WO2013080826A1 - エレベータの振動低減装置 - Google Patents
エレベータの振動低減装置 Download PDFInfo
- Publication number
- WO2013080826A1 WO2013080826A1 PCT/JP2012/079960 JP2012079960W WO2013080826A1 WO 2013080826 A1 WO2013080826 A1 WO 2013080826A1 JP 2012079960 W JP2012079960 W JP 2012079960W WO 2013080826 A1 WO2013080826 A1 WO 2013080826A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vibration
- damping
- car
- elevator
- value
- Prior art date
Links
- 238000013016 damping Methods 0.000 claims abstract 30
- 238000001514 detection method Methods 0.000 claims 10
- 238000011156 evaluation Methods 0.000 claims 5
- 238000006073 displacement reaction Methods 0.000 claims 4
- 239000012530 fluid Substances 0.000 claims 4
- 238000004364 calculation method Methods 0.000 claims 1
- 230000001133 acceleration Effects 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 abstract 1
- 230000007613 environmental effect Effects 0.000 abstract 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B7/00—Other common features of elevators
- B66B7/02—Guideways; Guides
- B66B7/04—Riding means, e.g. Shoes, Rollers, between car and guiding means, e.g. rails, ropes
- B66B7/041—Riding means, e.g. Shoes, Rollers, between car and guiding means, e.g. rails, ropes including active attenuation system for shocks, vibrations
- B66B7/042—Riding means, e.g. Shoes, Rollers, between car and guiding means, e.g. rails, ropes including active attenuation system for shocks, vibrations with rollers, shoes
- B66B7/043—Riding means, e.g. Shoes, Rollers, between car and guiding means, e.g. rails, ropes including active attenuation system for shocks, vibrations with rollers, shoes using learning
Definitions
- the present invention relates to an elevator vibration reducing device, and more particularly to a vibration suppression control technique for reducing vibration of an elevator traveling at high speed in a hoistway.
- Patent Document 1 The active vibration suppression technique described in Patent Document 1 has a problem that the energy consumption is increased because it is necessary to apply force from the outside by an actuator while very high vibration suppression performance is obtained.
- the semi-active vibration suppression technology described in Patent Document 2 has an advantage that it can be configured with less power consumption because it only changes the damping force, although the vibration reduction performance is inferior to the active vibration suppression technology.
- a conventional elevator vibration reduction device uses a friction damping mechanism as a variable damping damper device.
- the friction force includes a friction coefficient and a vertical pressing force.
- the coefficient of friction varies depending on environmental factors such as temperature and humidity, the friction coefficient also varies depending on aging factors such as wear of the friction shoe, and the damping force is an environmental and aging factor. There was a problem that it was easy to fluctuate.
- the present invention has been made to solve the above-described problems, and realizes high vibration reduction performance and good riding comfort even when the damping force varies due to environmental and aging factors.
- An object of the present invention is to obtain an elevator vibration reduction device that can be used.
- An elevator vibration reduction device includes a vibration sensor that detects car vibration of an elevator car, a damping control unit that generates a command value according to a vibration detection value from the vibration sensor, and a damping force for the command value.
- Change of damping adjustment algorithm to change the command value based on the estimation result of the change of the damping force generation ratio by estimating the change of the damping force generation ratio with respect to the command value based on the variable damping damper device generated in the car and the vibration detection value Means.
- the damping adjustment algorithm changing means changes the damping adjustment algorithm according to the estimation result of the damping force fluctuation. Since it is changed, stable vibration reduction performance and riding comfort performance can be obtained.
- Example 1 It is a side view which shows the vibration reduction apparatus of the elevator which concerns on Embodiment 1 of this invention with an elevator car.
- Example 1 It is a side view which expands and shows the guide apparatus in FIG. Example 1 It is a sectional side view which expands and shows the pressing force adjustment mechanism in FIG. 1 and FIG. Example 1 It is explanatory drawing which shows the relationship between general frictional force and cage
- Example 1 It is a block diagram which shows the detailed function of the controller in FIG. Example 1 It is a flowchart which shows the logic process of the attenuation adjustment algorithm change means in FIG. Example 1 It is explanatory drawing which shows the attenuation adjustment algorithm change learning image by Embodiment 1 of this invention.
- Example 1 It is a side view which shows the vibration reduction apparatus of the elevator which concerns on Embodiment 2 of this invention with an elevator car.
- Example 2 FIG. 9 is an enlarged side sectional view showing an MR damper in FIG. 8.
- Example 2 It is a block diagram which shows the detailed function of the controller in FIG. (Example 2) It is a side view which shows the vibration reduction apparatus of the elevator which concerns on Embodiment 3 of this invention with an elevator car.
- Example 3) It is a sectional side view which expands and shows the variable orifice damper in FIG. (Example 3)
- FIG. 12 is an enlarged top sectional view showing the variable orifice damper in FIG. 11.
- Example 3 It is a block diagram which shows the detailed function of the controller in FIG. (Example 3) It is a block diagram which shows the detailed function of the attenuation adjustment algorithm change means in FIG. (Example 3) It is explanatory drawing which shows the relationship between the attenuation amount for every frequency range, and a vibration level. (Example 3) It is a side view which expands and shows the surrounding structure of the guide apparatus in Embodiment 4 of this invention.
- Example 4 It is a block diagram which shows the detailed function of the controller by Embodiment 4 of this invention.
- Example 4 It is a block diagram which shows the detailed function of the attenuation adjustment algorithm change means in FIG.
- Example 4 It is a side view which expands and shows the surrounding structure of the guide apparatus in Embodiment 5 of this invention.
- Example 4 It is a block diagram which shows the detailed function of the controller by Embodiment 5 of this invention. It is a block diagram which shows the detailed function of the attenuation adjustment algorithm change means in FIG. Example 4
- Example 1 1 is a side view showing the overall configuration of an elevator vibration reducing apparatus according to Embodiment 1 of the present invention, together with an elevator car (a car room 1 and a car frame 2).
- an elevator vibration reducing device includes a guide device 5, a guide rail 7, a pressing force adjusting mechanism 8, a controller 9, an acceleration sensor 10, and the like installed around the car room 1 and the car frame 2. It is equipped with.
- Antivibration rubbers 3 and 4 are provided between the car room 1 and the car frame 2, and a rope 6 is provided in the car frame 2.
- guide devices 5 are installed at four locations in the vertical and horizontal directions of the car frame 2.
- the shackle board In Embodiment 3, it mentions later with FIG. 11 is being fixed to the edge part of the rope 6.
- a car room 1 that accommodates passengers is supported by a car frame 2 via anti-vibration rubbers 3 and 4, and the car frame 2 is connected to a hoisting machine (not shown) via a rope 6. 1 and the car frame 2 can be moved up and down by a hoisting machine.
- the guide device 5 integrated with the car frame 2 is guided along the guide rail 7 so that the car does not wobble when the car (the car room 1 and the car frame 2) is moved up and down.
- FIG. 2 is an enlarged side view showing the guide device 5 in FIG. 1, and typically shows the structure of the guide device 5 at the lower right end.
- the guide device 5 includes a guide base 51, a guide lever 52, bearings 53 and 54, a roller 55, an extension bar 56, a receiving tray 57, and a compression spring 58.
- a guide lever 52 is swingably installed at an intermediate portion of the guide base 51 via a bearing 53.
- a roller 55 is rotatably installed at an intermediate portion of the guide lever 52 via a bearing 54.
- a receiving tray 57 is fixed to the middle portion of the other end of the guide base 51 via an extension rod 56.
- a compression spring 58 is installed between the tray 57 and the guide lever 52, and the urging force of the compression spring 58 swings the guide lever 52 around the bearing 53 as a center of rotation, thereby moving the roller 55 to the guide rail 7. Is in pressure contact.
- a friction sliding member 89 driven by the pressing force adjusting mechanism 8 is disposed between the lower end portion of the guide base 51 and the swing end portion of the guide lever 52. The swing of the guide lever 52 is attenuated.
- a pressing force adjusting mechanism 8 is installed at the other end of the guide base 51, and the pressing force adjusting mechanism 8 controls the pressing force of the friction sliding member 89 against the guide lever 52.
- the pressing force adjusting mechanism 8 and the frictional sliding member 89 constitute a variable damping damper device.
- FIG. 3 is an enlarged side sectional view showing the pressing force adjusting mechanism in FIGS. 1 and 2, and is shown in association with the swinging end portion of the guide lever 52 (see the double arrow).
- the pressing force adjusting mechanism 8 includes a sliding bearing 81, a coil 82, compression springs 83 and 87, a movable iron core 84, a guide rod 85, a sliding bearing 86, and a fixed iron core 88.
- the movable iron core 84 is configured to be able to drive the friction sliding member 89 in the direction of the broken arrow.
- the fixed iron core 88 is fixed to the guide base 51.
- a coil 82 is wound around the center of the fixed iron core 88, and a movable iron core 84 is inserted into a through hole in the coil 82.
- the fixed iron core 88 and the coil 82 form an electromagnet, and when the coil 82 is energized, an attractive force F p represented by the following formula (1) is generated between the fixed iron core 88 and the movable iron core 84. .
- Equation (1) ⁇ 0 is the vacuum magnetic permeability
- S is the sectional area of the gap between the fixed iron core 88 and the movable iron core 84
- N is the number of turns of the coil 82
- ⁇ is the distance between the fixed iron core 88 and the movable iron core 84.
- the magnetic gap I between them is the amount of current supplied to the coil 82.
- the movable iron core 84 When the movable iron core 84 is attracted to the fixed iron core 88 by energizing the coil 82, it abuts against one end of the guide lever 52 and presses the friction sliding member 89 against the swinging end of the guide lever 52. It is configured.
- a compression spring 83 made of a relatively soft material is inserted between the movable iron core 84 and the friction sliding member 89.
- the biasing force of the compression spring 83 is a friction sliding member even when the coil 82 is not energized. It plays a role of weakly pressing 89 against the guide lever 52.
- a sliding bearing 81 is installed between the friction sliding member 89 and the fixed iron core 88, and the sliding bearing 81 supports and guides the friction sliding member 89 in the through hole of the fixed iron core 88.
- a guide rod 85 penetrating a part of the movable iron core 84 is fixed to the fixed iron core 88, and the guide rod 85 supports and guides the movable iron core 84 via a sliding bearing 86.
- a compression spring 87 is inserted between the movable iron core 84 and the fixed iron core 88 on the outer periphery of the guide rod 85, and the urging force of the compression spring 87 is applied from the fixed iron core 88 when the coil 82 is not energized.
- the movable iron core 84 is separated. Since the urging force of the compression spring 87 acts as a resistance force when the movable iron core 84 is attracted to the fixed iron core 88 (when the coil 82 is energized), the material of the compression spring 87 is similar to that of the compression spring 87. A soft one is selected.
- the pressing force adjusting mechanism 8 When the coil 82 is energized, the pressing force adjusting mechanism 8 strongly presses the friction sliding member 89 against the guide lever 52, and is given by the following formula (2) between the guide lever 52 and the friction sliding member 89. by applying a large frictional force F d, damp the rocking vibration relative to the guide base 51 of the guide lever 52.
- ⁇ is a coefficient of friction between the friction sliding member 89 and the guide lever 52.
- the friction sliding member 89 will be pressed against the guide lever 52, the frictional force F d is small.
- the car frame 2 is provided with an acceleration sensor 10 (vibration sensor) for detecting left-right vibration, and a vibration signal detected by the acceleration sensor 10 is input to the controller 9.
- the controller 9 controls the energization amount to the coil 82 according to the vibration signal from the acceleration sensor 10 to reduce the vibration of the car frame 2 and the car room 1.
- Formula (3) is a switching formula Is less than 0 ( ⁇ 0), the coil 82 is energized to set the frictional force to the maximum frictional force Fmax. Shows an algorithm in which the frictional force is set to the minimum frictional force Fmin by not energizing the coil 82 when 0 is greater than or equal to 0 ( ⁇ 0).
- Formula (3) is a well-known document (for example, A Single-Sensor Control Strategy for Semi-Active J Suspensions, Sergeo M. Savelessi and Christiano SPT. The technology described in is referred to.
- the frictional force F d is proportional to ⁇ friction coefficient is ⁇ friction coefficient, it is known to vary with environmental factors (such as temperature and humidity).
- the attractive force F p is inversely proportional to the square of the magnetic gap ⁇ between the fixed iron core 88 and the movable iron core 84 at the time of attraction, but the magnetic gap ⁇ at the time of attraction is Since the friction sliding member 89 is worn down and decreases with time, the attractive force F p with respect to the energization amount I also varies with time.
- the controller 9 controls the energization amount I to the coil 82, the actually obtained friction force F d is the friction coefficient ⁇ and the magnetic gap ⁇ even if the energization amount I is the same. It changes with fluctuation. Therefore, in practice, the desired friction force F d cannot be obtained only by the above control.
- FIG. 4 is an explanatory diagram showing an example of a simulation result of the car vibrations, frictional force F d indicates the car vibration when the change to the desired value.
- the horizontal axis represents the frictional force (damping force) when the coil 82 is energized
- the vertical axis represents the mean square value of the car vibration during traveling.
- the car vibration deteriorates both when the frictional force (horizontal axis) becomes too large and when the frictional force becomes too small.
- FIG. 5 is a block diagram showing detailed functions of the controller 9 according to the first embodiment of the present invention.
- the controller 9 includes not only the attenuation control unit 91 and the power source 92 but also an attenuation adjustment algorithm changing unit 93, an unmanned detection unit 94, and a switch 95.
- the damping control unit 91 controls the power supply 92 in accordance with the vibration signal from the acceleration sensor 10 to control the amount of current supplied to the coil 82 in the pressing force adjusting mechanism 8 so as to reduce the damping force. adjust.
- the attenuation controller 91 adjusts the energization amount to realize the algorithm of the above-described equation (3), and generates a current command value Io for the power source 92 as in the following equation (4).
- the attenuation adjustment algorithm changing means 93 estimates the change in the damping force generating ratio maximum current command value I max on the basis of a vibration signal based on the estimation result of the change in the damping force generating ratio, it changes the value of the maximum current command value I max.
- the golden section search method is a method for searching for an optimum point by sequentially reducing the interval in which the minimum value exists when it is known that the minimum value exists in a predetermined interval.
- the unmanned detection means 94 and the switch 95 operate as follows because the car vibration evaluation value calculated by the damping adjustment algorithm changing means 93 is validated only under the same car loading condition (unmanned condition).
- the unmanned detection means 94 considers that the car button is not operated for a predetermined time in a state where the car room 1 is stopped at the service floor landing, and transmits an unmanned state signal to the switch 95. .
- the switch 95 selects the switch position shown in FIG. 5 only when an unmanned state signal is input, permits learning and adjustment by the attenuation adjustment algorithm changing means 93, and sends an algorithm change command to the attenuation control unit 91. input.
- FIG. 6 is a flowchart showing the logical processing of the attenuation adjustment algorithm changing means 93, showing the logical procedure of the golden section search method.
- FIG. 7 is an explanatory diagram showing an attenuation adjustment algorithm change learning image according to FIG. 6 and shows an image of the golden section search method.
- Set step ST1
- the initial value of the optimum command current candidate section W 0 is represented by sections of current values I L (0) to I R (0) in FIG.
- the attenuation adjustment algorithm changing unit 93 calculates current values I PL (0) and I PR (0) for dividing the optimum command current candidate section W 0 into three (steps ST2 and ST3).
- the current values I PL (0) and I PR (0) have a relationship of I L (0) ⁇ I PL (0) ⁇ I PR (0) ⁇ I R (0). It is expressed in
- I PL (0) (I L (0) ⁇ + I R (0)) / (1 + ⁇ )
- I PR (0) (I L (0) + I R (0) ⁇ ) / (1 + ⁇ )
- ⁇ is a value called the golden ratio
- ⁇ (1 + ⁇ 5) / 2.
- the car vibration evaluation values f (I PL (0)) and f (I PR (0)) are, for example, a mean square value or maximum value of car vibration during traveling, or a mean square value of car vibration and Any reasonable value can be used as long as it can evaluate the vibration level of the car, such as a maximum value.
- the mean square value of the car vibration is taken as an example.
- the current value I PR (1) is expressed as follows.
- I PR (1) (I L (1) + I R (1) ⁇ ) / (1 + ⁇ )
- step ST5 if it is determined in step ST5 that f (I PL (0)) ⁇ f (I PR (0)) (ie, NO), the optimum point (minimum car vibration point) is the current value I L (0). Since it can be seen that it exists in the section of I PR (0), the optimum command current candidate section W 0 is changed to the following section W 1 (step ST7).
- the changed section W 1 is represented by I L (0) to I R (1) in FIG.
- I PR (1) I PL (0)
- I max I It is possible to save the trouble of measuring the car vibration when calculating PR (1) and calculating the evaluation value.
- the current value I PL (1) is expressed as follows.
- I PL (1) (I L (1) ⁇ + I R (1)) / (1 + ⁇ )
- step ST8 If it is determined in step ST8 that I PR (1) ⁇ I PL (1) ⁇ (that is, YES), an optimum current command value I opt is determined (step ST9), and the processing routine of FIG. finish. At this time, the optimum current command value I opt is expressed as follows.
- I opt (I PR (k + 1) + I PL (k + 1)) / 2
- the processing procedures of steps ST5 to ST8 are repeatedly executed.
- step ST8 the above measurement and calculation are repeatedly executed, so that the optimum command current candidate section W 0 is represented as W 0 ⁇ W 1 ⁇ W 2 ⁇ as shown in FIG. W 3 ⁇ ..., Gradually narrowing, and when it is determined in step ST8 that I PR (k + 1) ⁇ I PL (k + 1) ⁇ (ie, YES), the optimum current command The value I opt is determined (step ST9).
- the processing of the attenuation adjustment algorithm changing means 93 causes the command current value I opt to be in accordance with the situation at that time (temperature, humidity, how the friction sliding member 89 is worn out, etc.). Therefore, it is adjusted to reduce the car vibration almost optimally.
- step ST5 the car vibration evaluation values f (I PL (k)) and f (I PR (k)) are preferably comparatively evaluated under the same car loading conditions. Therefore, the controller 9 is provided with unmanned detection means 94 (FIG. 5). The switch 95 is switched to the state of FIG. 5 only in the same car loading condition (unmanned state), and the attenuation adjustment algorithm changing means 93 Enable processing results.
- the unmanned detection means 94 considers that the car room 1 is unmanned when the car room 1 stops at the landing and the button in the car room 1 is not operated for a predetermined time, and the switch 95 is unmanned. Send a status signal.
- the switch 95 permits learning and adjustment by the attenuation adjustment algorithm changing means 93 only when the unmanned state signal from the unattended detection means 94 is received, and attenuates the algorithm change command from the attenuation adjustment algorithm changing means 93. It transmits to the control part 91.
- FIGS. 1 to 3 show only the vibration detection configuration and the vibration suppression configuration in the left-right direction of the elevator vibration reduction device for the sake of simplification, but in the front-rear direction (perpendicular to the paper surface). However, it is obvious that it can be similarly configured.
- variable damping damper device including the pressing force adjusting mechanism 8 and the frictional sliding member 89 has been described.
- the present invention is not limited to this, and the pressing force adjusting mechanism 8 has a vibration damping force. Any configuration that can be variably adjusted is applicable.
- Equation (3) the one shown in Equation (3) based on the known literature is used, but the algorithm is not limited to the above algorithm, and various algorithms known as semi-active vibration suppression control algorithms are available. Applicable.
- Karnopp's theory a theory of Karnopp
- Krasnicki's theory a theory of Krasnicki's theory
- Rakheja's theory The theory of Karnopp is well known in the literature (for example, “D. Karnopp, M. J. Crosy, RA Harwood, Vibration Control Using Semi-Fr. -626 ").
- Krasnicki's theory is based on publicly known literature (for example, “S. Rakheja, S. Sanker, Vibration and Shock Isolation Performance of a Semi-Active“ On-Off ”Damper, ASMESonJV, ASMEJonS). Design, Vol. 107, 1985, p398-403 ").
- Rakheja's theory is based on well-known literature (for example, “EJ Krasnicki, The Experimental Performance of An“ on-off ”Active Damper, Shock and Vibration Bulletin, No. 51, 1981, No. 51, M. ).
- the golden section search method is used as the learning method of the attenuation adjustment algorithm changing unit 93 , but it is also possible to use a simple trisection method and an optimization algorithm using the simplex method. It is also possible to use.
- the unmanned detection means 94 detects the unmanned state from the stop state of the car and the operation state of the landing button.
- the scale device generally mounted on the elevator is used.
- the unmanned state may be detected from a detection signal (not shown), or the unmanned state may be detected from the driving torque of the hoisting motor that drives the car room 1 and the car frame 2.
- the unmanned detection means 94 is not an essential requirement. Even if the unmanned detection means 94 is removed, although the learning accuracy is reduced, it is possible to evaluate the car vibration and change the attenuation adjustment algorithm.
- the elevator vibration reducing apparatus is a vibration sensor (acceleration sensor) that detects car vibrations in the elevator car (the car room 1 and the car frame 2). 10), a damping control unit 91 that generates a command value (maximum current command value I max ) according to a vibration detection value (vibration signal) from the vibration sensor, and a variable damping that generates a damping force for the command value in the elevator car
- a damper device pressing force adjusting mechanism 8) and a damping adjustment algorithm for estimating a change in the damping force generation ratio with respect to the command value based on the vibration detection value and changing the command value based on the estimation result of the change in the damping force generation ratio
- And changing means 93 is a vibration sensor (acceleration sensor) that detects car vibrations in the elevator car (the car room 1 and the car frame 2). 10), a damping control unit 91 that generates a command value (maximum current command value I max ) according to a vibration detection value (vibration signal) from
- the damping adjustment algorithm changing means 93 causes the damping force to vary in environmental and aging vibration levels. Accordingly, the attenuation adjustment algorithm stored in the attenuation controller 91 can be changed so that the car vibration is reduced most.
- the attenuation adjustment algorithm can be automatically changed by the attenuation adjustment algorithm changing means 93 in a state where the actual elevator is installed, the adjustment of the vibration reducing device (the pressing force adjusting mechanism 8) at the time of installation can be performed. There is also an effect that it becomes easy.
- the damping adjustment algorithm changing means 93 includes evaluation value calculation means (steps ST2 and ST3) for calculating the car vibration evaluation values f (I PL (k)) and f (I PR (k)) based on the vibration detection values. And the change in the damping force generation ratio is estimated based on the magnitude of the car vibration evaluation values f (I PL (k)) and f (I PR (k)) when the command value is changed.
- the command value is sequentially changed so as to decrease.
- the attenuation adjustment algorithm is sequentially changed, it is possible to directly evaluate the car vibrations to be suppressed and adjust the car vibrations to be small, and to keep the vibration reduction performance high.
- the car vibration evaluation values f (I PL (k)) and f (I PR (k)) include at least one of the maximum value and the mean square value of the car vibration when the elevator car is running, Since the mean square value is relatively easy to calculate, the load on the controller 9 is light and suitable for mounting.
- variable damping damper device includes the friction sliding member 89 and the pressing force adjusting mechanism 8 that controls the pressing force of the friction sliding member 89, and the friction sliding member 89 is inexpensive.
- the variable damping damper device can be configured at low cost.
- the elevator vibration reducing device includes unmanned detection means 94 for estimating that the elevator car is unmanned, and the attenuation adjustment algorithm changing means 93 includes unmanned detection means. Because when 94 is estimated unattended, the attenuation adjustment algorithm is changed via the switch 95. Learning and comparison can be performed under the same load condition, and optimization accuracy can be improved.
- Example 2 In the first embodiment (FIGS. 1 to 7), the friction sliding member 89 and the pressing force adjusting mechanism 8 are used as the variable damping damper device. However, as shown in FIG. 8, MR fluid (Magneto-rheological) is used. MR damper 11 enclosing fluid) may be used.
- FIG. 8 is a side view showing the overall configuration of the elevator vibration reducing apparatus according to the second embodiment of the present invention together with the elevator car. Components similar to those described above (see FIG. 1) are denoted by the same reference numerals. Or “A” after the reference numeral, and the description is omitted.
- the MR damper 11 (variable damping damper device) is installed between the car room 1 and the car frame 2.
- an acceleration sensor 12 for detecting lateral vibration of the car room 1 is installed in addition to the acceleration sensor 10 described above.
- the acceleration sensor 10 is installed in the car frame 2 to detect lateral vibration of the car frame 2, and the acceleration sensor 12 is installed in the car room 1 to detect lateral vibration of the car room 1.
- the acceleration (vibration signal) detected by the acceleration sensors 10 and 12 is input to the controller 9A and contributes to the calculation of the control signal of the MR damper 11.
- FIG. 9 is an enlarged side sectional view showing the MR damper 11.
- the MR damper 11 includes a housing 111, a piston 112 inserted in the housing 111, a sphere 113 provided at each end of the housing 111 and the piston 112, and an MR fluid 114 sealed in the housing 111.
- the fixed side yoke 115 fixed to the side surface in the housing 111, the movable side yoke 116 fixed to the tip of the piston 112, the coil 117 wound around the movable side yoke 116, and each sphere 113.
- a spherical bearing 118 that is freely supported.
- the coil 117 functions as a magnetic field generation unit that generates a magnetic flux that passes through the movable yoke 116 and the MR fluid 114 and controls a magnetic field applied to the MR fluid 114.
- the piston 112 moves directly in the MR fluid 114 together with the movable yoke 116 and the coil 117 so as to face the fixed yoke 115.
- the spherical bearings 118 of the sphere 113 are fixed to the car room 1 and the car frame 2 respectively.
- the MR fluid 114 is a fluid whose viscosity is changed by a magnetic field.
- the MR fluid 114 exhibits a low-viscosity fluid characteristic, and is almost resistant to the horizontal movement of the piston 112 relative to the housing 111. Therefore, the damping force is small.
- the car room 1 is supported to the car frame 2 through the vibration-insulating rubbers 3 and 4 so as to be movable to some extent, so that the MR damper 11 is restricted in movement except in the driving direction of the piston 112. Do not give. However, since the spherical body 113 positioned at the end points of the housing 111 and the piston 112 is supported via the spherical bearing 118, the spherical body 113 can freely move in a direction other than the driving direction of the piston 112.
- FIG. 10 is a block diagram showing detailed functions of the controller 9A according to the second embodiment of the present invention. Components similar to those described above (see FIG. 5) are denoted by the same reference numerals as those described above, or after the reference numerals. A "is attached and description is abbreviate
- the controller 9A includes an attenuation adjustment algorithm changing unit 93A in addition to the attenuation control unit 91A and the power source 92.
- the attenuation control unit 91A controls the supply current from the power source 92 to the coil 117 of the MR damper 11 based on the vibration signals from the acceleration sensors 10 and 12.
- the attenuation adjustment algorithm changing unit 93A sequentially changes the attenuation adjustment algorithm stored in the attenuation control unit 91A based on the vibration signal from the acceleration sensor 12.
- the Karnopp theory represented by the following equation (5) can be used as the attenuation adjustment algorithm in the attenuation controller 91A.
- Equation (5) is very well known as, for example, semi-active vibration control theory.
- c is a coefficient (damping coefficient) related to the damping force generated by the MR damper 11.
- the lateral vibration of the car room 1 can be reduced by the above configuration.
- the magnitude of the damping force obtained by energizing the coil 117 of the MR damper 11 is compared with the friction damper (the pressing force adjusting mechanism 8 and the friction sliding member 89) described above (see FIGS. 2 and 3). Although it is stable, it will still fluctuate due to, for example, evaporation of oil in the MR fluid 114 over time.
- the controller 9A can actually control the energization amount I to the coil 117, the actually obtained frictional force F d (damping force) varies even if the energization amount I is the same. Since, in the same manner as described above, in the case of applying the same damping adjustment algorithm can not obtain desired frictional force F d, the car vibration deteriorates.
- the controller 9A in order to avoid the deterioration of the car vibrations due to changes in the frictional force F d, as shown in FIG. 10, the attenuation control unit 91A for adjusting the damping force by controlling the amount of electricity supplied to the coil 117
- attenuation adjustment algorithm changing means 93A is provided.
- the attenuation control unit 91A adjusts the energization amount for realizing the algorithm of Expression (5), and generates a current command value Io for the power supply 92 as shown in Expression (6) below.
- K is a variable adjusted by the attenuation adjustment algorithm changing means 93A.
- the current command value Io at the time of energization the formula (6 As shown in FIG. 5, it is varied according to the vibration signal from the acceleration sensors 10 and 12.
- control damping force (friction force F d ) of the equation (5) is the lateral speed of the cab 1
- the damping force that can be generated by the MR damper 11 is proportional to the relative speed between the car room 1 and the car frame 2, although it is desired to be proportional to the absolute speed of the car room 1. Is proportional to This is because it is necessary.
- the damping adjustment algorithm stored in the damping control unit 91A is different from the damping control unit 91 described above (see FIG. 5)
- the damping is also performed.
- the adjustment method of the variable K (formula (6)) by the adjustment algorithm changing means 93A can be basically the same as described above (see FIGS. 6 and 7).
- the energization amount I is directly adjusted, but the second embodiment of the present invention is different only in that the adjustment target is a variable K.
- variable damping damper device for an elevator vibration reducing apparatus includes the MR fluid 114 and the coil 117 (the magnetic field for controlling the magnetic field applied to the MR fluid 114). And a controller 9A for controlling the power supply to the MR damper 11, which realizes high response characteristics and relatively stable behavior characteristics although it is somewhat expensive. High damping performance can be easily achieved.
- the damping adjustment algorithm change means 93A causes the damping adjustment algorithm stored in the damping control unit 91A to be the most in the car vibration. Since it can be changed so as to be reduced, stable high lateral vibration reduction performance can be achieved, and high ride comfort can be provided to the passengers.
- the attenuation adjustment algorithm can be automatically changed in a state where the actual elevator is installed, there is an effect that the adjustment of the vibration reducing device (MR damper 11) at the time of installation becomes easy.
- the MR damper 11 whose viscosity is changed by the applied magnetic field is used as the variable damping damper device.
- an ER damper in which the viscosity is changed by the applied electric field may be used. The same effect is obtained.
- unmanned detection means 94 and a switch 95 for enabling the attenuation adjustment algorithm changing means 93A may be provided in the same manner as described above (see FIG. 5).
- FIG. 11 is a side view showing the overall configuration of an elevator vibration reducing apparatus according to Embodiment 3 of the present invention together with an elevator car.
- the same components as those described above are the same as those described above. Or a symbol “B” after the symbol, and the description is omitted.
- a shackle plate 15 is fixed to the end portion of the rope 6, and the car frame 2 is elastically supported via a shackle spring 16.
- the variable orifice damper 14 (variable damping damper device) is installed in parallel with the shackle spring 16 between the shackle plate 15 and the car frame 2.
- an acceleration sensor 13 for detecting vertical vibration of the car frame 2 is installed as a vibration sensor for detecting car vibration.
- the acceleration sensor 13 is installed on the upper part of the car frame 2 so as to be positioned in the vicinity of the shackle plate 15 in plan view.
- the vibration signal from the acceleration sensor 13 is input to the controller 9B and contributes to the calculation of the control signal for the variable orifice damper 14.
- variable orifice damper 14 includes a housing 141, a piston 142 inserted into the housing 141, a sphere 143 provided at each end of the housing 141 and the piston 142, and a viscous fluid sealed in the housing 141.
- 144 a fixed disk 145 and a motor 146 fixed to the tip of the piston 142, a movable disk 147 fixed to the motor 146, and a spherical bearing 148 that rotatably supports each sphere 143.
- the spherical bearing 148 that supports the spherical body 143 of the piston 142 is fixed to the car frame 2.
- the car frame 2 is provided with a piston 142 via a spherical bearing 148 and a sphere 143.
- the spherical bearing 148 that supports the spherical body 143 of the housing 141 is fixed to the shackle plate 15. That is, the housing 141 is installed on the shackle plate 15 via the spherical bearing 148 and the sphere 143.
- the movable disk 147 rotates and moves relative to the fixed disk 145 by the rotation operation of the motor 146.
- the fixed disc 145 is provided with a plurality of orifices 145a at equal intervals.
- the movable disk 147 is provided with a plurality of orifices 147a at equal intervals so as to correspond to each of the plurality of orifices 145a.
- the viscous fluid 144 can easily pass through both the orifices 145a and 147a, and does not give much resistance to the movement of the piston 142 with respect to the housing 141. Therefore, the damping force of the variable orifice damper 14 is small. Become.
- the controller 9B when the damping force of the variable orifice damper 14 is increased, the controller 9B generates a command for increasing the damping force and rotationally drives the motor 146. As shown in FIG. , And the orifice liquid passage hole formed by the overlapping portion of the orifice 145a on the fixed disk 145 side and the orifice 147a on the movable disk 147 side is set small.
- FIG. 14 is a block diagram showing detailed functions of the controller 9B according to the third embodiment of the present invention. Components similar to those described above (see FIG. 5 and FIG. 10) are denoted by the same reference numerals as those described above. Is followed by "B" and the description is omitted.
- the controller 9 ⁇ / b> B has substantially the same configuration as that of the first embodiment (FIG. 5), and controls the motor 146 in the variable orifice damper 14 based on the vibration signal from the acceleration sensor 13.
- the adjustment target damping adjustment algorithm was frictional force F d
- a damping coefficient c d to be adjusted for damping adjustment algorithm variable orifice damper 14 It has become.
- the controller 9B is a switching type in the formula (7) Is less than 0 ( ⁇ 0), the motor 146 is driven and controlled to minimize the orifice passage hole formed by the orifice 145a on the fixed disk 145 side and the orifice 147a on the movable disk 147 side. by, it sets the attenuation coefficient c d variable orifice damper 14 to the maximum value c max.
- the controller 9B drives and controls the motor 146 by matching the orifice liquid passing hole (maximize), the damping coefficient c d variable orifice damper 14 Set to the value c min .
- the damping coefficient c d obtained by the variable orifice damper 14 may be a size of orifice flow-through holes are the same, it varies depending on the viscosity of the viscous fluid 144.
- the viscosity of the viscous fluid 144 varies depending on environmental factors such as temperature although there is a difference in variation depending on the fluid used.
- it is actually controllable object controller 9B since it is the opening of the orifice flow-through hole by rotation of the motor 146, the attenuation coefficient actually obtained c d is the opening degree of the orifice flow-through hole since changes may be the same, can not obtain desired damping coefficient c d, still basket oscillations worse.
- the controller 9B in order to avoid the deterioration of the car vibrations due to variations in the damping coefficient c d, and a damping adjustment algorithm changing unit 93B.
- the detailed function of the attenuation adjustment algorithm changing unit 93B in FIG. 14 will be described with reference to FIGS.
- FIG. 15 is a block diagram showing the detailed function of the attenuation adjustment algorithm changing means 93B
- FIG. 16 shows the relationship between the amount of attenuation and the vibration level for each frequency range (low frequency range, natural frequency range, high frequency range). It is explanatory drawing.
- a black circle plot point (solid line) indicates a vibration level when the damping force of the variable orifice damper 14 is small
- a black rhombus plot point indicates a vibration level when the damping force is large
- a thick arrow Indicates the vibration level fluctuation amount for each band when the damping force is increased.
- the attenuation adjustment algorithm changing means 93B includes a low frequency bandpass filter 931, a natural frequency bandpass filter 932, a high frequency bandpass filter 933, to which a vibration signal from the acceleration sensor 13 is input, and the attenuation coefficient estimator 934 for estimating a basis damping coefficient c d to pass signals of the band-pass filters 931-933, optimum opening of calculating the optimum degree of opening of the variable orifice damper 14 (the orifice flow-through holes) on the basis of the damping coefficient c d Degree calculator 935.
- the natural frequency band-pass filter 932 uses the frequency (natural frequency) of the vibration mode in which the shackle spring 16 (variable orifice damper 14) vibrates most as the pass band.
- the low frequency band-pass filter 931 uses a frequency band lower than the natural frequency of the shackle spring 16 and the high frequency band-pass filter 933 passes the frequency band higher than the natural frequency. It is said.
- the low frequency band-pass filter 931, the natural frequency band-pass filter 932, and the high frequency band-pass filter 933 distribute the vibration signal from the acceleration sensor 13 for each frequency band, and pass the vibration signal. 934 input.
- the damping coefficient estimation unit 934 compares and evaluates the vibration signal that has passed through the natural frequency bandpass filter 932 and the vibration signal that has passed through the high frequency bandpass filter 932 to thereby reduce the damping coefficient of the variable orifice damper 14.
- the value of c d can be estimated.
- parameters such as the weights of the car room 1 and the car frame 2 are stored in advance and used as additional information for estimating the attenuation coefficient, more accurate estimation is possible.
- the additional information is not an essential requirement, and can be estimated without being stored in particular.
- the controller 9B When the unmanned detection means 94 detects that no passenger is present in the car room 1, the controller 9B causes the car room 1 and the car frame 2 to travel with the opening of the variable orifice damper 14 fixed, thereby reducing the damping coefficient.
- the estimation unit 934 compares and evaluates the vibration signal that has passed through the natural frequency band-pass filter 932 and the vibration signal that has passed through the high-frequency band-pass filter 933, thereby reducing the damping coefficient c at the travel opening degree. Estimate d .
- the vibration level in the frequency band lower than the natural frequency, that is, the vibration signal passing through the low frequency band-pass filter 931 is the damping coefficient c d (damping force) of the variable orifice damper 14. ) Changes little.
- the unmanned detection means 94 cannot correctly detect the unmanned state and the vibration level is measured despite the presence of a passenger is considered.
- the attenuation coefficient estimation unit 934 also monitors the vibration signal passing through the low frequency bandpass filter 931 and passes through the low frequency bandpass filter 931. If the value of the vibration signal is largely different from the previous value is not to execute the process of estimating the damping coefficient c d.
- Optimal opening calculation section 935 on the basis of the value of the damping coefficient c d variable orifice damper 14 which is estimated by the attenuation coefficient estimator 934 determines the optimum degree of opening of the orifice flow-through holes, for use in the attenuation control unit 91B Change the attenuation adjustment algorithm.
- the attenuation control unit 91B uses the damping adjustment algorithm of formula (7) described above, is controlled to the optimum degree of opening of the orifice flow-through hole when maximizing or minimizing the damping coefficient c d.
- the estimated value of the damping coefficient c d is the case has increased than the previous value by setting the optimum degree of opening to a value greater than the previous, the orifice passage Adjust so that the resistance at the liquid hole is reduced.
- the estimated value of the damping coefficient c d is, if you are smaller than the previous value is set smaller than the previous best opening is adjusted so that the resistance at the orifice flow-through hole increases .
- the attenuation adjustment algorithm changing unit 93B of the vibration reducing device for an elevator according to Embodiment 3 of the present invention has a damping coefficient estimator 934 for estimating a, based on the damping coefficient estimation result (the estimated value of the damping coefficient c d) and command value, to estimate the change in the damping force generation ratio command value, for the vibration detection value
- the damping adjustment algorithm in the damping control unit 91B is changed.
- the attenuation coefficient estimation unit 934 calculates the vibration level in the frequency band from the vibration detection value from the acceleration sensor 13 (vibration sensor) using each of the bandpass filters 931 to 933, and determines the vibration level in the frequency band. based on the calculated value for estimating the attenuation coefficient c d.
- the damping adjustment algorithm can be changed according to the environmental and secular fluctuations of the damping force, and stable vibration reduction performance and good riding comfort can be achieved. Since the number of learning runs in the car room 1 and the car frame 2 for force optimization can be reduced, learning and adjustment time can be shortened.
- variable damping damper device includes a viscous fluid 144, orifices 145a and 147a through which the viscous fluid 144 passes, and orifices 145a and 147a (orifice passage holes). And a means for variably adjusting the area (motor 146) and adopting a configuration with many application examples as a variable damping damper mechanism, high reliability can be realized.
- the damping coefficient c d variable orifice damper 14 in the case of variation such as by change in viscosity environmental fluid 144 also by the attenuation adjustment algorithm changing unit 93B, the stored damping adjustment algorithm to the attenuation control unit 91B it can be changed according to the estimated value of the damping coefficient c d.
- the attenuation adjustment algorithm can be automatically changed with the actual elevator installed, adjustment of the vibration reducing device (variable orifice damper 14) during installation becomes easy. There is also an effect.
- the damping adjustment algorithm changing unit 93B in the controller 9B shows sufficient computing power of the controller 9B, the vibration signal from the acceleration sensor 13 directly, and fast Fourier transform, it may be estimated damping coefficient c d by deriving a frequency characteristic.
- FIG. 11 shows the case where the vertical vibration of the car room 1 and the car frame 2 is reduced, the car room 1 as in the first and second embodiments (see FIGS. 1 and 8). Even when the lateral vibration of the car frame 2 is reduced, the damping control unit 91B is adjusted using the damping adjustment algorithm changing unit 93B (the damping coefficient estimating unit 934 and the optimum opening degree calculating unit 935) shown in FIG. It is clear that can be diverted.
- the damping adjustment algorithm changing unit 93B the damping coefficient estimating unit 934 and the optimum opening degree calculating unit 935) shown in FIG. It is clear that can be diverted.
- variable orifice damper 14 provided in parallel with the shackle spring 16 is used as the variable damping damper mechanism, and the acceleration sensor 13 is used as the vibration sensor.
- the variable orifice damper 18 installed between the guide base 51 and the extension bar 59 of the guide device 5C is used as the variable damping damper mechanism, and not only the acceleration sensor 10 but also the displacement sensor 17 is used as the vibration sensor. May be used.
- FIG. 17 is an enlarged side view showing the peripheral structure of the guide device 5C according to the fourth embodiment of the present invention.
- the same parts as those described above (see FIGS. 1 and 2) are denoted by the same reference numerals. Or “C” after the reference numeral, and the description is omitted.
- the guide device 5C includes an extension bar 59 in addition to the configuration described above (FIG. 2).
- the displacement sensor 17 is installed on the guide base 51 of the guide device 5C, and the displacement signal detected by the displacement sensor 17 is input to the controller 9C.
- a vibration signal from the acceleration sensor 10 that detects lateral vibration of the car frame 2 is also input to the controller 9C.
- the displacement sensor 17 is composed of a reflection type optical sensor or the like (see the broken line) fixed to the guide base 51 and is disposed so as to face the guide lever 52 so as to detect the relative displacement between the guide base 51 and the guide lever 52. taking measurement.
- variable orifice damper 18 is installed between the extension bar 59 and the guide base 51. Since the configuration of the variable orifice damper 18 is basically the same as that of the variable orifice damper 14 described above (see FIGS. 11 to 13), the description thereof is omitted here.
- variable orifice damper 18 It functions as a damper device that attenuates the swing of the guide lever 52.
- the displacement sensor 17 measures the relative displacement between the guide base 51 and the guide lever 52. In other words, the displacement sensor 17 measures the relative displacement between the movable portion and the fixed portion of the variable orifice damper 18. is doing.
- the controller 9 ⁇ / b> C receives the vibration signal from the acceleration sensor 10 and the displacement signal from the displacement sensor 17 and controls the variable orifice damper 18.
- FIG. 18 is a block diagram showing the detailed functions of the controller 9C in FIG. 17, and the same components as those described above (see FIGS. 5, 10, and 14) are denoted by the same reference numerals as those described above. A description "C" will be added later and the description will be omitted.
- the attenuation control unit 91C and the attenuation adjustment algorithm changing unit 93C in the controller 9C use the detection signals of the acceleration sensor 10 and the displacement sensor 17 as input information, respectively.
- the attenuation adjustment algorithm in the attenuation controller 91C for example, the above-mentioned Karnopp theory can be used. In this case as well, the idea is basically the same as described above, but the input information (detection signal) is different from that described above. Therefore, when the switching equation of the attenuation control unit 91C is shown again, the following equation (8) Is done.
- the damping controller 91C can reduce the lateral vibration of the car frame 2 and the car room 1 by changing the damping force generated by the variable orifice damper 18 according to the equation (8).
- the desired damping coefficient cannot be achieved due to environmental fluctuation factors, the car vibration is also deteriorated as described above, and the ride comfort is deteriorated due to the deterioration of the car vibration.
- the controller 9C includes an attenuation adjustment algorithm changing unit 93C in order to avoid deterioration in riding comfort due to fluctuations in the attenuation coefficient.
- the detailed function of the attenuation adjustment algorithm changing unit 93C in FIG. 18 will be described below with reference to FIG.
- FIG. 19 is a block diagram showing the detailed functions of the attenuation adjustment algorithm changing means 93C. Components similar to those described above (see FIG. 15) are denoted by the same reference numerals as those described above or suffixed with “C”. Detailed description is omitted.
- the attenuation adjustment algorithm changing means 93 ⁇ / b> C includes integrators 936 and 937 inserted in the preceding stage of the attenuation coefficient estimating unit 934 ⁇ / b> C and the optimum opening degree calculating unit 935, and a subtractor 938.
- the lateral acceleration of the car frame 2 measured by the acceleration sensor 10 is second-order integrated by the integrators 936 and 937 and converted into a displacement x of the car frame 2.
- the subtractor 938 subtracts the relative displacement (xd) measured by the displacement sensor 17 from the displacement x of the car frame 2, calculates the displacement d of the guide rail 7, and inputs it to the attenuation coefficient estimation unit 934C.
- the attenuation coefficient estimator 934C includes the subtraction result of the subtractor 938 (the displacement d of the guide rail 7) and the lateral acceleration of the car frame 2 measured by the acceleration sensor 10. Therefore, assuming that the elevator car is a simple one-inertia model, the damping coefficient c of the variable orifice damper 18 is estimated by the following equation (9).
- Equation (9) m is the total weight of the car room 1 and the car frame 2, and k is a spring constant defined by the compression spring 58. Note that since the estimated value of the attenuation coefficient c according to the equation (9) is a state quantity that changes from moment to moment, the attenuation coefficient estimation unit 934C performs an averaging process or the like on the calculated value of the equation (9), thereby reducing the attenuation coefficient. c is extracted as a constant.
- the optimum opening degree calculation unit 935 determines the optimum opening degree of the orifice passage hole when maximizing the damping coefficient.
- the attenuation control unit 91C uses the attenuation adjustment algorithm of Equation (8) to control the opening degree of the orifice through hole when the attenuation coefficient c is maximized.
- the optimum opening calculating unit 935 sets the optimum opening to a value larger than the previous value. And adjust so that the resistance at the orifice passage hole is reduced. Conversely, when the estimated value of the attenuation coefficient c obtained by the attenuation coefficient estimation unit 934C is smaller than the previous value, the optimum opening is set to a value smaller than the previous value, Adjust to increase resistance.
- the vibration reduction device for an elevator according to Embodiment 4 (FIGS. 17 to 19) of the present invention further includes the displacement sensor 17 for detecting the displacement of the variable damping damper device, and the damping coefficient estimation unit 934C includes The attenuation coefficient c is estimated based on the displacement detection value from the displacement sensor 17 and the vibration detection value from the acceleration sensor 10 (vibration sensor).
- the attenuation adjustment algorithm changing means 93C causes the attenuation adjustment algorithm stored in the attenuation control unit 91C to be changed. Since it can be changed according to the damping coefficient c estimated based on the estimated rail displacement, stable high lateral vibration reduction performance can be achieved, and high ride comfort can be provided to passengers.
- the attenuation adjustment algorithm can be automatically changed in a state where the actual elevator is installed, there is an effect that the adjustment of the vibration reducing device (variable orifice damper 18) at the time of installation becomes easy. Further, since the displacement signal obtained from the displacement sensor 17 is used in addition to the same effects as those of the third embodiment, the attenuation coefficient c can be estimated with higher accuracy.
- the elevator car is treated as a single inertia model, and the equation (9) is used as an estimation equation for the damping coefficient c.
- the present invention is not limited to this, and more parameters are added as additional information in advance. If it can be stored, it is possible to achieve higher reliability by using a more complicated and detailed estimation formula than by treating the elevator car as a multi-inertia model.
- the controller 9C is provided with the unmanned detection means 94 and the switch 95, and the learning process by the attenuation adjustment algorithm changing means 93C is performed only for the same car loading condition (unmanned condition). It is also possible to do this.
- FIG. 20 is an enlarged side view showing the peripheral structure of the guide device 5C according to the fifth embodiment of the present invention.
- the same parts as those described above are denoted by the same reference numerals as those described above, or “D” is appended to the reference numeral and the description is omitted.
- the displacement signal detected by the displacement sensor 17 corresponds to the relative displacement between the guide rail 7 and the car frame 2, and does not strictly match the vibration of the car frame 2.
- the displacement x due to the vibration of the car frame 2 is sufficiently larger than the displacement d of the guide rail 7 when the car room 1 and the car frame 2 are traveling at high speed. Since (x >> d), it can be approximated as x ⁇ xd.
- FIG. 21 is a block diagram showing detailed functions of the controller 9D according to the fifth embodiment of the present invention. Components similar to those described above (see FIG. 18) are denoted by the same reference numerals as those described above, or after “ The description is omitted with “D”.
- Expression (7) As an attenuation adjustment algorithm in the attenuation control unit 91D, Expression (7) with reference to the above-described publicly known document is used. However, in this case, the equation (7) Is the displacement of the car frame 2 approximately estimated from the relative displacement obtained by the displacement sensor 17. Is the approximate speed in the lateral direction of the car frame 2 obtained by differentiating. Also, Is the lateral approximate acceleration of the car frame 2 obtained by further differentiating the lateral approximate speed of the car frame 2.
- the damping force generated by the variable orifice damper 18 can be varied according to the equation (7).
- a desired damping coefficient cannot be achieved due to environmental variation factors, and as described above, car vibration is deteriorated and riding comfort is deteriorated.
- the controller 9D includes attenuation adjustment algorithm changing means 93D in order to avoid deterioration in riding comfort.
- FIG. 22 is a block diagram showing the detailed functions of the attenuation adjustment algorithm changing means 93D. Components similar to those described above (see FIG. 19) are denoted by the same reference numerals as those described above, or suffixed with “D”. Therefore, the description is omitted.
- the attenuation adjustment algorithm changing unit 93D includes an initial displacement storage unit 939 in addition to the attenuation coefficient estimation unit 934D and the optimum opening degree calculation unit 935.
- the initial displacement storage unit 939 corresponds to the vibration level measured by the displacement sensor 17 when the elevator travels with the opening of the variable orifice damper 18 fixed at the time of initial installation of the elevator car.
- a value (relative displacement xd ⁇ x between the guide rail 7 and the car frame 2) is stored as an initial displacement.
- the opening degree of the variable orifice damper 18 is fixed to the same value as that at the time of initial installation, and the damping coefficient estimation unit 934D detects a relative displacement signal during traveling from the displacement sensor 17, and the initial value
- the initial displacement (vibration level) stored in the displacement storage unit 939 is compared with the displacement signal (vibration level) during actual operation.
- the displacement signal (vibration level) during actual operation is larger than the initial displacement, it indicates that the damping coefficient c of the variable orifice damper 18 is smaller than the initial state, and vice versa. Further, when the displacement signal (vibration level) during actual operation is smaller than the initial displacement, it indicates that the damping coefficient c of the variable orifice damper 18 is large.
- the attenuation coefficient estimation unit 934D estimates the attenuation coefficient c of the variable orifice damper 18 by comparing the current relative displacement signal (vibration level) with the initial displacement (vibration level), and the estimated attenuation.
- the coefficient c is input to the optimum opening degree calculation unit 935.
- the optimum opening calculation unit 935 sends a command for setting a smaller optimum opening to the attenuation control unit 91D when the attenuation coefficient c is decreased, and when the attenuation coefficient c is increased, A command for setting a large optimum opening is sent to the attenuation controller 91D.
- the damping adjustment algorithm changing means 93D uses the displacement sensor 17 as the vibration sensor, and the damping coefficient c of the variable orifice damper 18 is the environment.
- the damping coefficient c is estimated from the comparison result between the initial state and the current state of the relative displacement signal of the variable orifice damper 18 even if it fluctuates due to a change in the viscosity of a typical viscous fluid, etc. As described above, stable high lateral vibration reduction performance can be achieved, and high ride comfort can be provided to passengers.
- the unmanned detection means 94 and the switch 95 are provided in the controller 9D, and the learning process by the attenuation adjustment algorithm changing means 93D is performed only for the same car loading condition (unmanned condition). It is also possible to do this.
Landscapes
- Cage And Drive Apparatuses For Elevators (AREA)
- Vibration Prevention Devices (AREA)
- Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
Abstract
Description
従来から、エレベータの振動低減装置として、かごの振動を検出する振動センサと、かごに制振力を加えるアクチュエータとを備え、検出された振動とは逆向きの力をアクチュエータからかごに加えるアクティブ制振技術が多く提案されている(たとえば、特許文献1参照)。
さらに、可変減衰ダンパ装置としてオイルダンパなどを用いた場合にも、オイル粘度が温度などの環境的要因およびオイル劣化などの経年的要因で変化するので、同様に良好な乗り心地を達成できないという課題があった。
図1はこの発明の実施の形態1に係るエレベータの振動低減装置の全体構成をエレベータかご(かご室1およびかご枠2)とともに示す側面図である。
図1において、エレベータの振動低減装置は、かご室1およびかご枠2の周辺部に設置されたガイド装置5と、ガイドレール7と、押付け力調整機構8と、コントローラ9と、加速度センサ10と、を備えている。
なお、ここでは、図示を省略しているが、ロープ6の端部にはシャックル板(実施の形態3において、図11とともに後述する)が固定されている。
図2において、ガイド装置5は、ガイドベース51と、ガイドレバー52と、ベアリング53、54と、ローラ55と、延長棒56と、受け皿57と、圧縮バネ58と、を備えている。
ガイドベース51の中間部には、ベアリング53を介して、ガイドレバー52が揺動可能に設置されている。
ガイドレバー52の中間部には、ベアリング54を介して、ローラ55が回転可能に設置されている。
受け皿57とガイドレバー52との間には、圧縮バネ58が設置されており、圧縮バネ58の付勢力は、ベアリング53を回転中心としてガイドレバー52を揺動させて、ローラ55をガイドレール7に圧接している。
ガイドベース51の他端には、押付け力調整機構8が設置されており、押付け力調整機構8は、ガイドレバー52に対する摩擦摺動部材89の押付け力を制御している。
押付け力調整機構8および摩擦摺動部材89は、可変減衰ダンパ装置を構成している。
図3において、押付け力調整機構8は、滑り軸受81と、コイル82と、圧縮バネ83、87と、可動鉄心84と、案内棒85と、滑り軸受86と、固定鉄心88と、を備えており、可動鉄心84は、摩擦摺動部材89を破線矢印方向に駆動可能に構成されている。
固定鉄心88およびコイル82は電磁石を形成しており、コイル82に通電が行われると、固定鉄心88と可動鉄心84との間に、以下の式(1)で示す吸引力Fpが発生する。
また、固定鉄心88には、可動鉄心84の一部を貫通する案内棒85が固定されており、案内棒85は、滑り軸受86を介して、可動鉄心84を支持および案内している。
なお、圧縮バネ87の付勢力は、固定鉄心88への可動鉄心84の吸引時(コイル82の通電時)に抵抗力として働くので、圧縮バネ87の材料は、圧縮バネ87と同様に、比較的柔らかいものが選択される。
押付け力調整機構8は、コイル82に通電したときには、摩擦摺動部材89をガイドレバー52に強く押付け、ガイドレバー52と摩擦摺動部材89との間に、以下の式(2)で与えられる大きい摩擦力Fdを作用させて、ガイドレバー52のガイドベース51に対する揺動振動を減衰させる。
一方、コイル82に通電しないときには、圧縮バネ83の付勢力のみにより、摩擦摺動部材89がガイドレバー52に押さえつけられることになるので、摩擦力Fdは小さくなる。
コントローラ9は、加速度センサ10からの振動信号に応じて、コイル82への通電量を制御し、かご枠2およびかご室1の振動を低減する。
上記説明では、コイル82への通電時に得られる最大摩擦力Fmaxが所望値となることを前提として、かご振動低減効果が得られることを示したが、式(2)、式(3)で与えられる摩擦力Fdは、環境的および経時的な要因によって大きく変動する。
また、式(1)に示すように、吸引力Fpは、吸引時の固定鉄心88と可動鉄心84との間の磁気ギャップεの2乗に逆比例するが、吸引時の磁気ギャップεは、摩擦摺動部材89が経時的に磨り減って減少するので、通電量Iに対する吸引力Fpも経時的に変動することになる。
図4において、横軸は、コイル82への通電時における摩擦力(減衰力)を示し、縦軸は、走行時におけるかご振動の2乗平均値を示している。
図4から明らかなように、摩擦力(横軸)が大きくなり過ぎた場合と、摩擦力が小さくなり過ぎた場合と、のいずれにおいてもかご振動は悪化する。
図5はこの発明の実施の形態1によるコントローラ9の詳細機能を示すブロック図である。
減衰制御部91は、前述のように、加速度センサ10からの振動信号に応じて、電源92を制御することにより、押付け力調整機構8内のコイル82への通電量を制御して減衰力を調整する。
黄金分割探索法は、極小値が所定区間に存在することが分かっている場合に、極小値が存在する区間を逐次的に小さくすることにより、最適点を探索する手法である。
スイッチ95は、無人状態信号が入力された場合にのみ、図5に示したスイッチ位置を選択して、減衰調整アルゴリズム変更手段93による学習および調整を許可し、減衰制御部91にアルゴリズム変更指令を入力する。
図6は減衰調整アルゴリズム変更手段93の論理処理を示すフローチャートであり、上記黄金分割探索手法の論理手順を示している。
図7は図6による減衰調整アルゴリズム変更学習イメージを示す説明図であり、黄金分割探索手法のイメージを示している。
すなわち、最適指令電流候補区間W0の初期値は、図7内の電流値IL(0)~IR(0)の区間で表される。
したがって、ステップST1において、最適な最大電流指令値Imaxが存在すると予想される最適指令電流候補区間W0(=[IL(0),IR(0)])は、減衰調整アルゴリズム変更手段93にあらかじめ記憶される。
ここで、各電流値IPL(0)、IPR(0)は、IL(0)<IPL(0)<IPR(0)<IR(0)の関係にあり、以下のように表される。
IPR(0)=(IL(0)+IR(0)φ)/(1+φ)
また、同時に、前述の式(4)のアルゴリズムにしたがい、Imax=IPL(0)として、かご走行時におけるかご振動値を加速度センサ10により計測し、計測したかご振動値からかご振動評価値f(IPL(0))を算出する(ステップST2)。
なお、かご振動評価値f(IPL(0))、f(IPR(0))は、たとえば、走行時のかご振動の2乗平均値または最大値、またはかご振動の2乗平均値および最大値など、かごの振動レベルを評価できる妥当な値であれば何でもよいが、ここでは、一例としてかご振動の2乗平均値とする。
=[IL(1),IR(1)]=[IPL(0),IR(0)]
このとき、分割を黄金比とすることにより、IPL(k+1)=IPR(k)、すなわち、IPL(1)=IPR(0)となるので、Imax=IPL(1)としたときのかご振動を計測して評価値を算出する手間を省くことができる。
ここで、電流値IPR(1)は、以下のように表される。
=[IL(1),IR(1)]=[IL(0),IPR(0)]
また、同時に、区間W1を黄金比で3分割する電流値IPL(1)、IPR(1)を算出すると、IPR(1)=IPL(0)となるので、Imax=IPR(1)としたときのかご振動を計測して評価値を算出する手間を省くことができる。
ここで、電流値IPL(1)は、以下のように表される。
このとき、最適な電流指令値Ioptは、以下のように表される。
そこで、コントローラ9には、無人検知手段94(図5)が設けられており、同一のかご積載条件(無人状態)のみにおいて、スイッチ95を図5の状態に切替え、減衰調整アルゴリズム変更手段93の処理結果を有効化する。
これにより、スイッチ95は、無人検知手段94からの無人状態信号を受信した場合のみに、減衰調整アルゴリズム変更手段93による学習および調整を許可し、減衰調整アルゴリズム変更手段93からのアルゴリズム変更指令を減衰制御部91に送信する。
Karnoppの理論は、公知文献(たとえば、「D.Karnopp,M.J.Crosy,R.A.Harwood,Vibration Control Using Semi-Active Force Generators,Journal of Engineering for Industry,Transaction of ASME(1974),p619-626」)に参照することができる。
さらに、無人検知手段94は必須要件ではなく、無人検知手段94を除去しても、学習精度は落ちるものの、かご振動を評価して、減衰調整アルゴリズムを変更することは可能である。
また、減衰調整アルゴリズム変更手段93による減衰調整アルゴリズムの変更は、実際のエレベータが据え付けられた状態で自動的に行うことができるので、据付時の振動低減装置(押付け力調整機構8)の調整が容易になるという効果もある。
このように、減衰調整アルゴリズムを逐次的に変更するので、抑制対象となるかご振動を直接評価して、かご振動が小さくなるように調整することができ、振動低減性能を高く保つことができる。
なお、上記実施の形態1(図1~図7)では、可変減衰ダンパ装置として、摩擦摺動部材89および押付け力調整機構8を用いたが、図8のように、MR流体(Magneto-rheological fluid)を封入したMRダンパ11を用いてもよい。
また、この場合、かご振動を検出する振動センサとしては、前述の加速度センサ10に加えて、かご室1の横振動を検出する加速度センサ12が設置されている。
加速度センサ10、12による検出加速度(振動信号)は、コントローラ9Aに入力されて、MRダンパ11の制御信号の計算に寄与する。
図9において、MRダンパ11は、ハウジング111と、ハウジング111内に挿入されたピストン112と、ハウジング111およびピストン112の各一端に設けられた球体113と、ハウジング111内に封入されたMR流体114と、ハウジング111内の側面に固定された固定側ヨーク115と、ピストン112の先端部に固定された可動側ヨーク116と、可動側ヨーク116に巻回されたコイル117と、各球体113を回転自在に支持する球面軸受118と、を備えている。
ピストン112は、可動側ヨーク116およびコイル117とともに、固定側ヨーク115に対向して、MR流体114内を直動する。
球体113の球面軸受118は、かご室1およびかご枠2にそれぞれ固定されている。
したがって、可動側ヨーク116と固定側ヨーク115との間をMR流体114が通り抜けにくくなるので、ハウジング111に対するピストン112の動きは、大きく抵抗力を受けることになる。
このとき、ピストン112の動きに対する減衰力は、コイル117に流す電流に比例して大きくなる。
しかし、ハウジング111およびピストン112の端点に位置する球体113は、球面軸受118を介して支持されているので、ピストン112の駆動方向以外に、自由に動ける構成となっている。
図10において、コントローラ9Aは、減衰制御部91Aおよび電源92に加えて、減衰調整アルゴリズム変更手段93Aを備えている。
減衰調整アルゴリズム変更手段93Aは、加速度センサ12からの振動信号に基づき、減衰制御部91Aに記憶された減衰調整アルゴリズムを逐次的に変更する。
減衰制御部91Aにおける減衰調整アルゴリズムとしては、以下の式(5)に示されるKarnoppの理論を用いることができる。
式(5)において、
ここで、MRダンパ11のコイル117への通電により得られる減衰力の大きさは、前述(図2、図3参照)の摩擦ダンパ(押付け力調整機構8および摩擦摺動部材89)と比較すると安定しているものの、MR流体114中の油分の経年的な蒸発などにより、やはり変動することになる。
減衰制御部91Aは、式(5)のアルゴリズムを実現するための通電量の調整を行い、以下の式(6)で示すように、電源92に対する電流指令値Ioを生成する。
前述の実施の形態1では、通電時の電流値を最適な最大電流指令値Imaxで一定としていたが、この発明の実施の形態2においては、通電時の電流指令値Ioを、式(6)のように、加速度センサ10、12からの振動信号に応じて変動させる。
具体的な調整方法については、図6、図7における通電量Iを、変数Kに置き換えればよいので、ここでは詳述を省略する。
さらに、図10では図示を省略したが、前述(図5参照)と同様に、減衰調整アルゴリズム変更手段93Aを有効化するための無人検知手段94およびスイッチ95を設けてもよい。
なお、上記実施の形態2(図8~図10)では、可変減衰ダンパ装置として、MRダンパ11を用いたが、図11のように、可変オリフィスダンパ14を用いてもよい。
図11はこの発明の実施の形態3に係るエレベータの振動低減装置の全体構成をエレベータかごとともに示す側面図であり、前述(図1、図8参照)と同様のものについては、前述と同一符号を付して、または符号の後に「B」を付して説明を省略する。
可変オリフィスダンパ14(可変減衰ダンパ装置)は、シャックル板15とかご枠2の間にシャックルバネ16と並列に設置されている。
加速度センサ13は、平面的にシャックル板15の近傍に位置するように、かご枠2の上部に設置されている。
加速度センサ13からの振動信号は、コントローラ9Bに入力されて、可変オリフィスダンパ14に対する制御信号の計算に寄与する。
図12において、可変オリフィスダンパ14は、ハウジング141と、ハウジング141内に挿入されたピストン142と、ハウジング141およびピストン142の各一端に設けられた球体143と、ハウジング141内に封入された粘性流体144と、ピストン142の先端部に固定された固定円板145およびモータ146と、モータ146に固定された可動円板147と、各球体143を回転自在に支持する球面軸受148と、を備えている。
図13において、固定円板145には、複数のオリフィス145aが等間隔に設けられている。同様に、可動円板147には、複数のオリフィス145aの各々と対応するように、複数のオリフィス147aが等間隔に設けられている。
なお、ハウジング141内に封入された粘性流体144は、前述(図9参照)のMR流体114とは異なり、制御電流によって粘性が変化することはない。
図14において、コントローラ9Bは、前述の実施の形態1(図5)とほぼ同様の構成からなり、加速度センサ13からの振動信号に基づき、可変オリフィスダンパ14内のモータ146を制御する。
式(7)において、
しかし、可変オリフィスダンパ14によって得られる減衰係数cdは、オリフィス通液孔の大きさが同じであっても、粘性流体144の粘度によって変動する。
このとき、コントローラ9Bが実際に制御可能な対象は、モータ146の回転駆動によるオリフィス通液孔の開度であることから、実際に得られる減衰係数cdは、オリフィス通液孔の開度が同じであっても変動するので、所望の減衰係数cdが得られなくなり、やはりかご振動は悪化する。
以下、図15および図16を参照しながら、図14内の減衰調整アルゴリズム変更手段93Bの詳細機能について説明する。
図16において、黒丸プロット点(実線)は、可変オリフィスダンパ14の減衰力が小さい場合の振動レベルを示し、黒菱形プロット点(破線)は、減衰力が大きい場合の振動レベルを示し、太矢印は減衰力を大きくした場合の帯域ごとの振動レベル変動量を示している。
また、低周波数域バンドパスフィルタ931は、シャックルバネ16の部分の固有振動数よりも低い周波数域を通過帯域とし、高周波数域バンドパスフィルタ933は、固有振動数よりも高い周波数域を通過帯域としている。
このとき、かご室1およびかご枠2の重量などのパラメータをあらかじめ記憶しておき、減衰係数推定用の付加情報として用いれば、さらに高精度の推定が可能になる。
ただし、上記付加情報(パラメータ)は必須要件ではなく、特に記憶しなくても推定は可能である。
以下、減衰制御部91Bは、前述の式(7)の減衰調整アルゴリズムを用いて、減衰係数cdを最大化または最小化するときのオリフィス通液孔の最適開度に制御する。
逆に、減衰係数cdの推定値が、前回値よりも減少している場合には、最適開度を前回よりも小さく設定して、オリフィス通液孔での抵抗が大きくなるように調整する。
また、前述と同様に、減衰調整アルゴリズムの変更は、実際のエレベータが据え付けられた状態で自動的に行うことができるので、据付時の振動低減装置(可変オリフィスダンパ14)の調整が容易になるという効果もある。
なお、上記実施の形態3(図11~図16)では、可変減衰ダンパ機構として、シャックルバネ16の部分に並設された可変オリフィスダンパ14を用い、振動センサとして加速度センサ13を用いたが、図17のように、可変減衰ダンパ機構として、ガイド装置5Cのガイドベース51と延長棒59との間に設置された可変オリフィスダンパ18を用い、振動センサとして、加速度センサ10のみならず変位センサ17を用いてもよい。
ガイド装置5Cのガイドベース51には、変位センサ17が設置されており、変位センサ17で検出された変位信号は、コントローラ9Cに入力されている。
同様に、かご枠2の横方向振動を検出する加速度センサ10からの振動信号も、コントローラ9Cに入力されている。
可変オリフィスダンパ18の構成については、前述(図11~図13参照)の可変オリフィスダンパ14と基本的に同じなので、ここでは説明を省略する。
コントローラ9Cは、加速度センサ10からの振動信号と、変位センサ17からの変位信号とを受けて、可変オリフィスダンパ18を制御する。
図18において、コントローラ9C内の減衰制御部91Cおよび減衰調整アルゴリズム変更手段93Cは、加速度センサ10および変位センサ17の各検出信号をそれぞれ入力情報としている。
この場合も、考え方は基本的に前述と同様であるが、入力情報(検出信号)が前述と異なるので、減衰制御部91Cの切り替え式を改めて示すと、以下の式(8)のように表される。
言い換えると、
しかし、環境的な変動要因により、所望の減衰係数が達成できなくなるので、前述のように、やはりかご振動は悪化し、かご振動の悪化によって乗り心地が悪化する。
以下、図19を参照しながら、図18内の減衰調整アルゴリズム変更手段93Cの詳細機能について説明する。
図19において、減衰調整アルゴリズム変更手段93Cは、減衰係数推定部934Cおよび最適開度計算部935の前段側に挿入された積分器936、937と、減算器938とを備えている。
減算器938は、かご枠2の変位xから、変位センサ17で計測された相対変位(x-d)を減算し、ガイドレール7の変位dを算出して減衰係数推定部934Cに入力する。
なお、式(9)による減衰係数cの推定値は、時々刻々と変化する状態量となるので、減衰係数推定部934Cは、式(9)の算出値に平均化処理などを施し、減衰係数cを定数として抽出する。
以下、減衰制御部91Cは、式(8)の減衰調整アルゴリズムを用いて、減衰係数cを最大化するときのオリフィス通液孔の最適開度に制御する。
逆に、減衰係数推定部934Cで得られた減衰係数cの推定値が前回値よりも減少している場合には最適開度を前回よりも小さい値に設定して、オリフィス通液孔での抵抗が大きくなるように調整する。
また、前述の実施の形態3と同様の作用効果に加えて、変位センサ17から得られる変位信号を利用することから、減衰係数cをさらに高精度に推定することが可能になる。
なお、上記実施の形態4(図17~図19)では、振動センサとして、変位センサ17に加えて、加速度センサ10を用いたが、図20のように、変位センサ17のみを用いてもよい。
図20はこの発明の実施の形態5におけるガイド装置5Cの周辺構造を拡大して示す側面図であり、前述(図17参照)と同様のものについては、前述と同一符号を付して、または符号の後に「D」を付して説明を省略する。
しかし、ガイドレール7は、比較的まっすぐに据え付けられることから、かご室1およびかご枠2の高速走行時において、かご枠2の振動による変位xは、ガイドレール7の変位dと比較すると十分大きい(x>>d)ので、x≒x-dと近似することができる。
減衰制御部91Dにおける減衰調整アルゴリズムとしては、前述の公知文献を参考にした式(7)を用いる。
ただし、この場合、式(7)内の
また、
しかし、環境的な変動要因により所望の減衰係数が達成できなくなり、前述のように、かご振動が悪化して乗り心地が悪化する。
図22は減衰調整アルゴリズム変更手段93Dの詳細機能を示すブロック図であり、前述(図19参照)と同様のものについては、前述と同一符号を付して、または符号の後に「D」を付して説明を省略する。
初期変位記憶部939は、エレベータかごの初期据え付け時において、可変オリフィスダンパ18の開度を一定に固定した状態で、エレベータを走行させたときに、変位センサ17で計測される振動レベルに対応した値(ガイドレール7とかご枠2との間の相対的な変位x-d≒x)を、初期変位として記憶しておく。
Claims (10)
- エレベータかごのかご振動を検出する振動センサと、
前記振動センサからの振動検出値に応じて指令値を生成する減衰制御部と、
前記指令値に対する減衰力を前記エレベータかごに発生させる可変減衰ダンパ装置と、
前記振動検出値に基づき前記指令値に対する減衰力発生比率の変化を推定して、前記減衰力発生比率の変化の推定結果に基づき、前記指令値を変更する減衰調整アルゴリズム変更手段と
を備えたエレベータの振動低減装置。 - 前記減衰調整アルゴリズム変更手段は、
前記振動検出値に基づきかご振動評価値を算出する評価値計算手段を有し、
前記指令値の変更時における前記かご振動評価値の大小に基づき前記減衰力発生比率の変化を推定して、前記かご振動評価値が小さくなるように前記指令値を逐次的に変更することを特徴とする請求項1に記載のエレベータの振動低減装置。 - 前記かご振動評価値は、前記エレベータかごの走行時のかご振動の最大値および2乗平均値の少なくとも一方を含むことを特徴とする請求項2に記載のエレベータの振動低減装置。
- 前記減衰調整アルゴリズム変更手段は、
前記振動検出値から前記可変減衰ダンパ装置の減衰係数を推定する減衰係数推定部を有し、
前記減衰係数推定部による減衰係数推定結果と前記指令値とに基づき、前記減衰力発生比率の変化を推定して、前記振動検出値に対する減衰力発生比率が一定となるように前記指令値を変更することを特徴とする請求項1に記載のエレベータの振動低減装置。 - 前記減衰係数推定部は、
前記振動検出値から周波数帯域での振動レベルを算出し、
前記周波数帯域での振動レベルの算出値に基づき前記減衰係数を推定することを特徴とする請求項4に記載のエレベータの振動低減装置。 - 前記可変減衰ダンパ装置の変位を検出する変位センサをさらに備え、
前記減衰係数推定部は、前記変位センサからの変位検出値と前記振動検出値とに基づき、前記減衰係数を推定することを特徴とする請求項4に記載のエレベータの振動低減装置。 - 前記可変減衰ダンパ装置は、
摩擦摺動部材と、
前記摩擦摺動部材の押付け力を制御する押付け力調整機構と
により構成されたことを特徴とする請求項1から請求項6までのいずれか1項に記載のエレベータの振動低減装置。 - 前記可変減衰ダンパ装置は、
粘性流体と、
前記粘性流体が通り抜けるオリフィスと
前記オリフィスの面積を可変調整する可変調整手段と
により構成されたことを特徴とする請求項1から請求項6までのいずれか1項に記載のエレベータの振動低減装置。 - 前記可変減衰ダンパ装置は、
MR流体と、
前記MR流体に加える磁場を制御する磁場発生手段と
により構成されたことを特徴とする請求項1から請求項6までのいずれか1項に記載のエレベータの振動低減装置。 - 前記エレベータかごの中が無人であることを推定する無人検知手段をさらに備え、
前記減衰調整アルゴリズム変更手段は、前記無人検知手段により無人と推定されたときに、前記減衰調整アルゴリズムを変更することを特徴とする請求項1から請求項9までのいずれか1項に記載のエレベータの振動低減装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280034299.1A CN103648947B (zh) | 2011-11-30 | 2012-11-19 | 电梯减振装置 |
JP2013547100A JP5738430B2 (ja) | 2011-11-30 | 2012-11-19 | エレベータの振動低減装置 |
DE112012004971.3T DE112012004971B4 (de) | 2011-11-30 | 2012-11-19 | Vibrations-Verringerungseinrichtung für einen Aufzug |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011261164 | 2011-11-30 | ||
JP2011-261164 | 2011-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013080826A1 true WO2013080826A1 (ja) | 2013-06-06 |
Family
ID=48535288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/079960 WO2013080826A1 (ja) | 2011-11-30 | 2012-11-19 | エレベータの振動低減装置 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5738430B2 (ja) |
CN (1) | CN103648947B (ja) |
DE (1) | DE112012004971B4 (ja) |
WO (1) | WO2013080826A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015187021A (ja) * | 2014-03-26 | 2015-10-29 | フジテック株式会社 | エレベータのかご揺れ検出装置 |
WO2017033751A1 (ja) * | 2015-08-27 | 2017-03-02 | 三菱電機株式会社 | エレベータ振動低減装置の異常検出装置、エレベータおよびエレベータ振動低減装置の異常検出方法 |
JP2019026428A (ja) * | 2017-07-31 | 2019-02-21 | 株式会社日立製作所 | エレベーター |
US10947088B2 (en) | 2015-07-03 | 2021-03-16 | Otis Elevator Company | Elevator vibration damping device |
WO2024247262A1 (ja) * | 2023-06-02 | 2024-12-05 | 三菱電機ビルソリューションズ株式会社 | 乗客コンベアの制動装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6567922B2 (ja) * | 2015-08-19 | 2019-08-28 | 株式会社日立製作所 | エレベータ |
CN110770154B (zh) * | 2017-06-22 | 2021-10-22 | 三菱电机株式会社 | 电梯装置 |
CN107840217B (zh) * | 2017-09-28 | 2019-06-18 | 快意电梯股份有限公司 | 升降器加速度补偿控制方法及装置 |
CN107601235B (zh) * | 2017-09-28 | 2019-06-18 | 快意电梯股份有限公司 | 升降器加速度补偿控制系统 |
CN109573782B (zh) * | 2018-12-21 | 2023-12-12 | 杭州优迈科技有限公司 | 一种电磁导靴以及使用该电磁导靴的电梯导向系统 |
CN111062104A (zh) * | 2019-12-27 | 2020-04-24 | 盐城师范学院 | 电梯曳引系统应用的多项耦合振动减振建模方法 |
CN112555341A (zh) * | 2020-12-30 | 2021-03-26 | 江苏科能电力工程咨询有限公司 | 一种用于电力变压器的磁流变阻尼器减振系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06286963A (ja) * | 1993-02-08 | 1994-10-11 | Mitsubishi Electric Corp | エレベーターの制振装置 |
JPH1179573A (ja) * | 1997-09-09 | 1999-03-23 | Toshiba Corp | エレベータの速度制御装置 |
WO2006137113A1 (ja) * | 2005-06-20 | 2006-12-28 | Mitsubishi Denki Kabushiki Kaisha | エレベータの制振装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI884380L (fi) * | 1988-09-23 | 1990-03-24 | Kone Oy | Foerfarande och anordning foer daempandet av vibrationer i en hisskorg. |
JP2899455B2 (ja) * | 1991-10-29 | 1999-06-02 | 株式会社東芝 | エレベータ |
JP4161063B2 (ja) | 1999-10-22 | 2008-10-08 | 三菱電機株式会社 | エレベータ装置及びエレベータ装置のガイド装置 |
JP2003104661A (ja) | 2001-09-28 | 2003-04-09 | Toshiba Elevator Co Ltd | エレベータ装置 |
JP2004035163A (ja) | 2002-07-02 | 2004-02-05 | Mitsubishi Electric Corp | エレベータのガイド装置 |
JP4317204B2 (ja) * | 2006-06-29 | 2009-08-19 | 株式会社日立製作所 | エレベーターの制振制御装置 |
-
2012
- 2012-11-19 WO PCT/JP2012/079960 patent/WO2013080826A1/ja active Application Filing
- 2012-11-19 CN CN201280034299.1A patent/CN103648947B/zh active Active
- 2012-11-19 DE DE112012004971.3T patent/DE112012004971B4/de active Active
- 2012-11-19 JP JP2013547100A patent/JP5738430B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06286963A (ja) * | 1993-02-08 | 1994-10-11 | Mitsubishi Electric Corp | エレベーターの制振装置 |
JPH1179573A (ja) * | 1997-09-09 | 1999-03-23 | Toshiba Corp | エレベータの速度制御装置 |
WO2006137113A1 (ja) * | 2005-06-20 | 2006-12-28 | Mitsubishi Denki Kabushiki Kaisha | エレベータの制振装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015187021A (ja) * | 2014-03-26 | 2015-10-29 | フジテック株式会社 | エレベータのかご揺れ検出装置 |
US10947088B2 (en) | 2015-07-03 | 2021-03-16 | Otis Elevator Company | Elevator vibration damping device |
WO2017033751A1 (ja) * | 2015-08-27 | 2017-03-02 | 三菱電機株式会社 | エレベータ振動低減装置の異常検出装置、エレベータおよびエレベータ振動低減装置の異常検出方法 |
JPWO2017033751A1 (ja) * | 2015-08-27 | 2017-10-19 | 三菱電機株式会社 | エレベータ振動低減装置の異常検出装置、エレベータおよびエレベータ振動低減装置の異常検出方法 |
CN107922144A (zh) * | 2015-08-27 | 2018-04-17 | 三菱电机株式会社 | 电梯减振装置的异常检测装置、电梯及电梯减振装置的异常检测方法 |
JP2019026428A (ja) * | 2017-07-31 | 2019-02-21 | 株式会社日立製作所 | エレベーター |
WO2024247262A1 (ja) * | 2023-06-02 | 2024-12-05 | 三菱電機ビルソリューションズ株式会社 | 乗客コンベアの制動装置 |
Also Published As
Publication number | Publication date |
---|---|
CN103648947B (zh) | 2015-02-25 |
CN103648947A (zh) | 2014-03-19 |
DE112012004971B4 (de) | 2019-09-12 |
JPWO2013080826A1 (ja) | 2015-04-27 |
JP5738430B2 (ja) | 2015-06-24 |
DE112012004971T5 (de) | 2014-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5738430B2 (ja) | エレベータの振動低減装置 | |
US10800220B2 (en) | Method and apparatus for an adjustable damper | |
JP5766207B2 (ja) | エレベータシステムにおけるかごの横方向の動きを低減するシステムおよび方法 | |
JP4844562B2 (ja) | エレベータの制振装置およびエレベータ | |
CN107108171B (zh) | 用于电梯的减振单元 | |
JP2010137796A (ja) | 車両用サスペンション装置 | |
JP5840501B2 (ja) | ガイド組立体及びエレベータ装置 | |
US7543686B2 (en) | Elevator with rollers having selectively variable hardness | |
KR20090123884A (ko) | 전자 흡인식 자기 베어링과 그 제어 방법 | |
WO2008072325A1 (ja) | 振動エネルギ吸収装置 | |
EP1678068A1 (en) | Elevator roller guide with variable stiffness damper | |
CN107922144B (zh) | 电梯减振装置的异常检测装置及方法、电梯 | |
JP5528997B2 (ja) | エレベータのかご室振動低減装置 | |
KR20140060694A (ko) | 엘리베이터의 횡진동 제어를 위한 능동마찰댐퍼 | |
KR20080024878A (ko) | 차량용 반능동 현가장치의 제어방법 | |
JP4280717B2 (ja) | 選択的に可変の硬度を有するローラを備えるエレベータ | |
JP4825378B2 (ja) | エレベータの乗りかご | |
RU2470201C1 (ru) | Система демпфирования вертикальных колебаний кузова железнодорожного пассажирского вагона | |
JP2004075228A (ja) | エレベータ | |
WO2014033519A1 (en) | Suspension control system and method of controlling suspension device | |
KR20140039931A (ko) | 전동식 조향장치의 누름력 제어 장치 | |
JPH03169733A (ja) | 自動車用サスペンション装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013547100 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12853758 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1120120049713 Country of ref document: DE Ref document number: 112012004971 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12853758 Country of ref document: EP Kind code of ref document: A1 |