[go: up one dir, main page]

WO2014038534A1 - 絶縁樹脂材料及び多層基板 - Google Patents

絶縁樹脂材料及び多層基板 Download PDF

Info

Publication number
WO2014038534A1
WO2014038534A1 PCT/JP2013/073636 JP2013073636W WO2014038534A1 WO 2014038534 A1 WO2014038534 A1 WO 2014038534A1 JP 2013073636 W JP2013073636 W JP 2013073636W WO 2014038534 A1 WO2014038534 A1 WO 2014038534A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin material
weight
insulating resin
cured product
inorganic filler
Prior art date
Application number
PCT/JP2013/073636
Other languages
English (en)
French (fr)
Inventor
達史 林
智輝 國川
玲夫奈 横田
大輔 鳥取
白波瀬 和孝
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201380039729.3A priority Critical patent/CN104508760B/zh
Priority to US14/425,367 priority patent/US9382445B2/en
Priority to JP2014534358A priority patent/JP5629407B2/ja
Priority to KR1020147032096A priority patent/KR101560518B1/ko
Publication of WO2014038534A1 publication Critical patent/WO2014038534A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/423Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof containing an atom other than oxygen belonging to a functional groups to C08G59/42, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/025Other inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/20Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances liquids, e.g. oils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/56Polyhydroxyethers, e.g. phenoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0239Coupling agent for particles

Definitions

  • the present invention relates to an insulating resin material that can be suitably used for forming an insulating layer in a multilayer substrate, for example.
  • the present invention also relates to a multilayer substrate using the insulating resin material.
  • a resin composition is used in order to form an insulating layer for insulating inner layers or to form an insulating layer located in a surface layer portion.
  • Wiring which is generally a metal layer, is laminated on the surface of the insulating layer.
  • the resin composition is often mixed with an inorganic filler for the purpose of lowering the coefficient of thermal expansion.
  • the electronic components are also required to have finer wiring and further reduced thermal expansion coefficient in the insulating layer.
  • a large amount of inorganic filler may be blended in the resin composition for forming the insulating layer.
  • Patent Document 1 discloses a resin composition containing an epoxy resin, a curing agent, a phenoxy resin, and an inorganic filler having an average particle diameter of 0.01 to 2 ⁇ m. Has been. Further, Patent Document 1 discloses a resin composition containing an epoxy resin, a curing agent, and an inorganic filler having an average particle size of 0.1 to 10 ⁇ m.
  • each layer of a multilayer film having a two-layer laminated structure is formed using two different types of resin compositions described above. It is described that this multilayer film is satisfactorily embedded in a gap or the like provided on the substrate.
  • Patent Document 2 discloses an insulating resin material containing a curable resin, an inorganic filler, and a curing accelerator.
  • the inorganic filler contains at least two kinds of fillers having different volume average particle diameters.
  • the particle size of the small particle (b1) is 0.01 to 1.0 ⁇ m, and the particle size of the next small particle (b2) is 0.30 to 10 ⁇ m.
  • the ratio of the volume average particle diameter of the particles (b1) and the particles (b2) is 1/2 to 1/100, and the ratio of the weight content is 90/10 to 10/90.
  • At least one of the particles (b1) and the particles (b2) is surface-treated with a silane coupling agent.
  • Patent Document 1 since two types of resin compositions are prepared and a multilayer film is produced, there is a problem that it takes time to produce the multilayer film and the cost is increased.
  • the surface roughness of the cured product may not be sufficiently reduced. Furthermore, when a metal layer is formed on the surface of the cured product by plating or the like, it may be difficult to sufficiently increase the adhesive strength between the cured product and the metal layer.
  • a resin material and a multilayer substrate using the insulating resin material are provided.
  • thermosetting resin at least one thermosetting resin, a curing agent, a first inorganic filler surface-treated with a first silane coupling agent, and a second silane coupling agent And the second inorganic filler surface-treated in the above, and the SP value of the thermosetting resin having the highest content among the thermosetting resins in the insulating resin material and silicon of the first silane coupling agent SP (A) is the absolute value of the difference from the SP value of an organic group that is directly bonded to an atom and is not an alkyl group or an alkoxy group, and has the highest content among the thermosetting resins in the insulating resin material.
  • the absolute value of the difference between the SP value of the thermosetting resin and the SP value of the organic group that is directly bonded to the silicon atom of the second silane coupling agent and is not an alkyl group or an alkoxy group is expressed as SP (B) (SP (A) -SP (B ) Is 0.5 or more and 3.5 or less, the insulating resin material is provided.
  • thermosetting resin having the highest content among the thermosetting resins in the insulating resin material is an epoxy resin.
  • the insulating resin material includes the first inorganic filler and the second inorganic filler in a weight ratio of 3:97 to 50:50.
  • the heat having the highest content among the thermosetting resins in the insulating resin material out of the total 100% by weight of the thermosetting resin contained in the insulating resin material is 50% by weight or more and 100% by weight or less.
  • the insulating resin material does not contain or contain a solvent, and in 100% by weight of the component excluding the inorganic filler and the solvent contained in the insulating resin material, The total content of the thermosetting resin is 10% by weight or more and 95% by weight or less.
  • the insulating resin material contains or does not contain a solvent, and the content of the inorganic filler in 100% by weight of the component excluding the solvent contained in the insulating resin material. Is 40% by weight or more and 85% by weight or less.
  • the insulating resin material according to the present invention is suitably used for obtaining a cured product that is roughened or desmeared.
  • the insulating resin material is a B-stage film formed into a film shape.
  • a multilayer substrate comprising a circuit board and an insulating layer disposed on the circuit board, wherein the insulating layer is formed by curing the insulating resin material described above.
  • the insulating resin material according to the present invention includes at least one thermosetting resin, a curing agent, a first inorganic filler surface-treated with a first silane coupling agent, and a second silane coupling agent.
  • SP (A) -SP (B)) is 0.5 or more and 3.5 or less, so that the surface roughness of the cured product is reduced. Can be small. Furthermore, when a metal layer is formed on the surface of the cured product of the insulating resin material according to the present invention, the adhesive strength between the cured product and the metal layer can be increased.
  • FIG. 1 is a partially cutaway front sectional view schematically showing a multilayer substrate using an insulating resin material according to an embodiment of the present invention.
  • the insulating resin material according to the present invention includes at least one thermosetting resin, a curing agent, and an inorganic filler.
  • the insulating resin material according to the present invention includes, as the inorganic filler, a first inorganic filler surface-treated with a first silane coupling agent and a second surface-treated with a second silane coupling agent. Inorganic filler.
  • the first silane coupling agent has an organic group that is directly bonded to a silicon atom and is not an alkyl group or an alkoxy group.
  • the second silane coupling agent is directly bonded to a silicon atom and has an organic group that is not an alkyl group or an alkoxy group. As the organic group, an alkyl group and an alkoxy group are excluded.
  • SP (R) When the SP value of the thermosetting resin having the highest content among the thermosetting resins is SP (R) and the SP value of the organic group of the first silane coupling agent is SP (A1). SP (A) is
  • the surface roughness of the surface of the cured product can be reduced. Furthermore, when a metal layer is formed on the surface of the cured product of the insulating resin material according to the present invention, the adhesive strength between the cured product and the metal layer can be increased. In the present invention, even if the content of the inorganic filler is large, for example, even if the content of the inorganic filler in 100% by weight of the component excluding the solvent contained in the insulating resin material is 40% by weight or more, curing is performed. The surface roughness of the surface of the object can be reduced, and the adhesive strength between the cured product and the metal layer can be increased.
  • the present inventors use the two types of first and second inorganic fillers surface-treated with two different types of first and second silane coupling agents to further increase the above-mentioned thermosetting property.
  • the SP value of the resin the SP value of the organic group of the first silane coupling agent
  • the SP value of the organic group of the second silane coupling agent (SP (A) -SP)
  • (B) the SP value of the organic group of the second silane coupling agent
  • the SP value of the curable resin is preferably 9.5 or more, and preferably 12.0 or less.
  • the SP value (solubility parameter) can be calculated using the Fedors method (R. F. Fedors, Polym. Eng. Sci., 14, 147 (1974)).
  • the insulating resin material according to the present invention may be in the form of a paste or a film.
  • the insulating resin material according to the present invention may be a resin composition or a B-stage film in which the resin composition is formed into a film.
  • the insulating resin material according to the present invention may contain a thermoplastic resin or a curing accelerator.
  • the insulating resin material according to the present invention does not contain or contain a solvent.
  • thermosetting resin a thermosetting resin
  • curing agent a curing agent
  • inorganic filler contained in the insulating resin material according to the present invention will be described.
  • the insulating resin material includes at least one thermosetting resin.
  • the thermosetting resin contained in the insulating resin material is not particularly limited.
  • the thermosetting resin having the largest content among the thermosetting resins in the insulating resin material is preferably an epoxy resin.
  • As for the said thermosetting resin only 1 type may be used and 2 or more types may be used together.
  • the entire thermosetting resin contained in the insulating resin material is 100 weights. % Of the thermosetting resin in the insulating resin material is preferably 50% by weight or more, more preferably 60% by weight or more, and still more preferably 70% by weight or more. , 100% by weight or less. As the content of the thermosetting resin having the highest content among the thermosetting resins in the insulating resin material increases, the SP (A) and the SP (B) satisfy the above-described relationship. The effect obtained is further enhanced.
  • thermosetting resins when two or more kinds of thermosetting resins are used, when the above SP (A) and the above SP (B) satisfy the above-described relationship, the above SP (A) and the above SP (B) Compared with the case where the above relationship is not satisfied, the surface roughness of the surface of the cured product can be reduced, and the adhesive strength between the cured product and the metal layer can be increased.
  • the epoxy resin is not particularly limited. A conventionally well-known epoxy resin can be used as this epoxy resin.
  • the epoxy resin refers to an organic compound having at least one epoxy group. As for the said epoxy resin, only 1 type may be used and 2 or more types may be used together.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, biphenyl type epoxy resin, biphenyl novolac type epoxy resin, biphenol type epoxy resin, and naphthalene type epoxy resin.
  • examples thereof include an epoxy resin having a skeleton.
  • the epoxy resin may be liquid at normal temperature (23 ° C.) or may be solid.
  • the insulating resin material preferably contains an epoxy resin that is liquid at normal temperature (23 ° C.).
  • the content of the epoxy resin that is liquid at room temperature is preferably 100% by weight of the component excluding the inorganic filler and the solvent contained in the insulating resin material according to the present invention (hereinafter sometimes referred to as component A). Is 10% by weight or more, more preferably 25% by weight or more.
  • the epoxy equivalent of the epoxy resin is preferably 90 or more, more preferably 100 or more. , Preferably 1000 or less, more preferably 800 or less.
  • the molecular weight of the thermosetting resin is preferably 1000 or less. In this case, it is easy to increase the content of the inorganic filler in the insulating resin material. Furthermore, even if the content of the inorganic filler is large, an insulating resin material having high fluidity can be obtained. On the other hand, the combined use of a thermosetting resin having a weight average molecular weight of 1000 or less and a thermoplastic resin can suppress a decrease in melt viscosity of the insulating resin material. For this reason, when the insulating resin material is laminated on the substrate, the inorganic filler tends to exist uniformly.
  • the molecular weight of the thermosetting resin and the molecular weight of the curing agent described below are when the thermosetting resin or the curing agent is not a polymer, and when the structural formula of the thermosetting resin or the curing agent can be specified. Means a molecular weight that can be calculated from the structural formula. Moreover, when the said thermosetting resin or the said hardening
  • the weight average molecular weight indicates a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the total content of the thermosetting resin is preferably 10% by weight or more, more preferably 20% by weight or more, preferably 95% by weight or less, more preferably 80% by weight or less. .
  • the curing agent contained in the insulating resin material is not particularly limited.
  • a conventionally known curing agent can be used as the curing agent.
  • curing agent only 1 type may be used and 2 or more types may be used together.
  • cyanate ester compound cyanate ester curing agent
  • phenol compound phenol curing agent
  • amine compound amine curing agent
  • thiol compound thiol curing agent
  • imidazole compound phosphine compound, acid anhydride
  • examples include active ester compounds and dicyandiamide.
  • curing agent is a cyanate ester compound or a phenol compound.
  • the curing agent is preferably a cyanate ester compound, and is preferably a phenol compound.
  • the curing agent preferably has a functional group capable of reacting with the thermosetting functional group of the thermosetting resin, and preferably has a functional group capable of reacting with the epoxy group of the epoxy resin.
  • the curing agent is A cyanate ester compound, a phenol compound or an active ester compound is preferred. Furthermore, from the viewpoint of imparting better insulation reliability to the curing agent, the curing agent is more preferably a cyanate ester compound.
  • the cyanate ester compound is not particularly limited.
  • a conventionally known cyanate ester compound can be used as the cyanate ester compound.
  • As for the said cyanate ester compound only 1 type may be used and 2 or more types may be used together.
  • cyanate ester compounds include novolak type cyanate ester resins, bisphenol type cyanate ester resins, and prepolymers in which these are partly trimerized.
  • novolak-type cyanate ester resin a phenol novolak-type cyanate ester resin, an alkylphenol-type cyanate ester resin, etc. are mentioned.
  • the bisphenol type cyanate ester resin include bisphenol A type cyanate ester resin, bisphenol E type cyanate ester resin, and tetramethylbisphenol F type cyanate ester resin.
  • cyanate ester compounds Commercially available products of the above-mentioned cyanate ester compounds include phenol novolac type cyanate ester resins (Lonza Japan “PT-30” and “PT-60”), and prepolymers (Lonza Japan) in which bisphenol type cyanate ester resins are trimmed. "BA-230S”, “BA-3000S”, “BTP-1000S” and “BTP-6020S”) manufactured by the company.
  • the molecular weight of the cyanate ester compound is preferably 3000 or less.
  • the content of the inorganic filler in the insulating resin material can be increased, and an insulating resin material having high fluidity can be obtained even if the content of the inorganic filler is large.
  • the use of the above phenol compound further increases the adhesive strength between the cured product and the metal layer. Further, by using the phenol compound, for example, when the surface of copper provided on the surface of the cured product is blackened or Cz treated, the adhesive strength between the cured product and copper is further increased.
  • the phenol compound is not particularly limited.
  • a conventionally well-known phenol compound can be used as this phenol compound.
  • As for the said phenol compound only 1 type may be used and 2 or more types may be used together.
  • phenol compound examples include novolak type phenol, biphenol type phenol, naphthalene type phenol, dicyclopentadiene type phenol, aralkyl type phenol, and dicyclopentadiene type phenol.
  • phenol compounds examples include novolak-type phenols (“TD-2091” manufactured by DIC), biphenyl novolac-type phenols (“MEH-7851” manufactured by Meiwa Kasei Co., Ltd.), and aralkyl-type phenol compounds (“MEH manufactured by Meiwa Kasei Co., Ltd.). -7800 "), and phenols having an aminotriazine skeleton (" LA1356 “and” LA3018-50P "manufactured by DIC).
  • the phenol compound is , A biphenyl novolac type phenol compound or an aralkyl type phenol compound is preferable.
  • the phenol compound preferably has two or more phenolic hydroxyl groups.
  • the active ester compound is not particularly limited.
  • Examples of commercially available active ester compounds include “HPC-8000”, “HPC-8000-65T”, and “EXB9416-70BK” manufactured by DIC.
  • the curing agent preferably includes a curing agent having an equivalent weight of 250 or less.
  • the equivalent of the curing agent is, for example, a cyanate ester group equivalent when the curing agent is a cyanate ester compound, a phenolic hydroxyl group equivalent when the curing agent is a phenol compound, and the curing agent is an active ester compound. Is the active ester group equivalent.
  • the content of a curing agent having an equivalent weight of 250 or less in 100% by weight of the entire curing agent is preferably 30% by weight or more, more preferably 50% by weight or more.
  • the total amount of the curing agent may be a curing agent having an equivalent weight of 250 or less.
  • the content of the curing agent having an equivalent weight of 250 or less is not less than the above lower limit, the surface roughness of the surface of the cured product is further reduced, and finer wiring is formed on the surface of the insulating layer. Furthermore, the glass transition temperature of hardened
  • the molecular weight of the curing agent is preferably 1000 or less.
  • an insulating resin material having high fluidity can be obtained even if the content of the inorganic filler in the insulating resin material is 50% by weight or more.
  • the mixing ratio of the thermosetting resin and the curing agent is not particularly limited.
  • the mixing ratio of the thermosetting resin and the curing agent is appropriately determined depending on the type of the thermosetting resin and the curing agent.
  • the total content of the thermosetting resin and the curing agent is preferably 75% by weight or more, more preferably 80% by weight or more, preferably 99% by weight or less, more preferably 97%. % By weight or less.
  • the first inorganic filler contained in the insulating resin material is surface-treated with a first silane coupling agent.
  • the second inorganic filler contained in the insulating resin material is surface-treated with a second silane coupling agent.
  • the SP (A) is larger than the SP (B). Therefore, the first silane coupling agent and the second silane coupling agent are different. Therefore, the first inorganic filler surface-treated with the first silane coupling agent is different from the second inorganic filler surface-treated with the second silane coupling agent.
  • the first and second inorganic fillers are surface-treated with the first and second silane coupling agents. Thereby, the surface roughness of the surface of the cured product is reduced, the adhesive strength between the cured product and the metal layer is increased, fine wiring is formed on the surface of the cured product, and good inter-wiring insulation reliability and Interlayer insulation reliability is imparted to the cured product. Furthermore, when (SP (A) -SP (B)) is 0.5 or more and 3.5 or less, the surface roughness of the surface of the cured product is effectively reduced, and the Adhesive strength is effectively increased.
  • the compatibility between the first inorganic filler and the thermosetting resin is worse than the compatibility between the second inorganic filler and the thermosetting resin.
  • the first inorganic filler near the roughened surface is easily detached by the treatment.
  • the dropout hole generated by the detachment of the inorganic filler functions as an anchor for plating, so that the adhesive strength is increased.
  • anchor formation is possible even in a short-time roughening treatment, so that deterioration of the resin due to the roughening treatment can be suppressed, and the adhesive strength can be effectively increased.
  • the compatibility between the second inorganic filler and the thermosetting resin is better than the compatibility between the first inorganic filler and the thermosetting resin, the second inorganic filling is performed by the roughening treatment. The material is difficult to fall off. For this reason, even when a large amount of inorganic filler is filled, it is possible to prevent unevenness of the rough surface due to excessive dropping of the inorganic filler and to form a fine rough surface.
  • the surface roughness of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased.
  • the electrical insulation and the thermal expansion coefficient are improved. Further, by changing the particle diameter, it is possible to cope with finer fine patterns and thinner insulating layers.
  • SP (B) is preferably 1.5 or less, more preferably 1.0 or less, and still more preferably 0.5 or less.
  • SP (B) is less than or equal to the above upper limit, the adhesiveness at the interface between the resin and the second inorganic filler is improved, thereby improving the mechanical strength of the entire cured product and increasing the adhesive strength. Can do.
  • first and second inorganic fillers surface-treated with the first and second silane coupling agents include silica, talc, clay, mica, hydrotalcite, alumina, magnesium oxide, aluminum hydroxide, Examples thereof include aluminum nitride and boron nitride.
  • the first and second inorganic fillers are each preferably silica or alumina, more preferably silica, and still more preferably fused silica.
  • silica the coefficient of thermal expansion of the cured product is further reduced, the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased.
  • the shape of silica is preferably substantially spherical.
  • the average particle size of the first and second inorganic fillers is preferably 10 nm or more, more preferably 50 nm or more, still more preferably 150 nm or more, preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less. Particularly preferably, it is 2 ⁇ m or less.
  • the average particle size of the first and second inorganic fillers is not less than the above lower limit and not more than the above upper limit, the size of the holes formed by the roughening treatment or the like becomes fine and the number of holes increases. As a result, the adhesive strength between the cured product and the metal layer is further increased.
  • the average particle diameter of the first and second inorganic fillers may be 1 ⁇ m or less.
  • the median diameter (d50) value of 50% is adopted as the average particle diameter of the first and second inorganic fillers.
  • the average particle size can be measured using a laser diffraction / scattering particle size distribution measuring apparatus.
  • the first and second inorganic fillers are each preferably spherical and more preferably spherical silica. In this case, the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the insulating layer and the metal layer is effectively increased.
  • the aspect ratio of each of the first and second inorganic fillers is preferably 2 or less, more preferably 1.5 or less.
  • silane coupling agent examples include methacryl silane, acrylic silane, amino silane, imidazole silane, vinyl silane, and epoxy silane.
  • the total content of the first and second inorganic fillers is preferably 25% by weight in 100% by weight of the component excluding the solvent contained in the insulating resin material (hereinafter sometimes referred to as component B). Or more, more preferably 30% by weight or more, further preferably 40% by weight or more, particularly preferably 50% by weight or more, preferably 99% by weight or less, more preferably 85% by weight or less, still more preferably 80% by weight or less, Preferably it is 75 weight% or less.
  • the total content of the first and second inorganic fillers is not less than the above lower limit and not more than the above upper limit, the surface roughness of the surface of the cured product is further reduced, and the adhesive strength between the cured product and the metal layer Is further increased, and finer wiring is formed on the surface of the cured product.
  • this amount of inorganic filler it is possible to reduce the thermal expansion coefficient of the cured product as well as metal copper.
  • the first and second inorganic fillers are surface-treated with the specific first and second silane coupling agents. Even if the content of the inorganic filler is large, the surface roughness of the surface of the cured product is effectively reduced, and the adhesive strength between the cured product and the metal layer is effectively increased.
  • the insulating resin material includes the first inorganic filler and the second inorganic material.
  • the filler is preferably contained at a weight ratio of 1:99 to 60:40, more preferably 3:97 to 50:50. By satisfy
  • the insulating resin material may include the first inorganic filler and the second inorganic filler in a weight ratio of 5:95 to 60:40, or 10:90 to 50:50. May be.
  • the content of the first inorganic filler is preferably 1% by weight or more, more preferably 3% by weight or more, Preferably it is 60 weight% or less, More preferably, it is 40 weight% or less. In a total of 100% by weight of the first inorganic filler and the second inorganic filler, the content of the first inorganic filler may be 5% by weight or more, and may be 10% by weight or more. There may be.
  • the first inorganic filler When the content of the first inorganic filler is 1% by weight or more in a total of 100% by weight of the first inorganic filler and the second inorganic filler, the first inorganic filler is removed. Since the number of anchors formed by is increased, the adhesive strength can be further increased effectively.
  • the content of the first inorganic filler is 60% by weight or less in the total of 100% by weight of the first inorganic filler and the second inorganic filler, the first inorganic filler is excessive. Therefore, it becomes difficult to form a fine rough surface.
  • the content of the first inorganic filler is relatively reduced, the mechanical strength of the entire insulating resin material is hardly lowered, and the adhesive strength tends to be further increased. Therefore, by satisfying the weight ratio, the adhesive strength can be further effectively increased even after the roughening treatment.
  • the first and second silane coupling agents include, for example, an alkyl group such as a methyl group bonded to a silicon atom, an alkoxy group, and an organic group that is not an alkyl group or an alkoxy group.
  • a suitable example of the first silane coupling agent is, for example, a silane coupling agent represented by the following formula (1).
  • R1 and R2 represent an alkyl group, respectively, Y represents the organic group which is not an alkyl group and an alkoxy group.
  • the number of carbon atoms of the alkyl group represented by R1 and R2 in the above formula (1) is preferably 1-20, more preferably 1-8, and even more preferably 1 or 2.
  • the number of carbon atoms of the organic group in the formula (1) is preferably 1-20, and more preferably 1-10.
  • the number of atoms other than carbon atoms and hydrogen atoms of the organic group in the formula (1) may be 1 or more, 5 or less, or 3 or less.
  • the atoms other than carbon atoms and hydrogen atoms are preferably oxygen atoms, nitrogen atoms, phosphorus atoms, or sulfur atoms, and more preferably oxygen atoms or nitrogen atoms.
  • the organic group in the formula (1) preferably contains a carbon atom and a hydrogen atom.
  • a suitable example of the second silane coupling agent is, for example, a silane coupling agent represented by the following formula (2).
  • R1 and R2 represent an alkyl group, respectively, Y represents the organic group which is not an alkyl group and an alkoxy group.
  • the number of carbon atoms of the alkyl group represented by R1 and R2 in the above formula (2) is preferably 1-20, more preferably 1-8, and even more preferably 1 or 2.
  • the number of carbon atoms of the organic group in the above formula (2) is preferably 1-20, and more preferably 1-10.
  • the number of atoms other than carbon atoms and hydrogen atoms in the organic group in the formula (2) is 0 or more, 1 or more, 5 or less, or 3 or less. Good.
  • the atoms other than carbon atoms and hydrogen atoms are preferably oxygen atoms, nitrogen atoms or sulfur atoms, and more preferably oxygen atoms or nitrogen atoms.
  • the organic group in the formula (2) preferably contains a carbon atom and a hydrogen atom.
  • Each surface treatment amount of the first and second inorganic fillers by the first and second silane coupling agents is preferably not less than the theoretical amount calculated from the surface areas of the first and second inorganic fillers, It is preferable that it is (theoretical amount ⁇ 2.0) or less.
  • the surface treatment amount is not less than the above lower limit, the adhesion at the interface between the resin and the inorganic filler is further increased, the resin strength is further increased, and the adhesive strength between the cured product and the metal layer is further increased. Become.
  • the surface treatment amount is less than or equal to the above upper limit, the increase in viscosity due to the interaction by the unreacted different silane coupling agent is suppressed, and the embedding property and the surface smoothness are further improved.
  • the insulating resin material does not contain or contain a thermoplastic resin.
  • the insulating resin material preferably contains a thermoplastic resin.
  • the thermoplastic resin is not particularly limited. A conventionally known thermoplastic resin can be used as the thermoplastic resin. As for the said thermoplastic resin, only 1 type may be used and 2 or more types may be used together.
  • thermoplastic resin examples include phenoxy resin, polyvinyl acetal resin, rubber component, and organic filler.
  • the thermoplastic resin is particularly preferably a phenoxy resin.
  • the melt viscosity can be adjusted, so that the dispersibility of the inorganic filler is improved, and the insulating resin material is difficult to wet and spread in unintended areas during the curing process.
  • the use of the thermoplastic resin suppresses deterioration of the embedding property of the insulating resin material in the holes or irregularities of the circuit board and the non-uniformity of the inorganic filler.
  • phenoxy resins examples include phenoxy resins having a skeleton such as a bisphenol A skeleton, a bisphenol F skeleton, a bisphenol S skeleton, a biphenyl skeleton, a novolak skeleton, a naphthalene skeleton, and an imide skeleton.
  • phenoxy resins examples include “YP50”, “YP55” and “YP70” manufactured by Toto Kasei Co., Ltd., and “1256B40”, “4250”, “4256H40”, “4275” manufactured by Mitsubishi Chemical Corporation, "YX6954BH30", “YX8100BH30”, etc. are mentioned.
  • the weight average molecular weight of the thermoplastic resin is preferably 5000 or more, and preferably 100,000 or less.
  • the weight average molecular weight indicates a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).
  • the content of the thermoplastic resin is not particularly limited. In 100% by weight of component A, the content of the thermoplastic resin (the content of the phenoxy resin when the thermoplastic resin is a phenoxy resin) is preferably 1% by weight or more, more preferably 5% by weight or more, preferably Is 30% by weight or less, more preferably 20% by weight or less, and still more preferably 15% by weight or less.
  • the content of the thermoplastic resin is not less than the above lower limit and not more than the above upper limit, the thermal expansion coefficient of the cured product is further lowered. Moreover, the embedding property with respect to the hole or unevenness
  • the content of the thermoplastic resin is not less than the above lower limit, the film forming property of the insulating resin material is improved, and a further better insulating layer is obtained.
  • the content of the thermoplastic resin is not more than the above upper limit, the surface roughness of the surface of the cured product is further reduced, and the adhesive strength between the cured product and the metal layer is further increased.
  • the insulating resin material does not contain or contains a curing accelerator.
  • the insulating resin material preferably contains a curing accelerator.
  • the curing rate is further increased.
  • the crosslinked structure in the cured product becomes uniform, the number of unreacted functional groups decreases, and as a result, the crosslinking density increases.
  • the said hardening accelerator is not specifically limited, A conventionally well-known hardening accelerator can be used. As for the said hardening accelerator, only 1 type may be used and 2 or more types may be used together.
  • curing accelerator examples include imidazole compounds, phosphorus compounds, amine compounds, and organometallic compounds.
  • imidazole compound examples include 2-undecylimidazole, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl- 2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-un Decylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2 ' -Mechi Imidazolyl- (1 ′)]-
  • Examples of the phosphorus compound include triphenylphosphine.
  • Examples of the amine compound include diethylamine, triethylamine, diethylenetetramine, triethylenetetramine and 4,4-dimethylaminopyridine.
  • organometallic compound examples include zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and trisacetylacetonate cobalt (III).
  • the content of the curing accelerator is not particularly limited. In 100% by weight of Component A, the content of the curing accelerator is preferably 0.01% by weight or more, and preferably 3% by weight or less. When the content of the curing accelerator is not less than the above lower limit and not more than the above upper limit, the insulating resin material is efficiently cured.
  • the insulating resin material does not contain or contains a solvent.
  • the solvent By using the solvent, the viscosity of the insulating resin material can be controlled within a suitable range, and the coating property of the insulating resin material that is the resin composition can be improved.
  • the said solvent may be used in order to obtain the slurry containing the said inorganic filler. As for the said solvent, only 1 type may be used and 2 or more types may be used together.
  • Examples of the solvent include acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2-propanol, 2-acetoxy-1-methoxypropane, toluene, xylene, methyl ethyl ketone, Examples thereof include N, N-dimethylformamide, methyl isobutyl ketone, N-methyl-pyrrolidone, n-hexane, cyclohexane, cyclohexanone and naphtha which is a mixture.
  • the boiling point of the solvent is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the content of the solvent in the insulating resin material is not particularly limited. The content of the solvent can be appropriately changed in consideration of the coatability of the insulating resin material.
  • the insulating resin materials include flame retardants, coupling agents, colorants, antioxidants, UV degradation inhibitors, and antifoaming agents. , Thickeners, thixotropic agents and other resins other than those mentioned above may be added.
  • Examples of the coupling agent include silane coupling agents, titanium coupling agents, and aluminum coupling agents.
  • Examples of the silane coupling agent include vinyl silane, amino silane, imidazole silane, and epoxy silane.
  • the content of the coupling agent is not particularly limited. In 100% by weight of Component A, the content of the coupling agent is preferably 0.01% by weight or more, and preferably 5% by weight or less.
  • Examples of the other resin include polyphenylene ether resin, divinyl benzyl ether resin, polyarylate resin, diallyl phthalate resin, polyimide resin, benzoxazine resin, benzoxazole resin, bismaleimide resin, and acrylate resin.
  • an extrusion molding method is used in which the resin composition is melt-kneaded using an extruder, extruded, and then formed into a film using a T-die or a circular die.
  • examples thereof include a casting molding method in which the resin composition is dissolved or dispersed in a solvent and then cast into a film, and other conventionally known film molding methods.
  • the extrusion molding method or the casting molding method is preferable.
  • the film includes a sheet.
  • a B-stage film can be obtained by forming the resin composition into a film and drying it by heating at 90 to 200 ° C. for 1 to 180 minutes, for example, to such an extent that curing by heat does not proceed excessively.
  • the film-like resin composition that can be obtained by the drying process as described above is referred to as a B-stage film.
  • the B-stage film is a semi-cured product in a semi-cured state.
  • the semi-cured product is not completely cured and curing can proceed further.
  • the B-stage film may not be a prepreg.
  • the B stage film is not a prepreg, migration does not occur along a glass cloth or the like. Further, when laminating or pre-curing the B stage film, the surface is not uneven due to the glass cloth. Moreover, the dimensional change by the heat
  • the above resin composition can be suitably used for forming a laminated film including a base material and a B stage film laminated on one surface of the base material.
  • a B-stage film of a laminated film is formed from the resin composition.
  • Examples of the base material of the laminated film include polyester resin films such as polyethylene terephthalate film and polybutylene terephthalate film, olefin resin films such as polyethylene film and polypropylene film, polyimide resin film, metal foil such as copper foil and aluminum foil, and the like. Can be mentioned.
  • the surface of the base material may be subjected to a release treatment as necessary.
  • the thickness of the insulating layer formed of the insulating resin material is preferably equal to or greater than the thickness of the conductor layer (metal layer) forming the circuit.
  • the thickness of the insulating layer formed of the insulating resin material is preferably 5 ⁇ m or more, and preferably 200 ⁇ m or less.
  • the said insulating resin material is used suitably in order to form an insulating layer in a printed wiring board.
  • the printed wiring board can be obtained, for example, by heat-pressing the B stage film using a B stage film formed of the resin composition.
  • a metal foil can be laminated on one side or both sides of the B-stage film.
  • the method for laminating the B-stage film and the metal foil is not particularly limited, and a known method can be used.
  • the B-stage film can be laminated on the metal foil using an apparatus such as a parallel plate press or a roll laminator while pressing with or without heating.
  • the insulating resin material is preferably used for obtaining a copper-clad laminate.
  • An example of the copper-clad laminate is a copper-clad laminate comprising a copper foil and a B stage film laminated on one surface of the copper foil. A B-stage film of this copper-clad laminate is formed from the insulating resin material.
  • the thickness of the copper foil of the copper-clad laminate is not particularly limited.
  • the thickness of the copper foil is preferably in the range of 1 to 50 ⁇ m.
  • the copper foil in order to increase the adhesive strength between the insulating layer obtained by curing the insulating resin material and the copper foil, the copper foil preferably has fine irregularities on the surface.
  • the method for forming the unevenness is not particularly limited. Examples of the method for forming the unevenness include a formation method by treatment using a known chemical solution.
  • the insulating resin material is preferably used for obtaining a multilayer substrate.
  • a multilayer substrate including a circuit substrate and an insulating layer stacked on the surface of the circuit substrate can be given.
  • the insulating layer of the multilayer substrate is formed by curing the insulating resin material.
  • the insulating layer is preferably laminated on the surface of the circuit board on which the circuit is provided. Part of the insulating layer is preferably embedded between the circuits.
  • the surface of the insulating layer opposite to the surface on which the circuit substrate is laminated is roughened.
  • the roughening treatment method is not particularly limited, and a conventionally known roughening treatment method can be used.
  • the surface of the insulating layer may be subjected to a swelling treatment before the roughening treatment.
  • the multilayer board preferably further includes a copper plating layer laminated on the roughened surface of the insulating layer.
  • the circuit board, the insulating layer laminated on the surface of the circuit board, and the surface of the insulating layer opposite to the surface on which the circuit board is laminated are laminated.
  • a multilayer substrate provided with copper foil The insulating layer and the copper foil are formed by curing the B-stage film using a copper-clad laminate including a copper foil and a B-stage film laminated on one surface of the copper foil. It is preferable. Furthermore, it is preferable that the copper foil is etched and is a copper circuit.
  • the multilayer substrate is a multilayer substrate including a circuit board and a plurality of insulating layers stacked on the surface of the circuit board. At least one of the plurality of insulating layers arranged on the circuit board is formed by curing the insulating resin material.
  • the multilayer substrate preferably further includes a circuit laminated on at least one surface of the insulating layer formed by curing the insulating resin material.
  • FIG. 1 schematically shows a multilayer substrate using an insulating resin material according to an embodiment of the present invention in a partially cutaway front sectional view.
  • a plurality of insulating layers 13 to 16 are laminated on the upper surface 12 a of the circuit substrate 12.
  • the insulating layers 13 to 16 are insulating layers.
  • a metal layer 17 is formed in a partial region of the upper surface 12 a of the circuit board 12.
  • the metal layer 17 is formed in a part of the upper surface of the insulating layers 13 to 15 other than the insulating layer 16 located on the outer surface opposite to the circuit board 12 side.
  • the metal layer 17 is a circuit.
  • Metal layers 17 are respectively arranged between the circuit board 12 and the insulating layer 13 and between the stacked insulating layers 13 to 16.
  • the lower metal layer 17 and the upper metal layer 17 are connected to each other by at least one of via hole connection and through hole connection (not shown).
  • the insulating layers 13 to 16 are formed by curing the insulating resin material according to the present invention.
  • fine holes are formed on the surfaces of the insulating layers 13 to 16.
  • the metal layer 17 reaches the inside of the fine hole.
  • the width direction dimension (L) of the metal layer 17 and the width direction dimension (S) of the part in which the metal layer 17 is not formed can be made small.
  • good insulation reliability is imparted between an upper metal layer and a lower metal layer that are not connected by via-hole connection and through-hole connection (not shown).
  • the insulating resin material is preferably used to obtain a cured product that is roughened or desmeared.
  • the cured product includes a precured product that can be further cured.
  • the cured product is preferably roughened.
  • the cured product Prior to the roughening treatment, the cured product is preferably subjected to a swelling treatment.
  • the cured product is preferably subjected to a swelling treatment after preliminary curing and before the roughening treatment, and is further cured after the roughening treatment.
  • the cured product is not necessarily subjected to the swelling treatment.
  • the swelling treatment method for example, a method of treating a cured product with an aqueous solution or an organic solvent dispersion solution of a compound mainly composed of ethylene glycol or the like is used.
  • the swelling liquid used for the swelling treatment generally contains an alkali as a pH adjuster or the like.
  • the swelling liquid preferably contains sodium hydroxide.
  • the swelling treatment is performed by treating the cured product with a 40 wt% ethylene glycol aqueous solution at a treatment temperature of 30 to 85 ° C. for 1 to 30 minutes.
  • the swelling treatment temperature is preferably in the range of 50 to 85 ° C. When the temperature of the swelling treatment is too low, it takes a long time for the swelling treatment, and the adhesive strength between the cured product and the metal layer tends to be low.
  • a chemical oxidant such as a manganese compound, a chromium compound, or a persulfate compound is used.
  • chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added.
  • the roughening liquid used for the roughening treatment generally contains an alkali as a pH adjuster or the like.
  • the roughening solution preferably contains sodium hydroxide.
  • Examples of the manganese compound include potassium permanganate and sodium permanganate.
  • Examples of the chromium compound include potassium dichromate and anhydrous potassium chromate.
  • Examples of the persulfate compound include sodium persulfate, potassium persulfate, and ammonium persulfate.
  • the method for the roughening treatment is not particularly limited.
  • As the roughening treatment method for example, 30 to 90 g / L permanganic acid or permanganate solution and 30 to 90 g / L sodium hydroxide solution are used, and the treatment temperature is 30 to 85 ° C. and 1 to 30 minutes. A method of treating a cured product once or twice under conditions is preferable.
  • the temperature of the roughening treatment is preferably in the range of 50 to 85 ° C.
  • the arithmetic average roughness Ra of the surface of the cured product is preferably 50 nm or more, and preferably 350 nm or less. In this case, the adhesive strength between the cured product and the metal layer or wiring is increased, and further finer wiring is formed on the surface of the insulating layer.
  • a through-hole may be formed in the hardened
  • a via or a through hole is formed as a through hole.
  • the via can be formed by irradiation with a laser such as a CO 2 laser.
  • the diameter of the via is not particularly limited, but is about 60 to 80 ⁇ m. Due to the formation of the through hole, a smear, which is a resin residue derived from the resin component contained in the cured product, is often formed at the bottom of the via.
  • the surface of the cured product is preferably desmeared.
  • the desmear process may also serve as a roughening process.
  • a chemical oxidizing agent such as a manganese compound, a chromium compound, or a persulfate compound is used in the same manner as the roughening treatment.
  • chemical oxidizers are used as an aqueous solution or an organic solvent dispersion after water or an organic solvent is added.
  • the desmear treatment liquid used for the desmear treatment generally contains an alkali.
  • the desmear treatment liquid preferably contains sodium hydroxide.
  • the above desmear treatment method is not particularly limited.
  • the desmear treatment method for example, using a 30 to 90 g / L permanganate or permanganate solution and a 30 to 90 g / L sodium hydroxide solution, a treatment temperature of 30 to 85 ° C. and a condition of 1 to 30 minutes And the method of processing hardened
  • the temperature of the desmear treatment is preferably in the range of 50 to 85 ° C.
  • the surface roughness of the surface of the cured product that has been desmeared is sufficiently reduced by using the insulating resin material.
  • Thermosetting resin (1) Bisphenol A type epoxy resin (“850-S” manufactured by DIC, epoxy equivalent 187, SP value 10.42) (2) Bisphenol F type epoxy resin (manufactured by DIC "830-S", epoxy equivalent 169, SP value 10.83) (3) Biphenyl type epoxy resin (“NC-3000-H” manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 290, SP value 11.64) (4) Biphenyl type epoxy resin-containing liquid (Nippon Kayaku Co., Ltd. “NC-3000-FH-75M”, epoxy equivalent 330, SP value 11.64, solid content 75% by weight and methyl ethyl ketone 25% by weight)
  • Cyanate ester curing agent-containing liquid (Lonza Japan “BA-230S", solid content 75% by weight and methyl ethyl ketone 25% by weight, cyanate ester equivalent 235) (2) Biphenyl novolac type phenol curing agent (“MEH-7851-4H”, Meiwa Kasei Co., Ltd., hydroxyl equivalent 240) (3) Active ester compound-containing liquid (“EXB9416-70BK” manufactured by DIC Corporation, active ester group equivalent 330 containing 70% by weight of solid content and 30% by weight of methyl isobutyl ketone) (4) Phenol curing agent-containing liquid having an aminotriazine skeleton (“LA-1356” manufactured by DIC, phenolic hydroxyl group equivalent 146 containing 60 wt% solid content and 40 wt% methyl ethyl ketone)
  • Phenoxy resin-containing liquid (“YX6954BH30” manufactured by Mitsubishi Chemical Corporation, containing 30 wt% solids, 35 wt% methyl ethyl ketone, and 35 wt% cyclohexanone)
  • Spherical silica surface-treated with 1.0 part by weight, average particle size 0.25 ⁇ m) (7) Spherical silica 7 (100 parts by weight of “SOC1” manufactured by Admatechs Co., Ltd.) 1.0 part by weight of a silane coupling agent having a vinyl group (SP value 7.00) (“KBM-1003” manufactured by Shin-Etsu Chemical Co., Ltd.) (Spherical silica surface-treated with an average particle diameter of 0.25 ⁇ m) (8) Spherical silica 8 (100 parts by weight of “SOC1” manufactured by Admatechs Co., Ltd., a silane coupling agent having a 3-glycidoxypropyl group (SP value of 9.29) (“KBM-403” manufactured by Shin-Etsu Chemical Co.,
  • solvent (1) Solvent (CHN, cyclohexanone, “037-05096” manufactured by Wako Pure Chemical Industries, Ltd.)
  • Cyanate ester curing agent-containing liquid (Lonza Japan “BA-230S”) 6.8 parts by weight (solid content 5.1 parts by weight) and bisphenol A type epoxy resin (DIC Corporation "850-S”) 7 2 parts by weight, 8 parts by weight of biphenyl type epoxy resin-containing liquid (“NC-3000-FH-75M” manufactured by Nippon Kayaku Co., Ltd.), and imidazole compound (“Shikoku Kasei Kogyo Co., Ltd.” 2P4MZ ”) 0.3 parts by weight, 7.5 parts by weight of a phenoxy resin-containing liquid (“ YX6954BH30 "manufactured by Mitsubishi Chemical Corporation) (solid content 2.25 parts by weight), and spherical silica (“ SOC2 "manufactured by Admatechs) 35.0 wt.
  • silane coupling agent having a N-phenyl-3-aminopropyl group SP value 10.30
  • spherical silica surface-treated with “KBM-573” manufactured by Shin-Etsu Chemical Co., Ltd. spherical silica obtained by surface-treating “SOC1” manufactured by Admatechs Co., Ltd. with a silane coupling agent having a 3-glycidoxypropyl group (SP value of 9.29)
  • KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.
  • Examples 2 to 15 and Comparative Examples 1 to 4 A resin composition varnish and a sheet-like molded body were prepared in the same manner as in Example 1 except that the type and the amount (parts by weight) of the components used were changed as shown in Tables 1 and 2 below. .
  • a laminate of the obtained PET film and a sheet-shaped molded body is set on both surfaces of the glass epoxy substrate from the sheet-shaped molded body side, and a diaphragm type vacuum laminator (“MVLP-500” manufactured by Meiki Seisakusho Co., Ltd.) was laminated on both sides of the glass epoxy substrate.
  • Lamination was performed by reducing the pressure for 20 seconds to a pressure of 13 hPa or less, and then pressing for 20 seconds at 100 ° C. and a pressure of 0.8 MPa.
  • Curing of sheet-like molded product The PET film was peeled from the sheet-like molded body. Next, the sheet-like molded body was cured under the curing conditions of 170 ° C. and 60 minutes to obtain a laminated sample.
  • Swelling treatment The above laminated sample is put in a swelling solution at 60 ° C. (an aqueous solution prepared from “Swelling Dip Securigant P” manufactured by Atotech Japan Co., Ltd.) and “sodium hydroxide” manufactured by Wako Pure Chemical Industries, Ltd., and a swelling temperature of 60 ° C. And rocked for 20 minutes. Thereafter, it was washed with pure water.
  • a swelling solution at 60 ° C. an aqueous solution prepared from “Swelling Dip Securigant P” manufactured by Atotech Japan Co., Ltd.
  • sodium hydroxide manufactured by Wako Pure Chemical Industries, Ltd.
  • Roughening treatment permanganate treatment: Put the above laminated sample swollen into 80 ° C sodium permanganate roughening aqueous solution ("Concentrate Compact CP” manufactured by Atotech Japan, “Sodium hydroxide” manufactured by Wako Pure Chemical Industries, Ltd.), and roughening temperature Rocked at 80 ° C. for 20 minutes. Then, after washing
  • the arithmetic average roughness Ra of the surface of the roughened cured product was measured using a non-contact type surface roughness meter (“WYKO” manufactured by Beiko).
  • the arithmetic average roughness Ra was in accordance with JIS B0601-1994.
  • Ra is less than 100 nm ⁇ : Ra is 100 nm or more and less than 200 nm ⁇ : Ra is 200 nm or more
  • Adhesive strength peel strength
  • Electroless plating treatment The surface of the roughened cured product was treated with a 60 ° C. alkali cleaner (“Cleaner Securigant 902” manufactured by Atotech Japan) for 5 minutes and degreased and washed. After washing, the cured product was treated with a 25 ° C. pre-dip solution (“Pre-Dip Neogant B” manufactured by Atotech Japan) for 2 minutes. Thereafter, the cured product was treated with an activator solution at 40 ° C. (“Activator Neo Gantt 834” manufactured by Atotech Japan) for 5 minutes to attach a palladium catalyst. Next, the cured product was treated with a reducing solution at 30 ° C. (“Reducer Neogant WA” manufactured by Atotech Japan) for 5 minutes.
  • a 60 ° C. alkali cleaner (“Cleaner Securigant 902” manufactured by Atotech Japan) for 5 minutes and degreased and washed. After washing, the cured product was treated with a 25 ° C.
  • the cured product is placed in a chemical copper solution (all manufactured by Atotech Japan “Basic Print Gantt MSK-DK”, “Copper Print Gantt MSK”, “Stabilizer Print Gantt MSK”, “Reducer Cu”).
  • a chemical copper solution all manufactured by Atotech Japan “Basic Print Gantt MSK-DK”, “Copper Print Gantt MSK”, “Stabilizer Print Gantt MSK”, “Reducer Cu”.
  • annealing was performed at a temperature of 120 ° C. for 30 minutes in order to remove the remaining hydrogen gas. All the steps up to the electroless plating step were performed with a treatment liquid of 2 L on a beaker scale and while the cured product was swung.
  • electrolytic plating was performed on the cured product that had been subjected to electroless plating until the plating thickness reached 25 ⁇ m.
  • a copper sulfate solution (“copper sulfate pentahydrate” manufactured by Wako Pure Chemical Industries, Ltd., “sulfuric acid” manufactured by Wako Pure Chemical Industries, Ltd., “basic leveler kaparaside HL” manufactured by Atotech Japan Co., Ltd., “ using the correction agent Cupracid GS "), plating thickness passing a current of 0.6 a / cm 2 was carried out electrolytic plating until approximately 25 [mu] m.
  • the cured product was heated at 190 ° C. for 2 hours to further cure the cured product.
  • stacked on the upper surface was obtained.
  • the adhesive strength (peel strength) between the cured product and the copper plating layer was measured using a tensile tester (“AG-5000B” manufactured by Shimadzu Corporation) under the condition of a crosshead speed of 5 mm / min.
  • Embeddability (laminate) A copper-clad laminate (a laminate of a 150 ⁇ m thick glass epoxy substrate and a 35 ⁇ m thick copper foil) was prepared. The copper foil was etched to produce 26 copper patterns having an L / S of 50 ⁇ m / 50 ⁇ m and a length of 1 cm to obtain an uneven substrate.
  • the obtained sheet-like molded body was overlaid on the concavo-convex surface of the concavo-convex substrate, and a vacuum pressure laminator machine (“MVLP-500” manufactured by Meiki Seisakusho Co., Ltd.) was used at a laminating pressure of 0.4 MPa and a laminating temperature of 90 ° C.
  • the laminate was laminated for 20 seconds, and further pressed at a press pressure of 0.8 MPa and a press temperature of 90 ° C. for 20 seconds.
  • stacked on the uneven substrate was obtained.
  • the sheet-like molded body was cured at 170 ° C. for 60 minutes, and further cured at 190 ° C. for 180 minutes to obtain a cured product.
  • the unevenness value of the upper surface of the cured product was measured using “WYKO” manufactured by Veeco. Specifically, the maximum value of the height difference between the concave and convex portions adjacent to the concave and convex portions was adopted as the concave and convex value. Embeddability was determined according to the following criteria.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)

Abstract

 硬化物の表面の表面粗さを小さくすることができ、更に硬化物の表面に金属層を形成した場合に、硬化物と金属層との接着強度を高めることができる絶縁樹脂材料を提供する。 本発明に係る絶縁樹脂材料は、熱硬化性樹脂と、硬化剤と、第1のシランカップリング剤で表面処理された第1の無機充填材と、第2のシランカップリング剤で表面処理された第2の無機充填材とを含む。最も含有量が多い熱硬化性樹脂のSP値と上記第1のシランカップリング剤の有機基のSP値との差の絶対値をSP(A)とし、最も含有量が多い熱硬化性樹脂のSP値と上記第2のシランカップリング剤の有機基のSP値との差の絶対値をSP(B)としたときに、(SP(A)-SP(B))は0.5以上、3.5以下である。

Description

絶縁樹脂材料及び多層基板
 本発明は、例えば、多層基板において絶縁層を形成するために好適に用いることができる絶縁樹脂材料に関する。また、本発明は、該絶縁樹脂材料を用いた多層基板に関する。
 従来、積層板及びプリント配線板等の電子部品を得るために、様々な樹脂組成物が用いられている。例えば、多層プリント配線板では、内部の層間を絶縁するための絶縁層を形成したり、表層部分に位置する絶縁層を形成したりするために、樹脂組成物が用いられている。上記絶縁層の表面には、一般に金属層である配線が積層される。
 また、上記樹脂組成物には、熱膨張率を低くすることなどを目的として、無機充填材が配合されることが多い。近年、電子機器の小型化及び高性能化に伴って、上記電子部品においても、配線の微細化や絶縁層における熱膨張率の更なる低下などが求められている。このような要求に対応するために、絶縁層を形成するための上記樹脂組成物に無機充填材が多く配合されることがある。
 上記樹脂組成物の一例として、下記の特許文献1には、エポキシ樹脂と、硬化剤と、フェノキシ樹脂と、平均粒径が0.01~2μmである無機充填材とを含む樹脂組成物が開示されている。さらに、特許文献1には、エポキシ樹脂と、硬化剤と、平均粒径が0.1~10μmである無機充填材とを含む樹脂組成物も開示されている。
 特許文献1では、2層の積層構造を有する多層フィルムの各層が、上述の異なる2種類の樹脂組成物を用いて形成されている。この多層フィルムは、基板に設けられた隙間などに良好に埋め込まれることが記載されている。
 下記の特許文献2には、硬化性樹脂と、無機フィラーと、硬化促進剤とを含む絶縁樹脂材料が開示されている。該無機フィラーは、異なる体積平均粒径を有する少なくとも2種のフィラーを含有する。小さい粒径の粒子(b1)の粒径は0.01~1.0μmであり、次に小さい粒子(b2)の粒径は0.30~10μmである。粒子(b1)と粒子(b2)との体積平均粒径の比は1/2~1/100であり、重量含有量の比は90/10~10/90である。粒子(b1)と粒子(b2)との内の少なくとも一方は、シランカップリング剤により表面処理されている。
特開2008-302677号公報 特開2004-277735号公報
 特許文献1では、2種類の樹脂組成物を用意し、多層フィルムを作製しているため、多層フィルムの作製に手間がかかり、コストが高くなるという問題がある。
 また、特許文献1に記載の多層フィルム及び特許文献2に記載の絶縁樹脂材料では、硬化物の表面の表面粗さが十分に小さくならないことがある。さらに、上記硬化物の表面に、めっき処理などにより金属層を形成した場合に、硬化物と金属層との接着強度を十分に高くすることが困難なことがある。
 本発明の目的は、硬化物の表面の表面粗さを小さくすることができ、更に硬化物の表面に金属層を形成した場合に、硬化物と金属層との接着強度を高めることができる絶縁樹脂材料、並びに該絶縁樹脂材料を用いた多層基板を提供することである。
 本発明の広い局面によれば、少なくとも1種の熱硬化性樹脂と、硬化剤と、第1のシランカップリング剤で表面処理された第1の無機充填材と、第2のシランカップリング剤で表面処理された第2の無機充填材とを含み、絶縁樹脂材料中の前記熱硬化性樹脂のうち最も含有量が多い熱硬化性樹脂のSP値と前記第1のシランカップリング剤の珪素原子に直接結合しておりかつアルキル基及びアルコキシ基ではない有機基のSP値との差の絶対値をSP(A)とし、絶縁樹脂材料中の前記熱硬化性樹脂のうち最も含有量が多い熱硬化性樹脂のSP値と前記第2のシランカップリング剤の珪素原子に直接結合しておりかつアルキル基及びアルコキシ基ではない有機基のSP値との差の絶対値をSP(B)としたときに、(SP(A)-SP(B))が0.5以上、3.5以下である、絶縁樹脂材料が提供される。
 本発明に係る絶縁樹脂材料のある特定の局面では、絶縁樹脂材料中の前記熱硬化性樹脂のうち最も含有量が多い熱硬化性樹脂が、エポキシ樹脂である。
 本発明に係る絶縁樹脂材料のある特定の局面では、該絶縁樹脂材料は、前記第1の無機充填材と前記第2の無機充填材とを重量比で3:97~50:50で含む。
 本発明に係る絶縁樹脂材料のある特定の局面では、絶縁樹脂材料に含まれる前記熱硬化性樹脂の全体100重量%中、絶縁樹脂材料中の前記熱硬化性樹脂のうち最も含有量が多い熱硬化性樹脂の含有量が50重量%以上、100重量%以下である。
 本発明に係る絶縁樹脂材料のある特定の局面では、該絶縁樹脂材料が溶剤を含まないか又は含み、絶縁樹脂材料に含まれる前記無機充填材と前記溶剤とを除く成分100重量%中、前記熱硬化性樹脂の全体の含有量が10重量%以上、95重量%以下である。
 本発明に係る絶縁樹脂材料のある特定の局面では、該絶縁樹脂材料が溶剤を含まないか又は含み、絶縁樹脂材料に含まれる前記溶剤を除く成分100重量%中、前記無機充填材の含有量が40重量%以上、85重量%以下である。
 本発明に係る絶縁樹脂材料は、粗化処理又はデスミア処理される硬化物を得るために好適に用いられる。
 本発明に係る絶縁樹脂材料のある特定の局面では、該絶縁樹脂材料は、フィルム状に成形されたBステージフィルムである。
 本発明の広い局面によれば、回路基板と、前記回路基板上に配置された絶縁層とを備え、前記絶縁層が、上述した絶縁樹脂材料を硬化させることにより形成されている、多層基板が提供される。
 本発明に係る絶縁樹脂材料は、少なくとも1種の熱硬化性樹脂と、硬化剤と、第1のシランカップリング剤で表面処理された第1の無機充填材と、第2のシランカップリング剤で表面処理された第2の無機充填材とを含み、更に(SP(A)-SP(B))が0.5以上、3.5以下であるので、硬化物の表面の表面粗さを小さくすることができる。さらに、本発明に係る絶縁樹脂材料の硬化物の表面に金属層を形成した場合に、硬化物と金属層との接着強度を高めることができる。
図1は、本発明の一実施形態に係る絶縁樹脂材料を用いた多層基板を模式的に示す部分切欠正面断面図である。
 以下、本発明の詳細を説明する。
 (絶縁樹脂材料)
 本発明に係る絶縁樹脂材料は、少なくとも1種の熱硬化性樹脂と、硬化剤と、無機充填材とを含む。本発明に係る絶縁樹脂材料は、上記無機充填材として、第1のシランカップリング剤で表面処理された第1の無機充填材と、第2のシランカップリング剤で表面処理された第2の無機充填材とを含む。
 上記第1のシランカップリング剤は、珪素原子に直接結合しており、かつアルキル基及びアルコキシ基ではない有機基を有する。上記第2のシランカップリング剤は、珪素原子に直接結合しており、かつアルキル基及びアルコキシ基ではない有機基を有する。該有機基として、アルキル基及びアルコキシ基は除かれる。
 本発明に係る絶縁樹脂材料中の上記熱硬化性樹脂のうち最も含有量が多い熱硬化性樹脂のSP値と上記第1のシランカップリング剤の上記有機基のSP値との差の絶対値をSP(A)とする。本発明に係る絶縁樹脂材料中の上記熱硬化性樹脂のうち最も含有量が多い熱硬化性樹脂のSP値と上記第2のシランカップリング剤の上記有機基のSP値との差の絶対値をSP(B)とする。本発明に係る絶縁樹脂材料では、(SP(A)-SP(B))が0.5以上、3.5以下である。上記熱硬化性樹脂のうち最も含有量が多い熱硬化性樹脂のSP値を、SP(R)とし、上記第1のシランカップリング剤の上記有機基のSP値をSP(A1)としたときに、SP(A)は、|SP(R)-SP(A1)|である。上記熱硬化性樹脂のうち最も含有量が多い熱硬化性樹脂のSP値を、SP(R)とし、上記第2のシランカップリング剤の上記有機基のSP値をSP(B1)としたときに、SP(B)は、|SP(R)-SP(B1)|である。
 本発明に係る絶縁樹脂材料における上述した構成の採用により、硬化物の表面の表面粗さを小さくすることができる。さらに、本発明に係る絶縁樹脂材料の硬化物の表面に金属層を形成した場合に、硬化物と金属層との接着強度を高めることができる。本発明では、無機充填材の含有量が多くても、例えば、絶縁樹脂材料に含まれる溶剤を除く成分100重量%中の上記無機充填材の含有量が40重量%以上であっても、硬化物の表面の表面粗さを小さくすることができ、更に硬化物と金属層との接着強度を高めることができる。この理由は、上記第1の無機充填材は粗化処理により硬化物の表面から比較的脱離しやすいのに対し、上記第2の無機充填材は粗化処理により硬化物の表面から比較的脱離しにくいためである。つまり、1)接着強度を高めるためのアンカーを粗化処理により容易に形成でき、2)粗化処理による無機充填材の過度な脱落による粗面形状劣化が抑制され、かつ、3)粗化処理による無機充填材と樹脂との界面の過度な劣化及び樹脂自体の過度な劣化に伴う絶縁樹脂材料全体の機械強度の低下が抑制されるためである。
 本発明者らは、2種の異なる第1,第2のシランカップリング剤で表面処理された2種の第1,第2の無機充填材を用いて、更に含有量の多い上記熱硬化性樹脂のSP値と、上記第1のシランカップリング剤の上記有機基のSP値と、上記第2のシランカップリング剤の上記有機基のSP値との関係に関して、(SP(A)-SP(B))を0.5以上、3.5以下にすることで、硬化物の表面に微細な凹凸を形成でき、かつ硬化物と金属層との接着強度を高めることができることを見出した。
 硬化物の表面により一層微細な凹凸を形成し、かつ硬化物と金属層との接着強度をより一層高める観点からは、上記絶縁樹脂材料中の上記熱硬化性樹脂のうち最も含有量が多い熱硬化性樹脂のSP値は、好ましくは9.5以上、好ましくは12.0以下である。
 上記SP値(溶解度パラメータ)は、Fedors法(R.F.Fedors,Polym.Eng.Sci.,14,147(1974))を用いて算出することができる。
 本発明に係る絶縁樹脂材料は、ペースト状であってもよく、フィルム状であってもよい。本発明に係る絶縁樹脂材料は、樹脂組成物であってもよく、該樹脂組成物がフィルム状に成形されたBステージフィルムであってもよい。
 本発明に係る絶縁樹脂材料は、熱可塑性樹脂を含んでいてもよく、硬化促進剤を含んでいてもよい。本発明に係る絶縁樹脂材料は溶剤を含まないか又は含む。
 以下、本発明に係る絶縁樹脂材料に含まれている熱硬化性樹脂、硬化剤及び無機充填材などの各成分の詳細を説明する。
 [熱硬化性樹脂]
 上記絶縁樹脂材料は、少なくとも1種の熱硬化性樹脂を含む。上記絶縁樹脂材料に含まれている熱硬化性樹脂は特に限定されない。絶縁樹脂材料中の上記熱硬化性樹脂のうち最も含有量が多い熱硬化性樹脂は、エポキシ樹脂であることが好ましい。上記熱硬化性樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 硬化物の表面に微細な凹凸を効果的に形成し、かつ硬化物と金属層との接着強度を効果的に高める観点からは、上記絶縁樹脂材料に含まれる上記熱硬化性樹脂の全体100重量%中、絶縁樹脂材料中の上記熱硬化性樹脂のうち最も含有量が多い熱硬化性樹脂の含有量は好ましくは50重量%以上、より好ましくは60重量%以上、更に好ましくは70重量%以上、100重量%以下である。絶縁樹脂材料中の上記熱硬化性樹脂のうち最も含有量が多い熱硬化性樹脂の含有量が多いほど、上記SP(A)と上記SP(B)とが上述した関係を満足することにより得られる効果がより一層高くなる。2種以上の熱硬化性樹脂を用いたとしても、上記SP(A)と上記SP(B)とが上述した関係を満足する場合には、上記SP(A)と上記SP(B)とが上述した関係を満足しない場合と比べて、硬化物の表面の表面粗さを小さくすることができ、かつ硬化物と金属層との接着強度を高めることができる。
 上記エポキシ樹脂は特に限定されない。該エポキシ樹脂として、従来公知のエポキシ樹脂を使用可能である。該エポキシ樹脂は、少なくとも1個のエポキシ基を有する有機化合物をいう。上記エポキシ樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、アントラセン型エポキシ樹脂、アダマンタン骨格を有するエポキシ樹脂、トリシクロデカン骨格を有するエポキシ樹脂、及びトリアジン核を骨格に有するエポキシ樹脂等が挙げられる。
 上記エポキシ樹脂は、常温(23℃)で液状であってもよく、固形であってもよい。上記絶縁樹脂材料は、常温(23℃)で液状であるエポキシ樹脂を含むことが好ましい。本発明に係る絶縁樹脂材料に含まれる上記無機充填材と上記溶剤とを除く成分(以下、成分Aと記載することがある)100重量%中、常温で液状であるエポキシ樹脂の含有量は好ましくは10重量%以上、より好ましくは25重量%以上である。常温で液状であるエポキシ樹脂の含有量が上記下限以上であると、絶縁樹脂材料における無機充填材の含有量を多くした場合でもBステージフィルムのハンドリング性が良好になる。
 硬化物の表面の表面粗さをより一層小さくし、硬化物と金属層との接着強度をより一層高くする観点からは、上記エポキシ樹脂のエポキシ当量は、好ましくは90以上、より好ましくは100以上、好ましくは1000以下、より好ましくは800以下である。
 上記熱硬化性樹脂の分子量は1000以下であることが好ましい。この場合には、絶縁樹脂材料における無機充填材の含有量を多くすることが容易である。さらに、無機充填材の含有量が多くても、流動性が高い絶縁樹脂材料が得られる。一方で、重量平均分子量が1000以下である熱硬化性樹脂と熱可塑性樹脂との併用により、絶縁樹脂材料の溶融粘度の低下が抑えられる。このため、絶縁樹脂材料を基板上にラミネートした場合に、無機充填材が均一に存在しやすくなる。
 上記熱硬化性樹脂の分子量及び後述する硬化剤の分子量は、上記熱硬化性樹脂又は上記硬化剤が重合体ではない場合、及び上記熱硬化性樹脂又は上記硬化剤の構造式が特定できる場合は、当該構造式から算出できる分子量を意味する。また、上記熱硬化性樹脂又は上記硬化剤が重合体である場合は、重量平均分子量を意味する。
 上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。
 上記成分A100重量%中、上記熱硬化性樹脂の全体の含有量は、好ましくは10重量%以上、より好ましくは20重量%以上、好ましくは95重量%以下、より好ましくは80重量%以下である。
 [硬化剤]
 上記絶縁樹脂材料に含まれている硬化剤は特に限定されない。該硬化剤として、従来公知の硬化剤を使用可能である。上記硬化剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記硬化剤としては、シアネートエステル化合物(シアネートエステル硬化剤)、フェノール化合物(フェノール硬化剤)、アミン化合物(アミン硬化剤)、チオール化合物(チオール硬化剤)、イミダゾール化合物、ホスフィン化合物、酸無水物、活性エステル化合物及びジシアンジアミド等が挙げられる。なかでも、熱による寸法変化がより一層小さい硬化物を得る観点からは、上記硬化剤は、シアネートエステル化合物又はフェノール化合物であることが好ましい。上記硬化剤は、シアネートエステル化合物であることが好ましく、フェノール化合物であることも好ましい。上記硬化剤は、上記熱硬化性樹脂の熱硬化性官能基と反応可能な官能基を有することが好ましく、上記エポキシ樹脂のエポキシ基と反応可能な官能基を有することが好ましい。
 硬化物の表面の表面粗さをより一層小さくし、硬化物と金属層との接着強度をより一層高くし、かつ硬化物の表面により一層微細な配線を形成する観点からは、上記硬化剤は、シアネートエステル化合物、フェノール化合物又は活性エステル化合物であることが好ましい。さらに、硬化剤に、より一層良好な絶縁信頼性を付与する観点からは、上記硬化剤は、シアネートエステル化合物であることがより好ましい。
 上記シアネートエステル化合物の使用により、硬化物のガラス転移温度がより一層高くなり、熱膨張率を低くすることができる。上記シアネートエステル化合物は特に限定されない。該シアネートエステル化合物として、従来公知のシアネートエステル化合物を使用可能である。上記シアネートエステル化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記シアネートエステル化合物としては、ノボラック型シアネートエステル樹脂、ビスフェノール型シアネートエステル樹脂、並びにこれらが一部三量化されたプレポリマー等が挙げられる。上記ノボラック型シアネートエステル樹脂としては、フェノールノボラック型シアネートエステル樹脂及びアルキルフェノール型シアネートエステル樹脂等が挙げられる。上記ビスフェノール型シアネートエステル樹脂としては、ビスフェノールA型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂及びテトラメチルビスフェノールF型シアネートエステル樹脂等が挙げられる。
 上記シアネートエステル化合物の市販品としては、フェノールノボラック型シアネートエステル樹脂(ロンザジャパン社製「PT-30」及び「PT-60」)、及びビスフェノール型シアネートエステル樹脂が三量化されたプレポリマー(ロンザジャパン社製「BA-230S」、「BA-3000S」、「BTP-1000S」及び「BTP-6020S」)等が挙げられる。
 上記シアネートエステル化合物の分子量は、3000以下であることが好ましい。この場合には、絶縁樹脂材料における無機充填材の含有量を多くすることができ、無機充填材の含有量が多くても、流動性が高い絶縁樹脂材料が得られる。
 上記フェノール化合物の使用により、硬化物と金属層との接着強度がより一層高くなる。また、上記フェノール化合物の使用により、例えば、硬化物の表面上に設けられた銅の表面を黒化処理又はCz処理したときに、硬化物と銅との接着強度がより一層高くなる。
 上記フェノール化合物は特に限定されない。該フェノール化合物として、従来公知のフェノール化合物を使用可能である。上記フェノール化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記フェノール化合物としては、ノボラック型フェノール、ビフェノール型フェノール、ナフタレン型フェノール、ジシクロペンタジエン型フェノール、アラルキル型フェノール及びジシクロペンタジエン型フェノール等が挙げられる。
 上記フェノール化合物の市販品としては、ノボラック型フェノール(DIC社製「TD-2091」)、ビフェニルノボラック型フェノール(明和化成社製「MEH-7851」)、アラルキル型フェノール化合物(明和化成社製「MEH-7800」)、並びにアミノトリアジン骨格を有するフェノール(DIC社製「LA1356」及び「LA3018-50P」)等が挙げられる。
 硬化物の表面の表面粗さをより一層小さくし、硬化物と金属層との接着強度をより一層高くし、かつ硬化物の表面により一層微細な配線を形成する観点からは、上記フェノール化合物は、ビフェニルノボラック型フェノール化合物、又はアラルキル型フェノール化合物であることが好ましい。
 硬化物の表面の表面粗さをより一層小さくする観点からは、上記フェノール化合物はフェノール性水酸基を2個以上有することが好ましい。
 上記活性エステル化合物は特に限定されない。上記活性エステル化合物の市販品としては、DIC社製「HPC-8000」、「HPC-8000-65T」及び「EXB9416-70BK」等が挙げられる。
 硬化物の表面の表面粗さをより一層小さくし、硬化物と金属層との接着強度をより一層高くし、かつ硬化物の表面により一層微細な配線を形成し、かつ硬化剤によって良好な絶縁信頼性を付与する観点からは、上記硬化剤は、当量が250以下である硬化剤を含むことが好ましい。上記硬化剤の当量は、例えば、硬化剤がシアネートエステル化合物である場合にはシアネートエステル基当量を示し、硬化剤がフェノール化合物である場合にはフェノール性水酸基当量を示し、硬化剤が活性エステル化合物である場合には活性エステル基当量を示す。
 上記硬化剤の全体100重量%中、当量が250以下である硬化剤の含有量は、好ましくは30重量%以上、より好ましくは50重量%以上である。上記硬化剤の全量が、当量が250以下である硬化剤であってもよい。当量が250以下である硬化剤の含有量が上記下限以上であると、硬化物の表面の表面粗さがより一層小さくなり、かつ絶縁層の表面により一層微細な配線が形成される。さらに、当量が250以下である硬化剤の含有量が上記下限以上であると、硬化物のガラス転移温度がより一層高くなる。
 上記硬化剤の分子量は1000以下であることが好ましい。この場合には、絶縁樹脂材料における無機充填材の含有量が50重量%以上であっても、流動性が高い絶縁樹脂材料が得られる。
 上記熱硬化性樹脂と上記硬化剤との配合比は特に限定されない。熱硬化性樹脂と硬化剤との配合比は、熱硬化性樹脂と硬化剤との種類により適宜決定される。上記成分A100重量%中、上記熱硬化性樹脂と上記硬化剤との合計の含有量は、好ましくは75重量%以上、より好ましくは80重量%以上、好ましくは99重量%以下、より好ましくは97重量%以下である。
 [無機充填材]
 上記絶縁樹脂材料に含まれている上記第1の無機充填材は、第1のシランカップリング剤により表面処理されている。上記絶縁樹脂材料に含まれている上記第2の無機充填材は、第2のシランカップリング剤により表面処理されている。上記SP(A)は上記SP(B)よりも大きい。従って、上記第1のシランカップリング剤と上記第2のシランカップリング剤とは異なる。このため、上記第1のシランカップリング剤により表面処理された第1の無機充填材と上記第2のシランカップリング剤により表面処理された第2の無機充填材とは異なる。
 上記第1,第2の無機充填材は、上記第1,第2のシランカップリング剤により表面処理されている。これにより、硬化物の表面の表面粗さが小さくなり、硬化物と金属層との接着強度が高くなり、かつ硬化物の表面に微細な配線が形成され、かつ良好な配線間絶縁信頼性及び層間絶縁信頼性が硬化物に付与される。さらに、(SP(A)-SP(B))が0.5以上、3.5以下であることによって、硬化物の表面の表面粗さが効果的に小さくなり、硬化物と金属層との接着強度が効果的に高くなる。特に粗化処理を実施した際に、上記第1の無機充填材と熱硬化樹脂との相溶性が、上記第2の無機充填材と熱硬化性樹脂との相溶性よりも悪いため、粗化処理により粗化面近傍の第1の無機充填材は脱離しやすい。無機充填材の脱離により生じた脱落孔はメッキのアンカーとして機能するため、接着強度が高くなる。またその良好な脱離性より、短時間の粗化処理でもアンカー形成が可能であるため、粗化処理による樹脂の劣化を抑制でき、接着強度を効果的に高くすることができる。また、第2の無機充填材と熱硬化性樹脂との相溶性が、第1の無機充填材と熱硬化性樹脂との相溶性よりも良好であるため、粗化処理により第2の無機充填材は脱落しにくい。このため、無機充填材を多く充填した場合でも、無機充填材の過度な脱落による粗面の不均一化を防止することができ、微細粗面を形成することができる。
 上記理由により、硬化物の表面の表面粗さが効果的に小さくなり、硬化物と金属層との接着強度が効果的に高くなる。
 また、シランカップリング剤の組み合わせによりアンカー形成をコントロールすることにより、電気絶縁性及び熱膨張率が良好になる。また粒子径を変更することにより、より微細なファインパターン化、及び絶縁層の薄膜化にも対応できる。
 (SP(A)-SP(B))が0.5未満であると、無機充填材の脱離が生じにくく、アンカー形成が困難となり、接着強度が低くなる、もしくは無機充填材の過度な脱落が生じ、微細粗面形成が困難となる。(SP(A)-SP(B))が3.5を超えると、無機充填材の一方が凝集する傾向にあり、埋め込み性が悪化したり、微細粗面の形成が困難となったりする。
 SP(B)は好ましくは1.5以下、より好ましくは、1.0以下、更に好ましくは0.5以下である。SP(B)が上記上限以下であると、樹脂と第2の無機充填材との界面の密着性が良好になることにより、硬化物全体の機械強度が向上し、接着強度をより高くすることができる。
 上記第1,第2のシランカップリング剤により表面処理されている第1,第2の無機充填材としては、シリカ、タルク、クレイ、マイカ、ハイドロタルサイト、アルミナ、酸化マグネシウム、水酸化アルミニウム、窒化アルミニウム及び窒化ホウ素等が挙げられる。
 硬化物の表面の表面粗さを小さくし、硬化物と金属層との接着強度をより一層高くし、かつ硬化物の表面により一層微細な配線を形成し、かつ硬化物に、より良好な絶縁信頼性を付与する観点からは、上記第1,第2の無機充填材はそれぞれ、シリカ又はアルミナであることが好ましく、シリカであることがより好ましく、溶融シリカであることが更に好ましい。シリカの使用により、硬化物の熱膨張率がより一層低くなり、かつ硬化物の表面の表面粗さが効果的に小さくなり、硬化物と金属層との接着強度が効果的に高くなる。シリカの形状は略球状であることが好ましい。
 上記第1,第2の無機充填材の平均粒径はそれぞれ、好ましくは10nm以上、より好ましくは50nm以上、更に好ましくは150nm以上、好ましくは20μm以下、より好ましくは10μm以下、更に好ましくは5μm以下、特に好ましくは2μm以下である。上記第1,第2の無機充填材の平均粒径が上記下限以上及び上記上限以下であると、粗化処理などにより形成される孔の大きさが微細になり、孔の数が多くなる。この結果、硬化物と金属層との接着強度がより一層高くなる。上記第1,第2の無機充填材の平均粒径はそれぞれ、1μm以下であってもよい。
 上記第1,第2の無機充填材の平均粒径として、50%となるメディアン径(d50)の値が採用される。上記平均粒径は、レーザー回折散乱方式の粒度分布測定装置を用いて測定可能である。
 上記第1,第2の無機充填材はそれぞれ、球状であることが好ましく、球状シリカであることがより好ましい。この場合には、硬化物の表面の表面粗さが効果的に小さくなり、更に絶縁層と金属層との接着強度が効果的に高くなる。上記第1,第2の無機充填材がそれぞれ球状である場合には、上記第1,第2の無機充填材それぞれのアスペクト比は好ましくは2以下、より好ましくは1.5以下である。
 上記シランカップリング剤としては、メタクリルシラン、アクリルシラン、アミノシラン、イミダゾールシラン、ビニルシラン及びエポキシシラン等が挙げられる。
 上記絶縁樹脂材料に含まれる上記溶剤を除く成分(以下、成分Bと記載することがある)100重量%中、上記第1,第2の無機充填材の合計の含有量は好ましくは25重量%以上、より好ましくは30重量%以上、更に好ましくは40重量%以上、特に好ましくは50重量%以上、好ましくは99重量%以下、より好ましくは85重量%以下、更に好ましくは80重量%以下、特に好ましくは75重量%以下である。上記第1,第2の無機充填材の合計の含有量が上記下限以上及び上記上限以下であると、硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなり、かつ硬化物の表面により一層微細な配線が形成されると同時に、この無機充填材量であれば金属銅並に硬化物の熱膨張率を低くすることも可能である。
 また、本発明に係る絶縁樹脂材料では、上記第1,第2の無機充填材が特定の上記第1,第2のシランカップリング剤により表面処理されているため、上記第1,第2の無機充填材の含有量が多くても、硬化物の表面の表面粗さが効果的に小さくなり、硬化物と金属層との接着強度が効果的に高くなる。
 硬化物の表面により一層微細な凹凸を形成し、かつ硬化物と金属層との接着強度をより一層高める観点からは、上記絶縁樹脂材料は、上記第1の無機充填材と上記第2の無機充填材とを重量比で1:99~60:40で含むことが好ましく、3:97~50:50で含むことがより好ましい。上記重量比を満たすことにより、粗化処理した後でも樹脂強度の低下が抑えられ、接着強度が効果的に高くなる。上記絶縁樹脂材料は、上記第1の無機充填材と上記第2の無機充填材とを重量比で5:95~60:40で含んでいてもよく、10:90~50:50で含んでいてもよい。上記第1の無機充填材と上記第2の無機充填材との合計100重量%中、上記第1の無機充填材の含有量は、好ましくは1重量%以上、より好ましくは3重量%以上、好ましくは60重量%以下、より好ましくは40重量%以下である。上記第1の無機充填材と上記第2の無機充填材との合計100重量%中、上記第1の無機充填材の含有量は、5重量%以上であってもよく、10重量%以上であってもよい。
 上記第1の無機充填材と上記第2の無機充填材との合計100重量%中、上記第1の無機充填材の含有量が1重量%以上であると、第1の無機充填材の脱落によって形成されるアンカー数が多くなるため、接着強度をより一層効果的に高くすることができる。上記第1の無機充填材と上記第2の無機充填材との合計100重量%中、上記第1の無機充填材の含有量が60重量%以下であると、第1の無機充填材の過度な脱落が生じ難くなり、微細粗面の形成がより一層容易になる。また、上記第1の無機充填材の含有量が相対的に少なくなると、絶縁樹脂材料全体の機械強度が低下し難くなり、接着強度がより一層高くなる傾向がある。従って、上記重量比を満たすことにより、粗化処理した後でも接着強度をより一層効果的に高くすることができる。
 上記第1,第2のシランカップリング剤は、例えば、珪素原子に結合したメチル基などのアルキル基と、アルコキシ基と、アルキル基及びアルコキシ基ではない有機基とを有する。
 上記第1のシランカップリング剤の好適な例としては、例えば、下記式(1)で表されるシランカップリング剤が挙げられる。
 YSi(R1)(OR2)3-n …式(1)
 上記式(1)中、R1及びR2はそれぞれアルキル基を表し、Yはアルキル基及びアルコキシ基ではない有機基を表す。上記式(1)中のR1及びR2が表すアルキル基の炭素数は1~20であることが好ましく、1~8であることがより好ましく、1又は2であることが更に好ましい。上記式(1)中の上記有機基の炭素数は1~20であることが好ましく、1~10であることがより好ましい。上記式(1)中の上記有機基の炭素原子及び水素原子以外の原子の数は、1以上であってもよく、5以下であってもよく、3以下であってもよい。炭素原子及び水素原子以外の原子は、酸素原子、窒素原子、リン原子又は硫黄原子であることが好ましく、酸素原子又は窒素原子であることがより好ましい。上記式(1)中の上記有機基は、炭素原子と水素原子を含むことが好ましい。
 上記第2のシランカップリング剤の好適な例としては、例えば、下記式(2)で表されるシランカップリング剤が挙げられる。
 YSi(R1)(OR2)3-n …式(2)
 上記式(2)中、R1及びR2はそれぞれアルキル基を表し、Yはアルキル基及びアルコキシ基ではない有機基を表す。上記式(2)中のR1及びR2が表すアルキル基の炭素数は1~20であることが好ましく、1~8であることがより好ましく、1又は2であることが更に好ましい。上記式(2)中の上記有機基の炭素数は1~20であることが好ましく、1~10であることがより好ましい。上記式(2)中の上記有機基の炭素原子及び水素原子以外の原子の数は、0以上であり、1以上であってもよく、5以下であってもよく、3以下であってもよい。炭素原子及び水素原子以外の原子は、酸素原子、窒素原子又は硫黄原子であることが好ましく、酸素原子又は窒素原子であることがより好ましい。上記式(2)中の上記有機基は、炭素原子と水素原子を含むことが好ましい。
 第1,第2のシランカップリング剤による第1,第2の無機充填材の各表面処理量は第1,第2の無機充填材の表面積より算出される理論量以上であることが好ましく、(理論量×2.0)以下であることが好ましい。上記表面処理量が上記下限以上であると、樹脂と無機充填材との界面の密着性がより一層高くなって樹脂強度がより一層高くなり、硬化物と金属層との接着強度がより一層高くなる。上記表面処理量が上記上限以下であると、未反応の異種のシランカップリング剤による相互作用等による高粘度化が抑えられ、埋め込み性及び表面平滑性がより一層良好になる。
 [熱可塑性樹脂]
 上記絶縁樹脂材料は、熱可塑性樹脂を含まないか又は含む。上記絶縁樹脂材料は熱可塑性樹脂を含むことが好ましい。該熱可塑性樹脂は特に限定されない。該熱可塑性樹脂として、従来公知の熱可塑性樹脂を使用可能である。上記熱可塑性樹脂は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記熱可塑性樹脂としては、フェノキシ樹脂、ポリビニルアセタール樹脂、ゴム成分及び有機フィラー等が挙げられる。上記熱可塑性樹脂は、フェノキシ樹脂であることが特に好ましい。該フェノキシ樹脂の使用により、溶融粘度を調整可能であるために無機充填材の分散性が良好になり、かつ硬化過程で、意図しない領域に絶縁樹脂材料が濡れ拡がり難くなる。また、熱可塑性樹脂の使用により、絶縁樹脂材料の回路基板の穴又は凹凸に対する埋め込み性の悪化及び無機充填材の不均一化が抑えられる。
 上記フェノキシ樹脂としては、例えば、ビスフェノールA型の骨格、ビスフェノールF型の骨格、ビスフェノールS型の骨格、ビフェニル骨格、ノボラック骨格、ナフタレン骨格及びイミド骨格などの骨格を有するフェノキシ樹脂等が挙げられる。
 上記フェノキシ樹脂の市販品としては、例えば、東都化成社製の「YP50」、「YP55」及び「YP70」、並びに三菱化学社製の「1256B40」、「4250」、「4256H40」、「4275」、「YX6954BH30」及び「YX8100BH30」等が挙げられる。
 上記熱可塑性樹脂の重量平均分子量は、好ましくは5000以上、好ましくは100000以下である。上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。
 上記熱可塑性樹脂の含有量は特に限定されない。上記成分A100重量%中、上記熱可塑性樹脂の含有量(熱可塑性樹脂がフェノキシ樹脂である場合にはフェノキシ樹脂の含有量)は、好ましくは1重量%以上、より好ましくは5重量%以上、好ましくは30重量%以下、より好ましくは20重量%以下、更に好ましくは15重量%以下である。上記熱可塑性樹脂の含有量が上記下限以上及び上記上限以下であると、硬化物の熱膨張率がより一層低くなる。また、絶縁樹脂材料の回路基板の穴又は凹凸に対する埋め込み性が良好になる。上記熱可塑性樹脂の含有量が上記下限以上であると、絶縁樹脂材料の成膜性が高くなり、より一層良好な絶縁層が得られる。上記熱可塑性樹脂の含有量が上記上限以下であると、硬化物の表面の表面粗さがより一層小さくなり、硬化物と金属層との接着強度がより一層高くなる。
 [硬化促進剤]
 上記絶縁樹脂材料は、硬化促進剤を含まないか又は含む。上記絶縁樹脂材料は硬化促進剤を含むことが好ましい。上記硬化促進剤の使用により、硬化速度がより一層速くなる。絶縁樹脂材料を速やかに硬化させることで、硬化物における架橋構造が均一になると共に、未反応の官能基数が減り、結果的に架橋密度が高くなる。上記硬化促進剤は特に限定されず、従来公知の硬化促進剤を使用可能である。上記硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記硬化促進剤としては、例えば、イミダゾール化合物、リン化合物、アミン化合物及び有機金属化合物等が挙げられる。
 上記イミダゾール化合物としては、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1,2-ジメチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ジヒドロキシメチルイミダゾール等が挙げられる。
 上記リン化合物としては、トリフェニルホスフィン等が挙げられる。
 上記アミン化合物としては、ジエチルアミン、トリエチルアミン、ジエチレンテトラミン、トリエチレンテトラミン及び4,4-ジメチルアミノピリジン等が挙げられる。
 上記有機金属化合物としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)及びトリスアセチルアセトナートコバルト(III)等が挙げられる。
 上記硬化促進剤の含有量は特に限定されない。上記成分A100重量%中、上記硬化促進剤の含有量は好ましくは0.01重量%以上、好ましくは3重量%以下である。上記硬化促進剤の含有量が上記下限以上及び上記上限以下であると、絶縁樹脂材料が効率的に硬化する。
 [溶剤]
 上記絶縁樹脂材料は、溶剤を含まないか又は含む。上記溶剤の使用により、絶縁樹脂材料の粘度を好適な範囲に制御でき、樹脂組成物である絶縁樹脂材料の塗工性を高めることができる。また、上記溶剤は、上記無機充填材を含むスラリーを得るために用いられてもよい。上記溶剤は1種のみが用いられてもよく、2種以上が併用されてもよい。
 上記溶剤としては、アセトン、メタノール、エタノール、ブタノール、2-プロパノール、2-メトキシエタノール、2-エトキシエタノール、1-メトキシ-2-プロパノール、2-アセトキシ-1-メトキシプロパン、トルエン、キシレン、メチルエチルケトン、N,N-ジメチルホルムアミド、メチルイソブチルケトン、N-メチル-ピロリドン、n-ヘキサン、シクロヘキサン、シクロヘキサノン及び混合物であるナフサ等が挙げられる。
 上記溶剤の多くは、上記絶縁樹脂材料を硬化させる前又は硬化させるときに、除去されることが好ましい。従って、上記溶剤の沸点は好ましくは200℃以下、より好ましくは180℃以下である。上記絶縁樹脂材料における上記溶剤の含有量は特に限定されない。絶縁樹脂材料の塗工性などを考慮して、上記溶剤の含有量は適宜変更可能である。
 [他の成分]
 耐衝撃性、耐熱性、樹脂の相溶性及び作業性等の改善を目的として、上記絶縁樹脂材料には、難燃剤、カップリング剤、着色剤、酸化防止剤、紫外線劣化防止剤、消泡剤、増粘剤、揺変性付与剤及び上述した樹脂以外の他の樹脂等を添加してもよい。
 上記カップリング剤としては、シランカップリング剤、チタンカップリング剤及びアルミニウムカップリング剤等が挙げられる。上記シランカップリング剤としては、ビニルシラン、アミノシラン、イミダゾールシラン及びエポキシシラン等が挙げられる。
 上記カップリング剤の含有量は特に限定されない。上記成分A100重量%中、上記カップリング剤の含有量は好ましくは0.01重量%以上、好ましくは5重量%以下である。
 上記他の樹脂としては、ポリフェニレンエーテル樹脂、ジビニルベンジルエーテル樹脂、ポリアリレート樹脂、ジアリルフタレート樹脂、ポリイミド樹脂、ベンゾオキサジン樹脂、ベンゾオキサゾール樹脂、ビスマレイミド樹脂及びアクリレート樹脂等が挙げられる。
 (Bステージフィルムである絶縁樹脂材料)
 上記樹脂組成物をフィルム状に成形する方法としては、例えば、押出機を用いて、樹脂組成物を溶融混練し、押出した後、Tダイ又はサーキュラーダイ等により、フィルム状に成形する押出成形法、樹脂組成物を溶剤に溶解又は分散させた後、キャスティングしてフィルム状に成形するキャスティング成形法、並びに従来公知のその他のフィルム成形法等が挙げられる。なかでも、薄型化に対応可能であることから、押出成形法又はキャスティング成形法が好ましい。フィルムにはシートが含まれる。
 上記樹脂組成物をフィルム状に成形し、熱による硬化が進行し過ぎない程度に、例えば90~200℃で1~180分間加熱乾燥させることにより、Bステージフィルムを得ることができる。
 上述のような乾燥工程により得ることができるフィルム状の樹脂組成物をBステージフィルムと称する。上記Bステージフィルムは、半硬化状態にある半硬化物である。半硬化物は、完全に硬化しておらず、硬化がさらに進行され得る。
 上記Bステージフィルムは、プリプレグでなくてもよい。上記Bステージフィルムがプリプレグではない場合には、ガラスクロスなどに沿ってマイグレーションが生じなくなる。また、Bステージフィルムをラミネート又はプレキュアする際に、表面にガラスクロスに起因する凹凸が生じなくなる。また、本発明に係る絶縁樹脂材料をプリプレグを含まないBステージフィルムとすることで、硬化物の熱による寸法変化が小さくなり、形状保持性が高くなり、セミアディティブプロセス適性が高くなる。
 上記樹脂組成物は、基材と、該基材の一方の表面に積層されたBステージフィルムとを備える積層フィルムを形成するために好適に用いることができる。積層フィルムのBステージフィルムが、上記樹脂組成物により形成される。
 上記積層フィルムの上記基材としては、ポリエチレンテレフタレートフィルム及びポリブチレンテレフタレートフィルムなどのポリエステル樹脂フィルム、ポリエチレンフィルム及びポリプロピレンフィルムなどのオレフィン樹脂フィルム、ポリイミド樹脂フィルム、銅箔及びアルミニウム箔などの金属箔等が挙げられる。上記基材の表面は、必要に応じて、離型処理されていてもよい。
 上記絶縁樹脂材料を回路の絶縁層として用いる場合、絶縁樹脂材料により形成された絶縁層の厚さは、回路を形成する導体層(金属層)の厚さ以上であることが好ましい。上記絶縁樹脂材料により形成された絶縁層の厚さは、好ましくは5μm以上、好ましくは200μm以下である。
 (プリント配線板)
 上記絶縁樹脂材料は、プリント配線板において絶縁層を形成するために好適に用いられる。
 上記プリント配線板は、例えば、上記樹脂組成物により形成されたBステージフィルムを用いて、該Bステージフィルムを加熱加圧成形することにより得られる。
 上記Bステージフィルムに対して、片面又は両面に金属箔を積層できる。上記Bステージフィルムと金属箔とを積層する方法は特に限定されず、公知の方法を用いることができる。例えば、平行平板プレス機又はロールラミネーター等の装置を用いて、加熱しながら又は加熱せずに加圧しながら、上記Bステージフィルムを金属箔に積層可能である。
 (銅張り積層板及び多層基板)
 上記絶縁樹脂材料は、銅張り積層板を得るために好適に用いられる。上記銅張り積層板の一例として、銅箔と、該銅箔の一方の表面に積層されたBステージフィルムとを備える銅張り積層板が挙げられる。この銅張り積層板のBステージフィルムが、上記絶縁樹脂材料により形成される。
 上記銅張り積層板の上記銅箔の厚さは特に限定されない。上記銅箔の厚さは、1~50μmの範囲内であることが好ましい。また、絶縁樹脂材料を硬化させた絶縁層と銅箔との接着強度を高めるために、上記銅箔は微細な凹凸を表面に有することが好ましい。凹凸の形成方法は特に限定されない。上記凹凸の形成方法としては、公知の薬液を用いた処理による形成方法等が挙げられる。
 また、上記絶縁樹脂材料は、多層基板を得るために好適に用いられる。上記多層基板の一例として、回路基板と、該回路基板の表面上に積層された絶縁層とを備える多層基板が挙げられる。この多層基板の絶縁層が、上記絶縁樹脂材料を硬化させることにより形成される。上記絶縁層は、回路基板の回路が設けられた表面上に積層されていることが好ましい。上記絶縁層の一部は、上記回路間に埋め込まれていることが好ましい。
 上記多層基板では、上記絶縁層の上記回路基板が積層された表面とは反対側の表面が粗化処理されていることが好ましい。
 粗化処理方法は、従来公知の粗化処理方法を用いることができ特に限定されない。上記絶縁層の表面は、粗化処理の前に膨潤処理されていてもよい。
 また、上記多層基板は、上記絶縁層の粗化処理された表面に積層された銅めっき層をさらに備えることが好ましい。
 また、上記多層基板の他の例として、回路基板と、該回路基板の表面上に積層された絶縁層と、該絶縁層の上記回路基板が積層された表面とは反対側の表面に積層された銅箔とを備える多層基板が挙げられる。上記絶縁層及び上記銅箔が、銅箔と該銅箔の一方の表面に積層されたBステージフィルムとを備える銅張り積層板を用いて、上記Bステージフィルムを硬化させることにより形成されていることが好ましい。さらに、上記銅箔はエッチング処理されており、銅回路であることが好ましい。
 上記多層基板の他の例として、回路基板と、該回路基板の表面上に積層された複数の絶縁層とを備える多層基板が挙げられる。上記回路基板上に配置された上記複数層の絶縁層の内の少なくとも1層が、上記絶縁樹脂材料を硬化させることにより形成される。上記多層基板は、上記絶縁樹脂材料を硬化させることにより形成されている上記絶縁層の少なくとも一方の表面に積層されている回路をさらに備えることが好ましい。
 図1に、本発明の一実施形態に係る絶縁樹脂材料を用いた多層基板を模式的に部分切欠正面断面図で示す。
 図1に示す多層基板11では、回路基板12の上面12aに、複数層の絶縁層13~16が積層されている。絶縁層13~16は、絶縁層である。回路基板12の上面12aの一部の領域には、金属層17が形成されている。複数層の絶縁層13~16のうち、回路基板12側とは反対の外側の表面に位置する絶縁層16以外の絶縁層13~15には、上面の一部の領域に金属層17が形成されている。金属層17は回路である。回路基板12と絶縁層13の間、及び積層された絶縁層13~16の各層間に、金属層17がそれぞれ配置されている。下方の金属層17と上方の金属層17とは、図示しないビアホール接続及びスルーホール接続の内の少なくとも一方により互いに接続されている。
 多層基板11では、絶縁層13~16が、本発明に係る絶縁樹脂材料を硬化させることにより形成されている。本実施形態では、絶縁層13~16の表面が粗化処理されているので、絶縁層13~16の表面に図示しない微細な孔が形成されている。また、微細な孔の内部に金属層17が至っている。また、多層基板11では、金属層17の幅方向寸法(L)と、金属層17が形成されていない部分の幅方向寸法(S)とを小さくすることができる。また、多層基板11では、図示しないビアホール接続及びスルーホール接続で接続されていない上方の金属層と下方の金属層との間に、良好な絶縁信頼性が付与されている。
 (粗化処理及び膨潤処理)
 上記絶縁樹脂材料は、粗化処理又はデスミア処理される硬化物を得るために用いられることが好ましい。上記硬化物には、更に硬化が可能な予備硬化物も含まれる。
 本発明に係る絶縁樹脂材料を予備硬化させることにより得られた硬化物の表面に微細な凹凸を形成するために、硬化物は粗化処理されることが好ましい。粗化処理の前に、硬化物は膨潤処理されることが好ましい。硬化物は、予備硬化の後、かつ粗化処理される前に、膨潤処理されており、さらに粗化処理の後に硬化されていることが好ましい。ただし、硬化物は、必ずしも膨潤処理されなくてもよい。
 上記膨潤処理の方法としては、例えば、エチレングリコールなどを主成分とする化合物の水溶液又は有機溶媒分散溶液などにより、硬化物を処理する方法が用いられる。膨潤処理に用いる膨潤液は、一般にpH調整剤などとして、アルカリを含む。膨潤液は、水酸化ナトリウムを含むことが好ましい。具体的には、例えば、上記膨潤処理は、40重量%エチレングリコール水溶液等を用いて、処理温度30~85℃で1~30分間、硬化物を処理することにより行なわれる。上記膨潤処理の温度は50~85℃の範囲内であることが好ましい。上記膨潤処理の温度が低すぎると、膨潤処理に長時間を要し、更に硬化物と金属層との接着強度が低くなる傾向がある。
 上記粗化処理には、例えば、マンガン化合物、クロム化合物又は過硫酸化合物などの化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。粗化処理に用いられる粗化液は、一般にpH調整剤などとしてアルカリを含む。粗化液は、水酸化ナトリウムを含むことが好ましい。
 上記マンガン化合物としては、過マンガン酸カリウム及び過マンガン酸ナトリウム等が挙げられる。上記クロム化合物としては、重クロム酸カリウム及び無水クロム酸カリウム等が挙げられる。上記過硫酸化合物としては、過硫酸ナトリウム、過硫酸カリウム及び過硫酸アンモニウム等が挙げられる。
 上記粗化処理の方法は特に限定されない。上記粗化処理の方法として、例えば、30~90g/L過マンガン酸又は過マンガン酸塩溶液及び30~90g/L水酸化ナトリウム溶液を用いて、処理温度30~85℃及び1~30分間の条件で、1回又は2回、硬化物を処理する方法が好適である。上記粗化処理の温度は50~85℃の範囲内であることが好ましい。
 硬化物の表面の算術平均粗さRaは好ましくは50nm以上、好ましくは350nm以下である。この場合には、硬化物と金属層又は配線との接着強度が高くなり、更に絶縁層の表面により一層微細な配線が形成される。
 (デスミア処理)
 上記絶縁樹脂材料を予備硬化させることにより得られた硬化物に、貫通孔が形成されることがある。上記多層基板などでは、貫通孔として、ビア又はスルーホール等が形成される。例えば、ビアは、COレーザー等のレーザーの照射により形成できる。ビアの直径は特に限定されないが、60~80μm程度である。上記貫通孔の形成により、ビア内の底部には、硬化物に含まれている樹脂成分に由来する樹脂の残渣であるスミアが形成されることが多い。
 上記スミアを除去するために、硬化物の表面は、デスミア処理されることが好ましい。デスミア処理が粗化処理を兼ねることもある。
 上記デスミア処理には、上記粗化処理と同様に、例えば、マンガン化合物、クロム化合物又は過硫酸化合物などの化学酸化剤等が用いられる。これらの化学酸化剤は、水又は有機溶剤が添加された後、水溶液又は有機溶媒分散溶液として用いられる。デスミア処理に用いられるデスミア処理液は、一般にアルカリを含む。デスミア処理液は、水酸化ナトリウムを含むことが好ましい。
 上記デスミア処理の方法は特に限定されない。上記デスミア処理の方法として、例えば、30~90g/L過マンガン酸又は過マンガン酸塩溶液及び30~90g/L水酸化ナトリウム溶液を用いて、処理温度30~85℃及び1~30分間の条件で、1回又は2回、硬化物を処理する方法が好適である。上記デスミア処理の温度は50~85℃の範囲内であることが好ましい。
 上記絶縁樹脂材料の使用により、デスミア処理された硬化物の表面の表面粗さが十分に小さくなる。
 以下、実施例及び比較例を挙げることにより、本発明を具体的に説明する。本発明は、以下の実施例に限定されない。
 (熱硬化性樹脂)
 (1)ビスフェノールA型エポキシ樹脂(DIC社製「850-S」、エポキシ当量187、SP値10.42)
 (2)ビスフェノールF型エポキシ樹脂(DIC社製「830-S」、エポキシ当量169、SP値10.83)
 (3)ビフェニル型エポキシ樹脂(日本化薬社製「NC-3000-H」、エポキシ当量290、SP値11.64)
 (4)ビフェニル型エポキシ樹脂含有液(日本化薬社製「NC-3000-FH-75M」、エポキシ当量330、SP値11.64、固形分75重量%とメチルエチルケトン25重量%とを含む)
 (硬化剤)
 (1)シアネートエステル硬化剤含有液(ロンザジャパン社製「BA-230S」、固形分75重量%とメチルエチルケトン25重量%とを含む、シアネートエステル当量235)
 (2)ビフェニルノボラック型フェノール硬化剤(明和化成社製「MEH-7851-4H」、水酸基当量240)
 (3)活性エステル化合物含有液(DIC社製「EXB9416-70BK」、固形分70重量%とメチルイソブチルケトン30重量%とを含む、活性エステル基当量330)
 (4)アミノトリアジン骨格を有するフェノール硬化剤含有液(DIC社製「LA-1356」、固形分60重量%とメチルエチルケトン40重量%とを含む、フェノール性水酸基当量146)
 (硬化促進剤)
 (1)イミダゾール化合物(2-フェニル-4-メチルイミダゾール、四国化成工業社製「2P4MZ」)
 (熱可塑性樹脂)
 (1)フェノキシ樹脂含有液(三菱化学社製「YX6954BH30」、固形分30重量%とメチルエチルケトン35重量%とシクロヘキサノン35重量%とを含む)
 (無機充填材)
 (1)球状シリカ1(アドマテックス社製「SOC2」100重量部をN-フェニル-3-アミノプロピル基(SP値10.30)を有するシランカップリング剤(信越化学工業社製「KBM-573」)0.6重量部によって表面処理した球状シリカ、平均粒子径0.5μm)
 (2)球状シリカ2(アドマテックス社製「SOC2」100重量部をビニル基(SP値7.00)を有するシランカップリング剤(信越化学工業社製「KBM-1003」)0.6重量部によって表面処理した球状シリカ、平均粒子径0.5μm)
 (3)球状シリカ3(アドマテックス社製「SOC2」100重量部を3-グリシドキシプロピル基(SP値9.29)を有するシランカップリング剤(信越化学工業社製「KBM-403」)0.6重量部によって表面処理した球状シリカ、平均粒子径0.5μm)
 (4)球状シリカ4(アドマテックス社製「SOC2」100重量部を3-メタクリロキシプロピル基(SP値9.48)を有するシランカップリング剤(信越化学工業社製「KBM-503」)0.6重量部によって表面処理した球状シリカ、平均粒子径0.5μm)
 (5)球状シリカ5(アドマテックス社製「SOC2」100重量部を特殊骨格イミダゾール基(SP値10.77)を有するシランカップリング剤(JX日鉱日石金属社製「IM-1000」)0.6重量部によって表面処理した球状シリカ、平均粒子径0.5μm)
 (6)球状シリカ6(アドマテックス社製「SOC1」100重量部をN-フェニル-3-アミノプロピル基(SP値10.30)を有するシランカップリング剤(信越化学工業社製「KBM-573」)1.0重量部によって表面処理した球状シリカ、平均粒子径0.25μm)
 (7)球状シリカ7(アドマテックス社製「SOC1」100重量部をビニル基(SP値7.00)を有するシランカップリング剤(信越化学工業社製「KBM-1003」)1.0重量部によって表面処理した球状シリカ、平均粒子径0.25μm)
 (8)球状シリカ8(アドマテックス社製「SOC1」100重量部を3-グリシドキシプロピル基(SP値9.29)を有するシランカップリング剤(信越化学工業社製「KBM-403」)1.0重量部によって表面処理した球状シリカ、平均粒子径0.25μm)
 (9)球状シリカ9(アドマテックス社製「SOC4」100重量部をN-フェニル-3-アミノプロピル基(SP値10.30)を有するシランカップリング剤(信越化学工業社製「KBM-573」)0.4重量部によって表面処理した球状シリカ、平均粒子径1.0μm)
 (10)球状シリカ10(アドマテックス社製「SOC5」100重量部をN-フェニル-3-アミノプロピル基(SP値10.30)を有するシランカップリング剤(信越化学工業社製「KBM-573」)0.4重量部によって表面処理した球状シリカ、平均粒子径1.5μm)
 (溶剤)
 (1)溶剤(CHN、シクロヘキサノン、和光純薬工業社製「037-05096」)
 (実施例1)
 シアネートエステル硬化剤含有液(ロンザジャパン社製「BA-230S」)6.8重量部(固形分で5.1重量部)に、ビスフェノールA型エポキシ樹脂(DIC社製「850-S」)7.2重量部と、ビフェニル型エポキシ樹脂含有液(日本化薬社製「NC-3000-FH-75M」)8重量部(固形分で6重量部)と、イミダゾール化合物(四国化成工業社製「2P4MZ」)0.3重量部と、フェノキシ樹脂含有液(三菱化学社製「YX6954BH30」)7.5重量部(固形分で2.25重量部)と、球状シリカ(アドマテックス社製「SOC2」をN-フェニル-3-アミノプロピル基(SP値10.30)を有するシランカップリング剤(信越化学工業社製「KBM-573」)で表面処理した球状シリカ)35.0重量部と、球状シリカ(アドマテックス社製「SOC1」を3-グリシドキシプロピル基(SP値9.29)を有するシランカップリング剤(信越化学工業社製「KBM-403」で表面処理した球状シリカ)6.0重量部と、シクロヘキサノン(和光純薬工業社製「037-05096」)29.2重量部とを混合し、均一な溶液となるまで常温で攪拌し、樹脂組成物ワニスを得た。
 アプリケーターを用いて、PETフィルム(東レ社製「XG284」、厚み25μm)の離型処理面上に得られた樹脂組成物ワニスを塗工した後、100℃のギアオーブン内で2分間乾燥し、溶剤を揮発させた。このようにして、PETフィルム上に、厚さが40μmであり、溶剤の残量が1.0重量%以上、4.0重量%以下であるシート状の成形体(絶縁樹脂材料)を得た。
 (実施例2~15及び比較例1~4)
 使用した配合成分の種類及び配合量(重量部)を下記の表1,2に示すように変更したこと以外は実施例1と同様にして、樹脂組成物ワニス及びシート状の成形体を作製した。
 (評価)
 (1)硬化物の表面の表面粗さ
 積層板の下地処理:
 エッチングにより内層回路を形成したガラスエポキシ基板(利昌工業社製「CS-3665」)の両面を銅表面粗化剤(メック社製「メックエッチボンド CZ-8100」)に浸漬して、銅表面を粗化処理した。
 ラミネート:
 得られたPETフィルムとシート状の成形体との積層体を、シート状の成形体側から上記ガラスエポキシ基板の両面にセットして、ダイアフラム式真空ラミネーター(名機製作所社製「MVLP-500」)を用いて、上記ガラスエポキシ基板の両面にラミネートした。ラミネートは、20秒減圧して気圧を13hPa以下とし、その後20秒間を100℃、圧力0.8MPaでプレスすることにより行った。
 シート状の成形体の硬化:
 シート状の成形体からPETフィルムを剥離した。次に、170℃及び60分の硬化条件でシート状の成形体を硬化させ、積層サンプルを得た。
 膨潤処理:
 60℃の膨潤液(アトテックジャパン社製「スウェリングディップセキュリガントP」と和光純薬工業社製「水酸化ナトリウム」とから調製された水溶液)に、上記積層サンプルを入れて、膨潤温度60℃で20分間揺動させた。その後、純水で洗浄した。
 粗化処理(過マンガン酸塩処理):
 80℃の過マンガン酸ナトリウム粗化水溶液(アトテックジャパン社製「コンセントレートコンパクトCP」、和光純薬工業社製「水酸化ナトリウム」)に、膨潤処理された上記積層サンプルを入れて、粗化温度80℃で20分間揺動させた。その後、40℃の洗浄液(アトテックジャパン社製「リダクションセキュリガントP」、和光純薬工業社製「硫酸」)により10分間洗浄した後、純水でさらに洗浄した。このようにして、エッチングにより内層回路を形成したガラスエポキシ基板上に、粗化処理された硬化物を形成した。
 粗化処理された硬化物の表面の算術平均粗さRaを、非接触式の表面粗さ計(ビーコ社製「WYKO」)を用いて測定した。算術平均粗さRaは、JIS B0601-1994に準拠した。
 [硬化物の表面の表面粗さの判定基準]
 ○:Raが100nm未満
 △:Raが100nm以上、200nm未満
 ×:Raが200nm以上
 (2)接着強度(ピール強度)
 上記(1)硬化物の表面の表面粗さの測定で得られた粗化処理された硬化物を用意した。
 無電解めっき処理:
 上記粗化処理された硬化物の表面を、60℃のアルカリクリーナ(アトテックジャパン社製「クリーナーセキュリガント902」)で5分間処理し、脱脂洗浄した。洗浄後、上記硬化物を25℃のプリディップ液(アトテックジャパン社製「プリディップネオガントB」)で2分間処理した。その後、上記硬化物を40℃のアクチベーター液(アトテックジャパン社製「アクチベーターネオガント834」)で5分間処理し、パラジウム触媒を付けた。次に、30℃の還元液(アトテックジャパン社製「リデューサーネオガントWA」)により、硬化物を5分間処理した。
 次に、上記硬化物を化学銅液(全てアトテックジャパン社製「ベーシックプリントガントMSK-DK」、「カッパープリントガントMSK」、「スタビライザープリントガントMSK」、「リデューサーCu」)に入れ、無電解めっきをめっき厚さが0.5μm程度になるまで実施した。無電解めっき後に、残留している水素ガスを除去するため、120℃の温度で30分間アニールをかけた。無電解めっきの工程までのすべての工程は、ビーカースケールで処理液を2Lとし、硬化物を揺動させながら実施した。
 次に、無電解めっき処理された硬化物に、電解めっきをめっき厚さが25μmとなるまで実施した。電解銅めっきとして硫酸銅溶液(和光純薬工業社製「硫酸銅五水和物」、和光純薬工業社製「硫酸」、アトテックジャパン社製「ベーシックレベラーカパラシド HL」、アトテックジャパン社製「補正剤カパラシド GS」)を用いて、0.6A/cmの電流を流しめっき厚さが25μm程度となるまで電解めっきを実施した。銅めっき処理後、硬化物を190℃で2時間加熱し、硬化物を更に硬化させた。このようにして、銅めっき層が上面に積層された硬化物を得た。
 得られた銅めっき層が積層された硬化物において、銅めっき層の表面に、10mm幅に切り欠きを入れた。その後、引張試験機(島津製作所社製「AG-5000B」)を用いて、クロスヘッド速度5mm/分の条件で、硬化物と銅めっき層との接着強度(ピール強度)を測定した。
 [接着強度の判定基準]
 ○:5.9N/cm以上
 △:4.9N/cm以上、5.9N/cm未満
 ×:4.9N/cm未満
 (3)埋め込み性(ラミネート性)
 銅張り積層板(厚さ150μmのガラスエポキシ基板と厚さ35μmの銅箔との積層体)を用意した。銅箔をエッチング処理し、L/Sが50μm/50μm及び長さが1cmである銅パターンを26本作製し、凹凸基板を得た。
 得られたシート状の成形体を凹凸基板の凹凸表面に重ねて、真空加圧式ラミネーター機(名機製作所社製「MVLP-500」)を用いて、ラミネート圧0.4MPa及びラミネート温度90℃で20秒間ラミネートし、更にプレス圧力0.8MPa及びプレス温度90℃で20秒間プレスした。このようにして、凹凸基板上にシート状の成形体が積層されている積層体を得た。
 得られた積層体において、シート状の成形体を170℃で60分間硬化させ、更に190℃で180分間硬化させて、硬化物を得た。
 積層体の状態で、Veeco社製「WYKO」を用いて、硬化物の上面の凹凸の値を測定した。具体的には、凹凸の隣り合う凹部部分と凸部部分との高低差の最大値を、凹凸の値として採用した。埋め込み性を下記の基準で判定した。
 [埋め込み性の判定基準]
 ○:凹凸の値が0.3μm以下
 △:凹凸の値が0.3μmを超え、0.5μm以下
 ×:凹凸の値が0.5μmを超える
 (4)平均線膨張率(CTE)
 PETフィルム上で得られたシート状の成形体を、170℃及び60分の硬化条件で硬化させ、更に190℃2時間加熱した。その後、PETフィルムを剥離することにより、シート状の硬化物を得た。得られた硬化物を、3mm×25mmの大きさに裁断した。熱機械的分析装置(エスアイアイ・ナノテクノロジー社製「EXSTAR TMA/SS6100」)を用いて、引っ張り荷重33mN、昇温速度5℃/分の条件で、裁断された硬化物の25℃から150℃までの平均線膨張率(ppm/℃)を算出した。
 結果を下記の表1,2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 11…多層基板
 12…回路基板
 12a…上面
 13~16…絶縁層
 17…金属層(配線)

Claims (9)

  1.  少なくとも1種の熱硬化性樹脂と、硬化剤と、第1のシランカップリング剤で表面処理された第1の無機充填材と、第2のシランカップリング剤で表面処理された第2の無機充填材とを含み、
     絶縁樹脂材料中の前記熱硬化性樹脂のうち最も含有量が多い熱硬化性樹脂のSP値と前記第1のシランカップリング剤の珪素原子に直接結合しておりかつアルキル基及びアルコキシ基ではない有機基のSP値との差の絶対値をSP(A)とし、絶縁樹脂材料中の前記熱硬化性樹脂のうち最も含有量が多い熱硬化性樹脂のSP値と前記第2のシランカップリング剤の珪素原子に直接結合しておりかつアルキル基及びアルコキシ基ではない有機基のSP値との差の絶対値をSP(B)としたときに、(SP(A)-SP(B))が0.5以上、3.5以下である、絶縁樹脂材料。
  2.  絶縁樹脂材料中の前記熱硬化性樹脂のうち最も含有量が多い熱硬化性樹脂が、エポキシ樹脂である、請求項1に記載の絶縁樹脂材料。
  3.  前記第1の無機充填材と前記第2の無機充填材とを重量比で3:97~50:50で含む、請求項1又は2に記載の絶縁樹脂材料。
  4.  絶縁樹脂材料に含まれる前記熱硬化性樹脂の全体100重量%中、絶縁樹脂材料中の前記熱硬化性樹脂のうち最も含有量が多い熱硬化性樹脂の含有量が50重量%以上、100重量%以下である、請求項1~3のいずれか1項に記載の絶縁樹脂材料。
  5.  溶剤を含まないか又は含み、
     絶縁樹脂材料に含まれる前記無機充填材と前記溶剤とを除く成分100重量%中、前記熱硬化性樹脂の全体の含有量が10重量%以上、95重量%以下である、請求項1~4のいずれか1項に記載の絶縁樹脂材料。
  6.  溶剤を含まないか又は含み、
     絶縁樹脂材料に含まれる前記溶剤を除く成分100重量%中、前記無機充填材の含有量が40重量%以上、85重量%以下である、請求項1~5のいずれか1項に記載の絶縁樹脂材料。
  7.  粗化処理又はデスミア処理される硬化物を得るために用いられる、請求項1~6のいずれか1項に記載の絶縁樹脂材料。
  8.  フィルム状に成形されたBステージフィルムである、請求項1~7のいずれか1項に記載の絶縁樹脂材料。
  9.  回路基板と、
     前記回路基板上に配置された絶縁層とを備え、
     前記絶縁層が、請求項1~8のいずれか1項に記載の絶縁樹脂材料を硬化させることにより形成されている、多層基板。
PCT/JP2013/073636 2012-09-07 2013-09-03 絶縁樹脂材料及び多層基板 WO2014038534A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380039729.3A CN104508760B (zh) 2012-09-07 2013-09-03 绝缘树脂材料及多层基板
US14/425,367 US9382445B2 (en) 2012-09-07 2013-09-03 Insulating resin material and multilayer substrate
JP2014534358A JP5629407B2 (ja) 2012-09-07 2013-09-03 絶縁樹脂材料及び多層基板
KR1020147032096A KR101560518B1 (ko) 2012-09-07 2013-09-03 절연 수지 재료 및 다층 기판

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-196853 2012-09-07
JP2012196853 2012-09-07
JP2013030007 2013-02-19
JP2013-030007 2013-02-19

Publications (1)

Publication Number Publication Date
WO2014038534A1 true WO2014038534A1 (ja) 2014-03-13

Family

ID=50237143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/073636 WO2014038534A1 (ja) 2012-09-07 2013-09-03 絶縁樹脂材料及び多層基板

Country Status (6)

Country Link
US (1) US9382445B2 (ja)
JP (1) JP5629407B2 (ja)
KR (1) KR101560518B1 (ja)
CN (1) CN104508760B (ja)
TW (1) TWI570147B (ja)
WO (1) WO2014038534A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160854A (ja) * 2014-02-26 2015-09-07 日本ゼオン株式会社 硬化性エポキシ組成物、フィルム、積層フィルム、プリプレグ、積層体、硬化物、及び複合体
US20180163048A1 (en) * 2015-07-06 2018-06-14 Mitsubishi Gas Chemical Company, Inc. Method for producing printed circuit board, and resin composition
JP2018172519A (ja) * 2017-03-31 2018-11-08 住友ベークライト株式会社 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、プリント配線基板および半導体装置
WO2019026927A1 (ja) * 2017-08-02 2019-02-07 パナソニックIpマネジメント株式会社 熱硬化性組成物、樹脂シート、樹脂付き金属箔、金属張積層板、及びプリント配線板

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6391851B2 (ja) * 2016-09-29 2018-09-19 積水化学工業株式会社 層間絶縁材料及び多層プリント配線板
US10767051B2 (en) * 2016-09-29 2020-09-08 Sekisui Chemical Co., Ltd. Cured body and multilayered substrate
US11548264B2 (en) 2018-04-17 2023-01-10 Sekisui Chemical Co., Ltd. Insulation sheet, laminate, and substrate
CN112237054A (zh) * 2018-05-09 2021-01-15 昭和电工材料株式会社 带支承体的层间绝缘层用树脂膜、多层印刷线路板及多层印刷线路板的制造方法
WO2019240083A1 (ja) * 2018-06-12 2019-12-19 積水化学工業株式会社 樹脂材料及び多層プリント配線板
TWI861082B (zh) * 2019-03-27 2024-11-11 日商積水化學工業股份有限公司 樹脂材料及多層印刷佈線板
CN115298231B (zh) * 2020-03-26 2024-11-05 积水化学工业株式会社 树脂粒子、导电性粒子、导电材料和连接结构体
CN115074711B (zh) * 2022-05-30 2023-10-27 华南理工大学 一种在环氧树脂表面制备高结合力金属层的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126636A (ja) * 2005-10-03 2007-05-24 Canon Inc 光学用複合材料及び光学素子
JP2008075069A (ja) * 2006-08-23 2008-04-03 Toshiba Corp 注型樹脂組成物およびそれを用いた絶縁材料、絶縁構造体
JP2009013384A (ja) * 2007-07-09 2009-01-22 Nippon Paint Co Ltd 易滑性アンチブロッキング光硬化性樹脂組成物、それを基材上に被覆硬化したアンチブロッキング性構造体およびその製法
JP2010013580A (ja) * 2008-07-04 2010-01-21 Toyota Industries Corp 高熱伝導性複合体およびその製造方法
JP2012516903A (ja) * 2009-02-03 2012-07-26 フイナ・テクノロジー・インコーポレーテツド 重合体および選択された層状化合物を含んでなる複合体並びにそれらの製造および使用方法
JP2013010899A (ja) * 2011-06-30 2013-01-17 Sekisui Chem Co Ltd 樹脂ワニス、ろ過処理樹脂ワニス及びその製造方法、積層フィルム並びに多層基板
WO2013121571A1 (ja) * 2012-02-17 2013-08-22 株式会社日立製作所 電気絶縁用樹脂組成物及びその硬化物並びにこれらの製造方法並びにこれらを用いた高電圧機器及び送配電機器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100393410B1 (ko) 2000-12-18 2003-07-31 정도화성 주식회사 난연성 고강도 에폭시 수지 조성물
CN1333015C (zh) 2002-02-06 2007-08-22 积水化学工业株式会社 树脂组合物
US6808808B2 (en) * 2003-01-14 2004-10-26 Freeman Gary M Coating composition containing surface treated clay mixture, the surface treated clay mixture used therefor, and methods of their use
JP2004277735A (ja) 2003-02-27 2004-10-07 Sanyo Chem Ind Ltd 硬化性樹脂組成物およびその硬化物
CN101506301A (zh) * 2006-08-23 2009-08-12 株式会社东芝 浇铸型树脂组合物及采用它的绝缘材料、绝缘结构体
JP2008056873A (ja) * 2006-09-04 2008-03-13 Kri Inc ナノコンポジットおよびその製造方法
JP5016401B2 (ja) 2007-06-11 2012-09-05 積水化学工業株式会社 多層絶縁フィルム
JP5558702B2 (ja) * 2008-12-05 2014-07-23 ダイセル・エボニック株式会社 球状複合粒子およびその製造方法
CN103717671B (zh) * 2011-07-29 2017-03-29 日本瑞翁株式会社 聚合性组合物、树脂成形体及其制造方法以及层叠体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007126636A (ja) * 2005-10-03 2007-05-24 Canon Inc 光学用複合材料及び光学素子
JP2008075069A (ja) * 2006-08-23 2008-04-03 Toshiba Corp 注型樹脂組成物およびそれを用いた絶縁材料、絶縁構造体
JP2009013384A (ja) * 2007-07-09 2009-01-22 Nippon Paint Co Ltd 易滑性アンチブロッキング光硬化性樹脂組成物、それを基材上に被覆硬化したアンチブロッキング性構造体およびその製法
JP2010013580A (ja) * 2008-07-04 2010-01-21 Toyota Industries Corp 高熱伝導性複合体およびその製造方法
JP2012516903A (ja) * 2009-02-03 2012-07-26 フイナ・テクノロジー・インコーポレーテツド 重合体および選択された層状化合物を含んでなる複合体並びにそれらの製造および使用方法
JP2013010899A (ja) * 2011-06-30 2013-01-17 Sekisui Chem Co Ltd 樹脂ワニス、ろ過処理樹脂ワニス及びその製造方法、積層フィルム並びに多層基板
WO2013121571A1 (ja) * 2012-02-17 2013-08-22 株式会社日立製作所 電気絶縁用樹脂組成物及びその硬化物並びにこれらの製造方法並びにこれらを用いた高電圧機器及び送配電機器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160854A (ja) * 2014-02-26 2015-09-07 日本ゼオン株式会社 硬化性エポキシ組成物、フィルム、積層フィルム、プリプレグ、積層体、硬化物、及び複合体
US20180163048A1 (en) * 2015-07-06 2018-06-14 Mitsubishi Gas Chemical Company, Inc. Method for producing printed circuit board, and resin composition
JP2018172519A (ja) * 2017-03-31 2018-11-08 住友ベークライト株式会社 熱硬化性樹脂組成物、キャリア付樹脂膜、プリプレグ、プリント配線基板および半導体装置
WO2019026927A1 (ja) * 2017-08-02 2019-02-07 パナソニックIpマネジメント株式会社 熱硬化性組成物、樹脂シート、樹脂付き金属箔、金属張積層板、及びプリント配線板

Also Published As

Publication number Publication date
JPWO2014038534A1 (ja) 2016-08-08
US20150210884A1 (en) 2015-07-30
CN104508760B (zh) 2016-11-09
US9382445B2 (en) 2016-07-05
TW201418312A (zh) 2014-05-16
JP5629407B2 (ja) 2014-11-19
TWI570147B (zh) 2017-02-11
KR101560518B1 (ko) 2015-10-14
KR20150002834A (ko) 2015-01-07
CN104508760A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5629407B2 (ja) 絶縁樹脂材料及び多層基板
JP4938910B1 (ja) 予備硬化物、粗化予備硬化物及び積層体
WO2018062404A1 (ja) 層間絶縁材料及び多層プリント配線板
JP6408847B2 (ja) 樹脂組成物
KR102508097B1 (ko) 수지 재료, 적층 필름 및 다층 프린트 배선판
JP6931542B2 (ja) 樹脂組成物の硬化物、樹脂組成物及び多層基板
JP2013040298A (ja) エポキシ樹脂材料及び多層基板
JP2024009109A (ja) 樹脂材料及び多層プリント配線板
JP5752071B2 (ja) Bステージフィルム及び多層基板
JP5799174B2 (ja) 絶縁樹脂フィルム、予備硬化物、積層体及び多層基板
JP6867131B2 (ja) 積層体及び積層体の製造方法
JP2014062150A (ja) 絶縁樹脂フィルム、絶縁樹脂フィルムの製造方法、予備硬化物、積層体及び多層基板
WO2016047682A1 (ja) 樹脂フィルム及び積層フィルム
JP6159627B2 (ja) 樹脂組成物、樹脂フィルム及び多層基板
JP5727403B2 (ja) 積層体及び多層基板
JP7254528B2 (ja) 樹脂材料及び多層プリント配線板
JP6084854B2 (ja) 多層プリント配線板用エポキシ樹脂材料及び多層プリント配線板
JP6559520B2 (ja) 樹脂組成物、樹脂フィルム、積層フィルム及び多層基板
JP5351910B2 (ja) Bステージフィルム及び多層基板
JP2021054967A (ja) 樹脂フィルム及び多層プリント配線板
WO2014156734A1 (ja) 積層体、積層体の製造方法及び多層基板
JP2012072318A (ja) エポキシ樹脂材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13835297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534358

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020147032096

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 14425367

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13835297

Country of ref document: EP

Kind code of ref document: A1