WO2013133359A1 - 発光材料および有機発光素子 - Google Patents
発光材料および有機発光素子 Download PDFInfo
- Publication number
- WO2013133359A1 WO2013133359A1 PCT/JP2013/056245 JP2013056245W WO2013133359A1 WO 2013133359 A1 WO2013133359 A1 WO 2013133359A1 JP 2013056245 W JP2013056245 W JP 2013056245W WO 2013133359 A1 WO2013133359 A1 WO 2013133359A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light emitting
- general formula
- group
- substituted
- layer
- Prior art date
Links
- 0 COc(cc1)ccc1-c(cc1)ccc1-c(cc1)cc(C(c2c3)(c4c5)c6cc(-c(cc7)ccc7-c(cc7)ccc7OC)ccc6-c4ccc5-c(cc4)ccc4-c(cc4)ccc4OC)c1-c2ccc3-c(cc1)ccc1-c1ccc(*)cc1 Chemical compound COc(cc1)ccc1-c(cc1)ccc1-c(cc1)cc(C(c2c3)(c4c5)c6cc(-c(cc7)ccc7-c(cc7)ccc7OC)ccc6-c4ccc5-c(cc4)ccc4-c(cc4)ccc4OC)c1-c2ccc3-c(cc1)ccc1-c1ccc(*)cc1 0.000 description 5
- RUJRIUJWINWXIG-UHFFFAOYSA-N C(c(cc12)ccc1-c1ccc(C=C(c3ccccc3)c3ccccc3)cc1C21c(cc(C=C(c2ccccc2)c2ccccc2)cc2)c2-c2ccc(C=C(c3ccccc3)c3ccccc3)cc12)=C(c1ccccc1)c1ccccc1 Chemical compound C(c(cc12)ccc1-c1ccc(C=C(c3ccccc3)c3ccccc3)cc1C21c(cc(C=C(c2ccccc2)c2ccccc2)cc2)c2-c2ccc(C=C(c3ccccc3)c3ccccc3)cc12)=C(c1ccccc1)c1ccccc1 RUJRIUJWINWXIG-UHFFFAOYSA-N 0.000 description 1
- GSMVZAYUAUBQQR-WOTPUSPNSA-N C/C=C\C=C(/C)\N(c(cc1)ccc1-c1nc(-c(cc2)ccc2N(c2ccccc2)c2ccccc2)nc(-c(cc2)ccc2N(c2ccccc2)c2ccccc2)n1)C1=CCCC=C1 Chemical compound C/C=C\C=C(/C)\N(c(cc1)ccc1-c1nc(-c(cc2)ccc2N(c2ccccc2)c2ccccc2)nc(-c(cc2)ccc2N(c2ccccc2)c2ccccc2)n1)C1=CCCC=C1 GSMVZAYUAUBQQR-WOTPUSPNSA-N 0.000 description 1
- XMWINMVFKPHMJB-UHFFFAOYSA-N CC1=CCCC=C1 Chemical compound CC1=CCCC=C1 XMWINMVFKPHMJB-UHFFFAOYSA-N 0.000 description 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Cc1ccccc1 Chemical compound Cc1ccccc1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 1
- AMUPOHXNHYJAPT-UHFFFAOYSA-N c(cc1)ccc1N(c(cc1)ccc1-[n]1c2ccccc2c2c1cccc2)c(cc1)ccc1-[n]1c(cccc2)c2c2c1cccc2 Chemical compound c(cc1)ccc1N(c(cc1)ccc1-[n]1c2ccccc2c2c1cccc2)c(cc1)ccc1-[n]1c(cccc2)c2c2c1cccc2 AMUPOHXNHYJAPT-UHFFFAOYSA-N 0.000 description 1
- AUZRURKFKKRBBB-UHFFFAOYSA-N c(cc1)ccc1N(c1ccccc1)C1=NC(N23)=NC(N(c4ccccc4)c4ccccc4)=NC2=NC(N(c2ccccc2)c2ccccc2)=NC3=N1 Chemical compound c(cc1)ccc1N(c1ccccc1)C1=NC(N23)=NC(N(c4ccccc4)c4ccccc4)=NC2=NC(N(c2ccccc2)c2ccccc2)=NC3=N1 AUZRURKFKKRBBB-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/12—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
- C07D487/16—Peri-condensed systems
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
- H10K85/636—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1014—Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1074—Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
Definitions
- the present invention relates to a light emitting material having a heptaazaphenalene skeleton and an organic light emitting device such as an organic electroluminescence device (organic EL device) using the light emitting material.
- the present inventors have examined the usefulness of a compound having a heptaazaphenalene skeleton as a light-emitting material, and have proceeded with studies for the purpose of obtaining useful knowledge.
- a general formula of a compound useful as a light emitting material was derived, and diligent studies were conducted for the purpose of generalizing the useful light emitting material.
- the present inventors have found that a specific compound having a heptaazaphenalene skeleton is useful as a light emitting material of an organic light emitting device.
- a specific compound having a heptaazaphenalene skeleton is useful as a light emitting material of an organic light emitting device.
- the compounds having a heptaazaphenalene skeleton we found for the first time that there are compounds that are useful as delayed fluorescent materials and compounds with extremely high luminous efficiency. Clarified that it can be provided. Based on this finding, the present inventors have provided the following present invention as means for solving the above-mentioned problems.
- a light emitting material comprising a compound represented by the following general formula (1).
- Z 1 , Z 2 and Z 3 each independently represent a substituent.
- Z 1 , Z 2 and Z 3 are each independently a substituted amino group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
- Z 1 , Z 2 and Z 3 in the general formula (1) are each independently an aryl group substituted with a substituted or unsubstituted diarylamino group [1] or [2] The luminescent material described in 1.
- Ar 11 , Ar 12 , Ar 13 , Ar 14 , Ar 15, and Ar 16 each independently represent a substituted or unsubstituted aryl group.
- An organic light emitting device comprising the light emitting material according to any one of [1] to [8] as a light emitting material.
- An organic electroluminescence device having an anode, a cathode, and at least one organic layer including a light emitting layer between the anode and the cathode, wherein the light emitting layer contains the light emitting material.
- the organic light-emitting device according to [9] which is an organic electroluminescence device.
- the compound represented by the general formula (1) is useful as a light emitting material of an organic light emitting device.
- the compound group represented by the general formula (1) includes those exhibiting delayed fluorescence and those having extremely high luminous efficiency.
- the organic light-emitting device of the present invention includes those that exhibit delayed fluorescence and those that have extremely high luminous efficiency.
- FIG. 6 is a graph showing a foroluminescence transient attenuation in Example 2.
- 2 is an electroluminescence emission spectrum in Example 2.
- 6 is a graph showing current density-voltage characteristics-luminance characteristics of the organic electroluminescence element of Example 2.
- 6 is a graph showing the external quantum efficiency-current density characteristics of the organic electroluminescence device of Example 2.
- a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
- Z 1 , Z 2 and Z 3 each independently represent a substituent.
- the substituent here means an atom or atomic group other than a hydrogen atom.
- a substituent represented by Z 1 , Z 2 and Z 3 is preferably a substituted amino group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
- Z 1 , Z 2 and Z 3 may be the same as or different from each other. Preferred is when Z 1 , Z 2 and Z 3 are all the same.
- the substituted amino group which Z 1 , Z 2 and Z 3 can take is a group having a structure represented by —N (R 1 ) (R 2 ), wherein R 1 and R 2 are each independently a substituent.
- R 1 and R 2 are preferably a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, and are preferably a substituted or unsubstituted aryl group, It is more preferably an unsubstituted heteroaryl group, and further preferably a substituted or unsubstituted aryl group.
- R 1 and R 2 may be the same or different, but are preferably the same.
- R 1 and R 2 may be bonded to each other to form a cyclic structure.
- Specific examples of the group forming such a cyclic structure include a carbazolyl group.
- Particularly preferable examples of the substituted amino group which Z 1 , Z 2 and Z 3 can take include a substituted or unsubstituted diarylamino group, and specific examples thereof include a diphenylamino group and a di (4-fluorophenyl) amino group. Can be illustrated.
- the aryl group that can be taken by Z 1 , Z 2 and Z 3 may be composed of one aromatic ring, or may have a structure in which two or more aromatic rings are fused.
- the aryl group preferably has 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, still more preferably 6 to 14 carbon atoms (ie, a phenyl group, 1-naphthyl). Group, 2-naphthyl group) is even more preferred.
- the aryl group may be substituted.
- the substituent includes a halogen atom, a substituted amino group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group. It is preferably a halogen atom or a substituted amino group.
- the number of substituents is preferably 1 to 5, more preferably 1 to 4, and more preferably 1 to 3. More preferably. In the case of having a plurality of substituents, each substituent may be the same as or different from each other.
- a particularly preferred example of the substituted or unsubstituted aryl group that Z 1 , Z 2 and Z 3 can take is an aryl group substituted with a diarylamino group.
- Specific examples include 4- (diphenylamino) phenyl group, 4- [di (4-tert-butylphenyl) amino] phenyl group, 4- [di (4-methylphenyl) amino] phenyl group, 4- [di ( 4-ethylphenyl) amino] phenyl group, 4- [di (4-propylphenyl) amino] phenyl group, 4- [di (4-isopropylphenyl) amino] phenyl group, 4- [di (3,5-dimethyl) Phenyl) amino] phenyl group, 4- [di (3,5-diethylphenyl) amino] phenyl group, 4- [di (2,4,6-trimethylphenyl) amino] phenyl group, 4- [di (1
- the heteroaryl group that Z 1 , Z 2, and Z 3 can take may be a single ring or a structure in which two or more rings are fused.
- the heteroaryl group preferably has 3 to 21 carbon atoms, more preferably 3 to 17 carbon atoms, still more preferably 3 to 13 carbon atoms, and still more preferably 3 to 9 carbon atoms.
- the heteroaryl group may be substituted.
- the substituent includes a halogen atom, a substituted amino group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl.
- each substituent may be the same as or different from each other.
- the alkyl group may be linear, branched or cyclic. Preference is given to a linear or branched alkyl group.
- the alkyl group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 1 to 6 carbon atoms (ie, a methyl group, an ethyl group, n-propyl group, isopropyl group) is even more preferable.
- Examples of the cyclic alkyl group include a cyclopentyl group, a cyclohexyl group, and a cycloheptyl group.
- the halogen atom as used herein is preferably a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, more preferably a fluorine atom, a chlorine atom or a bromine atom, and a fluorine atom or a chlorine atom. Further preferred.
- substituents for the alkyl group, aryl group and heteroaryl group include a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, a substituted or unsubstituted alkoxy group, substituted or unsubstituted Examples thereof include an unsubstituted aryloxy group and a substituted or unsubstituted heteroaryloxy group. Descriptions and preferred ranges of alkyl groups, aryl groups, and heteroaryl groups that can be employed as substituents are the same as described above.
- the alkoxy group that can be employed as the substituent may be linear, branched, or cyclic. Preferred is a linear or branched alkoxy group.
- the alkoxy group preferably has 1 to 20 carbon atoms, more preferably 1 to 12 carbon atoms, still more preferably 1 to 6 carbon atoms (ie, a methoxy group, an ethoxy group, n-propoxy group, isopropoxy group) is even more preferable.
- Examples of the cyclic alkoxy group include a cyclopentyloxy group, a cyclohexyloxy group, and a cycloheptyloxy group.
- the aryloxy group that can be employed as a substituent may be composed of one aromatic ring or may have a structure in which two or more aromatic rings are fused.
- the aryloxy group preferably has 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, still more preferably 6 to 14 carbon atoms, and more preferably 6 to 10 carbon atoms (ie, phenyloxy group, 1 -Naphtyloxy group, 2-naphthyloxy group) is even more preferable.
- the heteroaryloxy group that can be employed as the substituent may be composed of one ring, or may have a structure in which two or more rings are fused.
- the heteroaryloxy group preferably has 3 to 21 carbon atoms, more preferably 3 to 17 carbon atoms, still more preferably 3 to 13 carbon atoms, and still more preferably 3 to 9 carbon atoms.
- the compound of the present invention preferably has a structure represented by the following general formula (2).
- the compound group represented by the general formula (2) is particularly preferable in that it includes those that exhibit delayed fluorescence.
- Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 each independently represent a substituted or unsubstituted aryl group.
- Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar 6 may be the same or different, but are preferably Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5 and Ar This is a case where all of 6 are identical.
- Ar 1 and Ar 2 may be connected to each other to form a cyclic structure together with the N atom.
- Ar 3 and Ar 4 may be connected to each other to form a cyclic structure with N atoms, and Ar 5 and Ar 6 may be connected to each other to form a cyclic structure together with N atoms.
- Ar 1 , Ar 2 , Ar 3 , Ar 4 , Ar 5, and Ar 6 are all the same, and are collectively referred to as Ar.
- the compound of the present invention preferably has a structure represented by the following general formula (3).
- the compound group represented by the general formula (3) is particularly preferable in terms of high luminous efficiency.
- Ar 11 , Ar 12 , Ar 13 , Ar 14 , Ar 15 and Ar 16 each independently represent a substituted or unsubstituted aryl group.
- Ar 11 , Ar 12 , Ar 13 , Ar 14 , Ar 15 and Ar 16 may be the same or different, but are preferably Ar 11 , Ar 12 , Ar 13 , Ar 14 , Ar 15 and Ar This is the case when all 16 are the same.
- Ar 11 and Ar 12 may be connected to each other to form a cyclic structure together with the N atom.
- Ar 13 and Ar 14 may be connected to each other to form a cyclic structure with N atoms, and Ar 15 and Ar 16 may be connected to each other to form a cyclic structure together with N atoms.
- Ar 11 , Ar 12 , Ar 13 , Ar 14 , Ar 15, and Ar 16 are all the same, and are collectively referred to as Ar.
- the method for synthesizing the compound represented by the general formula (1) is not particularly limited.
- the synthesis of the compound represented by the general formula (1) can be performed by appropriately combining known synthesis methods and conditions. For example, it can be synthesized by appropriately selecting, combining or applying the synthesis methods described in paragraph numbers 0039 to 0049 of JP-T-2009-501194.
- the compound represented by the general formula (1) can also be synthesized by combining other known synthesis reactions.
- the compound represented by the general formula (1) of the present invention is useful as a light emitting material of an organic light emitting device. For this reason, the compound represented by General formula (1) of this invention can be effectively used as a luminescent material for the light emitting layer of an organic light emitting element.
- the compound represented by the general formula (1) includes a delayed fluorescent material (delayed phosphor) that emits delayed fluorescence. That is, the present invention relates to a delayed phosphor having a structure represented by the general formula (1), an invention using a compound represented by the general formula (1) as a delayed phosphor, and a general formula (1).
- An invention of a method for emitting delayed fluorescence using the represented compound is also provided.
- An organic light emitting device using such a compound as a light emitting material emits delayed fluorescence and has a feature of high luminous efficiency. The principle will be described below by taking an organic electroluminescence element as an example.
- the organic electroluminescence element carriers are injected into the light emitting material from both positive and negative electrodes to generate an excited light emitting material and emit light.
- 25% of the generated excitons are excited to the excited singlet state, and the remaining 75% are excited to the excited triplet state. Therefore, the use efficiency of energy is higher when phosphorescence, which is light emission from an excited triplet state, is used.
- the excited triplet state has a long lifetime, energy saturation occurs due to saturation of the excited state and interaction with excitons in the excited triplet state, and in general, the quantum yield of phosphorescence is often not high.
- delayed fluorescent materials after energy transition to an excited triplet state due to intersystem crossing, etc., are then crossed back to an excited singlet state due to triplet-triplet annihilation or absorption of thermal energy, and emit fluorescence.
- a thermally activated delayed fluorescent material by absorption of thermal energy is particularly useful.
- excitons in the excited singlet state emit fluorescence as usual.
- excitons in the excited triplet state absorb heat generated by the device and cross between the excited singlets to emit fluorescence.
- the light is emitted from the excited singlet, the light is emitted at the same wavelength as the fluorescence, but the lifetime of light generated (emission life) due to the reverse intersystem crossing from the excited triplet state to the excited singlet state is normal. Since the fluorescence becomes longer than the fluorescence and phosphorescence, it is observed as fluorescence delayed from these. This can be defined as delayed fluorescence. If such a heat-activated exciton transfer mechanism is used, the ratio of the compound in an excited singlet state, which normally generated only 25%, is increased to 25% or more by absorbing thermal energy after carrier injection. It can be raised.
- the heat of the device will sufficiently cause intersystem crossing from the excited triplet state to the excited singlet state and emit delayed fluorescence. Efficiency can be improved dramatically.
- organic light-emitting devices such as an organic photoluminescence device (organic PL device) and an organic electroluminescence device (organic EL device) can be provided.
- the organic photoluminescence element has a structure in which at least a light emitting layer is formed on a substrate.
- the organic electroluminescence element has a structure in which an organic layer is formed at least between an anode, a cathode, and an anode and a cathode.
- the organic layer includes at least a light emitting layer, and may consist of only the light emitting layer, or may have one or more organic layers in addition to the light emitting layer.
- Examples of such other organic layers include a hole transport layer, a hole injection layer, an electron blocking layer, a hole blocking layer, an electron injection layer, an electron transport layer, and an exciton blocking layer.
- the hole transport layer may be a hole injection / transport layer having a hole injection function
- the electron transport layer may be an electron injection / transport layer having an electron injection function.
- FIG. 1 A specific example of the structure of an organic electroluminescence element is shown in FIG. In FIG. 1, 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, 5 is a light emitting layer, 6 is an electron transport layer, and 7 is a cathode. Below, each member and each layer of an organic electroluminescent element are demonstrated. In addition, description of a board
- the organic electroluminescence device of the present invention is preferably supported on a substrate.
- the substrate is not particularly limited and may be any substrate conventionally used for organic electroluminescence elements.
- a substrate made of glass, transparent plastic, quartz, silicon, or the like can be used.
- an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
- electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
- conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 and ZnO.
- an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
- a thin film may be formed by vapor deposition or sputtering of these electrode materials, and a pattern of a desired shape may be formed by photolithography, or when pattern accuracy is not so high (about 100 ⁇ m or more) ), A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
- wet film-forming methods such as a printing system and a coating system, can also be used.
- the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
- the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
- cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
- electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
- a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
- the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
- the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
- the emission luminance is advantageously improved.
- a transparent or semi-transparent cathode can be produced. By applying this, an element in which both the anode and the cathode are transparent is used. Can be produced.
- the light emitting layer is a layer that emits light after excitons are generated by recombination of holes and electrons injected from each of the anode and the cathode, and the light emitting material may be used alone for the light emitting layer. , Preferably including a luminescent material and a host material.
- a luminescent material the 1 type (s) or 2 or more types chosen from the compound group of this invention represented by General formula (1) can be used.
- a host material in addition to the light emitting material in the light emitting layer.
- the host material an organic compound having at least one of excited singlet energy and excited triplet energy higher than that of the light emitting material of the present invention can be used.
- singlet excitons and triplet excitons generated in the light emitting material of the present invention can be confined in the molecules of the light emitting material of the present invention, and the light emission efficiency can be sufficiently extracted.
- high luminous efficiency can be obtained, so that host materials that can achieve high luminous efficiency are particularly limited. And can be used in the present invention.
- the organic light emitting device or organic electroluminescent device of the present invention light emission is generated from the light emitting material of the present invention contained in the light emitting layer. This emission includes both fluorescence and delayed fluorescence. However, light emission from the host material may be partly or partly emitted.
- the amount of the compound of the present invention, which is a light emitting material is preferably 0.1% by weight or more, more preferably 1% by weight or more, and 50% or more. It is preferably no greater than wt%, more preferably no greater than 20 wt%, and even more preferably no greater than 10 wt%.
- the host material in the light-emitting layer is preferably an organic compound that has a hole transporting ability and an electron transporting ability, prevents the emission of longer wavelengths, and has a high glass transition temperature.
- the injection layer is a layer provided between the electrode and the organic layer for lowering the driving voltage and improving the luminance of light emission.
- the injection layer can be provided as necessary.
- the blocking layer is a layer that can prevent diffusion of charges (electrons or holes) and / or excitons existing in the light emitting layer to the outside of the light emitting layer.
- the electron blocking layer can be disposed between the light emitting layer and the hole transport layer and blocks electrons from passing through the light emitting layer toward the hole transport layer.
- a hole blocking layer can be disposed between the light emitting layer and the electron transporting layer to prevent holes from passing through the light emitting layer toward the electron transporting layer.
- the blocking layer can also be used to block excitons from diffusing outside the light emitting layer. That is, each of the electron blocking layer and the hole blocking layer can also function as an exciton blocking layer.
- the term “electron blocking layer” or “exciton blocking layer” as used herein is used in the sense of including a layer having the functions of an electron blocking layer and an exciton blocking layer in one layer.
- the hole blocking layer has a function of an electron transport layer in a broad sense.
- the hole blocking layer has a role of blocking holes from reaching the electron transport layer while transporting electrons, thereby improving the recombination probability of electrons and holes in the light emitting layer.
- the material for the hole blocking layer the material for the electron transport layer described later can be used as necessary.
- the electron blocking layer has a function of transporting holes in a broad sense.
- the electron blocking layer has a role to block electrons from reaching the hole transport layer while transporting holes, thereby improving the probability of recombination of electrons and holes in the light emitting layer. .
- the exciton blocking layer is a layer for preventing excitons generated by recombination of holes and electrons in the light emitting layer from diffusing into the charge transport layer. It becomes possible to efficiently confine in the light emitting layer, and the light emission efficiency of the device can be improved.
- the exciton blocking layer can be inserted on either the anode side or the cathode side adjacent to the light emitting layer, or both can be inserted simultaneously.
- the layer when the exciton blocking layer is provided on the anode side, the layer can be inserted adjacent to the light emitting layer between the hole transport layer and the light emitting layer, and when inserted on the cathode side, the light emitting layer and the cathode Between the luminescent layer and the light-emitting layer.
- a hole injection layer, an electron blocking layer, or the like can be provided between the anode and the exciton blocking layer adjacent to the anode side of the light emitting layer, and the excitation adjacent to the cathode and the cathode side of the light emitting layer can be provided.
- an electron injection layer, an electron transport layer, a hole blocking layer, and the like can be provided.
- the blocking layer is disposed, at least one of the excited singlet energy and the excited triplet energy of the material used as the blocking layer is preferably higher than the excited singlet energy and the excited triplet energy of the light emitting material.
- the hole transport layer is made of a hole transport material having a function of transporting holes, and the hole transport layer can be provided as a single layer or a plurality of layers.
- the hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
- hole transport materials that can be used include, for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, carbazole derivatives, indolocarbazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, Examples include amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
- An aromatic tertiary amine compound and an styrylamine compound are preferably used, and an aromatic tertiary amine compound is more preferably used.
- the electron transport layer is made of a material having a function of transporting electrons, and the electron transport layer can be provided as a single layer or a plurality of layers.
- the electron transport material (which may also serve as a hole blocking material) may have a function of transmitting electrons injected from the cathode to the light emitting layer.
- Examples of the electron transport layer that can be used include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide oxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
- a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
- a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
- the compound represented by the general formula (1) may be used not only for the light emitting layer but also for layers other than the light emitting layer.
- the compound represented by General formula (1) used for a light emitting layer and the compound represented by General formula (1) used for layers other than a light emitting layer may be same or different.
- the compound represented by the general formula (1) may be used for the injection layer, blocking layer, hole blocking layer, electron blocking layer, exciton blocking layer, hole transporting layer, electron transporting layer, and the like. .
- the method for forming these layers is not particularly limited, and the layer may be formed by either a dry process or a wet process.
- the preferable material which can be used for an organic electroluminescent element is illustrated concretely.
- the material that can be used in the present invention is not limited to the following exemplary compounds.
- R, R ′, and R 1 to R 10 in the structural formulas of the following exemplary compounds each independently represent a hydrogen atom or a substituent.
- X represents a carbon atom or a hetero atom forming a ring skeleton
- n represents an integer of 3 to 5
- Y represents a substituent
- m represents an integer of 0 or more.
- the organic electroluminescence device produced by the above-described method emits light by applying an electric field between the anode and the cathode of the obtained device. At this time, if the light is emitted by excited singlet energy, light having a wavelength corresponding to the energy level is confirmed as fluorescence emission and delayed fluorescence emission. In addition, in the case of light emission by excited triplet energy, a wavelength corresponding to the energy level is confirmed as phosphorescence. Since normal fluorescence has a shorter fluorescence lifetime than delayed fluorescence, the emission lifetime can be distinguished from fluorescence and delayed fluorescence.
- the excited triplet energy is unstable and is converted into heat and the like, and the lifetime is short and it is immediately deactivated.
- the excited triplet energy of a normal organic compound it can be measured by observing light emission under extremely low temperature conditions.
- the organic electroluminescence element of the present invention can be applied to any of a single element, an element having a structure arranged in an array, and a structure in which an anode and a cathode are arranged in an XY matrix. According to the present invention, an organic light emitting device with greatly improved light emission efficiency can be obtained by containing the compound represented by the general formula (1) in the light emitting layer.
- the organic light emitting device such as the organic electroluminescence device of the present invention can be further applied to various uses. For example, it is possible to produce an organic electroluminescence display device using the organic electroluminescence element of the present invention.
- organic electroluminescence device of the present invention can be applied to organic electroluminescence illumination and backlights that are in great demand.
- Example 1 Preparation of organic photoluminescence device (organic PL device) 6% by weight of compound 1 and PYD2 are co-evaporated to form a film on a quartz substrate, and PL emission spectrum, PL quantum yield, and PL transient attenuation are measured. did.
- FIG. 2 shows a PL emission spectrum at an excitation wavelength of 337 nm.
- the co-deposited film showed blue light emission, and the PL quantum yield was as high as 32%.
- the PL transient attenuation of the co-deposited film was measured using a streak camera. The measurement results are shown in FIG.
- the PL transient decay curve agreed well with the two component fitting.
- organic electroluminescence element (organic EL element) An organic electroluminescence element having the layer structure shown in FIG. 1 was produced by the following procedure. An indium tin oxide (ITO) film was formed on a glass with a thickness of about 30 to 100 nm, and an ⁇ -NPD film was formed thereon with a thickness of 60 nm. Next, a light emitting layer was formed to a thickness of 20 nm by co-evaporating 6% by weight of Compound 1 and PYD2. Further, a Bphen film having a thickness of 40 nm was formed thereon.
- ITO indium tin oxide
- ⁇ -NPD film was formed thereon with a thickness of 60 nm.
- a light emitting layer was formed to a thickness of 20 nm by co-evaporating 6% by weight of Compound 1 and PYD2. Further, a Bphen film having a thickness of 40 nm was formed thereon.
- FIG. 4 shows an EL emission spectrum of the prepared organic EL element. Since it was in good agreement with the PL spectrum of FIG. 2, it was confirmed that light emission from the device was derived from Compound 1.
- Example 2 (1) Production of organic photoluminescence device 6 wt% of compound 101 and PYD2 were co-evaporated to form a film on a quartz substrate, and PL emission spectrum and PL quantum yield were measured.
- FIG. 5 shows a PL emission spectrum at an excitation wavelength of 337 nm. The co-deposited film emitted red light, and the PL quantum yield was as high as 91%.
- FIG. 6 shows the results of measuring PL transient attenuation at 77K, 100K, 150K, 200K, 250K, and 300K using a streak camera. From FIG. 6, it was confirmed that delayed fluorescence depends on temperature.
- the organic electroluminescent element which has the layer structure shown in FIG. 1 was manufactured in the following procedures.
- An indium tin oxide (ITO) film was formed on a glass with a thickness of about 30 to 100 nm, and an ⁇ -NPD film was formed thereon with a thickness of 60 nm.
- a light emitting layer was formed to a thickness of 20 nm by co-evaporating 6% by weight of Compound 101 and PYD2. Further, a Bphen film having a thickness of 40 nm was formed thereon.
- magnesium-silver (MgAg) was vacuum-deposited with a thickness of 100 nm, and then aluminum (Al) was vapor-deposited with a thickness of 20 nm to obtain an organic electroluminescence device having the layer structure shown in FIG.
- FIG. 7 shows an electroluminescence (EL) spectrum. Since it was in good agreement with the PL spectrum, it was confirmed that light emission from the device was derived from compound 101.
- FIG. 8 shows current density-voltage characteristics-luminance characteristics
- FIG. 9 shows external quantum efficiency-current density characteristics. The external quantum efficiency was confirmed to be as high as 13.85%.
- Example 3 In the same manner as in Examples 1 and 2, the usefulness of compounds 2 to 23 and compounds 102 to 123 can be confirmed.
- the compound represented by the general formula (1) is useful as a light emitting material of an organic light emitting device.
- the compound represented by the general formula (1) includes those exhibiting delayed fluorescence and those having extremely high luminous efficiency.
- the organic light emitting device using the compound represented by the general formula (1) as a light emitting material is extremely useful because it exhibits delayed fluorescence or high luminous efficiency. For this reason, this invention has high industrial applicability.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
Abstract
Description
[2] 一般式(1)のZ1、Z2およびZ3が同一であることを特徴とする[1]に記載の発光材料。
[3] 一般式(1)のZ1、Z2およびZ3が、各々独立に置換アミノ基、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基であることを特徴とする[1]または[2]に記載の発光材料。
[5] 前記化合物が一般式(2)で表される構造を有することを特徴とする[4]に記載の発光材料。
[7] 前記化合物が一般式(3)で表される構造を有することを特徴とする[6]に記載の発光材料。
[8] 上記一般式(1)で表される構造を有する遅延蛍光体。
[10] 陽極、陰極、および前記陽極と前記陰極の間に発光層を含む少なくとも1層の有機層を有する有機エレクトロルミネッセンス素子であって、前記発光層に前記発光材料を含むことを特徴とする有機エレクトロルミネッセンス素子である[9]に記載の有機発光素子。
[11] 遅延蛍光を放射することを特徴とする[9]または[10]に記載の有機発光素子。
Z1、Z2およびZ3が表す置換基として好ましいのは、置換アミノ基、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基である。Z1、Z2およびZ3は、互いに同一であってもよいし、異なっていてもよい。好ましいのは、Z1、Z2およびZ3がすべて同一である場合である。
一般式(1)で表される化合物の合成法は特に制限されない。一般式(1)で表される化合物の合成は、既知の合成法や条件を適宜組み合わせることにより行うことができる。例えば、特表2009-501194の段落番号0039~0049に記載される合成法を適宜選択したり、組み合わせたり、応用したりすることにより合成することができる。また、一般式(1)で表される化合物は、その他の公知の合成反応を組み合わせることによっても合成することができる。
本発明の一般式(1)で表される化合物は、有機発光素子の発光材料として有用である。このため、本発明の一般式(1)で表される化合物は、有機発光素子の発光層に発光材料として効果的に用いることができる。一般式(1)で表される化合物の中には、遅延蛍光を放射する遅延蛍光材料(遅延蛍光体)が含まれている。すなわち本発明は、一般式(1)で表される構造を有する遅延蛍光体の発明と、一般式(1)で表される化合物を遅延蛍光体として使用する発明と、一般式(1)で表される化合物を用いて遅延蛍光を発光させる方法の発明も提供する。そのような化合物を発光材料として用いた有機発光素子は、遅延蛍光を放射し、発光効率が高いという特徴を有する。その原理を、有機エレクトロルミネッセンス素子を例にとって説明すると以下のようになる。
以下において、有機エレクトロルミネッセンス素子の各部材および各層について説明する。なお、基板と発光層の説明は有機フォトルミネッセンス素子の基板と発光層にも該当する。
本発明の有機エレクトロルミネッセンス素子は、基板に支持されていることが好ましい。この基板については、特に制限はなく、従来から有機エレクトロルミネッセンス素子に慣用されているものであればよく、例えば、ガラス、透明プラスチック、石英、シリコンなどからなるものを用いることができる。
有機エレクトロルミネッセンス素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが好ましく用いられる。このような電極材料の具体例としてはAu等の金属、CuI、インジウムチンオキシド(ITO)、SnO2、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In2O3-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極材料を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極材料の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物のように塗布可能な材料を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。さらに膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
一方、陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極材料とするものが用いられる。このような電極材料の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極材料を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機エレクトロルミネッセンス素子の陽極または陰極のいずれか一方が、透明または半透明であれば発光輝度が向上し好都合である。
また、陽極の説明で挙げた導電性透明材料を陰極に用いることで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
発光層は、陽極および陰極のそれぞれから注入された正孔および電子が再結合することにより励起子が生成した後、発光する層であり、発光材料を単独で発光層に使用しても良いが、好ましくは発光材料とホスト材料を含む。発光材料としては、一般式(1)で表される本発明の化合物群から選ばれる1種または2種以上を用いることができる。本発明の有機エレクトロルミネッセンス素子および有機フォトルミネッセンス素子が高い発光効率を発現するためには、発光材料に生成した一重項励起子および三重項励起子を、発光材料中に閉じ込めることが重要である。従って、発光層中に発光材料に加えてホスト材料を用いることが好ましい。ホスト材料としては、励起一重項エネルギー、励起三重項エネルギーの少なくとも何れか一方が本発明の発光材料よりも高い値を有する有機化合物を用いることができる。その結果、本発明の発光材料に生成した一重項励起子および三重項励起子を、本発明の発光材料の分子中に閉じ込めることが可能となり、その発光効率を十分に引き出すことが可能となる。もっとも、一重項励起子および三重項励起子を十分に閉じ込めることができなくても、高い発光効率を得ることが可能な場合もあるため、高い発光効率を実現しうるホスト材料であれば特に制約なく本発明に用いることができる。本発明の有機発光素子または有機エレクトロルミネッセンス素子において、発光は発光層に含まれる本発明の発光材料から生じる。この発光は蛍光発光および遅延蛍光発光の両方を含む。但し、発光の一部或いは部分的にホスト材料からの発光があってもかまわない。
ホスト材料を用いる場合、発光材料である本発明の化合物が発光層中に含有される量は0.1重量%以上であることが好ましく、1重量%以上であることがより好ましく、また、50重量%以下であることが好ましく、20重量%以下であることがより好ましく、10重量%以下であることがさらに好ましい。
発光層におけるホスト材料としては、正孔輸送能、電子輸送能を有し、かつ発光の長波長化を防ぎ、なおかつ高いガラス転移温度を有する有機化合物であることが好ましい。
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、正孔注入層と電子注入層があり、陽極と発光層または正孔輸送層の間、および陰極と発光層または電子輸送層との間に存在させてもよい。注入層は必要に応じて設けることができる。
阻止層は、発光層中に存在する電荷(電子もしくは正孔)および/または励起子の発光層外への拡散を阻止することができる層である。電子阻止層は、発光層および正孔輸送層の間に配置されることができ、電子が正孔輸送層の方に向かって発光層を通過することを阻止する。同様に、正孔阻止層は発光層および電子輸送層の間に配置されることができ、正孔が電子輸送層の方に向かって発光層を通過することを阻止する。阻止層はまた、励起子が発光層の外側に拡散することを阻止するために用いることができる。すなわち電子阻止層、正孔阻止層はそれぞれ励起子阻止層としての機能も兼ね備えることができる。本明細書でいう電子阻止層または励起子阻止層は、一つの層で電子阻止層および励起子阻止層の機能を有する層を含む意味で使用される。
正孔阻止層とは広い意味では電子輸送層の機能を有する。正孔阻止層は電子を輸送しつつ、正孔が電子輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔の再結合確率を向上させることができる。正孔阻止層の材料としては、後述する電子輸送層の材料を必要に応じて用いることができる。
電子阻止層とは、広い意味では正孔を輸送する機能を有する。電子阻止層は正孔を輸送しつつ、電子が正孔輸送層へ到達することを阻止する役割があり、これにより発光層中での電子と正孔が再結合する確率を向上させることができる。
励起子阻止層とは、発光層内で正孔と電子が再結合することにより生じた励起子が電荷輸送層に拡散することを阻止するための層であり、本層の挿入により励起子を効率的に発光層内に閉じ込めることが可能となり、素子の発光効率を向上させることができる。励起子阻止層は発光層に隣接して陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。すなわち、励起子阻止層を陽極側に有する場合、正孔輸送層と発光層の間に、発光層に隣接して該層を挿入することができ、陰極側に挿入する場合、発光層と陰極との間に、発光層に隣接して該層を挿入することができる。また、陽極と、発光層の陽極側に隣接する励起子阻止層との間には、正孔注入層や電子阻止層などを有することができ、陰極と、発光層の陰極側に隣接する励起子阻止層との間には、電子注入層、電子輸送層、正孔阻止層などを有することができる。阻止層を配置する場合、阻止層として用いる材料の励起一重項エネルギーおよび励起三重項エネルギーの少なくともいずれか一方は、発光材料の励起一重項エネルギーおよび励起三重項エネルギーよりも高いことが好ましい。
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、正孔輸送層は単層または複数層設けることができる。
正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。使用できる公知の正孔輸送材料としては例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物を用いることが好ましく、芳香族第3級アミン化合物を用いることがより好ましい。
電子輸送層とは電子を輸送する機能を有する材料からなり、電子輸送層は単層または複数層設けることができる。
電子輸送材料(正孔阻止材料を兼ねる場合もある)としては、陰極より注入された電子を発光層に伝達する機能を有していればよい。使用できる電子輸送層としては例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
一方、りん光については、本発明の化合物のような通常の有機化合物では、励起三重項エネルギーは不安定で熱等に変換され、寿命が短く直ちに失活するため、室温では殆ど観測できない。通常の有機化合物の励起三重項エネルギーを測定するためには、極低温の条件での発光を観測することにより測定可能である。
(1)有機フォトルミネッセンス素子(有機PL素子)の作製
6重量%の化合物1とPYD2を共蒸着することにより石英基板上に製膜し、PL発光スペクトル、PL量子収率、PL過渡減衰を測定した。図2に励起波長337nmにおけるPL発光スペクトルを示す。共蒸着膜は青色発光を示し、PL量子収率は32%と高い値を示した。
次に化合物1の遅延蛍光特性を検討するために、ストリークカメラを用いて共蒸着膜のPL過渡減衰を測定した。測定結果を図3に示す。PL過渡減衰曲線は2成分のフィッティングによく一致した。また、窒素ガスをバブリングしながら測定した場合は4nsの短寿命成分と1.2μsの長寿命成分が観測され、窒素ガスをバブリングせずに測定した場合は5nsの短寿命成分と256nsの長寿命成分が観測された。すなわち、化合物1によって、短寿命の蛍光に加え、長寿命成分に由来する遅延蛍光が観測された。
図1に示す層構成を有する有機エレクトロルミネッセンス素子を以下の手順で製造した。
ガラス上にインジウム・スズ酸化物(ITO)をおよそ30~100nmの厚さで製膜し、さらにその上にα-NPDを60nmの厚さで製膜した。次いで、6重量%の化合物1とPYD2を共蒸着することによって発光層を20nmの厚さで製膜した。さらにその上にBphenを厚さ40nmで製膜した。次いで、マグネシウム-銀(MgAg)を100nm真空蒸着し、次いでアルミニウム(Al)を20nmの厚さに蒸着して、図1に示す層構成を有する有機エレクトロルミネッセンス素子とした。作成した有機EL素子のEL発光スペクトルを図4に示す。図2のPLスペクトルとよく一致したことから、素子からの発光は化合物1に由来することが確認された。
(1)有機フォトルミネッセンス素子の作製
6重量%の化合物101とPYD2を共蒸着することにより石英基板上に製膜し、PL発光スペクトルとPL量子収率を測定した。図5に励起波長337nmにおけるPL発光スペクトルを示す。共蒸着膜は赤色発光を示し、PL量子収率は91%と高い値を示した。77K、100K、150K、200K、250K、300KにおけるPL過渡減衰をストリークカメラを用いて測定した結果を図6に示す。図6より、遅延蛍光が温度に依存することが確認された。
図1に示す層構成を有する有機エレクトロルミネッセンス素子を以下の手順で製造した。
ガラス上にインジウム・スズ酸化物(ITO)をおよそ30~100nmの厚さで製膜し、さらにその上にα-NPDを60nmの厚さで製膜した。次いで、6重量%の化合物101とPYD2を共蒸着することによって発光層を20nmの厚さで製膜した。さらにその上にBphenを厚さ40nmで製膜した。次いで、マグネシウム-銀(MgAg)を100nm真空蒸着し、次いでアルミニウム(Al)を20nmの厚さに蒸着して、図1に示す層構成を有する有機エレクトロルミネッセンス素子とした。図7にエレクトロルミネッセンス(EL)スペクトルを示す。PLスペクトルとよく一致したことから、素子からの発光は化合物101に由来することが確認された。図8に電流密度-電圧特性-輝度特性を示し、図9に外部量子効率-電流密度特性を示す。外部量子効率は13.85%と高いことが確認された。
実施例1および2と同様にして、化合物2~23および化合物102~123についても有用性を確認することができる。
2 陽極
3 正孔注入層
4 正孔輸送層
5 発光層
6 電子輸送層
7 陰極
Claims (11)
- 一般式(1)のZ1、Z2およびZ3が同一であることを特徴とする請求項1に記載の発光材料。
- 一般式(1)のZ1、Z2およびZ3が、各々独立に置換アミノ基、置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロアリール基であることを特徴とする請求項1または2に記載の発光材料。
- 一般式(1)のZ1、Z2およびZ3が、各々独立に置換もしくは無置換のジアリールアミノ基であることを特徴とする請求項1または2に記載の発光材料。
- 一般式(1)のZ1、Z2およびZ3が、各々独立に置換もしくは無置換のジアリールアミノ基で置換されたアリール基であることを特徴とする請求項1または2に記載の発光材料。
- 発光材料として、請求項1~7のいずれか一項に記載の発光材料を含むことを特徴とする有機発光素子。
- 陽極、陰極、および前記陽極と前記陰極の間に発光層を含む少なくとも1層の有機層を有する有機エレクトロルミネッセンス素子であって、前記発光層に前記発光材料を含むことを特徴とする有機エレクトロルミネッセンス素子である請求項9に記載の有機発光素子。
- 遅延蛍光を放射することを特徴とする請求項9または10に記載の有機発光素子。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/383,971 US9985215B2 (en) | 2012-03-09 | 2013-03-07 | Light-emitting material, and organic light-emitting element |
EP13758538.6A EP2824159A4 (en) | 2012-03-09 | 2013-03-07 | Light-emitting material and organic light-emitting element |
JP2014503534A JP6095643B2 (ja) | 2012-03-09 | 2013-03-07 | 発光材料および有機発光素子 |
KR1020147028198A KR20140143393A (ko) | 2012-03-09 | 2013-03-07 | 발광 재료 및 유기 발광 소자 |
CN201380013353.9A CN104159994B (zh) | 2012-03-09 | 2013-03-07 | 发光材料以及有机发光元件 |
US15/962,435 US20180315929A1 (en) | 2012-03-09 | 2018-04-25 | Light-emitting material, and organic light-emitting element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012053437 | 2012-03-09 | ||
JP2012-053437 | 2012-03-09 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/383,971 A-371-Of-International US9985215B2 (en) | 2012-03-09 | 2013-03-07 | Light-emitting material, and organic light-emitting element |
US15/962,435 Division US20180315929A1 (en) | 2012-03-09 | 2018-04-25 | Light-emitting material, and organic light-emitting element |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013133359A1 true WO2013133359A1 (ja) | 2013-09-12 |
Family
ID=49116828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/056245 WO2013133359A1 (ja) | 2012-03-09 | 2013-03-07 | 発光材料および有機発光素子 |
Country Status (7)
Country | Link |
---|---|
US (2) | US9985215B2 (ja) |
EP (1) | EP2824159A4 (ja) |
JP (1) | JP6095643B2 (ja) |
KR (1) | KR20140143393A (ja) |
CN (1) | CN104159994B (ja) |
TW (1) | TW201343651A (ja) |
WO (1) | WO2013133359A1 (ja) |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014157619A1 (ja) | 2013-03-29 | 2014-10-02 | 国立大学法人九州大学 | 有機エレクトロルミネッセンス素子 |
WO2015022974A1 (ja) | 2013-08-14 | 2015-02-19 | 国立大学法人九州大学 | 有機エレクトロルミネッセンス素子 |
WO2015139808A1 (de) | 2014-03-18 | 2015-09-24 | Merck Patent Gmbh | Organische elektrolumineszenzvorrichtung |
WO2015159971A1 (ja) * | 2014-04-18 | 2015-10-22 | 国立大学法人九州大学 | 有機発光素子 |
WO2018095395A1 (zh) | 2016-11-23 | 2018-05-31 | 广州华睿光电材料有限公司 | 高聚物、包含其的混合物、组合物和有机电子器件以及用于聚合的单体 |
WO2018095381A1 (zh) | 2016-11-23 | 2018-05-31 | 广州华睿光电材料有限公司 | 印刷油墨组合物及其制备方法和用途 |
WO2018095392A1 (zh) | 2016-11-23 | 2018-05-31 | 广州华睿光电材料有限公司 | 有机混合物、组合物以及有机电子器件 |
WO2018103744A1 (zh) | 2016-12-08 | 2018-06-14 | 广州华睿光电材料有限公司 | 混合物、组合物及有机电子器件 |
WO2018113785A1 (zh) | 2016-12-22 | 2018-06-28 | 广州华睿光电材料有限公司 | 含呋喃交联基团的聚合物及其应用 |
US10497883B2 (en) | 2014-03-11 | 2019-12-03 | Kyulux, Inc. | Organic light-emitting device, host material, light-emitting material, and compound |
US10559757B2 (en) | 2014-09-03 | 2020-02-11 | Kyulux, Inc. | Host material for delayed fluorescent materials, organic light-emitting device and compound |
WO2020076796A1 (en) | 2018-10-09 | 2020-04-16 | Kyulux, Inc. | Novel composition of matter for use in organic light-emitting diodes |
US10804470B2 (en) | 2016-11-23 | 2020-10-13 | Guangzhou Chinaray Optoelectronic Materials Ltd | Organic compound |
WO2020208051A1 (en) | 2019-04-11 | 2020-10-15 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
US10968243B2 (en) | 2015-12-04 | 2021-04-06 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Organometallic complex and application thereof in electronic devices |
WO2021089450A1 (en) | 2019-11-04 | 2021-05-14 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2021094269A1 (en) | 2019-11-12 | 2021-05-20 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2021110741A1 (en) | 2019-12-04 | 2021-06-10 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2021157593A1 (ja) | 2020-02-04 | 2021-08-12 | 株式会社Kyulux | 組成物、膜、有機発光素子、発光組成物を提供する方法およびプログラム |
US11101440B2 (en) | 2015-07-01 | 2021-08-24 | Kyushu University, National University Corporation | Organic electroluminescent device |
WO2021191058A1 (en) | 2020-03-23 | 2021-09-30 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
US11161933B2 (en) | 2016-12-13 | 2021-11-02 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Conjugated polymer and use thereof in organic electronic device |
WO2021235549A1 (ja) | 2020-05-22 | 2021-11-25 | 株式会社Kyulux | 化合物、発光材料および発光素子 |
WO2021256446A1 (ja) * | 2020-06-15 | 2021-12-23 | 国立研究開発法人理化学研究所 | 有機化合物及び有機発光デバイス |
US11239428B2 (en) | 2016-11-23 | 2022-02-01 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Boron-containing organic compound and applications thereof, organic mixture, and organic electronic device |
WO2022025248A1 (ja) | 2020-07-31 | 2022-02-03 | 株式会社Kyulux | 化合物、発光材料および発光素子 |
US11292875B2 (en) | 2016-12-22 | 2022-04-05 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Cross-linkable polymer based on Diels-Alder reaction and use thereof in organic electronic device |
US11335872B2 (en) | 2016-09-06 | 2022-05-17 | Kyulux, Inc. | Organic light-emitting device |
US11404651B2 (en) | 2017-12-14 | 2022-08-02 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Transition metal complex material and application thereof in electronic devices |
WO2022168956A1 (ja) | 2021-02-04 | 2022-08-11 | 株式会社Kyulux | 化合物、発光材料および有機発光素子 |
US11447496B2 (en) | 2016-11-23 | 2022-09-20 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Nitrogen-containing fused heterocyclic ring compound and application thereof |
US11476435B2 (en) | 2017-08-24 | 2022-10-18 | Kyushu University, National University Corporation | Film and organic light-emitting device containing perovskite-type compound and organic light-emitting material |
US11482679B2 (en) | 2017-05-23 | 2022-10-25 | Kyushu University, National University Corporation | Compound, light-emitting lifetime lengthening agent, use of n-type compound, film and light-emitting device |
WO2022244503A1 (ja) | 2021-05-20 | 2022-11-24 | 株式会社Kyulux | 有機発光素子 |
US11512039B2 (en) | 2016-11-23 | 2022-11-29 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Aromatic amine derivatives, preparation methods therefor, and uses thereof |
US11518723B2 (en) | 2016-11-23 | 2022-12-06 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Fused ring compound, high polymer, mixture, composition and organic electronic component |
WO2022270354A1 (ja) | 2021-06-23 | 2022-12-29 | 株式会社Kyulux | 化合物、発光材料および有機発光素子 |
WO2022270602A1 (ja) | 2021-06-23 | 2022-12-29 | 株式会社Kyulux | 有機発光素子および膜 |
WO2023282224A1 (ja) | 2021-07-06 | 2023-01-12 | 株式会社Kyulux | 有機発光素子およびその設計方法 |
US11555128B2 (en) | 2015-11-12 | 2023-01-17 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Printing composition, electronic device comprising same and preparation method for functional material thin film |
US11594690B2 (en) | 2017-12-14 | 2023-02-28 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Organometallic complex, and polymer, mixture and formulation comprising same, and use thereof in electronic device |
WO2023036976A1 (en) | 2021-09-13 | 2023-03-16 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2023053835A1 (ja) | 2021-09-28 | 2023-04-06 | 株式会社Kyulux | 化合物、組成物、ホスト材料、電子障壁材料および有機発光素子 |
US11634444B2 (en) | 2016-11-23 | 2023-04-25 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Metal organic complex, high polymer, composition, and organic electronic component |
WO2023090288A1 (ja) | 2021-11-19 | 2023-05-25 | 株式会社Kyulux | 化合物、発光材料および発光素子 |
US11672174B2 (en) | 2016-12-08 | 2023-06-06 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Pyrene-triazine derivative and applications thereof in organic electronic component |
US11674080B2 (en) | 2017-12-14 | 2023-06-13 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Transition metal complex, polymer, mixture, formulation and use thereof |
US11680059B2 (en) | 2017-12-21 | 2023-06-20 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Organic mixture and application thereof in organic electronic devices |
WO2023140130A1 (ja) | 2022-01-19 | 2023-07-27 | 株式会社Kyulux | 化合物、発光材料および有機発光素子 |
WO2024033282A1 (en) | 2022-08-09 | 2024-02-15 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
US11930654B2 (en) | 2017-07-06 | 2024-03-12 | Kyulux, Inc. | Organic light-emitting element |
WO2024105066A1 (en) | 2022-11-17 | 2024-05-23 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
US12048175B2 (en) | 2015-12-28 | 2024-07-23 | Kyushu University, National University Corporation | Organic electroluminescent device |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103985822B (zh) * | 2014-05-30 | 2017-05-10 | 广州华睿光电材料有限公司 | 有机混合物、包含其的组合物、有机电子器件及应用 |
CN106883240A (zh) * | 2017-01-20 | 2017-06-23 | 瑞声科技(南京)有限公司 | 三均三嗪化合物及发光器件 |
CN108929327A (zh) * | 2018-08-02 | 2018-12-04 | 瑞声科技(南京)有限公司 | 一种含有咪唑单元的化合物及其在器件中的应用 |
CN108948027A (zh) * | 2018-08-02 | 2018-12-07 | 瑞声科技(南京)有限公司 | 一种含有庚嗪环-吩噁嗪单元的化合物及其应用 |
CN110335969B (zh) * | 2019-07-10 | 2021-07-16 | 成都信息工程大学 | 一种基于激基复合物体系的发光二极管及其制备方法 |
CN110591697A (zh) * | 2019-09-02 | 2019-12-20 | 武汉华星光电半导体显示技术有限公司 | 热活化延迟荧光材料及其制备方法、电致发光器件 |
CN113214268B (zh) * | 2020-06-12 | 2022-06-10 | 广东聚华印刷显示技术有限公司 | 有机化合物、高聚物、混合物及电子器件 |
CN111848635B (zh) * | 2020-07-28 | 2021-07-16 | 吉林奥来德光电材料股份有限公司 | 一种六元杂环类有机发光化合物及其制备方法和光电器件 |
JP2023541979A (ja) | 2020-09-18 | 2023-10-04 | 三星ディスプレイ株式會社 | 緑色光を光する有機エレクトロルミネッセンス素子 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007006807A1 (en) | 2005-07-13 | 2007-01-18 | Isdin, S.A. | New derivatives of heptaazaphenalene, methods for obtaining them, and their use as protecting agents against uv radiation |
WO2008083974A1 (en) | 2007-01-12 | 2008-07-17 | Isdin S.A. | Active substance combination |
WO2008083975A1 (en) | 2007-01-12 | 2008-07-17 | Isdin S.A. | Light-stabilized composition |
WO2010000614A1 (de) | 2008-07-02 | 2010-01-07 | Osram Gesellschaft mit beschränkter Haftung | Beleuchtungseinheit für fahrzeugscheinwerfer und fahrzeugscheinwerfer |
WO2010094378A1 (de) * | 2009-02-17 | 2010-08-26 | Merck Patent Gmbh | Organische elektronische vorrichtung |
WO2010132953A1 (en) * | 2009-05-22 | 2010-11-25 | Commonwealth Scientific And Industrial Research Organisation | Heptaazaphenalene derivatives and use thereof in organic electroluminescent device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69724107T2 (de) | 1996-03-04 | 2004-06-24 | DuPont Displays, Inc., Santa Barbara | Polyfluorene als materialien für photolumineszenz und elektrolumineszenz |
US6830833B2 (en) | 2002-12-03 | 2004-12-14 | Canon Kabushiki Kaisha | Organic light-emitting device based on fused conjugated compounds |
JP2006267981A (ja) * | 2005-03-25 | 2006-10-05 | Fuji Xerox Co Ltd | 有機機能性材料およびそれを用いた有機機能性素子 |
-
2013
- 2013-03-07 JP JP2014503534A patent/JP6095643B2/ja active Active
- 2013-03-07 US US14/383,971 patent/US9985215B2/en active Active
- 2013-03-07 CN CN201380013353.9A patent/CN104159994B/zh active Active
- 2013-03-07 KR KR1020147028198A patent/KR20140143393A/ko not_active Withdrawn
- 2013-03-07 EP EP13758538.6A patent/EP2824159A4/en active Pending
- 2013-03-07 WO PCT/JP2013/056245 patent/WO2013133359A1/ja active Application Filing
- 2013-03-08 TW TW102108362A patent/TW201343651A/zh unknown
-
2018
- 2018-04-25 US US15/962,435 patent/US20180315929A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007006807A1 (en) | 2005-07-13 | 2007-01-18 | Isdin, S.A. | New derivatives of heptaazaphenalene, methods for obtaining them, and their use as protecting agents against uv radiation |
JP2009501194A (ja) | 2005-07-13 | 2009-01-15 | イスディン, エセ.ア. | ヘプタアザフェナレンの新規誘導体、その取得方法、並びに紫外線からの保護剤としてのその使用 |
WO2008083974A1 (en) | 2007-01-12 | 2008-07-17 | Isdin S.A. | Active substance combination |
WO2008083975A1 (en) | 2007-01-12 | 2008-07-17 | Isdin S.A. | Light-stabilized composition |
WO2010000614A1 (de) | 2008-07-02 | 2010-01-07 | Osram Gesellschaft mit beschränkter Haftung | Beleuchtungseinheit für fahrzeugscheinwerfer und fahrzeugscheinwerfer |
WO2010094378A1 (de) * | 2009-02-17 | 2010-08-26 | Merck Patent Gmbh | Organische elektronische vorrichtung |
WO2010132953A1 (en) * | 2009-05-22 | 2010-11-25 | Commonwealth Scientific And Industrial Research Organisation | Heptaazaphenalene derivatives and use thereof in organic electroluminescent device |
Non-Patent Citations (1)
Title |
---|
See also references of EP2824159A4 |
Cited By (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014157619A1 (ja) | 2013-03-29 | 2014-10-02 | 国立大学法人九州大学 | 有機エレクトロルミネッセンス素子 |
US10600983B2 (en) | 2013-03-29 | 2020-03-24 | Kyulux, Inc. | Organic electroluminescent device comprising delayed fluorescent materials |
US11450817B2 (en) | 2013-08-14 | 2022-09-20 | Kyulux, Inc. | Organic electroluminescent device |
US10862047B2 (en) | 2013-08-14 | 2020-12-08 | Kyushu University, National University Corporation | Organic electroluminescent device |
US11944010B2 (en) | 2013-08-14 | 2024-03-26 | Kyulux, Inc. | Organic electroluminescent device |
EP4152910A1 (en) | 2013-08-14 | 2023-03-22 | Kyulux, Inc. | Organic electroluminescent device |
WO2015022974A1 (ja) | 2013-08-14 | 2015-02-19 | 国立大学法人九州大学 | 有機エレクトロルミネッセンス素子 |
EP3706182A1 (en) | 2013-08-14 | 2020-09-09 | Kyushu University National University Corporation | Organic electroluminescent device |
US10497883B2 (en) | 2014-03-11 | 2019-12-03 | Kyulux, Inc. | Organic light-emitting device, host material, light-emitting material, and compound |
WO2015139808A1 (de) | 2014-03-18 | 2015-09-24 | Merck Patent Gmbh | Organische elektrolumineszenzvorrichtung |
WO2015159971A1 (ja) * | 2014-04-18 | 2015-10-22 | 国立大学法人九州大学 | 有機発光素子 |
JPWO2015159971A1 (ja) * | 2014-04-18 | 2017-04-13 | 株式会社Kyulux | 有機発光素子 |
US10153438B2 (en) | 2014-04-18 | 2018-12-11 | Kyulux, Inc. | Organic light-emitting device |
US10559757B2 (en) | 2014-09-03 | 2020-02-11 | Kyulux, Inc. | Host material for delayed fluorescent materials, organic light-emitting device and compound |
US11101440B2 (en) | 2015-07-01 | 2021-08-24 | Kyushu University, National University Corporation | Organic electroluminescent device |
US11555128B2 (en) | 2015-11-12 | 2023-01-17 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Printing composition, electronic device comprising same and preparation method for functional material thin film |
US10968243B2 (en) | 2015-12-04 | 2021-04-06 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Organometallic complex and application thereof in electronic devices |
US12048175B2 (en) | 2015-12-28 | 2024-07-23 | Kyushu University, National University Corporation | Organic electroluminescent device |
US11335872B2 (en) | 2016-09-06 | 2022-05-17 | Kyulux, Inc. | Organic light-emitting device |
US11248138B2 (en) | 2016-11-23 | 2022-02-15 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Printing ink formulations, preparation methods and uses thereof |
WO2018095392A1 (zh) | 2016-11-23 | 2018-05-31 | 广州华睿光电材料有限公司 | 有机混合物、组合物以及有机电子器件 |
WO2018095395A1 (zh) | 2016-11-23 | 2018-05-31 | 广州华睿光电材料有限公司 | 高聚物、包含其的混合物、组合物和有机电子器件以及用于聚合的单体 |
WO2018095381A1 (zh) | 2016-11-23 | 2018-05-31 | 广州华睿光电材料有限公司 | 印刷油墨组合物及其制备方法和用途 |
US11634444B2 (en) | 2016-11-23 | 2023-04-25 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Metal organic complex, high polymer, composition, and organic electronic component |
US11518723B2 (en) | 2016-11-23 | 2022-12-06 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Fused ring compound, high polymer, mixture, composition and organic electronic component |
US11512039B2 (en) | 2016-11-23 | 2022-11-29 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Aromatic amine derivatives, preparation methods therefor, and uses thereof |
US11453745B2 (en) | 2016-11-23 | 2022-09-27 | Guangzhou Chinaray Optoelectronic Materials Ltd. | High polymer, mixture containing same, composition, organic electronic component, and monomer for polymerization |
US11447496B2 (en) | 2016-11-23 | 2022-09-20 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Nitrogen-containing fused heterocyclic ring compound and application thereof |
US10804470B2 (en) | 2016-11-23 | 2020-10-13 | Guangzhou Chinaray Optoelectronic Materials Ltd | Organic compound |
US11239428B2 (en) | 2016-11-23 | 2022-02-01 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Boron-containing organic compound and applications thereof, organic mixture, and organic electronic device |
US11672174B2 (en) | 2016-12-08 | 2023-06-06 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Pyrene-triazine derivative and applications thereof in organic electronic component |
WO2018103744A1 (zh) | 2016-12-08 | 2018-06-14 | 广州华睿光电材料有限公司 | 混合物、组合物及有机电子器件 |
US10978642B2 (en) | 2016-12-08 | 2021-04-13 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Mixture, composition and organic electronic device |
US11161933B2 (en) | 2016-12-13 | 2021-11-02 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Conjugated polymer and use thereof in organic electronic device |
WO2018113785A1 (zh) | 2016-12-22 | 2018-06-28 | 广州华睿光电材料有限公司 | 含呋喃交联基团的聚合物及其应用 |
US11292875B2 (en) | 2016-12-22 | 2022-04-05 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Cross-linkable polymer based on Diels-Alder reaction and use thereof in organic electronic device |
US11289654B2 (en) | 2016-12-22 | 2022-03-29 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Polymers containing furanyl crosslinkable groups and uses thereof |
US11482679B2 (en) | 2017-05-23 | 2022-10-25 | Kyushu University, National University Corporation | Compound, light-emitting lifetime lengthening agent, use of n-type compound, film and light-emitting device |
US11930654B2 (en) | 2017-07-06 | 2024-03-12 | Kyulux, Inc. | Organic light-emitting element |
US11476435B2 (en) | 2017-08-24 | 2022-10-18 | Kyushu University, National University Corporation | Film and organic light-emitting device containing perovskite-type compound and organic light-emitting material |
US11674080B2 (en) | 2017-12-14 | 2023-06-13 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Transition metal complex, polymer, mixture, formulation and use thereof |
US11594690B2 (en) | 2017-12-14 | 2023-02-28 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Organometallic complex, and polymer, mixture and formulation comprising same, and use thereof in electronic device |
US11404651B2 (en) | 2017-12-14 | 2022-08-02 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Transition metal complex material and application thereof in electronic devices |
US11680059B2 (en) | 2017-12-21 | 2023-06-20 | Guangzhou Chinaray Optoelectronic Materials Ltd. | Organic mixture and application thereof in organic electronic devices |
WO2020076796A1 (en) | 2018-10-09 | 2020-04-16 | Kyulux, Inc. | Novel composition of matter for use in organic light-emitting diodes |
WO2020208051A1 (en) | 2019-04-11 | 2020-10-15 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2021089450A1 (en) | 2019-11-04 | 2021-05-14 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2021094269A1 (en) | 2019-11-12 | 2021-05-20 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2021110741A1 (en) | 2019-12-04 | 2021-06-10 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2021157642A1 (ja) | 2020-02-04 | 2021-08-12 | 株式会社Kyulux | ホスト材料、組成物および有機発光素子 |
WO2021157593A1 (ja) | 2020-02-04 | 2021-08-12 | 株式会社Kyulux | 組成物、膜、有機発光素子、発光組成物を提供する方法およびプログラム |
WO2021191058A1 (en) | 2020-03-23 | 2021-09-30 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2021235549A1 (ja) | 2020-05-22 | 2021-11-25 | 株式会社Kyulux | 化合物、発光材料および発光素子 |
WO2021256446A1 (ja) * | 2020-06-15 | 2021-12-23 | 国立研究開発法人理化学研究所 | 有機化合物及び有機発光デバイス |
WO2022025248A1 (ja) | 2020-07-31 | 2022-02-03 | 株式会社Kyulux | 化合物、発光材料および発光素子 |
WO2022168956A1 (ja) | 2021-02-04 | 2022-08-11 | 株式会社Kyulux | 化合物、発光材料および有機発光素子 |
WO2022244503A1 (ja) | 2021-05-20 | 2022-11-24 | 株式会社Kyulux | 有機発光素子 |
WO2022270602A1 (ja) | 2021-06-23 | 2022-12-29 | 株式会社Kyulux | 有機発光素子および膜 |
WO2022270354A1 (ja) | 2021-06-23 | 2022-12-29 | 株式会社Kyulux | 化合物、発光材料および有機発光素子 |
WO2023282224A1 (ja) | 2021-07-06 | 2023-01-12 | 株式会社Kyulux | 有機発光素子およびその設計方法 |
WO2023036976A1 (en) | 2021-09-13 | 2023-03-16 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2023053835A1 (ja) | 2021-09-28 | 2023-04-06 | 株式会社Kyulux | 化合物、組成物、ホスト材料、電子障壁材料および有機発光素子 |
WO2023090288A1 (ja) | 2021-11-19 | 2023-05-25 | 株式会社Kyulux | 化合物、発光材料および発光素子 |
WO2023140130A1 (ja) | 2022-01-19 | 2023-07-27 | 株式会社Kyulux | 化合物、発光材料および有機発光素子 |
WO2024033282A1 (en) | 2022-08-09 | 2024-02-15 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
WO2024105066A1 (en) | 2022-11-17 | 2024-05-23 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
Also Published As
Publication number | Publication date |
---|---|
TW201343651A (zh) | 2013-11-01 |
US20150048338A1 (en) | 2015-02-19 |
CN104159994B (zh) | 2016-11-16 |
EP2824159A4 (en) | 2015-12-09 |
CN104159994A (zh) | 2014-11-19 |
KR20140143393A (ko) | 2014-12-16 |
JP6095643B2 (ja) | 2017-03-15 |
US20180315929A1 (en) | 2018-11-01 |
EP2824159A1 (en) | 2015-01-14 |
US9985215B2 (en) | 2018-05-29 |
JPWO2013133359A1 (ja) | 2015-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6095643B2 (ja) | 発光材料および有機発光素子 | |
JP6513565B2 (ja) | 有機エレクトロルミネッセンス素子 | |
JP5669163B1 (ja) | 有機エレクトロルミネッセンス素子 | |
JP6482782B2 (ja) | 有機発光素子 | |
JP5752806B2 (ja) | 有機発光素子およびその製造方法 | |
JP6305391B2 (ja) | 電荷輸送材料、ホスト材料、薄膜および有機発光素子 | |
JP7182774B2 (ja) | 発光素子 | |
JP6567504B2 (ja) | 有機発光素子 | |
TW201443028A (zh) | 化合物、發光材料及有機發光元件 | |
JP2013116975A (ja) | 遅延蛍光材料、有機発光素子および化合物 | |
TW202100720A (zh) | 有機電場發光元件用熔融混合物、有機電場發光元件、以及有機電場發光元件的製作方法 | |
TW201504230A (zh) | 發光材料、有機發光元件及化合物 | |
EP4083033B1 (en) | Organic electroluminescent element | |
WO2017115833A1 (ja) | 有機エレクトロルミネッセンス素子 | |
TW202003504A (zh) | 有機電場發光元件 | |
TW202138542A (zh) | 有機電場發光元件 | |
JP7337369B2 (ja) | 有機発光素子、積層体および発光方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13758538 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2014503534 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14383971 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20147028198 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2013758538 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013758538 Country of ref document: EP |