WO2013125410A1 - 双極型電極およびこれを用いた双極型リチウムイオン二次電池 - Google Patents
双極型電極およびこれを用いた双極型リチウムイオン二次電池 Download PDFInfo
- Publication number
- WO2013125410A1 WO2013125410A1 PCT/JP2013/053392 JP2013053392W WO2013125410A1 WO 2013125410 A1 WO2013125410 A1 WO 2013125410A1 JP 2013053392 W JP2013053392 W JP 2013053392W WO 2013125410 A1 WO2013125410 A1 WO 2013125410A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- active material
- electrode active
- layer
- material layer
- bipolar
- Prior art date
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims description 41
- 229910001416 lithium ion Inorganic materials 0.000 title claims description 41
- 238000009826 distribution Methods 0.000 claims abstract description 97
- 239000007774 positive electrode material Substances 0.000 claims abstract description 68
- 239000007773 negative electrode material Substances 0.000 claims abstract description 45
- 239000011149 active material Substances 0.000 claims abstract description 43
- 239000003792 electrolyte Substances 0.000 claims description 28
- 229920005989 resin Polymers 0.000 claims description 19
- 239000011347 resin Substances 0.000 claims description 19
- 238000010248 power generation Methods 0.000 claims description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 35
- 239000000463 material Substances 0.000 description 29
- -1 nickel metal hydride Chemical class 0.000 description 25
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 24
- 239000002245 particle Substances 0.000 description 22
- 239000002033 PVDF binder Substances 0.000 description 21
- 229910052799 carbon Inorganic materials 0.000 description 21
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 21
- 239000002002 slurry Substances 0.000 description 20
- 239000011231 conductive filler Substances 0.000 description 19
- 239000011230 binding agent Substances 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 18
- 239000002184 metal Substances 0.000 description 18
- 229920000642 polymer Polymers 0.000 description 18
- 239000002904 solvent Substances 0.000 description 18
- 239000005001 laminate film Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 229920001940 conductive polymer Polymers 0.000 description 11
- 238000007600 charging Methods 0.000 description 10
- 239000002861 polymer material Substances 0.000 description 10
- 239000004743 Polypropylene Substances 0.000 description 9
- 239000006230 acetylene black Substances 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 9
- 229910052744 lithium Inorganic materials 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 229920002239 polyacrylonitrile Polymers 0.000 description 9
- 229920001155 polypropylene Polymers 0.000 description 9
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 8
- 239000000956 alloy Substances 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 7
- 238000007599 discharging Methods 0.000 description 7
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 6
- 239000011245 gel electrolyte Substances 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229920001721 polyimide Polymers 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000011163 secondary particle Substances 0.000 description 6
- 239000007784 solid electrolyte Substances 0.000 description 6
- 239000002202 Polyethylene glycol Substances 0.000 description 5
- 239000004642 Polyimide Substances 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 239000004020 conductor Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000008151 electrolyte solution Substances 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 229910003002 lithium salt Inorganic materials 0.000 description 5
- 159000000002 lithium salts Chemical class 0.000 description 5
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000004926 polymethyl methacrylate Substances 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 229910052723 transition metal Inorganic materials 0.000 description 5
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 4
- 239000004721 Polyphenylene oxide Substances 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 239000002134 carbon nanofiber Substances 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229920001903 high density polyethylene Polymers 0.000 description 4
- 239000004700 high-density polyethylene Substances 0.000 description 4
- 239000011244 liquid electrolyte Substances 0.000 description 4
- 229920001684 low density polyethylene Polymers 0.000 description 4
- 239000004702 low-density polyethylene Substances 0.000 description 4
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 239000011164 primary particle Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000003273 ketjen black Substances 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000002923 metal particle Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 239000005518 polymer electrolyte Substances 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 2
- LBKMJZAKWQTTHC-UHFFFAOYSA-N 4-methyldioxolane Chemical compound CC1COOC1 LBKMJZAKWQTTHC-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 229910003472 fullerene Inorganic materials 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 229910021385 hard carbon Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 238000007561 laser diffraction method Methods 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 239000002905 metal composite material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229940017219 methyl propionate Drugs 0.000 description 2
- 239000002116 nanohorn Substances 0.000 description 2
- 239000011049 pearl Substances 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920013716 polyethylene resin Polymers 0.000 description 2
- 239000003505 polymerization initiator Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 230000002040 relaxant effect Effects 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- GEWWCWZGHNIUBW-UHFFFAOYSA-N 1-(4-nitrophenyl)propan-2-one Chemical compound CC(=O)CC1=CC=C([N+]([O-])=O)C=C1 GEWWCWZGHNIUBW-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 239000004831 Hot glue Substances 0.000 description 1
- 229910007857 Li-Al Inorganic materials 0.000 description 1
- 229910008367 Li-Pb Inorganic materials 0.000 description 1
- 229910011458 Li4/3 Ti5/3O4 Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010586 LiFeO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229910008447 Li—Al Inorganic materials 0.000 description 1
- 229910006738 Li—Pb Inorganic materials 0.000 description 1
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229910002640 NiOOH Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- PDHXHYRJLUNSDZ-UHFFFAOYSA-N [C].C#C Chemical group [C].C#C PDHXHYRJLUNSDZ-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229920005603 alternating copolymer Polymers 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 101150004907 litaf gene Proteins 0.000 description 1
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Inorganic materials [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 238000012719 thermal polymerization Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical class [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/04—Construction or manufacture in general
- H01M10/0413—Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
- H01M10/0418—Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/029—Bipolar electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/20—Batteries in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to a bipolar electrode and a bipolar lithium ion secondary battery using the same.
- HEV hybrid vehicles
- EV electric vehicles
- fuel cell vehicles have been manufactured and sold from the viewpoints of environment and fuel efficiency, and new developments are continuing.
- a power supply device capable of discharging and charging.
- a secondary battery such as a lithium ion battery or a nickel metal hydride battery, an electric double layer capacitor, or the like is used.
- lithium ion secondary batteries are considered suitable for electric vehicles because of their high energy density and high durability against repeated charging and discharging, and various developments have been intensively advanced.
- connection portion causes a reduction in the output density and energy density of the battery.
- bipolar lithium ion secondary batteries such as bipolar lithium ion secondary batteries have been developed.
- a bipolar lithium ion secondary battery has a plurality of bipolar electrodes with a positive electrode active material layer formed on one surface of a current collector and a negative electrode active material layer formed on the other surface through an electrolyte layer and a separator. It has a power generation element laminated.
- the current collector used in such a bipolar lithium ion secondary battery is desirably made of a material that is lightweight and has excellent conductivity in order to ensure a higher output density. Therefore, in recent years, it has been proposed to use a polymer material to which a conductive material is added as a material for a current collector (resin current collector).
- resin current collector discloses a resin current collector in which metal particles or carbon particles are mixed as a conductive material in a polymer material.
- an object of the present invention is to provide a bipolar electrode in which deterioration is suppressed.
- the present invention provides a bipolar electrode in which positive and negative electrode active material layers are formed on both sides of a current collector, and a current distribution relaxation layer having a volume resistivity lower than that of the active material layer is disposed on the active material layer side. Characterized by points.
- the present invention even when a current collector having a resistance higher than that of the metal current collector is used, a current flows in the active material layer through the current distribution relaxation layer, and the current distribution in the active material layer By reducing, deterioration of the electrode is suppressed.
- FIG. 2 is a cross-sectional view schematically showing the current distribution of the first embodiment. It is sectional drawing which represented typically the whole structure of the bipolar electrode which concerns on other one Embodiment of this invention.
- 1 is a cross-sectional view schematically showing a bipolar lithium ion secondary battery according to an embodiment of the present invention. It is a perspective view showing the appearance of a flat lithium ion secondary battery which is an embodiment of a bipolar lithium ion secondary battery.
- FIG. 1 is a cross-sectional view schematically showing the entire structure of a bipolar electrode according to an embodiment of the present invention (hereinafter referred to as a first embodiment).
- the bipolar electrode 1 of the first embodiment has a laminated structure in which a positive electrode active material layer 5 is formed on one surface of a current collector 3 and a negative electrode active material layer 7 is formed on the other surface.
- the bipolar electrode 1 has a structure in which the current distribution relaxation layer 2 is laminated on the positive electrode active material layer 5. That is, the current distribution relaxation layer 2 is disposed on the surface (in the thickness direction) of the bipolar electrode 1 on the side opposite to the current collector 3 with respect to the positive electrode active material layer 5.
- the current distribution relaxation layer is disposed on the surface of the bipolar electrode” means that the electrode is in the state of the electrode and includes other components on the opposite side of the active material layer in the thickness direction of the current distribution relaxation layer. Means no form.
- the volume resistivity of the current distribution relaxation layer 2 is lower than the volume resistivity of the positive electrode active material layer 5 existing below.
- “at least one active material layer is present between the current distribution relaxation layer and the current collector” refers to a form in which the current distribution relaxation layer and the current collector sandwich the active material layer.
- the current distribution relaxation layer is disposed on the surface of the active material layer (the current collector, the active material layer, and the current distribution relaxation layer are laminated in this order). Form).
- a mode in which the current distribution relaxation layer is disposed inside the active material layer for example, a mode in which the current distribution relaxation layer is sandwiched between the active material layers as in the second embodiment (current collector, active material layer, current A mode in which a distribution relaxation layer and an active material layer are laminated in this order).
- the current distribution relaxation layer is disposed between the current collector and the active material layer, that is, the current distribution relaxation layer is on the same side as the current collector with respect to the active material layer. Arranged forms are excluded.
- FIG. 2 is a cross-sectional view schematically showing a current distribution in the bipolar electrode of the present embodiment.
- the current distribution relaxation layer 2 By disposing the current distribution relaxation layer 2, a current can flow through the current distribution relaxation layer 2 having a low resistance, and variations in current distribution in the active material layer 5 are reduced.
- the durability of the electrode is further improved by providing a current distribution relaxation layer on the side facing the current collector. improves.
- the durability of the electrode is improved by the presence of the current distribution relaxation layer. This is because when a variation in the current distribution in the active material layer occurs, a current flows through the current distribution relaxation layer having a low resistance, and the variation can be mitigated, thereby suppressing local overdischarge overcharge. It is thought that it is possible.
- the durability of the electrode is further improved by disposing the current distribution relaxation layer on the surface of the electrode. This is because the electrode surface is the part where the variation in current distribution is most difficult to alleviate and the variation is likely to occur. Therefore, if a current distribution relaxation layer is arranged on the surface of the electrode, the effect of the current distribution relaxation layer appears remarkably. This is probably because of this.
- the durability of the electrode is further improved. This is because the positive electrode active material layer having a large electrode resistance is more likely to cause a variation in current distribution and is more likely to deteriorate. Therefore, if the current distribution relaxation layer is disposed on the positive electrode active material layer, the effect of the current distribution relaxation layer is reduced. This is probably because it appears prominently.
- FIG. 3 is a cross-sectional view schematically showing the entire structure of a bipolar electrode according to another embodiment (second embodiment) of the present invention.
- the bipolar electrode 6 of the second embodiment has a laminated structure in which the positive electrode active material layer 5 is formed on one surface of the current collector 3 and the negative electrode active material layer 7 is formed on the other surface. Further, in the bipolar electrode 6, the current distribution relaxation layer 2 is disposed between the two positive electrode active material layers 5 and 5 ′, and the positive electrode active material layer 5 includes the current collector 3 and the current distribution relaxation layer 2. Arranged between. In the bipolar electrode of the second embodiment, the current distribution relaxation layer is not disposed on the surface of the bipolar electrode. In the second embodiment, the volume resistivity of the current distribution relaxation layer 2 is lower than the volume resistivity of the positive electrode active material layer 5 existing below. Even such a configuration is preferable because deterioration of the positive electrode active material layer 5 existing between the current collector 3 and the current distribution relaxation layer 2 is suppressed.
- the current distribution relaxation layer As long as the current distribution relaxation layer has a volume resistivity lower than the volume resistivity of the active material layer existing between the current distribution relaxation layer and the current collector, either the positive electrode active material layer side or the negative electrode active material layer side It may exist in one or both.
- the current distribution relaxation layer is present at least on the positive electrode active material layer side, and more preferably, the current distribution relaxation layer is present only on the positive electrode active material layer side. Since current distribution is preferentially relaxed on the electrode side having low resistance, current distribution is particularly likely to occur in the plane on the electrode side having high resistance.
- the current distribution relaxation layer is installed for the purpose of relaxing the current distribution generated when the current collector and the active material layer are adjacent to each other, the current distribution relaxation layer is disposed between the current distribution relaxation layer and the current collector.
- the current distribution relaxation layer exists on the positive electrode active material layer side” means that at least one positive electrode active material layer exists between the current distribution relaxation layer and the current collector.
- a form in which another positive electrode active material layer is disposed on the current distribution relaxation layer as in the form is also included.
- the volume resistivity (electric resistivity) in the thickness direction of the current distribution relaxation layer is lower than the volume resistivity of the active material layer on the arrangement side. That is, the volume resistivity ratio of the current distribution relaxation layer to the active material layer on the side where the current distribution relaxation layer is disposed is not particularly limited as long as it is less than 1.
- the volume resistivity of the current distribution relaxation layer / the volume resistivity of the active material layer 10 ⁇ ⁇ 6 to 0.99, and more preferably 10 ⁇ ⁇ 5 to 10 ⁇ ⁇ 2 .
- volume resistivity refers to volume resistivity in the thickness direction.
- the volume resistivity of the current distribution relaxation layer is not particularly limited, but is preferably 10 ⁇ 3 ⁇ ⁇ cm or less.
- the volume resistivity is 10 ⁇ 3 ⁇ ⁇ cm or less.
- the lower limit value of the volume resistivity is not particularly limited, but the volume resistivity of a metal having a high conductivity is about 10 ⁇ 6 ⁇ ⁇ cm. Therefore, the volume resistivity is 10 ⁇ 6 in actual use. ⁇ ⁇ cm or more is sufficient.
- the volume resistivity is a value calculated using a sample obtained by applying a member to a PET sheet and cutting it to 80 mm ⁇ 50 mm based on JIS K 7194: 1994.
- the current distribution relaxation layer is not particularly limited, and includes a metal thin film made of a metal material, a metal mesh, and a layer containing a conductive filler and a binder such as metal particles or carbon particles.
- the metal material examples include aluminum, nickel, iron, stainless steel, titanium, copper, gold, silver, and alloys thereof. Of these, aluminum and stainless steel are preferable from the viewpoints of electron conductivity and battery operating potential.
- the metal thin film can be formed on the active material layer by physical vapor deposition such as sputtering, vapor deposition, or ion plating. From the viewpoint of conductivity, the thickness of the metal thin film is preferably 5 ⁇ m or less, more preferably 1 to 1000 nm, and more preferably 3 to 500 nm.
- the thickness of the metal mesh is preferably from 0.1 to 100 ⁇ m, more preferably from 1 to 50 ⁇ m, from the viewpoint of conductivity.
- the mesh shape is not particularly limited, and examples thereof include a grid shape, a triangular mesh shape, and a honeycomb shape.
- any conductive material can be used without particular limitation.
- metals and conductive carbon can be cited as materials excellent in conductivity and potential resistance.
- the conductive carbon is not particularly limited, and examples thereof include acetylene black, vulcan, black pearl, carbon nanofiber, ketjen black, carbon nanotube, carbon nanohorn, carbon nanoballoon, and fullerene.
- Preferred are conductive carbon and aluminum particles, and more preferred is conductive carbon.
- Conductive carbon has a very wide potential window, is stable in a wide range with respect to both the positive electrode potential and the negative electrode potential, and is excellent in conductivity. Also, since the carbon particles are very light, the increase in mass is minimized. Furthermore, since carbon particles are often used as a conductive aid for electrodes, even if they come into contact with these conductive aids, the contact resistance is very low because of the same material. Further, these conductive fillers may be those obtained by coating a conductive material around a particle ceramic material or resin material with plating or the like.
- blend suitably the addition amount of an electroconductive filler so that volume resistivity may become lower than an active material layer.
- the content of the conductive filler is preferably 30 to 99% by mass, and preferably 60 to 95% by mass with respect to the total amount of the conductive filler and the binder.
- the average particle diameter of the conductive filler is not particularly limited, but is generally several tens of nm to several tens of ⁇ m, and preferably about 0.01 to 10 ⁇ m.
- particle diameter means the maximum distance L among the distances between any two points on the particle outline.
- the value of “average particle size” is the average value of the particle size of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
- a binder is used to bind the conductive filler.
- the binder include polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE)), polypropylene (PP), polyethylene terephthalate (PET), polyethernitrile (PEN), polyimide (PI).
- PAI Polyamideimide
- PA polyamide
- PTFE polytetrafluoroethylene
- SBR styrene-butadiene rubber
- PAN polyacrylonitrile
- PMA polymethyl acrylate
- PMMA polymethyl methacrylate
- PVC vinyl
- PVDF polyvinylidene fluoride
- PS polystyrene
- the thickness of the current distribution relaxation layer is preferably 0.1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m from the viewpoint of conductivity. is there.
- a slurry is prepared by dispersing or dissolving a material for forming a current distribution relaxation layer in an appropriate solvent.
- coating on an active material layer and drying is mentioned.
- the solvent is not particularly limited, and N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylformamide, cyclohexane, hexane, water and the like can be used.
- NMP N-methyl-2-pyrrolidone
- PVDF polyvinylidene fluoride
- Examples of the application method include spray coating, cast coating, dip coating, and die coating.
- the electron conductivity in the current distribution relaxation layer is preferably higher than the ionic conductivity of the electrolyte contained in the electrolyte layer. Since the electronic conductivity of the current distribution relaxation layer is higher than that of the ionic conductivity, variation in the current distribution in the active material layer due to the current collector can be suppressed and durability is improved, which is preferable.
- the ionic conductivity of the electrolyte / the electronic conductivity of the current distribution relaxation layer 0.99 to 10 ⁇ 8 , and more preferably 10 ⁇ 3 to 10 ⁇ 6 .
- the electronic conductivity of the current distribution relaxation layer is the reciprocal of the volume resistivity.
- the positive electrode active material layer 5 contains a positive electrode active material.
- the positive electrode active material has a composition that occludes ions during discharging and releases ions during charging.
- a preferable example is a lithium-transition metal composite oxide that is a composite oxide of a transition metal and lithium.
- Li ⁇ Co-based composite oxide such as LiCoO 2
- Li ⁇ Ni-based composite oxide such as LiNiO 2
- Li ⁇ Mn-based composite oxide such as spinel LiMn 2 O 4
- Li ⁇ such LiFeO 2 Fe-based composite oxides and those obtained by replacing some of these transition metals with other elements can be used.
- These lithium-transition metal composite oxides are excellent in reactivity and cycle characteristics and are low-cost materials.
- examples of the positive electrode active material include transition metal oxides such as LiFePO 4 and lithium phosphate compounds and sulfate compounds; transition metal oxides such as V 2 O 5 , MnO 2 , TiS 2 , MoS 2 , and MoO 3 , and sulfides. Materials; PbO 2 , AgO, NiOOH, etc. can also be used.
- the positive electrode active material may be used alone or in the form of a mixture of two or more.
- the average particle diameter of the positive electrode active material is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m, from the viewpoint of increasing the capacity, reactivity, and cycle durability of the positive electrode active material. Within such a range, the secondary battery can suppress an increase in the internal resistance of the battery during charging and discharging under high output conditions, and can extract a sufficient current.
- the positive electrode active material is secondary particles, it can be said that the average particle diameter of the primary particles constituting the secondary particles is desirably in the range of 10 nm to 1 ⁇ m. It is not limited to. However, it goes without saying that, depending on the manufacturing method, the positive electrode active material may not be a secondary particle formed by aggregation, lump or the like.
- the particle diameter of the positive electrode active material and the particle diameter of the primary particles a median diameter obtained using a laser diffraction method can be used.
- the shape of the positive electrode active material varies depending on the type and manufacturing method, and examples thereof include a spherical shape (powdered shape), a plate shape, a needle shape, a column shape, and a square shape, but are not limited thereto. Any shape can be used without any problems. Preferably, an optimal shape that can improve battery characteristics such as charge / discharge characteristics is appropriately selected.
- the negative electrode active material layer 7 contains a negative electrode active material.
- the negative electrode active material has a composition capable of releasing ions during discharge and storing ions during charging.
- the negative electrode active material is not particularly limited as long as it can reversibly occlude and release lithium.
- the negative electrode active material examples include metals such as Si and Sn, TiO, Ti 2 O 3 , TiO 2 , or Metal oxides such as SiO 2 , SiO, SnO 2 , complex oxides of lithium and transition metals such as Li 4/3 Ti 5/3 O 4 or Li 7 MnN, Li—Pb alloys, Li—Al alloys Preferred examples include lithium-metal alloy materials such as Li, or graphite (natural graphite, artificial graphite), carbon black, activated carbon, carbon fiber, coke, soft carbon, or hard carbon.
- the negative electrode active material may contain an element that forms an alloy with lithium. By using an element that forms an alloy with lithium, it is possible to obtain a battery having a high capacity and an excellent output characteristic having a higher energy density than that of a conventional carbon-based material.
- the negative electrode active material may be used alone or in the form of a mixture of two or more.
- the element alloying with lithium is not limited to the following, but specifically, Si, Ge, Sn, Pb, Al, In, Zn, H, Ca, Sr, Ba, Ru, Rh, Ir, Pd, Pt, Ag, Au, Cd, Hg, Ga, Tl, C, N, Sb, Bi, O, S, Se, Te, Cl and the like can be mentioned.
- the average particle diameter of the negative electrode active material is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 1 to 20 ⁇ m, from the viewpoint of increasing the capacity, reactivity, and cycle durability of the negative electrode active material. Within such a range, the secondary battery can suppress an increase in the internal resistance of the battery during charging and discharging under high output conditions, and can extract a sufficient current.
- the negative electrode active material is secondary particles, it can be said that the average particle diameter of the primary particles constituting the secondary particles is desirably in the range of 10 nm to 1 ⁇ m. It is not limited to. However, it goes without saying that, depending on the manufacturing method, the negative electrode active material may not be a secondary particle formed by aggregation, lump or the like.
- the particle diameter of the negative electrode active material and the particle diameter of the primary particles a median diameter obtained by using a laser diffraction method can be used.
- the shape of the negative electrode active material varies depending on the type and manufacturing method, and examples thereof include a spherical shape (powdered shape), a plate shape, a needle shape, a column shape, and a square shape, but are not limited thereto. Any shape can be used without any problems.
- an optimal shape that can improve battery characteristics such as charge / discharge characteristics is appropriately selected.
- the active material layer may contain other materials if necessary.
- a conductive aid for example, a conductive aid, a binder, and the like can be included.
- a polymerization initiator for polymerizing the polymer may be included.
- Conductive aid refers to an additive blended to improve the conductivity of the active material layer.
- Examples of the conductive aid include carbon powders such as acetylene black, carbon black, ketjen black, and graphite, various carbon fibers such as vapor grown carbon fiber (VGCF; registered trademark), expanded graphite, and the like.
- VGCF vapor grown carbon fiber
- binder examples include polyvinylidene fluoride (PVDF), PI, PTFE, SBR, and a synthetic rubber binder.
- PVDF polyvinylidene fluoride
- PI polyvinylidene fluoride
- PTFE polyvinylidene fluoride
- SBR synthetic rubber binder
- the binder is not limited to these.
- the binder and the matrix polymer used as the gel electrolyte are the same, it is not necessary to use a binder.
- the compounding ratio of the components contained in the active material layer is not particularly limited.
- the blending ratio can be adjusted by appropriately referring to known knowledge about lithium ion secondary batteries.
- the thickness of the active material layer is not particularly limited, and conventionally known knowledge about the lithium ion secondary battery can be appropriately referred to.
- the thickness of the active material layer is preferably about 10 to 100 ⁇ m, more preferably 20 to 50 ⁇ m. If the active material layer is about 10 ⁇ m or more, the battery capacity can be sufficiently secured. On the other hand, if the active material layer is about 100 ⁇ m or less, it is possible to suppress the occurrence of the problem of an increase in internal resistance due to the difficulty in diffusing lithium ions in the electrode deep part (current collector side).
- the method for forming the positive electrode active material layer (or negative electrode active material layer) on the current collector surface is not particularly limited, and known methods can be used in the same manner.
- a positive electrode active material (or a negative electrode active material) and, if necessary, an electrolyte salt for increasing ion conductivity, a conductive auxiliary agent for increasing electron conductivity, and a binder are appropriately used.
- a positive electrode active material slurry (or a negative electrode active material slurry) is prepared by dispersing and dissolving in a solvent. This is applied onto a current collector, dried to remove the solvent, and then pressed to form a positive electrode active material layer (or negative electrode active material layer) on the current collector.
- the solvent is not particularly limited, and N-methyl-2-pyrrolidone (NMP), dimethylformamide, dimethylacetamide, methylformamide, cyclohexane, hexane, water and the like can be used.
- NMP N-methyl-2-pyrrolidone
- dimethylformamide dimethylacetamide
- methylformamide cyclohexane
- hexane water and the like
- PVDF polyvinylidene fluoride
- NMP is preferably used as a solvent.
- the positive electrode active material slurry (or the negative electrode active material slurry) is applied onto the current collector, dried, and then pressed.
- the porosity of the positive electrode active material layer (or the negative electrode active material layer) can be controlled by adjusting the pressing conditions.
- the specific means and press conditions for the press treatment are not particularly limited, and can be appropriately adjusted so that the porosity of the positive electrode active material layer (or the negative electrode active material layer) after the press treatment becomes a desired value.
- Specific examples of the press process include a hot press machine and a calendar roll press machine.
- the pressing conditions temperature, pressure, etc.
- conventionally known knowledge can be referred to as appropriate.
- the bipolar electrode current collector 3 has a volume resistance ratio in the thickness direction of 10 ⁇ 3 to 10 4 with respect to the positive electrode and the negative electrode active material layer.
- the current collector in such a range has a relatively high resistance and exhibits the effect of the current distribution relaxation layer.
- the volume resistivity ratio volume resistivity ( ⁇ ⁇ cm) in the thickness direction of the current collector / volume resistivity ( ⁇ ⁇ cm) in the thickness direction of the active material layer.
- the volume resistance ratio is more preferably 3 ⁇ 10 ⁇ 3 to 10.
- the volume resistivity of the current collector is preferably 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 2 ⁇ ⁇ cm, more preferably 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 2 ⁇ ⁇ cm. From the viewpoint of weight reduction, the current collector is preferably a resin current collector.
- the material constituting the current collector 3 is not particularly limited as long as the material has the above volume resistance ratio.
- examples thereof include a resin to which a conductive filler is added if necessary; a ceramic material composed of an alumina base material and a conductive filler (same as the conductive filler contained in the resin current collector).
- the resin include a conductive polymer material or a non-conductive polymer material.
- the conductive polymer material examples include polyaniline, polypyrrole, polythiophene, polyacetylene, polyparaphenylene, polyphenylene vinylene, polyacrylonitrile, and polyoxadiazole. Since such a conductive polymer material has sufficient conductivity without adding a conductive filler, it is advantageous in terms of facilitating the manufacturing process or reducing the weight of the current collector.
- Non-conductive polymer materials include, for example, polyethylene (PE; high density polyethylene (HDPE), low density polyethylene (LDPE)), polyolefins such as polypropylene (PP), polyethylene terephthalate (PET), polyether nitrile (PEN) Polyester such as polyimide (PI), polyamideimide (PAI), polyamide (PA), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), poly Examples include methyl methacrylate (PMMA), polyvinyl chloride (PVC), polyvinylidene fluoride (PVDF), epoxy resin, and polystyrene (PS). Such a non-conductive polymer material may have excellent potential resistance or solvent resistance.
- PE polyethylene
- HDPE high density polyethylene
- LDPE low density polyethylene
- PP polypropylene
- PET polyethylene terephthalate
- PEN polyether nitrile
- a conductive filler may be added to the conductive polymer material or the non-conductive polymer material as necessary.
- a conductive filler is inevitably necessary to impart conductivity to the resin.
- the conductive filler can be used without particular limitation as long as it has a conductivity.
- metals, conductive carbon, etc. are mentioned as a material excellent in electroconductivity, electric potential resistance, or lithium ion barrier
- a metal Aluminum, nickel, iron, stainless steel, titanium, copper, gold
- the conductive carbon is not particularly limited, but is at least selected from the group consisting of acetylene black, vulcan, black pearl, carbon nanofiber, ketjen black, carbon nanotube, carbon nanohorn, carbon nanoballoon, and fullerene. It is preferable that 1 type is included.
- Conductive carbon has a very wide potential window, is stable in a wide range with respect to both the positive electrode potential and the negative electrode potential, and is excellent in conductivity. Also, since the carbon particles are very light, the increase in mass is minimized. Furthermore, since carbon particles are often used as a conductive aid for electrodes, even if they come into contact with these conductive aids, the contact resistance is very low because of the same material.
- the amount of the conductive filler added is not particularly limited as long as it is an amount capable of imparting sufficient conductivity to the current collector, and is generally about 5 to 35% by mass.
- the size of the current collector is determined according to the intended use of the battery. For example, if it is used for a large battery that requires a high energy density, a current collector having a large area is used.
- the thickness of the current collector is not particularly limited, but is usually about 1 to 100 ⁇ m.
- FIG. 4 is a cross-sectional view schematically showing the overall structure of a bipolar lithium ion secondary battery according to an embodiment of the present invention.
- the bipolar lithium ion secondary battery 10 shown in FIG. 4 has a structure in which a substantially rectangular power generation element 21 in which a charge / discharge reaction actually proceeds is sealed inside a laminate film 29 that is a battery exterior material.
- the power generation element 21 of the bipolar lithium ion secondary battery 10 of the present embodiment is a positive electrode electrically coupled to one surface of the current collector 11 (current collector 3 in FIG. 1 or 2).
- An active material layer 13 is formed, and a plurality of bipolar electrodes 23 (bipolar electrodes 1 in FIG. 1) having a negative electrode active material layer 15 electrically coupled to the opposite surface of the current collector 11 are formed.
- Each bipolar electrode 23 is laminated via the electrolyte layer 17 to form the power generation element 21.
- the electrolyte layer 17 has a configuration in which an electrolyte is held at the center in the surface direction of a separator as a base material.
- the positive electrode active material layer 13 of one bipolar electrode 23 and the negative electrode active material layer 15 of another bipolar electrode 23 adjacent to the one bipolar electrode 23 face each other through the electrolyte layer 17.
- the bipolar electrodes 23 and the electrolyte layers 17 are alternately stacked. That is, the electrolyte layer 17 is interposed between the positive electrode active material layer 13 of one bipolar electrode 23 and the negative electrode active material layer 15 of another bipolar electrode 23 adjacent to the one bipolar electrode 23. ing.
- the adjacent positive electrode active material layer 13, electrolyte layer 17, and negative electrode active material layer 15 constitute one unit cell layer 19. Therefore, it can be said that the bipolar lithium ion secondary battery 10 has a configuration in which the single battery layers 19 are stacked. Further, for the purpose of preventing liquid junction due to leakage of the electrolytic solution from the electrolyte layer 17, a seal portion (insulating layer) 31 is disposed on the outer peripheral portion of the unit cell layer 19.
- a positive electrode active material layer 13 is formed only on one side of the positive electrode outermost layer current collector 11 a located in the outermost layer of the power generation element 21.
- the negative electrode active material layer 15 is formed only on one surface of the outermost current collector 11b on the negative electrode side located in the outermost layer of the power generation element 21.
- a positive electrode current collector plate 25 is disposed so as to be adjacent to the outermost layer current collector 11a on the positive electrode side, and this is extended to form a laminate film which is a battery exterior material 29.
- the negative electrode current collector plate 27 is disposed so as to be adjacent to the outermost layer current collector 11 b on the negative electrode side, and is similarly extended and led out from the laminate film 29.
- a seal portion 31 is usually provided around each unit cell layer 19.
- the purpose of the seal portion 31 is to prevent the adjacent current collectors 11 in the battery from coming into contact with each other and a short circuit caused by a slight irregularity at the end of the unit cell layer 19 in the power generation element 21. Is provided. By installing such a seal portion 31, long-term reliability and safety are ensured, and a high-quality bipolar lithium ion secondary battery 10 can be provided.
- the number of times the single battery layer 19 is stacked is adjusted according to the desired voltage.
- the number of stacks of the single battery layers 19 may be reduced if a sufficient output can be secured even if the thickness of the battery is reduced as much as possible.
- the power generation element 21 is sealed under reduced pressure in a laminate film 29 that is a battery exterior material, and the positive electrode current collector plate 25 and A structure in which the negative electrode current collector plate 27 is taken out of the laminate film 29 is preferable.
- Electrode layer There is no restriction
- the liquid electrolyte is a solution in which a lithium salt as a supporting salt is dissolved in a solvent.
- the solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), ethyl methyl carbonate (EMC), methyl propionate (MP), methyl acetate (MA), and methyl formate (MF).
- the supporting salt is not particularly limited, LiPF 6, LiBF 4, LiClO 4, LiAsF 6, LiTaF 6, LiSbF 6, LiAlCl 4, Li 2 B 10 Cl 10, LiI, LiBr, LiCl Inorganic acid anion salts such as LiAlCl, LiHF 2 and LiSCN, LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiBOB (lithium bisoxide borate), LiBETI (lithium bis (perfluoroethylenesulfonylimide); And organic acid anion salts such as Li (C 2 F 5 SO 2 ) 2 N).
- These electrolyte salts may be used alone or in the form of a mixture of two or more.
- polymer electrolytes are classified into gel electrolytes containing an electrolytic solution and polymer solid electrolytes not containing an electrolytic solution.
- the gel electrolyte has a configuration in which the above liquid electrolyte is injected into a matrix polymer having lithium ion conductivity.
- Examples of the matrix polymer having lithium ion conductivity include a polymer having polyethylene oxide in the main chain or side chain (PEO), a polymer having polypropylene oxide in the main chain or side chain (PPO), polyethylene glycol (PEG), poly Acrylonitrile (PAN), polymethacrylic acid ester, polyvinylidene fluoride (PVdF), copolymer of polyvinylidene fluoride and hexafluoropropylene (PVdF-HFP), polyacrylonitrile (PAN), poly (methyl acrylate) (PMA), poly (Methyl methacrylate) (PMMA) etc. are mentioned.
- PEO polymer having polyethylene oxide in the main chain or side chain
- PPO polymer having polypropylene oxide in the main chain or side chain
- PEG polyethylene glycol
- PAN poly Acrylonitrile
- PVdF polymethacrylic acid ester
- PVdF polyvinylidene fluoride
- mixtures of the above-described polymers, modified products, derivatives, random copolymers, alternating copolymers, graft copolymers, block copolymers, and the like can also be used.
- PEO, PPO and their copolymers, PVdF, PVdF-HFP it is desirable to use PEO, PPO and their copolymers, PVdF, PVdF-HFP.
- an electrolyte salt such as a lithium salt can be well dissolved.
- a separator may be used for the electrolyte layer.
- the separator include a microporous film made of polyolefin such as polyethylene or polypropylene, hydrocarbon such as polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP), glass fiber, or the like.
- the polymer solid electrolyte has a structure in which a supporting salt (lithium salt) is dissolved in the above matrix polymer, and does not include an organic solvent that is a plasticizer. Therefore, when the electrolyte layer is composed of a polymer solid electrolyte, there is no fear of liquid leakage from the battery, and the battery reliability can be improved.
- a supporting salt lithium salt
- a matrix polymer of a polymer gel electrolyte or a polymer solid electrolyte can exhibit excellent mechanical strength by forming a crosslinked structure.
- thermal polymerization, ultraviolet polymerization, radiation polymerization, electron beam polymerization, etc. are performed on a polymerizable polymer (for example, PEO or PPO) for forming a polymer electrolyte, using an appropriate polymerization initiator.
- a polymerization treatment may be performed.
- the said electrolyte may be contained in the active material layer of an electrode.
- the seal portion (insulating layer) has a function of preventing contact between current collectors and a short circuit at the end of the single cell layer.
- acrylic resin, urethane resin, epoxy resin, polyethylene resin, polypropylene resin, polyimide resin, rubber (ethylene-propylene-diene rubber: EPDM), and the like can be used.
- an isocyanate-based adhesive an acrylic resin-based adhesive, a cyanoacrylate-based adhesive, or the like may be used, and a hot-melt adhesive (urethane resin, polyamide resin, polyolefin resin) or the like may be used.
- a hot-melt adhesive urethane resin, polyamide resin, polyolefin resin
- polyethylene resin and polypropylene resin are preferably used as the constituent material of the insulating layer, and amorphous polypropylene resin is mainly used. It is preferable to use a resin obtained by copolymerizing ethylene, propylene and butene as components.
- battery exterior materials As the battery exterior material, a conventionally known metal can case can be used, and a bag-like case using a laminate film containing aluminum that can cover the power generation element can be used.
- a laminate film having a three-layer structure in which polypropylene, aluminum, and nylon are laminated in this order can be used as the laminate film, but the laminate film is not limited thereto.
- a laminate film that is excellent in high output and cooling performance and can be suitably used for a battery for large equipment such as for EV and HEV is desirable.
- FIG. 5 is a perspective view showing the appearance of a flat lithium ion secondary battery which is a typical embodiment of the secondary battery.
- the flat lithium ion secondary battery 50 has a rectangular flat shape, and a positive electrode tab 58 and a negative electrode tab 59 for taking out electric power are drawn out from both sides thereof.
- the power generation element 57 is encased by the battery outer packaging material 52 of the lithium ion secondary battery 50, and the periphery thereof is heat-sealed. The power generation element 57 is sealed with the positive electrode tab 58 and the negative electrode tab 59 pulled out to the outside.
- the power generation element 57 corresponds to the power generation element 21 of the lithium ion secondary battery 10 shown in FIG. 4 described above.
- the power generation element 57 is formed by laminating a plurality of single battery layers (single cells) 19 including a positive electrode (positive electrode active material layer) 13, an electrolyte layer 17, and a negative electrode (negative electrode active material layer) 15.
- the lithium ion secondary battery is not limited to a stacked flat shape.
- the wound lithium ion secondary battery may have a cylindrical shape, or may have a shape that is a flattened rectangular shape by deforming such a cylindrical shape.
- a laminate film may be used for the exterior material, and the conventional cylindrical can (metal can) may be used, for example, It does not restrict
- the power generation element is covered with an aluminum laminate film. With this configuration, weight reduction can be achieved.
- the tabs 58 and 59 shown in FIG. 5 are not particularly limited.
- the positive electrode tab 58 and the negative electrode tab 59 may be drawn out from the same side, or the positive electrode tab 58 and the negative electrode tab 59 may be divided into a plurality of parts and taken out from each side, as shown in FIG. It is not limited to.
- a terminal may be formed using a cylindrical can (metal can).
- the assembled battery is configured by connecting a plurality of batteries. Specifically, at least two or more are used, and are configured by serialization, parallelization, or both. Capacitance and voltage can be freely adjusted by paralleling in series.
- a small assembled battery that can be attached and detached by connecting a plurality of batteries in series or in parallel. Then, a plurality of small assembled batteries that can be attached and detached are connected in series or in parallel to provide a large capacity and large capacity suitable for vehicle drive power supplies and auxiliary power supplies that require high volume energy density and high volume output density.
- An assembled battery having an output can also be formed. How many batteries are connected to make an assembled battery, and how many small assembled batteries are stacked to make a large-capacity assembled battery depends on the battery capacity of the mounted vehicle (electric vehicle) It may be determined according to the output.
- the electric device has excellent output characteristics, maintains discharge capacity even after long-term use, and has good cycle characteristics.
- Vehicle applications such as electric vehicles, hybrid electric vehicles, fuel cell vehicles, and hybrid fuel cell vehicles require higher capacity, larger size, and longer life than electric and portable electronic devices. . Therefore, the bipolar lithium ion secondary battery can be suitably used as a vehicle power source, for example, as a vehicle driving power source or an auxiliary power source.
- a battery or an assembled battery formed by combining a plurality of these batteries can be mounted on the vehicle.
- a plug-in hybrid electric vehicle having a long EV travel distance or an electric vehicle having a long charge travel distance can be configured.
- a car a hybrid car, a fuel cell car, an electric car (four-wheeled vehicles (passenger cars, trucks, buses, commercial vehicles, light cars, etc.)
- the application is not limited to automobiles.
- it can be applied to various power sources for moving vehicles such as other vehicles, for example, trains, and power sources for mounting such as uninterruptible power supplies. It is also possible to use as.
- Example 1 Production of Bipolar Electrode 85 parts by mass of LiMn 2 O 4 as a positive electrode active material, 5 parts by mass of acetylene black as a conductive additive, 10 parts by mass of polyvinylidene fluoride (PVDF) as a binder, and N-methyl-2 as a slurry viscosity adjusting solvent -An appropriate amount of pyrrolidone (NMP) was mixed to prepare a positive electrode active material slurry.
- PVDF polyvinylidene fluoride
- NMP N-methyl-2
- the negative electrode active material slurry was applied on one side of the resin current collector where the positive electrode active material layer was not formed and dried to form a negative electrode.
- a laminate in which a positive electrode was applied on one side of a conductive polymer film as a current collector and a negative side was applied on one side was prepared.
- the laminated body is cut into 140 ⁇ 90 mm, and the peripheral portion 10 mm of the electrode has a portion where the electrode (both positive and negative) is not applied in advance, whereby the electrode portion of 120 mm ⁇ 70 mm and the peripheral portion 10 mm A laminate having a seal margin was produced.
- Al sputtering was performed on the positive electrode active material layer of the laminate, and a 2 nm Al thin film was formed on the surface of the positive electrode to complete a bipolar electrode.
- a bipolar battery was completed by sandwiching a bipolar battery element with this terminal, vacuum-sealing with an aluminum laminate so as to cover them, and pressing both sides of the entire bipolar battery element at atmospheric pressure.
- Example 2 A bipolar battery was produced in the same manner as in Example 1 except that a 5 nm Al thin film (current distribution relaxation layer) was formed on the surface of the positive electrode active material layer by sputtering.
- Example 3 A bipolar battery was fabricated in the same manner as in Example 1 except that a current distribution relaxation layer was formed on the surface of the positive electrode active material layer using an Al mesh foil (lattice size 3 mm ⁇ 3 mm, thickness 5 ⁇ m).
- Example 4 A bipolar battery was fabricated in the same manner as in Example 1 except that a current distribution relaxation layer was formed on the surface of the positive electrode active material layer using an Al mesh foil (lattice size 3 mm ⁇ 3 mm, thickness 10 ⁇ m).
- Example 5 A suitable amount of NMP as a slurry viscosity adjusting solvent is mixed with 70 parts by mass of acetylene black, 30 parts by mass of PVDF, and a slurry is prepared, applied onto the positive electrode active material layer, dried, and a current distribution relaxation layer (thickness 10 ⁇ m) is formed.
- a bipolar battery was produced in the same manner as in Example 1 except that it was formed.
- Example 6 A suitable amount of NMP as a slurry viscosity adjusting solvent is mixed with 80 parts by mass of acetylene black, 20 parts by mass of PVDF, and a slurry is prepared, applied on the positive electrode active material layer, dried, and a current distribution relaxation layer (thickness 10 ⁇ m) is formed.
- a bipolar battery was produced in the same manner as in Example 1 except that it was formed.
- Example 7 A slurry is prepared by mixing 90 parts by mass of acetylene black, 10 parts by mass of PVDF, and an appropriate amount of NMP as a slurry viscosity adjusting solvent, applied onto the positive electrode active material layer, dried, and a current distribution relaxation layer (thickness 10 ⁇ m).
- a bipolar battery was produced in the same manner as in Example 1 except that it was formed.
- Example 8 A slurry is prepared by mixing 90 parts by mass of acetylene black, 10 parts by mass of PVDF, and an appropriate amount of NMP as a solvent for adjusting the viscosity of the slurry. The slurry is applied on the negative electrode active material layer, dried, and a current distribution relaxation layer (thickness 10 ⁇ m) is formed. A bipolar battery was produced in the same manner as in Example 1 except that it was formed.
- the volume resistivity of the current distribution relaxation layer is lower than the volume resistivity of the positive electrode active material layer.
- the volume resistivity of the current distribution relaxation layer / the volume resistivity of the active material layer are respectively Example 1: 5.9 ⁇ 10 ⁇ 6 , Example 2: 5.9 ⁇ 10 ⁇ 5 , and Example 3: 2. .3 ⁇ 10 ⁇ 3 , Example 4: 2.4 ⁇ 10 ⁇ 3 , Example 5: 3.2 ⁇ 10 ⁇ 3 , Example 6: 2.4 ⁇ 10 ⁇ 3 , Example 7: 2.0 ⁇ 10 ⁇ 3 , Example 8: 2.0 ⁇ 10 ⁇ 3 .
- Example 1 3 ⁇ 10 ⁇ 6 s / cm
- Example 2 3 ⁇ 10 ⁇ 6 s / cm
- Example 3 1.2 ⁇ 10 ⁇ 3 s / Cm
- Example 4 1.2 ⁇ 10 ⁇ 3 s / cm
- Example 5 1.5 ⁇ 10 ⁇ 3 s / cm
- Example 6 1.2 ⁇ 10 ⁇ 3 s / cm
- Example 7 1.0 ⁇ 10 ⁇ 3 s / cm
- Example 8 1.0 ⁇ 10 ⁇ 3 s / cm.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
図1は、本発明の一実施形態(以下、第一実施形態とする)に係る双極型電極の全体構造を模式的に表した断面図である。第一実施形態の双極型電極1は、集電体3の一方の面に正極活物質層5が形成され、他方の面に負極活物質層7が形成された積層構造を有する。さらに、双極型電極1は、電流分布緩和層2が正極活物質層5上に積層された構造を有する。すなわち、電流分布緩和層2は、正極活物質層5に対して集電体3とは反対の側の双極型電極1の(厚さ方向の)表面上に配置されている。ここで、「電流分布緩和層が双極型電極の表面に配置される」とは、電極の状態で、電流分布緩和層における厚み方向の活物質層の反対側面上には他の構成要素を含まない形態を意味する。また、第一実施形態では、電流分布緩和層2の体積抵抗率は、下部に存在する正極活物質層5の体積抵抗率よりも低い。なお、「電流分布緩和層と集電体との間に少なくとも一の活物質層が存在する」とは、電流分布緩和層と集電体とが活物質層を挟持する形態を指す。かような形態としては、第一実施形態のように、電流分布緩和層が活物質層の表面上に配置される形態(集電体、活物質層、電流分布緩和層の順に積層されてなる形態)が挙げられる。その他、活物質層内部に電流分布緩和層が配置される形態、例えば、第二実施形態のように、電流分布緩和層が活物質層に挟持される形態(集電体、活物質層、電流分布緩和層、活物質層の順に積層されてなる形態)などがある。本発明の効果を考慮すれば、電流分布緩和層が集電体と活物質層との間に配置される形態、すなわち、電流分布緩和層が活物質層に対して集電体と同じ側に配置される形態は排除される。
電流分布緩和層は、電流分布緩和層と、集電体との間に存在する活物質層の体積抵抗率より低い体積抵抗率を有する限り、正極活物質層側、負極活物質層側のどちらか一方に存在してもよいし、双方に存在してもよい。体積抵抗率の低い材料を用いることにより、電流分布緩和層に電流が流れやすくなる。好ましくは、少なくとも正極活物質層側に電流分布緩和層が存在する形態であり、より好ましくは、正極活物質層側のみに電流分布緩和層が存在する形態である。抵抗の低い電極側で優先的に電流分布緩和がおきるため、抵抗の高い電極側では特に面内での電流分布が生じやすい。このため、抵抗の高い正極活物質層側に電流分布緩和層を設けることが好ましい。なお、電流分布緩和層は、集電体と活物質層とが隣接することによって発生する電流分布を緩和する目的で設置されるため、電流分布緩和層と集電体との間には、第一および第二実施形態のように、少なくとも一の活物質層が存在する。そして、「正極活物質層側に電流分布緩和層が存在する」とは、電流分布緩和層と集電体との間に少なくとも一の正極活物質層が存在することを意味し、第二実施形態のように、電流分布緩和層上に他の正極活物質層が配置される形態も含む。
正極活物質層5は正極活物質を含む。正極活物質は、放電時にイオンを吸蔵し、充電時にイオンを放出する組成を有する。好ましい一例としては、遷移金属とリチウムとの複合酸化物であるリチウム-遷移金属複合酸化物が挙げられる。具体的には、LiCoO2などのLi・Co系複合酸化物、LiNiO2などのLi・Ni系複合酸化物、スピネルLiMn2O4などのLi・Mn系複合酸化物、LiFeO2などのLi・Fe系複合酸化物およびこれらの遷移金属の一部を他の元素により置換したものなどが使用できる。これらリチウム-遷移金属複合酸化物は、反応性、サイクル特性に優れ、低コストな材料である。そのためこれらの材料を電極に用いることにより、出力特性に優れた電池を形成することが可能である。この他、前記正極活物質としては、LiFePO4などの遷移金属とリチウムのリン酸化合物や硫酸化合物;V2O5、MnO2、TiS2、MoS2、MoO3などの遷移金属酸化物や硫化物;PbO2、AgO、NiOOHなど、を用いることもできる。上記正極活物質は、単独で使用されてもあるいは2種以上の混合物の形態で使用されてもよい。
負極活物質層7は負極活物質を含む。負極活物質は、放電時にイオンを放出し、充電時にイオンを吸蔵できる組成を有する。負極活物質は、リチウムを可逆的に吸蔵および放出できるものであれば特に制限されないが、負極活物質の例としては、SiやSnなどの金属、あるいはTiO、Ti2O3、TiO2、もしくはSiO2、SiO、SnO2などの金属酸化物、Li4/3Ti5/3O4もしくはLi7MnNなどのリチウムと遷移金属との複合酸化物、Li-Pb系合金、Li-Al系合金などのリチウム-金属合金材料、Li、またはグラファイト(天然黒鉛、人造黒鉛)、カーボンブラック、活性炭、カーボンファイバー、コークス、ソフトカーボン、もしくはハードカーボンなどの炭素材料などが好ましく挙げられる。
双極型電極の集電体3は、正極および負極活物質層に対する厚さ方向の体積抵抗比が10-3~104である。かような範囲にある集電体は比較的抵抗が高く、電流分布緩和層の効果が発揮される。ここで、体積抵抗比=集電体の厚み方向の体積抵抗率(Ω・cm)/活物質層の厚み方向の体積抵抗率(Ω・cm)である。上記体積抵抗比は、より好ましくは、3×10-3~10である。集電体の体積抵抗率は、好ましくは1×10-7~1×102Ω・cmであり、より好ましくは1×10-4~1×102Ω・cmである。なお、軽量化という観点からは、集電体が樹脂集電体であることが好ましい。
また、本発明の一形態によると、上述の双極型電極1と電解質層とが積層されてなる発電要素を有する、双極型リチウムイオン二次電池が提供される。図4は、本発明の一実施形態である双極型リチウムイオン二次電池の全体構造を模式的に表した断面図である。図4に示す双極型リチウムイオン二次電池10は、実際に充放電反応が進行する略矩形の発電要素21が、電池外装材であるラミネートフィルム29の内部に封止された構造を有する。
電解質層を構成する電解質に特に制限はなく、液体電解質、ならびに高分子ゲル電解質および高分子固体電解質等のポリマー電解質を適宜用いることができる。
シール部(絶縁層)は、集電体同士の接触や単電池層の端部における短絡を防止する機能を有する。シール部を構成する材料としては、絶縁性、固体電解質の脱落に対するシール性や外部からの水分の透湿に対するシール性(密封性)、電池動作温度下での耐熱性等を有するものであればよい。例えば、アクリル樹脂、ウレタン樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ゴム(エチレン-プロピレン-ジエンゴム:EPDM)、等が用いられうる。また、イソシアネート系接着剤や、アクリル樹脂系接着剤、シアノアクリレート系接着剤などを用いても良く、ホットメルト接着剤(ウレタン樹脂、ポリアミド樹脂、ポリオレフィン樹脂)などを用いても良い。なかでも、耐蝕性、耐薬品性、作り易さ(製膜性)、経済性等の観点から、ポリエチレン樹脂やポリプロピレン樹脂が、絶縁層の構成材料として好ましく用いられ、非結晶性ポリプロピレン樹脂を主成分とするエチレン、プロピレン、ブテンを共重合した樹脂を用いることが、好ましい。
電池外装材としては、従来公知の金属缶ケースを用いることができるほか、発電要素を覆うことができる、アルミニウムを含むラミネートフィルムを用いた袋状のケースが用いられうる。該ラミネートフィルムには、例えば、ポリプロピレン、アルミニウム、ナイロンをこの順に積層してなる3層構造のラミネートフィルム等を用いることができるが、これらに何ら制限されるものではない。本形態では、高出力化や冷却性能に優れ、EV、HEV用等の大型機器用電池に好適に利用することができるラミネートフィルムが望ましい。
図5は、二次電池の代表的な実施形態である扁平なリチウムイオン二次電池の外観を表した斜視図である。
組電池は、電池を複数個接続して構成した物である。詳しくは少なくとも2つ以上用いて、直列化あるいは並列化あるいはその両方で構成されるものである。直列、並列化することで容量および電圧を自由に調節することが可能になる。
上記電気デバイスは、出力特性に優れ、また長期使用しても放電容量が維持され、サイクル特性が良好である。電気自動車やハイブリッド電気自動車や燃料電池車やハイブリッド燃料電池自動車などの車両用途においては、電気・携帯電子機器用途と比較して、高容量、大型化が求められるとともに、長寿命化が必要となる。したがって、上記双極型リチウムイオン二次電池は、車両用の電源として、例えば、車両駆動用電源や補助電源に好適に利用することができる。
1.双極型電極の作製
正極活物質としてLiMn2O485質量部、導電助剤としてアセチレンブラック5質量部、バインダとしてポリフッ化ビニリデン(PVDF)10質量部、およびスラリー粘度調整溶媒としてN-メチル-2-ピロリドン(NMP)適量を混合し、正極活物質スラリーを調製した。
電解液としてプロピレンカーボネート・エチレンカーボネートの等体積混合液にリチウム塩であるLiPF6を1mol/Lの濃度で溶解させたものを準備した。(電解液のイオン伝導率:5ms/cm)
上記双極型電極の電極実塗布部周りに幅12mmのPE製フィルムをおきシール材とした。このような双極型電極をセパレータ(ポリエチレン製、厚み30μm)を介し6層積層したのち、シール部に上下からプレス(熱と圧力)をかけ融着し、各層をシールした。各層シールにおいて3辺シール後、電解液を注液し、注液後最終シール辺をシールした。
正極活物質層表面上にスパッタにより5nmのAl薄膜(電流分布緩和層)を形成したこと以外は、実施例1と同様に双極型電池を作製した。
正極活物質層表面上にAlのメッシュ箔(格子サイズ3mm×3mm、厚み5μm)を用いて電流分布緩和層を形成したこと以外は、実施例1と同様に双極型電池を作製した。
正極活物質層表面上にAlのメッシュ箔(格子サイズ3mm×3mm、厚み10μm)を用いて電流分布緩和層を形成したこと以外は、実施例1と同様に双極型電池を作製した。
アセチレンブラック70質量部、PVDF30質量部、およびスラリー粘度調整溶媒としてNMPを適量を混合してスラリーを作製し、正極活物質層上に塗布し、乾燥し、電流分布緩和層(厚さ10μm)を形成したこと以外は、実施例1と同様に双極型電池を作製した。
アセチレンブラック80質量部、PVDF20質量部、およびスラリー粘度調整溶媒としてNMPを適量を混合してスラリーを作製し、正極活物質層上に塗布し、乾燥し、電流分布緩和層(厚さ10μm)を形成したこと以外は、実施例1と同様に双極型電池を作製した。
アセチレンブラック90質量部、PVDF10質量部、およびスラリー粘度調整溶媒としてNMPを適量を混合してスラリーを作製し、正極活物質層上に塗布し、乾燥し、電流分布緩和層(厚さ10μm)を形成したこと以外は、実施例1と同様に双極型電池を作製した。
アセチレンブラック90質量部、PVDF10質量部、およびスラリー粘度調整溶媒としてNMPを適量を混合してスラリーを作製し、負極活物質層上に塗布し、乾燥し、電流分布緩和層(厚さ10μm)を形成したこと以外は、実施例1と同様に双極型電池を作製した。
電流分布緩和層を設けないこと以外は、実施例1と同様に双極型電池を作製した。
実施例1~7、比較例1それぞれの電池で充放電試験を行った。実験は0.5mAの電流で21.0Vまで定電流充電(CC)し、その後定電圧で充電(CV)し、あわせて10時間充電し、その後1Cの放電容量で容量測定を行った。かようなサイクルを300回繰り返した。サイクルにおける1サイクル目の放電容量に対する所定サイクル後の放電容量の割合を容量維持率(%)として求めた。結果を表1に示す。
Claims (6)
- 集電体の一方の面上に正極活物質層が形成され、他方の面上に負極活物質層が形成されてなる双極型電極であって、
前記集電体と前記正極および負極活物質層との体積抵抗比が10-3~104であり、
前記正極活物質層および負極活物質層のいずれか一方の体積抵抗率よりも低い体積抵抗率を有する電流分布緩和層を含み、
前記電流分布緩和層と前記集電体との間に前記電流分布緩和層よりも体積抵抗率が高い活物質層を少なくとも一含む、双極型電極。 - 前記集電体は導電性を有する樹脂集電体である、請求項1に記載の双極型電極。
- 前記電流分布緩和層が、双極型電極の表面上に配置される、請求項1または2に記載の双極型電極。
- 少なくとも前記正極活物質層側に前記電流分布緩和層を有する、請求項1~3のいずれか1項に記載の双極型電極。
- 請求項1~4のいずれか1項に記載の双極型電極が電解質層を介して積層された発電要素を有する、双極型リチウムイオン二次電池。
- 前記電流分布緩和層の電子伝導率は、前記電解質層に含まれる電解質のイオン伝導率よりも高い、請求項5に記載の双極型リチウムイオン二次電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/379,557 US9972860B2 (en) | 2012-02-23 | 2013-02-13 | Bipolar electrode and bipolar lithium-ion secondary battery using same |
KR1020147022617A KR101647910B1 (ko) | 2012-02-23 | 2013-02-13 | 쌍극형 전극 및 이를 사용한 쌍극형 리튬 이온 이차 전지 |
EP13751291.9A EP2819219B1 (en) | 2012-02-23 | 2013-02-13 | Bipolar electrode and bipolar lithium-ion secondary battery using same |
CN201380008274.9A CN104106158B (zh) | 2012-02-23 | 2013-02-13 | 双极型电极及使用其的双极型锂离子二次电池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012037956A JP5957947B2 (ja) | 2012-02-23 | 2012-02-23 | 双極型電極およびこれを用いた双極型リチウムイオン二次電池 |
JP2012-037956 | 2012-02-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013125410A1 true WO2013125410A1 (ja) | 2013-08-29 |
Family
ID=49005597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/053392 WO2013125410A1 (ja) | 2012-02-23 | 2013-02-13 | 双極型電極およびこれを用いた双極型リチウムイオン二次電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9972860B2 (ja) |
EP (1) | EP2819219B1 (ja) |
JP (1) | JP5957947B2 (ja) |
KR (1) | KR101647910B1 (ja) |
CN (1) | CN104106158B (ja) |
WO (1) | WO2013125410A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015053199A1 (ja) * | 2013-10-07 | 2015-04-16 | 日産自動車株式会社 | 非水電解質二次電池用電極活物質層およびこれを用いた非水電解質二次電池 |
CN111948558A (zh) * | 2019-05-16 | 2020-11-17 | 丰田自动车株式会社 | 电池的检查方法、电池的检查装置以及电池 |
JPWO2020196148A1 (ja) * | 2019-03-22 | 2021-10-28 | 株式会社クレハ | 電極合剤用組成物、電極合剤、電極、非水電解質二次電池、および電極の製造方法 |
WO2022210743A1 (ja) * | 2021-03-29 | 2022-10-06 | Apb株式会社 | リチウムイオン電池用樹脂集電体、リチウムイオン電池及びリチウムイオン電池用樹脂集電体の製造方法 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104795518A (zh) | 2015-03-20 | 2015-07-22 | 飞天诚信科技股份有限公司 | 一种电池以及包含该电池的电子设备 |
JP6430875B2 (ja) | 2015-03-27 | 2018-11-28 | 日産自動車株式会社 | リチウム電池用正極 |
JP6611329B2 (ja) * | 2015-12-25 | 2019-11-27 | 三洋化成工業株式会社 | 二次電池モジュール及び非接触充電システム |
KR102614018B1 (ko) * | 2016-05-19 | 2023-12-13 | 삼성에스디아이 주식회사 | 이차 전지, 바이폴라 전극 및 바이폴라 전극 제조 방법 |
JP6725382B2 (ja) | 2016-09-21 | 2020-07-15 | 株式会社東芝 | 組電池、電池パックおよび車両 |
JP6737235B2 (ja) * | 2017-05-22 | 2020-08-05 | トヨタ自動車株式会社 | 電池およびその製造方法 |
CN110870103B (zh) * | 2017-07-28 | 2022-12-16 | 日本瑞翁株式会社 | 电化学元件用电极及电化学元件、以及电化学元件用电极的制造方法 |
CN109980177B (zh) * | 2019-03-29 | 2021-10-22 | 东莞新能安科技有限公司 | 电极极片和包含所述电极极片的电化学装置 |
CN110010902A (zh) | 2019-03-29 | 2019-07-12 | 宁德新能源科技有限公司 | 电极极片和包含所述电极极片的电化学装置 |
JP6966523B2 (ja) * | 2019-11-01 | 2021-11-17 | グンゼ株式会社 | リチウムイオン電池用集電体、及び、該集電体の製造方法 |
CN119650867A (zh) * | 2020-06-30 | 2025-03-18 | 宁德新能源科技有限公司 | 一种电化学装置及电子装置 |
JP2022153742A (ja) * | 2021-03-30 | 2022-10-13 | 本田技研工業株式会社 | 電池セル及びその製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006190649A (ja) | 2004-12-07 | 2006-07-20 | Nissan Motor Co Ltd | バイポーラ電池およびその製造方法 |
JP2010092606A (ja) * | 2008-10-03 | 2010-04-22 | Nissan Motor Co Ltd | 双極型二次電池用集電体 |
WO2010103874A1 (ja) * | 2009-03-12 | 2010-09-16 | 日産自動車株式会社 | 双極型電池用集電体及び双極型電池 |
JP2011018585A (ja) * | 2009-07-09 | 2011-01-27 | Nissan Motor Co Ltd | リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池 |
JP2011048932A (ja) * | 2009-08-25 | 2011-03-10 | Nissan Motor Co Ltd | 双極型二次電池 |
WO2011033702A1 (ja) * | 2009-09-17 | 2011-03-24 | 株式会社村田製作所 | 電池間分離構造体とそれを備えた積層型固体二次電池 |
WO2011092938A1 (ja) * | 2010-01-29 | 2011-08-04 | 日産自動車株式会社 | 双極型リチウムイオン二次電池用集電体 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000331686A (ja) | 1999-05-20 | 2000-11-30 | Shin Kobe Electric Mach Co Ltd | 非水電解液二次電池 |
JP2008097879A (ja) * | 2006-10-06 | 2008-04-24 | Hitachi Maxell Ltd | リチウムイオン二次電池 |
JP2010205649A (ja) * | 2009-03-05 | 2010-09-16 | Toyota Motor Corp | バイポーラ電極 |
JP5493443B2 (ja) * | 2009-04-16 | 2014-05-14 | 日産自動車株式会社 | 双極型二次電池 |
JP2011119156A (ja) * | 2009-12-04 | 2011-06-16 | Nissan Motor Co Ltd | リチウム二次電池電極、リチウム二次電池、および電池システム |
JP5605662B2 (ja) * | 2010-08-05 | 2014-10-15 | トヨタ自動車株式会社 | 二次電池 |
-
2012
- 2012-02-23 JP JP2012037956A patent/JP5957947B2/ja active Active
-
2013
- 2013-02-13 EP EP13751291.9A patent/EP2819219B1/en active Active
- 2013-02-13 US US14/379,557 patent/US9972860B2/en active Active
- 2013-02-13 WO PCT/JP2013/053392 patent/WO2013125410A1/ja active Application Filing
- 2013-02-13 KR KR1020147022617A patent/KR101647910B1/ko active Active
- 2013-02-13 CN CN201380008274.9A patent/CN104106158B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006190649A (ja) | 2004-12-07 | 2006-07-20 | Nissan Motor Co Ltd | バイポーラ電池およびその製造方法 |
JP2010092606A (ja) * | 2008-10-03 | 2010-04-22 | Nissan Motor Co Ltd | 双極型二次電池用集電体 |
WO2010103874A1 (ja) * | 2009-03-12 | 2010-09-16 | 日産自動車株式会社 | 双極型電池用集電体及び双極型電池 |
JP2011018585A (ja) * | 2009-07-09 | 2011-01-27 | Nissan Motor Co Ltd | リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池 |
JP2011048932A (ja) * | 2009-08-25 | 2011-03-10 | Nissan Motor Co Ltd | 双極型二次電池 |
WO2011033702A1 (ja) * | 2009-09-17 | 2011-03-24 | 株式会社村田製作所 | 電池間分離構造体とそれを備えた積層型固体二次電池 |
WO2011092938A1 (ja) * | 2010-01-29 | 2011-08-04 | 日産自動車株式会社 | 双極型リチウムイオン二次電池用集電体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2819219A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015053199A1 (ja) * | 2013-10-07 | 2015-04-16 | 日産自動車株式会社 | 非水電解質二次電池用電極活物質層およびこれを用いた非水電解質二次電池 |
JPWO2020196148A1 (ja) * | 2019-03-22 | 2021-10-28 | 株式会社クレハ | 電極合剤用組成物、電極合剤、電極、非水電解質二次電池、および電極の製造方法 |
CN111948558A (zh) * | 2019-05-16 | 2020-11-17 | 丰田自动车株式会社 | 电池的检查方法、电池的检查装置以及电池 |
CN111948558B (zh) * | 2019-05-16 | 2023-12-08 | 丰田自动车株式会社 | 电池的检查方法、电池的检查装置以及电池 |
WO2022210743A1 (ja) * | 2021-03-29 | 2022-10-06 | Apb株式会社 | リチウムイオン電池用樹脂集電体、リチウムイオン電池及びリチウムイオン電池用樹脂集電体の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2013175308A (ja) | 2013-09-05 |
CN104106158B (zh) | 2016-10-26 |
CN104106158A (zh) | 2014-10-15 |
EP2819219A1 (en) | 2014-12-31 |
JP5957947B2 (ja) | 2016-07-27 |
EP2819219A4 (en) | 2015-01-21 |
US20150017522A1 (en) | 2015-01-15 |
KR20140123531A (ko) | 2014-10-22 |
US9972860B2 (en) | 2018-05-15 |
EP2819219B1 (en) | 2016-08-03 |
KR101647910B1 (ko) | 2016-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5957947B2 (ja) | 双極型電極およびこれを用いた双極型リチウムイオン二次電池 | |
US8741477B2 (en) | Bipolar secondary battery with seal members | |
JP5381292B2 (ja) | 双極型電極およびこれを用いた双極型二次電池 | |
JP5458605B2 (ja) | 双極型二次電池 | |
JP5375978B2 (ja) | 双極型リチウムイオン二次電池用集電体 | |
KR101689496B1 (ko) | 비수 전해액계 이차 전지 | |
JP5935405B2 (ja) | 積層構造電池 | |
WO2010100979A1 (ja) | 双極型二次電池及びその製造方法 | |
WO2011062065A1 (ja) | 双極型二次電池用集電体 | |
JP2010205609A (ja) | 電極およびこれを用いた電池 | |
JP5418088B2 (ja) | リチウムイオン二次電池用集電体 | |
JP2011029075A (ja) | リチウムイオン二次電池用負極およびこれを用いたリチウムイオン二次電池 | |
JP2012009209A (ja) | リチウムイオン二次電池用負極 | |
JP5417867B2 (ja) | 双極型二次電池 | |
JP5402116B2 (ja) | 双極型リチウムイオン二次電池用集電体 | |
JP2013127845A (ja) | 電気デバイス | |
JP2010244943A (ja) | 双極型二次電池 | |
JP5593984B2 (ja) | 二次電池用集電体 | |
JP2010287481A (ja) | リチウムイオン二次電池用電解質 | |
JP5569229B2 (ja) | リチウムイオン二次電池のニッケル含有正極用集電体 | |
JP2011023191A (ja) | 双極型二次電池 | |
JP2023015589A (ja) | 非水電解質二次電池 | |
JP2023015587A (ja) | 非水電解質二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13751291 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2013751291 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013751291 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20147022617 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14379557 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |