WO2013141133A1 - ウイルスベクターの製造方法 - Google Patents
ウイルスベクターの製造方法 Download PDFInfo
- Publication number
- WO2013141133A1 WO2013141133A1 PCT/JP2013/057184 JP2013057184W WO2013141133A1 WO 2013141133 A1 WO2013141133 A1 WO 2013141133A1 JP 2013057184 W JP2013057184 W JP 2013057184W WO 2013141133 A1 WO2013141133 A1 WO 2013141133A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- medium
- viral vector
- producing
- cells
- cell
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K35/13—Tumour cells, irrespective of tissue of origin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0018—Culture media for cell or tissue culture
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/10041—Use of virus, viral particle or viral elements as a vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/10051—Methods of production or purification of viral material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/10051—Methods of production or purification of viral material
- C12N2740/10052—Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
Definitions
- the present invention relates to a method for producing a viral vector and a medium for producing a viral vector.
- gene therapies using viral vectors have been developed for the treatment of cancer and infectious diseases, and many clinical trials have been conducted.
- many attempts have been made for gene therapy using retrovirus vectors or adenovirus vectors.
- transfer vectors used for the production of a recombinant retroviral vector used to incorporate a target gene include the virus particle structural protein genes (gag, pol, pol) from the genome of wild-type Moloney leukemia virus (MoMLV). env) has been removed, such as pLXSN (Genbank Access M28248) and pMFG. In addition to these, further modified vectors are used in human clinical trials.
- the production of a recombinant retroviral vector involves culturing a virus-producing cell induced by transfection of a DNA vector into which a target gene has been inserted into a packaging cell (Psi-Crip, GP + E86, GP + envAm12, PG13, etc.) This is done by collecting the supernatant containing the viral vector. Furthermore, a production cell clone that stably produces a retroviral vector for expression of the target gene is selected from the infected cells by a method such as infecting the supernatant with packaging cells again. Through these steps, a master cell bank (MCB) and a working cell bank (WCB) are prepared, and a genetically modified retroviral vector for gene therapy is stably produced.
- MCB master cell bank
- WB working cell bank
- virus titer In order to improve the titer of virus produced by retrovirus-producing cells, culture of retrovirus-producing cells is extremely important. That is, it is necessary to examine the culture conditions for obtaining a high virus titer (hereinafter sometimes referred to as virus titer).
- virus titer As methods for increasing the titer to date, superinfection (for example, Non-Patent Document 1), addition of sodium butyrate or Trichostatin A, which is an inhibitor of histone deacetylase (for example, Non-Patent Documents 2, 3) )
- the remarkable effect is not acquired in either.
- the object of the present invention is to develop a medium used for the production of virus vectors, particularly a medium used for culturing virus-producing cells that makes it possible to maintain a high virus titer. It is an object of the present invention to provide a production method and a method for producing a transduced cell population using a viral vector produced by the method.
- the present inventors As active ingredients, a medium containing retinoic acids, histone deacetylase (also referred to as histone deacetylase) inhibitor, and a substance having a chelating ability.
- a medium containing retinoic acids such as retinoic acids
- histone deacetylase also referred to as histone deacetylase
- the present invention provides: [1] A method for producing a viral vector comprising a step of culturing a cell having the ability to produce a viral vector as an active ingredient in a medium containing a retinoic acid, a histone deacetylase inhibitor, and a substance having a chelating ability , [2] The production method according to [1], wherein the cell is a cell capable of continuously producing a viral vector.
- [6] (1) A step of producing a viral vector by the method according to any one of [1] to [5], and (2) a step of transducing cells using the viral vector produced in step (1), A method for producing a transduced cell population, characterized in that [7] A transduced cell population obtained by the production method according to [6], [8] The cell population according to [7] for use in medicine, [9] The cell population according to [7], which is used for producing a medicament, [10] A medicine containing the cell population according to [7] as an active ingredient, [11] A method for treating or preventing a disease, comprising a step of administering an effective amount of the medicine according to [10] to a subject, [12] A viral vector production medium comprising, as an active ingredient, retinoic acids, a histone deacetylase inhibitor, and a chelate-forming substance, About.
- a virus supernatant having a high virus titer can be easily obtained, so that a virus vector and a high titer composition containing the vector can be easily prepared.
- the viral vector and the composition obtained using the culture medium of the present invention are very useful in the field of gene therapy.
- the present invention discloses a medium suitable for culturing cells that produce viral vectors.
- the above-mentioned medium is a basic medium prepared by mixing components necessary for cell culture, and contains retinoic acids, histone deacetylase inhibitor and a substance capable of forming a chelate as active ingredients. It is.
- the medium may further contain lipids.
- retinoic acid is also called vitamin A acid, and is any of all-trans-retinoic acid in which all the double bonds in the chain are trans, or 9-cis-retinoic acid in which the 9-position has a cis structure. But you can.
- other retinoic acid isomers and retinoic acid derivatives, and artificially synthesized synthetic retinoids can also be used in the present invention.
- the above-mentioned retinoic acid, retinoic acid isomers and retinoic acid derivatives, and artificially synthesized synthetic retinoids, or salts thereof are collectively referred to herein as retinoic acids.
- the retinoic acid to be used may be one kind or a combination of plural kinds.
- the concentration of retinoic acid used in the present invention in the medium is not particularly limited as long as it is a concentration that acts as an active ingredient.
- ATRA all-trans-retinoic acid
- it is preferably 1 nM to 10 ⁇ M, more preferably 5 nM to 200 nM, and particularly preferably 10 nM to 100 nM.
- any “histone deacetylase inhibitor” may be used as long as it has histone deacetylase inhibitory activity.
- Aliphatic acids such as sodium butyrate, butyrate, phenylbutyrate, valproic acid
- Hydroxamic acids such as trichostatin A, oxamflatin, suberoylilide, salts and derivatives thereof, (3) cyclic peptides such as trapoxin, Apicidin, FK228, salts and derivatives thereof, and the like (4) benzamide, salts and derivatives thereof can be used.
- one kind of histone deacetylase inhibitor may be used, or a plurality of kinds may be used in combination.
- a histone deacetylase inhibitor sodium butyrate (hereinafter referred to as NaB) or trichostatin A (hereinafter referred to as TSA) having a wide range of isoform inhibition of histone deacetylase. Described) is preferably used.
- NaB sodium butyrate
- TSA trichostatin A
- this inventor has discovered the effect also about TSA besides NaB.
- the concentration of the histone deacetylase inhibitor used in the present invention in the medium may be a concentration that acts as an active ingredient, and is not particularly limited.
- TSA for example, preferably 10 nM to 50 ⁇ M, more preferably 20 nM to 10 ⁇ M, particularly preferably 100 nM to 3 ⁇ M.
- NaB for example, it is preferably 1 nM to 50 mM, more preferably 1 mM to 10 mM.
- Lipids may be further added to the medium containing the retinoic acids and histone deacylase inhibitor of the present invention.
- Lipids include fatty acids (arachidonic acid, linoleic acid, linolenic acid, myristic acid, oleic acid, palmitoyl acid, palmitic acid and their salts), steroids such as cholesterol and dexamethasone, tocopherol acetic acid, triglycerides, phospholipids (Glycerophospholipid, sphingophospholipid, inositol phospholipid, etc.) and the like can be used. You may add these components to a culture medium individually or in combination of multiple things. For example, a fatty acid concentrate that is commercially available as a medium additive for the purpose of substituting serum components may be contained as it is.
- the concentration of lipids arbitrarily selected from the lipids used in the present invention in the medium may be any concentration that acts as an active ingredient, and is not particularly limited, but preferably the total amount of lipids 0.01 mg / L to 8.0 mg / L, more preferably 0.03 mg / L to 5.0 mg / L, and particularly preferably 0.1 mg / L to 4.0 mg / L.
- the volume ratio is preferably 1 / 10,000 to 1/50 (V / V), more preferably 1 / 3,000 to 1/75 (V / V). Particularly preferred is 1/1000 to 1/100 (V / V).
- the “substance capable of forming a chelate” may be any substance that can coordinate with a metal ion to form a complex.
- aminocarboxylic acid chelating agents include EDTA (ethylenediaminetetraacetic acid), NTA (nitrilotriacetic acid), DTPA (diethylenetriaminepentaacetic acid), HEDTA (hydroxyethylenediaminetriacetic acid), and the like, and phosphonic acid chelating agents.
- HEDP hydroxyethylidene diphosphonic acid
- NTMP nitrilotris (methylenephosphonic acid)
- EDTMP ethylenediaminetetra (methylenephosphonic acid)
- other ligands include bipyridine, phenanthroline, porphyrin, crown ether, and cyclam Terpyridine, catecholate, BINAP ′ (2,2′-bis (diphenylphosphino) -1,1′-binaphthyl (2,2′-bis (diphenylphosphino) ′-1,1′-bina) and other substances such as lactobionic acid, gluconic acid, inositol 6-phosphate, citric acid, phosphoric acid, malic acid, mugineic acid, glutathione, alpha lipoic acid, L-carnitine, L-methionine L-cystine, MSM (methylsulfonylmethane) and the like are used.
- lactobionic acid or a salt thereof is preferably used as the substance having chelate-forming ability.
- the concentration of the substance having chelating ability used in the present invention in the medium may be any concentration that acts as an active ingredient, and is not particularly limited. In the case of calcium lactobionate, for example, it is preferably terminated.
- the concentration is 2 ⁇ M to a final concentration of 200 mM, more preferably a final concentration of 20 ⁇ M to a final concentration of 20 mM, and particularly preferably a final concentration of 200 ⁇ M to a final concentration of 2 mM.
- the components of the basic medium include energy sources such as amino acids, sugars, and organic acids, vitamins, buffer components for adjusting pH, inorganic salts, and the like. Further, it may contain a pH indicator such as phenol red.
- a basic medium a known medium containing no serum, for example, DMEM, IMDM, Ham F12 medium or the like may be used, and these can be obtained as commercial products from Invitrogen, Sigma, and the like.
- Commercially available media such as Opti-ProSFM, VP-SFM, 293SFMII (all manufactured by Invitrogen), HyQ SFM4 MegaVir (manufactured by High Clone) can also be used.
- a serum-added medium may be used as the basal medium, but a serum-free medium is preferably used in order to prevent contamination of unknown viruses derived from serum.
- serum-free medium it contains serum albumin highly purified from human blood (for example, serum albumin preparations approved as pharmaceuticals), highly purified serum albumin derived from animals, or recombinant serum albumin
- a serum-free medium is preferably used (Japanese Patent Laid-Open No. 2007-105033).
- virus-producing cells cultured in the medium of the present invention there is no particular limitation on the virus-producing cells cultured in the medium of the present invention, but for example, retrovirus-producing cells are suitable.
- the present invention relates to a method for producing a viral vector characterized by using the above-mentioned medium.
- the viral vector produced according to the present invention is not particularly limited.
- retrovirus vectors including oncovirus vectors, lentivirus vectors and their modifications
- adenovirus vectors including oncovirus vectors, lentivirus vectors and their modifications
- adenovirus vectors including oncovirus vectors, lentivirus vectors and their modifications
- adenovirus vectors including oncovirus vectors, lentivirus vectors and their modifications
- adenovirus vectors adeno-associated virus vectors
- simian virus vectors vaccinia virus vectors
- Sendai virus vectors and the like can be mentioned.
- retroviral vectors and genetically modified retroviral vectors.
- a replication-defective retrovirus vector in which unlimited infection and gene transfer are prevented is preferably used in the present invention.
- the nucleic acid encapsulated in the viral particle of the recombinant retroviral vector is supplied by a plasmid.
- plasmids for supplying nucleic acids encapsulated in virus particles of known replication deficient retrovirus vectors MFG vector, ⁇ -SGC vector (International Publication No. 92/07943 pamphlet), pBabe [Nucleic Acids Research (Nucleic Acids Research) ), 18: 3587-3596 (1990)], retroviral vector plasmids such as pLXIN (Clontech), pDON-AI (Takara Bio), lentiviral vectors [human immunodeficiency virus (HIV) Derived vectors, simian immunodeficiency virus (SIV) derived vectors, etc.] or vector plasmids modified from these.
- retroviral vector plasmids such as pLXIN (Clontech), pDON-AI (Takara Bio), lentiviral vectors [human immunodeficiency virus (HIV) Derived vectors, simian immunodeficiency virus (SIV)
- Any foreign gene may be mounted on the nucleic acid enclosed in the virus particle.
- the foreign gene to be loaded is not particularly limited, and any gene [enzyme, cytokines, receptors, etc.] can be used depending on the use of the cell population transduced by the viral vector produced according to the present invention described below.
- intracellular antibodies, antisense nucleic acids, siRNA (small interfering RNA), and ribozyme encodings] can be used.
- Examples of these foreign genes include genes that express MazF, which is a sequence-specific RNase (for example, International Publication No. 2007/020873 pamphlet and International Publication No. 2008).
- an appropriate marker gene such as an extracellular domain gene ( ⁇ LNGFR), a neomycin resistance gene, a fluorescent protein gene, or the like of Low affinity Nervous Factor Receptor may be simultaneously loaded.
- the foreign gene can be used in a viral vector so that it can be expressed under the control of an appropriate promoter, for example.
- an enhancer sequence, terminator sequence, or intron sequence may be present in the vector.
- retrovirus-producing cells prepared by introducing a DNA that supplies nucleic acid encapsulated in virus particles of the retrovirus vector into a retrovirus packaging cell line are cultured in the medium of the present invention, Viral vector production is carried out.
- the packaging cell line is not particularly limited, and known packaging cell lines such as PG13 (ATCC CRL-10686), PA317 (ATCC CRL-9078), GP + E-86 and GP + envAm-12 (US Pat. No. 5, 278,056), Psi-Crip [Procedure of the National Academy of Sciences of the USA (Proc. Natl. Acad. Sci. USA), Vol. 85, 6460-6464 (1988)], etc. can do.
- a packaging cell is prepared by introducing a packaging plasmid (retrovirus packaging kit: manufactured by Takara Bio Inc.) carrying genes necessary for retrovirus particle production into 293 cells or 293T cells with high transfection efficiency. You can also.
- the method of the present invention can be used for both virus-producing cells prepared to produce recombinant virus vectors transiently and virus-producing cell lines capable of continuously producing viruses.
- a cryopreserved product such as a master cell bank (MCB) or a working cell bank (WCB) of a virus-producing cell line by an appropriate means
- the plant is directly planted in the medium, and culture is started.
- the cells are grown to produce virus.
- Virus-producing cells can be cultured under normal culture conditions. For example, culture at a humidity of 95% and a CO 2 concentration of 5% is exemplified, but the present invention is not limited to such conditions. Cultivation can be performed, for example, at 30 to 37 ° C., but may be performed at a temperature other than the above range as long as desired cell growth and viral vector production can be achieved.
- the supernatant is collected from the culture medium thus obtained, and retrovirus production is carried out.
- the viral vector is produced as a filtrate filtered with the above supernatant, a viral vector concentrated or purified by a known method, and stored until an appropriate method, for example, frozen. By culturing virus-producing cells using the above-described medium of the present invention, a virus vector having a higher titer can be obtained than the conventional method.
- the present invention also provides a method for producing a cell population containing transduced cells, wherein the target cells are transduced with the viral vector produced by the method of the present invention.
- the number of desired genes introduced into cells by the viral vector is not limited, and may be one gene or a plurality of genes.
- Transduction of target cells with a viral vector may be performed by a known method suitable for the viral vector.
- a retrovirus vector when used, a substance that improves gene transfer efficiency such as RetroNectin (registered trademark, manufactured by Takara Bio Inc.) can be used at the time of gene transfer.
- RetroNectin registered trademark, manufactured by Takara Bio Inc.
- the present invention provides a cell population obtained by the above-described method for producing a cell population of the present invention, and uses of the cell population.
- the cell population obtained by the method of the present invention can be used for various uses, for example, production of useful substances, and the cells themselves can also be used for treatment of diseases.
- the method of the present invention it is possible to obtain a cell population containing cells carrying a therapeutically useful foreign gene.
- the above cell population may have various diseases such as cancer, leukemia, malignant tumor, hepatitis, or infectious disease (for example, influenza, tuberculosis, HIV (Human Immunodefectivity Virus, human). It can be used for treatment of immunodeficiency virus) infection, AIDS, MRSA infection, VRE infection, or deep mycosis.
- the cell population produced by the method of the present invention includes bone marrow transplantation, donor lymphocyte infusion for the purpose of preventing infection or remission of recurrent leukemia in an immunodeficient state such as after irradiation, anticancer drug treatment, It can be used in combination with conventional therapies such as radiation therapy, antibody therapy, thermotherapy, and other immunotherapy.
- the cell population containing the transduced cells obtained in the present invention is used for treatment or prevention of a disease
- an effective amount of the cells is administered to a subject to be treated or prevented, that is, a human or non-human animal.
- the cell administration method may be selected appropriately depending on the disease, and examples thereof include intravenous, arterial, subcutaneous, or intraperitoneal administration by injection or infusion.
- the cell population obtained by the present invention can be a medicine, that is, a therapeutic or preventive agent for diseases.
- the medicine can be produced by formulating the cell population according to a method known in the pharmaceutical field.
- the cell population produced by the method of the present invention is mixed as an active ingredient with a known organic or inorganic carrier, excipient or stabilizer suitable for parenteral administration, and prepared as an infusion or injection. be able to.
- Example 1 Preparation 1 of medium supplemented with calcium lactobionate monohydrate (LaCa) (manufactured by Sigma)
- a basic medium obtained by adding inactivated fetal bovine serum (manufactured by FBS SBI Biosciences) at a solution ratio (V / V) to DMEM medium (manufactured by Gibco) as a cell culture medium.
- Medium V-1 final concentration 20 ⁇ M
- V-2 final concentration 200 ⁇ M
- V-3 final concentration 2 mM
- retinoic acid (manufactured by Wako Pure Chemical Industries, Ltd.) was added to each of the media V-1, V-2, V-3 to a final concentration of 100 nM, and sodium butyrate (NaB) (Wako Pure Chemical Industries, Ltd.) was added.
- Medium was added to a final concentration of 5 mM to prepare media W-1, W-2, and W-3.
- X-1, X-2, X-3, and ATRA added with NaB final concentration 5 mM
- the prepared media Y-1, Y-2, Y-3 were prepared. Table 1 shows the composition of each medium.
- Example 2 Culture of retrovirus-producing cells 1 Culture of retrovirus-producing cells Working cell bank (WCB) of retrovirus-producing cells (PG13: ATCC CRL-10686: used as packaging cells) producing a mouse-derived recombinant retrovirus vector carrying a fluorescent reporter protein (ZsGreen) gene ) was thawed in a 37 ° C. water bath. The thawed cell solution was transferred to a 15 mL centrifuge tube, 10 mL of complete medium (DMEM medium containing 10% FBS) was added, and centrifugation (500 ⁇ g, 5 minutes, 20 ° C.) was performed. After centrifugation, the supernatant was removed, suspended in 10 mL complete medium, and cell count was performed.
- WB working cell bank
- PG13 ATCC CRL-10686: used as packaging cells
- ZsGreen fluorescent reporter protein
- a cell suspension is prepared to 78.5 ⁇ 10 4 cells / mL using complete medium, and 1 mL of the above cell suspension is added to a 100 mm dish (manufactured by Iwaki) for cell culture. 14.7 mL of the medium was added and cultured in a CO 2 incubator (37 ° C., humidity 95%, CO 2 concentration 5%). The passage was performed at a passage interval of 3 days, the seeding cell density at the first passage was 1 ⁇ 10 4 cells / cm 2 , and the liquid volume was 0.2 mL / cm 2 .
- the seeded cell density is 0.9 ⁇ 10 4 cells / cm 2
- the liquid volume is 0.2 mL / cm 2
- 2 mL each for each well of a 6-well treatment plate for cell culture manufactured by BD Falcon.
- the culture supernatant was removed, and the media V-1, V-2, V-3, W-1, W-2, W-3, Y-1, and They were replaced with Y-2 and Y-3, respectively (the liquid volume was 0.1 mL / cm 2 ).
- each medium was collected and replaced with a new same medium.
- the culture was performed at 32 ° C., 95% humidity and 5% CO 2 concentration.
- the medium was exchanged and collected three times in total for three consecutive days, and the medium was not collected for the third time, and only the medium was collected.
- the collected culture supernatants (first, second, third) were mixed and then filtered through a 0.22 ⁇ m pore size filter (Millipore) to obtain a retrovirus supernatant.
- RetroNectin registered trademark, manufactured by Takara Bio Inc.
- ACD-A diluted with ACD-A to a final concentration of 20 ⁇ g / mL
- the retronectin solution was removed from the plate
- 0.5 mL of ACD-A was added to each well and removed, and the plate was used twice.
- 1 mL of each virus dilution was added to each well of the plate and centrifuged (32 ° C., 2000 ⁇ g, 2 hours).
- a human T cell leukemia cell line CCRF-CEM (ATCC CCL-119) was added to a culture medium for CCRF-CEM [RPMI1640 medium (manufactured by Sigma) containing 10% FBS] at 1 ⁇ 10 6 cells / mL. And suspended. 1 mL of this suspension (0.5 ⁇ 10 6 cells / cm 2 ) was added to each well of the 24-well non-treatment plate after washing, and centrifuged (32 ° C., 1000 ⁇ g, 10 minutes).
- the plate was transferred to a CO 2 incubator (37 ° C., humidity 95%, CO 2 concentration 5%) and cultured for 1 day.
- a CO 2 incubator 37 ° C., humidity 95%, CO 2 concentration 5%
- 1 mL each of the culture medium for CCRF-CEM was added to each well, and further cultured for 1 day.
- the expression of ZsGreen was examined in order to examine the gene transfer efficiency by retrovirus.
- Cells after infection culture 0.5 ⁇ 10 6 cells were transferred to a 1.5 mL tube, and the cells were precipitated by centrifugation (4 ° C., 500 ⁇ g, 5 minutes).
- the precipitated cells were added with phosphate buffer (Gibco) (hereinafter 0.5%) to which BSA (bovine serum albumin, Sigma) was added so that the final concentration was 0.5%. It was suspended in 950 ⁇ L (described as BSA / PBS), and the cells were precipitated again by centrifugation (4 ° C., 500 ⁇ g, 5 minutes). After removing the supernatant again, it was suspended in 400 ⁇ L of 0.5% BSA / PBS, and this suspension was subjected to flow cytometry measurement.
- phosphate buffer Gibco
- BSA bovine serum albumin
- the flow cytometry measurement was performed according to the instruction manual of the instrument using a BD FACSCanto II flow cytometer (Becton Dickinson). First, the above-mentioned suspension is subjected to a flow cytometer, and is measured on a two-parameter histogram (x axis: FSC, y axis: SSC) of forward scattered light (FSC) and side scattered light (SSC). The cell population was gated. Next, the ZsGreen fluorescence intensity of the cells in the gate was measured and developed into a histogram (x axis: ZsGreen fluorescence intensity, y axis: number of cells).
- ZsGreen positive cells cells having higher ZsGreen fluorescence intensity than the isotype control are defined as ZsGreen positive cells, and the ratio to the number of cells in the above gate [Gene transfer efficiency (GT%: Gene Transduction efficiency)] and Mean fluorescence intensity (MFI: Mean Fluorescence Intensity) was determined.
- the gene transfer efficiency is shown in FIG. As shown in FIG. 1, the gene transfer efficiency in the retrovirus supernatants collected using the media W-1, W-2, and W-3 is shown in the corresponding comparative media V-1, V-2, V-3.
- the gene transfer efficiency was 1.5 to 2 times higher than that of -3.
- a medium combining calcium lactobionate, retinoic acid, and a histone deacetylase inhibitor has a higher gene transfer efficiency than a medium containing only a calcium salt of lactobionic acid having chelating ability.
- NGMC means a non-transfected cell and represents a negative control. The following also has the same meaning.
- the average value of the fluorescence intensity is shown in FIG.
- the fluorescence intensity of the retrovirus supernatant recovered using the media W-1, W-2, and W-3 is higher than that of the media V-1, V-2, and V-3.
- the fluorescence intensity was about 1.5 to 2 times higher.
- the virus obtained using a medium in which calcium lactobionate is combined with retinoic acid and histone deacetylase inhibitor is different from the virus obtained using a medium to which only calcium lactobionate is added.
- a cell population with high fluorescence intensity of ZsGreen could be obtained, and high gene transfer efficiency was shown.
- Example 3 Preparation 2 of calcium lactobionate monohydrate (LaCa) (Sigma) supplemented medium
- ATRA was added to each of the media V-1, V-2, and V-3 to a final concentration of 100 nM, and NaB was added to a final concentration of 5 mM.
- Medium W-1, W-2 and W-3 were prepared. At this time, a medium W to which no LaCa was added was also prepared. Table 2 shows the composition of each medium.
- Example 4 Culture of Retrovirus Producing Cells 2 Using the four types of culture media prepared in Example 3, retrovirus supernatants were obtained in the same manner as in Example 2. Further, for each retrovirus supernatant, gene transfer efficiency and average fluorescence intensity in the gene-transferred cells were obtained. Asked.
- Table 3 shows the gene transfer efficiency.
- the gene transfer efficiency in the retrovirus supernatant recovered using the media W-1, W-2, and W-3 is the same as that of the retrovirus recovered using the media W not containing LaCa.
- the gene transfer efficiency was about 1.5 to 2 times higher than the supernatant.
- using a medium further added with LaCa having chelating ability means that a retrovirus supernatant with high gene transfer efficiency can be obtained. To do.
- Table 4 shows the average value of fluorescence intensity.
- the average intensity of ZsGreen-derived fluorescence in cells transduced with the retrovirus supernatant collected using the media W-1, W-2, and W-3 is the media not containing LaCa.
- the value was about 1.6 to 2.6 times higher than the retrovirus supernatant recovered with W.
- the improvement in the average fluorescence intensity is considered to be due to the improvement in the copy number of the ZsGreen gene introduced into the cells. That is, as described above, when a medium in which LaCa having chelating ability is further added to a medium in which retinoic acid and a histone deacetylase inhibitor are combined, a retrovirus supernatant with high gene transfer efficiency is obtained. It means that it is obtained.
- a retrovirus supernatant was obtained in the same manner as in Example 2, and the gene transfer efficiency and the average fluorescence intensity in the gene-transferred cells were determined for each retrovirus supernatant.
- Table 6 shows gene transfer efficiency.
- the gene transfer efficiency in the retrovirus supernatant recovered using the media V-1, V-2, and V-3 is the retrovirus recovered using the media V not including LaCa.
- the gene transfer efficiency was similar to that of the supernatant. In other words, when only LaCa having chelating ability is added (when retinoic acid and histone deacetylase inhibitor do not coexist), the gene transfer efficiency of the obtained retrovirus supernatant is not improved. means.
- Table 7 shows the average value of fluorescence intensity.
- the average intensity of ZsGreen-derived fluorescence in cells transduced with the retrovirus supernatant collected using the media V-1, V-2, V-3 is the media not containing LaCa It was similar to the retrovirus supernatant recovered using V. From this, it was shown that gene introduction efficiency of the obtained retrovirus supernatant was not improved only by adding LaCa having chelating ability to the medium.
- the present invention provides a medium suitable for culturing cells, particularly virus-producing cells.
- virus production can be continued for a long period of time compared to the conventional method, whereby a high virus titer can be obtained, so that a large amount of virus can be recovered by one culture preparation, It becomes possible to improve the efficiency of infection of cells.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Virology (AREA)
- Medicinal Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Cell Biology (AREA)
- Immunology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Epidemiology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Developmental Biology & Embryology (AREA)
- Plant Pathology (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Gastroenterology & Hepatology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
[1]ウイルスベクターを産生する能力を有する細胞を、有効成分として、レチノイン酸類、ヒストン脱アセチル化酵素阻害物質及びキレート形成能を有する物質を含む培地で培養する工程を包含するウイルスベクターの製造方法、
[2]細胞が継続的にウイルスベクターを産生する能力がある細胞である[1]記載の製造方法、
[3]ウイルスベクターがレトロウイルスベクターである[1]又は[2]に記載の製造方法、
[4]ヒストン脱アセチル化酵素阻害物質がトリコスタチンA及び酪酸ナトリウムから選択される少なくとも1種の物質である[1]~[3]いずれか記載の製造方法、
[5]前記キレート形成能を有する物質が、ラクトビオン酸又はその塩である[1]~[4]いずれか記載の製造方法、
[6](1)[1]~[5]いずれか記載の方法でウイルスベクターを製造する工程、ならびに
(2)工程(1)で製造されたウイルスベクターを用いて細胞を形質導入する工程、
を包含することを特徴とする形質導入された細胞集団の製造方法、
[7][6]に記載の製造方法で得られた形質導入された細胞集団、
[8]医薬に使用するための[7]記載の細胞集団、
[9]医薬の製造に用いる[7]記載の細胞集団、
[10][7]記載の細胞集団を有効成分として含有する医薬、
[11]対象に有効量の[10]記載の医薬を投与する工程を含む疾病の治療方法又は予防方法、
[12]有効成分として、レチノイン酸類、ヒストン脱アセチル化酵素阻害物質及びキレート形成能を有する物質を含むことを特徴とするウイルスベクター製造用培地、
に関する。
本発明の方法は、一過性に組換えウイルスベクターを産生するよう作製されたウイルス産生細胞、継続的にウイルスを産生する能力を有するウイルス産生細胞株のいずれにも利用することができる。後者を使用する場合には、ウイルス産生細胞株のマスターセルバンク(MCB)やワーキングセルバンク(WCB)のような凍結保存物を適切な手段で解凍後、前記の培地に直接植えて培養を開始し、前記細胞を増殖させ、ウイルスを産生させる。組換えウイルスベクターの大量調製のためには、更に前記の培地にウイルス産生細胞株を適応させる馴化の工程を加えることが好ましい。
本発明では高いウイルス力価のウイルスベクターを得られることから、当該ベクターを使用することにより、所望の遺伝子を保持する細胞を高い比率で含む細胞集団を得ることができる。
細胞培養用培地であるDMEM培地(ギブコ社製)に非働化ウシ胎児血清(FBS エスエーエフシー バイオサイエンス社製)を溶液比(V/V)で1/10加えた培地を基本培地(培地V)として、培地VにLaCaを添加した培地V-1(終濃度20μM)、V-2(終濃度200μM)、V-3(終濃度2mM)を調製した。更にこの培地V-1,V-2、V-3それぞれに、レチノイン酸(ATRA)(和光純薬社製)を最終濃度100nMとなるように添加し、更に酪酸ナトリウム(NaB)(和光純薬社製)を最終濃度5mMになるように添加して、培地W-1、W-2、W-3を調製した。また、比較群として、培地V-1,V-2、V-3にNaBのみ添加(終濃度5mM)した培地X-1、X-2、X-3、及びATRAのみ添加(終濃度100nM)した培地Y-1、Y-2、Y-3を調製した。各培地の組成を表1に示す。
1.レトロウイルス産生細胞の培養
蛍光レポータータンパク質(ZsGreen)遺伝子を搭載したマウス由来組換えレトロウイルスベクターを産生するレトロウイルス産生細胞(PG13:ATCC CRL-10686:をパッケージング細胞とした)のワーキングセルバンク(WCB)を37℃のウォーターバスにて解凍した。解凍された細胞液を15mL遠心チューブに移し、完全培地(10%FBSを含むDMEM培地)を10mL加え、遠心(500×g、5分間、20℃)を行った。遠心後、上清を除去し、10mLの完全培地に懸濁しセルカウントを行った。セルカウント後、完全培地を用いて、細胞懸濁液を78.5×104cells/mLに調製し、細胞培養用の100mmディッシュ(イワキ社製)に前記の細胞懸濁液1mL、及び完全培地14.7mLを添加し、CO2インキュベーター(37℃、湿度95%、CO2濃度5%)にて培養を行った。継代間隔は3日とし、1継代目の播種細胞密度を1×104cells/cm2、液量を0.2mL/cm2として継代操作を行った。2継代目は播種細胞密度を0.9×104cells/cm2、液量を0.2mL/cm2として、細胞培養用の6穴トリートメントプレート(BD Falcon社製)の各ウェルに2mLずつ添加した。2継代目実施の3日後、培養上清液を取り除き、実施例1に記載の培地V-1、V-2、V-3、W-1、W-2、W-3、Y-1、Y-2、Y-3にそれぞれ置換した(液量は0.1mL/cm2)。その翌日に、各培地を回収し、それぞれ新しい同じ培地に交換した。なお、2継代の3日後からは、32℃、湿度95%、CO2濃度5%にて培養を行った。上記の培地の交換と回収を3日間連続で計3回行い、3回目は培地の添加を行わず培地の回収のみ行った。回収した培養上清液(1回目、2回目、3回目)を、混合した後0.22μmのポアサイズのフィルター(ミリポア社製)でろ過して回収し、それらをレトロウイルス上清液とした。
上記のように培地V-1~Y-3を用いて回収した各レトロウイルス上清液について遺伝子導入効率の測定を行った。培地V-1~Y-3を用いて回収したレトロウイルス上清液それぞれについて20倍及び40倍のウイルス希釈液を調製した。このとき希釈には、ACD-A(テルモ社製)を全体の容積の5%となるように、また、ヒト血清アルブミン「アルブミナー25%」(CSLベーリング社製)をアルブミンの終濃度が2%になるように生理食塩水にそれぞれ添加したものを用いた。遺伝子導入用の容器は24穴ノントリートメントプレート(BD Falcon社製)を用いた。24穴ノントリートメントプレートは、予めACD-Aで最終濃度20μg/mLになるように希釈したRetroNectin(登録商標、タカラバイオ社製)を各ウェルに0.5mL添加して4℃で一晩処理し、プレートからレトロネクチン溶液を取り除いた後、ACD-Aを各ウェルに0.5mL添加して取り除くという洗浄作業を2回行ったものを使用した。このプレートの各ウェルに各ウイルス希釈液を1mL添加し、遠心(32℃、2000×g、2時間)した。遠心後、各ウェルよりウイルス希釈液上清を取り除き、ヒト血清アルブミン「アルブミナー25%」をアルブミンの終濃度が1.5%になるように生理食塩水で希釈したもの0.5mLずつで各ウェルを3回洗浄した。ヒトT細胞系白血病細胞株CCRF-CEM(ATCC CCL-119)を、CCRF-CEM用の培養用培地[10%FBSを含むRPMI1640培地(シグマ社製)]に、1×106cells/mLとなるように懸濁した。前記の洗浄後の24穴ノントリートメントプレートの各ウェルにこの懸濁液1mL(0.5×106cells/cm2)を添加し、遠心(32℃、1000×g、10分)した。遠心後、プレートをCO2インキュベーター(37℃、湿度95%、CO2濃度5%)に移して1日間培養を行った。次の日、CCRF-CEM用の培養用培地を各ウェルに1mLずつそれぞれ添加し、更に1日間培養した。培養後、レトロウイルスによる遺伝子導入効率を調べるために、ZsGreenの発現を調べた。感染培養後の細胞0.5×106cellsを1.5mLチューブに移し、遠心(4℃、500×g、5分間)にて細胞を沈殿させた。上清を取り除いた後、沈殿した細胞は終濃度が0.5%となるようにBSA(ウシ血清アルブミン、シグマ社製)を添加したリン酸バッファー(ギブコ社製)(以下、0.5%BSA/PBSと記載)950μLに懸濁し、遠心(4℃、500×g、5分間)にて再度細胞を沈殿させた。上清を再度取り除いた後、400μLの0.5%BSA/PBSに懸濁し、この懸濁液をフローサイトメトリー測定に供した。
フローサイトメトリー測定はBD FACSCanto II フローサイトメーター(ベクトン ディッキンソン社)を用いて機器の指示書に従い行った。まず、前述の懸濁液をフローサイトメーターに供し、前方散乱光(FSC)、側方散乱光(SSC)の2パラメータヒストグラム(x軸:FSC、y軸:SSC)上で、測定対象とする細胞集団をゲートでくくった。次に、ゲート中の細胞のZsGreen蛍光強度を測定し、ヒストグラム(x軸:ZsGreen蛍光強度、y軸:細胞数)に展開した。そして、アイソタイプコントロールと比較してZsGreen蛍光強度の高い細胞をZsGreen陽性細胞と定義し、下記の式により、前述のゲート中の細胞数に対する比率[遺伝子導入効率(GT%:Gene Transduction efficiency)]及び平均蛍光強度(MFI:Mean Fluorescence Intensity)を求めた。
MFI = ZsGreen陽性細胞の蛍光強度の平均値
図1に示されるように、培地W-1、W-2、W-3を用いて回収したレトロウイルス上清液での遺伝子導入効率は、対応する比較培地V-1、V-2、V-3よりも1.5~2倍程度高い遺伝子導入効率を示した。つまり、キレート形成能を有するラクトビオン酸のカルシウム塩のみを添加した培地よりも、ラクトビオン酸カルシウム、レチノイン酸、及びヒストン脱アセチル化酵素阻害剤を組み合わせた培地の方が、遺伝子導入効率が高いことを意味している。なお、図中、「NGMC」は非遺伝子導入細胞を意味し、陰性対照を示す。以下も同様の意味である。
図2に示されるように、培地W-1、W-2、W-3を用いて回収したレトロウイルス上清液での蛍光強度は、培地V-1、V-2、V-3よりも1.5~2倍程度高い蛍光強度を示した。前記と同様に、ラクトビオン酸カルシウムと、レチノイン酸及びヒストン脱アセチル化酵素阻害剤を組み合わせた培地を用いて得られたウイルスは、ラクトビオン酸カルシウムのみを添加した培地を用いて得られたウイルスに対してZsGreenの蛍光強度の高い細胞集団を得ることができ、高い遺伝子導入効率が示された。
実施例1と同様の方法で、培地V-1,V-2、V-3培地それぞれに、ATRAを最終濃度100nMとなるように添加し、更にNaBを最終濃度5mMになるように添加して、培地W-1、W-2、W-3を調製した。この際、LaCaを添加しない培地Wも調製した。各培地の組成を表2に示す。
実施例3で作製した4種の培地を使用し、実施例2と同様の方法でレトロウイルス上清液を取得し、更に各レトロウイルス上清液について遺伝子導入効率ならびに遺伝子導入細胞における平均蛍光強度を求めた。
実施例1に記載された、培地VにLaCaのみを添加した培地V-1(終濃度20μM)、V-2(終濃度200μM)、V-3(終濃度2mM)を調製した。各培地の組成を表5に示す。
Claims (12)
- ウイルスベクターを産生する能力を有する細胞を、有効成分として、レチノイン酸類、ヒストン脱アセチル化酵素阻害物質及びキレート形成能を有する物質を含む培地で培養する工程を包含するウイルスベクターの製造方法。
- 細胞が継続的にウイルスベクターを産生する能力がある細胞である請求項1記載の製造方法。
- ウイルスベクターがレトロウイルスベクターである請求項1又は2記載の製造方法。
- ヒストン脱アセチル化酵素阻害物質がトリコスタチンA及び酪酸ナトリウムから選択される少なくとも1種の物質である請求項1~3いずれか記載の製造方法。
- 前記キレート形成能を有する物質が、ラクトビオン酸又はその塩である請求項1~4いずれか記載の製造方法。
- (1)請求項1~5いずれか記載の方法でウイルスベクターを製造する工程、ならびに
(2)工程(1)で製造されたウイルスベクターを用いて細胞を形質導入する工程、
を包含することを特徴とする形質導入された細胞集団の製造方法。 - 請求項6記載の製造方法で得られた形質導入された細胞集団。
- 医薬に使用するための請求項7記載の細胞集団。
- 医薬の製造に用いる請求項7記載の細胞集団。
- 請求項7記載の細胞集団を有効成分として含有する医薬。
- 対象に有効量の請求項10記載の医薬を投与する工程を含む疾病の治療方法又は予防方法。
- 有効成分として、レチノイン酸類、ヒストン脱アセチル化酵素阻害物質及びキレート形成能を有する物質を含むことを特徴とするウイルスベクター製造用培地。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014506177A JP6014119B2 (ja) | 2012-03-22 | 2013-03-14 | ウイルスベクターの製造方法 |
US14/381,721 US9399780B2 (en) | 2012-03-22 | 2013-03-14 | Method for producing viral vector |
EP13763874.8A EP2829606A4 (en) | 2012-03-22 | 2013-03-14 | PROCESS FOR PRODUCING VIRAL VECTOR |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012-065857 | 2012-03-22 | ||
JP2012065857 | 2012-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013141133A1 true WO2013141133A1 (ja) | 2013-09-26 |
Family
ID=49222592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/057184 WO2013141133A1 (ja) | 2012-03-22 | 2013-03-14 | ウイルスベクターの製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9399780B2 (ja) |
EP (1) | EP2829606A4 (ja) |
JP (1) | JP6014119B2 (ja) |
WO (1) | WO2013141133A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10562939B2 (en) | 2016-05-31 | 2020-02-18 | The Trustees Of Columbia University In The City Of New York | Method for significantly increasing lentiviral production |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992007943A1 (en) | 1990-10-31 | 1992-05-14 | Somatix Therapy Corporation | Retroviral vectors useful for gene therapy |
US5278056A (en) | 1988-02-05 | 1994-01-11 | The Trustees Of Columbia University In The City Of New York | Retroviral packaging cell lines and process of using same |
WO2000001836A1 (fr) * | 1998-07-01 | 2000-01-13 | Takara Shuzo Co., Ltd. | Procedes de transfert de genes |
WO2007020873A1 (ja) | 2005-08-16 | 2007-02-22 | Takara Bio Inc. | 免疫不全ウイルス感染症の治療または予防のための核酸 |
JP2007105033A (ja) | 2005-09-13 | 2007-04-26 | Takara Bio Inc | レトロウィルス産生用無血清培地 |
WO2008133137A1 (ja) | 2007-04-20 | 2008-11-06 | Takara Bio Inc. | 遺伝子治療のためのベクター |
JP2011520470A (ja) * | 2008-05-22 | 2011-07-21 | ヴェスタ セラピューティクス,インコーポレーテッド | 哺乳動物プロジェニター細胞をインスリン産生膵島細胞に分化させる方法 |
JP2011526786A (ja) * | 2008-06-30 | 2011-10-20 | セントコア・オーソ・バイオテツク・インコーポレーテツド | 多能性幹細胞の分化 |
WO2012046727A1 (ja) * | 2010-10-05 | 2012-04-12 | タカラバイオ株式会社 | ウイルスベクターの製造方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5470726A (en) | 1991-02-22 | 1995-11-28 | Fred Hutchinson Cancer Research Center | Retrovirus packaging and producer cell lines based on gibbon ape leukemia virus |
US20030064949A1 (en) | 1998-02-17 | 2003-04-03 | Loretta Nielsen | Combined tumor suppressor gene therapy and chemotherapy in the treatment of neoplasms |
AU6339399A (en) | 1998-10-16 | 2000-05-08 | Novartis Ag | Promotion of self-renewal and improved gene transduction of hematopoietic stem cells by histone deacetylase inhibitors |
WO2001096532A2 (en) | 2000-06-15 | 2001-12-20 | Tanja Dominko | Method of generating pluripotent mammalian cells by fusion of a cytoplast fragment with a karyoplast |
WO2002060430A1 (en) | 2001-02-01 | 2002-08-08 | Cornell Research Foundation, Inc. | Use of retinoids plus histone deacetylase inhibitors to inhibit the growth of solid tumors |
CA2453100C (fr) | 2001-07-06 | 2013-10-29 | Institut National De La Sante Et De La Recherche Medicale (I.N.S.E.R.M.) | Nouvelles lignees d'hepatomes humains, leurs obtentions et leurs applications |
JP2005519620A (ja) | 2002-03-12 | 2005-07-07 | アーク・セラピューティックス・リミテッド | 遺伝子操作したバキュロウィルスおよびその使用 |
EP1762609B1 (en) | 2005-09-13 | 2012-04-04 | Takara Bio Inc. | Serum-free medium for the production of retroviral vectors |
US9051391B2 (en) | 2007-06-11 | 2015-06-09 | Takara Bio Inc. | Method for expression of specific gene |
WO2009048024A1 (ja) | 2007-10-09 | 2009-04-16 | Hiroshima University | 目的遺伝子を染色体外で高度に増幅させるためのベクターおよびその利用 |
-
2013
- 2013-03-14 EP EP13763874.8A patent/EP2829606A4/en not_active Withdrawn
- 2013-03-14 JP JP2014506177A patent/JP6014119B2/ja active Active
- 2013-03-14 US US14/381,721 patent/US9399780B2/en not_active Expired - Fee Related
- 2013-03-14 WO PCT/JP2013/057184 patent/WO2013141133A1/ja active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5278056A (en) | 1988-02-05 | 1994-01-11 | The Trustees Of Columbia University In The City Of New York | Retroviral packaging cell lines and process of using same |
WO1992007943A1 (en) | 1990-10-31 | 1992-05-14 | Somatix Therapy Corporation | Retroviral vectors useful for gene therapy |
WO2000001836A1 (fr) * | 1998-07-01 | 2000-01-13 | Takara Shuzo Co., Ltd. | Procedes de transfert de genes |
WO2007020873A1 (ja) | 2005-08-16 | 2007-02-22 | Takara Bio Inc. | 免疫不全ウイルス感染症の治療または予防のための核酸 |
JP2007105033A (ja) | 2005-09-13 | 2007-04-26 | Takara Bio Inc | レトロウィルス産生用無血清培地 |
WO2008133137A1 (ja) | 2007-04-20 | 2008-11-06 | Takara Bio Inc. | 遺伝子治療のためのベクター |
JP2011520470A (ja) * | 2008-05-22 | 2011-07-21 | ヴェスタ セラピューティクス,インコーポレーテッド | 哺乳動物プロジェニター細胞をインスリン産生膵島細胞に分化させる方法 |
JP2011526786A (ja) * | 2008-06-30 | 2011-10-20 | セントコア・オーソ・バイオテツク・インコーポレーテツド | 多能性幹細胞の分化 |
WO2012046727A1 (ja) * | 2010-10-05 | 2012-04-12 | タカラバイオ株式会社 | ウイルスベクターの製造方法 |
Non-Patent Citations (9)
Title |
---|
BIOTECHNIQUES, vol. 29, 2000, pages 884 - 890 |
GENE THERAPY, vol. 3, 1996, pages 756 - 760 |
J. HUM. GENE THER., vol. 6, 1995, pages 1195 - 1202 |
NUCLEIC ACIDS RESEARCH, vol. 18, 1990, pages 3587 - 3596 |
OLSEN, J. C. ET AL.: "Use of sodium butyrate to enhance production of retroviral vectors expressing CFTR cDNA", HUM. GENE THER., vol. 6, 1995, pages 1195 - 1202, XP055161784 * |
PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 6460 - 6464 |
See also references of EP2829606A4 |
TOBIAS, C. A. ET AL.: "Improved recombinant retroviral titers utilizing trichostatin A", BIOTECHNIQUES, vol. 29, 2000, pages 884 - 890, XP001526507 * |
TSAO, Y. S. ET AL.: "Development and improvement of a serum-free suspension process for the production of recombinant adenoviral vectors using HEK293 cells", CYTOTECHNOLOGY, vol. 37, 2001, pages 189 - 198, XP019236726 * |
Also Published As
Publication number | Publication date |
---|---|
US20150079050A1 (en) | 2015-03-19 |
EP2829606A1 (en) | 2015-01-28 |
EP2829606A4 (en) | 2016-02-24 |
US9399780B2 (en) | 2016-07-26 |
JPWO2013141133A1 (ja) | 2015-08-03 |
JP6014119B2 (ja) | 2016-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5010760B2 (ja) | ウイルスベクターの製造方法 | |
US11834668B2 (en) | Compounds for improved viral transduction | |
US11739329B2 (en) | Compositions and methods to treating hemoglobinopathies | |
JP2022507454A (ja) | Cns送達のためのフソソーム組成物 | |
US20150216903A1 (en) | Compounds for improved viral transduction | |
US10570372B2 (en) | Method for manufacturing platelets by rotary stirring culture method | |
JP6014119B2 (ja) | ウイルスベクターの製造方法 | |
US7485448B2 (en) | Serum-free medium for producing retroviruses | |
JP4921083B2 (ja) | レトロウィルス産生用無血清培地 | |
KR101043871B1 (ko) | 동종 제대혈 혈청 또는 혈장을 사용하는 유전자 도입 방법 | |
WO2013146480A1 (ja) | 遺伝子導入方法 | |
Budak-Alpdogan et al. | Genetic Modification of Human Hematopoietic Cells: Preclinical Optimization of Oncoretroviral-mediated Gene Transfer for Clinical Trials | |
NZ726792B2 (en) | Compositions and methods to treating hemoglobinopathies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13763874 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2014506177 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14381721 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2013763874 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013763874 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |