した。この試験では、自然界の温度の急変に対する対応を検討したものである。ここで、「交差接合状態」よりも「平行接合状態」の方が互いの結合が容易であり、良好な強度が得られることを証明している。しかし、維管束等の繊維方向が特定方向に定まっているから、板としての平面性には欠けるが、逆に、オイルパーム成型体EOを巻回して搬送する材料に、特定の弧状のコンクリート枠等として使用することもできる。
In Table 1, the pre-pressing multilayer material NW in which five oil palm materials W of the same thickness are arranged so that the fiber (vascular bundle) length intersects at right angles is indicated as “cross-bonded state”, and the fiber length is The parallel multi-layer material NW before pressurization was shown as “parallel joined state”. Table 1 shows the results of the endurance test. Placed in a place where sunlight is used for three months from April to June, and 30 minutes of water at 10 and 4 o'clock on sunny days under natural weather conditions. Sprayed for a minute. In the “cross-bonded state” 1.5 mm and 2.0 mm laminated plywood PW, the surface was partially not flush, and there was a possibility that bubbles were generated and peeled inside. That is, it has been found that the usage environment conditions are restricted. In this test, the response to a sudden change in natural temperature was examined. Here, it is proved that the “parallel joined state” is easier to bond with each other than the “cross joined state”, and a good strength can be obtained. However, since the fiber direction of the vascular bundle or the like is determined in a specific direction, the flatness as a plate is lacking, but conversely, a specific arc-shaped concrete frame is used as a material for winding and conveying the oil palm molded body EO. Etc. can also be used.
しかし、他の試料は、ヘミセルロースはリグニンとセルロースとの結び付ける機能を有しているから、オイルパーム幹WDの自然栽培されている状態では、互いにどれだけ干渉し合っているかは不明であるが、所定の温度(120℃以上)、例えば、リグニンの反応開始温度の80℃以上に温度を上げることにより、ヘミセルロースの反応開始温度の60度以上となり、互いに反応し、接合力が強くなり、堅固な材料となることが判明した。
「交差接合状態」の1.5mmと2.0mmのオイルパーム成型体EOとしての積層合板PWでは、0.2~1.0mmの維管束が交差すると、その独自性の強い維管束の交差位置では、ヘミセルロースがリグニンとセルロースとの結び付きを行っても、所定の温度及び圧縮力で得られる絶対的ヘミセルロース及びリグニン、セルロースの総量が少なく、接合が完全に行われていないと推定される。 However, in other samples, since hemicellulose has a function of binding lignin and cellulose, it is unclear how much they interfere with each other in the naturally cultivated state of oil palm trunk WD. By raising the temperature to a predetermined temperature (120 ° C. or higher), for example, 80 ° C. or higher of the reaction start temperature of lignin, the reaction start temperature of hemicellulose is 60 ° C. or higher. It turned out to be a material.
In the laminated plywood PW as a 1.5 mm and 2.0 mm oil palm molded body EO in the “cross-joined state”, when a vascular bundle of 0.2 to 1.0 mm crosses, its unique vascular bundle crossing position Then, even if hemicellulose binds lignin and cellulose, the total amount of absolute hemicellulose, lignin, and cellulose obtained at a predetermined temperature and compressive force is small, and it is presumed that joining is not performed completely.
「交差接合状態」の1.5mmと2.0mmのオイルパーム成型体EOとしての積層合板PWでは、0.2~1.0mmの維管束が交差すると、その独自性の強い維管束の交差位置では、ヘミセルロースがリグニンとセルロースとの結び付きを行っても、所定の温度及び圧縮力で得られる絶対的ヘミセルロース及びリグニン、セルロースの総量が少なく、接合が完全に行われていないと推定される。 However, in other samples, since hemicellulose has a function of binding lignin and cellulose, it is unclear how much they interfere with each other in the naturally cultivated state of oil palm trunk WD. By raising the temperature to a predetermined temperature (120 ° C. or higher), for example, 80 ° C. or higher of the reaction start temperature of lignin, the reaction start temperature of hemicellulose is 60 ° C. or higher. It turned out to be a material.
In the laminated plywood PW as a 1.5 mm and 2.0 mm oil palm molded body EO in the “cross-joined state”, when a vascular bundle of 0.2 to 1.0 mm crosses, its unique vascular bundle crossing position Then, even if hemicellulose binds lignin and cellulose, the total amount of absolute hemicellulose, lignin, and cellulose obtained at a predetermined temperature and compressive force is small, and it is presumed that joining is not performed completely.
また、発明者らは、過酷な使用条件として表2及び表3の接合強度を表す試験を行った。なお、多くの試料を使用したが、今回提出の試料は、顕著な特徴が表れているところを抽出したものである。
オイルパーム成型体EOに相当する積層合板A1は3.0mmのオイルパーム材W1,・・・,W4の4枚のオイルパーム材Wからなり、そのオイルパーム材Wの厚みを3.0mmとしたものである。また、積層合板Bは4枚のオイルパーム材Wからなり、そのオイルパーム材Wの厚みを3.0mm+2.5mm+2.5mm+3.0mmとしたものである。積層合板C1は3枚のオイルパーム材Wからなり、そのオイルパーム材Wの厚みを2.5mm+3.0mm+2.5mmとしたものである。積層合板D1は3.0mmの3枚のオイルパーム材Wからなり、そのオイルパーム材Wの厚みを3.0mm+3.0mm+3.0mmとしたものである。
加圧前多層材NWと積層合板PWの全体の圧縮率は、式
{(加圧前多層材NWの厚み)-(積層合板PWの厚み)}/加圧前多層材NWの厚み
で算出した。 Moreover, the inventors performed the test showing the joint strength of Table 2 and Table 3 as severe use conditions. Although many samples were used, the samples submitted this time are extracted from the areas where remarkable features appear.
The laminated plywood A1 corresponding to the oil palm molded body EO is composed of four oil palm materials W of 3.0 mm of oil palm materials W1,..., W4, and the thickness of the oil palm material W is set to 3.0 mm. Is. The laminated plywood B is composed of four oil palm materials W, and the thickness of the oil palm material W is 3.0 mm + 2.5 mm + 2.5 mm + 3.0 mm. The laminated plywood C1 is made of three oil palm materials W, and the thickness of the oil palm material W is 2.5 mm + 3.0 mm + 2.5 mm. The laminated plywood D1 is composed of three 3.0 mm oil palm materials W, and the thickness of the oil palm material W is 3.0 mm + 3.0 mm + 3.0 mm.
The compression ratio of the multilayer material NW before pressurization and the laminated plywood PW was calculated by the formula {(thickness of the multilayer material NW before pressurization) − (thickness of the laminated plywood PW)} / thickness of the multilayer material NW before pressurization. .
オイルパーム成型体EOに相当する積層合板A1は3.0mmのオイルパーム材W1,・・・,W4の4枚のオイルパーム材Wからなり、そのオイルパーム材Wの厚みを3.0mmとしたものである。また、積層合板Bは4枚のオイルパーム材Wからなり、そのオイルパーム材Wの厚みを3.0mm+2.5mm+2.5mm+3.0mmとしたものである。積層合板C1は3枚のオイルパーム材Wからなり、そのオイルパーム材Wの厚みを2.5mm+3.0mm+2.5mmとしたものである。積層合板D1は3.0mmの3枚のオイルパーム材Wからなり、そのオイルパーム材Wの厚みを3.0mm+3.0mm+3.0mmとしたものである。
加圧前多層材NWと積層合板PWの全体の圧縮率は、式
{(加圧前多層材NWの厚み)-(積層合板PWの厚み)}/加圧前多層材NWの厚み
で算出した。 Moreover, the inventors performed the test showing the joint strength of Table 2 and Table 3 as severe use conditions. Although many samples were used, the samples submitted this time are extracted from the areas where remarkable features appear.
The laminated plywood A1 corresponding to the oil palm molded body EO is composed of four oil palm materials W of 3.0 mm of oil palm materials W1,..., W4, and the thickness of the oil palm material W is set to 3.0 mm. Is. The laminated plywood B is composed of four oil palm materials W, and the thickness of the oil palm material W is 3.0 mm + 2.5 mm + 2.5 mm + 3.0 mm. The laminated plywood C1 is made of three oil palm materials W, and the thickness of the oil palm material W is 2.5 mm + 3.0 mm + 2.5 mm. The laminated plywood D1 is composed of three 3.0 mm oil palm materials W, and the thickness of the oil palm material W is 3.0 mm + 3.0 mm + 3.0 mm.
The compression ratio of the multilayer material NW before pressurization and the laminated plywood PW was calculated by the formula {(thickness of the multilayer material NW before pressurization) − (thickness of the laminated plywood PW)} / thickness of the multilayer material NW before pressurization. .
ここで、30℃の湯と、60℃の湯につけるという過酷な接合力の試験において、積層合板A1及び積層合板B1は30℃の湯につけても90分以内に変化はなかった。しかし、60℃の湯につけると積層合板B1は45分で積層面が軟化し、積層合板A1は60分で積層面が軟化した。
また、積層合板C1では、30℃の湯につけても30分で積層面が軟化した。即ち、これはヘミセルロースの反応開始温度の60℃以上の問題ではなく、圧縮力の影響が出ていると推定できる。圧縮力を大きくすると積層合板C1の内部の空気がなくなり、緻密な接合が行われるものの、圧縮力が弱いと繊維を潰すことなく形式的な接合が行われているに過ぎないので、そこに湯が入り全体が軟化したものと推定される。当然、積層合板C1は60℃の湯につけても15分以内で積層面が軟化した。
そして、積層合板D1は、オイルパーム材Wの厚みを増加させ、圧縮力を増加させることにより、30℃の湯に45分以下では問題なく接合されており、また、60℃の湯でも15分以下では耐えている。したがって、圧縮力を大きくすることが必要要件であり、圧縮率からいえば60%以上、より好ましくは65%以上の圧縮率が望ましい。特に、70%以上の圧縮率であると安全性が高くなる。また、圧縮率が低い場合には、表面に撥水性のコーティング剤の塗布が望ましい。 Here, in the severe bonding strength test of applying 30 ° C. hot water and 60 ° C. hot water, the laminated plywood A1 and laminated plywood B1 did not change within 90 minutes even when applied to 30 ° C. hot water. However, when applied to hot water at 60 ° C., the laminated plywood B1 softened in 45 minutes, and the laminated plywood A1 softened in 60 minutes.
Moreover, in the laminated plywood C1, the laminated surface softened in 30 minutes even when it was immersed in hot water at 30 ° C. That is, this is not a problem of 60 ° C. or higher of the reaction start temperature of hemicellulose, but it can be estimated that the influence of compressive force is exerted. When the compressive force is increased, the air inside the laminated plywood C1 disappears and dense bonding is performed. However, if the compressive force is weak, only formal bonding is performed without crushing the fibers. It is estimated that the whole was softened. Naturally, the laminated surface of the laminated plywood C1 softened within 15 minutes even when it was immersed in hot water at 60 ° C.
And the laminated plywood D1 is joined to hot water at 30 ° C. for 45 minutes or less by increasing the thickness of the oil palm material W and increasing the compressive force, and 15 minutes even with hot water at 60 ° C. I endure below. Therefore, it is a necessary requirement to increase the compression force. From the viewpoint of the compression rate, a compression rate of 60% or more, more preferably 65% or more is desirable. In particular, when the compression rate is 70% or more, the safety is increased. When the compression rate is low, it is desirable to apply a water-repellent coating agent to the surface.
また、積層合板C1では、30℃の湯につけても30分で積層面が軟化した。即ち、これはヘミセルロースの反応開始温度の60℃以上の問題ではなく、圧縮力の影響が出ていると推定できる。圧縮力を大きくすると積層合板C1の内部の空気がなくなり、緻密な接合が行われるものの、圧縮力が弱いと繊維を潰すことなく形式的な接合が行われているに過ぎないので、そこに湯が入り全体が軟化したものと推定される。当然、積層合板C1は60℃の湯につけても15分以内で積層面が軟化した。
そして、積層合板D1は、オイルパーム材Wの厚みを増加させ、圧縮力を増加させることにより、30℃の湯に45分以下では問題なく接合されており、また、60℃の湯でも15分以下では耐えている。したがって、圧縮力を大きくすることが必要要件であり、圧縮率からいえば60%以上、より好ましくは65%以上の圧縮率が望ましい。特に、70%以上の圧縮率であると安全性が高くなる。また、圧縮率が低い場合には、表面に撥水性のコーティング剤の塗布が望ましい。 Here, in the severe bonding strength test of applying 30 ° C. hot water and 60 ° C. hot water, the laminated plywood A1 and laminated plywood B1 did not change within 90 minutes even when applied to 30 ° C. hot water. However, when applied to hot water at 60 ° C., the laminated plywood B1 softened in 45 minutes, and the laminated plywood A1 softened in 60 minutes.
Moreover, in the laminated plywood C1, the laminated surface softened in 30 minutes even when it was immersed in hot water at 30 ° C. That is, this is not a problem of 60 ° C. or higher of the reaction start temperature of hemicellulose, but it can be estimated that the influence of compressive force is exerted. When the compressive force is increased, the air inside the laminated plywood C1 disappears and dense bonding is performed. However, if the compressive force is weak, only formal bonding is performed without crushing the fibers. It is estimated that the whole was softened. Naturally, the laminated surface of the laminated plywood C1 softened within 15 minutes even when it was immersed in hot water at 60 ° C.
And the laminated plywood D1 is joined to hot water at 30 ° C. for 45 minutes or less by increasing the thickness of the oil palm material W and increasing the compressive force, and 15 minutes even with hot water at 60 ° C. I endure below. Therefore, it is a necessary requirement to increase the compression force. From the viewpoint of the compression rate, a compression rate of 60% or more, more preferably 65% or more is desirable. In particular, when the compression rate is 70% or more, the safety is increased. When the compression rate is low, it is desirable to apply a water-repellent coating agent to the surface.
即ち、実験的には、圧縮率が65%以上であると、オイルパーム材Wを互いに繊維(維管束)長が直角に交差するように配置してなる加圧前多層材NWとし、しかも、オイルパーム材Wの厚みは2.5mmに境界線があるから、2.5mm以上であることが望ましい。特に、自然界で30℃の湯中に積層合板PWが浸漬される条件は皆無であるが、それでも、オイルパーム材Wの厚みは2.5mm、圧縮率が65%以上であれば、使用できることを示している。
また、60℃の湯中にオイルパーム成型体EOが浸漬される条件は、ヘミセルロースがリグニンとセルロースとの結付きを阻害する可能性を確認するものであるが、圧縮率が65%以上であれば、それも現れ難いことを示している。
しかし、圧縮率の境界線が65%程度にあることを意味するものであるから、大量生産する場合には、望ましくは65%以上であり、また、オイルパーム材Wの厚みも3.0mm以上、圧密加工した厚さでは1mm以上の厚みが望ましい。 That is, experimentally, when the compressibility is 65% or more, the oil palm material W is a multilayer material NW before pressurization in which the fiber (vascular bundle) lengths intersect with each other at right angles, and Since the thickness of the oil palm material W has a boundary line at 2.5 mm, it is preferably 2.5 mm or more. In particular, there are no conditions in which the laminated plywood PW is immersed in hot water at 30 ° C. in nature. However, if the thickness of the oil palm material W is 2.5 mm and the compression rate is 65% or more, it can be used. Show.
The conditions under which the oil palm molded body EO is immersed in hot water at 60 ° C. are to confirm the possibility that hemicellulose inhibits the binding between lignin and cellulose, but the compression ratio is 65% or more. This means that it is also difficult to appear.
However, since it means that the boundary line of the compressibility is about 65%, in mass production, it is desirably 65% or more, and the thickness of the oil palm material W is also 3.0 mm or more. A thickness of 1 mm or more is desirable for the thickness after consolidation.
また、60℃の湯中にオイルパーム成型体EOが浸漬される条件は、ヘミセルロースがリグニンとセルロースとの結付きを阻害する可能性を確認するものであるが、圧縮率が65%以上であれば、それも現れ難いことを示している。
しかし、圧縮率の境界線が65%程度にあることを意味するものであるから、大量生産する場合には、望ましくは65%以上であり、また、オイルパーム材Wの厚みも3.0mm以上、圧密加工した厚さでは1mm以上の厚みが望ましい。 That is, experimentally, when the compressibility is 65% or more, the oil palm material W is a multilayer material NW before pressurization in which the fiber (vascular bundle) lengths intersect with each other at right angles, and Since the thickness of the oil palm material W has a boundary line at 2.5 mm, it is preferably 2.5 mm or more. In particular, there are no conditions in which the laminated plywood PW is immersed in hot water at 30 ° C. in nature. However, if the thickness of the oil palm material W is 2.5 mm and the compression rate is 65% or more, it can be used. Show.
The conditions under which the oil palm molded body EO is immersed in hot water at 60 ° C. are to confirm the possibility that hemicellulose inhibits the binding between lignin and cellulose, but the compression ratio is 65% or more. This means that it is also difficult to appear.
However, since it means that the boundary line of the compressibility is about 65%, in mass production, it is desirably 65% or more, and the thickness of the oil palm material W is also 3.0 mm or more. A thickness of 1 mm or more is desirable for the thickness after consolidation.
更に、発明者らは、オイルパーム材Wが直行する3枚からなり、各厚みが4mmのものを使用して表2及び表3と同様の実験を積層合板E1、積層合板F1、積層合板G1で行った。圧縮率が50%を割る48.75%で60℃の湯に対して浸漬されないことが確認された。即ち、表5で示されているように、積層合板E1、積層合板F1の圧縮率は50%以上であればよく、積層合板G1を含めて圧縮率40%以上であれば実用的に問題が生じないことが確認された。
Further, the inventors made three experiments in which the oil palm material W is orthogonal, each having a thickness of 4 mm, and conducted experiments similar to those in Tables 2 and 3 on the laminated plywood E1, the laminated plywood F1, and the laminated plywood G1. I went there. It was confirmed that the compression ratio was 48.75%, which was 50%, and it was not immersed in hot water at 60 ° C. That is, as shown in Table 5, the compression rate of the laminated plywood E1 and the laminated plywood F1 may be 50% or more, and if the compression rate including the laminated plywood G1 is 40% or more, there is a practical problem. It was confirmed that it did not occur.
上記のように、本実施の形態のオイルパーム成型体EOに相当する積層合板は、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで所定の厚みに剥いて形成し、それを圧密加工したとき、1枚の厚みが1mm以上からなる1枚以上のオイルパーム材Wを平面部、凹部、凸部の何れか1以上を形成した形成した金型によって圧縮、固定化し、一体に接合したものである。
As described above, the laminated plywood corresponding to the oil palm molded body EO of the present embodiment is formed by peeling a predetermined length of the oil palm trunk WD to a predetermined thickness with a rotary race while rotating it in the circumferential direction. When one piece of oil palm material W having a thickness of 1 mm or more is compressed and fixed by a mold formed with one or more of a flat part, a concave part, and a convex part, and integrated. It is joined.
したがって、オイルパーム材Wの1枚以上を、それらを圧縮、固定化し、一体に接合したものであるから、オイルパーム材Wが含有する樹脂成分及び糖成分を使用し、自然物で接合したオイルパーム成型体EOが得られる。よって、予めオイルパーム材Wの対向面に熱硬化性樹脂を塗布したと仮定しても、補助的な接着剤の使用料となり、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用したオイルパーム成型体EOが得られる。
Therefore, since one or more of the oil palm materials W are compressed, fixed, and joined together, the oil palm joined with natural products using the resin component and sugar component contained in the oil palm material W A molded body EO is obtained. Therefore, even if it is assumed that the thermosetting resin is applied to the opposite surface of the oil palm material W in advance, it becomes a usage fee for the auxiliary adhesive, and the use of the formaldehyde adhesive that causes sick house syndrome is suppressed. An oil palm molded body EO using a component inherent to palm is obtained.
このオイルパーム幹WDは節、年輪がないからロータリーレースで外周から所定の厚みに剥いてオイルパーム材Wを作成する場合、均質なオイルパーム材Wが得られ、結果的に、そのオイルパーム材Wからなるオイルパーム成型体EOは均質なものとなる。また、加える温度と圧力によってオイルパーム幹WD自体が含有する樹脂成分及び糖成分によってその接合力を変化させるから、加える温度と圧力の制御によって任意の接着力が得られる。そして、複数枚のオイルパーム材Wをオイルパーム幹WD自体が含有する樹脂成分及び糖成分によって接合してオイルパーム成型体EOを形成するものでは、他の合成樹脂、合成ゴムを接着材として使用していないから、自然に戻すことができ公害問題を引き起こさない。
Since this oil palm trunk WD has no nodes and no annual rings, when the oil palm material W is created by peeling off from the outer periphery to a predetermined thickness by a rotary race, a uniform oil palm material W is obtained. As a result, the oil palm material is obtained. The oil palm molded body EO made of W is homogeneous. Moreover, since the joining force is changed by the resin component and sugar component contained in the oil palm trunk WD itself depending on the applied temperature and pressure, an arbitrary adhesive force can be obtained by controlling the applied temperature and pressure. And in the thing which joins the oil palm material W with the resin component and sugar component which oil palm trunk WD itself contains, and forms oil palm molding EO, other synthetic resin and synthetic rubber are used as an adhesive. Because it is not, it can be returned to nature and does not cause pollution problems.
更に、オイルパーム自体が含有するリグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類の作用によって接合されるときの圧縮力によって、オイルパーム材Wの空隙が殆どなくなり、緻密な組織になるから、耐水性があり、かつ、防水、防虫性に富み、建築材料として使用しても耐用年数が長くなる。
特に、ヘミセルロースはリグニンとセルロースとの結び付ける機能を有しており、オイルパーム幹WDの自然栽培されている状態では、互いにどれだけ干渉し合っているかは不明である。しかし、所定の温度、例えば、リグニンの反応開始温度の80度以上に温度を上げることにより、ヘミセルロースの反応開始温度の60度以上となり、互いに反応し、堅固な特性となることが確認された。 Furthermore, the oil palm material W has almost no voids due to the compressive force when joined by the action of a resin component such as lignin contained in the oil palm itself and sugars such as cellulose and hemicellulose. In addition, it is waterproof and insect-proof and has a long service life even when used as a building material.
In particular, hemicellulose has a function of binding lignin and cellulose, and it is unclear how much they interfere with each other when the oil palm trunk WD is naturally cultivated. However, it was confirmed that by raising the temperature to a predetermined temperature, for example, 80 ° C. or more of the reaction start temperature of lignin, the reaction start temperature of hemicellulose was 60 ° C. or more, and they reacted with each other to become firm characteristics.
特に、ヘミセルロースはリグニンとセルロースとの結び付ける機能を有しており、オイルパーム幹WDの自然栽培されている状態では、互いにどれだけ干渉し合っているかは不明である。しかし、所定の温度、例えば、リグニンの反応開始温度の80度以上に温度を上げることにより、ヘミセルロースの反応開始温度の60度以上となり、互いに反応し、堅固な特性となることが確認された。 Furthermore, the oil palm material W has almost no voids due to the compressive force when joined by the action of a resin component such as lignin contained in the oil palm itself and sugars such as cellulose and hemicellulose. In addition, it is waterproof and insect-proof and has a long service life even when used as a building material.
In particular, hemicellulose has a function of binding lignin and cellulose, and it is unclear how much they interfere with each other when the oil palm trunk WD is naturally cultivated. However, it was confirmed that by raising the temperature to a predetermined temperature, for example, 80 ° C. or more of the reaction start temperature of lignin, the reaction start temperature of hemicellulose was 60 ° C. or more, and they reacted with each other to become firm characteristics.
上記実施の形態のオイルパーム成型体は、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成し、それを圧密加工した1枚の厚みが1mm以上からなる2枚以上のオイルパーム材Wを一体に接合したものである。
したがって、少なくとも圧密加工した2枚以上のオイルパーム材Wに面して配置し、それらを一体に接合したものであるから、オイルパーム材Wが含有する樹脂成分及び糖成分が不足した場合には、接合対象に接着剤を追加して貼り合せることにより、所望のオイルパーム成型体EOを製造するものである。よって、オイルパーム材Wが含有する樹脂成分及び糖成分が不足した場合に接着剤を使用するものであるから、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用したオイルパーム成型体EOが得られる。 The oil palm molded body of the above embodiment is formed by peeling a predetermined length of oil palm trunk WD from the outer periphery with a rotary race while rotating it in the circumferential direction, and the thickness of one piece obtained by compacting it. Two or more oil palm materials W of 1 mm or more are integrally joined.
Therefore, at least two oil palm materials W that have been compacted are arranged so as to face each other, and they are joined together. Therefore, when the resin component and sugar component contained in the oil palm material W are insufficient. The desired oil palm molded body EO is manufactured by adding and bonding an adhesive to the objects to be joined. Therefore, since the adhesive is used when the resin component and the sugar component contained in the oil palm material W are insufficient, the use of the formaldehyde-based adhesive that causes sick house syndrome is suppressed, An oil palm molded body EO using the components it has is obtained.
したがって、少なくとも圧密加工した2枚以上のオイルパーム材Wに面して配置し、それらを一体に接合したものであるから、オイルパーム材Wが含有する樹脂成分及び糖成分が不足した場合には、接合対象に接着剤を追加して貼り合せることにより、所望のオイルパーム成型体EOを製造するものである。よって、オイルパーム材Wが含有する樹脂成分及び糖成分が不足した場合に接着剤を使用するものであるから、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用したオイルパーム成型体EOが得られる。 The oil palm molded body of the above embodiment is formed by peeling a predetermined length of oil palm trunk WD from the outer periphery with a rotary race while rotating it in the circumferential direction, and the thickness of one piece obtained by compacting it. Two or more oil palm materials W of 1 mm or more are integrally joined.
Therefore, at least two oil palm materials W that have been compacted are arranged so as to face each other, and they are joined together. Therefore, when the resin component and sugar component contained in the oil palm material W are insufficient. The desired oil palm molded body EO is manufactured by adding and bonding an adhesive to the objects to be joined. Therefore, since the adhesive is used when the resin component and the sugar component contained in the oil palm material W are insufficient, the use of the formaldehyde-based adhesive that causes sick house syndrome is suppressed, An oil palm molded body EO using the components it has is obtained.
上記実施の形態のオイルパーム成型体EOは、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで外周から所定の厚みに刃物CTで剥いてオイルパーム材Wに形成する工程をステップS10、ステップS30の薄板工程とすることができる。また、オイルパーム材Wを乾燥する工程は、オイルパーム材Wを形成する工程と同一行程であっても、別工程であってもよく、これをステップS11、ステップS31の乾燥工程とすることができる。
そして、乾燥させたオイルパーム材Wを所定の状態に複数枚加圧前多層材NWとして積層する工程は、通常、2枚乃至5枚の単位で積層して使用されるが、原理的には、2枚以上の積層であればよく、これをステップS12、ステップS32の積層工程とすることができる。
特に、オイルパーム材Wの枚数よりも少なくすることにより、少なくとも従来の合板に比較して、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑えることができる。 The oil palm molded body EO according to the above embodiment is a process of forming the oil palm material W by peeling the oil palm trunk WD having a predetermined length from the outer periphery to the predetermined thickness with the blade CT while rotating the oil palm trunk WD in the circumferential direction. It can be set as the thin plate process of step S10 and step S30. In addition, the process of drying the oil palm material W may be the same process as the process of forming the oil palm material W or may be a separate process, and this may be the drying process of step S11 and step S31. it can.
And the process of laminating the dried oil palm material W in a predetermined state as the multilayer material NW before pressurization is usually used by laminating in units of 2 to 5 sheets, but in principle Two or more layers may be stacked, and this can be set as the stacking step of Step S12 and Step S32.
In particular, by using less than the number of oil palm materials W, it is possible to suppress the use of a formaldehyde adhesive that causes sick house syndrome, at least as compared with conventional plywood.
そして、乾燥させたオイルパーム材Wを所定の状態に複数枚加圧前多層材NWとして積層する工程は、通常、2枚乃至5枚の単位で積層して使用されるが、原理的には、2枚以上の積層であればよく、これをステップS12、ステップS32の積層工程とすることができる。
特に、オイルパーム材Wの枚数よりも少なくすることにより、少なくとも従来の合板に比較して、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑えることができる。 The oil palm molded body EO according to the above embodiment is a process of forming the oil palm material W by peeling the oil palm trunk WD having a predetermined length from the outer periphery to the predetermined thickness with the blade CT while rotating the oil palm trunk WD in the circumferential direction. It can be set as the thin plate process of step S10 and step S30. In addition, the process of drying the oil palm material W may be the same process as the process of forming the oil palm material W or may be a separate process, and this may be the drying process of step S11 and step S31. it can.
And the process of laminating the dried oil palm material W in a predetermined state as the multilayer material NW before pressurization is usually used by laminating in units of 2 to 5 sheets, but in principle Two or more layers may be stacked, and this can be set as the stacking step of Step S12 and Step S32.
In particular, by using less than the number of oil palm materials W, it is possible to suppress the use of a formaldehyde adhesive that causes sick house syndrome, at least as compared with conventional plywood.
更に、ステップS12、ステップS32の積層工程以降で積層されたオイルパーム材Wの温度を上昇させるべく加熱する工程で、水蒸気または電熱を導入して加熱または熱板で加熱する工程は、加熱エネルギを供給することからステップS16、ステップS36、ステップS45の加熱工程とすることができる。更にまた、ステップS16、ステップS36、ステップS45の加熱工程によって加熱された前記積層されたオイルパーム材Wに対して、オイルパーム材Wの面に直角方向の圧縮力を加える工程は、所定の圧縮率でオイルパーム材Wの圧縮、即ち、加圧前多層材NWの圧縮が行えればよい。この工程は、ステップS17、ステップS37、ステップS46の圧縮工程とすることができる。
加えて、前記圧縮工程で所定時間圧縮した後、前記加熱工程で供給していた温度を降下させ、オイルパーム成型体EOの圧縮状態を固定化し、所定の圧縮率で圧縮していた圧縮力を解圧するものであり、これをオイルパーム成型体EOから捉えてステップS19、ステップS39、ステップS48の固定化工程とすることができる。 Furthermore, in the process of heating to raise the temperature of the oil palm material W laminated after the lamination process of step S12 and step S32, the process of introducing water vapor or electric heat and heating it with a hot plate, Since it supplies, it can be set as the heating process of step S16, step S36, and step S45. Furthermore, the step of applying a compression force in the direction perpendicular to the surface of the oil palm material W to the laminated oil palm material W heated by the heating process of step S16, step S36, and step S45 is a predetermined compression. It is only necessary to compress the oil palm material W at a rate, that is, to compress the multilayer material NW before pressurization. This process can be a compression process of step S17, step S37, and step S46.
In addition, after compressing for a predetermined time in the compression step, the temperature supplied in the heating step is lowered, the compression state of the oil palm molded body EO is fixed, and the compression force compressed at a predetermined compression rate is applied. The pressure is released, and this can be captured from the oil palm molded body EO and used as the fixing step of Step S19, Step S39, and Step S48.
加えて、前記圧縮工程で所定時間圧縮した後、前記加熱工程で供給していた温度を降下させ、オイルパーム成型体EOの圧縮状態を固定化し、所定の圧縮率で圧縮していた圧縮力を解圧するものであり、これをオイルパーム成型体EOから捉えてステップS19、ステップS39、ステップS48の固定化工程とすることができる。 Furthermore, in the process of heating to raise the temperature of the oil palm material W laminated after the lamination process of step S12 and step S32, the process of introducing water vapor or electric heat and heating it with a hot plate, Since it supplies, it can be set as the heating process of step S16, step S36, and step S45. Furthermore, the step of applying a compression force in the direction perpendicular to the surface of the oil palm material W to the laminated oil palm material W heated by the heating process of step S16, step S36, and step S45 is a predetermined compression. It is only necessary to compress the oil palm material W at a rate, that is, to compress the multilayer material NW before pressurization. This process can be a compression process of step S17, step S37, and step S46.
In addition, after compressing for a predetermined time in the compression step, the temperature supplied in the heating step is lowered, the compression state of the oil palm molded body EO is fixed, and the compression force compressed at a predetermined compression rate is applied. The pressure is released, and this can be captured from the oil palm molded body EO and used as the fixing step of Step S19, Step S39, and Step S48.
このように、上記実施の形態のオイルパーム成型体の製造方法は、所定長のオイルパーム材Wをその周方向に回転させながらロータリーレースで外周から所定の厚みに刃物CTで剥いて複数枚のオイルパーム材Wに形成するステップS10の薄板工程と、そのオイルパーム材Wを乾燥するステップS11の乾燥工程と、前記乾燥工程で乾燥させたオイルパーム材Wを所定の状態に複数枚積層するステップS12の積層工程と、前記積層工程以降で前記積層されたオイルパーム材Wの温度を上昇させるべく加熱するステップS16の加熱工程と、前記加熱工程によって加熱された前記積層されたオイルパーム材Wに、オイルパーム材Wの面に対して平行方向に延びるのを規制しながら、オイルパーム材Wの面に対して直角方向の圧縮力を加えて所定時間圧縮するステップS17の圧縮工程と、前記圧縮工程で所定時間押圧した後、前記加熱工程で供給していた温度を降下させて固定化させるステップS19の固定化工程を具備するものである。
Thus, the manufacturing method of the oil palm molded body of the above-described embodiment is performed by rotating a predetermined length of the oil palm material W in the circumferential direction with a rotary race from the outer periphery to a predetermined thickness with a blade CT. The thin plate process of step S10 to be formed on the oil palm material W, the drying process of step S11 for drying the oil palm material W, and the step of laminating a plurality of oil palm materials W dried in the drying process in a predetermined state In the laminating step of S12, the heating step of S16 for heating to raise the temperature of the laminated oil palm material W after the laminating step, and the laminated oil palm material W heated by the heating step Applying a compressive force in a direction perpendicular to the surface of the oil palm material W while restricting extending in a direction parallel to the surface of the oil palm material W A step of compressing step S17 to compress a predetermined time, after pressing a predetermined time, the compression step is one comprising the step of immobilizing step S19 for immobilizing by lowering the temperature which has been supplied in the heating step.
したがって、これらの工程で使用されるオイルパーム幹WDは節、年輪がないからロータリーレースで外周から所定の厚みに剥いてオイルパーム材Wを作成する場合、均質なオイルパーム材Wが得られ、結果的に、そのオイルパーム材Wからなるオイルパーム成型体EOは均質なものとなる。また、加える温度と圧縮力によってオイルパーム幹WD自体が含有するリグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類の作用によってその接合力を変化させることができるから、加える温度と圧縮力の制御によって任意の接着力が得られる。そして、複数枚のオイルパーム材Wをオイルパーム幹WD自体が含有するリグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類の作用によって接合してオイルパーム成型体EOを形成するものであるから、他の合成樹脂、合成ゴムを接着材として使用していないから、自然に戻すことができ公害問題を引き起こさない。更に、オイルパーム幹WD自体が含有するリグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類の作用によって接合されるときの圧縮力によって、ラワン薄板L及びオイルパーム材Wの空隙が殆どなくなり、緻密な組織になるから、耐水性があり、かつ、防水、防虫性に富み、建築材料として使用しても耐用年数が長くなる。
Therefore, since the oil palm trunk WD used in these steps has no nodes and no annual rings, when the oil palm material W is created by peeling off from the outer periphery to a predetermined thickness with a rotary race, a homogeneous oil palm material W is obtained, As a result, the oil palm molded body EO made of the oil palm material W becomes homogeneous. In addition, since the bonding force can be changed by the action of resin components such as lignin contained in the oil palm trunk WD itself and sugars such as cellulose and hemicellulose, depending on the applied temperature and compressive force, the control of the applied temperature and compressive force is possible. Arbitrary adhesive strength can be obtained. Since a plurality of oil palm materials W are joined by the action of resin components such as lignin contained in the oil palm trunk WD itself and sugars such as cellulose and hemicellulose, an oil palm molded body EO is formed. Since synthetic resin and synthetic rubber are not used as adhesives, they can be returned to nature and cause no pollution problems. Furthermore, due to the compressive force when the oil palm trunk WD itself contains resin components such as lignin and the sugars such as cellulose and hemicellulose, the gap between the lauan thin plate L and the oil palm material W is almost eliminated, and the dense Since it becomes an organization, it is water-resistant, and is water-proof and insect-proof, and has a long service life even when used as a building material.
上記実施の形態のオイルパーム成型体の製造方法は、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで外周から所定の厚みに刃物CTで剥いて複数枚のオイルパーム材Wに形成するステップS10、ステップS32からなる薄板工程と、前記薄板工程で形成したオイルパーム材Wを乾燥するステップS11、ステップS31からなる乾燥工程と、前記乾燥工程で乾燥させたオイルパーム材Wを所定の状態に複数枚積層するステップS12、ステップS32からなる積層工程と、前記積層工程以降で前記積層されたオイルパーム材Wの温度を上昇させるべく加熱するステップS16、ステップS36からなる加熱工程と、前記加熱工程によって加熱された前記積層されたオイルパーム材に、オイルパーム材の面に対して平行方向に延びるのを位置決め孔18または枠体20で規制しながら、前記オイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮するステップS17、ステップS37からなる圧縮工程と、前記圧縮工程で所定時間圧縮したオイルパーム材Wを、前記加熱工程で供給していた温度を降下させて固定化させるステップS19、ステップS39からなる固定化工程を具備する方法とすることができる。
In the method for manufacturing the oil palm molded body of the above-described embodiment, a plurality of oil palm materials W are peeled off with a cutter CT from the outer periphery to a predetermined thickness with a rotary race while rotating the oil palm trunk WD of a predetermined length in the circumferential direction. A thin plate process comprising steps S10 and S32, a drying step comprising steps S11 and S31 for drying the oil palm material W formed in the thin plate process, and an oil palm material W dried in the drying step. A stacking process composed of steps S12 and S32 for stacking a plurality of sheets in a predetermined state, and a heating process composed of steps S16 and S36 for heating the laminated oil palm material W to increase the temperature after the stacking process; The surface of the oil palm material to the laminated oil palm material heated by the heating step A compression process comprising steps S17 and S37, in which a compression force in a direction perpendicular to the surface of the oil palm material is applied and compressed for a predetermined time while being restricted by the positioning hole 18 or the frame body 20 from extending in the parallel direction. And, the oil palm material W compressed for a predetermined time in the compression step is made to be a method comprising a fixing step consisting of steps S19 and S39 for fixing the oil palm material W by lowering the temperature supplied in the heating step. it can.
上記実施の形態の前記乾燥工程で乾燥させたオイルパーム材Wを所定の状態に積層するステップS12、ステップS32の積層工程の5枚のオイルパーム材W1,・・・,W5の各辺を位置決めする枠体20または位置決め孔18は、所定の積載面を規制する枠体20または位置決め孔18であり、複数枚の薄板Wの面の上下及び左右を規制するものである。したがって、その圧縮力を加える面に対して直角方向に薄板Wが伸びることが防止され、繊維切れ等によりひび割れ、その位置によって厚い個所と薄い個所が生じることがない。
Positioning each side of the five oil palm members W1,..., W5 in the step S12 and step S32 of laminating the oil palm material W dried in the drying step of the above embodiment in a predetermined state. The frame body 20 or the positioning hole 18 is a frame body 20 or the positioning hole 18 that regulates a predetermined stacking surface, and regulates the top and bottom and the left and right of the surface of the plurality of thin plates W. Therefore, the thin plate W is prevented from extending in a direction perpendicular to the surface to which the compressive force is applied, cracks due to fiber breakage and the like, and a thick portion and a thin portion are not generated depending on the position.
上記実施の形態のオイルパーム成型体は、所定長のオイルパーム材Wを乾燥し、複数枚積層し、加熱及び前記積層されたオイルパーム材Wの面に沿って平行方向に伸びるのを規制しながら、前記積層されたオイルパーム材Wの面に対して直角方向の圧縮力を加えて圧縮し、その後、前記圧縮を維持し、温度を低下させて固定化してなるオイルパーム成型体EOにおいて、前記積層されたオイルパーム材Wを互いに繊維方向を交差させて重ね合わせ、前記複数枚のオイルパーム材Wがその面に対して直角方向に湾曲するのを防止してなるものである。
このように、オイルパーム材Wを互いに繊維方向を交差させて重ね合わせて積層したものであるから、前記積層されたオイルパーム材Wの面に対して直角方向の圧縮力を加えて圧縮しているときには圧縮する金型の形状に応じて成型することができる。したがって、積層されたオイルパーム材Wからなる合板自体が所望の形状に成型でき、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した環境にやさしいオイルパーム成型体EOが得られる。 The oil palm molded body of the above embodiment regulates drying of a predetermined length of the oil palm material W, stacking of a plurality of sheets, and extending in the parallel direction along the surface of the heated oil palm material W. However, in the oil palm molded body EO formed by compressing by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material W, then maintaining the compression and lowering the temperature and fixing, The laminated oil palm materials W are stacked with their fiber directions intersecting each other to prevent the plurality of oil palm materials W from being bent in a direction perpendicular to the surface thereof.
Thus, since the oil palm material W is laminated with the fiber directions intersecting each other, it is compressed by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material W. Can be molded according to the shape of the mold to be compressed. Therefore, the plywood itself made of laminated oil palm material W can be molded into a desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and the components that oil palm inherently has An oil palm molded body EO that is environmentally friendly is obtained.
このように、オイルパーム材Wを互いに繊維方向を交差させて重ね合わせて積層したものであるから、前記積層されたオイルパーム材Wの面に対して直角方向の圧縮力を加えて圧縮しているときには圧縮する金型の形状に応じて成型することができる。したがって、積層されたオイルパーム材Wからなる合板自体が所望の形状に成型でき、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した環境にやさしいオイルパーム成型体EOが得られる。 The oil palm molded body of the above embodiment regulates drying of a predetermined length of the oil palm material W, stacking of a plurality of sheets, and extending in the parallel direction along the surface of the heated oil palm material W. However, in the oil palm molded body EO formed by compressing by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material W, then maintaining the compression and lowering the temperature and fixing, The laminated oil palm materials W are stacked with their fiber directions intersecting each other to prevent the plurality of oil palm materials W from being bent in a direction perpendicular to the surface thereof.
Thus, since the oil palm material W is laminated with the fiber directions intersecting each other, it is compressed by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material W. Can be molded according to the shape of the mold to be compressed. Therefore, the plywood itself made of laminated oil palm material W can be molded into a desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and the components that oil palm inherently has An oil palm molded body EO that is environmentally friendly is obtained.
また、上記実施の形態のオイルパーム成型体は、所定長のオイルパーム材Wを乾燥し、複数枚積層し、加熱及び前記積層されたオイルパーム材Wの面に沿って平行方向に伸びるのを規制しながら、前記積層されたオイルパーム材Wの面に対して直角方向の圧縮力を加えて圧縮し、その後、前記圧縮を維持し、温度を低下させて固定化してなるオイルパーム成型体EOにおいて、前記積層されたオイルパーム材Wを複数枚重ね合わせ、前記複数枚のオイルパーム材Wがその面に対して特定の直角方向にのみ湾曲するようにしたものである。
このように、オイルパーム材Wを互いに繊維方向を考慮して重ね合わせて積層したものであり、前記積層されたオイルパーム材Wの面に対して直角方向の圧縮力を加えて圧縮し、圧縮する金型の形状に応じて成型することができる。また、オイルパーム材Wを複数枚重ね合わせるとき、前記複数枚のオイルパーム材Wがその繊維方向を1枚または2枚だけ交差するようにするか、全枚数繊維方向が平行するように積層し、その面に対して特定の直角方向にのみ湾曲するようにしたものであるから、所望の湾曲形状に形成できる。したがって、積層されたオイルパーム材Wからなる合板自体が所望の形状に成型でき、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した環境にやさしいオイルパーム成型体EOが得られる。 In addition, the oil palm molded body of the above-described embodiment is obtained by drying a predetermined length of the oil palm material W, laminating a plurality of sheets, heating and extending in a parallel direction along the surface of the laminated oil palm material W. An oil palm molded body EO that is compressed by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material W while regulating, and then maintaining the compression and lowering the temperature to fix it. In the above, a plurality of the laminated oil palm materials W are overlapped so that the plurality of oil palm materials W are curved only in a specific perpendicular direction to the surface.
In this way, the oil palm material W is laminated and laminated in consideration of the fiber direction, and compressed by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material W. It can be molded according to the shape of the mold. Further, when a plurality of oil palm materials W are overlapped, the plurality of oil palm materials W are stacked so that the fiber directions intersect only one or two or all the fiber directions are parallel to each other. Since it is curved only in a specific perpendicular direction to the surface, it can be formed into a desired curved shape. Therefore, the plywood itself made of laminated oil palm material W can be molded into a desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and the components that oil palm inherently has An oil palm molded body EO that is environmentally friendly is obtained.
このように、オイルパーム材Wを互いに繊維方向を考慮して重ね合わせて積層したものであり、前記積層されたオイルパーム材Wの面に対して直角方向の圧縮力を加えて圧縮し、圧縮する金型の形状に応じて成型することができる。また、オイルパーム材Wを複数枚重ね合わせるとき、前記複数枚のオイルパーム材Wがその繊維方向を1枚または2枚だけ交差するようにするか、全枚数繊維方向が平行するように積層し、その面に対して特定の直角方向にのみ湾曲するようにしたものであるから、所望の湾曲形状に形成できる。したがって、積層されたオイルパーム材Wからなる合板自体が所望の形状に成型でき、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した環境にやさしいオイルパーム成型体EOが得られる。 In addition, the oil palm molded body of the above-described embodiment is obtained by drying a predetermined length of the oil palm material W, laminating a plurality of sheets, heating and extending in a parallel direction along the surface of the laminated oil palm material W. An oil palm molded body EO that is compressed by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material W while regulating, and then maintaining the compression and lowering the temperature to fix it. In the above, a plurality of the laminated oil palm materials W are overlapped so that the plurality of oil palm materials W are curved only in a specific perpendicular direction to the surface.
In this way, the oil palm material W is laminated and laminated in consideration of the fiber direction, and compressed by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material W. It can be molded according to the shape of the mold. Further, when a plurality of oil palm materials W are overlapped, the plurality of oil palm materials W are stacked so that the fiber directions intersect only one or two or all the fiber directions are parallel to each other. Since it is curved only in a specific perpendicular direction to the surface, it can be formed into a desired curved shape. Therefore, the plywood itself made of laminated oil palm material W can be molded into a desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and the components that oil palm inherently has An oil palm molded body EO that is environmentally friendly is obtained.
上記実施の形態のオイルパーム成型体は、前記所定長のオイルパーム材Wに金型で平面部EP、凹部EQ、凸部ERの1以上を形成したものであるから、簡単にオイルパーム成型体EOが得られる。
また、上記実施の形態のオイルパーム成型体は、前記所定長のオイルパーム材Wに形成した凹部EQまたは凸部ERは、他の平面部EPと同一の厚みに形成したものであるから、積層されたオイルパーム材Wの厚みが均一であり、機械的強度も強くなる。また、オイルパーム成型体EOの全体に無理がかからない。 The oil palm molded body of the above-described embodiment is obtained by forming one or more of the plane portion EP, the concave portion EQ, and the convex portion ER with a mold on the oil palm material W having the predetermined length. EO is obtained.
In the oil palm molded body of the above embodiment, the concave EQ or the convex ER formed in the oil palm material W having the predetermined length is formed to have the same thickness as that of the other flat portion EP. The thickness of the obtained oil palm material W is uniform, and the mechanical strength is also increased. In addition, the entire oil palm molded body EO is not overwhelmed.
また、上記実施の形態のオイルパーム成型体は、前記所定長のオイルパーム材Wに形成した凹部EQまたは凸部ERは、他の平面部EPと同一の厚みに形成したものであるから、積層されたオイルパーム材Wの厚みが均一であり、機械的強度も強くなる。また、オイルパーム成型体EOの全体に無理がかからない。 The oil palm molded body of the above-described embodiment is obtained by forming one or more of the plane portion EP, the concave portion EQ, and the convex portion ER with a mold on the oil palm material W having the predetermined length. EO is obtained.
In the oil palm molded body of the above embodiment, the concave EQ or the convex ER formed in the oil palm material W having the predetermined length is formed to have the same thickness as that of the other flat portion EP. The thickness of the obtained oil palm material W is uniform, and the mechanical strength is also increased. In addition, the entire oil palm molded body EO is not overwhelmed.
上記実施の形態のオイルパーム成型体は、複数枚積層したオイルパーム材Wに形成した表面及び裏面の凹部EQは、その位置が大きな圧縮力で圧縮され、前記複数枚積層したオイルパーム材Wを当該凹部EQの位置で一体化したものであるから、前記複数枚積層したオイルパーム材Wに形成した表面及び裏面の凹部EQは、そこで、前記複数枚積層したオイルパーム材Wを一体に固定するものであるから、平面部EPの圧縮に左右されない接合が可能になり、そこだけで一体化できるから、緩衝剤、断熱材等の使用が可能となる。
In the oil palm molded body of the above embodiment, the front and back recesses EQ formed on a plurality of laminated oil palm materials W are compressed with a large compressive force, and the plurality of laminated oil palm materials W Since the recesses EQ are integrated at the positions of the recesses EQ, the front and back recesses EQ formed in the plurality of laminated oil palm materials W are fixed integrally therewith. Therefore, it is possible to perform the joining independent of the compression of the planar portion EP, and since it can be integrated only there, it is possible to use a buffering agent, a heat insulating material, and the like.
また、上記実施の形態のオイルパーム成型体の製造方法は、ステップS10、ステップS30の薄板工程で所定長のオイルパーム幹WDをその周方向にロータリーレースで所定の厚みに剥いて複数枚のオイルパーム材Wに形成し、ステップS11、ステップS31の乾燥工程においてステップS10、ステップS30の薄板工程で形成したオイルパーム材Wを乾燥させ、ステップS12、ステップS32の積層工程でステップS11、ステップS31の乾燥工程で乾燥させたオイルパーム材Wを所定の状態に複数枚積層する。そして、ステップS16、ステップS36の加熱工程においてステップS12、ステップS32の積層工程で積層されたオイルパーム材の温度を上昇させるべく加熱し、ステップS17、ステップS37の圧縮工程によってステップS16、ステップS36の加熱工程によって加熱された前記積層されたオイルパーム材Wにオイルパーム材Wの面に対して平行方向に伸びるのを規制しながら、プレス盤10からなる金型の上型(平面部EP及び上に凸部EQを形成する金型からなる上プレス盤10A)と下型(平面部EP及び上に凹部ERを形成する金型からなる下プレス盤10B)でオイルパーム材Wの面に対して直角方向の圧縮力を加えて所定時間圧縮成型し、ステップS19、ステップS39の固定化工程においてステップS17、ステップS37の圧縮工程で所定時間圧縮した前記積層されたオイルパーム材Wを、ステップS16、ステップS36の加熱工程で供給していた温度を降下させて冷却し、固定化させる。
Further, in the method of manufacturing the oil palm molded body of the above embodiment, the oil palm trunk WD having a predetermined length is peeled off at a predetermined thickness by a rotary race in the circumferential direction in the thin plate process of step S10 and step S30. The oil palm material W formed in the palm material W and dried in the thin plate process of step S10 and step S30 in the drying process of step S11 and step S31 is dried, and in the stacking process of step S12 and step S32, the steps S11 and S31 are performed. A plurality of oil palm materials W dried in the drying step are laminated in a predetermined state. And in the heating process of step S16 and step S36, it heats so that the temperature of the oil palm material laminated | stacked by the lamination process of step S12 and step S32 may be raised, and the compression process of step S17 and step S37 performs step S16 and step S36. While restricting the laminated oil palm material W heated by the heating process from extending in a direction parallel to the surface of the oil palm material W, the upper mold (planar portion EP and upper On the surface of the oil palm material W with the upper press board 10A made of a mold that forms a convex part EQ on the lower die (the lower press board 10B made of a mold that forms a concave part ER on the flat part EP and the upper part). A compression force in a right angle direction is applied and compression molding is performed for a predetermined time. In the fixing step of Step S19 and Step S39, Step S17 and Step The laminated oil palm material W compressed for a predetermined time in the compression step of S37 is cooled and fixed by lowering the temperature supplied in the heating step of steps S16 and S36.
このように、所定の厚みに剥いて形成した複数枚のオイルパーム材Wは、ステップS12、ステップS32の積層工程において必要な厚みに形成できるので、目的用途に応じてその厚みを決定できる。ステップS12、ステップS32の積層工程で積層されたオイルパーム材Wの温度を上昇させるべく加熱するステップS16、ステップS36の加熱工程では、特に、水蒸気によって複数枚のオイルパーム材Wを加熱すると、リグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類とが、軟化し結合するからステップS19、ステップS39の固定化工程によって、堅固なオイルパーム成型体EOが得られる。
また、前記積層されたオイルパーム材Wは、オイルパーム材Wの面に対して平行方向に伸びるのを規制しながら、プレス盤10からなる金型の平面部EP及び上に凸部EQを形成する上プレス盤10Aの上型と、平面部EP及び上に凹部ERを形成する下プレス盤10Bの下型とでオイルパーム材Wの面に対して直角方向の圧縮力を加えて所定時間圧縮成型するものであるから、前記積層されたオイルパーム材Wの面積が拡大されることなく、圧縮成型できるから、所望の立体形状であり、かつ、所望の外径のオイルパーム成型体EOが得られる。特に、金型からは、ステップS16、ステップS36の加熱工程で供給していた温度を降下させて冷却し、固定化させるものであるから、オイルパーム成型体EOが取り出し易い。
したがって、積層されたオイルパーム材Wからなる合板自体が所望の形状に成型でき、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した環境にやさしいオイルパーム成型体EOが得られる。 As described above, the plurality of oil palm materials W peeled to have a predetermined thickness can be formed in a necessary thickness in the stacking process of Step S12 and Step S32. Therefore, the thickness can be determined according to the intended use. In the heating process of Step S16 and Step S36 for heating to increase the temperature of the oil palm material W stacked in the stacking process of Step S12 and Step S32, particularly when a plurality of oil palm materials W are heated with water vapor, lignin Since resin components such as cellulose and sugars such as cellulose and hemicellulose soften and bond, a firm oil palm molded body EO is obtained by the immobilization process in steps S19 and S39.
Further, the laminated oil palm material W forms a convex portion EQ on the flat surface portion EP of the mold made of thepress board 10 and restricts the oil palm material W from extending in a direction parallel to the surface of the oil palm material W. Compressing for a predetermined time by applying a compressive force in a direction perpendicular to the surface of the oil palm material W between the upper mold of the upper press panel 10A and the lower mold of the lower press panel 10B on which the flat part EP and the concave part ER are formed. Since the molded oil palm material W is molded, it can be compression-molded without increasing the area of the laminated oil palm material W, so that an oil palm molded body EO having a desired three-dimensional shape and a desired outer diameter is obtained. It is done. In particular, the oil palm molded body EO can be easily taken out from the mold because the temperature supplied in the heating process of step S16 and step S36 is lowered to be cooled and fixed.
Therefore, the plywood itself made of laminated oil palm material W can be molded into a desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and the components that oil palm inherently has An oil palm molded body EO that is environmentally friendly is obtained.
また、前記積層されたオイルパーム材Wは、オイルパーム材Wの面に対して平行方向に伸びるのを規制しながら、プレス盤10からなる金型の平面部EP及び上に凸部EQを形成する上プレス盤10Aの上型と、平面部EP及び上に凹部ERを形成する下プレス盤10Bの下型とでオイルパーム材Wの面に対して直角方向の圧縮力を加えて所定時間圧縮成型するものであるから、前記積層されたオイルパーム材Wの面積が拡大されることなく、圧縮成型できるから、所望の立体形状であり、かつ、所望の外径のオイルパーム成型体EOが得られる。特に、金型からは、ステップS16、ステップS36の加熱工程で供給していた温度を降下させて冷却し、固定化させるものであるから、オイルパーム成型体EOが取り出し易い。
したがって、積層されたオイルパーム材Wからなる合板自体が所望の形状に成型でき、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した環境にやさしいオイルパーム成型体EOが得られる。 As described above, the plurality of oil palm materials W peeled to have a predetermined thickness can be formed in a necessary thickness in the stacking process of Step S12 and Step S32. Therefore, the thickness can be determined according to the intended use. In the heating process of Step S16 and Step S36 for heating to increase the temperature of the oil palm material W stacked in the stacking process of Step S12 and Step S32, particularly when a plurality of oil palm materials W are heated with water vapor, lignin Since resin components such as cellulose and sugars such as cellulose and hemicellulose soften and bond, a firm oil palm molded body EO is obtained by the immobilization process in steps S19 and S39.
Further, the laminated oil palm material W forms a convex portion EQ on the flat surface portion EP of the mold made of the
Therefore, the plywood itself made of laminated oil palm material W can be molded into a desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and the components that oil palm inherently has An oil palm molded body EO that is environmentally friendly is obtained.
特に、ステップS12、ステップS32の積層工程以降で積層されたオイルパーム材Wの温度をステップS16、ステップS36の加熱工程で上昇させるべく加熱し、ステップS17、ステップS37の圧縮工程で加熱された前記積層されたオイルパーム材Wにその面に対して平行方向に延びるのを規制しながら、オイルパーム材Wの面に対して直角方向の圧縮力を加えて所定時間圧縮するものであるから、ステップS17、ステップS37の圧縮工程で付与される圧縮力がオイルパーム材Wの面に対して平行方向に逃げるという延びが制限され、全ての積層されたオイルパーム材Wの圧縮力が有効的に使用され、かつ、オイルパーム材Wの外形寸法を均一にすることができ、また、全オイルパーム材Wの圧縮率を樹種に応じた値にすることができ、製造中に複数のオイルパーム材Wから無駄を出すことがない。
よって、オイルパーム材Wが含有する樹脂成分及び糖成分の使用割合を多くし、自然物で接合した多層合板が得られ、使用する材料のロスが少なくコストを抑え、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用量を抑え、オイルパームが本来的に有している成分を利用した積層合板が得られる。 In particular, the temperature of the oil palm material W laminated after the laminating process of step S12 and step S32 is heated to increase in the heating process of step S16 and step S36, and the heat heated in the compression process of step S17 and step S37. Since the compressed oil palm material W is restricted from extending in a direction parallel to the surface thereof, a compression force in a direction perpendicular to the surface of the oil palm material W is applied to compress the oil palm material W for a predetermined time. The extension that the compression force applied in the compression process of S17 and Step S37 escapes in a direction parallel to the surface of the oil palm material W is limited, and the compression force of all the laminated oil palm materials W is effectively used. In addition, the outer dimensions of the oil palm material W can be made uniform, and the compression rate of the entire oil palm material W is set to a value corresponding to the tree species. It can, will not be put out waste from the plurality of oil palm material W during manufacture.
Therefore, the use ratio of the resin component and sugar component contained in the oil palm material W is increased, and a multilayer plywood bonded with a natural product can be obtained, the loss of the material used is reduced, the cost is reduced, and sick house syndrome is caused. A laminated plywood utilizing the components inherently possessed by oil palm can be obtained by suppressing the amount of formaldehyde-based adhesive used.
よって、オイルパーム材Wが含有する樹脂成分及び糖成分の使用割合を多くし、自然物で接合した多層合板が得られ、使用する材料のロスが少なくコストを抑え、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用量を抑え、オイルパームが本来的に有している成分を利用した積層合板が得られる。 In particular, the temperature of the oil palm material W laminated after the laminating process of step S12 and step S32 is heated to increase in the heating process of step S16 and step S36, and the heat heated in the compression process of step S17 and step S37. Since the compressed oil palm material W is restricted from extending in a direction parallel to the surface thereof, a compression force in a direction perpendicular to the surface of the oil palm material W is applied to compress the oil palm material W for a predetermined time. The extension that the compression force applied in the compression process of S17 and Step S37 escapes in a direction parallel to the surface of the oil palm material W is limited, and the compression force of all the laminated oil palm materials W is effectively used. In addition, the outer dimensions of the oil palm material W can be made uniform, and the compression rate of the entire oil palm material W is set to a value corresponding to the tree species. It can, will not be put out waste from the plurality of oil palm material W during manufacture.
Therefore, the use ratio of the resin component and sugar component contained in the oil palm material W is increased, and a multilayer plywood bonded with a natural product can be obtained, the loss of the material used is reduced, the cost is reduced, and sick house syndrome is caused. A laminated plywood utilizing the components inherently possessed by oil palm can be obtained by suppressing the amount of formaldehyde-based adhesive used.
また、オイルパームの幹は節、年輪がないからロータリーレースで外周から所定の厚みに剥いてオイルパーム材Wを作成する場合、均質な薄板が得られ、結果的に、そのオイルパーム材Wからなるオイルパーム成型体EOは均質なものとなる。また、加える温度と圧縮力によって前記オイルパームの幹自体が含有する樹脂成分及び糖成分によってその接合力を変化させるから、加える温度と圧縮力の制御によって任意の接着力が得られる。
また、ステップS12、ステップS32の積層工程以降で積層されたオイルパーム材Wの温度を加熱工程で上昇させるべく加熱し、圧縮工程で加熱された前記積層されたオイルパーム材Wに、オイルパーム材Wの面に対して平行方向に延びるのを規制しながら、オイルパーム成型体EOの面に対して直角方向の圧縮力を加えて所定時間圧縮するものであるから、ステップS17、ステップS37の圧縮工程で付与される圧縮力がオイルパーム材Wの面に対して平行方向に逃げるという延びが制限され、全ての積層されたオイルパーム材Wの圧縮力が有効的に使用され、かつ、オイルパーム材Wの外形寸法を均一にすることができ、また、全オイルパーム材Wの圧縮率を均一にすることができ、製造中に複数のオイルパーム材Wから無駄を出すことがない。 In addition, since the palm of the oil palm has no nodes and no annual rings, when the oil palm material W is created by peeling it off from the outer periphery with a rotary race, a uniform thin plate is obtained. As a result, from the oil palm material W The resulting oil palm molded body EO is homogeneous. Moreover, since the joining force is changed by the resin component and sugar component contained in the trunk of the oil palm itself depending on the applied temperature and compressive force, an arbitrary adhesive force can be obtained by controlling the applied temperature and compressive force.
Moreover, the oil palm material W heated to raise the temperature of the oil palm material W laminated | stacked after the lamination | stacking process of step S12 and step S32 by a heating process, and the oil palm material W heated to the compression process is added to the oil palm material W The compression of step S17 and step S37 is performed by applying a compressive force in a direction perpendicular to the surface of the oil palm molded body EO while restricting extending in a direction parallel to the surface of W. The extension that the compressive force applied in the process escapes in a direction parallel to the surface of the oil palm material W is limited, the compressive force of all the laminated oil palm materials W is effectively used, and the oil palm The outer dimensions of the material W can be made uniform, and the compression rate of all the oil palm materials W can be made uniform, and waste is produced from the plurality of oil palm materials W during production. Theft is not.
また、ステップS12、ステップS32の積層工程以降で積層されたオイルパーム材Wの温度を加熱工程で上昇させるべく加熱し、圧縮工程で加熱された前記積層されたオイルパーム材Wに、オイルパーム材Wの面に対して平行方向に延びるのを規制しながら、オイルパーム成型体EOの面に対して直角方向の圧縮力を加えて所定時間圧縮するものであるから、ステップS17、ステップS37の圧縮工程で付与される圧縮力がオイルパーム材Wの面に対して平行方向に逃げるという延びが制限され、全ての積層されたオイルパーム材Wの圧縮力が有効的に使用され、かつ、オイルパーム材Wの外形寸法を均一にすることができ、また、全オイルパーム材Wの圧縮率を均一にすることができ、製造中に複数のオイルパーム材Wから無駄を出すことがない。 In addition, since the palm of the oil palm has no nodes and no annual rings, when the oil palm material W is created by peeling it off from the outer periphery with a rotary race, a uniform thin plate is obtained. As a result, from the oil palm material W The resulting oil palm molded body EO is homogeneous. Moreover, since the joining force is changed by the resin component and sugar component contained in the trunk of the oil palm itself depending on the applied temperature and compressive force, an arbitrary adhesive force can be obtained by controlling the applied temperature and compressive force.
Moreover, the oil palm material W heated to raise the temperature of the oil palm material W laminated | stacked after the lamination | stacking process of step S12 and step S32 by a heating process, and the oil palm material W heated to the compression process is added to the oil palm material W The compression of step S17 and step S37 is performed by applying a compressive force in a direction perpendicular to the surface of the oil palm molded body EO while restricting extending in a direction parallel to the surface of W. The extension that the compressive force applied in the process escapes in a direction parallel to the surface of the oil palm material W is limited, the compressive force of all the laminated oil palm materials W is effectively used, and the oil palm The outer dimensions of the material W can be made uniform, and the compression rate of all the oil palm materials W can be made uniform, and waste is produced from the plurality of oil palm materials W during production. Theft is not.
そして、前記複数枚のオイルパーム材Wを前記オイルパームの幹自体が含有する樹脂成分及び糖成分によって接合して前記積層合板を形成するものであり、他の合成樹脂、合成ゴムを接着材として使用していないから、自然に戻すことができ公害問題を引き起こすことがない。更に、前記オイルパームの幹自体が含有する樹脂成分及び糖成分によって接合されるときの圧縮力によって、前記薄板の空隙が殆どなくなり、緻密な組織になるから、耐水性があり、かつ、防水、防虫性に富み、建築材料として使用しても耐用年数が長くなる。なお、ここにおける接合には、オイルパーム幹からオイルパーム材の薄板形成の際に生じる凹凸面に対して逆の凸凹面に成型する能力があることから、その成形能力を利用した機械的接合も含まれている。
The plurality of oil palm materials W are joined by a resin component and a sugar component contained in the trunk of the oil palm itself to form the laminated plywood, and other synthetic resins and synthetic rubbers are used as adhesives. Since it is not used, it can be returned to nature and will not cause pollution problems. Furthermore, because of the compressive force when joined by the resin component and sugar component contained in the trunk of the oil palm itself, there is almost no void in the thin plate, resulting in a dense structure, water resistance, and waterproofing. It is rich in insect repellent and has a long service life even when used as a building material. In addition, since the joining here has the ability to mold from the oil palm trunk to the concave / convex surface opposite to the concave / convex surface generated when the oil palm material thin plate is formed, mechanical joining using the molding ability is also possible. include.
このように、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで所定の厚みに剥いて形成し、それを圧密加工したときの1枚の厚みが1mm以上からなる複数枚のオイルパーム材Wを同時に圧縮、固定化し、一体に接合できる。特に、ステップS12、ステップS32の積層工程以降で積層されたオイルパーム材Wの温度をステップS16、ステップS36の加熱工程で上昇させるべく加熱し、ステップS17、ステップS37の圧縮工程で加熱された前記積層されたオイルパーム材Wに、オイルパーム材Wの面に対して平行方向に延びるのを規制しながら、オイルパーム材Wの面に対して直角方向の圧縮力を加えて所定時間圧縮するものであるから、ステップS17、ステップS37の圧縮工程で付与される圧縮力がオイルパーム材Wの面に対して平行方向に逃げるという延びが制限され、全ての積層されたオイルパーム材Wの圧縮力が有効的に使用され、かつ、全オイルパーム材Wの圧縮率を均一にすることができ、製造中に複数のオイルパーム材Wから無駄を出すことがない。
よって、前記オイルパーム材Wが含有する樹脂成分及び糖成分を使用し、自然物で接合したオイルパーム成型体EOが得られ、使用する材料のロスが少なくコストを抑え、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板が得られる。仮に、オイルパーム成型体EOの製造方法のステップS10、ステップS30の薄板工程は、オイルパーム材Wを使用するものであるから、少なくとも従来の合板に比較して、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑えることができる。 In this way, a predetermined length of the oil palm trunk WD is formed by peeling off to a predetermined thickness with a rotary race while rotating in the circumferential direction, and when one of them is consolidated, a plurality of sheets each having a thickness of 1 mm or more The oil palm material W can be compressed and fixed simultaneously and joined together. In particular, the temperature of the oil palm material W laminated after the lamination process of step S12 and step S32 is heated to increase in the heating process of step S16 and step S36, and the heat heated in the compression process of step S17 and step S37. The laminated oil palm material W is compressed for a predetermined time by applying a compressive force in a direction perpendicular to the surface of the oil palm material W while restricting extending in a direction parallel to the surface of the oil palm material W. Therefore, the extension that the compressive force applied in the compression process of steps S17 and S37 escapes in a direction parallel to the surface of the oil palm material W is limited, and the compressive force of all the laminated oil palm materials W is limited. Can be used effectively, and the compression ratio of all the oil palm materials W can be made uniform, and waste from a plurality of oil palm materials W is produced during production. That there is no.
Therefore, using the resin component and sugar component contained in the oil palm material W, an oil palm molded body EO joined with a natural product can be obtained, the loss of the material used is reduced, the cost is reduced, and the cause of sick house syndrome The use of the formaldehyde-based adhesive is suppressed, and a laminated plywood using the components that oil palm originally has is obtained. Temporarily, since the thin plate process of step S10 and step S30 of the manufacturing method of the oil palm molded body EO uses the oil palm material W, at least compared with the conventional plywood, formaldehyde that causes sick house syndrome Use of adhesive can be suppressed.
よって、前記オイルパーム材Wが含有する樹脂成分及び糖成分を使用し、自然物で接合したオイルパーム成型体EOが得られ、使用する材料のロスが少なくコストを抑え、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板が得られる。仮に、オイルパーム成型体EOの製造方法のステップS10、ステップS30の薄板工程は、オイルパーム材Wを使用するものであるから、少なくとも従来の合板に比較して、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑えることができる。 In this way, a predetermined length of the oil palm trunk WD is formed by peeling off to a predetermined thickness with a rotary race while rotating in the circumferential direction, and when one of them is consolidated, a plurality of sheets each having a thickness of 1 mm or more The oil palm material W can be compressed and fixed simultaneously and joined together. In particular, the temperature of the oil palm material W laminated after the lamination process of step S12 and step S32 is heated to increase in the heating process of step S16 and step S36, and the heat heated in the compression process of step S17 and step S37. The laminated oil palm material W is compressed for a predetermined time by applying a compressive force in a direction perpendicular to the surface of the oil palm material W while restricting extending in a direction parallel to the surface of the oil palm material W. Therefore, the extension that the compressive force applied in the compression process of steps S17 and S37 escapes in a direction parallel to the surface of the oil palm material W is limited, and the compressive force of all the laminated oil palm materials W is limited. Can be used effectively, and the compression ratio of all the oil palm materials W can be made uniform, and waste from a plurality of oil palm materials W is produced during production. That there is no.
Therefore, using the resin component and sugar component contained in the oil palm material W, an oil palm molded body EO joined with a natural product can be obtained, the loss of the material used is reduced, the cost is reduced, and the cause of sick house syndrome The use of the formaldehyde-based adhesive is suppressed, and a laminated plywood using the components that oil palm originally has is obtained. Temporarily, since the thin plate process of step S10 and step S30 of the manufacturing method of the oil palm molded body EO uses the oil palm material W, at least compared with the conventional plywood, formaldehyde that causes sick house syndrome Use of adhesive can be suppressed.
上記実施の形態のオイルパーム成型体の製造方法は、ステップS30の薄板工程で所定長のオイルパーム幹をその周方向にロータリーレースで所定の厚みに剥いて複数枚のオイルパーム材Wに形成し、ステップS31で乾燥工程においてステップS30の薄板工程で形成したオイルパーム材Wを乾燥させ、ステップS32の積層工程でステップS31の乾燥工程で乾燥させたオイルパーム材Wを所定の状態に複数枚積層する。そして、ステップS36の予備加熱工程において積層されたオイルパーム材Wの温度を上昇させるべく加熱し、ステップS36の予備加熱工程によって加熱された前記積層されたオイルパーム材Wにオイルパーム材Wの面に沿って平行方向に伸びるのを規制しながら、金型の上型と下型とでオイルパーム材Wの面に対して直角方向の圧縮力を加えて所定時間圧縮成型し、ステップS39の予備固定化工程によってステップS37の予備圧縮工程で所定時間圧縮成型した前記積層されたオイルパーム材Wを、ステップS39の予備固定化工程においてステップS36の予備加熱工程で供給していた温度を降下させて冷却して固定化させる予備成型と、前記積層されたオイルパーム材Wを所定の湿度及び温度条件下で、前記積層されたオイルパーム材Wの面に沿って平行方向に延びるのを規制しながら、金型の上型と下型とで前記積層されたオイルパーム材Wの面に対して直角方向の圧縮力を加えて所定時間圧縮成型し、前記所定時間圧縮成型した前記積層されたオイルパーム材Wの温度を降下させて固定化させるステップS42乃至ステップS49からなる本成型からなるものである。
なお、オイルパーム成型体EOの形態または使用対象によっては、ステップS36の予備加熱工程、ステップS37の予備圧縮工程、ステップS39の予備固定化工程からなる予備成型、ステップS42乃至ステップS49からなる本成型は、ステップS36の予備加熱工程、ステップS37の予備圧縮工程、ステップS39の予備固定化工程を予備成型として1回以上、またはステップS42からステップS49からなる本固定化工程を本成型として1回以上繰り返し実行することができる。 In the method for manufacturing an oil palm molded body according to the above-described embodiment, a plurality of oil palm members W are formed by peeling a predetermined length of an oil palm trunk to a predetermined thickness with a rotary race in the circumferential direction in the thin plate process of step S30. The oil palm material W formed in the thin plate process in step S30 in the drying process in step S31 is dried, and a plurality of oil palm materials W dried in the drying process in step S31 in the stacking process in step S32 are stacked in a predetermined state. To do. And it heats so that the temperature of the oil palm material W laminated | stacked in the preheating process of step S36 may be raised, and the surface of the oil palm material W is added to the laminated oil palm material W heated by the preheating process of step S36. The upper and lower molds of the mold are subjected to a compression force in a direction perpendicular to the surface of the oil palm material W and are compressed for a predetermined period of time, while preliminarily extending in parallel to The temperature of the laminated oil palm material W compression-molded for a predetermined time in the preliminary compression process in step S37 by the fixing process is decreased in the preliminary heating process in step S36 in the preliminary fixing process in step S39. Preliminary molding for cooling and fixing, and the laminated oil palm material W under the predetermined humidity and temperature conditions, the laminated oil par Applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material W between the upper mold and the lower mold of the mold while restricting extending in a parallel direction along the surface of the material W for a predetermined time The molding comprises step S42 to step S49 in which the temperature of the laminated oil palm material W that has been compression-molded and compression-molded for the predetermined time is lowered and fixed.
In addition, depending on the form of the oil palm molded body EO or the object of use, the preliminary molding including the preheating process in step S36, the preliminary compression process in step S37, the preliminary fixing process in step S39, and the main molding including steps S42 to S49. Is one or more times as pre-molding the pre-heating process in step S36, the pre-compression process in step S37, and the pre-fixing process in step S39, or one or more times as the main fixing process consisting of steps S42 to S49 as the main molding. Can be executed repeatedly.
なお、オイルパーム成型体EOの形態または使用対象によっては、ステップS36の予備加熱工程、ステップS37の予備圧縮工程、ステップS39の予備固定化工程からなる予備成型、ステップS42乃至ステップS49からなる本成型は、ステップS36の予備加熱工程、ステップS37の予備圧縮工程、ステップS39の予備固定化工程を予備成型として1回以上、またはステップS42からステップS49からなる本固定化工程を本成型として1回以上繰り返し実行することができる。 In the method for manufacturing an oil palm molded body according to the above-described embodiment, a plurality of oil palm members W are formed by peeling a predetermined length of an oil palm trunk to a predetermined thickness with a rotary race in the circumferential direction in the thin plate process of step S30. The oil palm material W formed in the thin plate process in step S30 in the drying process in step S31 is dried, and a plurality of oil palm materials W dried in the drying process in step S31 in the stacking process in step S32 are stacked in a predetermined state. To do. And it heats so that the temperature of the oil palm material W laminated | stacked in the preheating process of step S36 may be raised, and the surface of the oil palm material W is added to the laminated oil palm material W heated by the preheating process of step S36. The upper and lower molds of the mold are subjected to a compression force in a direction perpendicular to the surface of the oil palm material W and are compressed for a predetermined period of time, while preliminarily extending in parallel to The temperature of the laminated oil palm material W compression-molded for a predetermined time in the preliminary compression process in step S37 by the fixing process is decreased in the preliminary heating process in step S36 in the preliminary fixing process in step S39. Preliminary molding for cooling and fixing, and the laminated oil palm material W under the predetermined humidity and temperature conditions, the laminated oil par Applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material W between the upper mold and the lower mold of the mold while restricting extending in a parallel direction along the surface of the material W for a predetermined time The molding comprises step S42 to step S49 in which the temperature of the laminated oil palm material W that has been compression-molded and compression-molded for the predetermined time is lowered and fixed.
In addition, depending on the form of the oil palm molded body EO or the object of use, the preliminary molding including the preheating process in step S36, the preliminary compression process in step S37, the preliminary fixing process in step S39, and the main molding including steps S42 to S49. Is one or more times as pre-molding the pre-heating process in step S36, the pre-compression process in step S37, and the pre-fixing process in step S39, or one or more times as the main fixing process consisting of steps S42 to S49 as the main molding. Can be executed repeatedly.
このように、複数枚のオイルパーム材Wに形成するステップS30の薄板工程、そのオイルパーム材WのステップS31の乾燥工程、そのオイルパーム材Wを複数枚積層するステップS32の積層工程、そのオイルパーム材Wを加熱するステップS36の予備加熱工程、前記加熱されたオイルパーム材Wの面に沿って平行方向に伸びるのを規制しながら、金型の上型と下型とでオイルパーム材Wの面に対して直角方向の圧縮力を加えて所定時間圧縮成型するステップS37の予備圧縮工程と、ステップS36の予備加熱工程で供給していた温度を降下させて冷却し、固定化させるステップS39の予備固定化工程は、予備オイルパーム成型体HWの予備成型となる。この予備オイルパーム成型体HWは20~80%の圧縮率で圧縮した板状としたもの、或いは、全体のオイルパーム成型体EOに対して20~80%の圧縮率で圧縮した立体形状体としてもよい。このときの前記加熱されたオイルパーム材Wの面に沿って平行方向には伸びるのを規制し、仕上げ寸法に成型される。また、このときには、供給する水蒸気圧の量を少なくして成形すると、後のステップS42乃至ステップS49からなる本成型の加工が容易である。
このようにステップS39の予備固定化工程で固定化された前記積層されたオイルパーム材Wは、所定の湿度及び温度条件下で、再度、前記積層されたオイルパーム材Wの面に沿って平行方向に延びるのを規制しながら、金型の上型と下型とで前記積層されたオイルパーム材Wの面に対して直角方向の圧縮力を加えて所定時間圧縮して成型し、前記所定時間圧縮して成型した前記積層されたオイルパーム材Wの温度を降下させて冷却し、ステップS48の本成型で恒久的な固定化をさせるものである。 Thus, the thin plate process of step S30 formed on a plurality of oil palm materials W, the drying process of step S31 of the oil palm materials W, the stacking process of step S32 of laminating a plurality of oil palm materials W, and the oil Oil palm material W between the upper mold and the lower mold of the mold while regulating the preheating step of step S36 for heating the palm material W and extending in the parallel direction along the surface of the heated oil palm material W Step S39 in which the temperature supplied in the step S37 for compressing and molding for a predetermined time by applying a compressive force in a direction perpendicular to the surface and the temperature supplied in the preheating step in Step S36 is cooled and fixed. This preliminary fixing step is a preliminary molding of the preliminary oil palm molded body HW. The preliminary oil palm molded body HW is a plate shape compressed at a compression rate of 20 to 80%, or a three-dimensional shape body compressed at a compression rate of 20 to 80% with respect to the entire oil palm molded body EO. Also good. At this time, it is restricted from extending in the parallel direction along the surface of the heated oil palm material W, and is molded into a finished dimension. Further, at this time, if the molding is performed by reducing the amount of water vapor pressure to be supplied, the main molding process including the subsequent steps S42 to S49 can be easily performed.
Thus, the laminated oil palm material W fixed in the preliminary fixing process in step S39 is again parallel along the surface of the laminated oil palm material W under predetermined humidity and temperature conditions. While restricting extending in the direction, the upper and lower molds are molded by compressing for a predetermined time by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material W, and The temperature of the laminated oil palm material W molded by time compression is lowered and cooled, and is permanently fixed by the main molding in step S48.
このようにステップS39の予備固定化工程で固定化された前記積層されたオイルパーム材Wは、所定の湿度及び温度条件下で、再度、前記積層されたオイルパーム材Wの面に沿って平行方向に延びるのを規制しながら、金型の上型と下型とで前記積層されたオイルパーム材Wの面に対して直角方向の圧縮力を加えて所定時間圧縮して成型し、前記所定時間圧縮して成型した前記積層されたオイルパーム材Wの温度を降下させて冷却し、ステップS48の本成型で恒久的な固定化をさせるものである。 Thus, the thin plate process of step S30 formed on a plurality of oil palm materials W, the drying process of step S31 of the oil palm materials W, the stacking process of step S32 of laminating a plurality of oil palm materials W, and the oil Oil palm material W between the upper mold and the lower mold of the mold while regulating the preheating step of step S36 for heating the palm material W and extending in the parallel direction along the surface of the heated oil palm material W Step S39 in which the temperature supplied in the step S37 for compressing and molding for a predetermined time by applying a compressive force in a direction perpendicular to the surface and the temperature supplied in the preheating step in Step S36 is cooled and fixed. This preliminary fixing step is a preliminary molding of the preliminary oil palm molded body HW. The preliminary oil palm molded body HW is a plate shape compressed at a compression rate of 20 to 80%, or a three-dimensional shape body compressed at a compression rate of 20 to 80% with respect to the entire oil palm molded body EO. Also good. At this time, it is restricted from extending in the parallel direction along the surface of the heated oil palm material W, and is molded into a finished dimension. Further, at this time, if the molding is performed by reducing the amount of water vapor pressure to be supplied, the main molding process including the subsequent steps S42 to S49 can be easily performed.
Thus, the laminated oil palm material W fixed in the preliminary fixing process in step S39 is again parallel along the surface of the laminated oil palm material W under predetermined humidity and temperature conditions. While restricting extending in the direction, the upper and lower molds are molded by compressing for a predetermined time by applying a compressive force in a direction perpendicular to the surface of the laminated oil palm material W, and The temperature of the laminated oil palm material W molded by time compression is lowered and cooled, and is permanently fixed by the main molding in step S48.
したがって、所定の厚みに剥いて形成した複数枚のオイルパーム材Wは、ステップS32の積層工程において必要な厚みに形成でき、目的用途に応じてその厚みを決定でき、また、予備オイルパーム成型体HWの予備成型工程を成型過程に設けることにより、ステップS42乃至ステップS49からなる本固定化工程で精度の高い成型体を得ることができる。ステップS32の積層工程で積層されたオイルパーム材Wの温度を上昇させるべく加熱するステップS36の予備加熱工程では、特に、水蒸気によって複数枚のオイルパーム材Wを加熱すると、リグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類とが、軟化し結合するからステップS42乃至ステップS49からなる本固定化工程によって、堅固な成型体が得られる。
Therefore, the plurality of oil palm materials W formed by peeling to a predetermined thickness can be formed to a necessary thickness in the stacking process of step S32, and the thickness can be determined according to the intended use. By providing the HW preforming process in the molding process, it is possible to obtain a molded body with high accuracy in the main fixing process including steps S42 to S49. In the preliminary heating step of step S36 for heating to increase the temperature of the oil palm material W laminated in the laminating step of step S32, in particular, when a plurality of oil palm materials W are heated with steam, a resin component such as lignin and the like Since saccharides such as cellulose and hemicellulose are softened and bonded, a solid molded body is obtained by the main immobilization process including steps S42 to S49.
また、前記積層されたオイルパーム材Wは、ステップS42乃至ステップS49からなる本固定化工程においても、オイルパーム材Wの面に対して平行方向に伸びるのを規制しながら、金型の上型と下型とでオイルパーム材Wの面に対して直角方向の圧縮力を加えて所定時間圧縮成型するものであるから、前記積層されたオイルパーム材Wの面積が拡大されることなく、圧縮成型できるから、所望の立体形状であり、かつ、所望の外径のオイルパーム成型体EOが得られる。特に、ステップS39の予備固定化工程であっても、ステップS42からステップS49からなる本固定化工程であっても、金型からは、ステップS36の加熱工程で供給していた温度を降下させて冷却し、固定化させるものであるから、オイルパーム成型体EOが取り出し易い。
オイルパーム成型体EOのステップS30の薄板工程は、オイルパーム材Wを使用するものであるから、少なくとも従来の合板に比較して、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑えることができる。
したがって、積層されたオイルパーム材Wからなるオイルパーム成型体EO自体が所望の形状に成型でき、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した環境にやさしいオイルパーム成型体が得られる。 In addition, the laminated oil palm material W is controlled to extend in a direction parallel to the surface of the oil palm material W even in the main fixing step including Step S42 to Step S49, and the upper mold of the mold. And the lower mold are compressed for a predetermined time by applying a compression force in a direction perpendicular to the surface of the oil palm material W, so that the area of the laminated oil palm material W is compressed without being expanded. Since it can be molded, an oil palm molded body EO having a desired three-dimensional shape and a desired outer diameter is obtained. In particular, whether it is the preliminary fixing process in step S39 or the main fixing process consisting of steps S42 to S49, the temperature supplied in the heating process of step S36 is lowered from the mold. Because it is cooled and fixed, the oil palm molded body EO is easy to take out.
Since the thin plate process in step S30 of the oil palm molded body EO uses the oil palm material W, it is possible to suppress the use of formaldehyde-based adhesives that cause sick house syndrome at least as compared with conventional plywood. it can.
Therefore, the oil palm molded body EO itself made of the laminated oil palm material W can be molded into a desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and oil palm inherently has An oil palm molded body that is environmentally friendly using the ingredients that are present.
オイルパーム成型体EOのステップS30の薄板工程は、オイルパーム材Wを使用するものであるから、少なくとも従来の合板に比較して、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑えることができる。
したがって、積層されたオイルパーム材Wからなるオイルパーム成型体EO自体が所望の形状に成型でき、また、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した環境にやさしいオイルパーム成型体が得られる。 In addition, the laminated oil palm material W is controlled to extend in a direction parallel to the surface of the oil palm material W even in the main fixing step including Step S42 to Step S49, and the upper mold of the mold. And the lower mold are compressed for a predetermined time by applying a compression force in a direction perpendicular to the surface of the oil palm material W, so that the area of the laminated oil palm material W is compressed without being expanded. Since it can be molded, an oil palm molded body EO having a desired three-dimensional shape and a desired outer diameter is obtained. In particular, whether it is the preliminary fixing process in step S39 or the main fixing process consisting of steps S42 to S49, the temperature supplied in the heating process of step S36 is lowered from the mold. Because it is cooled and fixed, the oil palm molded body EO is easy to take out.
Since the thin plate process in step S30 of the oil palm molded body EO uses the oil palm material W, it is possible to suppress the use of formaldehyde-based adhesives that cause sick house syndrome at least as compared with conventional plywood. it can.
Therefore, the oil palm molded body EO itself made of the laminated oil palm material W can be molded into a desired shape, and the use of formaldehyde-based adhesive that causes sick house syndrome is suppressed, and oil palm inherently has An oil palm molded body that is environmentally friendly using the ingredients that are present.
特に、オイルパーム材W相互の接合であっても、必要に応じて、他の接着剤、例えば、ユリア樹脂、エポキシ樹脂または非ホルムアルデヒド系接着剤等を追加し、接合力を上げることができる。この場合も、従来よりも接着剤の使用が少なくなる。繊維の長さ方向は互いに直行する薄板の配列とするのが基本的であるが、曲げを行う多層合板PWとして用途が決まっているものは、全体の繊維(維管束)方向を同一にしたり、多層の薄板の1枚または2枚を異なった繊維方向とすることもできる。
In particular, even when the oil palm material W is bonded to each other, other adhesives such as urea resin, epoxy resin, or non-formaldehyde adhesive can be added as necessary to increase the bonding force. Also in this case, the use of an adhesive is less than in the conventional case. Basically, the length direction of the fibers is an array of thin plates that are orthogonal to each other, but the use is determined as a multilayer plywood PW for bending, the entire fiber (vascular bundle) direction is the same, One or two of the multi-layered sheets can have different fiber directions.
[実施の形態3]
図2の実施の形態では、オイルパーム材Wのみの使用を前提としているが、図18のように、そこに網、例えば、金網をインサートすることもできる。
例えば、5枚のオイルパーム材W1,・・・,W5に対し、金網として公知のメタルラスM1及びメタルラスM2がオイルパーム材W1,・・・,W5の外形と同一に形成されたものが、オイルパーム材W2とオイルパーム材W4の上面に重ねられる。ここで、メタルラスMは枚数を問題としない一般論では単にメタルラスMというが、個々の配置を意味するときには、特定のメタルラスM1、メタルラスM2と個別に表現する。メタルラスM1及びメタルラスM2は、巻回された材料を所定の寸法に裁断されたもので、裁断は、他の場所で行われてもよいし、積層直前で行われてもよい。オイルパーム幹WDから連続薄板UWDが形成された時点で連続薄板UWDにメタルラスM(枚数を問題としないときには単にメタルラスMという)を重ね合わせて同時に切断し、メタルラスM1及びメタルラスM2を形成してもよい。または、別の場所で切断したメタルラスM1及びメタルラスM2を切断されたオイルパーム材W2とオイルパーム材W4の上面に重ねてもよい。
本実施の形態では、金網としてメタルラスM1及びメタルラスM2の使用を前提に説明するが、金網に限定されるものではなく、植物繊維からなる網、化学繊維からなる網とすることもできる。何れにせよ、ここで使用する網は薄く形成されるのが望ましく、機械的強度の存するものが望ましい。 [Embodiment 3]
In the embodiment of FIG. 2, it is assumed that only the oil palm material W is used. However, as shown in FIG. 18, a net, for example, a wire net can be inserted therein.
For example, for five oil palm materials W1,..., W5, a metal lath M1 and a metal lath M2 known as a wire mesh are formed to have the same outer shape as the oil palm materials W1,. It is overlaid on the upper surfaces of the palm material W2 and the oil palm material W4. Here, the metal lath M is simply referred to as the metal lath M in the general theory that does not matter the number of sheets, but when it means individual arrangement, it is expressed separately as a specific metal lath M1 and a metal lath M2. The metal lath M1 and the metal lath M2 are obtained by cutting a wound material into a predetermined size, and the cutting may be performed in another place or just before lamination. At the time when the continuous thin plate UWD is formed from the oil palm trunk WD, the metal lath M (simply referred to as the metal lath M when the number of sheets does not matter) is overlapped on the continuous thin plate UWD and simultaneously cut to form the metal lath M1 and the metal lath M2. Good. Alternatively, the metal lath M1 and the metal lath M2 cut at different places may be stacked on the upper surfaces of the cut oil palm material W2 and oil palm material W4.
In the present embodiment, description will be made on the premise that the metal lath M1 and the metal lath M2 are used as the wire mesh. In any case, it is desirable that the net used here is formed thin, and that having mechanical strength is desirable.
図2の実施の形態では、オイルパーム材Wのみの使用を前提としているが、図18のように、そこに網、例えば、金網をインサートすることもできる。
例えば、5枚のオイルパーム材W1,・・・,W5に対し、金網として公知のメタルラスM1及びメタルラスM2がオイルパーム材W1,・・・,W5の外形と同一に形成されたものが、オイルパーム材W2とオイルパーム材W4の上面に重ねられる。ここで、メタルラスMは枚数を問題としない一般論では単にメタルラスMというが、個々の配置を意味するときには、特定のメタルラスM1、メタルラスM2と個別に表現する。メタルラスM1及びメタルラスM2は、巻回された材料を所定の寸法に裁断されたもので、裁断は、他の場所で行われてもよいし、積層直前で行われてもよい。オイルパーム幹WDから連続薄板UWDが形成された時点で連続薄板UWDにメタルラスM(枚数を問題としないときには単にメタルラスMという)を重ね合わせて同時に切断し、メタルラスM1及びメタルラスM2を形成してもよい。または、別の場所で切断したメタルラスM1及びメタルラスM2を切断されたオイルパーム材W2とオイルパーム材W4の上面に重ねてもよい。
本実施の形態では、金網としてメタルラスM1及びメタルラスM2の使用を前提に説明するが、金網に限定されるものではなく、植物繊維からなる網、化学繊維からなる網とすることもできる。何れにせよ、ここで使用する網は薄く形成されるのが望ましく、機械的強度の存するものが望ましい。 [Embodiment 3]
In the embodiment of FIG. 2, it is assumed that only the oil palm material W is used. However, as shown in FIG. 18, a net, for example, a wire net can be inserted therein.
For example, for five oil palm materials W1,..., W5, a metal lath M1 and a metal lath M2 known as a wire mesh are formed to have the same outer shape as the oil palm materials W1,. It is overlaid on the upper surfaces of the palm material W2 and the oil palm material W4. Here, the metal lath M is simply referred to as the metal lath M in the general theory that does not matter the number of sheets, but when it means individual arrangement, it is expressed separately as a specific metal lath M1 and a metal lath M2. The metal lath M1 and the metal lath M2 are obtained by cutting a wound material into a predetermined size, and the cutting may be performed in another place or just before lamination. At the time when the continuous thin plate UWD is formed from the oil palm trunk WD, the metal lath M (simply referred to as the metal lath M when the number of sheets does not matter) is overlapped on the continuous thin plate UWD and simultaneously cut to form the metal lath M1 and the metal lath M2. Good. Alternatively, the metal lath M1 and the metal lath M2 cut at different places may be stacked on the upper surfaces of the cut oil palm material W2 and oil palm material W4.
In the present embodiment, description will be made on the premise that the metal lath M1 and the metal lath M2 are used as the wire mesh. In any case, it is desirable that the net used here is formed thin, and that having mechanical strength is desirable.
次いで、図19に示すように、所定の面積、所定の厚みのオイルパーム材W1,・・・,W5の計5枚及びメタルラスM1及びメタルラスM2の計2枚を積層し、加圧前多層材NWとする事例で説明する。
加圧前多層材NWは、図18(a)を用いて説明したオイルパーム幹WDをかつら剥きされた連続薄板UWDの供給方向に短い辺のオイルパーム材W1,W3,W5と、図18(b)に示す連続薄板UWDの供給方向に長い辺の薄板W2,W4及びその上面に載置されたメタルラスM1及びメタルラスM2が積層配置される。
この5枚の所定面積、所定厚さのオイルパーム材W1,・・・,W5の外形は、裁断によって形成してもよいし、歯の細かな鋸の切断によって形成してもよい。オイルパームの性質上何れでもよいが、裁断の方が作業性からみると効率的である。メタルラスM1及びメタルラスM2は裁断によって形成されるのが望ましい。 Next, as shown in FIG. 19, a total of five oil palm materials W1,..., W5 having a predetermined area and a predetermined thickness and a total of two metal laths M1 and M2 are laminated, and a multilayer material before pressurization. An example of NW will be described.
The multilayer material NW before pressurization includes oil palm materials W1, W3, W5 having short sides in the supply direction of the continuous thin plate UWD that has been peeled off the oil palm trunk WD described with reference to FIG. The thin plates W2 and W4 having long sides in the supply direction of the continuous thin plate UWD shown in b) and the metal lath M1 and the metal lath M2 placed on the upper surface thereof are laminated.
The outer shapes of the five oil palm members W1,..., W5 having a predetermined area and a predetermined thickness may be formed by cutting, or may be formed by cutting a fine tooth saw. Any of the properties of oil palm may be used, but cutting is more efficient from the viewpoint of workability. The metal lath M1 and the metal lath M2 are preferably formed by cutting.
加圧前多層材NWは、図18(a)を用いて説明したオイルパーム幹WDをかつら剥きされた連続薄板UWDの供給方向に短い辺のオイルパーム材W1,W3,W5と、図18(b)に示す連続薄板UWDの供給方向に長い辺の薄板W2,W4及びその上面に載置されたメタルラスM1及びメタルラスM2が積層配置される。
この5枚の所定面積、所定厚さのオイルパーム材W1,・・・,W5の外形は、裁断によって形成してもよいし、歯の細かな鋸の切断によって形成してもよい。オイルパームの性質上何れでもよいが、裁断の方が作業性からみると効率的である。メタルラスM1及びメタルラスM2は裁断によって形成されるのが望ましい。 Next, as shown in FIG. 19, a total of five oil palm materials W1,..., W5 having a predetermined area and a predetermined thickness and a total of two metal laths M1 and M2 are laminated, and a multilayer material before pressurization. An example of NW will be described.
The multilayer material NW before pressurization includes oil palm materials W1, W3, W5 having short sides in the supply direction of the continuous thin plate UWD that has been peeled off the oil palm trunk WD described with reference to FIG. The thin plates W2 and W4 having long sides in the supply direction of the continuous thin plate UWD shown in b) and the metal lath M1 and the metal lath M2 placed on the upper surface thereof are laminated.
The outer shapes of the five oil palm members W1,..., W5 having a predetermined area and a predetermined thickness may be formed by cutting, or may be formed by cutting a fine tooth saw. Any of the properties of oil palm may be used, but cutting is more efficient from the viewpoint of workability. The metal lath M1 and the metal lath M2 are preferably formed by cutting.
本実施の形態では、オイルパーム幹WDをかつら剥きされた連続薄板UWDの供給方向に短い辺のオイルパーム材W1,W3,W5と、連続薄板UWDの供給方向に長い辺の薄板W2,W4を2種類のロータリーレースで形成しているが、連続薄板UWDの供給方向の幅で5枚のオイルパーム材W1,・・・,W5が得られるように設定してもよい。
また、メタルラスM1及びメタルラスM2は裁断によって形成したものであるが、結果的に、加圧前多層材NWの積載されるまでにオイルパーム材W1,・・・,W5との積層関係で配置が完成できればよい。 In the present embodiment, oil palm materials W1, W3, W5 having short sides in the supply direction of the continuous thin plate UWD from which the oil palm trunk WD has been peeled, and thin plates W2, W4 having long sides in the supply direction of the continuous thin plate UWD are provided. Although formed with two types of rotary races, it may be set so that five oil palm materials W1,..., W5 can be obtained with a width in the supply direction of the continuous thin plate UWD.
In addition, the metal lath M1 and the metal lath M2 are formed by cutting. As a result, the arrangement is made in a laminated relationship with the oil palm materials W1,..., W5 before the multilayer material NW before pressurization is stacked. It only needs to be completed.
また、メタルラスM1及びメタルラスM2は裁断によって形成したものであるが、結果的に、加圧前多層材NWの積載されるまでにオイルパーム材W1,・・・,W5との積層関係で配置が完成できればよい。 In the present embodiment, oil palm materials W1, W3, W5 having short sides in the supply direction of the continuous thin plate UWD from which the oil palm trunk WD has been peeled, and thin plates W2, W4 having long sides in the supply direction of the continuous thin plate UWD are provided. Although formed with two types of rotary races, it may be set so that five oil palm materials W1,..., W5 can be obtained with a width in the supply direction of the continuous thin plate UWD.
In addition, the metal lath M1 and the metal lath M2 are formed by cutting. As a result, the arrangement is made in a laminated relationship with the oil palm materials W1,..., W5 before the multilayer material NW before pressurization is stacked. It only needs to be completed.
何れにせよ、図19に示すように、連続薄板UWDの供給方向に短い辺のオイルパーム材W1,W3,W5と、連続薄板UWDの供給方向に長い辺のオイルパーム材W2,W4を互いの繊維の長さ方向が交差されるように加圧前多層材NWを積載するものであればよい。また、裁断によって形成されたメタルラスM1及びメタルラスM2は、オイルパーム材W2,W4の上面に配設されなければならないものではなく、オイルパーム材W1,・・・,W5の中の何れかの位置に1枚または2枚または3枚を配設されればよい。
勿論、図19に示す連続薄板UWDの供給方向に短い辺のオイルパーム材W1,W3,W5と、連続薄板UWDの供給方向に長い辺のオイルパーム材W2,W4を繊維の長さ方向が直角になるように積載すれば、連続薄板UWDの供給方向に短い辺のオイルパーム材Wを2枚、連続薄板UWDの供給方向に長い辺のオイルパーム材Wを3枚の組み合わせとすることもできる。 In any case, as shown in FIG. 19, oil palm materials W1, W3, W5 with short sides in the supply direction of continuous thin plate UWD and oil palm materials W2, W4 with long sides in the supply direction of continuous thin plate UWD are mutually connected. What is necessary is just to load the multilayer material NW before pressurization so that the length direction of the fiber intersects. Further, the metal lath M1 and the metal lath M2 formed by cutting do not have to be disposed on the upper surfaces of the oil palm materials W2 and W4, and any position in the oil palm materials W1,..., W5. One sheet, two sheets, or three sheets may be disposed on the surface.
Of course, the oil palm materials W1, W3, W5 with short sides in the supply direction of the continuous thin plate UWD and the oil palm materials W2, W4 with long sides in the supply direction of the continuous thin plate UWD shown in FIG. Can be combined with two oil palm materials W having a short side in the supply direction of the continuous thin plate UWD and three oil palm materials W having a long side in the supply direction of the continuous thin plate UWD. .
勿論、図19に示す連続薄板UWDの供給方向に短い辺のオイルパーム材W1,W3,W5と、連続薄板UWDの供給方向に長い辺のオイルパーム材W2,W4を繊維の長さ方向が直角になるように積載すれば、連続薄板UWDの供給方向に短い辺のオイルパーム材Wを2枚、連続薄板UWDの供給方向に長い辺のオイルパーム材Wを3枚の組み合わせとすることもできる。 In any case, as shown in FIG. 19, oil palm materials W1, W3, W5 with short sides in the supply direction of continuous thin plate UWD and oil palm materials W2, W4 with long sides in the supply direction of continuous thin plate UWD are mutually connected. What is necessary is just to load the multilayer material NW before pressurization so that the length direction of the fiber intersects. Further, the metal lath M1 and the metal lath M2 formed by cutting do not have to be disposed on the upper surfaces of the oil palm materials W2 and W4, and any position in the oil palm materials W1,..., W5. One sheet, two sheets, or three sheets may be disposed on the surface.
Of course, the oil palm materials W1, W3, W5 with short sides in the supply direction of the continuous thin plate UWD and the oil palm materials W2, W4 with long sides in the supply direction of the continuous thin plate UWD shown in FIG. Can be combined with two oil palm materials W having a short side in the supply direction of the continuous thin plate UWD and three oil palm materials W having a long side in the supply direction of the continuous thin plate UWD. .
5枚の所定面積、所定厚さのオイルパーム材W1,・・・,W5が切断され、それを図19のように加圧前多層材NWの積載状態に位置合わせを行うまでには、湿度の低い温風を所定面積、所定厚さのオイルパーム材W1,・・・,W5の両面に当てて乾燥させる必要がある。加圧前多層材NWとしてオイルパーム材W1,・・・,W5の5枚を積層する生産ラインに送るまでには、5枚のオイルパーム材W1,・・・,W5の乾燥が進行するので、その乾燥状態で図20(a)に示すように、加圧前多層材NWとして積層することができる。この積層状態の維持には、オイルパーム材Wの面方向の広がりを防止するために、5枚のオイルパーム材W1,・・・,W5の各辺を位置決めする枠体20(図7参照)または位置決め孔18(図5参照)等の設定が望ましい。簡単化のために、図5及び図6では位置決め孔18の事例で説明した通りであるので、ここでは重複する説明を省略する。
このように、前記乾燥工程で乾燥させたオイルパーム材W及びメタルラスM1及びメタルラスM2を所定の状態に複数枚積層する工程を、ここでは積層工程と呼ぶ。 Five oil palm materials W1,..., W5 having a predetermined area and a predetermined thickness are cut and the humidity is adjusted until it is aligned with the stacked state of the pre-pressing multilayer material NW as shown in FIG. Must be applied to both sides of the oil palm materials W1,..., W5 having a predetermined area and thickness. Since the drying of the five oil palm materials W1,..., W5 proceeds until the multi-layer material NW before pressurization is sent to the production line in which five oil palm materials W1,. In this dry state, as shown in FIG. 20A, it can be laminated as a multilayer material NW before pressurization. In order to maintain the laminated state, in order to prevent the spread of the oil palm material W in the surface direction, theframe body 20 for positioning each side of the five oil palm materials W1,..., W5 (see FIG. 7). Alternatively, it is desirable to set the positioning hole 18 (see FIG. 5). For simplification, the description of the positioning hole 18 is the same as in FIGS.
The step of laminating a plurality of oil palm materials W, metal laths M1, and metal laths M2 dried in the drying step in a predetermined state is called a laminating step here.
このように、前記乾燥工程で乾燥させたオイルパーム材W及びメタルラスM1及びメタルラスM2を所定の状態に複数枚積層する工程を、ここでは積層工程と呼ぶ。 Five oil palm materials W1,..., W5 having a predetermined area and a predetermined thickness are cut and the humidity is adjusted until it is aligned with the stacked state of the pre-pressing multilayer material NW as shown in FIG. Must be applied to both sides of the oil palm materials W1,..., W5 having a predetermined area and thickness. Since the drying of the five oil palm materials W1,..., W5 proceeds until the multi-layer material NW before pressurization is sent to the production line in which five oil palm materials W1,. In this dry state, as shown in FIG. 20A, it can be laminated as a multilayer material NW before pressurization. In order to maintain the laminated state, in order to prevent the spread of the oil palm material W in the surface direction, the
The step of laminating a plurality of oil palm materials W, metal laths M1, and metal laths M2 dried in the drying step in a predetermined state is called a laminating step here.
位置決め孔18は、その外径をオイルパーム材Wの外形に一致させており、5枚のオイルパーム材W1,・・・,W5及び2枚のメタルラスM1及びメタルラスM2は位置決め孔18内に載置される。そして、加熱工程によって加熱された積層されたオイルパーム材Wに対して、前記オイルパーム材Wの面に沿って平行方向に伸びるのを位置決め孔18で規制しながら、上プレス盤10Aと下プレス盤10Bとでオイルパーム材Wの面に対して直角方向の圧縮力を加えて所定時間圧縮成型される。図示されていないが、5枚のオイルパーム材W1,・・・,W5及びメタルラスM1,M2は位置決め孔18内で圧縮される。5枚のオイルパーム材W1,・・・,W5及びメタルラスM1,M2を押圧する上プレス盤10Aの面は、5枚のオイルパーム材W1,・・・,W5及びメタルラスM1,M2の上面に等しくなっている。当然、5枚のオイルパーム材W1,・・・,W5及びメタルラスM1,M2の下面は、下プレス盤10Bに嵌め合せが可能なように同じ寸法及び形状になっている。
The positioning hole 18 has an outer diameter that matches the outer shape of the oil palm material W, and the five oil palm materials W1,..., W5 and the two metal laths M1 and M2 are mounted in the positioning hole 18. Placed. Then, the upper press panel 10A and the lower press are controlled while the positioning hole 18 restricts the oil palm material W heated in the heating process from extending in the parallel direction along the surface of the oil palm material W. A compression force in a direction perpendicular to the surface of the oil palm material W is applied to the board 10B and compression molding is performed for a predetermined time. Although not shown, the five oil palm members W1,..., W5 and the metal laths M1 and M2 are compressed in the positioning hole 18. The surface of the upper press panel 10A that presses the five oil palm materials W1,..., W5 and the metal laths M1, M2 is on the upper surface of the five oil palm materials W1,. Are equal. Naturally, the bottom surfaces of the five oil palm members W1,..., W5 and the metal laths M1, M2 have the same size and shape so that they can be fitted to the lower press board 10B.
まず、図20(a)の加圧前多層材NWから、直接、図20(b)の積層合板PWを成型する方法を説明する。
ここで、図20(b)に示す圧密化した積層合板PWとは、加圧前多層材NWとして積層したものに、所定の温度条件下で所定の圧縮力を加えて圧縮し、所定の時間経過した後、温度を所定の温度まで降下させて固定化した後、解圧したものである。
即ち、加熱工程によって加熱した積層されたオイルパーム材W1,・・・,W5及びメタルラスM1,M2に、そのオイルパーム材Wの面に対して直角方向の圧縮力を加える圧縮工程を行い、その圧縮工程で所定の温度で所定時間押圧した後、加熱工程で供給していた温度を降下させ、その圧縮状態を維持させる固定化工程を経て、圧密化した積層合板PWを得るものである。 First, a method for directly molding the laminated plywood PW of FIG. 20B from the pre-pressing multilayer material NW of FIG. 20A will be described.
Here, the consolidated laminated plywood PW shown in FIG. 20B is compressed by applying a predetermined compressive force under a predetermined temperature condition to a multilayer laminated material NW before pressurization, for a predetermined time. After a lapse of time, the temperature is lowered to a predetermined temperature, fixed, and then decompressed.
That is, a compression step of applying a compression force in a direction perpendicular to the surface of the oil palm material W to the laminated oil palm materials W1,..., W5 and the metal laths M1, M2 heated by the heating step is performed. After pressing for a predetermined time at a predetermined temperature in the compression process, the temperature supplied in the heating process is lowered, and through a fixing process for maintaining the compressed state, a consolidated laminated plywood PW is obtained.
ここで、図20(b)に示す圧密化した積層合板PWとは、加圧前多層材NWとして積層したものに、所定の温度条件下で所定の圧縮力を加えて圧縮し、所定の時間経過した後、温度を所定の温度まで降下させて固定化した後、解圧したものである。
即ち、加熱工程によって加熱した積層されたオイルパーム材W1,・・・,W5及びメタルラスM1,M2に、そのオイルパーム材Wの面に対して直角方向の圧縮力を加える圧縮工程を行い、その圧縮工程で所定の温度で所定時間押圧した後、加熱工程で供給していた温度を降下させ、その圧縮状態を維持させる固定化工程を経て、圧密化した積層合板PWを得るものである。 First, a method for directly molding the laminated plywood PW of FIG. 20B from the pre-pressing multilayer material NW of FIG. 20A will be described.
Here, the consolidated laminated plywood PW shown in FIG. 20B is compressed by applying a predetermined compressive force under a predetermined temperature condition to a multilayer laminated material NW before pressurization, for a predetermined time. After a lapse of time, the temperature is lowered to a predetermined temperature, fixed, and then decompressed.
That is, a compression step of applying a compression force in a direction perpendicular to the surface of the oil palm material W to the laminated oil palm materials W1,..., W5 and the metal laths M1, M2 heated by the heating step is performed. After pressing for a predetermined time at a predetermined temperature in the compression process, the temperature supplied in the heating process is lowered, and through a fixing process for maintaining the compressed state, a consolidated laminated plywood PW is obtained.
ここでも、前記積層工程以降で前記積層されたオイルパーム材Wの温度を上昇させるべく加熱する工程を加熱工程と呼び、また、加熱工程によって加熱され、積層されたオイルパーム材Wの面に対して直角方向の圧縮力を加える工程を、圧縮工程と呼ぶ。そして、前記圧縮工程で所定時間押圧した後、前記加熱工程で供給していた温度を降下させ、常温またはそれよりも若干温度を下げて冷却して固定化する工程を、圧密化した状態を固定する意味で固定化工程と呼ぶ。
また、この図20(a)の加圧前多層材NWから、直接、図20(b)の積層合板PWを成型する方法は、前記積層工程、加熱工程、圧縮工程、固定化工程は1回の連続工程のみとなる。 Here again, the step of heating to raise the temperature of the laminated oil palm material W after the laminating step is called a heating step, and the surface of the laminated oil palm material W is heated by the heating step. The step of applying a compressive force in a right angle direction is called a compression step. Then, after pressing for a predetermined time in the compression step, the temperature supplied in the heating step is lowered, and the step of cooling and fixing at normal temperature or slightly lower than that is fixed in a consolidated state. In this sense, it is called an immobilization process.
Moreover, the method of directly molding the laminated plywood PW of FIG. 20B from the pre-pressing multilayer material NW of FIG. 20A is performed once in the laminating step, heating step, compression step, and fixing step. This is only a continuous process.
また、この図20(a)の加圧前多層材NWから、直接、図20(b)の積層合板PWを成型する方法は、前記積層工程、加熱工程、圧縮工程、固定化工程は1回の連続工程のみとなる。 Here again, the step of heating to raise the temperature of the laminated oil palm material W after the laminating step is called a heating step, and the surface of the laminated oil palm material W is heated by the heating step. The step of applying a compressive force in a right angle direction is called a compression step. Then, after pressing for a predetermined time in the compression step, the temperature supplied in the heating step is lowered, and the step of cooling and fixing at normal temperature or slightly lower than that is fixed in a consolidated state. In this sense, it is called an immobilization process.
Moreover, the method of directly molding the laminated plywood PW of FIG. 20B from the pre-pressing multilayer material NW of FIG. 20A is performed once in the laminating step, heating step, compression step, and fixing step. This is only a continuous process.
図20(a)の加圧前多層材NWを金型で圧密化したのが、図20(b)の積層合板PWの形態である。特に、本実施の形態においては、最終的に積層合板PWを形成すべく金型で最初から圧縮したもので、図20(a)の加圧前多層材NWから、図20(b)のメタルラスM1,M2を挟み込んだオイルパーム材Wが圧密化され積層合板PWに形成されたものである。
In the form of the laminated plywood PW in FIG. 20B, the multilayer material NW before pressurization in FIG. In particular, in the present embodiment, the laminate plywood PW is finally compressed with a mold to form the laminated plywood PW. From the pre-pressing multilayer material NW in FIG. 20A, the metal lath in FIG. An oil palm material W sandwiching M1 and M2 is consolidated into a laminated plywood PW.
本実施の形態のメタルラスM1,M2を挟み込んだ積層合板PWを製造する圧密加工材製造装置MCについて、簡単に説明する。
主として、上プレス盤10Aと下プレス盤10Bとの2分割された構造体によって内部空間IS及び位置決め孔18を形成するプレス盤10を具備しているが、本発明を実施する場合の加圧前多層材NWの外周の移動規制は、図7に示す枠体20とすることもできる。この加圧前多層材NWの外周の移動規制としての枠体20は、上プレス盤10Aの寸法によって、上下動自在な構造とするか、固定構造とするかが決定される。 The compacted material manufacturing apparatus MC for manufacturing the laminated plywood PW sandwiching the metal laths M1 and M2 of the present embodiment will be briefly described.
Thepress machine 10 is mainly provided with the press machine 10 in which the internal space IS and the positioning hole 18 are formed by the divided structure of the upper press machine 10A and the lower press machine 10B. The movement restriction of the outer periphery of the multilayer material NW can be the frame 20 shown in FIG. The frame 20 as the movement restriction of the outer periphery of the pre-pressurized multilayer material NW is determined as a structure that can move up and down or a fixed structure depending on the dimensions of the upper press panel 10A.
主として、上プレス盤10Aと下プレス盤10Bとの2分割された構造体によって内部空間IS及び位置決め孔18を形成するプレス盤10を具備しているが、本発明を実施する場合の加圧前多層材NWの外周の移動規制は、図7に示す枠体20とすることもできる。この加圧前多層材NWの外周の移動規制としての枠体20は、上プレス盤10Aの寸法によって、上下動自在な構造とするか、固定構造とするかが決定される。 The compacted material manufacturing apparatus MC for manufacturing the laminated plywood PW sandwiching the metal laths M1 and M2 of the present embodiment will be briefly described.
The
なお、図7に示す枠体20は、実施の形態の圧密加工材製造装置MCの変形例であり、上下動自在な構造としたもので、図5及び図6の下プレス盤10Bに配設されるものであり、位置決め孔18に代わるものである。
図7において、下プレス盤10Bのベース板25に同一高さの外側下プレス盤10Ba及び内側下プレス盤10Bbを配設し、その間に枠体溝21を形成する。枠体溝21のベース板25側には複数のコイルスプリング22が配設され、その上部に四角の可動枠23が配設されている。可動枠23の内面には、切欠きが形成されていて加圧前多層材NWの側面からの水蒸気等の流体を導く流体路24となっている。四角の可動枠23の内周は加圧前多層材NWの外周に略等しくなっており、四角の可動枠23に加圧前多層材NWが入ると薄板W2,・・・,W5及びメタルラスM1,M2に位置ずれが生じないようになっている。したがって、上プレス盤10Aが下降した時、それが下プレス盤10Bの寸法以上の広さを有していても、可動枠23と当接すると、可動枠23が複数のコイルスプリング22の弾性に抗して下降し、加圧前多層材NWの圧縮に応答する。そして、複数のコイルスプリング22の移動限界で加圧前多層材NWの圧縮が終了する。勿論、下プレス盤10Bの可動枠23に対して上プレス盤10Aが挿入される構造である場合には、下プレス盤10Bに可動枠23を固定配置とすることができる。即ち、下プレス盤10Bの可動枠23を固定し、可動枠23の内部に挿入される上プレス盤10Aによって圧縮することもできる。 Theframe body 20 shown in FIG. 7 is a modified example of the compacted material manufacturing apparatus MC of the embodiment, and has a vertically movable structure, and is disposed on the lower press panel 10B of FIGS. In place of the positioning hole 18.
In FIG. 7, an outer lower press disk 10Ba and an inner lower press disk 10Bb having the same height are disposed on thebase plate 25 of the lower press disk 10B, and a frame groove 21 is formed therebetween. A plurality of coil springs 22 are disposed on the base plate 25 side of the frame body groove 21, and a square movable frame 23 is disposed above the coil springs 22. A cutout is formed on the inner surface of the movable frame 23 to form a fluid path 24 that guides fluid such as water vapor from the side surface of the pre-pressurized multilayer material NW. The inner periphery of the square movable frame 23 is substantially equal to the outer periphery of the pre-pressing multilayer material NW. When the pre-pressing multilayer material NW enters the square movable frame 23, the thin plates W2,..., W5 and the metal lath M1. , M2 is not misaligned. Therefore, when the upper press board 10A is lowered, even if it has a width larger than the size of the lower press board 10B, when the upper press board 10A comes into contact with the movable frame 23, the movable frame 23 becomes elastic to the plurality of coil springs 22. It descends against it and responds to the compression of the multilayer material NW before pressurization. Then, the compression of the pre-pressurized multilayer material NW is completed at the movement limit of the plurality of coil springs 22. Of course, when the upper press board 10A is inserted into the movable frame 23 of the lower press board 10B, the movable frame 23 can be fixedly arranged on the lower press board 10B. That is, the movable frame 23 of the lower press panel 10B can be fixed and compressed by the upper press panel 10A inserted into the movable frame 23.
図7において、下プレス盤10Bのベース板25に同一高さの外側下プレス盤10Ba及び内側下プレス盤10Bbを配設し、その間に枠体溝21を形成する。枠体溝21のベース板25側には複数のコイルスプリング22が配設され、その上部に四角の可動枠23が配設されている。可動枠23の内面には、切欠きが形成されていて加圧前多層材NWの側面からの水蒸気等の流体を導く流体路24となっている。四角の可動枠23の内周は加圧前多層材NWの外周に略等しくなっており、四角の可動枠23に加圧前多層材NWが入ると薄板W2,・・・,W5及びメタルラスM1,M2に位置ずれが生じないようになっている。したがって、上プレス盤10Aが下降した時、それが下プレス盤10Bの寸法以上の広さを有していても、可動枠23と当接すると、可動枠23が複数のコイルスプリング22の弾性に抗して下降し、加圧前多層材NWの圧縮に応答する。そして、複数のコイルスプリング22の移動限界で加圧前多層材NWの圧縮が終了する。勿論、下プレス盤10Bの可動枠23に対して上プレス盤10Aが挿入される構造である場合には、下プレス盤10Bに可動枠23を固定配置とすることができる。即ち、下プレス盤10Bの可動枠23を固定し、可動枠23の内部に挿入される上プレス盤10Aによって圧縮することもできる。 The
In FIG. 7, an outer lower press disk 10Ba and an inner lower press disk 10Bb having the same height are disposed on the
このようにして、オイルパーム材Wの繊維の長さ方向に対して垂直方向に加えた外力によって、オイルパーム材W1,・・・,W5の厚みが加熱圧縮され、全体が圧密加工されて圧縮率60%以上とした積層合板PWが製造され、このとき、オイルパーム材W1,・・・,W5の厚み方向への圧縮力によってオイルパーム材Wの平面に平行な方向の伸びは、可動枠23に規制され、伸びることがない。したがって、メタルラスM1,M2を挟み込んだ積層合板PWは、均一な圧縮力の金型処理されたものとなる。
In this way, the thickness of the oil palm materials W1,..., W5 is heated and compressed by the external force applied in the direction perpendicular to the length direction of the fibers of the oil palm material W, and the whole is compressed and compressed. A laminated plywood PW having a rate of 60% or more is manufactured. At this time, the elongation in the direction parallel to the plane of the oil palm material W is caused by the compressive force in the thickness direction of the oil palm materials W1,. It is regulated by 23 and does not grow. Therefore, the laminated plywood PW sandwiching the metal laths M1 and M2 is subjected to a die processing with a uniform compressive force.
本実施の形態においては、蒸気圧を制御した後、徐々に解圧して内部蒸気圧を開放し、また、冷却によって加圧前多層材NW内の水蒸気圧を下げて固定するので、冷却圧縮を解除したときに膨らみ変形やパンクと呼ばれる表面割れのない積層合板PWを形成できる。即ち、本実施の形態で製造した網としてのメタルラスM1,M2を挟み込んだ積層合板PWは、圧縮解除後に膨らみ変形や表面割れを生じることがなく、安定した品質が確保されている。本実施の形態では、上プレス盤10A及び下プレス盤10Bを用いて圧縮し、固定化して積層合板PWを得ているが、本発明を実施する場合には、通常の電子レンジが使用するマイクロ波の周波数帯域よりも若干周波数の低い高周波で誘電加熱して加圧前多層材NWを加熱圧縮し、定着しても、積層合板PWを得ることができる。
In the present embodiment, after controlling the vapor pressure, the internal vapor pressure is gradually released by releasing the vapor pressure, and the vapor pressure in the pre-pressurized multilayer material NW is lowered and fixed by cooling. When released, a laminated plywood PW having no surface deformation called bulging deformation or puncture can be formed. That is, the laminated plywood PW sandwiched with the metal laths M1 and M2 as the nets manufactured in the present embodiment does not cause bulging deformation and surface cracks after being released from compression, and ensures stable quality. In the present embodiment, the laminated plywood PW is obtained by compressing and fixing using the upper press board 10A and the lower press board 10B. However, when the present invention is carried out, a microwave used by a normal microwave oven is used. The laminated plywood PW can be obtained even if the multilayer material NW before pressurization is heated and compressed by dielectric heating at a high frequency slightly lower than the wave frequency band, and is fixed.
本実施の形態の積層させるオイルパーム材W及びメタルラスM1,M2においては、その維管束等の繊維方向を同一にして積層してもよいし、その繊維方向を互いに直交させて積層してもよい。
特に、繊維方向を同一にして積層した場合には、図21に示すように、圧密加工において軟化した木材表面層の維管束等の繊維が、積層方向(縦方向)に隣接する繊維方向が同一の維管束等の繊維と絡み易く、例えば、維管束が相手側のオイルパーム材Wの維管束間の柔細胞に入り込み、その絡み合った状態で固定化されたオイルパーム材W同士は強固に接合される。しかも、接合面における膨張率及び収縮率を完全に等しくできることから周囲環境条件が変化しても接合面に全くストレスが掛かることがない。特に、その維管束等の繊維方向を同一にして積層した場合、そこに圧縮力を加えると、オイルパーム材Wが本来のオイルパーム幹WDの繊維方向になり、オイルパーム材Wが異なっていても、維管束が相手材のオイルパーム材Wの維管束間に入り込みそこで固定化されるから、自然な接合状態で一体化ができる。
したがって、接合強度が高くて機械的強度も高く、圧密化後の安定した寸法形状性が確保される。 In the oil palm material W and the metal laths M1 and M2 to be laminated according to the present embodiment, the fiber directions of the vascular bundle or the like may be laminated in the same direction, or the fiber directions may be laminated to be orthogonal to each other. .
In particular, when laminated with the same fiber direction, as shown in FIG. 21, fibers such as vascular bundles of the wood surface layer softened in the consolidation process have the same fiber direction adjacent to the lamination direction (longitudinal direction). For example, the vascular bundle enters the parenchyma between the vascular bundles of the counterpart oil palm material W, and the oil palm materials W fixed in the entangled state are firmly joined to each other. Is done. In addition, since the expansion rate and contraction rate of the joint surface can be made completely equal, no stress is applied to the joint surface even if the ambient environment conditions change. In particular, when the fiber directions of the vascular bundles and the like are laminated with the same direction, when compressive force is applied thereto, the oil palm material W becomes the fiber direction of the original oil palm trunk WD, and the oil palm material W is different. However, since the vascular bundle enters between the vascular bundles of the oil palm material W as the counterpart material and is fixed there, it can be integrated in a natural joined state.
Accordingly, the bonding strength is high and the mechanical strength is high, and a stable dimensional shape after consolidation is ensured.
特に、繊維方向を同一にして積層した場合には、図21に示すように、圧密加工において軟化した木材表面層の維管束等の繊維が、積層方向(縦方向)に隣接する繊維方向が同一の維管束等の繊維と絡み易く、例えば、維管束が相手側のオイルパーム材Wの維管束間の柔細胞に入り込み、その絡み合った状態で固定化されたオイルパーム材W同士は強固に接合される。しかも、接合面における膨張率及び収縮率を完全に等しくできることから周囲環境条件が変化しても接合面に全くストレスが掛かることがない。特に、その維管束等の繊維方向を同一にして積層した場合、そこに圧縮力を加えると、オイルパーム材Wが本来のオイルパーム幹WDの繊維方向になり、オイルパーム材Wが異なっていても、維管束が相手材のオイルパーム材Wの維管束間に入り込みそこで固定化されるから、自然な接合状態で一体化ができる。
したがって、接合強度が高くて機械的強度も高く、圧密化後の安定した寸法形状性が確保される。 In the oil palm material W and the metal laths M1 and M2 to be laminated according to the present embodiment, the fiber directions of the vascular bundle or the like may be laminated in the same direction, or the fiber directions may be laminated to be orthogonal to each other. .
In particular, when laminated with the same fiber direction, as shown in FIG. 21, fibers such as vascular bundles of the wood surface layer softened in the consolidation process have the same fiber direction adjacent to the lamination direction (longitudinal direction). For example, the vascular bundle enters the parenchyma between the vascular bundles of the counterpart oil palm material W, and the oil palm materials W fixed in the entangled state are firmly joined to each other. Is done. In addition, since the expansion rate and contraction rate of the joint surface can be made completely equal, no stress is applied to the joint surface even if the ambient environment conditions change. In particular, when the fiber directions of the vascular bundles and the like are laminated with the same direction, when compressive force is applied thereto, the oil palm material W becomes the fiber direction of the original oil palm trunk WD, and the oil palm material W is different. However, since the vascular bundle enters between the vascular bundles of the oil palm material W as the counterpart material and is fixed there, it can be integrated in a natural joined state.
Accordingly, the bonding strength is high and the mechanical strength is high, and a stable dimensional shape after consolidation is ensured.
更に、このとき、金網としてのメタルラスM1及びメタルラスM2は、オイルパーム材Wの平面方向に延びることなく、メタルラスM1及びメタルラスM2が挟まれているオイルパーム材W1とオイルパーム材W2の面、オイルパーム材W3とオイルパーム材W4の面の圧力を加えている方向に入り込む。
また、オイルパーム材W1とオイルパーム材W2の間、オイルパーム材W3とオイルパーム材W4の間にメタルラスM1またはメタルラスM2が配設され、オイルパーム材W相互間でメタルラスM1,M2を接合して、その周りを包み込んで一体化するものであり、オイルパーム材W相互間から接合の際のオイルパーム材Wが含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保される。 Further, at this time, the metal lath M1 and the metal lath M2 as the metal mesh do not extend in the plane direction of the oil palm material W, and the oil palm material W1 and the oil palm material W2 between which the metal lath M1 and the metal lath M2 are sandwiched, the oil It enters into the direction which is applying the pressure of the surface of palm material W3 and oil palm material W4.
Further, a metal lath M1 or a metal lath M2 is disposed between the oil palm material W1 and the oil palm material W2, and between the oil palm material W3 and the oil palm material W4, and the metal laths M1 and M2 are joined between the oil palm materials W. The amount of the resin component and the sugar component contained in the oil palm material W at the time of joining from between the oil palm materials W is not required to use other adhesives. Is also secured.
また、オイルパーム材W1とオイルパーム材W2の間、オイルパーム材W3とオイルパーム材W4の間にメタルラスM1またはメタルラスM2が配設され、オイルパーム材W相互間でメタルラスM1,M2を接合して、その周りを包み込んで一体化するものであり、オイルパーム材W相互間から接合の際のオイルパーム材Wが含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保される。 Further, at this time, the metal lath M1 and the metal lath M2 as the metal mesh do not extend in the plane direction of the oil palm material W, and the oil palm material W1 and the oil palm material W2 between which the metal lath M1 and the metal lath M2 are sandwiched, the oil It enters into the direction which is applying the pressure of the surface of palm material W3 and oil palm material W4.
Further, a metal lath M1 or a metal lath M2 is disposed between the oil palm material W1 and the oil palm material W2, and between the oil palm material W3 and the oil palm material W4, and the metal laths M1 and M2 are joined between the oil palm materials W. The amount of the resin component and the sugar component contained in the oil palm material W at the time of joining from between the oil palm materials W is not required to use other adhesives. Is also secured.
しかも、オイルパーム材Wが含有する樹脂成分及び糖成分の中にメタルラスM1,M2がインサートとして埋設されるから、オイルパーム材Wと一体化になるばかりでなく、オイルパーム材Wと他の木材が存在しても、それらが一体化となる。
特に、メタルラスM1,M2を複数のオイルパーム材Wのうちの中央に1枚または中央以外の位置に複数枚配設することにより、それがインサートとして作用し、積層合板PWの面が曲がる方向に外力を加えても、メタルラスM1,M2の作用により、積層合板PWの面が湾曲するのを防止できる。
特に、本実施の形態の積層させるオイルパーム材W及びメタルラスM1,M2においては、その維管束等の繊維方向を同一にして積層しても湾曲が防止でき、また、当然であるが、その繊維方向を互いに直交させて積層しても湾曲は防止できる。 Moreover, since the metal laths M1 and M2 are embedded as inserts in the resin component and sugar component contained in the oil palm material W, the oil palm material W and other wood are not only integrated with the oil palm material W. Even if they exist.
In particular, by arranging one metal lath M1, M2 at the center of the plurality of oil palm materials W or at a position other than the center, it acts as an insert, and the surface of the laminated plywood PW is bent. Even when an external force is applied, the surface of the laminated plywood PW can be prevented from being bent by the action of the metal laths M1 and M2.
In particular, in the oil palm material W and the metal laths M1 and M2 to be laminated according to the present embodiment, even if the fiber directions of the vascular bundles and the like are laminated, the bending can be prevented. Curving can be prevented even when the layers are stacked with their directions orthogonal to each other.
特に、メタルラスM1,M2を複数のオイルパーム材Wのうちの中央に1枚または中央以外の位置に複数枚配設することにより、それがインサートとして作用し、積層合板PWの面が曲がる方向に外力を加えても、メタルラスM1,M2の作用により、積層合板PWの面が湾曲するのを防止できる。
特に、本実施の形態の積層させるオイルパーム材W及びメタルラスM1,M2においては、その維管束等の繊維方向を同一にして積層しても湾曲が防止でき、また、当然であるが、その繊維方向を互いに直交させて積層しても湾曲は防止できる。 Moreover, since the metal laths M1 and M2 are embedded as inserts in the resin component and sugar component contained in the oil palm material W, the oil palm material W and other wood are not only integrated with the oil palm material W. Even if they exist.
In particular, by arranging one metal lath M1, M2 at the center of the plurality of oil palm materials W or at a position other than the center, it acts as an insert, and the surface of the laminated plywood PW is bent. Even when an external force is applied, the surface of the laminated plywood PW can be prevented from being bent by the action of the metal laths M1 and M2.
In particular, in the oil palm material W and the metal laths M1 and M2 to be laminated according to the present embodiment, even if the fiber directions of the vascular bundles and the like are laminated, the bending can be prevented. Curving can be prevented even when the layers are stacked with their directions orthogonal to each other.
オイルパーム材W相互間に1枚以上の網、即ち、及びメタルラスM1,M2を配設し、オイルパーム材W相互間でメタルラスM1またはメタルラスM2を接合したものであるから、前記オイルパーム材W相互間で網を接合し、一体化するから、オイルパーム材W相互間から接合の際のオイルパーム材Wが含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保され、オイルパーム材Wと網との接合が容易であり、オイルパーム材Wが湾曲しようとしても、メタルラスM1、メタルラスM2がその湾曲に対応する伸縮が生じないから、湾曲を防止する手段として設けることができる。また、複数の個所に網を配設することにより、前記オイルパーム材を積層した面に対して曲げが生じ難くなる。
Since one or more nets, that is, metal laths M1 and M2 are disposed between the oil palm materials W and the metal lath M1 or metal lath M2 is joined between the oil palm materials W, the oil palm material W Since the nets are joined and integrated with each other, the amount of the resin component and the sugar component contained in the oil palm material W at the time of joining from between the oil palm materials W is not required to use other adhesives. As a means for preventing bending because the metal lath M1 and the metal lath M2 are not expanded or contracted corresponding to the bending even if the oil palm material W tries to bend. Can be provided. Moreover, it becomes difficult to bend with respect to the surface which laminated | stacked the said oil palm material by arrange | positioning a net | network in a several location.
好ましくは、積層させるオイルパーム材Wの繊維に対して平行に切断した面であって樹心側面同士、または繊維に対して平行に切断した面であって樹皮側面同士を対向させて積層するのが好ましい。即ち、オイルパーム幹WDの樹芯を通る直線位置でオイルパーム材Wを分割し、対向させて配置にすると、互いの樹心側面同士または互いの樹皮側面同士が対向するようになり、圧密加工により接合させることによって、樹心側面と樹皮側面で細胞密度が異なることによる特定方向の反り変形が防止できる。
Preferably, it is a surface cut parallel to the fibers of the oil palm material W to be laminated and the tree heart side surfaces, or a surface cut parallel to the fibers and the bark side surfaces face each other for lamination. Is preferred. That is, when the oil palm material W is divided at a linear position passing through the tree core of the oil palm trunk WD and arranged so as to face each other, the tree heart side surfaces or the bark side surfaces face each other. By joining together, warpage deformation in a specific direction due to the difference in cell density between the tree heart side and the bark side can be prevented.
ここで、圧縮初期の加熱工程の加熱温度は、110~160℃の範囲内とするのが好ましい。加熱温度が低過ぎると十分な圧密加工がなされず、強度不足や木材間が接合不良となったり、製品化後において吸湿乾燥による寸法形状変形が生じ易くなったりし、一方、加熱温度が高過ぎると表面が炭化して黒色に変化し色調や木材特有の香りが損なわれたり、材質が劣化して強度が低化し脆くなったりすることがある。本発明者らの実験によれば、適切な温度条件は110~160℃の範囲内であることが判明した。この温度条件にすることによって、圧密加工における固定化不良や、表面炭化、材質強度の低化等の材質劣化を防止することができる。より好ましくは、圧縮初期の加熱工程の加熱温度は120~140℃の範囲内である。なお、具体的な設定温度は、オイルパーム材Wの含水率等に応じて設定される。
Here, it is preferable that the heating temperature in the heating process in the initial stage of compression is in the range of 110 to 160 ° C. If the heating temperature is too low, sufficient compacting will not be achieved, resulting in insufficient strength, poor bonding between wood, and dimensional shape deformation due to hygroscopic drying after product production, while the heating temperature is too high. The surface may be carbonized to change to black and the color tone or scent peculiar to wood may be impaired, or the material may deteriorate and the strength may be lowered and become brittle. According to the experiments by the present inventors, it has been found that an appropriate temperature condition is in the range of 110 to 160 ° C. By using this temperature condition, it is possible to prevent improper fixing in the compacting process, and material deterioration such as surface carbonization and lowering of material strength. More preferably, the heating temperature in the heating step in the initial stage of compression is in the range of 120 to 140 ° C. The specific set temperature is set according to the moisture content of the oil palm material W and the like.
また、本実施の形態の積層合板は、実施の形態1のオイルパーム成型体EOを製造する圧密加工材製造装置MCで処理される。
図8のフローチャートに示されるようステップS17の圧縮工程では、固定側の下プレス盤10Bに対して上プレス盤10Aの圧縮圧力が所定圧力に設定され、加圧前多層材NWが上プレス盤10A及び下プレス盤10Bにて所定時間加熱圧縮される。このとき、図6(c)に示すように、上プレス盤10Aの周縁部10aが下プレス盤10Bの周縁部10bに当接すると上プレス盤10Aの周縁部10aに配設されたシール部材11によって、上プレス盤10A及び下プレス盤10Bにて形成される内部空間IS及び位置決め孔18が密閉状態となる。
このように、プレス盤の面接触によって加熱圧縮することで、特には、加熱温度に加熱した後に加圧することによって、加圧前多層材NWにおいて乾燥時の反り変形が生じている場合でも破壊、割れ、クラック等を生じさせることなく平坦にすることができ、効率良く加熱圧縮を行うことができる。更には、加圧前多層材NWが加熱圧縮され、内部空間IS及び位置決め孔18が密閉状態に保持されている間に、加圧前多層材NWに元々含まれている水蒸気が蒸気圧となって内部空間IS及び位置決め孔18を介して乾燥木材DWに侵入拡散、排出自在となることから、厚み全体において効率よくかつ均一に加熱圧縮が行われる。 Moreover, the laminated plywood of this Embodiment is processed with the compacting material manufacturing apparatus MC which manufactures the oil palm molded object EO ofEmbodiment 1. FIG.
As shown in the flowchart of FIG. 8, in the compression process of step S17, the compression pressure of theupper press board 10A is set to a predetermined pressure with respect to the lower press board 10B on the fixed side, and the multilayer material NW before pressurization is the upper press board 10A. Then, it is heated and compressed for a predetermined time by the lower press panel 10B. At this time, as shown in FIG. 6C, when the peripheral portion 10a of the upper press panel 10A comes into contact with the peripheral portion 10b of the lower press panel 10B, the seal member 11 disposed on the peripheral portion 10a of the upper press panel 10A. As a result, the internal space IS and the positioning hole 18 formed by the upper press board 10A and the lower press board 10B are sealed.
Thus, by heating and compressing by surface contact of the press panel, in particular, by applying pressure after heating to the heating temperature, even when warp deformation during drying occurs in the multilayer material NW before pressurization, Flattening can be achieved without causing cracks, cracks, etc., and heat compression can be performed efficiently. Furthermore, while the multilayer material NW before pressurization is heated and compressed and the internal space IS and thepositioning hole 18 are kept in a sealed state, the water vapor originally contained in the multilayer material NW before pressurization becomes the vapor pressure. Thus, the dried wood DW can be freely diffused and discharged through the internal space IS and the positioning hole 18, so that the entire thickness is efficiently and uniformly heated and compressed.
図8のフローチャートに示されるようステップS17の圧縮工程では、固定側の下プレス盤10Bに対して上プレス盤10Aの圧縮圧力が所定圧力に設定され、加圧前多層材NWが上プレス盤10A及び下プレス盤10Bにて所定時間加熱圧縮される。このとき、図6(c)に示すように、上プレス盤10Aの周縁部10aが下プレス盤10Bの周縁部10bに当接すると上プレス盤10Aの周縁部10aに配設されたシール部材11によって、上プレス盤10A及び下プレス盤10Bにて形成される内部空間IS及び位置決め孔18が密閉状態となる。
このように、プレス盤の面接触によって加熱圧縮することで、特には、加熱温度に加熱した後に加圧することによって、加圧前多層材NWにおいて乾燥時の反り変形が生じている場合でも破壊、割れ、クラック等を生じさせることなく平坦にすることができ、効率良く加熱圧縮を行うことができる。更には、加圧前多層材NWが加熱圧縮され、内部空間IS及び位置決め孔18が密閉状態に保持されている間に、加圧前多層材NWに元々含まれている水蒸気が蒸気圧となって内部空間IS及び位置決め孔18を介して乾燥木材DWに侵入拡散、排出自在となることから、厚み全体において効率よくかつ均一に加熱圧縮が行われる。 Moreover, the laminated plywood of this Embodiment is processed with the compacting material manufacturing apparatus MC which manufactures the oil palm molded object EO of
As shown in the flowchart of FIG. 8, in the compression process of step S17, the compression pressure of the
Thus, by heating and compressing by surface contact of the press panel, in particular, by applying pressure after heating to the heating temperature, even when warp deformation during drying occurs in the multilayer material NW before pressurization, Flattening can be achieved without causing cracks, cracks, etc., and heat compression can be performed efficiently. Furthermore, while the multilayer material NW before pressurization is heated and compressed and the internal space IS and the
このように、内部空間IS及び位置決め孔18の蒸気圧を制御することによって、複数枚積層したオイルパーム材WがメタルラスM1,M2を挟んで加熱圧縮される。即ち、複数枚積層したオイルパーム材Wの周囲面及びその内部を内部空間IS及び位置決め孔18と同様の温度・圧力・蒸気圧状態とし加圧前多層材NW全体が均一化されることによって、加工歪が入らず、成形後の復元力及び周囲環境条件の変化による収縮膨張が顕著に抑制される。特に、所定の加圧状態を保ったまま加熱して水蒸気の排出または導入によって蒸気圧制御を行うことによって、表面の炭化が防止され、均一に加熱圧縮され、更に、表面の乾燥を防いで均一な固定化がスムースに達成され、成形加工後の回復、戻り、変形等が抑制される。
In this way, by controlling the vapor pressure of the internal space IS and the positioning hole 18, a plurality of laminated oil palm materials W are heated and compressed with the metal laths M1 and M2 sandwiched therebetween. That is, by making the peripheral surface of the oil palm material W laminated and the inside thereof the same temperature, pressure, and vapor pressure state as the internal space IS and the positioning hole 18, the entire multilayer material NW before pressurization is made uniform, There is no processing strain, and shrinkage and expansion due to a change in the restoring force after molding and the surrounding environmental conditions are remarkably suppressed. In particular, by controlling the vapor pressure by discharging or introducing water vapor while maintaining a predetermined pressure state, the surface is prevented from being carbonized, uniformly heated and compressed, and further, the surface is prevented from drying. Smooth fixation is achieved, and recovery, return, deformation, etc. after molding are suppressed.
因みに、水蒸気導入または水蒸気の排出による密閉状態にある内部空間IS及び位置決め孔18内の蒸気圧制御の開始は、上プレス盤10A及び下プレス盤10Bの温度が特定の加熱温度に到達してから行われるのが望ましい。このようにすれば、メタルラスM1,M2を挟み込んだ加圧前多層材NW内に水蒸気を浸透させ、それによってオイルパーム材Wの化学変化を十分起こさせることができ、その結果、オイルパーム材Wを十分、かつ、均一に固定化することができ、吸湿による戻りや乾燥による変形等が少ないものとなる。即ち、上プレス盤10A及び下プレス盤10Bの温度が特定の加熱温度に到達する前に密閉状態にある内部空間IS及び位置決め孔18内の水蒸気導入を開始した場合には、水蒸気が凝縮して密閉状態にある内部空間IS及び位置決め孔18内が水で満たされた状態となり、木材の含水率が多くなってしまい、その結果、吸湿による戻りや乾燥による変形等が生じ易い。また、上プレス盤10A及び下プレス盤10Bの温度が第2の加熱温度に到達する前に密閉状態にある内部空間IS及び位置決め孔18内の水蒸気排出を開始した場合においても、外層部分の含水率に基づく余分な内部空間IS及び位置決め孔18内の水分が除去され難くて木材の含水率が多くなってしまい、吸湿による戻りや乾燥による変形等が生じ易くなる。
なお、後述の冷却開始前にその蒸気圧制御を終了させるのが好ましい。後述の冷却開始前にその蒸気圧制御を終了しない場合には、冷却処理効率が低下する。 Incidentally, the start of the vapor pressure control in the internal space IS and thepositioning hole 18 in the sealed state due to the introduction or discharge of water vapor is performed after the temperature of the upper press panel 10A and the lower press panel 10B reaches a specific heating temperature. It is desirable to be done. If it does in this way, water vapor can osmose | permeate in the multilayer material NW before pressurizing which sandwiched the metal laths M1 and M2, and thereby the chemical change of the oil palm material W can be caused sufficiently. As a result, the oil palm material W Can be sufficiently and uniformly fixed, and the return due to moisture absorption, the deformation due to drying, and the like are small. That is, when the introduction of water vapor in the closed internal space IS and the positioning hole 18 is started before the temperatures of the upper press board 10A and the lower press board 10B reach a specific heating temperature, the water vapor is condensed. The interior space IS and the positioning hole 18 in the sealed state are filled with water, and the moisture content of the wood increases, and as a result, return due to moisture absorption, deformation due to drying, and the like are likely to occur. Further, even when the discharge of water vapor in the internal space IS and the positioning hole 18 in the sealed state is started before the temperatures of the upper press board 10A and the lower press board 10B reach the second heating temperature, the water content of the outer layer portion is also increased. The excess internal space IS based on the rate and the moisture in the positioning hole 18 are difficult to be removed, and the moisture content of the wood increases, so that return due to moisture absorption, deformation due to drying, and the like easily occur.
In addition, it is preferable to end the vapor pressure control before starting the cooling described later. If the vapor pressure control is not finished before starting the cooling described later, the cooling processing efficiency is lowered.
なお、後述の冷却開始前にその蒸気圧制御を終了させるのが好ましい。後述の冷却開始前にその蒸気圧制御を終了しない場合には、冷却処理効率が低下する。 Incidentally, the start of the vapor pressure control in the internal space IS and the
In addition, it is preferable to end the vapor pressure control before starting the cooling described later. If the vapor pressure control is not finished before starting the cooling described later, the cooling processing efficiency is lowered.
また、ステップS19の固定化工程は、ステップS16の加熱工程、ステップS17の圧縮工程の際の圧力と同じ所定圧力(1~100kg/cm2の範囲内が好ましい)に保持されたまま、バルブV11,バルブV12,バルブV13(図5)が開かれ図示しないボイラ装置から上プレス盤10Aの配管路15及び下プレス盤10Bの配管路16に常温の冷却水が通されることによって、図6(e)に示すように、上プレス盤10A及び下プレス盤10Bが常温前後まで冷却され、所定時間(例えば、10~120〔min〕)保持される。
そして、最後に、ステップS19の固定化工程において解圧し、図6(f)に示すように、固定側の下プレス盤10Bに対して上プレス盤10Aを徐々に上昇させて離間させることによってプレス圧力及び密閉状態を開放し、内部空間IS及び位置決め孔18から仕上がり品であるメタルラスM1,M2を挟み込んだ積層合板PWが取出されることで一連の処理工程が終了する。 Further, the immobilization process in step S19 is performed while the valve V11 is kept at the same predetermined pressure (preferably within the range of 1 to 100 kg / cm 2 ) as the pressure in the heating process in step S16 and the compression process in step S17. , The valve V12 and the valve V13 (FIG. 5) are opened, and normal temperature cooling water is passed from the boiler device (not shown) through the piping 15 of theupper press panel 10A and the piping 16 of the lower press panel 10B. As shown in e), the upper press board 10A and the lower press board 10B are cooled to around room temperature and held for a predetermined time (for example, 10 to 120 [min]).
Finally, the pressure is released in the fixing step of step S19, and as shown in FIG. 6 (f), theupper press disk 10A is gradually raised and separated from the fixed-side lower press disk 10B. The pressure and the sealed state are released, and the laminated plywood PW sandwiching the finished metal laths M1 and M2 is taken out from the internal space IS and the positioning hole 18 to complete the series of processing steps.
そして、最後に、ステップS19の固定化工程において解圧し、図6(f)に示すように、固定側の下プレス盤10Bに対して上プレス盤10Aを徐々に上昇させて離間させることによってプレス圧力及び密閉状態を開放し、内部空間IS及び位置決め孔18から仕上がり品であるメタルラスM1,M2を挟み込んだ積層合板PWが取出されることで一連の処理工程が終了する。 Further, the immobilization process in step S19 is performed while the valve V11 is kept at the same predetermined pressure (preferably within the range of 1 to 100 kg / cm 2 ) as the pressure in the heating process in step S16 and the compression process in step S17. , The valve V12 and the valve V13 (FIG. 5) are opened, and normal temperature cooling water is passed from the boiler device (not shown) through the piping 15 of the
Finally, the pressure is released in the fixing step of step S19, and as shown in FIG. 6 (f), the
このように、変形が生じることのない圧力状態下で冷却することによって圧密状態の定着が安定する。そして、加圧状態で冷却した後、加圧を解除することによって、即ち、冷却によってメタルラスM1,M2を挟み込んだ加圧前多層材NW内の水蒸気圧を下げた後、徐々に解圧して内部蒸気圧を開放することによって、余分な水蒸気を液化して除くことができて冷却圧縮を解除したときに膨らみ変形、割れ、破壊(パンク)等がない積層合板PWとなる。即ち、本実施の形態のメタルラスM1,M2を挟み込んだ積層合板PWによれば、圧縮解除後に膨らみ変形、割れ、破壊等が生じることなく安定した品質が確保されたものである。
In this way, fixing in a consolidated state is stabilized by cooling under a pressure state in which deformation does not occur. Then, after cooling in the pressurized state, by releasing the pressure, that is, by lowering the water vapor pressure in the pre-pressing multilayer material NW sandwiching the metal laths M1 and M2 by cooling, the pressure is gradually released and the inside By releasing the vapor pressure, excess water vapor can be liquefied and removed, and the laminated plywood PW is free from swelling deformation, cracking, breakage (puncture), etc. when cooling compression is released. That is, according to the laminated plywood PW sandwiching the metal laths M1 and M2 of the present embodiment, stable quality is ensured without causing bulging deformation, cracking, destruction, etc. after compression release.
メタルラスM1,M2を挟み込んで積層した加圧前多層材NWの繊維の長さ方向に対して垂直方向に加えた外力によって、積層した加圧前多層材NW全体の厚みが加熱圧縮され、圧密加工により気乾比重を0.8以上、本実施の形態では、通常は、比重1.2以上とした積層合板PWが製造される。そして、このようにして得られたメタルラスM1,M2を挟み込んだ積層合板PWは、圧密加工によりオイルパーム材W同士及びメタルラスM1,M2とが強固に接合されている。これは、圧密加工によってセルロースや、ヘミセルロースや、リグニンが水素結合し、特に、アブラヤシの樹幹には糖類、リグニン、プラスチック成分等が多く含まれていて、圧密加工によりこれらの成分が分解や軟化して染み出し、オイルパーム材W相互間を移動した後に再結晶化・再結合化されることでバインダーとして機能し、更には、圧密加工によりオイルパーム材Wの表層の繊維が軟化して積層方向に隣接する木材の繊維と絡み合うことによって、木材同士が強固に接合したものと考えられる。
The thickness of the laminated multilayer material before pressurization NW as a whole is heated and compressed by an external force applied in a direction perpendicular to the length direction of the fibers of the multilayer material before pressurization NW laminated with the metal laths M1 and M2 sandwiched, and compacted. Thus, in this embodiment, a laminated plywood PW having a specific gravity of 1.2 or more is manufactured. The laminated plywood PW sandwiched between the metal laths M1 and M2 obtained in this way is firmly joined to the oil palm materials W and the metal laths M1 and M2 by consolidation. This is because cellulose, hemicellulose, and lignin are hydrogen-bonded by compaction processing, and especially the palm of an oil palm contains many sugars, lignin, plastic components, etc., and these components are decomposed and softened by compaction processing. The oil palm material W functions as a binder by being recrystallized and recombined after moving between the oil palm materials W, and further, the fibers of the surface layer of the oil palm material W are softened by the consolidation process, and the lamination direction It is considered that the timbers are firmly joined together by being intertwined with the fibers of the wood adjacent to the wood.
このように本実施の形態のメタルラスM1,M2を挟み込んだ積層合板PWによれば、ホルムアルデヒド等による環境負荷が懸念される人工接着剤やコストが高い天然接着剤を使用することなく木材同士が接合されることから、環境に優しく、また、コストを抑えることができる。
しかも、接着剤の使用によってオイルパーム材Wを接合する場合には、接着剤を塗布等した後、圧締して接着剤を硬化するのが一般的であり、接着剤塗布等の工程及び圧締工程が必要であるのに対し、本実施の形態のメタルラスM1,M2を挟み込んだ積層合板PWによれば、圧密加工によって接着剤を使用することなく木材同士が接合されるため、上記別個の接合工程が不要であり、製造工程の簡略化を図ることができる。 As described above, according to the laminated plywood PW sandwiching the metal laths M1 and M2 of the present embodiment, wood can be joined together without using an artificial adhesive or environmental adhesive due to formaldehyde or a natural adhesive that is expensive. Therefore, it is environmentally friendly and the cost can be reduced.
In addition, when the oil palm material W is joined by using an adhesive, it is common to apply the adhesive and then to press the adhesive to cure the adhesive. In contrast to the need for a tightening process, according to the laminated plywood PW sandwiching the metal laths M1 and M2 of the present embodiment, the wood is joined without using an adhesive by compaction processing. A joining process is unnecessary, and the manufacturing process can be simplified.
しかも、接着剤の使用によってオイルパーム材Wを接合する場合には、接着剤を塗布等した後、圧締して接着剤を硬化するのが一般的であり、接着剤塗布等の工程及び圧締工程が必要であるのに対し、本実施の形態のメタルラスM1,M2を挟み込んだ積層合板PWによれば、圧密加工によって接着剤を使用することなく木材同士が接合されるため、上記別個の接合工程が不要であり、製造工程の簡略化を図ることができる。 As described above, according to the laminated plywood PW sandwiching the metal laths M1 and M2 of the present embodiment, wood can be joined together without using an artificial adhesive or environmental adhesive due to formaldehyde or a natural adhesive that is expensive. Therefore, it is environmentally friendly and the cost can be reduced.
In addition, when the oil palm material W is joined by using an adhesive, it is common to apply the adhesive and then to press the adhesive to cure the adhesive. In contrast to the need for a tightening process, according to the laminated plywood PW sandwiching the metal laths M1 and M2 of the present embodiment, the wood is joined without using an adhesive by compaction processing. A joining process is unnecessary, and the manufacturing process can be simplified.
そして、このようにして得たメタルラスM1,M2を挟み込んだ積層合板PWは、圧密加工されたことによって、オイルパーム材Wの空隙が小さくなって、また、細胞壁を構成するリグニン、ヘミセルロース等が軟化・分解及び再結合・再結晶化され細胞密度が高まり、比重が小さくて強度が小さく変形しやすいというオイルパーム材Wの欠点が補完され、高い強度及び安定した寸法形状性が確保される。特に、気乾比重が0.8以上となるように圧密加工することで、積層したオイルパーム材Wの厚み全体が均一に圧縮され、オイルパーム材Wの性質が変化し、かつ、メタルラスM1,M2のインサートにより硬度等が顕著に高くなり、また、硬度等の物性値・特性値のばらつきが少なくなり、更には、周囲環境条件の変化による膨張率及び乾燥率のばらつきも少なくそれによる変形等が抑えられ、寸法形状安定性が増す。したがって、物性的に安定して製品間の品質にばらつきが少なく商品価値が高いものとなる。更に、乾燥させたオイルパーム材Wを複数枚積層し、かつ、メタルラスM1,M2を挟み込んだ状態で全体を圧密化しており、接合面において周囲環境条件の変化による膨張率及び収縮率は略均一となることから安定した接合性が維持され、周囲環境条件の変化で接合面にストレスがかかることによる歪み、変形、クラック等が生じることなく、安定した寸法形状性が確保される。
The laminated plywood PW sandwiched between the metal laths M1 and M2 obtained in this way is compacted to reduce the gap in the oil palm material W, and soften lignin, hemicellulose, etc. constituting the cell wall. -Decomposition, recombination, and recrystallization increase cell density, compensate for the disadvantage of oil palm material W, which is low in specific gravity, low in strength, and easily deformed, ensuring high strength and stable dimensional shape. In particular, the entire thickness of the laminated oil palm material W is uniformly compressed by performing the compacting process so that the air-dry specific gravity is 0.8 or more, the properties of the oil palm material W are changed, and the metal lath M1, The M2 insert significantly increases the hardness and the like, and the variation in physical properties and characteristic values such as hardness is reduced. Furthermore, the variation in the expansion rate and the drying rate due to changes in ambient environmental conditions is also small, and deformation due to it. And the dimensional shape stability is increased. Therefore, the physical properties are stable, the quality between products is small, and the commercial value is high. Furthermore, a plurality of dried oil palm materials W are laminated and the whole is consolidated in a state where the metal laths M1 and M2 are sandwiched, and the expansion rate and contraction rate due to changes in ambient environment conditions are substantially uniform at the joint surface. Therefore, stable bondability is maintained, and stable dimensional shape is ensured without causing distortion, deformation, cracks, and the like due to stress applied to the bonding surface due to changes in ambient environmental conditions.
特に、オイルパーム材Wの繊維方向を同一にして積層した場合においては、圧密加工において軟化した表面層の繊維が、繊維方向を同一として縦方向に隣接しているオイルパーム材Wの繊維と、また、メタルラスM1,M2の表裏で絡み易く、その絡み合った状態で固定化されたオイルパーム材Wは強固に接合される。しかも、接合面における膨張率及び収縮率を完全に等しくできることから周囲環境条件が変化した場合において接合面に全くストレスが掛かることがない。したがって、接合強度が高くて機械的強度も高く、高い寸法形状安定性が確保される。
一方、加圧前多層材NWの繊維方向を互いに直交させて積層した場合には、圧密加工後の周囲環境条件の変化によって膨張収縮力が生じでも互いの木材同士が相互に作用し合って特定方向の反り変形が防止される。殊に、全枚数が奇数枚の場合には、繊維方向を互いに直交させて積層したとき表裏で単板の繊維方向が平行で断面が対称となるため、周囲環境条件の変化による歪み等が防止される。このとき、圧密加工において繊維方向を同一とした圧縮力よりも大きくすることにより、強靭な接合状態が得られる。
また、全枚数を偶数枚とする場合には、内部の一部にて繊維方向を同一にして積層しその他は繊維方向を互いに直交させて積層することによって、表裏の繊維方向を合わせ周囲環境条件の変化による歪み等を防止することが可能となる。 In particular, in the case of laminating with the same fiber direction of the oil palm material W, the fibers of the surface layer softened in the consolidation process are the fibers of the oil palm material W that are adjacent in the longitudinal direction with the same fiber direction, Moreover, the oil palm material W fixed easily in the state in which the metal laths M1 and M2 are easily entangled and entangled with each other is firmly joined. In addition, since the expansion rate and contraction rate at the joint surface can be made completely equal, no stress is applied to the joint surface when the ambient environmental conditions change. Therefore, the bonding strength is high, the mechanical strength is also high, and high dimensional shape stability is ensured.
On the other hand, when the multilayered material NW before pressurization is laminated with the fiber directions orthogonal to each other, even if expansion and contraction force is generated due to changes in the surrounding environmental conditions after the consolidation process, the mutual woods interact with each other and specify Directional warpage deformation is prevented. In particular, when the total number of sheets is an odd number, when laminated with the fiber directions orthogonal to each other, the fiber direction of the single plate is parallel and the cross section is symmetric on the front and back, preventing distortion due to changes in ambient environmental conditions, etc. Is done. At this time, a tough joining state can be obtained by increasing the compressive force with the same fiber direction in consolidation.
If the total number of sheets is an even number, the same fiber direction is laminated in a part of the inside, and the others are laminated with the fiber directions orthogonal to each other, so that the front and back fiber directions are aligned and the ambient environmental conditions It is possible to prevent distortion and the like due to the change of.
一方、加圧前多層材NWの繊維方向を互いに直交させて積層した場合には、圧密加工後の周囲環境条件の変化によって膨張収縮力が生じでも互いの木材同士が相互に作用し合って特定方向の反り変形が防止される。殊に、全枚数が奇数枚の場合には、繊維方向を互いに直交させて積層したとき表裏で単板の繊維方向が平行で断面が対称となるため、周囲環境条件の変化による歪み等が防止される。このとき、圧密加工において繊維方向を同一とした圧縮力よりも大きくすることにより、強靭な接合状態が得られる。
また、全枚数を偶数枚とする場合には、内部の一部にて繊維方向を同一にして積層しその他は繊維方向を互いに直交させて積層することによって、表裏の繊維方向を合わせ周囲環境条件の変化による歪み等を防止することが可能となる。 In particular, in the case of laminating with the same fiber direction of the oil palm material W, the fibers of the surface layer softened in the consolidation process are the fibers of the oil palm material W that are adjacent in the longitudinal direction with the same fiber direction, Moreover, the oil palm material W fixed easily in the state in which the metal laths M1 and M2 are easily entangled and entangled with each other is firmly joined. In addition, since the expansion rate and contraction rate at the joint surface can be made completely equal, no stress is applied to the joint surface when the ambient environmental conditions change. Therefore, the bonding strength is high, the mechanical strength is also high, and high dimensional shape stability is ensured.
On the other hand, when the multilayered material NW before pressurization is laminated with the fiber directions orthogonal to each other, even if expansion and contraction force is generated due to changes in the surrounding environmental conditions after the consolidation process, the mutual woods interact with each other and specify Directional warpage deformation is prevented. In particular, when the total number of sheets is an odd number, when laminated with the fiber directions orthogonal to each other, the fiber direction of the single plate is parallel and the cross section is symmetric on the front and back, preventing distortion due to changes in ambient environmental conditions, etc. Is done. At this time, a tough joining state can be obtained by increasing the compressive force with the same fiber direction in consolidation.
If the total number of sheets is an even number, the same fiber direction is laminated in a part of the inside, and the others are laminated with the fiber directions orthogonal to each other, so that the front and back fiber directions are aligned and the ambient environmental conditions It is possible to prevent distortion and the like due to the change of.
そして、本実施の形態の積層合板PWは、その圧縮面とされた表裏面においても圧密加工により緻密化されてオイルパーム材Wが高価な天然接着剤を使用しなくても、外表面から剥離し難くなっていて、表面の品質が良い。即ち、人工接着剤やコストが高い天然接着剤を使用しなくても繊維の表面からの剥離が抑制できることから、環境に優しく、コストを抑えることができる。
更に、厚み全体が圧密加工されたものであることから、厚み側面の稜線に対して大きな面取り加工や曲面加工を施したとしてもその端面では、高い硬度が確保される。 And the laminated plywood PW of the present embodiment is densified from the outer surface even when the compressed surface is densified by compaction processing and the oil palm material W does not use an expensive natural adhesive. The surface quality is good. That is, peeling from the fiber surface can be suppressed without using an artificial adhesive or a high-cost natural adhesive, which is environmentally friendly and can reduce costs.
Furthermore, since the entire thickness is compacted, even if a large chamfering process or curved surface process is applied to the ridgeline on the thickness side surface, high hardness is ensured on the end surface.
更に、厚み全体が圧密加工されたものであることから、厚み側面の稜線に対して大きな面取り加工や曲面加工を施したとしてもその端面では、高い硬度が確保される。 And the laminated plywood PW of the present embodiment is densified from the outer surface even when the compressed surface is densified by compaction processing and the oil palm material W does not use an expensive natural adhesive. The surface quality is good. That is, peeling from the fiber surface can be suppressed without using an artificial adhesive or a high-cost natural adhesive, which is environmentally friendly and can reduce costs.
Furthermore, since the entire thickness is compacted, even if a large chamfering process or curved surface process is applied to the ridgeline on the thickness side surface, high hardness is ensured on the end surface.
因みに、オイルパームにおいて特に含水率が高く軟質な樹心付近のオイルパーム材Wを使用した場合であっても、圧密加工によってメタルラスM1,M2が埋設されて強度を高めることができ、または、圧密加工において温度及び圧縮制御を行うことで、余分な水分の排出が可能で、加圧前多層材NW内部の水蒸気圧が均一に好適に調節され、かつ、メタルラスM1,M2の変形が困難であるから、圧縮加工後の膨らみ変形等も抑制される。よって、十分な強度が確保され安定した寸法形状性を有する積層合板PWを形成することが可能である。したがって、オイルパームの樹幹全体の有効活用を図ることができる。
特に、乾燥させたオイルパーム材Wのうち、乾燥後の気乾比重が小さい表裏に配置して積層した場合には、上述したように、上プレス盤10A及び下プレス盤10Bに接触する表裏層に乾燥後の気乾比重が小さい材料が配設され、圧密加工がなされることになるから、乾燥後の気乾比重が小さい材料において上プレス盤10A及び下プレス盤10Bによって十分な加熱圧縮がされて木材相互間の比重の差が小さくなり、製品化後における寸法変化率の差も小さくなる。よって、製品化後における寸法形状の安定性が増す。 By the way, even in the case of using oil palm material W near the soft tree center, which has a particularly high water content in oil palm, metal laths M1, M2 can be embedded by consolidation to increase the strength, or consolidation By controlling the temperature and compression during processing, it is possible to discharge excess moisture, the water vapor pressure inside the multilayer material NW before pressurization is uniformly and suitably adjusted, and the deformation of the metal laths M1 and M2 is difficult. Therefore, swell deformation and the like after compression processing are also suppressed. Therefore, it is possible to form the laminated plywood PW having sufficient strength and stable dimensional shape. Therefore, effective utilization of the entire trunk of oil palm can be achieved.
In particular, when the oil palm material W is dried and disposed on the front and back surfaces having a small air-dry specific gravity, the front and back layers contacting theupper press panel 10A and the lower press panel 10B as described above. Since a material having a small air-dry specific gravity after drying is disposed and compaction processing is performed, sufficient heat compression is performed by the upper press panel 10A and the lower press panel 10B in the material having a small air-dry specific gravity after drying. Thus, the difference in specific gravity between the woods is reduced, and the difference in the dimensional change rate after commercialization is also reduced. Therefore, the stability of the dimensional shape after commercialization increases.
特に、乾燥させたオイルパーム材Wのうち、乾燥後の気乾比重が小さい表裏に配置して積層した場合には、上述したように、上プレス盤10A及び下プレス盤10Bに接触する表裏層に乾燥後の気乾比重が小さい材料が配設され、圧密加工がなされることになるから、乾燥後の気乾比重が小さい材料において上プレス盤10A及び下プレス盤10Bによって十分な加熱圧縮がされて木材相互間の比重の差が小さくなり、製品化後における寸法変化率の差も小さくなる。よって、製品化後における寸法形状の安定性が増す。 By the way, even in the case of using oil palm material W near the soft tree center, which has a particularly high water content in oil palm, metal laths M1, M2 can be embedded by consolidation to increase the strength, or consolidation By controlling the temperature and compression during processing, it is possible to discharge excess moisture, the water vapor pressure inside the multilayer material NW before pressurization is uniformly and suitably adjusted, and the deformation of the metal laths M1 and M2 is difficult. Therefore, swell deformation and the like after compression processing are also suppressed. Therefore, it is possible to form the laminated plywood PW having sufficient strength and stable dimensional shape. Therefore, effective utilization of the entire trunk of oil palm can be achieved.
In particular, when the oil palm material W is dried and disposed on the front and back surfaces having a small air-dry specific gravity, the front and back layers contacting the
このように本実施の形態に係る積層合板PWは、本来含水率が高く軟質なオイルパームの樹幹をオイルパーム材Wとして剥いた後、乾燥させ、更に複数枚積層し圧密加工することによって、表面のみならず板厚全体における強度及び硬度が大きく向上され、床材、腰板材、屋内家具材、表面塗装して使用する住宅用外装材等、広範な用途が見込まれる。殊に、圧密加工によって表面硬度が高められ、厚みが薄くても十分な強度及び硬度が確保できることから、製品化において厚みを薄くすることが可能である。
As described above, the laminated plywood PW according to the present embodiment is obtained by peeling the trunk of a soft oil palm having a high moisture content as the oil palm material W, and then drying, further laminating a plurality of sheets, and compacting the surface. Not only the strength and hardness of the entire plate thickness are greatly improved, but a wide range of applications such as flooring materials, waistboard materials, indoor furniture materials, and housing exterior materials used by surface coating are expected. In particular, since the surface hardness is increased by compaction processing and sufficient strength and hardness can be ensured even if the thickness is small, the thickness can be reduced in commercialization.
更に、繊維方向を互いに直交させて積層した場合、圧密加工後の周囲環境条件の変化によって膨張収縮力が生じても互いのオイルパーム材W同士が相互に作用し合って特定方向の反り変形が防止される。このとき、互いのオイルパーム材Wの維管束はクロス状態になるから、互いの維管束が巻き込む状態となり、かつ、メタルラスM1,M2がオイルパーム材Wの維管束のクロス状態を保護する。即ち、オイルパーム材Wの巻き込み状態下で圧密加工することにより、セルロース、ヘミセルロース、リグニンが水素結合し、特に、アブラヤシの樹幹には糖類、リグニン、プラスチック成分等が多く含まれているから、これらの成分が分解や軟化して維管束の周囲に染み出し、再結晶化・再結合化される空間を形成することでバインダー機能が充実する。
Furthermore, when the fiber directions are laminated so as to be orthogonal to each other, even if expansion and contraction force occurs due to changes in the ambient environmental conditions after consolidation, the mutual oil palm materials W interact with each other and warp deformation in a specific direction occurs. Is prevented. At this time, since the vascular bundles of the oil palm material W are in a crossed state, the vascular bundles of each other are wound, and the metal laths M1 and M2 protect the crossed state of the vascular bundle of the oil palm material W. That is, cellulose, hemicellulose, and lignin are hydrogen-bonded by compaction under the entrained state of the oil palm material W. In particular, oil palm tree trunks contain a large amount of sugars, lignin, plastic components, etc. As the components of the composition break down and soften, they ooze out around the vascular bundle and form a space for recrystallization and recombination to enhance the binder function.
[実施の形態4]
図19に示した積層合板PWは、加圧前多層材NWからオイルパーム材Wの維管束等の繊維方向を交差させて積層し、直接、平板金型の上型と下型とで圧縮形成したものであるが、オイルパーム材Wの維管束等の繊維方向を交差させて積層したものであるが、図21に示すように、オイルパーム材Wの維管束等の繊維方向を平行させて積層し、それを加圧前多層材NWとすることもできる。
具体的には、上から、オイルパーム材W1、メタルラスM1、オイルパーム材W2、オイルパーム材W3、メタルラスM2、オイルパーム材W4、オイルパーム材W5の順序で重ねられる。 [Embodiment 4]
The laminated plywood PW shown in FIG. 19 is laminated by crossing the fiber directions such as the vascular bundle of the oil palm material W from the multilayer material NW before pressurization, and directly compressed by the upper die and the lower die of the flat plate mold. As shown in FIG. 21, the fiber direction of the vascular bundle of the oil palm material W is made parallel to each other, as shown in FIG. It can also be laminated and used as the multilayer material NW before pressurization.
Specifically, the oil palm material W1, the metal lath M1, the oil palm material W2, the oil palm material W3, the metal lath M2, the oil palm material W4, and the oil palm material W5 are stacked in this order from the top.
図19に示した積層合板PWは、加圧前多層材NWからオイルパーム材Wの維管束等の繊維方向を交差させて積層し、直接、平板金型の上型と下型とで圧縮形成したものであるが、オイルパーム材Wの維管束等の繊維方向を交差させて積層したものであるが、図21に示すように、オイルパーム材Wの維管束等の繊維方向を平行させて積層し、それを加圧前多層材NWとすることもできる。
具体的には、上から、オイルパーム材W1、メタルラスM1、オイルパーム材W2、オイルパーム材W3、メタルラスM2、オイルパーム材W4、オイルパーム材W5の順序で重ねられる。 [Embodiment 4]
The laminated plywood PW shown in FIG. 19 is laminated by crossing the fiber directions such as the vascular bundle of the oil palm material W from the multilayer material NW before pressurization, and directly compressed by the upper die and the lower die of the flat plate mold. As shown in FIG. 21, the fiber direction of the vascular bundle of the oil palm material W is made parallel to each other, as shown in FIG. It can also be laminated and used as the multilayer material NW before pressurization.
Specifically, the oil palm material W1, the metal lath M1, the oil palm material W2, the oil palm material W3, the metal lath M2, the oil palm material W4, and the oil palm material W5 are stacked in this order from the top.
このように、維管束等の繊維方向を平行させて積層し、オイルパーム材W相互間に1枚以上の網、即ち、及びメタルラスMを配設し、オイルパーム材W相互間でメタルラスMを接合したものである。前記オイルパーム材W相互間の網、例えば、メタルラスMは、オイルパーム材Wが含有する樹脂成分及び糖成分が、他の接着剤を使用しなくても確保され、互いのオイルパーム材Wの維管束は平行状態になるから、高温加圧状態で互いの維管束相互間に対向面の維管束が入り込む状態となり、この巻き込み状態下で圧密加工することにより、セルロース、ヘミセルロース、リグニンが水素結合し、特に、アブラヤシの樹幹には糖類、リグニン、プラスチック成分等が多く含まれているから、これらの成分が分解や軟化して維管束の周囲に染み出し、その後に再結晶化・再結合化されることでバインダーとして機能し、一体化が行われることになる。
したがって、オイルパーム材WとメタルラスM等の網との接合が容易であり、オイルパーム材Wが湾曲しようとしても、メタルラスMがその湾曲に対応する伸縮が生じないから、湾曲を防止する手段として設けることができる。また、複数の個所に網を配設することにより、前記オイルパーム材を積層した面に対して曲げが生じ難くなる。 In this way, the fiber bundles such as vascular bundles are laminated in parallel, one or more nets, that is, metal laths M are disposed between the oil palm materials W, and the metal laths M are disposed between the oil palm materials W. It is joined. The net between the oil palm materials W, for example, the metal lath M, is secured even if the resin component and sugar component contained in the oil palm material W are not used, and the mutual oil palm material W Since the vascular bundle is in a parallel state, the vascular bundle on the opposite surface enters between the vascular bundles at high temperature and under pressure, and cellulose, hemicellulose, and lignin are hydrogen-bonded by compaction processing in this entrained state. In particular, oil palm tree trunks contain a lot of sugar, lignin, plastic components, etc., so these components decompose and soften and ooze out around the vascular bundle, and then recrystallize and recombine. As a result, it functions as a binder and is integrated.
Therefore, it is easy to join the oil palm material W and the net such as the metal lath M, and even if the oil palm material W tries to bend, the metal lath M does not expand or contract corresponding to the bend. Can be provided. Moreover, it becomes difficult to bend with respect to the surface which laminated | stacked the said oil palm material by arrange | positioning a net | network in a several location.
したがって、オイルパーム材WとメタルラスM等の網との接合が容易であり、オイルパーム材Wが湾曲しようとしても、メタルラスMがその湾曲に対応する伸縮が生じないから、湾曲を防止する手段として設けることができる。また、複数の個所に網を配設することにより、前記オイルパーム材を積層した面に対して曲げが生じ難くなる。 In this way, the fiber bundles such as vascular bundles are laminated in parallel, one or more nets, that is, metal laths M are disposed between the oil palm materials W, and the metal laths M are disposed between the oil palm materials W. It is joined. The net between the oil palm materials W, for example, the metal lath M, is secured even if the resin component and sugar component contained in the oil palm material W are not used, and the mutual oil palm material W Since the vascular bundle is in a parallel state, the vascular bundle on the opposite surface enters between the vascular bundles at high temperature and under pressure, and cellulose, hemicellulose, and lignin are hydrogen-bonded by compaction processing in this entrained state. In particular, oil palm tree trunks contain a lot of sugar, lignin, plastic components, etc., so these components decompose and soften and ooze out around the vascular bundle, and then recrystallize and recombine. As a result, it functions as a binder and is integrated.
Therefore, it is easy to join the oil palm material W and the net such as the metal lath M, and even if the oil palm material W tries to bend, the metal lath M does not expand or contract corresponding to the bend. Can be provided. Moreover, it becomes difficult to bend with respect to the surface which laminated | stacked the said oil palm material by arrange | positioning a net | network in a several location.
殊に、繊維方向を互いに平行させて積層した場合、圧密加工後の周囲環境条件の変化によって膨張収縮力が生じても互いのオイルパーム材W同士が相互に作用し合って特定方向の反り変形が生じようとしても、メタルラスMによってその変形が防止される。即ち、全オイルパーム材Wの枚数が奇数枚の場合であっても、繊維方向を互いに直交させて積層したときと同様に、周囲環境条件の変化による歪み等が防止される。
この実施の形態の場合も、好ましくは、積層させるオイルパーム材Wの繊維に対して平行に切断した面であって樹心側面同士、または繊維に対して平行に切断した面であって樹皮側面同士を対向させて積層するのが好ましい。即ち、オイルパーム幹WDの樹芯を通る直線位置でオイルパーム材Wを分割し、対向させて配置にすると、互いの樹心側面同士または互いの樹皮側面同士が対向するようになり、圧密加工により接合させることによって、樹心側面と樹皮側面で細胞密度が異なることによる特定方向の反り変形が防止できる。 In particular, when the fiber directions are laminated in parallel to each other, even when expansion and contraction force is generated due to changes in ambient environmental conditions after consolidation, the oil palm materials W interact with each other and warp deformation in a specific direction. Even if this occurs, the metal lath M prevents the deformation. That is, even when the total number of oil palm materials W is an odd number, distortion caused by changes in ambient environmental conditions can be prevented in the same manner as when the fiber directions are stacked with the fiber directions orthogonal to each other.
Also in the case of this embodiment, preferably, it is a plane cut parallel to the fibers of the oil palm material W to be laminated, and the side surfaces of the tree cores, or a plane cut parallel to the fibers and the side of the bark. It is preferable that the layers are laminated to face each other. That is, when the oil palm material W is divided at a linear position passing through the tree core of the oil palm trunk WD and arranged so as to face each other, the tree heart side surfaces or the bark side surfaces face each other. By joining together, warpage deformation in a specific direction due to the difference in cell density between the tree heart side and the bark side can be prevented.
この実施の形態の場合も、好ましくは、積層させるオイルパーム材Wの繊維に対して平行に切断した面であって樹心側面同士、または繊維に対して平行に切断した面であって樹皮側面同士を対向させて積層するのが好ましい。即ち、オイルパーム幹WDの樹芯を通る直線位置でオイルパーム材Wを分割し、対向させて配置にすると、互いの樹心側面同士または互いの樹皮側面同士が対向するようになり、圧密加工により接合させることによって、樹心側面と樹皮側面で細胞密度が異なることによる特定方向の反り変形が防止できる。 In particular, when the fiber directions are laminated in parallel to each other, even when expansion and contraction force is generated due to changes in ambient environmental conditions after consolidation, the oil palm materials W interact with each other and warp deformation in a specific direction. Even if this occurs, the metal lath M prevents the deformation. That is, even when the total number of oil palm materials W is an odd number, distortion caused by changes in ambient environmental conditions can be prevented in the same manner as when the fiber directions are stacked with the fiber directions orthogonal to each other.
Also in the case of this embodiment, preferably, it is a plane cut parallel to the fibers of the oil palm material W to be laminated, and the side surfaces of the tree cores, or a plane cut parallel to the fibers and the side of the bark. It is preferable that the layers are laminated to face each other. That is, when the oil palm material W is divided at a linear position passing through the tree core of the oil palm trunk WD and arranged so as to face each other, the tree heart side surfaces or the bark side surfaces face each other. By joining together, warpage deformation in a specific direction due to the difference in cell density between the tree heart side and the bark side can be prevented.
[実施の形態5]
図19に示したメタルラスMを挟み込んだ積層合板PWは、加圧前多層材NWからオイルパーム材Wの維管束等の繊維方向を交差させて積層し、直接、平板金型の上型と下型とで圧縮形成したものであるが、オイルパーム材Wの維管束等の繊維方向を交差させて積層したものであるが、図22に示すように、オイルパーム材Wの維管束等の繊維方向を平行させて積層し、積層された露出された意匠面側の片面または両面をオイルパーム材W以外の板材として積層し、それを加圧前多層材NWとすることもできる。
具体的には、上から、かつら剥きしたラワン薄板、シナ薄板、針葉樹薄板の何れからか1枚とすることができる。また、薄板の1枚をオイルパーム材W以外の木材からなる薄板とは、例えば、桧、杉、米桧、桧葉、米杉、唐松、赤松、栗、欅、槇、樫、桜、樅、栂等の木目を生かした薄い板材とすることもできる。ここでは桧薄板Y1とする。次いで、
オイルパーム材W2、メタルラスM1、オイルパーム材W3、オイルパーム材W4、メタルラスM2、オイルパーム材W5の順序で重ねたものである。 [Embodiment 5]
The laminated plywood PW sandwiching the metal lath M shown in FIG. 19 is laminated from the multilayer material NW before pressurizing with the fiber direction of the vascular bundle of the oil palm material W intersecting, and directly, the upper mold and the lower mold of theflat plate mold 22 is formed by compression with a mold, and is laminated by crossing the fiber directions of the oil palm material W vascular bundle or the like, but as shown in FIG. It is also possible to laminate in parallel directions, laminate one side or both sides of the laminated exposed design surface as a plate material other than the oil palm material W, and use it as the pre-pressurized multilayer material NW.
Specifically, from the top, one piece can be selected from any one of Lauan thin plate, China thin plate, and softwood thin plate peeled off by wig. In addition, one thin plate made of wood other than oil palm material W is, for example, persimmon, cedar, rice bran, persimmon leaves, rice cedar, Karamatsu, red pine, chestnut, persimmon, persimmon, persimmon, cherry, persimmon, It is also possible to use a thin plate that makes use of the grain of firewood. Here, the thin plate Y1. Then
Oil palm material W2, metal lath M1, oil palm material W3, oil palm material W4, metal lath M2, and oil palm material W5 are stacked in this order.
図19に示したメタルラスMを挟み込んだ積層合板PWは、加圧前多層材NWからオイルパーム材Wの維管束等の繊維方向を交差させて積層し、直接、平板金型の上型と下型とで圧縮形成したものであるが、オイルパーム材Wの維管束等の繊維方向を交差させて積層したものであるが、図22に示すように、オイルパーム材Wの維管束等の繊維方向を平行させて積層し、積層された露出された意匠面側の片面または両面をオイルパーム材W以外の板材として積層し、それを加圧前多層材NWとすることもできる。
具体的には、上から、かつら剥きしたラワン薄板、シナ薄板、針葉樹薄板の何れからか1枚とすることができる。また、薄板の1枚をオイルパーム材W以外の木材からなる薄板とは、例えば、桧、杉、米桧、桧葉、米杉、唐松、赤松、栗、欅、槇、樫、桜、樅、栂等の木目を生かした薄い板材とすることもできる。ここでは桧薄板Y1とする。次いで、
オイルパーム材W2、メタルラスM1、オイルパーム材W3、オイルパーム材W4、メタルラスM2、オイルパーム材W5の順序で重ねたものである。 [Embodiment 5]
The laminated plywood PW sandwiching the metal lath M shown in FIG. 19 is laminated from the multilayer material NW before pressurizing with the fiber direction of the vascular bundle of the oil palm material W intersecting, and directly, the upper mold and the lower mold of the
Specifically, from the top, one piece can be selected from any one of Lauan thin plate, China thin plate, and softwood thin plate peeled off by wig. In addition, one thin plate made of wood other than oil palm material W is, for example, persimmon, cedar, rice bran, persimmon leaves, rice cedar, Karamatsu, red pine, chestnut, persimmon, persimmon, persimmon, cherry, persimmon, It is also possible to use a thin plate that makes use of the grain of firewood. Here, the thin plate Y1. Then
Oil palm material W2, metal lath M1, oil palm material W3, oil palm material W4, metal lath M2, and oil palm material W5 are stacked in this order.
このように、維管束等の繊維方向を平行させて積層し、オイルパーム材W2,・・・,W5相互間に1枚以上の網、即ち、及びメタルラスM1,M2を配設し、オイルパーム材W2,・・・,W5相互間でメタルラスM1またはメタルラスM2を接合したものである。前記オイルパーム材W2,・・・,W5相互間の網は、オイルパーム材W2,・・・,W5が含有する樹脂成分及び糖成分が、他の接着剤を使用しなくても確保され、互いのオイルパーム材Wの維管束は平行状態になるから、高温加圧状態で互いの維管束相互間に対向面の維管束が入り込む状態となり、この巻き込み状態下で圧密加工することにより、セルロース、ヘミセルロース、リグニンが水素結合し、特に、アブラヤシの樹幹には糖類、リグニン、プラスチック成分等が多く含まれているから、これらの成分が分解や軟化して維管束の周囲に染み出し、その後に再結晶化・再結合化されることでバインダーとして機能し、一体化が行われることになる。
したがって、オイルパーム材WとメタルラスM1、メタルラスM2等の網との接合が容易であり、オイルパーム材Wが湾曲しようとしても、メタルラスM1、メタルラスM2がその湾曲に対応する伸縮が生じないから、湾曲を防止する手段として設けることができる。また、複数の個所に網を配設することにより、前記オイルパーム材W2,・・・,W5を積層した面に対して曲げが生じ難くなる。 In this way, fiber bundles such as vascular bundles are laminated in parallel, and one or more nets, that is, metal laths M1 and M2 are disposed between the oil palm materials W2,. A metal lath M1 or a metal lath M2 is joined between the materials W2,..., W5. The network between the oil palm materials W2,..., W5 is ensured even if the resin components and sugar components contained in the oil palm materials W2,. Since the vascular bundles of the respective oil palm materials W are in a parallel state, the vascular bundle on the opposite surface enters between the vascular bundles in a high-temperature pressurized state. Hemicellulose and lignin are hydrogen-bonded, and especially the trunk of oil palm contains a lot of saccharides, lignin, plastic components, etc., so these components decompose and soften and ooze out around the vascular bundle. By being recrystallized and recombined, it functions as a binder and is integrated.
Therefore, it is easy to join the oil palm material W to the net such as the metal lath M1, the metal lath M2, and even if the oil palm material W tries to bend, the metal lath M1 and the metal lath M2 do not expand or contract corresponding to the curve. It can be provided as a means for preventing bending. In addition, by arranging the nets at a plurality of locations, it becomes difficult for the surface on which the oil palm materials W2,.
したがって、オイルパーム材WとメタルラスM1、メタルラスM2等の網との接合が容易であり、オイルパーム材Wが湾曲しようとしても、メタルラスM1、メタルラスM2がその湾曲に対応する伸縮が生じないから、湾曲を防止する手段として設けることができる。また、複数の個所に網を配設することにより、前記オイルパーム材W2,・・・,W5を積層した面に対して曲げが生じ難くなる。 In this way, fiber bundles such as vascular bundles are laminated in parallel, and one or more nets, that is, metal laths M1 and M2 are disposed between the oil palm materials W2,. A metal lath M1 or a metal lath M2 is joined between the materials W2,..., W5. The network between the oil palm materials W2,..., W5 is ensured even if the resin components and sugar components contained in the oil palm materials W2,. Since the vascular bundles of the respective oil palm materials W are in a parallel state, the vascular bundle on the opposite surface enters between the vascular bundles in a high-temperature pressurized state. Hemicellulose and lignin are hydrogen-bonded, and especially the trunk of oil palm contains a lot of saccharides, lignin, plastic components, etc., so these components decompose and soften and ooze out around the vascular bundle. By being recrystallized and recombined, it functions as a binder and is integrated.
Therefore, it is easy to join the oil palm material W to the net such as the metal lath M1, the metal lath M2, and even if the oil palm material W tries to bend, the metal lath M1 and the metal lath M2 do not expand or contract corresponding to the curve. It can be provided as a means for preventing bending. In addition, by arranging the nets at a plurality of locations, it becomes difficult for the surface on which the oil palm materials W2,.
殊に、繊維方向を互いに平行させて積層した場合、圧密加工後の周囲環境条件の変化によって膨張収縮力が生じても互いのオイルパーム材W2,・・・,W5同士が相互に作用し合って特定方向の反り変形が生じようとしても、メタルラスM1、メタルラスM2によってその変形が防止される。即ち、全オイルパーム材Wの枚数が奇数枚の場合であっても、繊維方向を互いに直交させて積層したときと同様に、周囲環境条件の変化による歪み等が防止される。
この実施の形態の場合も、好ましくは、積層させるオイルパーム材Wの繊維に対して平行に切断した面であって樹心側面同士、または繊維に対して平行に切断した面であって樹皮側面同士を対向させて積層するのが好ましい。即ち、オイルパーム幹WDの樹芯を通る直線位置でオイルパーム材Wを分割し、対向させて配置にすると、互いの樹心側面同士または互いの樹皮側面同士が対向するようになり、圧密加工により接合させることによって、樹心側面と樹皮側面で細胞密度が異なることによる特定方向の反り変形が防止できる。 In particular, when laminated with the fiber directions parallel to each other, the oil palm materials W2,..., W5 interact with each other even if expansion and contraction force occurs due to changes in the ambient environmental conditions after consolidation. Even if warpage deformation in a specific direction occurs, the metal lath M1 and metal lath M2 prevent the deformation. That is, even when the total number of oil palm materials W is an odd number, distortion caused by changes in ambient environmental conditions can be prevented in the same manner as when the fiber directions are stacked with the fiber directions orthogonal to each other.
Also in the case of this embodiment, preferably, it is a plane cut parallel to the fibers of the oil palm material W to be laminated, and the side surfaces of the tree cores, or a plane cut parallel to the fibers and the side of the bark. It is preferable that the layers are laminated to face each other. That is, when the oil palm material W is divided at a linear position passing through the tree core of the oil palm trunk WD and arranged so as to face each other, the tree heart side surfaces or the bark side surfaces face each other. By joining together, warpage deformation in a specific direction due to the difference in cell density between the tree heart side and the bark side can be prevented.
この実施の形態の場合も、好ましくは、積層させるオイルパーム材Wの繊維に対して平行に切断した面であって樹心側面同士、または繊維に対して平行に切断した面であって樹皮側面同士を対向させて積層するのが好ましい。即ち、オイルパーム幹WDの樹芯を通る直線位置でオイルパーム材Wを分割し、対向させて配置にすると、互いの樹心側面同士または互いの樹皮側面同士が対向するようになり、圧密加工により接合させることによって、樹心側面と樹皮側面で細胞密度が異なることによる特定方向の反り変形が防止できる。 In particular, when laminated with the fiber directions parallel to each other, the oil palm materials W2,..., W5 interact with each other even if expansion and contraction force occurs due to changes in the ambient environmental conditions after consolidation. Even if warpage deformation in a specific direction occurs, the metal lath M1 and metal lath M2 prevent the deformation. That is, even when the total number of oil palm materials W is an odd number, distortion caused by changes in ambient environmental conditions can be prevented in the same manner as when the fiber directions are stacked with the fiber directions orthogonal to each other.
Also in the case of this embodiment, preferably, it is a plane cut parallel to the fibers of the oil palm material W to be laminated, and the side surfaces of the tree cores, or a plane cut parallel to the fibers and the side of the bark. It is preferable that the layers are laminated to face each other. That is, when the oil palm material W is divided at a linear position passing through the tree core of the oil palm trunk WD and arranged so as to face each other, the tree heart side surfaces or the bark side surfaces face each other. By joining together, warpage deformation in a specific direction due to the difference in cell density between the tree heart side and the bark side can be prevented.
更に、桧薄板Y1はオイルパーム材W2が含有する樹脂成分及び糖成分が、他の接着剤を使用しなくても確保され、互いのオイルパーム材Wの繊維方向は平行状態になるが、高温加圧状態で互いの繊維方向に対向する面の繊維が入り込む状態となり、この状態下で圧密加工することにより、セルロース、ヘミセルロース、リグニンが水素結合し、特に、アブラヤシの樹幹には糖類、リグニン、プラスチック成分等が多く含まれているから、これらの成分が分解や軟化して維管束の周囲に染み出し、その後に再結晶化・再結合化されることでバインダーとして機能し、一体化が行われることになる。
したがって、桧薄板Y1、オイルパーム材W2,・・・,W5とメタルラスM1、メタルラスM2等の網との接合が容易であり、オイルパーム材W2,・・・,W5が湾曲しようとしても、桧薄板Y1とメタルラスM1、メタルラスM2がその湾曲に対応する伸縮が生じないから、桧薄板Y1とメタルラスM1,M2は湾曲を防止する手段として設けることができる。 Furthermore, the thin plate Y1 is secured without the use of other adhesives for the resin component and sugar component contained in the oil palm material W2, and the fiber directions of the oil palm material W are parallel to each other. Fibers on the surfaces facing each other in the direction of the fibers in the pressurized state enter, and by compacting under this state, cellulose, hemicellulose, lignin are hydrogen-bonded, especially sugar palm, lignin, Since many plastic components are contained, these components decompose and soften and ooze out around the vascular bundle, and then recrystallize and recombine to function as a binder and integrate. It will be.
Therefore, the thin plate Y1, the oil palm materials W2,..., W5 and the metal lath M1, the metal lath M2, etc. can be easily joined, and even if the oil palm materials W2,. Since the thin plate Y1, the metal lath M1, and the metal lath M2 do not expand or contract corresponding to the curvature, the heel thin plate Y1 and the metal lath M1, M2 can be provided as means for preventing the curvature.
したがって、桧薄板Y1、オイルパーム材W2,・・・,W5とメタルラスM1、メタルラスM2等の網との接合が容易であり、オイルパーム材W2,・・・,W5が湾曲しようとしても、桧薄板Y1とメタルラスM1、メタルラスM2がその湾曲に対応する伸縮が生じないから、桧薄板Y1とメタルラスM1,M2は湾曲を防止する手段として設けることができる。 Furthermore, the thin plate Y1 is secured without the use of other adhesives for the resin component and sugar component contained in the oil palm material W2, and the fiber directions of the oil palm material W are parallel to each other. Fibers on the surfaces facing each other in the direction of the fibers in the pressurized state enter, and by compacting under this state, cellulose, hemicellulose, lignin are hydrogen-bonded, especially sugar palm, lignin, Since many plastic components are contained, these components decompose and soften and ooze out around the vascular bundle, and then recrystallize and recombine to function as a binder and integrate. It will be.
Therefore, the thin plate Y1, the oil palm materials W2,..., W5 and the metal lath M1, the metal lath M2, etc. can be easily joined, and even if the oil palm materials W2,. Since the thin plate Y1, the metal lath M1, and the metal lath M2 do not expand or contract corresponding to the curvature, the heel thin plate Y1 and the metal lath M1, M2 can be provided as means for preventing the curvature.
[実施の形態6]
また、図23(a)の他の実施の形態6に示すように、板状の積層合板PWを形成しておき、その積層合板PWを持ち上げる圧密加工してなる図23(b)に示してなる脚JWを圧密加工材製造装置MCで一体に接合して図23(c)のようにオイルパーム成型体としたものである。このとき、積層合板PWと脚JWとは、その接合面が同一繊維長の方向となるようにして接合すると接合強度を上げることができる。
この実施の形態においても、積層合板PWを形成するときに圧縮率を20~80%程度としてもよいし、特定の積層合板PWの状態の圧縮率で固定化し、脚JWのみを圧縮率を20~80%程度として接合してもよい。当然、その逆であってもよい。
この実施の形態4では、脚JWに積層合板PWの全荷重が加わるが、メタルラスMによって集中荷重となるのが分散され、安定した機械的強度が維持できる。 [Embodiment 6]
Further, as shown in anotherembodiment 6 in FIG. 23 (a), a plate-like laminated plywood PW is formed, and the laminated plywood PW is lifted and shown in FIG. 23 (b). The leg JW is integrally joined by the compacted material manufacturing apparatus MC to form an oil palm molded body as shown in FIG. At this time, if the laminated plywood PW and the leg JW are joined so that their joining surfaces are in the same fiber length direction, the joining strength can be increased.
Also in this embodiment, when forming the laminated plywood PW, the compression rate may be about 20 to 80%, or the compression rate in the state of the specific laminated plywood PW is fixed, and only the leg JW has a compression rate of 20%. Bonding may be performed at about 80%. Of course, the opposite may be possible.
In the fourth embodiment, the total load of the laminated plywood PW is applied to the leg JW, but the concentrated load is dispersed by the metal lath M, and stable mechanical strength can be maintained.
また、図23(a)の他の実施の形態6に示すように、板状の積層合板PWを形成しておき、その積層合板PWを持ち上げる圧密加工してなる図23(b)に示してなる脚JWを圧密加工材製造装置MCで一体に接合して図23(c)のようにオイルパーム成型体としたものである。このとき、積層合板PWと脚JWとは、その接合面が同一繊維長の方向となるようにして接合すると接合強度を上げることができる。
この実施の形態においても、積層合板PWを形成するときに圧縮率を20~80%程度としてもよいし、特定の積層合板PWの状態の圧縮率で固定化し、脚JWのみを圧縮率を20~80%程度として接合してもよい。当然、その逆であってもよい。
この実施の形態4では、脚JWに積層合板PWの全荷重が加わるが、メタルラスMによって集中荷重となるのが分散され、安定した機械的強度が維持できる。 [Embodiment 6]
Further, as shown in another
Also in this embodiment, when forming the laminated plywood PW, the compression rate may be about 20 to 80%, or the compression rate in the state of the specific laminated plywood PW is fixed, and only the leg JW has a compression rate of 20%. Bonding may be performed at about 80%. Of course, the opposite may be possible.
In the fourth embodiment, the total load of the laminated plywood PW is applied to the leg JW, but the concentrated load is dispersed by the metal lath M, and stable mechanical strength can be maintained.
[実施の形態7]
図24の実施の形態7に示すように、所定の厚みの積層合板PWが、凹部EQのみで複数層に重ねたオイルパーム材W1,・・・,W5相互を一体に保持させ、凹部EQ以外の箇所は圧密加工してもよいし、重ね合せた状態を維持してもよい。本実施の形態では家屋の屋根裏、壁の断熱材等に使用が好適の実施の形態となる。
この実施の形態の場合には、中心になるオイルパーム材W3の両面にメタルラスM1、メタルラスM2を配設するか、または全体を4枚のオイルパーム材W1,・・・,W4としその中心に1枚のメタルラスM1を配設するのが好適である。 [Embodiment 7]
As shown in the seventh embodiment of FIG. 24, the laminated plywood PW having a predetermined thickness integrally holds the oil palm materials W1,..., W5 stacked in a plurality of layers only by the recess EQ, and other than the recess EQ. These locations may be compacted or maintained in an overlapped state. In this embodiment, the use is suitable for an attic of a house, a heat insulating material of a wall, and the like.
In the case of this embodiment, the metal lath M1 and the metal lath M2 are arranged on both surfaces of the oil palm material W3 which is the center, or the whole is made into four oil palm materials W1,. It is preferable to arrange one metal lath M1.
図24の実施の形態7に示すように、所定の厚みの積層合板PWが、凹部EQのみで複数層に重ねたオイルパーム材W1,・・・,W5相互を一体に保持させ、凹部EQ以外の箇所は圧密加工してもよいし、重ね合せた状態を維持してもよい。本実施の形態では家屋の屋根裏、壁の断熱材等に使用が好適の実施の形態となる。
この実施の形態の場合には、中心になるオイルパーム材W3の両面にメタルラスM1、メタルラスM2を配設するか、または全体を4枚のオイルパーム材W1,・・・,W4としその中心に1枚のメタルラスM1を配設するのが好適である。 [Embodiment 7]
As shown in the seventh embodiment of FIG. 24, the laminated plywood PW having a predetermined thickness integrally holds the oil palm materials W1,..., W5 stacked in a plurality of layers only by the recess EQ, and other than the recess EQ. These locations may be compacted or maintained in an overlapped state. In this embodiment, the use is suitable for an attic of a house, a heat insulating material of a wall, and the like.
In the case of this embodiment, the metal lath M1 and the metal lath M2 are arranged on both surfaces of the oil palm material W3 which is the center, or the whole is made into four oil palm materials W1,. It is preferable to arrange one metal lath M1.
発明者らは、前述の表1から表5の実験を行ったが、メタルラスM1,M2を挟み込んだ積層合板についても、同様の結果を得て、圧縮率は50%以上であればよく、圧縮率40%以上であれば実用的に問題が生じないことが確認された。
The inventors conducted the experiments shown in Tables 1 to 5 above, but the same result was obtained for the laminated plywood sandwiched between the metal laths M1 and M2, and the compression ratio should be 50% or more. It was confirmed that practically no problem occurred if the rate was 40% or more.
上記のように、本実施の形態の積層合板は、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで所定の厚みに剥いて形成し、それを圧密加工したとき、1枚の厚みが1mm以上からなる1枚以上のオイルパーム材Wと、所定長のラワン幹またはシナ幹または針葉樹幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成したラワン薄板、またはシナ薄板、または針葉樹薄板の何れかの1枚以上をオイルパーム材Wに面して配置し、それらを圧縮、固定化し、一体に接合したものである。しかも、前記オイルパーム材W相互間にメタルラスM等の網を配設し、前記オイルパーム材W相互間でメタルラスM等の網を接合したものである。
As described above, the laminated plywood according to the present embodiment is formed by stripping a predetermined length of oil palm trunk WD to a predetermined thickness with a rotary race while rotating it in the circumferential direction, and then compressing it. A lauan formed by peeling one or more oil palm materials W having a thickness of 1 mm or more and a lauan trunk, a china trunk or a coniferous trunk having a predetermined length in a circumferential direction while rotating the lauan trunk, a china trunk or a conifer tree trunk from the outer periphery to a predetermined thickness. One or more of a thin plate, a Chinese thin plate, or a softwood thin plate is disposed facing the oil palm material W, and these are compressed, fixed, and integrally joined. Moreover, a net such as a metal lath M is disposed between the oil palm materials W, and a net such as the metal lath M is joined between the oil palm materials W.
したがって、オイルパーム材W相互間にメタルラスMからなる網を配設し、オイルパーム材W相互間で網を接合するものであり、特に、オイルパーム材W相互間で網を接合し、一体化するものであるから、オイルパーム材W相互間から接合の際のオイルパーム材Wが含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保されるものである。
また、1枚以上のオイルパーム材Wと、ラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上をオイルパーム材Wに面して配置し、それらを圧縮、固定化し、一体に接合したものであるから、オイルパーム材Wが含有する樹脂成分及び糖成分を使用し、自然物で接合した積層合板PWが得られる。また、ラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上を芯材とし、意匠面として使用できるから、用途に合わせた積層合板PWが製造できる。
よって、予め桧薄板Y1のオイルパーム材W2との対向面に熱硬化性樹脂を塗布したとしても、1/4の接着剤の使用料となり、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板PWが得られる。 Therefore, a net made of metal lath M is arranged between the oil palm materials W, and the nets are joined between the oil palm materials W. In particular, the nets are joined and integrated between the oil palm materials W. Therefore, the amount of the resin component and the sugar component contained in the oil palm material W at the time of joining from between the oil palm materials W can be ensured without using another adhesive.
In addition, one or more oil palm materials W and one or more of Lauan thin plate, China thin plate, and softwood thin plate are arranged facing the oil palm material W, and they are compressed, fixed, and joined together. Since it is a thing, the laminated plywood PW joined by the natural thing using the resin component and sugar component which the oil palm material W contains is obtained. Moreover, since one or more of Lauan thin plate, China thin plate, and softwood thin plate can be used as a core material and used as a design surface, a laminated plywood PW suitable for the application can be manufactured.
Therefore, even if a thermosetting resin is applied to the surface of the thin plate Y1 facing the oil palm material W2 in advance, the use of a formaldehyde-based adhesive that causes a sick house syndrome becomes a quarter of the usage fee of the adhesive. The laminated plywood PW using the components inherently held by the oil palm is obtained.
また、1枚以上のオイルパーム材Wと、ラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上をオイルパーム材Wに面して配置し、それらを圧縮、固定化し、一体に接合したものであるから、オイルパーム材Wが含有する樹脂成分及び糖成分を使用し、自然物で接合した積層合板PWが得られる。また、ラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上を芯材とし、意匠面として使用できるから、用途に合わせた積層合板PWが製造できる。
よって、予め桧薄板Y1のオイルパーム材W2との対向面に熱硬化性樹脂を塗布したとしても、1/4の接着剤の使用料となり、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板PWが得られる。 Therefore, a net made of metal lath M is arranged between the oil palm materials W, and the nets are joined between the oil palm materials W. In particular, the nets are joined and integrated between the oil palm materials W. Therefore, the amount of the resin component and the sugar component contained in the oil palm material W at the time of joining from between the oil palm materials W can be ensured without using another adhesive.
In addition, one or more oil palm materials W and one or more of Lauan thin plate, China thin plate, and softwood thin plate are arranged facing the oil palm material W, and they are compressed, fixed, and joined together. Since it is a thing, the laminated plywood PW joined by the natural thing using the resin component and sugar component which the oil palm material W contains is obtained. Moreover, since one or more of Lauan thin plate, China thin plate, and softwood thin plate can be used as a core material and used as a design surface, a laminated plywood PW suitable for the application can be manufactured.
Therefore, even if a thermosetting resin is applied to the surface of the thin plate Y1 facing the oil palm material W2 in advance, the use of a formaldehyde-based adhesive that causes a sick house syndrome becomes a quarter of the usage fee of the adhesive. The laminated plywood PW using the components inherently held by the oil palm is obtained.
オイルパーム材W相互間に1枚以上のメタルラスMからなる網を配設し、オイルパーム材W相互間で1枚以上の網を接合したものであるから、オイルパーム材W相互間で網を接合し、一体化するから、オイルパーム材W相互間から接合の際のオイルパームが含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保されるから、オイルパーム材Wと網との接合が容易であり、オイルパーム材Wが湾曲しようとしても、網がその湾曲に対応する伸縮が生じないから、湾曲を防止する手段として設けることができる。また、複数の個所に網を配設することにより、オイルパーム材Wを積層した面に対して曲げが生じ難くなる。
Since one or more metal laths M are arranged between the oil palm materials W, and one or more meshes are joined between the oil palm materials W, the nets are connected between the oil palm materials W. Since it joins and integrates, since the amount of the resin component and sugar component which oil palm contains at the time of joining from between oil palm materials W is secured without using other adhesives, oil palm Joining of the material W and the net is easy, and even if the oil palm material W tries to bend, the net does not expand or contract corresponding to the bend, so it can be provided as means for preventing the bend. Moreover, it becomes difficult to produce a bending with respect to the surface which laminated | stacked the oil palm material W by arrange | positioning a net | network in a several location.
上記のように、本実施の形態の積層合板は、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで所定の厚みに剥いて形成し、それを圧密加工した後の1枚の厚みが1mm以上からなる1枚以上のオイルパーム材Wと、所定長のラワン幹またはシナ幹または針葉樹幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成したラワン薄板、またはシナ薄板、または針葉樹薄板の何れかの1枚以上をオイルパーム材Wに面して配置し、それらを圧縮、固定化し、一体に接合したものである。しかも、オイルパーム材W相互間に網を配設し、オイルパーム材W相互間で網を接合したものである。
As described above, the laminated plywood of the present embodiment is formed by peeling a predetermined length of oil palm trunk WD to a predetermined thickness with a rotary race while rotating it in the circumferential direction, and then compacting it. A lauan formed by peeling off a predetermined length of lauan trunk, china trunk, or conifer trunk from the outer circumference to a predetermined thickness with a rotary race while rotating at least one oil palm material W having a thickness of 1 mm or more and a lauan trunk, a china trunk, or a conifer trunk in a circumferential direction. One or more of a thin plate, a Chinese thin plate, or a softwood thin plate is disposed facing the oil palm material W, and these are compressed, fixed, and integrally joined. Moreover, a net is disposed between the oil palm materials W, and the net is joined between the oil palm materials W.
したがって、オイルパーム材W相互間に網を配設し、オイルパーム材W相互間でメタルラスMからなる網を接合するものであればよい。特に、オイルパーム材W相互間で網を接合し、一体化するものであり、オイルパーム材W相互間から接合の際のオイルパーム材Wが含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保されるものである。
また、1枚以上のオイルパーム材Wと、ラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上をオイルパーム材Wに面して配置し、それらを圧縮、固定化し、一体に接合したものであるから、オイルパーム材Wが含有する樹脂成分及び糖成分を使用し、自然物で接合した積層合板PWが得られる。また、ラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上を芯材とし、意匠面として使用できるから、用途に合わせた積層合板PWが製造できる。
よって、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板PWが得られる。 Therefore, what is necessary is just to arrange | position a net | network between oil palm materials W and to join the net | network which consists of metal laths M between oil palm materials W. In particular, the nets are joined and integrated between the oil palm materials W, and the amount of the resin component and the sugar component contained in the oil palm material W at the time of joining from among the oil palm materials W is different from the other. It is ensured without using an adhesive.
In addition, one or more oil palm materials W and one or more of Lauan thin plate, China thin plate, and softwood thin plate are arranged facing the oil palm material W, and they are compressed, fixed, and joined together. Since it is a thing, the laminated plywood PW joined by the natural thing using the resin component and sugar component which the oil palm material W contains is obtained. Moreover, since one or more of Lauan thin plate, China thin plate, and softwood thin plate can be used as a core material and used as a design surface, a laminated plywood PW suitable for the application can be manufactured.
Therefore, the use of the formaldehyde-based adhesive that causes sick house syndrome is suppressed, and a laminated plywood PW using the components that oil palm originally has is obtained.
また、1枚以上のオイルパーム材Wと、ラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上をオイルパーム材Wに面して配置し、それらを圧縮、固定化し、一体に接合したものであるから、オイルパーム材Wが含有する樹脂成分及び糖成分を使用し、自然物で接合した積層合板PWが得られる。また、ラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上を芯材とし、意匠面として使用できるから、用途に合わせた積層合板PWが製造できる。
よって、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板PWが得られる。 Therefore, what is necessary is just to arrange | position a net | network between oil palm materials W and to join the net | network which consists of metal laths M between oil palm materials W. In particular, the nets are joined and integrated between the oil palm materials W, and the amount of the resin component and the sugar component contained in the oil palm material W at the time of joining from among the oil palm materials W is different from the other. It is ensured without using an adhesive.
In addition, one or more oil palm materials W and one or more of Lauan thin plate, China thin plate, and softwood thin plate are arranged facing the oil palm material W, and they are compressed, fixed, and joined together. Since it is a thing, the laminated plywood PW joined by the natural thing using the resin component and sugar component which the oil palm material W contains is obtained. Moreover, since one or more of Lauan thin plate, China thin plate, and softwood thin plate can be used as a core material and used as a design surface, a laminated plywood PW suitable for the application can be manufactured.
Therefore, the use of the formaldehyde-based adhesive that causes sick house syndrome is suppressed, and a laminated plywood PW using the components that oil palm originally has is obtained.
このオイルパーム幹WDは節、年輪がないからロータリーレースで外周から所定の厚みに剥いてオイルパーム材Wを作成する場合、均質なオイルパーム材Wが得られ、結果的に、そのオイルパーム材Wからなる金属、化学繊維、天然繊維等の状況に応じた網を挟み込んだ積層合板PWは均質なものとなる。また、加える温度と圧力によってオイルパーム幹WD自体が含有する樹脂成分及び糖成分によってその接合力を変化させるから、加える温度と圧力の制御によって任意の接着力が得られる。そして、複数枚のオイルパーム材Wをオイルパーム幹WD自体が含有する樹脂成分及び糖成分によって接合して積層合板PWを形成するものでは、他の合成樹脂、合成ゴムを接着材として使用していないから、自然に戻すことができ公害問題を引き起こさない。
Since this oil palm trunk WD has no nodes and no annual rings, when the oil palm material W is created by peeling off from the outer periphery to a predetermined thickness by a rotary race, a uniform oil palm material W is obtained. As a result, the oil palm material is obtained. A laminated plywood PW sandwiched with a net according to the situation of a metal, chemical fiber, natural fiber, or the like made of W becomes homogeneous. Moreover, since the joining force is changed by the resin component and sugar component contained in the oil palm trunk WD itself depending on the applied temperature and pressure, an arbitrary adhesive force can be obtained by controlling the applied temperature and pressure. And in what forms the laminated plywood PW by joining the plurality of oil palm materials W with the resin component and sugar component contained in the oil palm trunk WD itself, other synthetic resins and synthetic rubbers are used as adhesives. Because it is not, it can be returned to nature and does not cause pollution problems.
更に、オイルパーム幹WD自体が含有するリグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類の作用によって接合されるときの圧縮力によって、オイルパーム材Wの空隙が殆どなくなり、緻密な組織になるから、耐水性があり、かつ、防水、防虫性に富み、建築材料として使用しても耐用年数が長くなる。
特に、ヘミセルロースはリグニンとセルロースとの結び付ける機能を有しており、オイルパームの自然栽培されている状態では、互いにどれだけ干渉し合っているかは不明である。しかし、所定の温度、例えば、リグニンの反応開始温度の80度以上に温度を上げることにより、ヘミセルロースの反応開始温度の60度以上となり、互いに反応し、堅固な特性となることが確認された。
前記オイルパーム材相互間に網を配設し、前記オイルパーム材相互間で網を接合するものであればよい。特に、前記オイルパーム材相互間で網を接合し、一体化するものであり、前記オイルパーム材相互間から接合の際のオイルパーム材が含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保されるものである。 Furthermore, since the oil palm trunk WD itself contains a resin component such as lignin and the compressive force when joined by the action of sugars such as cellulose and hemicellulose, the oil palm material W is almost free of voids and becomes a dense structure. It is water-resistant and has excellent waterproofing and insect-proofing properties, and even if used as a building material, it has a long service life.
In particular, hemicellulose has a function of binding lignin and cellulose, and it is unclear how much they interfere with each other when oil palm is naturally cultivated. However, it was confirmed that by raising the temperature to a predetermined temperature, for example, 80 ° C. or more of the reaction start temperature of lignin, the reaction start temperature of hemicellulose was 60 ° C. or more, and they reacted with each other to become firm characteristics.
What is necessary is just to arrange | position a net | network between the said oil palm materials, and to join a net | network between the said oil palm materials. In particular, the nets are joined and integrated between the oil palm materials, and the amount of the resin component and sugar component contained in the oil palm materials at the time of joining from the oil palm materials is different from that of the other. It is ensured without using any agent.
特に、ヘミセルロースはリグニンとセルロースとの結び付ける機能を有しており、オイルパームの自然栽培されている状態では、互いにどれだけ干渉し合っているかは不明である。しかし、所定の温度、例えば、リグニンの反応開始温度の80度以上に温度を上げることにより、ヘミセルロースの反応開始温度の60度以上となり、互いに反応し、堅固な特性となることが確認された。
前記オイルパーム材相互間に網を配設し、前記オイルパーム材相互間で網を接合するものであればよい。特に、前記オイルパーム材相互間で網を接合し、一体化するものであり、前記オイルパーム材相互間から接合の際のオイルパーム材が含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保されるものである。 Furthermore, since the oil palm trunk WD itself contains a resin component such as lignin and the compressive force when joined by the action of sugars such as cellulose and hemicellulose, the oil palm material W is almost free of voids and becomes a dense structure. It is water-resistant and has excellent waterproofing and insect-proofing properties, and even if used as a building material, it has a long service life.
In particular, hemicellulose has a function of binding lignin and cellulose, and it is unclear how much they interfere with each other when oil palm is naturally cultivated. However, it was confirmed that by raising the temperature to a predetermined temperature, for example, 80 ° C. or more of the reaction start temperature of lignin, the reaction start temperature of hemicellulose was 60 ° C. or more, and they reacted with each other to become firm characteristics.
What is necessary is just to arrange | position a net | network between the said oil palm materials, and to join a net | network between the said oil palm materials. In particular, the nets are joined and integrated between the oil palm materials, and the amount of the resin component and sugar component contained in the oil palm materials at the time of joining from the oil palm materials is different from that of the other. It is ensured without using any agent.
オイルパーム材W相互間に1枚以上のメタルラスMからなる網を配設し、オイルパーム材W相互間で1枚以上の網を接合したものであるから、オイルパーム材W相互間で網を接合し、一体化するから、オイルパーム材W相互間から接合の際のオイルパーム材Wが含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保されるから、オイルパーム材Wと網との接合が容易であり、オイルパーム材Wが湾曲しようとしても、網がその湾曲に対応する伸縮が生じないから、湾曲を防止する手段として設けることができる。また、複数の個所に網を配設することにより、前記オイルパーム材を積層した面に対して曲げが生じ難くなる。
よって、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板PWが得られる。 Since one or more metal laths M are arranged between the oil palm materials W, and one or more meshes are joined between the oil palm materials W, the nets are connected between the oil palm materials W. Since it joins and integrates, since the quantity of the resin component and sugar component which oil palm material W contains in the case of joining from between oil palm materials W is secured, without using other adhesives, It is easy to join the oil palm material W and the net, and even if the oil palm material W tries to bend, the net does not expand or contract corresponding to the bend, so it can be provided as means for preventing the bend. Moreover, it becomes difficult to bend with respect to the surface which laminated | stacked the said oil palm material by arrange | positioning a net | network in a several location.
Therefore, the use of the formaldehyde-based adhesive that causes sick house syndrome is suppressed, and a laminated plywood PW using the components that oil palm originally has is obtained.
よって、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板PWが得られる。 Since one or more metal laths M are arranged between the oil palm materials W, and one or more meshes are joined between the oil palm materials W, the nets are connected between the oil palm materials W. Since it joins and integrates, since the quantity of the resin component and sugar component which oil palm material W contains in the case of joining from between oil palm materials W is secured, without using other adhesives, It is easy to join the oil palm material W and the net, and even if the oil palm material W tries to bend, the net does not expand or contract corresponding to the bend, so it can be provided as means for preventing the bend. Moreover, it becomes difficult to bend with respect to the surface which laminated | stacked the said oil palm material by arrange | positioning a net | network in a several location.
Therefore, the use of the formaldehyde-based adhesive that causes sick house syndrome is suppressed, and a laminated plywood PW using the components that oil palm originally has is obtained.
上記実施の形態の積層合板PWは、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成し、それを圧密加工した後の1枚の厚みが1mm以上からなる1枚以上のオイルパーム材Wと、所定長のラワンまたはシナまたは針葉樹の幹をその幹の長さ方向に板状に形成したラワン薄板、またはシナ薄板、または針葉樹薄板の何れかの1枚以上を前記オイルパーム材に面して配置し、それらを一体に接合したものである。前記オイルパーム材相互間に網を配設し、前記オイルパーム材相互間で網を接合したものである。
The laminated plywood PW of the above embodiment is formed by peeling a predetermined length of the oil palm trunk WD from the outer periphery with a rotary race while rotating it in the circumferential direction, and then compacting it. One or more oil palm materials W each having a length of 1 mm or more, and a lauan thin plate, a Chinese thin plate, or a coniferous thin plate in which a predetermined length of lauan or china or conifer trunk is formed in a plate shape in the length direction of the trunk One or more of them are arranged facing the oil palm material and joined together. A net is provided between the oil palm materials, and the net is joined between the oil palm materials.
したがって、オイルパーム材W相互間に1枚以上のメタルラスMからなる網を配設し、オイルパーム材W相互間で1枚以上の網を接合したものであるから、オイルパーム材W相互間で網を接合し、一体化するから、オイルパーム材W相互間から接合の際のオイルパーム材Wが含有する樹脂成分及び糖成分の量が、他の接着剤を使用しなくても確保されるから、オイルパーム材Wと網との接合が容易であり、オイルパーム材Wが湾曲しようとしても、網がその湾曲に対応する伸縮が生じないから、湾曲を防止する手段として設けることができる。また、複数の個所に網を配設することにより、オイルパーム材Wを積層した面に対して曲げが生じ難くなる。
よって、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板PWが得られる。 Therefore, since one or more nets made of metal laths M are disposed between the oil palm materials W and one or more nets are joined between the oil palm materials W, the oil palm materials W are Since the nets are joined and integrated, the amount of the resin component and the sugar component contained in the oil palm material W at the time of joining from between the oil palm materials W is ensured without using other adhesives. Therefore, it is easy to join the oil palm material W and the net, and even if the oil palm material W tries to bend, the net does not expand or contract corresponding to the bend, so it can be provided as a means for preventing the bend. Moreover, it becomes difficult to produce a bending with respect to the surface which laminated | stacked the oil palm material W by arrange | positioning a net | network in a several location.
Therefore, the use of the formaldehyde-based adhesive that causes sick house syndrome is suppressed, and a laminated plywood PW using the components that oil palm originally has is obtained.
よって、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板PWが得られる。 Therefore, since one or more nets made of metal laths M are disposed between the oil palm materials W and one or more nets are joined between the oil palm materials W, the oil palm materials W are Since the nets are joined and integrated, the amount of the resin component and the sugar component contained in the oil palm material W at the time of joining from between the oil palm materials W is ensured without using other adhesives. Therefore, it is easy to join the oil palm material W and the net, and even if the oil palm material W tries to bend, the net does not expand or contract corresponding to the bend, so it can be provided as a means for preventing the bend. Moreover, it becomes difficult to produce a bending with respect to the surface which laminated | stacked the oil palm material W by arrange | positioning a net | network in a several location.
Therefore, the use of the formaldehyde-based adhesive that causes sick house syndrome is suppressed, and a laminated plywood PW using the components that oil palm originally has is obtained.
また、少なくとも圧密加工した1枚以上のオイルパーム材Wと、ラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上をオイルパーム材Wに面して配置し、それらを一体に接合したものであるから、オイルパーム材Wが含有する樹脂成分及び糖成分が不足した場合には、ラワン薄板、シナ薄板、針葉樹薄板の何れかの1枚以上の接合対象に接着剤を追加して貼り合せることにより、所望の積層合板PWを製造するものである。よって、オイルパーム材Wが含有する樹脂成分及び糖成分が不足した場合に接着剤を使用するものであるから、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板PWが得られる。
Also, at least one oil palm material W that has been compacted and one or more of Lauan thin plate, China thin plate, and softwood thin plate are placed facing the oil palm material W, and they are joined together. Therefore, when the resin component and the sugar component contained in the oil palm material W are insufficient, an adhesive is added and bonded to one or more of the Lawan thin plate, the China thin plate, and the conifer thin plate. Thus, a desired laminated plywood PW is manufactured. Therefore, since the adhesive is used when the resin component and the sugar component contained in the oil palm material W are insufficient, the use of the formaldehyde-based adhesive that causes sick house syndrome is suppressed, A laminated plywood PW utilizing the components it has is obtained.
上記実施の形態の積層合板PWは、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成し、それを圧密加工した後の1枚の厚みが1mm以上からなる1枚以上のオイルパーム材Wと、所定長のラワン幹またはシナ幹または針葉樹幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成したラワン薄板、またはシナ薄板、または針葉樹薄板の何れかの1枚以上をオイルパーム材Wに面して配置し、それらを一体に接合したものであるが、これはオイルパーム材Wと同様に、ロータリーレースで外周から所定の厚みに剥いて形成した薄板を前提としている。
しかし、ラワン、シナ、針葉樹の何れかの1枚以上を所定長のラワンまたはシナまたは針葉樹の幹をその幹の長さ方向に板状に形成したラワン、シナ、針葉樹の何れかの1枚以上の板を前記オイルパーム材に面して配置し、それらを一体に接合することもできる。
このとき、一体に接合は、圧密加工の位置工程として圧縮してもよいし、圧密加工とは別に接合するための圧縮としてもよい。 The laminated plywood PW of the above embodiment is formed by peeling a predetermined length of the oil palm trunk WD from the outer periphery with a rotary race while rotating it in the circumferential direction, and then compacting it. A lauan thin plate formed by peeling off a predetermined length of lauan trunk, china trunk, or conifer tree trunk from the outer periphery to a predetermined thickness with a rotary race while rotating at least one oil palm material W consisting of 1 mm or more, Alternatively, one or more of China thin plate or softwood thin plate is placed facing the oil palm material W, and they are joined together. It is premised on a thin plate formed by peeling off from the outer periphery to a predetermined thickness.
However, at least one of Lawan, Sina, or conifer is one or more of Lawan, Sina, or conifer, which has a predetermined length of Lauan or Sina or conifer tree trunks formed in a plate shape in the length direction of the trunk. It is also possible to arrange the plates facing the oil palm material and join them together.
At this time, the joint may be compressed as a position process of the consolidation process, or may be compression for joining separately from the consolidation process.
しかし、ラワン、シナ、針葉樹の何れかの1枚以上を所定長のラワンまたはシナまたは針葉樹の幹をその幹の長さ方向に板状に形成したラワン、シナ、針葉樹の何れかの1枚以上の板を前記オイルパーム材に面して配置し、それらを一体に接合することもできる。
このとき、一体に接合は、圧密加工の位置工程として圧縮してもよいし、圧密加工とは別に接合するための圧縮としてもよい。 The laminated plywood PW of the above embodiment is formed by peeling a predetermined length of the oil palm trunk WD from the outer periphery with a rotary race while rotating it in the circumferential direction, and then compacting it. A lauan thin plate formed by peeling off a predetermined length of lauan trunk, china trunk, or conifer tree trunk from the outer periphery to a predetermined thickness with a rotary race while rotating at least one oil palm material W consisting of 1 mm or more, Alternatively, one or more of China thin plate or softwood thin plate is placed facing the oil palm material W, and they are joined together. It is premised on a thin plate formed by peeling off from the outer periphery to a predetermined thickness.
However, at least one of Lawan, Sina, or conifer is one or more of Lawan, Sina, or conifer, which has a predetermined length of Lauan or Sina or conifer tree trunks formed in a plate shape in the length direction of the trunk. It is also possible to arrange the plates facing the oil palm material and join them together.
At this time, the joint may be compressed as a position process of the consolidation process, or may be compression for joining separately from the consolidation process.
即ち、上記実施の形態の積層合板PWは、所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで外周から所定の厚みに剥いて形成し、それを圧密加工した後の1枚の厚みが1mm以上からなる1枚以上のオイルパーム材Wと、所定長のラワンまたはシナまたは針葉樹等の他の木材の幹をその幹の長さ方向に板状に形成したラワン、シナ、針葉樹等の木材の何れかの1枚以上をオイルパーム材Wに面して配置し、それらを一体に接合した構成とすることができる。
したがって、少なくとも圧密加工した1枚以上のオイルパーム材Wと、ラワン、シナ、針葉樹の何れかの1枚以上の板材がオイルパーム材Wに面して配置され、それらを一体に接合したものであるから、オイルパーム材Wが含有する樹脂成分及び糖成分が不足した場合には、ラワン、シナ、針葉樹の何れかの1枚以上の接合対象に接着剤を追加して貼り合せることにより、所望の積層合板PWが得られる。
よって、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板PWが得られる。 That is, the laminated plywood PW of the above embodiment is formed by peeling a predetermined length of the oil palm trunk WD from the outer periphery with a rotary race while rotating the oil palm trunk WD in the circumferential direction, and then compacting it. Lauan, Sina, and conifers in which one or more oil palm materials W having a thickness of 1 mm or more and a trunk of other timber such as Lawan or Sina or conifers of a predetermined length are formed in a plate shape in the length direction of the trunk One or more pieces of wood such as the like can be arranged facing the oil palm material W, and they can be integrally joined.
Therefore, at least one compacted oil palm material W and one or more plates of lauan, china, conifer are arranged facing the oil palm material W, and they are joined together. Therefore, when the resin component and the sugar component contained in the oil palm material W are insufficient, it is desired to add an adhesive to one or more joining objects of Lauan, China, and conifers, The laminated plywood PW is obtained.
Therefore, the use of the formaldehyde-based adhesive that causes sick house syndrome is suppressed, and a laminated plywood PW using the components that oil palm originally has is obtained.
したがって、少なくとも圧密加工した1枚以上のオイルパーム材Wと、ラワン、シナ、針葉樹の何れかの1枚以上の板材がオイルパーム材Wに面して配置され、それらを一体に接合したものであるから、オイルパーム材Wが含有する樹脂成分及び糖成分が不足した場合には、ラワン、シナ、針葉樹の何れかの1枚以上の接合対象に接着剤を追加して貼り合せることにより、所望の積層合板PWが得られる。
よって、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板PWが得られる。 That is, the laminated plywood PW of the above embodiment is formed by peeling a predetermined length of the oil palm trunk WD from the outer periphery with a rotary race while rotating the oil palm trunk WD in the circumferential direction, and then compacting it. Lauan, Sina, and conifers in which one or more oil palm materials W having a thickness of 1 mm or more and a trunk of other timber such as Lawan or Sina or conifers of a predetermined length are formed in a plate shape in the length direction of the trunk One or more pieces of wood such as the like can be arranged facing the oil palm material W, and they can be integrally joined.
Therefore, at least one compacted oil palm material W and one or more plates of lauan, china, conifer are arranged facing the oil palm material W, and they are joined together. Therefore, when the resin component and the sugar component contained in the oil palm material W are insufficient, it is desired to add an adhesive to one or more joining objects of Lauan, China, and conifers, The laminated plywood PW is obtained.
Therefore, the use of the formaldehyde-based adhesive that causes sick house syndrome is suppressed, and a laminated plywood PW using the components that oil palm originally has is obtained.
上記実施の形態のオイルパーム材Wに面して配置し、一体に接合する1枚以上のオイルパーム材Wと、ラワン薄板またはシナ薄板または針葉樹薄板の何れかの1枚以上と一体に接合するメタルラスM1,M2を挟み込んだ積層合板PWは、その接合にオイルパーム材Wが含有する樹脂成分及び糖成分を使用し、それらを圧縮、固定化し、一体に接合したものである。
したがって、1枚以上のオイルパーム材Wと、ラワン薄板またはシナ薄板または針葉樹薄板の何れかの1枚以上を積層合板PWとして、オイルパーム材Wが含有する樹脂成分及び糖成分を用いて挟み込んだメタルラスMを一体に接合できるから、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパーム幹WDが本来的に有している成分を利用した積層合板PWが得られる。 One or more oil palm materials W arranged facing the oil palm material W of the above-described embodiment and integrally joined, and one or more of the Lauan thin plate, the China thin plate, or the softwood thin plate are integrally joined. The laminated plywood PW sandwiched between the metal laths M1 and M2 is obtained by using a resin component and a sugar component contained in the oil palm material W for joining, compressing and fixing them, and joining them integrally.
Therefore, one or more oil palm materials W and one or more of Lauan thin plate, China thin plate, or softwood thin plate are used as laminated plywood PW, and sandwiched between the resin component and sugar component contained in oil palm material W. Since the metal lath M can be joined together, the use of a formaldehyde-based adhesive that causes sick house syndrome is suppressed, and a laminated plywood PW using the components that the oil palm trunk WD originally has is obtained.
したがって、1枚以上のオイルパーム材Wと、ラワン薄板またはシナ薄板または針葉樹薄板の何れかの1枚以上を積層合板PWとして、オイルパーム材Wが含有する樹脂成分及び糖成分を用いて挟み込んだメタルラスMを一体に接合できるから、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパーム幹WDが本来的に有している成分を利用した積層合板PWが得られる。 One or more oil palm materials W arranged facing the oil palm material W of the above-described embodiment and integrally joined, and one or more of the Lauan thin plate, the China thin plate, or the softwood thin plate are integrally joined. The laminated plywood PW sandwiched between the metal laths M1 and M2 is obtained by using a resin component and a sugar component contained in the oil palm material W for joining, compressing and fixing them, and joining them integrally.
Therefore, one or more oil palm materials W and one or more of Lauan thin plate, China thin plate, or softwood thin plate are used as laminated plywood PW, and sandwiched between the resin component and sugar component contained in oil palm material W. Since the metal lath M can be joined together, the use of a formaldehyde-based adhesive that causes sick house syndrome is suppressed, and a laminated plywood PW using the components that the oil palm trunk WD originally has is obtained.
上記実施の形態のオイルパーム材Wに面して配置し、一体に接合する1枚以上のオイルパーム材Wの接合には、オイルパーム材Wが含有する樹脂成分及び糖成分とし、ラワン薄板またはシナ薄板または針葉樹薄板の何れかの1枚以上と一体に接合する接合面には、オイルパーム材Wが含有する樹脂成分及び糖成分の他に、他の接着剤を付加したものであるから、1枚以上のオイルパーム材Wの接合には、オイルパーム材Wが含有する樹脂成分及び糖成分を使用し、更に、ラワン薄板またはシナ薄板または針葉樹薄板の何れかの1枚以上の接合も堅固に行うことができるから、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を抑え、オイルパームが本来的に有している成分を利用した積層合板PWが得られる。
In order to join one or more oil palm materials W that are arranged facing the oil palm material W of the above embodiment and are integrally joined, a resin component and a sugar component contained in the oil palm material W are used. In addition to the resin component and sugar component contained in the oil palm material W, other adhesives are added to the joint surface that is integrally joined to one or more of the China thin plate or the softwood thin plate. For joining one or more oil palm materials W, resin components and sugar components contained in the oil palm material W are used, and furthermore, one or more of either lauan thin plate, china thin plate or softwood thin plate is firmly joined. Therefore, the use of a formaldehyde adhesive that causes sick house syndrome can be suppressed, and a laminated plywood PW using components inherently possessed by oil palm can be obtained.
上記実施の形態の所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで外周から所定の厚みに刃物CTで剥いてラワン薄板及びオイルパーム材Wに形成する工程を薄板工程とすることができる。また、ラワン薄板及びオイルパーム材Wを乾燥する工程は、ラワン薄板及びオイルパーム材Wを形成する工程と同一行程であっても、別工程であってもよく、これを乾燥工程とすることができる。
そして、乾燥させたラワン薄板及びオイルパーム材Wを所定の状態に複数枚加圧前多層材NWとして積層する工程は、通常、2枚乃至5枚の単位で積層して使用されるが、原理的には、2枚以上の積層であればよく、これを積層工程とすることができる。
特に、ラワン薄板の枚数をオイルパーム材Wの枚数よりも少なくすることにより、少なくとも従来の積層合板に比較して、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を1/2以下に抑えることができる。 The thin plate process is a process in which the oil palm trunk WD having the predetermined length according to the above embodiment is rotated in the circumferential direction and peeled with the blade CT to a predetermined thickness from the outer periphery with a rotary race to form the lauan thin plate and the oil palm material W. be able to. In addition, the process of drying the lauan thin plate and the oil palm material W may be the same process as the process of forming the lauan thin plate and the oil palm material W or may be a separate process, and this may be a drying process. it can.
The process of laminating the dried lauan thin plate and the oil palm material W in a predetermined state as the multilayer material NW before pressurization is usually used by laminating in units of 2 to 5 sheets. Specifically, it may be a lamination process of two or more sheets, and this can be used as a lamination process.
In particular, by reducing the number of lauan thin plates than the number of oil palm materials W, the use of formaldehyde-based adhesives that cause sick house syndrome is suppressed to 1/2 or less compared to at least conventional laminated plywood. Can do.
そして、乾燥させたラワン薄板及びオイルパーム材Wを所定の状態に複数枚加圧前多層材NWとして積層する工程は、通常、2枚乃至5枚の単位で積層して使用されるが、原理的には、2枚以上の積層であればよく、これを積層工程とすることができる。
特に、ラワン薄板の枚数をオイルパーム材Wの枚数よりも少なくすることにより、少なくとも従来の積層合板に比較して、シックハウス症候群の原因となるホルムアルデヒド系接着剤の使用を1/2以下に抑えることができる。 The thin plate process is a process in which the oil palm trunk WD having the predetermined length according to the above embodiment is rotated in the circumferential direction and peeled with the blade CT to a predetermined thickness from the outer periphery with a rotary race to form the lauan thin plate and the oil palm material W. be able to. In addition, the process of drying the lauan thin plate and the oil palm material W may be the same process as the process of forming the lauan thin plate and the oil palm material W or may be a separate process, and this may be a drying process. it can.
The process of laminating the dried lauan thin plate and the oil palm material W in a predetermined state as the multilayer material NW before pressurization is usually used by laminating in units of 2 to 5 sheets. Specifically, it may be a lamination process of two or more sheets, and this can be used as a lamination process.
In particular, by reducing the number of lauan thin plates than the number of oil palm materials W, the use of formaldehyde-based adhesives that cause sick house syndrome is suppressed to 1/2 or less compared to at least conventional laminated plywood. Can do.
オイルパーム材W相互間に配設し、オイルパーム材W相互間で接合したメタルラスM1,M2からなる網は、金網としたものであるから、オイルパーム材Wの成型温度を任意に設定できる。また、機械的強度も大きくすることができる。
Since the net made of the metal laths M1 and M2 disposed between the oil palm materials W and joined between the oil palm materials W is a wire mesh, the molding temperature of the oil palm material W can be arbitrarily set. Also, the mechanical strength can be increased.
オイルパーム材W相互間に配設し、オイルパーム材W相互間で接合したメタルラスMからなる網は、化学繊維または植物繊維の網としたものである。ここで、化学繊維または植物繊維からなる網は、その網の使用を目立たなくできる。また、機械的強度も大きくなる。化学繊維の場合は、オイルパーム材W相互間の接合温度と化学繊維の溶融温度の溶解温度で接合すると、相乗効果により強靭な一体化が可能となる。
The net made of the metal lath M disposed between the oil palm materials W and joined between the oil palm materials W is a net of chemical fibers or plant fibers. Here, the net | network which consists of a chemical fiber or a vegetable fiber can make use of the net | network inconspicuous. Also, the mechanical strength is increased. In the case of chemical fibers, if they are joined at the joining temperature between the oil palm materials W and the melting temperature of the melting temperature of the chemical fibers, a strong integration is possible due to a synergistic effect.
更に、積層工程以降で積層されたオイルパーム材W及びメタルラスM、必要に応じて桧薄板Y1の温度を上昇させるべく加熱する工程で、水蒸気または電熱を導入して加熱または熱板で加熱する工程は、加熱エネルギを供給することから加熱工程とすることができる。更にまた、前記加熱工程によって加熱された前記積層された桧薄板Y1、オイルパーム材W及びメタルラスMに対して、桧薄板Y1、オイルパーム材W及びメタルラスM1,M2の面に直角方向の圧縮力を加える工程は、所定の圧縮率で桧薄板Y1、オイルパーム材W及びメタルラスMの圧縮、即ち、加圧前多層材NWの圧縮が行えればよい。この工程は、圧縮工程とすることができる。
加えて、前記圧縮工程で所定時間圧縮した後、前記加熱工程で供給していた温度を降下させ、積層合板PWの圧縮状態を固定化し、所定の圧縮率で圧縮していた圧縮力を解圧するものであり、これを積層合板PWから捉えて固定化工程とすることができる。 Furthermore, in the step of heating to raise the temperature of the oil palm material W and the metal lath M, which are laminated after the laminating step, and if necessary, the temperature of the thin plate Y1, a step of introducing water vapor or electric heat and heating with a hot plate Can be a heating process since heating energy is supplied. Furthermore, a compressive force in a direction perpendicular to the surfaces of the thin plate Y1, the oil palm material W and the metal laths M1 and M2 with respect to the laminated thin plate Y1, the oil palm material W and the metal lath M heated by the heating step. The step of adding may be performed by compressing the thin plate Y1, the oil palm material W, and the metal lath M, that is, compressing the multilayer material NW before pressurization at a predetermined compression rate. This step can be a compression step.
In addition, after compressing for a predetermined time in the compression step, the temperature supplied in the heating step is lowered, the compression state of the laminated plywood PW is fixed, and the compression force compressed at a predetermined compression rate is released. This can be taken from the laminated plywood PW and used as an immobilization process.
加えて、前記圧縮工程で所定時間圧縮した後、前記加熱工程で供給していた温度を降下させ、積層合板PWの圧縮状態を固定化し、所定の圧縮率で圧縮していた圧縮力を解圧するものであり、これを積層合板PWから捉えて固定化工程とすることができる。 Furthermore, in the step of heating to raise the temperature of the oil palm material W and the metal lath M, which are laminated after the laminating step, and if necessary, the temperature of the thin plate Y1, a step of introducing water vapor or electric heat and heating with a hot plate Can be a heating process since heating energy is supplied. Furthermore, a compressive force in a direction perpendicular to the surfaces of the thin plate Y1, the oil palm material W and the metal laths M1 and M2 with respect to the laminated thin plate Y1, the oil palm material W and the metal lath M heated by the heating step. The step of adding may be performed by compressing the thin plate Y1, the oil palm material W, and the metal lath M, that is, compressing the multilayer material NW before pressurization at a predetermined compression rate. This step can be a compression step.
In addition, after compressing for a predetermined time in the compression step, the temperature supplied in the heating step is lowered, the compression state of the laminated plywood PW is fixed, and the compression force compressed at a predetermined compression rate is released. This can be taken from the laminated plywood PW and used as an immobilization process.
このように、上記実施の形態の積層合板PWは、所定長のオイルパーム材Wをその周方向に回転させながらロータリーレースで外周から所定の厚みに刃物CTで剥いて複数枚のオイルパーム材Wに形成するステップS10からなる薄板工程と、そのオイルパーム材Wを乾燥するステップS11からなる乾燥工程と、前記乾燥工程で乾燥させたオイルパーム材Wを所定の状態に複数枚積層するステップS12からなる積層工程と、前記積層工程以降で前記積層されたラワン薄板及びオイルパーム材Wの温度を上昇させるべく加熱するステップS16からなる加熱工程と、前記加熱工程によって加熱された前記積層されたオイルパーム材Wに、オイルパーム材Wの面に対して平行方向に延びるのを規制しながら、オイルパーム材Wの面に対して直角方向の圧縮力を加えて所定時間圧縮するステップS17からなる圧縮工程と、前記圧縮工程で所定時間押圧した後、前記加熱工程で供給していた温度を降下させて冷却し、固定化させるステップS19からなる固定化工程を具備するものである。
As described above, the laminated plywood PW of the above-described embodiment is a plurality of oil palm materials W that are peeled off with a cutter CT from the outer periphery to a predetermined thickness with a rotary race while rotating the oil palm material W of a predetermined length in the circumferential direction. From the step S12 of laminating a plurality of the oil palm material W dried in the drying step, and the drying step consisting of the step S11 for drying the oil palm material W, and the oil palm material W formed in the predetermined step. A laminating step, a heating step comprising heating to increase the temperature of the lauan thin plate and oil palm material W laminated after the laminating step, and the laminated oil palm heated by the heating step. With respect to the surface of the oil palm material W while restricting the material W from extending in a direction parallel to the surface of the oil palm material W A compression step comprising step S17 of compressing for a predetermined time by applying an angular compression force, and a step of lowering and cooling and fixing the temperature supplied in the heating step after pressing for a predetermined time in the compression step The immobilization process which consists of S19 is comprised.
したがって、これらの工程で使用されるオイルパーム幹WDは節、年輪がないからロータリーレースで外周から所定の厚みに剥いてオイルパーム材Wを作成する場合、均質なオイルパーム材Wが得られ、結果的に、そのオイルパーム材Wからなる積層合板PWは均質なものとなる。また、加える温度と圧縮力によってオイルパーム幹WD自体が含有するリグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類の作用によってその接合力を変化させることができるから、加える温度と圧縮力の制御によって任意の接着力が得られる。そして、複数枚のラワン薄板及びオイルパーム材Wをオイルパーム幹WD自体が含有するリグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類の作用によって接合して積層合板PWを形成するものであるから、他の合成樹脂、合成ゴムを接着材として使用していないから、自然に戻すことができ公害問題を引き起こさない。更に、オイルパーム幹WD自体が含有するリグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類の作用によって接合されるときの圧縮力によって、オイルパーム材Wの空隙が殆どなくなり、緻密な組織になるから、耐水性があり、かつ、防水、防虫性に富み、建築材料として使用しても耐用年数が長くなる。
Therefore, since the oil palm trunk WD used in these steps has no nodes and no annual rings, when the oil palm material W is created by peeling off from the outer periphery to a predetermined thickness with a rotary race, a homogeneous oil palm material W is obtained, As a result, the laminated plywood PW made of the oil palm material W becomes homogeneous. In addition, since the bonding force can be changed by the action of resin components such as lignin contained in the oil palm trunk WD itself and sugars such as cellulose and hemicellulose, depending on the applied temperature and compressive force, the control of the applied temperature and compressive force is possible. Arbitrary adhesive strength can be obtained. And, since the lauan thin plate and the oil palm material W are joined by the action of a resin component such as lignin contained in the oil palm trunk WD itself and sugars such as cellulose and hemicellulose, the laminated plywood PW is formed. Since other synthetic resins and synthetic rubbers are not used as adhesives, they can be returned to nature without causing pollution problems. Furthermore, since the oil palm trunk WD itself contains a resin component such as lignin and the compressive force when joined by the action of sugars such as cellulose and hemicellulose, the oil palm material W is almost free of voids and becomes a dense structure. It is water-resistant and has excellent waterproofing and insect-proofing properties, and even if used as a building material, it has a long service life.
上記実施の形態の積層合板の製造は、次のように積層合板の製造方法の実施の形態として一般化できる。
所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで外周から所定の厚みに刃物CTで剥いて複数枚のオイルパーム材Wに形成する工程及び所定長のオイルパーム以外の幹、例えば、ラワン幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに刃物CTで剥いて1枚のラワン薄板等の薄板に形成する工程からなるステップS10からなる薄板工程と、前記薄板工程で形成したオイルパーム材W及びラワン薄板等の他の薄板を乾燥するステップS11からなる乾燥工程と、前記乾燥工程で乾燥させたオイルパーム材W及びラワン薄板等の他の薄板を所定の状態に複数枚積層するステップS12からなる積層工程と、前記積層工程以降で前記積層されたオイルパーム材W及びラワン薄板等の他の薄板の温度を上昇させるべく加熱するステップS16からなる加熱工程と、前記加熱工程によって加熱された前記積層されたオイルパーム材W及びラワン薄板等の他の薄板に、オイルパーム材W及び桧薄板Y1等の他の薄板の面に対して平行方向に延びるのを位置決め孔18または枠体20で規制しながら、オイルパーム材W及び桧薄板Y1等の他の薄板の面に対して直角方向の圧縮力を加えて所定時間圧縮するステップS17からなる圧縮工程と、前記圧縮工程で所定時間圧縮したオイルパーム材W及び桧薄板Y1等の他の薄板を、前記加熱工程で供給していた温度を降下させて固定化させるステップS19からなる固定化工程とを具備する積層合板の製造方法とすることができる。 Manufacture of the laminated plywood of the said embodiment can be generalized as embodiment of the manufacturing method of a laminated plywood as follows.
A process of peeling the oil palm trunk WD of a predetermined length from the outer periphery to a predetermined thickness by a rotary race while rotating it in the circumferential direction with a blade CT to form a plurality of oil palm materials W and a trunk other than the oil palm of a predetermined length; For example, a thin plate process comprising step S10 comprising a step of rotating a lauan stem in the circumferential direction with a rotary race to a predetermined thickness from the outer periphery with a cutter CT and forming it into a thin plate such as a single lauan thin plate, and the thin plate Drying step consisting of step S11 for drying other thin plates such as oil palm material W and lauan thin plate formed in the process, and other thin plates such as oil palm material W and lauan thin plate dried in the drying step in a predetermined state And a plurality of other thin layers such as the oil palm material W and the lauan thin plate laminated after the lamination step. The heating process comprising step S16 for heating to increase the temperature of the oil palm material W and the other thin plates such as the laminar oil palm material W and lauan thin plate heated in the heating step, Compressive force in a direction perpendicular to the surfaces of other thin plates such as the oil palm material W and the cocoon thin plate Y1 while being restricted by the positioning holes 18 or theframe 20 from extending in the direction parallel to the surface of the other thin plates. The compression process comprising step S17 for compressing for a predetermined period of time, and the oil palm material W compressed in the compression process for a predetermined period of time and the other thin plates such as the cocoon thin plate Y1 are lowered in the heating process. The method for producing a laminated plywood comprising the immobilization step consisting of step S19 for immobilization.
所定長のオイルパーム幹WDをその周方向に回転させながらロータリーレースで外周から所定の厚みに刃物CTで剥いて複数枚のオイルパーム材Wに形成する工程及び所定長のオイルパーム以外の幹、例えば、ラワン幹をその周方向に回転させながらロータリーレースで外周から所定の厚みに刃物CTで剥いて1枚のラワン薄板等の薄板に形成する工程からなるステップS10からなる薄板工程と、前記薄板工程で形成したオイルパーム材W及びラワン薄板等の他の薄板を乾燥するステップS11からなる乾燥工程と、前記乾燥工程で乾燥させたオイルパーム材W及びラワン薄板等の他の薄板を所定の状態に複数枚積層するステップS12からなる積層工程と、前記積層工程以降で前記積層されたオイルパーム材W及びラワン薄板等の他の薄板の温度を上昇させるべく加熱するステップS16からなる加熱工程と、前記加熱工程によって加熱された前記積層されたオイルパーム材W及びラワン薄板等の他の薄板に、オイルパーム材W及び桧薄板Y1等の他の薄板の面に対して平行方向に延びるのを位置決め孔18または枠体20で規制しながら、オイルパーム材W及び桧薄板Y1等の他の薄板の面に対して直角方向の圧縮力を加えて所定時間圧縮するステップS17からなる圧縮工程と、前記圧縮工程で所定時間圧縮したオイルパーム材W及び桧薄板Y1等の他の薄板を、前記加熱工程で供給していた温度を降下させて固定化させるステップS19からなる固定化工程とを具備する積層合板の製造方法とすることができる。 Manufacture of the laminated plywood of the said embodiment can be generalized as embodiment of the manufacturing method of a laminated plywood as follows.
A process of peeling the oil palm trunk WD of a predetermined length from the outer periphery to a predetermined thickness by a rotary race while rotating it in the circumferential direction with a blade CT to form a plurality of oil palm materials W and a trunk other than the oil palm of a predetermined length; For example, a thin plate process comprising step S10 comprising a step of rotating a lauan stem in the circumferential direction with a rotary race to a predetermined thickness from the outer periphery with a cutter CT and forming it into a thin plate such as a single lauan thin plate, and the thin plate Drying step consisting of step S11 for drying other thin plates such as oil palm material W and lauan thin plate formed in the process, and other thin plates such as oil palm material W and lauan thin plate dried in the drying step in a predetermined state And a plurality of other thin layers such as the oil palm material W and the lauan thin plate laminated after the lamination step. The heating process comprising step S16 for heating to increase the temperature of the oil palm material W and the other thin plates such as the laminar oil palm material W and lauan thin plate heated in the heating step, Compressive force in a direction perpendicular to the surfaces of other thin plates such as the oil palm material W and the cocoon thin plate Y1 while being restricted by the positioning holes 18 or the
上記実施の形態の前記乾燥工程で乾燥させた桧薄板Y1及びオイルパーム材W、メタルラスMを所定の状態に積層する積層工程の5枚のラワン薄板またはシナ薄板または針葉樹薄板の何れかの1枚及びオイルパーム材W2,・・・,W5、メタルラスMの各辺を位置決めする枠体20または位置決め孔18は、所定の積載面を規制する枠体20または位置決め孔18であり、複数枚の薄板Wの面の上下及び左右を規制するものである。したがって、その圧縮力を加える面に対して直角方向に薄板Wが伸びることが防止され、積層合板PWの位置によって厚い個所と薄い個所が生じることがない。
Any one of the five lauan thin plates, the Chinese thin plate, or the coniferous thin plate in the laminating step of laminating the cocoon thin plate Y1, the oil palm material W, and the metal lath M that are dried in the drying step of the above-described embodiment. The frame 20 or the positioning hole 18 for positioning each side of the oil palm materials W2,..., W5, and the metal lath M is the frame 20 or the positioning hole 18 for regulating a predetermined loading surface, and a plurality of thin plates The upper and lower sides and the right and left sides of the W surface are restricted. Therefore, the thin plate W is prevented from extending in a direction perpendicular to the surface to which the compressive force is applied, and a thick portion and a thin portion are not generated depending on the position of the laminated plywood PW.
上記実施の形態の積層合板PWでは、複数枚積層したオイルパーム材W1,・・・,W5の1枚の薄板W1をオイルパーム材W以外のラワン薄板またはシナ薄板または針葉樹薄板の何れかの1枚以上とし、オイルパーム材W以外のラワン薄板またはシナ薄板または針葉樹薄板の何れかの1枚以上、メタルラスMを含めて積層合板PWとして一体に接合したものである。このように、オイルパーム材W2,・・・,W5の接合組成物におけるオイルパーム材W2,・・・,W5を桧薄板Y1と一体に接合し、メタルラスM1を含む積層合板PWは、前記複数枚積層した薄板W2,・・・,W5の1枚のオイルパーム材W1をオイルパーム材W以外の桧薄板Y1として、図22のように、片側の露出面に配設することにより、当該桧薄板Y1をオイルパーム材W1,・・・,W5の接着能力で接合することができる。また、それら片側の露出面に配設した木目を生かした意匠とすることができる。したがって、積層合板PWの片側の面のみを他の材料からなる薄い木材とすることができる。特に、化粧板として使用するのに好適である。
In the laminated plywood PW of the above embodiment, one thin plate W1 of the oil palm members W1,..., W5, which is a plurality of laminated ones, is any one of Lauan thin plate, China thin plate, or softwood thin plate other than the oil palm material W. One or more of Lauan thin plate, China thin plate or softwood thin plate other than the oil palm material W are joined together as a laminated plywood PW including the metal lath M. In this way, the laminated plywood PW including the metal lath M1 that integrally joins the oil palm materials W2,..., W5 in the joining composition of the oil palm materials W2,. By arranging one oil palm material W1 of the laminated thin plates W2,..., W5 as the cocoon thin plate Y1 other than the oil palm material W on the exposed surface on one side as shown in FIG. The thin plate Y1 can be joined with the adhesive ability of the oil palm materials W1,. Moreover, it can be set as the design which utilized the grain arrange | positioned in the exposed surface of those one sides. Accordingly, only one surface of the laminated plywood PW can be made of thin wood made of other materials. In particular, it is suitable for use as a decorative board.
上記実施の形態の桧薄板Y1及びオイルパーム材Wを、所定の状態に複数枚積層する積層工程では、前記複数枚積層した桧薄板Y1及びオイルパーム材Wの片側の面の1枚または両端面の2枚をオイルパーム材W以外の木材等からなる桧薄板Y1とし、オイルパーム材W以外の薄板を含めて積層合板PWとして一体に接合したものである。ここでは、オイルパーム材Wを1以上とすることができる。
勿論、オイルパーム材W以外の木材等は、桧薄板Y1とすることも、桧薄板Y1に代わってシナ薄板または針葉樹薄板とすることもできる。或いはそれらの中から1枚または2枚の組み合わせとすることもできる。 In the laminating step of laminating a plurality of the thin sheet Y1 and the oil palm material W of the above embodiment in a predetermined state, one or both end surfaces of one surface of the plural thin sheets Y1 and the oil palm material W laminated. Are made of wood other than the oil palm material W, etc., and are joined together as a laminated plywood PW including a thin plate other than the oil palm material W. Here, the oil palm material W can be 1 or more.
Of course, the wood other than the oil palm material W can be a thin plate Y1, or a Chinese thin plate or a coniferous thin plate in place of the thin plate Y1. Alternatively, one or a combination of the two can be used.
勿論、オイルパーム材W以外の木材等は、桧薄板Y1とすることも、桧薄板Y1に代わってシナ薄板または針葉樹薄板とすることもできる。或いはそれらの中から1枚または2枚の組み合わせとすることもできる。 In the laminating step of laminating a plurality of the thin sheet Y1 and the oil palm material W of the above embodiment in a predetermined state, one or both end surfaces of one surface of the plural thin sheets Y1 and the oil palm material W laminated. Are made of wood other than the oil palm material W, etc., and are joined together as a laminated plywood PW including a thin plate other than the oil palm material W. Here, the oil palm material W can be 1 or more.
Of course, the wood other than the oil palm material W can be a thin plate Y1, or a Chinese thin plate or a coniferous thin plate in place of the thin plate Y1. Alternatively, one or a combination of the two can be used.
本実施の形態の積層合板の製造方法のステップS11の乾燥工程は、オイルパーム材Wの含水率を10%~30%の範囲内に乾燥させるものであり、インサートとして網が入るから、クラック、変形、膨らみ、破裂等が防止される。よって、より安定した寸法形状性が確保され、歩留りも高いものとなる。また、含水率を10%~30%の範囲内の乾燥状態であると、ラワン薄板、シナ薄板、針葉樹薄板等との接合にも好適である。
The drying process of step S11 of the method for manufacturing the laminated plywood according to the present embodiment is to dry the moisture content of the oil palm material W within a range of 10% to 30%, and since a net enters as an insert, cracks, Deformation, swelling, rupture, etc. are prevented. Therefore, more stable dimensional shape is ensured and the yield is high. Further, when the moisture content is in a dry state within the range of 10% to 30%, it is also suitable for joining with a Lauan thin plate, a Chinese thin plate, a conifer thin plate, or the like.
本実施の形態の積層合板の製造におけるステップS16の加熱工程における加熱温度は、110℃~170℃の範囲内としたものであるから、圧密加工における固定化不良や木材間の接合不良、また、表面炭化、材質強度の低化等の材質劣化を防止することができる。また、加熱温度が110℃~170℃の範囲内であると、網、例えば、メタルラスMとラワン薄板、シナ薄板、針葉樹薄板等との接合にも好適である。
Since the heating temperature in the heating process of step S16 in the production of the laminated plywood of the present embodiment is in the range of 110 ° C. to 170 ° C., immobilization failure in the consolidation process, poor bonding between the woods, Material deterioration such as surface carbonization and lowering of material strength can be prevented. Further, when the heating temperature is in the range of 110 ° C. to 170 ° C., it is also suitable for joining a net, for example, a metal lath M and a lauan thin plate, a Chinese thin plate, a conifer thin plate, or the like.
本実施の形態の積層合板の製造におけるステップS17の圧縮工程による所定の圧縮圧力は、1~100kg/cm2の範囲内としたものであるから、圧密加工における固定化不良や木材間の接合不良、また表面クラックの発生を防止することができる。ラワン薄板、シナ薄板、針葉樹薄板等とインサートとして網との接合にも問題がないことが確認された。
In the production of the laminated plywood according to the present embodiment, the predetermined compression pressure in the compression process of step S17 is in the range of 1 to 100 kg / cm 2 , so that immobilization failure or poor bonding between woods is caused in the consolidation process. Moreover, generation | occurrence | production of a surface crack can be prevented. It was confirmed that there was no problem in joining the lawan sheet, China sheet, conifer sheet and the net as an insert.
本実施の形態の積層合板の製造において、ステップS16の加熱工程及びステップS17の圧縮工程に要する時間は、10分間~120分間の範囲内であることから、圧密加工における固定化不良や木材間の接合不良、また、表面の炭化を防止できる。ラワン薄板、シナ薄板、針葉樹薄板等とインサートとして網との接合にも問題がないことが発明者の実験によって確認された。
更に、本実施の形態のオイルパーム基材Wの圧密化に寄与する組成物は、所定長のオイルパーム幹WDから製材したオイルパーム基材Wが有するリグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類成分としたものである。なお、発明者らの分析ではリグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類成分が主となる組成物と認識しているが、分析能力が向上すると他の成分の関与も否定できない。少なくても、圧密化に寄与する成分が他にも存在する可能性は否定できない。 In the production of the laminated plywood according to the present embodiment, the time required for the heating process in step S16 and the compression process in step S17 is in the range of 10 minutes to 120 minutes. Bonding failure and carbonization of the surface can be prevented. It has been confirmed by the inventors' experiment that there is no problem in joining the lauan thin plate, the Chinese thin plate, the coniferous thin plate and the like to the net as an insert.
Furthermore, the composition that contributes to the consolidation of the oil palm base material W of the present embodiment includes resin components such as lignin and the cellulose, hemicellulose, etc., which the oil palm base material W made from the oil palm trunk WD having a predetermined length. The sugar component. In addition, although the inventors' analysis has recognized that the resin component such as lignin and the saccharide component such as cellulose and hemicellulose are the main compositions, the involvement of other components cannot be denied if the analysis ability is improved. Even if it is small, it cannot be denied that there may be other components that contribute to consolidation.
更に、本実施の形態のオイルパーム基材Wの圧密化に寄与する組成物は、所定長のオイルパーム幹WDから製材したオイルパーム基材Wが有するリグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類成分としたものである。なお、発明者らの分析ではリグニン等の樹脂成分及びセルロース、ヘミセルロース等の糖類成分が主となる組成物と認識しているが、分析能力が向上すると他の成分の関与も否定できない。少なくても、圧密化に寄与する成分が他にも存在する可能性は否定できない。 In the production of the laminated plywood according to the present embodiment, the time required for the heating process in step S16 and the compression process in step S17 is in the range of 10 minutes to 120 minutes. Bonding failure and carbonization of the surface can be prevented. It has been confirmed by the inventors' experiment that there is no problem in joining the lauan thin plate, the Chinese thin plate, the coniferous thin plate and the like to the net as an insert.
Furthermore, the composition that contributes to the consolidation of the oil palm base material W of the present embodiment includes resin components such as lignin and the cellulose, hemicellulose, etc., which the oil palm base material W made from the oil palm trunk WD having a predetermined length. The sugar component. In addition, although the inventors' analysis has recognized that the resin component such as lignin and the saccharide component such as cellulose and hemicellulose are the main compositions, the involvement of other components cannot be denied if the analysis ability is improved. Even if it is small, it cannot be denied that there may be other components that contribute to consolidation.
加えて、オイルパームの葉、空果房、根等は、チップ状に裁断され、好気性細菌処理によってコンポスト化(堆肥化)する有機廃棄物発酵処理方法によって処理してもよいし、特に、空果房は他の実用性のある処理を行ってもよい。また、細かく破砕し、セルロース、ヘミセルロース、リグニン等の成分抽出を行って、それをメタルラスMの一体化に使用することもできる。
In addition, oil palm leaves, empty fruit bunches, roots, etc. are cut into chips and may be treated by an organic waste fermentation treatment method that is composted (composted) by aerobic bacterial treatment, The empty fruit bunch may be subjected to other practical treatments. Moreover, it can also grind | pulverize finely and can extract components, such as a cellulose, hemicellulose, and lignin, and it can also be used for integration of the metal lath M.
Claims (12)
- 所定長の複数枚積層された薄板からなるオイルパーム材の面に沿って平行方向に伸びるのを規制しながら加熱し、かつ、前記積層されたオイルパーム材の面に対して直角方向の圧縮力を加え、その後、前記圧縮を維持し、温度を低下させて圧密化してなるオイルパーム成型体において、
前記複数枚のオイルパーム材がその面に対して直角方向に湾曲するのを防止するように、前記積層されたオイルパーム材を互いに繊維方向を交差させて重ね合わせたことを特徴とするオイルパーム成型体。 Heat while restricting extending in a parallel direction along the surface of the oil palm material comprising a plurality of laminated thin plates of a predetermined length, and a compressive force perpendicular to the surface of the laminated oil palm material After that, in the oil palm molded body formed by maintaining the compression and reducing the temperature to be consolidated,
An oil palm in which the laminated oil palm materials are stacked with their fiber directions intersecting each other so as to prevent the plurality of oil palm materials from being bent in a direction perpendicular to the surface thereof. Molded body. - 所定長の複数枚積層された薄板からなるオイルパーム材の面に沿って平行方向に伸びるのを規制しながら加熱し、かつ、前記積層されたオイルパーム材の面に対して直角方向の圧縮力を加え、その後、前記圧縮を維持し、温度を低下させて圧密化してなるオイルパーム成型体において、
前記複数枚のオイルパーム材がその面に対して特定方向の直角方向にのみ湾曲するように、前記積層されたオイルパーム材を複数枚重ね合わせたことを特徴とするオイルパーム成型体。 Heat while restricting extending in a parallel direction along the surface of the oil palm material comprising a plurality of laminated thin plates of a predetermined length, and a compressive force perpendicular to the surface of the laminated oil palm material After that, in the oil palm molded body formed by maintaining the compression and reducing the temperature to be consolidated,
An oil palm molded body in which a plurality of the laminated oil palm materials are overlapped so that the plurality of oil palm materials are curved only in a direction perpendicular to a specific direction with respect to the surface. - 前記複数枚積層したオイルパーム材には、金型によって平面部、凹部、凸部のいずれか1つ以上を形成したことを特徴とする請求項1または請求項2に記載のオイルパーム成型体。 3. The oil palm molded body according to claim 1, wherein at least one of a flat portion, a concave portion, and a convex portion is formed on the laminated oil palm material by a mold.
- 所定長のオイルパーム幹をその周方向に所定の厚みに剥いて複数枚のオイルパーム材の薄板に形成する薄板工程と、
前記薄板工程で形成したオイルパーム材を乾燥する乾燥工程と、
前記乾燥工程で乾燥させたオイルパーム材を所定の状態に複数枚積層する積層工程と、
前記積層工程で積層されたオイルパーム材の温度を上昇させるべく加熱する加熱工程と、
前記加熱工程によって加熱された前記積層されたオイルパーム材に、前記オイルパーム材の面に対して平行方向に伸びるのを規制しながら、金型の上型と下型とで前記オイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮成型する圧縮工程と、
前記圧縮工程で所定時間圧縮した前記積層されたオイルパーム材を、前記加熱工程で供給していた温度を降下させて冷却し、固定化させる固定化工程と
を具備することを特徴とするオイルパーム成型体の製造方法。 A thin plate step of peeling a predetermined length of oil palm trunk to a predetermined thickness in the circumferential direction to form a plurality of oil palm material thin plates,
A drying step of drying the oil palm material formed in the thin plate step;
A laminating step of laminating a plurality of oil palm materials dried in the drying step in a predetermined state;
A heating step of heating to raise the temperature of the oil palm material laminated in the lamination step;
While restricting the laminated oil palm material heated by the heating step from extending in a direction parallel to the surface of the oil palm material, the upper and lower molds of the oil palm material A compression process in which a compression force in a direction perpendicular to the surface is applied and compression molded for a predetermined time;
An oil palm comprising: an immobilization step of cooling and immobilizing the laminated oil palm material compressed in the compression step for a predetermined time by lowering a temperature supplied in the heating step. A method for producing a molded body. - 所定長のオイルパーム幹をその周方向に所定の厚みに剥いて複数枚のオイルパーム材の薄板に形成する薄板工程と、
前記薄板工程で形成したオイルパーム材を乾燥する乾燥工程と、
前記乾燥工程で乾燥させたオイルパーム材を所定の状態に複数枚積層する積層工程と、
前記積層工程で積層されたオイルパーム材の温度を上昇させるべく加熱する予備加熱工程と、
前記予備加熱工程によって加熱された前記積層されたオイルパーム材に前記オイルパーム材の面に沿って平行方向に伸びるのを規制しながら、金型の上型と下型とで前記オイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮成型する予備圧縮工程と、
前記圧縮工程で所定時間圧縮成型した前記積層されたオイルパーム材を、前記予備加熱工程で供給していた温度を降下させて固定化させる予備固定化工程と、
前記予備固定化工程で固定化した前記積層されたオイルパーム材を所定の湿度及び温度条件下で、前記積層されたオイルパーム材の面に沿って平行方向に延びるのを規制しながら、金型の上型と下型とで前記積層されたオイルパーム材の面に対して直角方向の圧縮力を加えて所定時間圧縮成型し、前記所定時間圧縮成型した前記積層されたオイルパーム材の温度を降下させて固定化させる本固定化工程と
を具備することを特徴とするオイルパーム成型体の製造方法。 A thin plate step of peeling a predetermined length of oil palm trunk to a predetermined thickness in the circumferential direction to form a plurality of oil palm material thin plates,
A drying step of drying the oil palm material formed in the thin plate step;
A laminating step of laminating a plurality of oil palm materials dried in the drying step in a predetermined state;
A preheating step of heating to raise the temperature of the oil palm material laminated in the laminating step;
While restricting extending in the parallel direction along the surface of the oil palm material to the laminated oil palm material heated by the preheating step, the upper and lower molds of the oil palm material A pre-compression process in which a compression force in a direction perpendicular to the surface is applied and compression-molded for a predetermined time;
A pre-fixing step of fixing the laminated oil palm material compression-molded for a predetermined time in the compression step by lowering the temperature supplied in the pre-heating step;
While restricting extending the laminated oil palm material fixed in the preliminary fixing step in a parallel direction along the surface of the laminated oil palm material under predetermined humidity and temperature conditions, a mold A compression force in a direction perpendicular to the surface of the laminated oil palm material is applied between the upper mold and the lower mold to perform compression molding for a predetermined time, and the temperature of the laminated oil palm material compressed for the predetermined time is set. A method for producing an oil palm molded body, comprising: a main immobilization step of lowering and immobilizing. - 所定長のオイルパームの幹をその周方向に所定の厚みに剥いて形成した複数枚の薄板からなるオイルパーム材と、
前記オイルパーム材相互間に配設し、前記オイルパーム材相互間で接合した網とを具備し、
前記オイルパーム材相互間に前記網を配設し、前記オイルパーム材が含有する樹脂成分及び糖成分を使用して圧密化し、前記オイルパーム材と前記網とを一体に接合したことを特徴とする積層合板。 An oil palm material comprising a plurality of thin plates formed by peeling a trunk of a predetermined length of oil palm to a predetermined thickness in the circumferential direction;
It is arranged between the oil palm materials, and comprises a net joined between the oil palm materials,
The net is disposed between the oil palm materials, and is compacted using a resin component and a sugar component contained in the oil palm material, and the oil palm material and the net are joined together. Laminated plywood. - 所定長のオイルパームの幹をその周方向に所定の厚みに剥いて形成した複数枚の薄板からなるオイルパーム材と、
前記オイルパーム材相互間に配設し、前記オイルパーム材相互間で接合した網と、
所定長のラワンまたはシナまたは針葉樹の幹をその周方向に所定の厚みに剥いて形成したラワン薄板、またはシナ薄板、または針葉樹薄板の何れかの1枚以上を前記オイルパーム材に面して配置し、それらを前記オイルパーム材が含有する樹脂成分及び糖成分を使用して圧密化し、一体に接合したことを特徴とする積層合板。 An oil palm material comprising a plurality of thin plates formed by peeling a trunk of a predetermined length of oil palm to a predetermined thickness in the circumferential direction;
A net disposed between the oil palm materials and joined between the oil palm materials,
One or more of Lauan thin plate, Chinese thin plate or coniferous thin plate formed by peeling a predetermined length of Lauan or Sina or conifer trunk to a predetermined thickness in the circumferential direction is arranged facing the oil palm material. Then, they are consolidated using a resin component and a sugar component contained in the oil palm material, and are integrally bonded. - 所定長のオイルパームの幹をその周方向に所定の厚みに剥いて形成し、それを圧密加工した後の1枚の厚みが1mm以上からなる複数枚の薄板からなるオイルパーム材と、
前記オイルパーム材相互間に配設し、前記オイルパーム材相互間で接合した網と、
所定長のラワンまたはシナまたは針葉樹の幹をその幹の長さ方向に板状に形成したラワン、シナ、針葉樹の何れかの1枚以上を前記オイルパーム材に面して配置し、それらを前記オイルパーム材が含有する樹脂成分及び糖成分を使用して圧密化し、一体に接合したことを特徴とする積層合板。 An oil palm material made of a plurality of thin plates each having a thickness of 1 mm or more after being formed by peeling a trunk of a predetermined length of oil palm to a predetermined thickness in the circumferential direction,
A net disposed between the oil palm materials and joined between the oil palm materials,
One or more of Lauan, China, or conifers having a predetermined length of Lauan or Sina or coniferous tree formed in a plate shape in the length direction of the trunk are arranged facing the oil palm material, A laminated plywood characterized in that it is consolidated using a resin component and a sugar component contained in an oil palm material and joined together. - 前記オイルパーム材に面して配置し、一体に接合する複数枚のオイルパーム材の接合には、前記オイルパーム材が含有する樹脂成分及び糖成分とし、ラワン薄板またはシナ薄板または針葉樹薄板の何れかの1枚以上と一体に接合する接合面には、前記オイルパーム材が含有する樹脂成分及び糖成分の他に、他の接着剤を付加したことを特徴とする請求項7または請求項8に記載の積層合板。 The oil palm material that is disposed facing the oil palm material and joined together is a resin component and a sugar component contained in the oil palm material, and either Lauan thin plate, China thin plate or softwood thin plate 9. A bonding surface that is integrally bonded to one or more of the above-mentioned sheets is provided with another adhesive in addition to the resin component and the sugar component contained in the oil palm material. Laminated plywood as described in 1.
- 前記オイルパーム材の枚数は、前記オイルパーム材以外の薄板の枚数よりも多くしたことを特徴とする請求項6乃至請求項9の1つに記載の積層合板。 The laminated plywood according to any one of claims 6 to 9, wherein the number of the oil palm materials is larger than the number of thin plates other than the oil palm materials.
- 前記オイルパーム材相互間に配設し、前記オイルパーム材相互間で接合した網は、金網としたことを特徴とする請求項6乃至請求項10の1つに記載の積層合板。 The laminated plywood according to any one of claims 6 to 10, wherein a mesh disposed between the oil palm materials and joined between the oil palm materials is a wire mesh.
- 前記オイルパーム材相互間に配設し、前記オイルパーム材相互間で接合した網は、化学繊維または植物繊維の網としたことを特徴とする請求項6乃至請求項11の1つに記載の積層合板。 12. The net according to claim 6, wherein the net disposed between the oil palm materials and joined between the oil palm materials is a net of chemical fibers or plant fibers. Laminated plywood.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/076507 WO2014057582A1 (en) | 2012-10-12 | 2012-10-12 | Shaped oil-palm body, manufacturing method therefor, and laminated plywood |
MYPI2012005511A MY166988A (en) | 2012-10-12 | 2012-10-12 | An oil palm die-formed body and its manufacturing method, a layered plywood |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2012/076507 WO2014057582A1 (en) | 2012-10-12 | 2012-10-12 | Shaped oil-palm body, manufacturing method therefor, and laminated plywood |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014057582A1 true WO2014057582A1 (en) | 2014-04-17 |
Family
ID=50477067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/076507 WO2014057582A1 (en) | 2012-10-12 | 2012-10-12 | Shaped oil-palm body, manufacturing method therefor, and laminated plywood |
Country Status (2)
Country | Link |
---|---|
MY (1) | MY166988A (en) |
WO (1) | WO2014057582A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003062808A (en) * | 2001-08-23 | 2003-03-05 | Suzuki Mokuzai Sangyo Kk | Wood structure using oil palm material |
JP2005096396A (en) * | 2003-08-19 | 2005-04-14 | Takaya Nomura | Method for producing palm lumber and palm lumber |
JP2009214364A (en) * | 2008-03-10 | 2009-09-24 | Wood One:Kk | Woody material using palm as raw material and its manufacturing method |
JP2009298132A (en) * | 2008-06-12 | 2009-12-24 | Kono Shinsozai Kaihatsu Kk | Improved lumber and method of manufacturing the same |
JP2010167563A (en) * | 2006-08-29 | 2010-08-05 | Technical System Keep:Kk | Plywood and method for producing the same |
JP2011068015A (en) * | 2009-09-25 | 2011-04-07 | Masako Nozoe | Plyboard, palm plyboard, method of manufacturing plywood, and method of manufacturing palm plyboard |
-
2012
- 2012-10-12 WO PCT/JP2012/076507 patent/WO2014057582A1/en active Application Filing
- 2012-10-12 MY MYPI2012005511A patent/MY166988A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003062808A (en) * | 2001-08-23 | 2003-03-05 | Suzuki Mokuzai Sangyo Kk | Wood structure using oil palm material |
JP2005096396A (en) * | 2003-08-19 | 2005-04-14 | Takaya Nomura | Method for producing palm lumber and palm lumber |
JP2010167563A (en) * | 2006-08-29 | 2010-08-05 | Technical System Keep:Kk | Plywood and method for producing the same |
JP2009214364A (en) * | 2008-03-10 | 2009-09-24 | Wood One:Kk | Woody material using palm as raw material and its manufacturing method |
JP2009298132A (en) * | 2008-06-12 | 2009-12-24 | Kono Shinsozai Kaihatsu Kk | Improved lumber and method of manufacturing the same |
JP2011068015A (en) * | 2009-09-25 | 2011-04-07 | Masako Nozoe | Plyboard, palm plyboard, method of manufacturing plywood, and method of manufacturing palm plyboard |
Also Published As
Publication number | Publication date |
---|---|
MY166988A (en) | 2018-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101607411B (en) | Bamboo fiber reinforced composite material and manufacturing method thereof | |
JP6083700B2 (en) | Oil palm drying apparatus and drying method thereof | |
JP6164649B2 (en) | Wood laminate, wood compacted laminate, and method for manufacturing wood compacted laminate | |
JP6175926B2 (en) | Oil palm compacted plywood | |
CN201353816Y (en) | A bamboo laminated lumber made of large bamboo bundle curtains | |
JP5963195B2 (en) | Oil palm compact | |
JP6083692B2 (en) | Manufacturing method of laminated plywood | |
JP6143046B2 (en) | Laminated plywood | |
JPWO2017010005A1 (en) | Wood laminate and method for producing the same | |
JP6014396B2 (en) | Laminated plywood | |
JP6086521B2 (en) | Oil palm sheet joining composition and joining method thereof | |
JP6206902B2 (en) | Plant molded body and molding method thereof | |
JP6086522B2 (en) | Oil palm compact | |
JP5470976B2 (en) | Three-dimensional wooden molded body and method for producing the same | |
JP6083691B2 (en) | Manufacturing method of laminated plywood | |
JP6086523B2 (en) | Oil palm compact | |
WO2014057582A1 (en) | Shaped oil-palm body, manufacturing method therefor, and laminated plywood | |
WO2014057583A1 (en) | Compressed oil-palm material | |
JP6083701B2 (en) | Consolidation material and manufacturing method thereof | |
CN106625981B (en) | Poplar recombined wood applied to structural wood and preparation method thereof | |
JP6168357B2 (en) | WOOD LAMINATE AND METHOD FOR MANUFACTURING THE SAME | |
WO2014057581A1 (en) | Compressed oil-palm material, bonding composition for oil-palm material, method for bonding oil-palm material, laminated plywood, and manufacturing method therefor | |
JP6083894B2 (en) | Strain-removed compacted material, manufacturing apparatus thereof, and manufacturing method thereof | |
WO2018061919A1 (en) | Consolidated plywood | |
JP4520890B2 (en) | Moon peach board, manufacturing method thereof, moon peach tatami mat using the moon peach board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12886394 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12886394 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |