[go: up one dir, main page]

WO2013179497A1 - 伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板およびその製造方法 - Google Patents

伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2013179497A1
WO2013179497A1 PCT/JP2012/064735 JP2012064735W WO2013179497A1 WO 2013179497 A1 WO2013179497 A1 WO 2013179497A1 JP 2012064735 W JP2012064735 W JP 2012064735W WO 2013179497 A1 WO2013179497 A1 WO 2013179497A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
martensite
yield ratio
strength
Prior art date
Application number
PCT/JP2012/064735
Other languages
English (en)
French (fr)
Inventor
克利 ▲高▼島
勇樹 田路
長谷川 浩平
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020147034518A priority Critical patent/KR101674283B1/ko
Priority to CN201280073571.7A priority patent/CN104350170B/zh
Priority to PCT/JP2012/064735 priority patent/WO2013179497A1/ja
Publication of WO2013179497A1 publication Critical patent/WO2013179497A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Definitions

  • the present invention relates to a high-strength cold-rolled steel sheet having a low yield ratio and excellent elongation and stretch flangeability, which is suitable as a member for automobile undercarriage parts and structural parts used by being pressed.
  • the steel sheet having a TS of 590 MPa or more is required to have excellent elongation and stretch flangeability (hole expanding property) from the viewpoint of formability. Furthermore, since it is assembled by arc welding, spot welding or the like after press working and modularized, high dimensional accuracy is required at the time of assembly. For this reason, it is necessary to make it difficult for a springback or the like to occur after processing, and a low yield ratio is required before processing.
  • Patent Document 1 discloses a high-strength steel sheet for automobiles that achieves both collision safety and formability by controlling the space factor and the average crystal grain size of the entire structure of ferrite and martensite.
  • Patent Document 2 discloses a high-strength steel sheet having improved elongation and stretch flangeability by controlling the space factor of the fine ferrite having an average grain size of 3 ⁇ m or less and the martensite having an average grain size of 6 ⁇ m or less with respect to the entire structure. It is disclosed.
  • Patent Document 3 discloses a DP steel sheet in which fine inclusions are dispersed in the steel sheet by containing Ce or La in the steel sheet component to improve stretch flangeability.
  • Patent Document 4 a composite structure composed of ferrite, residual austenite, the balance being bainite and martensite, the aspect ratio and average particle size of martensite and residual austenite are defined, and martensite and residual per unit area By defining the number of austenite, a composite structure cold-rolled steel sheet having excellent elongation and stretch flangeability is disclosed.
  • Non-Patent Document 1 will be described in an example.
  • Patent Document 1 defines the average crystal grain size of ferrite and martensite, it does not ensure sufficient hole expansion property for press molding.
  • Patent Document 2 since the volume fraction of martensite is remarkably large, the elongation is insufficient.
  • Patent Document 3 is low in production cost because Ce and La are added, and the manufacturing cost is high, and the material variation is large in order to control the size of inclusions.
  • Patent Document 4 a steel sheet containing bainite or retained austenite requires a high cooling rate using special equipment to obtain its structure, so that the manufacturing cost is high and the material variation is large. Furthermore, as a characteristic, a high strength steel plate having a steel structure having retained austenite and bainite has a higher YR than DP steel, so it is difficult to stably set the YR to 70% or less.
  • an object of the present invention is to provide a high-strength cold-rolled steel sheet that has solved the above-mentioned problems of the prior art, has excellent elongation and stretch flangeability, and has a low yield ratio and a method for manufacturing the same.
  • the inventors have added a suitable amount of Si and controlled the volume fraction of ferrite, martensite and pearlite, and are excellent in elongation and stretch flangeability that ensure high strength at low YR. It was found that a cold-rolled steel sheet can be obtained.
  • Si is added in an amount of 0.6 to 1.2%
  • the main phase ferrite is 80% or more in terms of volume fraction
  • martensite is 3 to 15%
  • pearlite is 0.5 to 10%.
  • the present invention provides the following (1) and (2).
  • the chemical composition of the steel sheet is mass%, C: 0.05 to 0.13%, Si: 0.6 to 1.2%, Mn: 1.6 to 2.4%, P: 0.00. 10% or less, S: 0.0050% or less, Al: 0.01 to 0.10%, N: less than 0.0050%, the balance is made of Fe and inevitable impurities, and the microstructure of the steel sheet is It has a composite structure containing 80% or more of ferrite, 3 to 15% of martensite, and 0.5 to 10% of pearlite in volume fraction, yield ratio is 70% or less, and tensile strength is 590 MPa or more. Low yield ratio high strength cold-rolled steel sheet with excellent elongation and stretch flangeability.
  • the volume fraction includes ferrite of 80% or more, martensite of 3 to 15%, and pearlite of 0.5 to 10%.
  • High-strength cold-rolled steel sheet with a low yield ratio that has a composite structure has a tensile strength of 590 MPa or more, a yield ratio of 70% or less, an elongation of 29.0% or more, and an elongation and stretch flangeability of 65% or more. Can be obtained.
  • C 0.05 to 0.13% C is an element effective for increasing the strength of a steel sheet, and contributes to increasing the strength by forming a second phase of pearlite and martensite.
  • 0.05% or more must be added.
  • it is 0.08% or more.
  • the upper limit is made 0.13%.
  • Si 0.6-1.2%
  • Si is an element that contributes to high strength, and since it has a high work-hardening ability, it has a relatively small decrease in elongation with respect to an increase in strength, and is an element that also contributes to an improvement in strength-elongation balance. Furthermore, the solid solution strengthening of the ferrite phase reduces the hardness difference from the hard second phase, thereby contributing to the improvement of stretch flangeability.
  • the addition of an appropriate amount of Si can suppress the generation of voids from the interface between the ferrite phase and the pearlite phase, but in order to obtain the effect, it is necessary to contain 0.6% or more.
  • the upper limit is not particularly defined from the viewpoint of elongation and stretch flangeability, but if it exceeds 1.2%, the chemical conversion treatment property is lowered, so the content is made 1.2% or less. Preferably it is 1.0% or less.
  • Mn 1.6 to 2.4% Mn is an element that contributes to strengthening by forming solid solution strengthening and martensite. To obtain this effect, it is necessary to contain 1.6% or more. On the other hand, when the content is excessive, the moldability is significantly lowered. Therefore, the content is set to 2.4% or less. Preferably it is 2.2% or less.
  • P 0.10% or less P contributes to high strength by solid solution strengthening, but when excessively added, segregation to the grain boundary becomes remarkable and the grain boundary becomes brittle, and weldability. Therefore, the content is made 0.10% or less. Preferably it is 0.05% or less.
  • S 0.0050% or less
  • the content of S is large, a large amount of sulfides such as MnS are generated, and the local elongation represented by stretch flangeability is reduced, so the upper limit of the content is 0.0050%. To do. Preferably, it is 0.0030% or less. Although a minimum is not specifically limited, Since ultra-low S raises steelmaking cost, it is preferable to contain 0.0005% or more.
  • Al 0.01 to 0.10%
  • Al is an element necessary for deoxidation. In order to obtain this effect, it is necessary to contain 0.01% or more, but even if it exceeds 0.10%, the effect is saturated.
  • the content is 0.10% or less. Preferably it is 0.05% or less.
  • N Less than 0.0050% Since N forms coarse nitrides and deteriorates stretch flangeability, it is necessary to suppress the content. When N is 0.0050% or more, this tendency becomes remarkable, so the N content is less than 0.0050%.
  • V 0.10% or less
  • V can contribute to an increase in strength by forming fine carbonitrides. In order to exhibit such an effect, it is preferable to contain the addition amount of V 0.01% or more. On the other hand, even if added over 0.10%, the effect of increasing the strength is small, and on the contrary, the cost of the alloy is increased, so the content is preferably 0.10% or less.
  • Ti 0.10% or less Ti, like V, can contribute to an increase in strength by forming fine carbonitride, and can be added as necessary. In order to exert such an effect, the Ti content is preferably 0.005% or more. On the other hand, when a large amount of Ti is added, YR increases remarkably, so the content is preferably 0.10% or less.
  • Nb 0.10% or less
  • Nb can contribute to an increase in strength by forming fine carbonitrides, and can be added as necessary.
  • the Nb content is preferably 0.005% or more.
  • the content is preferably 0.10% or less.
  • Cr 0.50% or less Cr is an element that contributes to increasing the strength by improving the hardenability and generating the second phase, and can be added as necessary. In order to exhibit this effect, it is preferable to make it contain 0.10% or more. On the other hand, since the effect is saturated even if the content exceeds 0.50%, the content is preferably 0.50% or less.
  • Mo 0.50% or less Mo is an element that improves hardenability and contributes to high strength by generating the second phase, and further contributes to high strength by generating some carbides. Can be added accordingly. In order to exhibit these effects, it is preferable to make it contain 0.05% or more. Since the effect is saturated even if the content exceeds 0.50%, the content is preferably 0.50% or less.
  • Cu 0.50% or less
  • Cu is an element that contributes to high strength by solid solution strengthening, improves hardenability, and contributes to high strength by generating a second phase. Can be added. In order to exhibit these effects, it is preferable to make it contain 0.05% or more. On the other hand, even if the content exceeds 0.50%, the effect is saturated and surface defects due to Cu are likely to occur. Therefore, the content is preferably 0.50% or less.
  • Ni 0.50% or less
  • Ni is an element that contributes to strengthening by solid solution strengthening, improves hardenability, and generates a second phase to contribute to strengthening. It can be added as necessary. In order to exhibit these effects, it is preferable to make it contain 0.05% or more. Moreover, since it has the effect of suppressing the surface defect resulting from Cu when it adds simultaneously with Cu, it is effective at the time of Cu addition. On the other hand, since the effect is saturated even if the content exceeds 0.50%, the content is preferably 0.50% or less.
  • Inevitable impurities include, for example, Sb, Sn, Zn, Co, etc.
  • the allowable ranges of these contents are Sb: 0.01% or less, Sn: 0.1% or less, Zn: 0. 01% or less, Co: 0.1% or less.
  • this invention even if it contains Ta, Mg, Ca, Zr, and REM within the range of a normal steel composition, the effect is not impaired.
  • the microstructure of the high-strength cold-rolled steel sheet has a main phase of ferrite with a volume fraction of 80% or more, martensite with a volume fraction of 3-15%, and pearlite with a volume fraction of 0.5-10%.
  • the volume fraction is the volume fraction with respect to the entire steel sheet.
  • the volume fraction of the ferrite phase is 80% or more. Preferably, it is 83% or more.
  • the volume fraction of martensite is less than 3%, the effect of increasing the strength is small, sufficient elongation cannot be obtained, and YR exceeds 70%. Therefore, the volume fraction of martensite is 3% or more.
  • the volume fraction of martensite exceeds 15%, the stretch flangeability is remarkably lowered. Therefore, the volume fraction of martensite is made 15% or less. Preferably it is 12% or less.
  • the pearlite volume fraction When the pearlite volume fraction is less than 0.5%, the effect of increasing the strength is small. Therefore, in order to achieve a good balance between strength and formability, the pearlite volume fraction needs to be 0.5% or more. On the other hand, when the pearlite volume fraction exceeds 10%, YR becomes remarkably high, so the pearlite volume fraction is 10% or less. Preferably it is 8% or less.
  • the remaining structure other than ferrite, martensite and pearlite may be a structure containing one or more of bainite, residual ⁇ , spherical cementite, etc., but from the viewpoint of stretch flangeability, other than ferrite, martensite and pearlite.
  • the volume fraction of the remaining tissue is preferably 5% or less.
  • the average crystal grain size of martensite and pearlite is not particularly limited, but if the average crystal grain size is fine, the connection of the generated voids is suppressed and the stretch flangeability is improved. Therefore, the average crystal grain size of martensite is preferably 10 ⁇ m or less, and the average crystal grain size of pearlite is preferably 5 ⁇ m or less.
  • the steel slab having the above component composition (chemical component) is hot-rolled and pickled, then cold-rolled, and then annealed. This will be described in detail below.
  • the steel slab is preferably manufactured by a continuous casting method in order to prevent macro segregation of components, but can also be manufactured by an ingot forming method or a thin slab casting method.
  • the steel slab is subjected to rough rolling and finish rolling to obtain hot rolled sheets. It is preferable to heat the slab before rolling.
  • the slab heating temperature is preferably 1100 to 1300 ° C.
  • the slab once cooled to room temperature may be reheated in a heating furnace, or the steel slab may be charged into the heating furnace as it is without being cooled to room temperature and reheated.
  • energy saving processes such as direct feed rolling and direct rolling which carry out hot rolling immediately after heat-retaining steel slab, or hot-rolling as it is after casting, without performing slab heating.
  • the finish rolling end temperature is preferably 830 ° C. or higher.
  • the finish rolling finish temperature is preferably 830 to 950 ° C.
  • the subsequent cooling method is not particularly limited.
  • the coiling temperature is not limited, but when the coiling temperature exceeds 700 ° C., coarse pearlite is remarkably formed, which affects the formability of the steel sheet after annealing. preferable. More preferably, it is 650 degrees C or less.
  • the lower limit of the coiling temperature is not particularly limited, but if the coiling temperature becomes too low, hard bainite and martensite are excessively generated and the cold rolling load increases, so 400 ° C or higher is preferable.
  • the pickling process After the hot rolling step, it is preferable to carry out an acidic step and remove the scale of the hot rolled sheet surface layer.
  • the pickling step is not particularly limited, and may be performed according to a conventional method.
  • Cold rolling process The hot-rolled sheet after pickling is subjected to a cold rolling process for rolling into a cold-rolled sheet having a predetermined thickness.
  • a cold rolling process is not specifically limited, What is necessary is just to implement by a conventional method.
  • the annealing process is carried out in order to advance recrystallization and to form a second phase structure of martensite and pearlite for high strength.
  • the annealing step is performed by heating to a temperature range of Ac 1 to Ac 3 points (also referred to as a soaking temperature or holding temperature) and then holding the temperature from the soaking temperature to a temperature of 500 to 550 ° C. at 1 ° C./s. Cool at an average cooling rate of ⁇ 25 ° C./s, and then cool at an average cooling rate of 5 ° C./s or less.
  • Soaking temperature (holding temperature): Ac 1 to Ac 3 points Since austenite is not generated when the soaking temperature is less than Ac 1 point, then martensite cannot be obtained, and if it exceeds Ac 3 points, coarse austenite is obtained. Therefore, the predetermined martensite and pearlite volume fraction cannot be obtained thereafter. Therefore, the soaking temperature is in the range of Ac 1 to Ac 3 points. Ac 3 points-100 ° C. to Ac 3 points are preferred. If the heating rate up to the soaking temperature is too high, recrystallization will not proceed easily. If the heating rate is too low, the ferrite grains will become coarse and the strength will decrease, so the average heating rate up to the soaking temperature will be 3-30 ° C. / S is preferable. Further, the soaking time is preferably set to 30 s to 300 s (seconds) in order to sufficiently advance the recrystallization and partially austenite transformation.
  • Cooling from a soaking temperature to a temperature of 500 to 550 ° C at an average cooling rate of 1 ° C / s to 25 ° C / s (primary cooling)
  • the microstructure of the steel sheet finally obtained after the annealing process is controlled so that the volume fraction of ferrite is 80% or more, the volume fraction of martensite is 3 to 15%, and the volume fraction of pearlite is 0.5 to 10%. Therefore, primary cooling is performed by cooling from the soaking temperature to a temperature of 500 to 550 ° C. as a primary cooling temperature at an average cooling rate of 1 ° C./s to 25 ° C./s.
  • the primary cooling temperature exceeds 550 ° C, martensite is not sufficiently formed, and when it is less than 500 ° C, pearlite is not sufficiently formed.
  • both martensite and pearlite can be formed and the volume fraction thereof can be adjusted.
  • the average cooling rate to the temperature range of 500 to 550 ° C is less than 1 ° C / s, martensite does not form 3% or more in volume fraction, and when the average cooling rate exceeds 25 ° C / s, pearlite has volume fraction. And not 0.5% or more. Therefore, the average cooling rate from the soaking temperature to the temperature range of 500 to 550 ° C. needs to be 1 ° C./s to 25 ° C./s.
  • a preferable average cooling rate is 15 ° C./s or less.
  • Cool from the primary cooling temperature at an average cooling rate of 5 ° C / s or less (secondary cooling) After cooling to the primary cooling temperature (500 to 550 ° C.), secondary cooling is performed at an average cooling rate of 5 ° C./s or less.
  • the average cooling rate of the secondary cooling exceeds 5 ° C./s, the volume fraction of martensite increases and the predetermined martensite and pearlite volume fraction cannot be obtained, so the average cooling rate from the primary cooling temperature Is 5 ° C./s or less.
  • it is 3 degrees C / s or less.
  • temper rolling may be performed after annealing.
  • a preferable range of the elongation rate is 0.3% to 2.0%.
  • hot dip galvanization may be performed after the primary cooling to obtain a hot dip galvanized steel sheet. It may be a steel plate.
  • the present invention is not originally limited by the following examples, and can be implemented with appropriate modifications within a range that can be adapted to the gist of the present invention. Included in the scope.
  • the cooling rate 1 in Table 2 indicates the average cooling rate from the soaking temperature during annealing to the primary cooling temperature, and the cooling rate 2 indicates the average cooling rate from the primary cooling temperature to room temperature.
  • the average heating rate up to the soaking temperature was 10 ° C./s.
  • a JIS No. 5 tensile test piece was sampled so that the direction perpendicular to the rolling direction was the longitudinal direction (tensile direction), and was subjected to a tensile test (JIS Z2241 (1998)) to yield strength (YS), tensile strength (TS), total elongation (EL), and yield ratio (YR) were measured.
  • Yield strength (YS) yield strength
  • TS tensile strength
  • EL total elongation
  • YR yield ratio
  • Stretch flangeability is based on the Japan Iron and Steel Federation standard (JFS T1001 (1996)), after punching a hole with a diameter of 10mm ⁇ at a clearance of 12.5%, and setting the burr on the die side after setting
  • JFS T1001 Japan Iron and Steel Federation standard
  • the hole expansion rate ( ⁇ ) was measured by conducting a hole expansion test with a 60 ° conical punch. ⁇ (%) was 65% or more to make a steel sheet having good stretch flangeability.
  • volume fractions of ferrite, martensite and pearlite were determined by the following method.
  • the microstructure of the steel sheet corrodes the cross section in the rolling direction of the steel sheet (depth position at 1/4 of the plate thickness) using 3% Nital reagent (3% nitric acid + ethanol), and is observed with an optical microscope at 500 to 1000 times.
  • the volume fraction of ferrite, the volume fraction of martensite, and the volume fraction of pearlite were quantified using tissue photographs observed and photographed with an electron microscope (scanning type and transmission type) of 1000 to 100,000 times.
  • ferrite is a region with a slightly black contrast, and martensite has a white contrast.
  • Pearlite is a layered structure in which plate-like ferrite and cementite are alternately arranged.
  • bainite is a plate-like bainite having a higher dislocation density than polygonal ferrite in the observation using the above-described optical microscope or electron microscope (scanning type and transmission type). It is a structure containing tick ferrite and cementite, and spherical cementite is cementite having a spheroidized shape.
  • the surface polished to 1/4 thickness from the surface layer was used, and the K ⁇ ray of Mo was used as the radiation source at an acceleration voltage of 50 keV by an X-ray diffraction method (apparatus: RINT2200 manufactured by Rigaku).
  • Measure the integrated intensity of the X-ray diffraction lines of the ⁇ 200 ⁇ , ⁇ 211 ⁇ , ⁇ 220 ⁇ , and ⁇ 200 ⁇ , ⁇ 220 ⁇ , and ⁇ 311 ⁇ planes of austenite. was used to determine the volume fraction of retained austenite from the calculation formula described in Non-Patent Document 1, and the presence or absence of retained austenite was determined.
  • Table 2 shows the measurement results of tensile properties, stretch flangeability, and steel sheet structure.
  • all of the examples of the present invention have a steel sheet structure in which the volume fraction of ferrite is 80% or more, the volume fraction of martensite is 3 to 15%, and the volume fraction of pearlite is 0.5 to 10%.
  • good formability with a tensile strength of 590 MPa or more and a yield ratio of 70% or less, and an elongation of 29.0% or more and a hole expansion ratio of 65% or more can be obtained.
  • the steel sheet structure does not satisfy the scope of the present invention, and as a result, at least one characteristic of tensile strength, yield ratio, elongation, and hole expansion ratio is inferior.
  • the volume fraction has a composite structure including ferrite of 80% or more, martensite of 3 to 15%, and pearlite of 0.5 to 10%, a tensile strength of 590 MPa or more, and a yield ratio of 70% or less. Further, a high strength cold-rolled steel sheet having a low yield ratio and excellent elongation and stretch flangeability having an elongation of 29.0% or more and a hole expansion ratio of 65% or more can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

伸びと伸びフランジ性に優れ、低降伏比を有する高強度冷延鋼板およびその製造方法を提供する。鋼板の化学成分が、質量%で、C:0.05~0.13%、Si:0.6~1.2%、Mn:1.6~2.4%、P:0.10%以下、S:0.0050%以下、Al:0.01~0.10%、N:0.0050%未満を含有するとともに、残部がFeおよび不可避的不純物からなり、鋼板のミクロ組織は、体積分率でフェライトを80%以上、マルテンサイトを3~15%、パーライトを0.5~10%含む複合組織を有し、降伏比が70%以下で引張強さが590MPa以上であることを特徴とする伸び及び伸びフランジ性に優れた低降伏比高強度冷延鋼板。

Description

伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板およびその製造方法
 本発明は、プレス加工されて使用される自動車の足回り部品や構造部品等の部材として好適な伸びと伸びフランジ性に優れた低降伏比の高強度冷延鋼板に関するものである。なお、降伏比(YR)とは、引張強さ(TS)に対する降伏強さ(YS)の比を示す値であり、YR(%)=(YS/TS)×100で表される。
 近年、環境問題の高まりからCO排出規制が厳格化しており、自動車分野においては、車体の軽量化による燃費向上が大きな課題となっている。このため自動車部品への高強度鋼板の適用による薄肉化が進められており、これまでTSが270~440MPa級の鋼板が使用されていた部品に対し、TSが590MPa以上の鋼板の適用が進められている。
 このTSが590MPa以上の鋼板には、成形性の観点から優れた伸びや伸びフランジ性(穴広げ性)が求められている。さらに、プレス加工後にアーク溶接、スポット溶接等により組み付けられ、モジュール化されるために組付け時に高い寸法精度を求められる。このことから、加工後にスプリングバック等を起こりにくくする必要があり、加工前には低降伏比であることが必要となっている。
 成形性と高強度とを兼ね備えた低降伏比の高強度薄鋼板として、フェライト・マルテンサイト組織のデュアルフェーズ鋼(DP鋼)が知られている。主相をフェライトとしてマルテンサイトを分散させた複合組織鋼は、低降伏比でTSも高く、伸びに優れている。しかし、フェライトとマルテンサイトの界面に応力が集中することで、クラックが発生しやすいため、穴広げ性に劣るという欠点があった。そこで、特許文献1では、フェライト及びマルテンサイトの全組織に対する占積率及び平均結晶粒径を制御することで、耐衝突安全性と成形性を両立する自動車用高強度鋼板が開示されている。
 特許文献2では、平均粒径が3μm以下の微細なフェライトと平均粒径が6μm以下のマルテンサイトの全組織に対する占積率を制御することで、伸びと伸びフランジ性を改善した高強度鋼板が開示されている。また、特許文献3では、鋼板成分にCeもしくはLaを含有することで微細介在物を鋼板中に分散させ、伸びフランジ性を改善したDP鋼板が開示されている。
 成形性向上のために鋼板組織にベイナイトや残留オーステナイトを含有する技術も知られている。例えば、特許文献4では、フェライト、残留オーステナイト、残部がベイナイトおよびマルテンサイトからなる複合組織で、マルテンサイト及び残留オーステナイトのアスペクト比および平均粒径を規定し、且つ、単位面積あたりのマルテンサイト及び残留オーステナイトの個数を規定することで、伸びおよび伸びフランジ性に優れる複合組織冷延鋼板が開示されている。
 非特許文献1は、実施例で説明する。
特許3936440号公報 特開2008−297609号公報 特開2009−299149号公報 特許4288364号公報
「X線回折ハンドブック」、理学電機株式会社、2000年、p.26、62−64
 しかしながら、特許文献1はフェライトとマルテンサイトの平均結晶粒径を規定しているが、プレス成形に十分な穴広げ性を確保出来ていない。特許文献2は、マルテンサイトの体積分率が顕著に多いため、伸びが不十分である。特許文献3は、CeおよびLaを添加するため製造コストが高い上、介在物の大きさを制御するために材質バラツキが大きいことから生産性が低い。
 また、特許文献4では、ベイナイトや残留オーステナイトを含有した鋼板はその組織を得るために特殊な設備を利用した高い冷却速度が必要であるため、製造コストが高く、材質バラツキが大きい。さらに、特性としても残留オーステナイトやベイナイトを有する鋼板組織の高強度鋼板は、DP鋼と比較してYRが高くなるため、安定してYRを70%以下とすることは困難である。
 このように、低YRの高強度鋼板において、伸びおよび伸びフランジ性を確保することは困難であり、これまでこれらの特性(降伏比、強度、伸び、伸びフランジ性)を満足する冷延鋼板は開発されていない。
 したがって、本発明の課題は、上記従来技術の問題点を解消し、伸びと伸びフランジ性に優れ、低降伏比を有する高強度冷延鋼板およびその製造方法を提供することである。
 本発明者らは、鋭意検討を重ねた結果、Siを適量添加し、フェライト、マルテンサイトおよびパーライトの体積分率を制御することで、低YRで高強度を確保した伸びおよび伸びフランジ性に優れた冷延鋼板を得ることが可能であることを見出した。
 従来、パーライトは伸びフランジ性を劣化させると考えられていた。しかし、本発明者らは、フェライト、マルテンサイト及びパーライトが存在する鋼板組織において、鋼板成分としてSiを適量添加し、フェライトを固溶強化することで硬質相との硬度差を低減すると、ボイド(クラック)はフェライトとマルテンサイトとの界面から優先して発生し、パーライトとの界面からの発生は抑制されることを発見した。また、従来のDP鋼よりマルテンサイトの体積分率を減少させても、Siによるフェライトの固溶強化を活用するとともに、パーライトを存在させることで強度確保が可能になる。また、マルテンサイトの体積分率を減少させることで、局部伸びが向上し、伸びと伸びフランジ性が向上することがわかった。さらに、マルテンサイトとパーライトの体積分率を調整することで、低YRを確保しつつ、590MPa以上の引張強さを有する低降伏比高強度冷延鋼板を得ることが可能である。
 具体的には、鋼板成分として、Siを0.6~1.2%添加し、主相のフェライトを体積分率として80%以上、マルテンサイトを3~15%、パーライトを0.5~10%の範囲に鋼板組織を制御することで、降伏比が70%以下で引張強さが590MPa以上である伸びと伸びフランジ性に優れた高強度冷延鋼板を得ることが可能である。
 すなわち、本発明は、以下の(1)、(2)を提供する。
 (1)鋼板の化学成分が、質量%で、C:0.05~0.13%、Si:0.6~1.2%、Mn:1.6~2.4%、P:0.10%以下、S:0.0050%以下、Al:0.01~0.10%、N:0.0050%未満を含有するとともに、残部がFeおよび不可避的不純物からなり、鋼板のミクロ組織は、体積分率でフェライトを80%以上、マルテンサイトを3~15%、パーライトを0.5~10%含む複合組織を有し、降伏比が70%以下で引張強さが590MPa以上であることを特徴とする伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板。
 (2) (1)に記載の化学成分を有する鋼スラブに、熱間圧延、冷間圧延を施した後に、Ac~Ac点の温度域に加熱して保持した後、前記保持温度から500~550℃の温度まで1℃/s~25℃/sの平均冷却速度で冷却し、その後は5℃/s以下の平均冷却速度で冷却することを特徴とする伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板の製造方法。
 本発明によれば、鋼板成分、焼鈍温度及び焼鈍後の冷却条件を制御することにより、体積分率でフェライトを80%以上、マルテンサイトを3~15%、パーライトを0.5~10%含む複合組織を有し、引張強さ590MPa以上、降伏比70%以下、伸び29.0%以上かつ穴広げ率65%以上を有する伸び及び伸びフランジ性に優れた低降伏比の高強度冷延鋼板を得ることができる。
 以下、本発明について具体的に説明する。
 本発明の高強度冷延鋼板の化学成分の限定理由を説明する。以下において、化学成分の「%」表示は質量%を意味する。
 C:0.05~0.13%
 Cは鋼板の高強度化に有効な元素であり、パーライト及びマルテンサイトの第2相形成により高強度化に寄与する。この効果を得るためには、0.05%以上の添加が必要である。好ましくは0.08%以上である。一方、過剰に添加するとスポット溶接性が低下することから、上限を0.13%とする。
 Si:0.6~1.2%
 Siは高強度化に寄与する元素であり、高い加工硬化能をもつことから強度上昇に対して伸びの低下が比較的少なく、強度−伸びバランスの向上にも寄与する元素である。さらにフェライト相の固溶強化により、硬質な第2相との硬度差を小さくするため、伸びフランジ性の向上にも寄与する。Siを適量添加することでフェライト相とパーライト相との界面からのボイドの発生を抑制することができるが、その効果を得るためには、0.6%以上含有することが必要である。伸びと伸びフランジ性の観点からは上限は特に規定されないが、1.2%超添加すると化成処理性が低下するため、その含有量は1.2%以下とする。好ましくは1.0%以下である。
 Mn:1.6~2.4%
 Mnは固溶強化およびマルテンサイトを生成することで高強度化に寄与する元素であり、この効果を得るためには1.6%以上含有することが必要である。一方、過剰に含有した場合、成形性の低下が著しくなることから、その含有量を2.4%以下とする。好ましくは2.2%以下である。
 P:0.10%以下
 Pは固溶強化により高強度化に寄与するが、過剰に添加された場合には、粒界への偏析が著しくなって粒界を脆化させることや、溶接性が低下することから、その含有量を0.10%以下とする。好ましくは0.05%以下である。
 S:0.0050%以下
 Sの含有量が多い場合には、MnSなどの硫化物が多く生成し、伸びフランジ性に代表される局部伸びが低下するため含有量の上限を0.0050%とする。好ましくは、0.0030%以下である。下限は特に限定しないが、極低S化は製鋼コストが上昇するため、0.0005%以上含有することが好ましい。
 Al:0.01~0.10%
 Alは脱酸に必要な元素であり、この効果を得るためには0.01%以上含有することが必要であるが、0.10%を超えて含有しても効果が飽和するため、その含有量は0.10%以下とする。好ましくは0.05%以下である。
 N:0.0050%未満
 Nは、粗大な窒化物を形成し、伸びフランジ性を劣化させることから、含有量を抑える必要がある。Nが0.0050%以上では、この傾向が顕著となることから、Nの含有量を0.0050%未満とする。
 本発明では、上記の成分に加え、以下の成分の1種又は2種以上を添加しても良い。
 V:0.10%以下
 Vは微細な炭窒化物を形成することで、強度上昇に寄与することができる。このような効果を発揮させるには、Vの添加量を0.01%以上含有させることが好ましい。一方、0.10%を超えて添加しても強度上昇効果は小さく、却って合金コストの増加を招くため、その含有量は0.10%以下が好ましい。
 Ti:0.10%以下
 TiもVと同様に、微細な炭窒化物を形成することで、強度上昇に寄与することができるため、必要に応じて添加することができる。このような効果を発揮させるためには、Tiの含有量を0.005%以上とすることが好ましい。一方、多量にTiを添加すると、YRが著しく上昇するため、その含有量は0.10%以下が好ましい。
 Nb:0.10%以下
 NbもVと同様に、微細な炭窒化物を形成することで、強度上昇に寄与することができるため、必要に応じて添加することができる。このような効果を発揮させるためには、Nbの含有量を0.005%以上とすることが好ましい。一方、多量にNbを添加すると、YRが著しく上昇するため、その含有量は0.10%以下が好ましい。
 Cr:0.50%以下
 Crは焼入れ性を向上させ、第2相を生成することで高強度化に寄与する元素であり、必要に応じて添加することができる。この効果を発揮させるためには、0.10%以上含有させることが好ましい。一方、0.50%を超えて含有させても効果が飽和するため、その含有量は0.50%以下が好ましい。
 Mo:0.50%以下
 Moは焼入れ性を向上させ、第2相を生成することで高強度化に寄与し、さらに一部炭化物を生成して高強度化に寄与する元素であり、必要に応じて添加することができる。これらの効果を発揮させるためには、0.05%以上含有させることが好ましい。0.50%を超えて含有させても効果が飽和するため、その含有量は0.50%以下が好ましい。
 Cu:0.50%以下
 Cuは固溶強化により高強度化に寄与して、また焼入れ性を向上させ、第2相を生成することで高強度化に寄与する元素であり、必要に応じて添加することができる。これらの効果を発揮するためには0.05%以上含有させることが好ましい。一方、0.50%を超えて含有させても効果が飽和し、またCuに起因する表面欠陥が発生しやすくなるため、その含有量は0.50%以下が好ましい。
 Ni:0.50%以下
 NiもCuと同様、固溶強化により高強度化に寄与して、また焼入れ性を向上させ、第2相を生成することで高強度化に寄与する元素であり、必要に応じて添加することができる。これらの効果を発揮させるためには0.05%以上含有させることが好ましい。また、Cuと同時に添加すると、Cu起因の表面欠陥を抑制する効果があるため、Cu添加時に有効である。一方、0.50%を超えて含有させても効果が飽和するため、その含有量は0.50%以下が好ましい。
 上記以外の残部はFe及び不可避的不純物である。不可避的不純物としては、例えば、Sb、Sn、Zn、Co等が挙げられ、これらの含有量の許容範囲としては、Sb:0.01%以下、Sn:0.1%以下、Zn:0.01%以下、Co:0.1%以下である。また、本発明では、Ta、Mg、Ca、Zr、REMを通常の鋼組成の範囲内で含有しても、その効果は損なわれない。
 次に、本発明の高強度冷延鋼板のミクロ組織とその限定理由について説明する。
 高強度冷延鋼板のミクロ組織は、主相はフェライトで体積分率が80%以上とし、マルテンサイトは体積分率を3~15%、パーライトは体積分率を0.5~10%とする。ここで体積分率は鋼板の全体に対する体積分率である。
 フェライトの体積分率が80%未満では、硬質な第2相が多く存在するため、軟質なフェライトとの硬度差が大きい箇所が多く存在し、伸びフランジ性が低下する。そのためフェライト相の体積分率は80%以上とする。好ましくは83%以上である。
 マルテンサイトの体積分率が3%未満では強度上昇効果が少なく、また十分な伸びを得られない上、YRが70%超となる。そのためマルテンサイトの体積分率は3%以上とする。一方、マルテンサイトの体積分率が15%を超えると、伸びフランジ性を顕著に低下させるため、マルテンサイトの体積分率は15%以下とする。好ましくは12%以下である。
 パーライトの体積分率が0.5%未満では強度上昇効果が少ないため、強度と成形性のバランスを良好にするには、パーライトの体積分率は0.5%以上とする必要がある。一方、パーライトの体積分率が10%超では、YRが顕著に高くなるため、パーライトの体積分率は10%以下とする。好ましくは8%以下である。
 また、フェライト、マルテンサイトおよびパーライト以外の残部組織はベイナイト、残留γ、球状セメンタイト等の1種あるいは2種以上を含む組織としてもよいが、伸びフランジ性の観点からフェライト、マルテンサイトおよびパーライト以外の残部組織の体積分率は5%以下であることが好ましい。
 マルテンサイト及びパーライトの平均結晶粒径は特に限定しないが、平均結晶粒径が微細であると、発生したボイドの連結が抑制されるために伸びフランジ性は向上する。そのため、マルテンサイトの平均結晶粒径は10μm以下、パーライトの平均結晶粒径は5μm以下が好ましい。
 次に本発明の高強度冷延鋼板の製造方法について説明する。
 上記成分組成(化学成分)を有する鋼スラブに、熱間圧延、酸洗を施した後、冷間圧延を施し、その後焼鈍を施す。以下、詳しく説明する。
 鋼スラブは、成分のマクロ偏析を防止するため連続鋳造法で製造することが好ましいが、造塊法、薄スラブ鋳造法によっても製造可能である。
 [熱間圧延工程]
 鋼スラブに、粗圧延、仕上げ圧延を施し、熱延板とする。圧延前にスラブを加熱することが好ましい。スラブ加熱温度が1100℃未満になると圧延負荷が増大し、生産性が低下し、1300℃を超えると加熱コストが増大するため、スラブ加熱温度は1100~1300℃とすることが好ましい。一旦室温まで冷却したスラブを加熱炉で再加熱してもよいし、鋼スラブを室温まで冷却しないで、温片のままで加熱炉に装入して再加熱してもよい。また、スラブ加熱を行うことなく、鋼スラブを保熱した後に直ちに熱間圧延する、あるいは鋳造後そのまま熱間圧延する直送圧延・直接圧延などの省エネルギープロセスを適用してもよい。
 仕上げ圧延終了温度が低すぎると鋼板内の組織不均一性及び材質の異方性が大きくなり、焼鈍後の伸び及び伸びフランジ性が劣化するので、オーステナイト単相域にて熱間圧延を終了するのが好ましい。そのため、仕上げ圧延終了温度は830℃以上とすることが好ましい。一方、仕上げ圧延終了温度が950℃超になると熱延組織が粗大になり、焼鈍後の特性が低下する。そのため、仕上げ圧延終了温度は830~950℃とするのが好ましい。
 その後の冷却方法は特に限定されない。巻取り温度も限定されないが、巻取り温度が700℃超になると粗大なパーライトが顕著に形成されるために焼鈍後の鋼板の成形性に影響を及ぼすことから、巻取り温度は700℃以下が好ましい。さらに好ましくは650℃以下である。巻取り温度の下限も特に限定されないが、巻取り温度が低温になりすぎると、硬質なベイナイトやマルテンサイトが過剰に生成し、冷間圧延負荷が増大するため、400℃以上が好ましい。
 [酸洗工程]
 熱間圧延工程後、酸性工程を実施し、熱延板表層のスケールを除去するのが好ましい。酸洗工程は特に限定されず、常法に従って実施すればよい。
 [冷間圧延工程]
 酸洗後の熱延板に対し、所定の板厚の冷延板に圧延する冷間圧延工程を行う。冷間圧延工程は特に限定されず常法で実施すればよい。
 [焼鈍工程]
 焼鈍工程は、再結晶を進行させるとともに、高強度化のためマルテンサイト及びパーライトの第2相組織を形成するために実施する。そのために、焼鈍工程は、Ac~Ac点の温度域(均熱温度または保持温度とも言う)に加熱して保持した後、該均熱温度から500~550℃の温度まで1℃/s~25℃/sの平均冷却速度で冷却し、その後は5℃/s以下の平均冷却速度で冷却する。
 均熱温度(保持温度):Ac~Ac
 均熱温度がAc点未満ではオーステナイトが生成しないため、その後、マルテンサイトを得る事ができず、Ac点超では粗大なオーステナイトとなるため、その後、所定のマルテンサイトおよびパーライトの体積分率を得ることができない。そのため、均熱温度はAc~Ac点の範囲とする。好ましくはAc点−100℃~Ac点である。均熱温度までの加熱速度が大きすぎると再結晶が進行しにくくなり、加熱速度が小さすぎるとフェライト粒が粗大になり強度が低下するため、均熱温度までの平均加熱速度は3~30℃/sの範囲とするのが好ましい。また、再結晶の進行および一部オーステナイト変態を十分にするため、均熱時間は30s~300s(秒)とすることが好ましい。
 均熱温度から500~550℃の温度までを1℃/s~25℃/sの平均冷却速度で冷却する(1次冷却)
 焼鈍工程後に最終的に得られる鋼板のミクロ組織を、フェライトの体積分率を80%以上、マルテンサイトの体積分率を3~15%、パーライトの体積分率を0.5~10%に制御するため、上記均熱温度から、1次冷却温度として500~550℃の温度までを1℃/s~25℃/sの平均冷却速度で冷却する1次冷却を行う。
 1次冷却温度が550℃超になるとマルテンサイトが十分形成せず、500℃未満になるとパーライトが十分形成しない。1次冷却温度を500~550℃の範囲に規定することで、マルテンサイトとパーライトの両者を形成してその体積分率を調整することができる。500~550℃の温度域までの平均冷却速度が1℃/s未満になるとマルテンサイトが体積分率で3%以上形成せず、平均冷却速度が25℃/s超になるとパーライトが体積分率で0.5%以上形成しない。従って、均熱温度から500~550℃の温度域までの平均冷却速度は1℃/s~25℃/sとする必要がある。好ましい平均冷却速度は15℃/s以下である。
 1次冷却温度から5℃/s以下の平均冷却速度で冷却する(2次冷却)
 1次冷却温度(500~550℃)まで冷却した後は5℃/s以下の平均冷却速度で冷却する2次冷却を行う。2次冷却の平均冷却速度が5℃/sを超えるとマルテンサイトの体積分率が増加し、所定のマルテンサイトとパーライトの体積分率を得られなくなるため、1次冷却温度からの平均冷却速度は5℃/s以下とする。好ましくは3℃/s以下である。
 また、焼鈍後に調質圧延を実施しても良い。伸長率の好ましい範囲は0.3%~2.0%である。
 なお、本発明の範囲内であれば、焼鈍工程において、1次冷却後に溶融亜鉛めっきを施して溶融亜鉛めっき鋼板としてもよく、また、溶融亜鉛めっき後に合金化処理を施して合金化溶融亜鉛めっき鋼板としても良い。
 以下、本発明の実施例を説明する。
 ただし、本発明は、もとより下記実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。
 表1に示す化学成分(残部成分:Feおよび不可避的不純物)の鋼を溶製して鋳造し、230mm厚のスラブを製造し、熱間圧延、酸洗、冷間圧延後、表2で示す製造条件で焼鈍を実施し、その後、スキンパス圧延(調質圧延)を実施した。なお、熱間圧延の際の加熱温度は1200℃、仕上げ圧延終了温度は890℃、巻取り温度は600℃とし、熱延板(板厚3.2mm)を製造した。
 次いで、酸洗、冷間圧延を行ない、冷延板(板厚1.4mm)を製造したのち、焼鈍、調質圧延(伸長率0.7%)を実施した。表2中の冷速1は焼鈍時の均熱温度から1次冷却温度までの平均冷却速度、冷速2は1次冷却温度から室温までの平均冷却速度を示す。なお、均熱温度までの平均加熱速度は10℃/sとした。
 製造した鋼板から、JIS5号引張試験片を圧延直角方向が長手方向(引張方向)となるように採取し、引張試験(JIS Z2241(1998))により、降伏強さ(YS)、引張強さ(TS)、全伸び(EL)、降伏比(YR)を測定した。ELが29.0%以上を良好な伸びの有する鋼板、YRが70%以下を低降伏比の有する鋼板とした。
 伸びフランジ性に関しては、日本鉄鋼連盟規格(JFS T1001(1996))に準拠し、クリアランス12.5%にて、直径10mmφの穴を打ち抜き、かえりがダイ側になるように試験機にセットした後、60°の円錐ポンチで穴広げ試験をすることにより穴広げ率(λ)を測定した。λ(%)が65%以上を良好な伸びフランジ性を有する鋼板とした。
 鋼板のミクロ組織は、以下の方法により、フェライト、マルテンサイトおよびパーライトの体積分率を求めた。
 鋼板のミクロ組織は、3%ナイタール試薬(3%硝酸+エタノール)を用いて、鋼板の圧延方向断面(板厚1/4の深さ位置)を腐食し、500倍~1000倍の光学顕微鏡観察および1000~100000倍の電子顕微鏡(走査型および透過型)により観察、撮影した組織写真を用いて、フェライトの体積分率、マルテンサイトの体積分率、パーライトの体積分率を定量化した。
 各12視野の観察を行い、ポイントカウント法(ASTM E562−83(1988)に準拠)により、面積率を測定し、その面積率を体積分率とした。フェライトはやや黒いコントラストの領域であり、マルテンサイトは白いコントラストの付いているものである。パーライトは、層状の組織で、板状のフェライトとセメンタイトが交互に並んでいる組織である。
 また、フェライト、マルテンサイト、パーライト以外の組織については、上記光学顕微鏡ないし電子顕微鏡(走査型および透過型)の観察において、ベイナイトは、ポリゴナルフェライトと比較して転位密度の高い板状のベイニティックフェライトとセメンタイトを含む組織であり、球状セメンタイトは、球状化した形状を有するセメンタイトである。
 また、残留オーステナイトの有無については表層より1/4厚まで研磨した面で、MoのKα線を線源とし加速電圧50keVにて、X線回折法(装置:Rigaku社製RINT2200)によって、鉄のフェライトの{200}面、{211}面、{220}面と、オーステナイトの{200}面、{220}面、{311}面のX線回折線の積分強度を測定し、これらの測定値を用いて非特許文献1に記載の計算式から残留オーステナイトの体積分率を求め、残留オーステナイトの有無を判断した。
 引張特性と伸びフランジ性および鋼板組織の測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から、本発明例は何れもフェライトの体積分率が80%以上、マルテンサイトの体積分率が3~15%およびパーライトの体積分率が0.5~10%の鋼板組織を有し、その結果、590MPa以上の引張強さと、70%以下の降伏比を確保しつつ、且つ、29.0%以上の伸びと65%以上の穴広げ率の良好な成形性が得られている。一方、比較例は、鋼板組織が本発明範囲を満足せず、その結果、引張強さ、降伏比、伸び、穴広げ率の少なくとも1つの特性が劣る。
 本発明によれば、体積分率でフェライトを80%以上、マルテンサイトを3~15%、パーライトを0.5~10%含む複合組織を有し、引張強さ590MPa以上、降伏比70%以下、伸び29.0%以上かつ穴広げ率65%以上を有する伸び及び伸びフランジ性に優れた低降伏比の高強度冷延鋼板を得ることができる。

Claims (2)

  1.  鋼板の化学成分が、質量%で、C:0.05~0.13%、Si:0.6~1.2%、Mn:1.6~2.4%、P:0.10%以下、S:0.0050%以下、Al:0.01~0.10%、N:0.0050%未満を含有するとともに、残部がFeおよび不可避的不純物からなり、鋼板のミクロ組織は、体積分率でフェライトを80%以上、マルテンサイトを3~15%、パーライトを0.5~10%含む複合組織を有し、降伏比が70%以下で引張強さが590MPa以上であることを特徴とする伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板。
  2.  請求項1に記載の化学成分を有する鋼スラブに、熱間圧延、冷間圧延を施した後に、Ac~Ac点の温度域に加熱して保持した後、前記保持温度から500~550℃の温度まで1℃/s~25℃/sの平均冷却速度で冷却し、その後は5℃/s以下の平均冷却速度で冷却することを特徴とする伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板の製造方法。
PCT/JP2012/064735 2012-06-01 2012-06-01 伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板およびその製造方法 WO2013179497A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147034518A KR101674283B1 (ko) 2012-06-01 2012-06-01 신장과 신장 플랜지성이 우수한 저항복비 고강도 냉연 강판 및 그 제조 방법
CN201280073571.7A CN104350170B (zh) 2012-06-01 2012-06-01 伸长率和延伸凸缘性优良的低屈服比高强度冷轧钢板及其制造方法
PCT/JP2012/064735 WO2013179497A1 (ja) 2012-06-01 2012-06-01 伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/064735 WO2013179497A1 (ja) 2012-06-01 2012-06-01 伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板およびその製造方法

Publications (1)

Publication Number Publication Date
WO2013179497A1 true WO2013179497A1 (ja) 2013-12-05

Family

ID=49672745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064735 WO2013179497A1 (ja) 2012-06-01 2012-06-01 伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板およびその製造方法

Country Status (3)

Country Link
KR (1) KR101674283B1 (ja)
CN (1) CN104350170B (ja)
WO (1) WO2013179497A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101889173B1 (ko) 2016-12-13 2018-08-16 주식회사 포스코 고강도 저항복비형 미세 구상화 강판 및 그 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176807A (ja) * 2004-12-21 2006-07-06 Kobe Steel Ltd 伸びおよび伸びフランジ性に優れる複合組織鋼板
WO2011090180A1 (ja) * 2010-01-22 2011-07-28 Jfeスチール株式会社 材質安定性と加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2011214073A (ja) * 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd 冷延鋼板およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3936440B2 (ja) 1997-08-06 2007-06-27 新日本製鐵株式会社 耐衝突安全性と成形性に優れた自動車用高強度鋼板とその製造方法
JP5234893B2 (ja) 2007-05-31 2013-07-10 株式会社神戸製鋼所 伸びおよび伸びフランジ性に優れた高強度鋼板およびその製造方法
KR20090098900A (ko) * 2007-01-29 2009-09-17 제이에프이 스틸 가부시키가이샤 고장력 냉연 강판 및 그 제조 방법
JP5194878B2 (ja) * 2007-04-13 2013-05-08 Jfeスチール株式会社 加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5058892B2 (ja) 2008-06-16 2012-10-24 新日本製鐵株式会社 伸びフランジ性に優れたdp鋼板およびその製造方法
JP5162382B2 (ja) * 2008-09-03 2013-03-13 株式会社神戸製鋼所 低降伏比高靭性厚鋼板
JP4998756B2 (ja) * 2009-02-25 2012-08-15 Jfeスチール株式会社 加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176807A (ja) * 2004-12-21 2006-07-06 Kobe Steel Ltd 伸びおよび伸びフランジ性に優れる複合組織鋼板
WO2011090180A1 (ja) * 2010-01-22 2011-07-28 Jfeスチール株式会社 材質安定性と加工性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
JP2011214073A (ja) * 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd 冷延鋼板およびその製造方法

Also Published As

Publication number Publication date
CN104350170B (zh) 2018-03-06
KR20150004430A (ko) 2015-01-12
KR101674283B1 (ko) 2016-11-08
CN104350170A (zh) 2015-02-11

Similar Documents

Publication Publication Date Title
JP5888471B1 (ja) 高降伏比高強度冷延鋼板及びその製造方法
KR101912512B1 (ko) 고강도 냉연 강판 및 그 제조 방법
JP5821912B2 (ja) 高強度冷延鋼板およびその製造方法
CN107406930B (zh) 高强度冷轧钢板和其制造方法
KR102000854B1 (ko) 고강도 냉연 강판 및 그 제조방법
JP5858174B2 (ja) 低降伏比高強度冷延鋼板およびその製造方法
CN103339280B (zh) 加工性优良并具有高屈服比的高强度冷轧钢板及其制造方法
JP5825082B2 (ja) 伸び及び伸びフランジ性に優れた高降伏比高強度冷延鋼板とその製造方法
WO2017179372A1 (ja) 高強度鋼板およびその製造方法
JP5239562B2 (ja) 加工性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法
JP5811725B2 (ja) 耐面歪性、焼付け硬化性および伸びフランジ性に優れた高張力冷延鋼板およびその製造方法
JP2009001909A (ja) 高強度冷延鋼板の製造方法
JP5246283B2 (ja) 伸びと伸びフランジ性に優れた低降伏比高強度冷延鋼板およびその製造方法
CN104350170B (zh) 伸长率和延伸凸缘性优良的低屈服比高强度冷轧钢板及其制造方法
TWI454582B (zh) 延伸及延伸凸緣性優異之低降伏比高強度冷延鋼板及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12877793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147034518

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201408286

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 12877793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP