WO2013056594A1 - 一种光源和显示系统 - Google Patents
一种光源和显示系统 Download PDFInfo
- Publication number
- WO2013056594A1 WO2013056594A1 PCT/CN2012/080058 CN2012080058W WO2013056594A1 WO 2013056594 A1 WO2013056594 A1 WO 2013056594A1 CN 2012080058 W CN2012080058 W CN 2012080058W WO 2013056594 A1 WO2013056594 A1 WO 2013056594A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- emitting device
- device group
- original
- led
- Prior art date
Links
- 238000001228 spectrum Methods 0.000 claims abstract description 53
- 230000000295 complement effect Effects 0.000 claims description 73
- 239000007787 solid Substances 0.000 claims description 16
- 239000003086 colorant Substances 0.000 claims description 6
- 238000005286 illumination Methods 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 description 34
- 230000003595 spectral effect Effects 0.000 description 12
- VAYOSLLFUXYJDT-RDTXWAMCSA-N Lysergic acid diethylamide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N(CC)CC)C2)=C3C2=CNC3=C1 VAYOSLLFUXYJDT-RDTXWAMCSA-N 0.000 description 11
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 230000005284 excitation Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000010432 diamond Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/14—Beam splitting or combining systems operating by reflection only
- G02B27/141—Beam splitting or combining systems operating by reflection only using dichroic mirrors
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/1006—Beam splitting or combining systems for splitting or combining different wavelengths
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/1006—Beam splitting or combining systems for splitting or combining different wavelengths
- G02B27/102—Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/14—Beam splitting or combining systems operating by reflection only
- G02B27/145—Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/14—Beam splitting or combining systems operating by reflection only
- G02B27/145—Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
- G02B27/146—Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces with a tree or branched structure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V9/00—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
- F21V9/20—Dichroic filters, i.e. devices operating on the principle of wave interference to pass specific ranges of wavelengths while cancelling others
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/09—Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
- G02B27/0938—Using specific optical elements
- G02B27/0994—Fibers, light pipes
Definitions
- the present invention relates to the field of solid state lighting and, more particularly, to a light source and display system.
- Solid state light emitting devices including LED (Light Emitting Diode), LD ( Laser Diode, a solid-state semiconductor device that converts electrical energy into visible light, converts electrical energy directly into visible light.
- LED Light Emitting Diode
- LD Laser Diode
- LED and phosphor-covered LED It is often used as a light source for illumination in the field of lighting.
- the principle of phosphor-covered LEDs is to apply phosphors to the surface of the LED chip, using the light from the LEDs to excite the phosphor and fluoresce. Phosphor covered
- the most common example of an LED is to apply a yellow phosphor to the surface of a blue LED chip and be illuminated by a blue LED. The emitted blue light is excited to produce yellow light and mixed with the remaining blue light that is not absorbed to obtain white light.
- LEDs on the market that apply amber phosphors to the surface of blue LEDs and ultimately emit amber light.
- Product Since phosphor-covered LEDs have the same advantages and disadvantages as LEDs, the LEDs mentioned below include LED chips and phosphor-covered LEDs.
- excitation light from a solid state light source is used to excite a rotating fluorescent pink wheel to produce a mixture of fluorescence or fluorescence and excitation light.
- the fluorescent pink wheel may contain a phosphor or a plurality of phosphors for generating a color light sequence.
- the excitation light source can be The LED can also be a laser diode.
- solid-state lighting devices refer to the use of LED or LD lighting, or the use of LED or LD
- LED or LD There are many specific situations for devices that excite fluorescent materials to illuminate, and are not described here.
- use LED Give an example for specific explanation. This does not limit the use of other types of solid state light emitting devices, and those skilled in the art may employ other types of solid state light emitting devices for the LEDs exemplified in the present invention.
- the direct replacement of the light source can still achieve the beneficial effects of the present invention.
- the existing LED light source adopts the prior art as shown in FIG. 1 to realize R (red, red light), G (green). , green light), B (blue, blue) and W (White, white) color source illumination.
- 1 is an RGBW form of LED in the prior art 1. Arrange the map. Four LED chips that emit different colors of light are closely packed and then collected by a light collecting device.
- the LED light source of the prior art 1 can emit red light, green light, blue light, and white light, and pass The separate control of the LED, the color gamut of the emitted light is large, and the adjustable range of color saturation is also large.
- FIG. 2 shows a light source of the prior art which can reduce the amount of optical expansion, as shown in FIG. 2, which is red by a cross-shaped dichroic mirror ( The light beams output by the three colors of R), green (G), and blue (B) are combined into one beam, and the optical field extension of the source is equal to one LED.
- the amount of optical expansion Although there are certain advantages in terms of optical expansion, the structure in FIG. 2 cannot be combined with another LED having a larger spectral overlap with any of R, G, and B.
- the emitted light beam such as a white light beam commonly used to increase the brightness, is still limited in terms of brightness.
- the present invention provides a light source and display system to overcome any LED that cannot be incorporated into the original light-emitting device group in the prior art.
- an aspect of the present invention provides a light source comprising: at least one original light emitting device group and at least one complementary light emitting device group, the original light emitting device group including at least two overlapping spectra in a normalized spectrum Energy is less than the energy of the two 50% of the LEDs, and a wavelength combining device that combines the light output by all the LEDs in the original light-emitting device group by wavelength combining;
- the complementary light-emitting device group includes at least one LED The energy of the overlapping spectrum in the normalized spectrum of any of the LEDs of the complementary light-emitting device group and the at least one LED of the original light-emitting device group is greater than or equal to 10% of the energy of the two;
- the light source further includes a geometrical light combining device that combines the final output beam of the original light emitting device group with the final output beam of the complementary light emitting device group into a beam by geometric combining.
- the present invention also provides a display system including the above light source
- the optical expansion amount of the light beam finally outputted by the original light-emitting device group is equivalent to the optical expansion amount of one of the light-emitting devices
- the optical expansion amount of the light beam outputted by the complementary light-emitting device group is equivalent to that occupied by one light-emitting device.
- the amount of optical expansion, so the total amount of expansion finally obtained by geometric merging is equal to the amount of expansion of one illuminating device in the original illuminating device group plus the optical expansion of one illuminating device in the group of complementary light-emitting devices, compared to the prior art
- the solution can reduce the expansion of the entire light source and increase the brightness of the light source under the premise of incorporating a light beam emitted by another light-emitting device having a larger spectral overlap with any of the original light-emitting device groups.
- FIG. 1 is a schematic diagram of a package of an LED light source in the prior art 1;
- FIG. 2 is a schematic structural view of an LED light source in the prior art 2;
- FIG. 3 is a schematic structural view of a specific embodiment of a light source in the present invention.
- FIG. 4 is a schematic structural view of another specific embodiment of a light source in the present invention.
- FIG. 5 is a schematic structural view of another specific embodiment of a light source in the present invention.
- FIG. 6A is a schematic structural view of another specific embodiment of a light source in the present invention.
- Figure 6B is a plan view of another embodiment of the light source in the present invention.
- Figure 6C is a side view of the light source of Figure 6B;
- FIG. 7 is a schematic structural view of another specific embodiment of a light source in the present invention.
- FIG. 8 is a schematic structural view of another specific embodiment of a light source in the present invention.
- Figure 9 and Figure 10 a schematic structural view of another specific embodiment of the light source of the present invention showing the beam propagation paths of the original light-emitting device group and the complementary light-emitting device group;
- FIG. 11 is a schematic structural view of another specific embodiment of a light source in the present invention.
- FIG. 12 is a schematic structural view of a raw light emitting device group in another specific embodiment of a light source in the present invention.
- FIG. 13 is a schematic structural view of an original light emitting device group in another specific embodiment of a light source in the present invention.
- FIG. 14 is a schematic structural view of an original light emitting device group in another specific embodiment of a light source in the present invention.
- Figure 15 shows the normalized luminescence spectra of the two LEDs.
- LED Light Emitting Diode, LED.
- a wavelength combining device is a device that combines two beams of light into one beam by utilizing the difference in wavelength of light.
- a geometrical light combining device is a device that combines two beams of light into one beam by utilizing the difference in spatial position.
- the solid state light emitting device may be a light emitting diode, a laser diode, or a light emitting device that excites a fluorescent material to generate fluorescence using at least one of a light emitting diode and a laser diode, and a combination of at least any two of the three.
- the prior art can pass four LEDs of red, green, blue and white light Perform simple geometric merging, but since the optical expansion of the entire source is four LEDs The sum of the optical extensions, so the high brightness requirements cannot be achieved.
- the light source in the prior art 2 passes through a conventional wavelength combining device (for example, a cross-shaped dichroic mirror X plane) ) can achieve the combination of red, green and blue light, and the optical expansion can be controlled in one LED
- the amount of optical expansion is about the same, but the conventional conventional wavelength combining device cannot effectively combine a plurality of beams with a large overlap of normalized spectra, for example, if the brightness is required, the white LED needs to be
- the emitted light beam is combined with the three beams of red, green and blue. Because of the wide spectral range of the light emitted by the white LED, it is associated with red, green and blue LEDs. There is a large spectral overlap between the three beams emitted, and it is impossible to directly combine
- the present invention is based on the above two prior art drawbacks, and proposes a light source that combines wavelength combining light and geometric combining light.
- the degree of overlap of the two spectral lights is described using the energy of the overlapping spectra in the two normalized spectra being less than the smaller of the two intermediate energies.
- Normalized spectra 1501 and 1502 The respective energies are the areas enclosed by them, and the energy of the normalized spectrum 1502 is slightly larger than the normalized spectrum 1501.
- the energy of the overlap portion 1503 accounts for approximately the normalized spectrum of energy in the two original spectra. 80% of the energy of 1501. If the two spectra are combined using a wavelength combining device, the total energy loss will reach 30% ⁇ 40%. . This is unacceptable for a typical optical system, so the two spectral lights 1501 and 1502 need to be combined in a geometrically combined manner.
- the light source provided by the present invention comprises at least one original light-emitting device group and at least one light-filling light-emitting device group, wherein the original light-emitting device group includes at least two energy of overlapping spectra in the normalized spectrum smaller than the two energy-less 50 % LED, all LEDs in the group of light-emitting devices are combined by a wavelength combining device; the light-filling device group includes at least one LED, any LED of the complementary light-emitting device group The energy of the overlapping spectrum in the normalized spectrum with at least one LED in the original light-emitting device group is greater than or equal to 10% of the energy of the two;
- the final output beam of the original light-emitting device group and the final output beam of the complementary light-emitting device group are combined into a single beam by geometrical combining means.
- the light source provided by the embodiment of the present invention can be incorporated into another LED having a larger spectral overlap with any of the original light emitting device groups.
- the emitted beam can be incorporated into another LED having a larger spectral overlap with any of the original light emitting device groups.
- the final output beam of the original light-emitting device group and the final output beam of the complementary light-emitting device group are geometrically combined on different sections of the geometrical light combining device, or geometrically combined on the same cross section, or Combine.
- the LEDs in the original light-emitting device group The type and number can be flexibly selected according to the needs of the display.
- the original light emitting device group can include red LED, blue LED and green LED.
- the specific internal structure of the light-filling light-emitting device group is not limited as long as the energy of the overlapping spectrum in the normalized spectrum of any one of the LEDs and the original light-emitting device group is greater than or equal to the energy of the two. 10% is sufficient, so the fill light-emitting device group can be a white LED itself or a multi-primary LED.
- any one of the LEDs of the complementary light-emitting device group and at least one of the original light-emitting device groups The energy of the overlapping spectra in the normalized spectrum is greater than or equal to 50% of the energy in both.
- two beams can be realized by a single lens, such that the original light emitting device group and the light beam of the complementary light emitting device group are geometrically spliced at the incident position of the lens.
- the geometrical combination of the beams it is of course also possible to implement the above described geometrical light combining device by means of two or more devices.
- image 3 A specific embodiment of the light source in the present invention is shown.
- the light beams ultimately output by the original light-emitting device group and the complementary light-emitting device group are on different cross sections of the geometrical light combining device.
- the following uses 'above' and 'below' to indicate the positional relationship between the components, and the 'above' and 'below' are respectively above and below the figure.
- the original light emitting device group includes LEDs of three primary colors.
- the original light-emitting device group 1 includes a red LED 11 (labeled as R in the figure), a green LED 12 (marked as G in the figure), and a blue LED 13 (labeled B in the figure). ).
- R red LED 11
- G green LED 12
- G blue LED 13
- the LEDs in the original light-emitting device group There is no limit to the number of the number, and it can be flexibly selected according to the actual display needs.
- even the three-color display scene is not necessarily limited to the red, green, and blue LEDs shown in Figure 3.
- the light combining device is combined by the wavelength combining light.
- the wavelength combining device is two dichroic mirrors which are parallel and obliquely placed (indicated as 14 and 15 respectively in the figure)
- the type and number of wavelength combining devices are not specifically limited herein, as long as the LEDs of the original light emitting device group can be used by means of wavelength combining light.
- the emitted light can be combined.
- the geometrical light combining device is a lens 31, and the complementary light emitting device group 2 includes a white LED 21 (labeled W in the figure).
- red LED11, green light When using two parallel dichroic mirrors 14 and 15 as shown in Figure 3 to achieve wavelength combining, red LED11, green light
- the position of the LED 12 and the blue LED 13 can be flexibly adjusted as long as the light of the first LED output can be transmitted from the front of the first dichroic mirror 14 and the second dichroic mirror 15
- the front side of the light is reflected from the back of the first dichroic mirror 14 and reflected by the front surface of the second dichroic mirror 15; the third LED
- the output light can be transmitted from the back side of the second dichroic mirror 15; finally, the three beams output from the front surface of the second dichroic mirror 15 can be coaxial.
- the three LEDs are required. Position, correctly select the type of two dichroic mirrors, for example, for the red LED11, green LED12 and blue LED13 using the position shown in Figure 3, then the first dichroic mirror 14 A dichroic mirror that transmits blue light and reflects light in other wavelength ranges is required. The second dichroic mirror 15 needs to select a dichroic mirror that transmits green light and reflects light in other wavelength ranges.
- the inclination angle of the first dichroic mirror 14 and the second dichroic mirror 15 in the horizontal direction is 135 degrees.
- Blue light The LED 13 is disposed above the first dichroic mirror 14, and the light beam of the blue LED 13 is transmitted through the first dichroic mirror 14 and reflected by the second dichroic mirror 15 to the lens 31.
- Red light The LED 11 is disposed behind the first dichroic mirror 14, and the light beam of the red LED 11 is sequentially reflected by a dichroic mirror 14 and a second dichroic mirror 15, and then incident on the lens 31.
- the green LED 12 is disposed behind the second dichroic mirror 15, and the green LED 12 is transmitted through the second dichroic mirror 15 and incident on the lens 31.
- the embodiment further includes a white LED 21, and the white LED 21 and at least one of the original light emitting device groups.
- the energy of the overlapping spectra in the normalized spectrum is greater than or equal to 10% of the energy of the two.
- the energy of the white LED 21 is greater than the energy of the red LED 11 in the original light-emitting device group, and white light
- the energy of the overlapping spectrum in the normalized spectrum of LED21 and red LED11 is greater than or equal to 10% of the energy of red LED11.
- the white LED 21 The energy of the LED is greater than the energy of any of the LEDs in the original light-emitting device group, and the energy of the overlapping spectrum in the normalized spectrum of the white LED 21 and any of the original light-emitting device groups is greater than or equal to the energy of the two 50%. Since the beams output by the red LED11, the green LED12, and the blue LED13 are combined by the wavelength combining device to form a white light beam, the red LED 11 and the green light are LED12 and blue LED13 combined light output beam and white light LED21 output white light beam in the normalized spectrum of the overlap spectrum energy is greater than or equal to 10% of the energy of the two It is no longer possible to combine light by means of wavelength combining light, but to combine light by means of geometric combination.
- the final light beams output by the original light emitting device group that is, the red LED 11 , the green LED 12 , and the blue LED 13
- the output beam of the light after the wavelength is combined with the output beam of the white LED 21 is incident on the lens 31, respectively.
- the upper and lower sections are geometrically combined on the two sections.
- the cross section of the lens in the present invention refers to the cross section of the lens in the horizontal direction in the drawing.
- the red LED 11 and the green light can be made.
- the beam output from LED12 and blue LED13 and the beam output from white LED21 are spatially spliced before being incident on lens 31.
- the convenient way is to white LED 21 As close as possible to the original light-emitting device group 1 and fit.
- the optical axis of the green LED 12 output light is the final LED of the original illuminator group. Since the emitted light beam is combined with the optical axis, the above object can be achieved by simply bonding the white LED 21 to the green LED 12. It can be understood that the green LED 12 outputs the optical axis of the light and the white LED 2121.
- the optical axes of the output light are respectively located on the upper and lower cross sections of the lens 31 described above.
- the red LED 11 , the green LED 12 and the white LED 21 are arranged along a first line;
- the LED 13 , the first dichroic mirror 14 and the second dichroic mirror 15 are arranged along a second line, and the first line is parallel to the second line to make the structure more compact and to facilitate the heat dissipation design of the LED.
- any LED in the original light-emitting device group is incorporated by a combination of wavelength combining light and geometric combining light.
- the optical expansion of the final output beam of the original light-emitting device group is equivalent to one of the LEDs
- the optical expansion of the beam outputted by the complementary light-emitting device group is also equivalent to the optical expansion of an LED, so the total amount of expansion finally obtained by geometric combining is equal to that of the original light-emitting device group.
- One The amount of expansion of the LED plus the amount of optical expansion of one of the LEDs in the set of complementary light-emitting devices allows for the integration of another LED that overlaps with any of the LEDs in the original group of light-emitting devices relative to prior art solutions. Under the premise of the emitted light beam, the expansion of the entire light source is reduced, and the brightness of the light source is increased.
- the light homogenizing device 4 A homogenizing rod as shown in Fig. 3 can be used, and of course, other types of homogenizing devices such as a fly-eye lens and a Fresnel lens can be used.
- the final output beam of the original light-emitting device group and the fill light-emitting device group is still not on the same cross-section of the geometrical light-combining device.
- the fill light-emitting device group is made of white light.
- the LED constitutes, in order to achieve the purpose of complementing the light-emitting device group, as long as the light-filling device group is composed of a plurality of LEDs having a large spectral overlap with any of the original light-emitting device groups.
- the fill light-emitting device group 26 includes a cyan LED 261 (labeled Cyan in the figure), amber LED 262 (labeled Amber in the figure) and royal blue LED 263 (labeled Royal Blue in the figure) are examples. Cyan LED261, amber LED262 and royal blue The three beams output by the LED 263 are wavelength-coupled by a wavelength combining device in the complementary light-emitting device group.
- the wavelength combining device in the group of complementary light-emitting devices employs two dichroic mirrors which are parallel and obliquely placed (indicated as 2641 and 2642 in the figures) ), it should be understood that the type of wavelength combining device is not specifically limited herein, as long as the LED in the complementary light-emitting device group can be The emitted light may be combined by means of a combination of wavelengths and light. In this embodiment, the geometrical light combining device can still employ the lens 31.
- cyan The positions of LED261, amber LED262, and royal blue LED263 correspond to the types of dichroic mirrors 2641 and 2642, so cyan LED261, amber
- the position of the LED262 and the royal blue LED 263 can be adjusted as long as the light from the first LED output can be transmitted from the front of the first dichroic mirror 2641 and the second dichroic mirror
- the front side of the 2642 is reflected; the light from the second LED is reflected from the back of the first dichroic mirror 2641 and reflected by the front of the second dichroic mirror 2642; the third LED
- the output light can be transmitted from the back side of the second dichroic mirror 2642; finally, the three beams output from the front surface of the second dichroic mirror 2642 can be coaxial.
- the first dichroic mirror 2641 and the second dichroic mirror 2642 The tilt angle in the horizontal direction is 45 degrees.
- the royal blue LED 263 is disposed under the first dichroic mirror 2641, and the illumination beam of the royal blue LED 263 passes through the first dichroic mirror 2641. It is reflected by the second dichroic mirror 2642 onto the lens 31.
- Amber LED262 is placed behind the first dichroic mirror 2641, which is amber LED262 The emitted beam is sequentially reflected by a dichroic mirror 2641 and a second dichroic mirror 2642, and then incident on the lens 31.
- Cyan LED261 is set to the second dichroic mirror 2642 At the rear, the light beam of the cyan LED 261 passes through the second dichroic mirror 2642 and is incident on the lens 31.
- the light beam output from the original light-emitting device group 16 through the wavelength combining light, and the light-emitting light-emitting device group 26 The beams that are output by the wavelength combining light are geometrically combined by a geometrical combining device, and the two beams are spliced on the incident surface of the lens 31.
- the output beam is coaxial, and the final output beam of the fill light-emitting device group 26 is coaxial with the beam output from one of the LEDs (cyan LED 261 in Figure 4), so the original light-emitting device group is adjusted.
- the green LED 12 and the cyan LED 261 can be seamlessly spliced, which can be made as far as possible from the original light-emitting device group 1
- the resulting output beam is seamlessly spliced with the final output from the fill light-emitting device group 26 to maximize the efficient use of the device space.
- the final light beam of the original light emitting device group ie, red LED, green LED, and blue LED
- the output beam of the light after the wavelength is combined
- the final output beam of the complementary light-emitting device group ie, cyan LED261, amber LED262, and royal blue LED263
- the output beams of the light after the wavelengths are combined are incident on the upper and lower cross sections of the lens 31, respectively, and geometric combining is performed on the two sections.
- the green LED 162 outputs the optical axis of the light and the cyan
- the optical axes of the LED 261 output light are located on the upper and lower sections here.
- the red LED 11 , the green LED 12 , the cyan LED 261 , and the amber LED 262 Arrange along the first line; blue LED13, first dichroic mirror 14 and second dichroic mirror 15, second dichroic mirror 2642, first dichroic mirror 2641 and royal blue
- the LEDs 263 are arranged along a second line, and the first line is parallel to the second line to make the structure more compact and to facilitate the heat dissipation design of the LED.
- the complementary light-emitting device group is entirely located below the original light-emitting device group.
- the light-filling light-emitting device group as a whole may also be located above the original light-emitting device group.
- Another embodiment of the light source of the present invention is shown between LEDs, such as in FIG.
- the light source in this embodiment is different from the light source in the first embodiment in that it is a white LED 21 which will serve as a light-filling light-emitting device group. Placed between the red LED 11 and the green LED 12 in the original light-emitting device group.
- the white LED 21 The output beam is bypassed by any one of the wavelength combining devices in the original light emitting device group.
- the white LED 21 outputs a light beam from the first dichroic mirror 14 and the second two.
- Directional color mirror 15 The gap between them passes through and is directly incident on the lens 31.
- the light source in this embodiment can also be incorporated into any LED in the original light-emitting device group by combining wavelength combining light and geometric combining light. A beam of light emitted by another LED with a large spectral overlap.
- Figure 6A Another improved type of light source is shown, and the wavelength combining device of the light source in this embodiment employs a cross-shaped dichroic mirror (abbreviated as X Plane).
- the light-filling light-emitting device group of the light source in this embodiment is still white light
- the LED 25 is configured, and the original light-emitting device group includes at least two light-emitting diode LEDs having an energy of overlapping spectra in the normalized spectra smaller than 50% of the two medium energies, in particular, FIG. 6A
- the original light emitting device group includes a red LED 151, a green LED 152, and a blue LED 153 as an example.
- the three beams of red LED 151, green LED 152 and blue LED 153 are output from the cross dichroic mirror 154
- the three incident planes are incident, and the combined beam output from the cross dichroic mirror 154 is a white light beam through the combined action of the cross dichroic mirror 154.
- red LED 151, green light The positions of the LED 152 and the blue LED 153 can be interchanged at will, and the positions of the red LED 151, the green LED 152, and the blue LED 153 and the cross dichroic mirror 154
- the type of the two dichroic mirrors in the corresponding one is corresponding, and after one factor is determined, the other is determined.
- White LED 25 surrounds the original light-emitting device group to output light directly from the cross-shaped dichroic mirror 154 (in Figure 6A) The middle is surrounded by the green LED 152), and the white light beam output from the white LED 25 is incident around the periphery of the cross-shaped dichroic mirror 154 to the lens as a geometrical illuminating device. On.
- the white light beam that has been merged by the cross-shaped dichroic mirror 154 is also incident on the lens 31, and due to the cross-shaped dichroic mirror 154
- the combined white light beam and the original light emitting device group output light directly from the cross dichroic mirror 154 are emitted on the same optical axis, so on the incident surface of the lens 3, the white LED 25
- the output white light beam also surrounds the white light beam that is combined by the cross dichroic mirror 154 to achieve a geometrical combination of the light output from the white LED 25 and the light beam output from the original light emitting device group.
- the LEDs in the original light-emitting device group that are directly transmitted from the cross-shaped dichroic mirror 154 are the LEDs that face the incident surface of the lens 31, such as The LED in the 6A that faces the incident surface of the lens 31 is the green LED 152.
- the white LED 25 can be designed as a combination of small white LEDs, as long as it can surround the output light directly from the cross dichroic mirror 154 Transmitted LEDs can be, for example, when the shape of the green LED 152 in Figure 6A is circular, the white LEDs 25 can be arranged in a circular shape; and when the green light in Figure 6A When the shape of the LED 152 is a rectangle, the white LEDs 25 can be arranged in a rectangular frame shape.
- the light beam that has been merged through the lens 31 can be incident on the light homogenizing device (the light homogenizing rod 4 in Fig. 6A) to further homogenize.
- the light source in the embodiment can not only realize the geometric combination of the white light beam outputted by the complementary light-emitting device group and the combined light beam outputted by the original light-emitting device group, but also can make the device arrangement of the entire light source more compact.
- the reduction of the volume of the light source facilitates miniaturization of the entire device.
- the output light from the original set of light-emitting devices in Figure 6A is transmitted directly from the cross-shaped dichroic mirror 154.
- the position of the LED is interchanged with the position of the white LED 25, that is, the surround relationship is interchanged, and the output light of the original light-emitting device group directly passes from the cross-shaped dichroic mirror to surround the white light in the complementary light-emitting device group.
- the LED25 is the position of the white LED 25.
- the white LED 25 is located at the center of the LED whose output light is directly transmitted from the cross dichroic mirror 154, in order to make the white LED 25
- the output light can still circumvent the surface of the cross-shaped dichroic mirror 154, and the conventional cross-shaped dichroic mirror 154 needs to be modified, for example, a cross-shaped dichroic mirror 154 can be used.
- a through hole is dug in the center intersection area, so that the white light beam output from the white LED 25 can pass through the through hole.
- the white LED 25 on the incident face of the lens 31, the white LED 25
- the incident position of the output white light beam is in the middle of the incident position of the combined beam output from the original light emitting device group. This design also makes the device arrangement of the entire light source more compact and reduces the volume of the light source.
- Fig. 6B shows a plan view of the light source of the eleventh embodiment
- Fig. 6C shows a side view of the light source in the embodiment.
- the medium light source differs in that the white LEDs 25 in the fill light-emitting device of this embodiment are located at the light exit of the cross-shaped dichroic mirror 154 and are arranged in the cross-shaped dichroic mirror 154.
- the output of the original light-emitting device is surrounded by a light beam.
- white LED 25 The diamonds arranged in a light beam surrounding the original light-emitting device may be converted into a rectangle or a circle, which is not limited herein.
- the LEDs in the original light emitting device group (including red LED 151, green light)
- a lens array 56 is disposed between the LED 152 and the blue LED 153) and the cross dichroic mirror 154, and a lens array is also disposed on the output light path of the white LED 25.
- White light The beam output from the LED 25 is combined with the red LED 151, the green LED 152 and the blue LED 153 to be incident on the fly-eye lens.
- the light is homogenized, and then the lens 31 as a geometrical light combining device is combined into a beam of light, which is focused into a pattern disk 59 having a predetermined pattern.
- the final output beam of the complementary light-emitting device group surrounds the beam finally outputted by the original light-emitting device group, and is combined into a beam by geometric combining.
- the light beams finally output from the original light-emitting device group and the complementary light-emitting device group are on different cross sections of the geometrical light combining device.
- the original light emitting device group and the fill light emitting device group ultimately output a beam of light on the same cross section of the geometrical light combining device.
- the original light emitting device group and the complementary light emitting device group in this embodiment are shown in FIG. 3.
- the original light-emitting device group and the complementary light-emitting device group in the light source shown in the light source are the same, except that in the present embodiment, the relative positions of the original light-emitting device group and the complementary light-emitting device group are adjusted, so that the light-filling light-emitting device group is located in the original light-emitting device.
- the left or right side of the device group, the direction from the left to the right in the embodiment of the present invention refers to the direction perpendicular to the plane of the drawing.
- the final output beam of the original light-emitting device group ie red light
- the output beam of the LED11, the green LED12, and the blue LED13 after the wavelength is combined with the output beam of the white LED 21 is incident on the same section of the lens 31, and the green LED 12
- the optical axis of the output light and the optical axis of the white light LED21 output light are located on the cross section.
- the white LEDs 21 constituting the complementary light-emitting device group are located in the green LEDs 12 of the original light-emitting device group. On the left.
- the wavelength combining device in the original light-emitting device group can be used not only as shown in FIG. 7
- Two tilting dichroic mirrors are provided, and a cross-shaped dichroic mirror can also be used.
- the final output beam of the original light-emitting device group and the final output beam of the complementary light-emitting device group are either geometrically combined on different sections of the geometrical light combining device or combined on the same cross section of the geometrical light combining device.
- Light when the original light-emitting device group and the complementary light-emitting device group are in multiple groups, at least one set of the original light-emitting device group and the at least one light-filling light-emitting device group may finally output a light beam on different sections of the geometrical light-combining device.
- Geometric combining is performed, and at least one of the original set of light-emitting devices and the at least one set of light-emitting light-emitting devices are geometrically combined on the same cross-section of the geometrical light-emitting device.
- both the original light emitting device group and the fill light emitting device are two.
- each group of the original light-emitting device group has the same structure as the original light-emitting device group in the first embodiment, and details are not described herein again, and the respective structures and diagrams of the original light-emitting device group and the complementary light-emitting device group are omitted.
- the original light-emitting device group and the complementary light-emitting device group shown in FIG. 3 are the same and will not be described again here.
- First group of original light-emitting devices The beam outputted by 18a is geometrically combined with the beam output from the first set of complementary light-emitting device groups 28a in the same section of the geometrical illuminating device (lens 31 in Fig. 8), the first set of original illuminating device groups 18a
- the output beam is geometrically combined with the beam output from the second set of complementary light-emitting device groups 28b on different sections of the lens 3.
- the second group of original light-emitting device groups 18b The output beam is geometrically combined with the different sections of the beam output from the first set of complementary light-emitting device groups 28a on the lens 31, the second set of original light-emitting device groups 18b output beam and the second set of complementary light-emitting device groups.
- the 28b output beam is geometrically combined on the same section of the lens 3.
- two sets of original light-emitting device groups can be set to output two beams in the lens 31.
- the incident surface is symmetrical about the origin, and the two beams of the two sets of complementary light-emitting device groups are in the lens 31.
- the incident surface is also symmetrical about the origin. It is easier to achieve the above object by implementing two sets of original light-emitting device groups and two sets of complementary light-emitting devices in parallel with the lens 31.
- this plane is also referred to below as the splicing plane
- the two sets of original illuminating device groups are symmetric about the origin on the plane (for example, Figure 8
- the two sets of complementary light-emitting device groups are symmetric about the origin on the plane (for example, in the second and fourth quadrants in Fig. 8).
- two of the two sets of the original light-emitting device groups are of the same color.
- the LED is also symmetrical about the origin on the splicing surface.
- the red LED 11a in a group of original light-emitting devices at the upper right, and the red light in a group of original light-emitting devices at the lower left.
- the LED 11b is symmetrical about the origin; the green LED 12a in a group of original light-emitting devices at the upper right, and the green LED 12b in a group of original light-emitting devices at the lower left It is about the origin symmetry.
- the upper and lower sets of the original light-emitting device groups can be identical in structure, and the upper and lower sets of complementary light-emitting device groups are identical in structure, thereby eliminating the need to design and produce the original light-emitting device groups of the two structures, and two types.
- the structured fill light-emitting device group reduces design and manufacturing costs.
- the light source provided in this embodiment is similar to the sixth embodiment.
- the original light-emitting device group and the complementary light-emitting device group are also a plurality of groups, and the difference from the sixth embodiment is only that the structure of the light-filling light-emitting device group is as shown in FIG. 4 .
- FIG. 9 and FIG. 10 respectively show the beam propagation paths of the original light-emitting device group and the complementary light-emitting device group in the light source.
- two sets of original light-emitting device groups 17a and 17b can be provided.
- the two beams outputted are symmetrical with respect to the origin on the incident surface of the lens 31, and the two beams output from the two sets of the complementary light-emitting device groups 27a and 27b are also symmetrical with respect to the origin on the incident surface of the lens 31.
- two of the two sets of the original light-emitting device groups are of the same color.
- the LED is also symmetrical about the origin on the splicing surface.
- the two LEDs of the same color in the two sets of complementary light-emitting device groups are also symmetric about the origin on the splicing surface.
- the upper and lower sets of original light-emitting device groups can be identical in structure, and the upper and lower sets of complementary light-emitting device groups are identical in structure, thereby eliminating the need to design and produce two structures of the original light-emitting device group, and two The structure of the complementary light-emitting device group reduces design and manufacturing costs.
- the geometrical light combining device has only a lens, as shown in FIG.
- the geometrical light combining device includes two lenses (labeled 391 and 392, respectively) and a mirror 393.
- the original light emitting device group 19 includes a red LED 191, a green LED 192, and a blue LED 193. It should be understood that the number and type of LEDs in the original light-emitting device group are not limited in practice, and can be flexibly selected according to the needs of actual display. LED in the original light-emitting device group There is no overlap between the wavelength spectra.
- the red LED 191 (denoted as R in the figure) and the green LED 192 in the original light-emitting device group 19 are shown. (marked as G in the figure) and blue LED 193 (denoted as B in the figure) are wavelength-lighted by the cross-shaped dichroic mirror 194, the details of the wavelength combining light, and the individual LEDs in the original light-emitting device group.
- the position is the same as that in the original light-emitting device group in the above-mentioned fourth embodiment, and details are not described herein again.
- the wavelength combining device in the original light-emitting device group 19 can also be used in addition to the cross-shaped dichroic mirror 194.
- Other types of wavelength combining devices, such as two dichroic mirrors that are parallel and obliquely disposed, may be referred to the specific structure of the original light emitting device group in the first embodiment.
- a beam of the final output of the original light-emitting device group 19 is focused by a lens 391.
- the fill light-emitting device group 29 includes a white LED 291. It should be understood that the fill light-emitting device group 29 It is also possible to draw on the scheme of the complementary light-emitting device group in the second embodiment, including at least one LED, and any one of the LEDs of the complementary light-emitting device group and at least one of the original light-emitting device groups.
- the energy of the overlapping spectra in the normalized spectrum is greater than or equal to 10% of the energy of the two.
- the fill light-emitting device group 29 is finally focused by the lens 392, then reflected by the mirror 393, and the slave lens 391 Focused original light-emitting device group 19
- the output beam is geometrically combined.
- the beam obtained after the geometric combination can be incident on the homogenizing device 4 (in the case of the homogenizing rod in Fig. 11).
- the output beam of the light incident with the blue LED 193 and the output beam of the mirror 393 are incident on different horizontal sections of the light entrance of the light-shading rod 4. It can be understood that the white light can also be adjusted.
- the position of the LED 291 and the mirror 393 adjusts the output beam of the mirror 393 to the final output beam of the original light-emitting device group 19 to the light-dancing rod 4 On the same horizontal section of the entrance.
- the light source in this embodiment differs from the light source in the other embodiments only in that the structure of the original light emitting device group is improved.
- the original light emitting device groups are in multiple groups, and in each group of light emitting devices
- the wavelength combining device is also two dichroic mirrors that are parallel and obliquely disposed, and the wavelength combining device in each of the groups of light emitting devices is also two dichroic mirrors that are oblique and parallel.
- the correspondence in different original light emitting device groups The LEDs are spliced together, and accordingly, the filters in the two sets of original light-emitting devices can also be spliced together.
- the first group of original light-emitting devices includes green LED G1, red LED R2, and blue LED. B2.
- the second group of original light emitting devices includes green LED G2, red LED R1 and blue LED B1. Green LED G1, red light through dichroic mirrors 1A and 1B The LED R2 and the blue LED B2 output light beams are combined at the wavelength of the light. Green LED G2, red LED R1 and blue light through dichroic mirrors 2A and 2B The light beam output from the LED B1 is combined at a wavelength of light.
- the LEDs with normalized spectra in different sets of original light-emitting devices are spliced together, for example, green LEDs.
- G1 and green LED G2 are spliced together, red LED R1 and red LED R2 are spliced together, blue LED B1 and blue LED B2 Stitched together.
- the normalized spectra of the two LEDs stitched together can have a large overlap.
- the dichroic mirror 1A and the dichroic mirror 2A are spliced together, the dichroic mirror 1B and the dichroic mirror 2B Stitched together.
- the position of the LEDs in each group of original light-emitting devices corresponds to the type and position of the dichroic mirror.
- green LED G1 is behind the dichroic mirror 1A
- green LED G2 is behind the dichroic mirror 2A
- red LED R2 is below the dichroic mirror 1A
- red LED R1 is below the dichroic mirror 2A
- the blue LED B2 is below the dichroic mirror 1A
- the blue LED B1 is below the dichroic mirror 2A
- the dichroic mirror 1A is stitched together and 2A is located behind the spliced dichroic mirrors 1B and 2B.
- a geometrical illuminating device such as a lens (not shown), can be disposed in front of the lens for combining the final output beams of the first and second sets of original illuminating device groups into a beam of light.
- the direction indicated by the ray arrow is the front side, and vice versa.
- the structure of the wavelength combining device shown in Figure 12 is also compatible with only one set of red LEDs G green LED G and blue LEDs The case of B.
- the LEDs stitched together in Figure 12 can also be only one set, for example, as shown in Figure 13.
- there is only one set of blue LEDs (denoted as B in Figure 13), since only one set of blue LEDs outputs light beams with green LEDs G1 and green LEDs.
- G2 does not overlap, so you only need to use a dichroic mirror 1B above the blue LED to achieve blue LED B and green LED G1 and green LED G2 The light of the light.
- the first group of original light-emitting device groups and the second group of original light-emitting device groups can also be understood as the original light-emitting device group and the complementary light-emitting device group, and the two sets of internal light sources of different colors pass the wavelength combining mode.
- the beams of the two groups after combining light can be combined by geometric combining.
- Figure 12 Above the dashed line is the optical channel of the original light-emitting device group, and below the dotted line is the light channel of the complementary light-emitting device group, and the two light channels are combined into one beam by different spatial positions.
- the second group of original light-emitting device groups can also be understood as a set of complementary light-emitting devices, while the first group of original light-emitting device groups can also be understood as the original light-emitting device group.
- the light source in this embodiment differs from the light source in the other embodiments only in that the structure of the original light emitting device group is improved.
- the original light-emitting device group is two sets, and the two sets of dichroic mirrors are also placed in a cross shape.
- the first group of original light-emitting devices includes green LED G1, red LED R2, and blue LED. B2.
- the second group of original light emitting devices includes green LED G2, red LED R1 and blue LED B1. Green LED G1, red light through dichroic mirrors 1A and 1B The LED R2 and the blue LED B2 output light beams are combined at the wavelength of the light. Green LED G2, red LED R1 and blue light through dichroic mirrors 2A and 2B The light beam output from the LED B1 is combined at a wavelength of light.
- the LEDs with normalized spectra in different sets of original light-emitting devices are spliced together, such as green light.
- LED G1 and green LED G2 are spliced together, red LED R1 and red LED R2 are spliced together, blue LED B1 and blue LED B2 Stitched together.
- the normalized spectra of the two LEDs stitched together can have a large overlap.
- the dichroic mirror 1A and the dichroic mirror 2A are spliced together, the dichroic mirror 1B and the dichroic mirror 2B Stitched together.
- Dichroic mirror 1A and dichroic mirror 2A stitched together at the same time, and dichroic mirror 1B and dichroic mirror 2B spliced together
- a geometrical combining device such as a lens (not shown) for finalizing the output of the first and second sets of original light-emitting device groups may be disposed in front of the dichroic mirror group. Combine a beam of light.
- the first group of original light-emitting device groups and the second group of original light-emitting device groups can also be understood as the original light-emitting device group and the complementary light-emitting device group, and the two sets of internal light sources of different colors pass the wavelength combining mode.
- the beams of the two groups after combining light can be combined by geometric combining.
- Figure 14 Above the dashed line is the optical channel of the original light-emitting device group, and below the dotted line is the light channel of the complementary light-emitting device group, and the two light channels are combined into one beam by different spatial positions.
- the second group of original light-emitting device groups can also be understood as a set of complementary light-emitting devices, while the first group of original light-emitting device groups can also be understood as the original light-emitting device group.
- the original light-emitting device group in this embodiment can significantly save volume.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Projection Apparatus (AREA)
- Non-Portable Lighting Devices Or Systems Thereof (AREA)
Abstract
公开了一种光源和显示系统。光源包括至少一个原始发光器件组(1)和至少一个补光发光器件组(2)。原始发光器件组(1)包括至少两个彼此归一化光谱中重叠光谱的能量小于这两个中能量较小的50%的发光二极管LED(11,12,13),以及利用波长合光方式将原始发光器件组(1)中的所有LED输出的光进行合光的波长合光器件(14,15)。补光发光器件组(2)包括至少一个LED(21)。补光发光器件组(2)的任一LED与原始发光器件组(1)中的至少一LED的归一化光谱中重叠光谱的能量大于等于两者中能量较小的10%。光源还包括几何合光器件(31),几何合光器件(31)将原始发光器件组(1)最终输出的光束与补光发光器件组(2)最终输出的光束利用几何合光的方式合为一束光束。
Description
技术领域
本发明涉及固态照明领域,更具体的说,是涉及一种光源和显示系统。
背景技术
固态发光器件,包括 LED ( Light Emitting Diode ,发光二极管)、 LD (
Laser Diode ,激光二极管),是一种能够将电能转化为可见光的固态的 半导体器件 ,它可以直接将电能转化为可见光。
其中 LED 以及荧光粉覆盖的 LED(phosphor-cover LED, PC-LED)
多作为照明的光源适用于照明领域。荧光粉覆盖的 LED 的原理是将荧光粉涂覆在 LED 芯片的表面,利用 LED 发出的光来激发荧光粉并发出荧光。荧光粉覆盖的
LED 的最常见的例子是将黄色荧光粉涂覆于蓝光 LED 芯片表面,并被蓝光 LED
发射出的蓝光所激发产生黄色光,并与没有被吸收的剩余蓝光混合得到白光。另外,市场上也有将琥珀色荧光粉涂覆于蓝光 LED 表面并最终发射琥珀色光的 LED
产品。由于荧光粉覆盖 LED 具有和 LED 相同的优缺点,所以,下文中提到的 LED 包括 LED 芯片,以及荧光粉覆盖 LED 。
美国专利 US7547114
描述了另一种固态光源的形态。在该方案中,利用一个固态光源的激发光来激发一个转动的荧光粉色轮,来产生荧光或荧光与激发光的混合光。该荧光粉色轮上可以包含一种荧光粉,也可以包含多种荧光粉用于产生颜色光序列。在该方案中,激发光源可以是
LED ,也可以是激光二极管。
所以,固态发光器件就是指使用 LED 或 LD 发光,或利用 LED 或 LD
激发荧光材料发光的器件,其具体形势包括很多种,此处不一一赘述。在下文中,使用 LED
来举例进行具体说明。这并不限制其它类型的固态发光器件的使用,本领域的技术人员可以采用其它类型的固态发光器件对本发明中所举例的 LED
光源进行直接替换,仍然可以实现本发明的有益效果。
现有的 LED 光源多采用如图 1 中所示的现有技术一实现 R ( red ,红光)、 G ( green
,绿光)、 B ( blue ,蓝光)和 W ( White ,白光)颜色的光源照明。其中,图 1 为现有技术一中的 RGBW 形式的 LED
排列图。四种可发出不同颜色光的 LED 芯片紧密排列封装,然后由一个光收集器件收集光。现有技术一中的 LED 光源可以发出红光、绿光、蓝光以及白光,并且通过
LED 的分别控制,其所发出的光的色域很大,颜色饱和度的可调范围也会很大。
但是,因为光学扩展量是四颗 LED
的光学扩展量之和,而根据光学扩展量守恒,光源光学扩展量越小,光源照明亮度越高的原理,现有技术一中的 LED 在实现 RGBW
颜色的光源照明的同时,无法实现高亮度的照明。
图 2 示出了现有技术二可以减小光学扩展量的一种光源,如图 2 所示,该光源中通过十字形二向色镜将红(
R )、绿( G )、蓝( B )三色 LED 输出的光束合为一束光束,该光源的光域扩展量等于一颗 LED
的光学扩展量。虽然在光学扩展量方面有一定的优点,但是利用图 2 中的结构无法合入与 R 、 G 、 B 三者中任一 LED 光谱交叠较大的另一 LED
发出的光束,例如常用于提高亮度的白光光束,因此在亮度方面仍有局限。
发明内容
有鉴于此,本发明提供了一种光源和显示系统,以克服现有技术中无法在合入与原始发光器件组中的任一 LED
光谱交叠较大的另一 LED 发出的光束 。
为实现上述目的,本发明一方面提供一种光源,包括:至少一个原始发光器件组和至少一个补光发光器件组,所述原始发光器件组包括至少两个彼此归一化光谱中重叠光谱的能量小于该两个中能量较小的
50% 的发光二极管 LED ,以及利用波长合光方式将原始发光器件组中的所有 LED 输出的光进行合光的波长合光器件;所述补光发光器件组包括至少一个 LED
,补光发光器件组的任一 LED 与原始发光器件组中的至少一 LED 的归一化光谱中重叠光谱的能量大于等于两者中能量较小的 10% ;
所述光源还包括几何合光器件,所述几何合光器件将原始发光器件组最终输出的光束与补光发光器件组最终输出的光束利用几何合光的方式合为一束光束。
另一方面,本发明还提供一种显示系统,其特征在于,包括上述的光源
经由上述的技术方案可知,与现有技术相比,在本发明的光源中能够合入与原始发光器件组中的任一发光器件光谱交叠较大的另一发光器件发出的光束。此外,由于原始发光器件组最终输出的光束的光学扩展量相当于其中的一个发光器件所占的光学扩展量,补光发光器件组输出的光束的光学扩展量也相当于一个发光器件所占的光学扩展量,所以最终经过几何合光得到的总的扩展量就等于原始发光器件组中一个发光器件的扩展量加上补光发光器件组中一个发光器件的光学扩展量,相对于现有技术中的方案能够在合入与原始发光器件组中的任一发光器件光谱交叠较大的另一发光器件发出的光束的前提下,降低整个光源的扩展量,提高光源的亮度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图 1 为现有技术一中的 LED 光源的封装示意图;
图 2 为现有技术二中的 LED 光源的结构示意图;
图 3 为本发明中的光源的一个具体实施例的结构示意图;
图 4 为本发明中的光源的另一个具体实施例的结构示意图;
图 5 为本发明中的光源的另一个具体实施例的结构示意图;
图 6A 为本发明中的光源的另一个具体实施例的结构示意图;
图 6B 为本发明中的光源的另一个具体实施例的俯视图;
图 6C 为图 6B 中的光源的侧视图;
图 7 为本发明中的光源的另一个具体实施例的结构示意图;
图 8 为本发明中的光源的另一个具体实施例的结构示意图;
图 9 和图 10
分别为示出了原始发光器件组和补光发光器件组的光束传播路径的本发明的光源的另一个具体实施例的结构示意图;
图 11 为本发明中的光源的另一个具体实施例的结构示意图;
图 12 为本发明中的光源的另一个具体实施例中的原始发光器件组的结构示意图;
图 13 为本发明中的光源的另一个具体实施例中的原始发光器件组的结构示意图;
图 14 为本发明中的光源的另一个具体实施例中的原始发光器件组的结构示意图;
图 15 为两个 LED 的归一化发光光谱图。
具体实施方式
为了引用和清楚起见,下文以及附图中使用的技术名词的说明、简写或缩写总结如下:
LED : Light Emitting Diode ,发光二极管。
波长合光器件,是利用光波长的差异,将两束光合为一束光的器件。
几何合光器件,是利用空间位置的差异,将两束光合为一束光的器件。
在本发明具体实施方式的描述中,使用 LED
来举例进行具体说明。这并不限制其它类型的固态发光器件的使用,本领域的技术人员可以采用其它类型的固态发光器件对本发明中所举例的 LED
光源进行直接替换,仍然可以实现本发明的有益效果。固态发光器件可能是发光二极管、激光二极管或使用发光二极管和激光二极管中的至少一种激发荧光材料产生荧光的发光器件,以及这三者中至少任意两者的组合。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
由背景技术可知,现有技术一中虽然能够通过将红、绿、蓝、白光四颗 LED
进行简单地几何合光,但是由于整个光源的光学扩展量是四颗 LED
的光学扩展量之和,所以无法达到高亮度的要求。而现有技术二中的光源虽然通过常规的波长合光器件(例如十字形分色镜 X plane
)能够实现红、绿、蓝三束光的合束,并且光学扩展量可以控制在一颗 LED
的光学扩展量左右,但是现有常规的波长合光器件无法将几束归一化光谱存在较大重叠的光束进行有效合束的,例如如果为了提高亮度,需要将白光 LED
发出的光束与红、绿、蓝三束光进行合束,由于白光 LED 发出的光的光谱范围较宽,其与红、绿、蓝光 LED
发出的三束光之间存在光谱上较大的重叠,不能直接现有的波长合光器件进行有效合光。
本发明正是考虑上述两种现有技术的缺陷后,提出了一种采用波长合光和几何合光相结合的方式的光源。
在下文中,使用两个归一化光谱中重叠光谱的能量小于该两个中能量较小的百分比来描述两个光谱光的交叠程度。例如在图 15 中显示的两个 LED 的归一化发光光谱
1501 和 1502 ,其交叠部分 1503 的能量即为 1503 所指示区域的面积。而归一化光谱 1501 和 1502
各自的能量即为其各自包围的面积,归一化光谱 1502 的能量比归一化光谱 1501 稍大。而交叠部分 1503 的能量约占两个原始光谱中能量较小的归一化光谱
1501 的能量的 80% ,此时若使用波长合光器件对这两个光谱进行合光,则总的能量损失将达到 30%~40%
。这对于一般的光学系统来说是不能接受的,因此这两个光谱光 1501 和 1502 需要使用几何合光方式合光。
本发明提供的光源包括至少一个原始发光器件组和至少一个补光发光器件组,原始发光器件组中包括至少两个彼此归一化光谱中重叠光谱的能量小于该两个中能量较小的 50%
的 LED ,发光器件组中的所有 LED 通过波长合光器件进行合光;补光发光器件组包括至少一个 LED ,补光发光器件组的任一 LED
与原始发光器件组中的至少一 LED 的归一化光谱中重叠光谱的能量大于等于两者中能量较小的 10% ;
原始发光器件组最终输出的光束和补光发光器件组最终输出的光束通过几何合光器件利用几何合光的方式合为一束光束。
本发明实施例提供的光源能够合入与原始发光器件组中的任一 LED 光谱交叠较大的另一 LED
发出的光束。
在本发明中,原始发光器件组最终输出的光束与补光发光器件组最终输出的光束在几何合光器件的不同截面上进行几何合光,也可以在相同截面上进行几何合光,或者二者相结合。
另外,根据实际的需要,原始发光器件组中的 LED
的类型和个数是可以根据显示的需要灵活选择的,例如对于三基色显示的要求,原始发光器件组中可以包括红光 LED 、蓝光 LED 和绿光 LED
。补光发光器件组的内部具体结构并没有任何限定,只要其中的任一 LED 与原始发光器件组中的至少一 LED 的归一化光谱中重叠光谱的能量大于等于两者中能量较小的
10% 即可,因此补光发光器件组可以是白光 LED 本身,也可以是多基色的 LED 。优选地,补光发光器件组的任一 LED 与原始发光器件组中的至少一 LED
的归一化光谱中重叠光谱的能量大于等于两者中能量较小的 50% 。
此外,几何合光器件的类型也可以有很多种,例如,可以通过单一的透镜,使得原始发光器件组和补光发光器件组输出的光束在透镜的入射位置上几何拼接,就可以实现两束光束的几何合光;当然也可以通过两个或两个以上的器件实现上述几何合光器件。
以下根据原始发光器件组和补光发光器件组最终输出的光束是否在相同截面进行几何合光来详细说明本发明的各个具体实施例。
实施例一
图 3
示出了本发明中的光源的一个具体实施例,在本实施例中,原始发光器件组和补光发光器件组最终输出的光束在几何合光器件的不同截面上。为便于描述,以下使用了'上方''下方'来表示各元器件之间的位置关系,该'上方''下方'分别为图中的上方、下方。
参见图 3 ,在本实施例中,特别地以原始发光器件组包括三基色的 LED
为例进行说明,具体地,原始发光器件组 1 包括红光 LED11 (图中标为 R )、绿光 LED12 (图中标为 G )和蓝光 LED13 (图中标为 B
)。本领域技术人员应该清楚,在实际中原始发光器件组中的 LED
的个数并没有任何限定,可以根据实际显示的需要灵活选择。此外即便是三基色的显示场景,也不一定局限于图 3 中所示的采用红、绿、蓝光 LED 的方式。
由于原始发光器件组 1 中的两个 LED
之间在归一化光谱上重叠较小,通常它们的归一化光谱中重叠光谱的能量小于两个中能量较小的 5% ,所以通过波长合光器件利用波长合光的方式进行合光,在图 3
中特别地以该波长合光器件为两个相互平行并且倾斜放置的二向色镜(在图中分别记为 14 和 15
)为例,应该能够理解,这里并不对波长合光器件的类型和数量做具体限定,只要能够利用波长合光的方式将原始发光器件组的 LED
发出的光进行合束即可。在本实施例中,几何合光器件为一个透镜 31 ,补光发光器件组 2 包括一个白光 LED21 (图中标为 W )。
当采用如图 3 中的两个相互平行的二向色镜 14 、 15 实现波长合光时,红光 LED11 、绿光
LED12 和蓝光 LED13 的位置是可以灵活调整的,只要满足其中第一个 LED 输出的光能够从第一个二向色镜 14 的正面透射,并在第二个二向色镜 15
的正面反射;而第二个 LED 输出的光能够从第一个二向色镜 14 的背面反射,并经过第二个二向色镜 15 的正面反射;第三个 LED
输出的光能够从第二个二向色镜 15 的背面透过;最终从第二个二向色镜 15 正面输出的三束光束共轴即可。
当红光 LED11 、绿光 LED12 和蓝光 LED13 的位置确定后,则需要根据这三个 LED
的位置,正确选择两个二向色镜的类型,例如,对于红光 LED11 、绿光 LED12 和蓝光 LED13 采用图 3 中示出的位置,则靠上的第一个二向色镜 14
需要选择能够透过蓝光并反射其他波长范围光的二向色镜,靠下的第二个二向色镜 15 需要选择能够透过绿光并反射其他波长范围光的二向色镜。
以图 3 为例,第一个二向色镜 14 与第二个二向色镜 15 沿水平方向的倾斜角为 135 度。蓝光
LED13 设置于第一个二向色镜 14 的上方,该蓝色 LED13 所发光束透过该第一个二向色镜 14 ,经第二个二向色镜 15 反射至透镜 31 上。红光
LED11 设置于第一个二向色镜 14 的后方,该红光 LED11 所发光束依次经过一个二向色镜 14 和第二个二向色镜 15 的反射后,入射至透镜 31
上。绿光 LED12 设置于第二个二向色镜 15 的后方,该绿光 LED12 所发光束透过第二个二向色镜 15 ,入射至透镜 31 上。
本实施例中还包括白光 LED21 ,该白光 LED21 与原始发光器件组中的至少一 LED
的归一化光谱中重叠光谱的能量大于等于两者中能量较小的 10% 。例如,白光 LED21 的能量大于原始发光器件组中的红光 LED11 的能量,且白光
LED21 与红光 LED11 的归一化光谱中重叠光谱的能量大于等于红光 LED11 能量的 10% 。优选地,白光 LED21
的能量大于原始发光器件组中任一 LED 的能量,且白光 LED21 与原始发光器件组中的任一 LED 的归一化光谱中重叠光谱的能量大于等于两者中能量较小的
50% 。由于红光 LED11 、绿光 LED12 和蓝光 LED13 输出的光束经过波长合光器件合束也形成一种白光光束,这就使得红光 LED11 、绿光
LED12 和蓝光 LED13 合光输出的光束和白光 LED21 输出的白光光束在归一化光谱中的重叠光谱的能量大于等于两者中的能量较小的 10%
,不能再利用波长合光的方式进行合光,而采用几何合光的方式进行合光。
本实施例中,原始发光器件组最终输出的光束,即红光 LED11 、绿光 LED12 和蓝光 LED13
的光经波长合光后的输出光束与白光 LED21 的输出光束分别入射到透镜 31
的上、下两个截面上,在该两个截面上进行几何合光。本发明中透镜的截面指的是透镜在图中水平方向上的截面。
为了使得原始发光器件组和补光发光器件组输出的光束在透镜的入射位置上几何拼接,可以让红光 LED11 、绿光
LED12 和蓝光 LED13 输出的光束和白光 LED21 输出的光束在入射到透镜 31 之前就进行空间上的几何拼接,比较方便的方式是将白光 LED21
与原始发光器件组 1 尽量靠近并贴合。例如,对于图 3 中,由于绿光 LED12 输出光的光轴就是最终原始发光器件组所有 LED
发出的光束合束后的光轴,所以只要将白光 LED21 与绿光 LED12 贴合,即可实现上述目的。可以理解的是,绿光 LED12 输出光的光轴与白光 LED21
输出光的光轴分别位于上述透镜 31 的上、下两个截面上。
优选地,本实施例中,红光 LED11 、绿光 LED12 与白光 LED21 沿第一直线排列;蓝光
LED13 、第一个二向色镜 14 与第二个二向色镜 15 沿第二直线排列,第一直线与第二直线平行,以使结构更为紧凑并便于 LED 的散热设计。
本实施例中光源中,通过波长合光和几何合光相结合的方式,合入了与原始发光器件组中的任一 LED
光谱交叠较大的另一 LED 发出的光束。
此外,由于原始发光器件组最终输出的光束的光学扩展量相当于其中的一个 LED
所占的光学扩展量,补光发光器件组输出的光束的光学扩展量也相当于一个 LED 所占的光学扩展量,所以最终经过几何合光得到的总的扩展量就等于原始发光器件组中一个
LED 的扩展量加上补光发光器件组中一个 LED 的光学扩展量,相对于现有技术中的方案能够在合入与原始发光器件组中的任一 LED 光谱交叠较大的另一 LED
发出的光束的前提下,降低整个光源的扩展量,提高光源的亮度。
另外,几何拼接后,从透镜 31 出射的光可以直接聚焦入射到匀光器件 4 中。特别地,匀光器件 4
可以采用如图 3 中的匀光棒,当然也可以采用复眼透镜、菲涅尔透镜等其他类型的匀光器件。
实施例二
在图 4
中示出的光源的另一个实施例中,原始发光器件组和补光发光器件组最终输出的光束仍然不在几何合光器件的同一个截面上。但是在前面的实施例中,补光发光器件组是由白光
LED 构成的,实际上为了达到补光发光器件组的补光的目的,只要补光发光器件组由多个与原始发光器件组中的任一 LED 光谱交叠较大的 LED 构成。
如图 4 所示,补光发光器件组 26 包括青色 LED261 (图中标为 Cyan )、琥珀色
LED262 (图中标为 Amber )和宝蓝色 LED263 (图中标为 Royal Blue )为例。青色 LED261 、琥珀色 LED262 和宝蓝色
LED263 输出的三束光束通过补光发光器件组中的波长合光器件进行波长合光。在图 4
中,补光发光器件组中的波长合光器件采用了两个相互平行并且倾斜放置的二向色镜(在图中分别记为 2641 和 2642
),应该能够理解这里并不对波长合光器件的类型做具体限定,只要能够将补光发光器件组中的 LED
发出的光利用波长合光的方式进行合束即可。在本实施例中,几何合光器件仍然可以采用透镜 31 。
当采用图 4 中的二向色镜 2641 和 2642 对补光发光器件组中的多数光束进行合束时,青色
LED261 、琥珀色 LED262 和宝蓝色 LED263 的位置与二向色镜 2641 和 2642 的类型是对应的,因此青色 LED261 、琥珀色
LED262 和宝蓝色 LED263 的位置时可以调整的,只要满足其中第一个 LED 输出的光能够从第一个二向色镜 2641 的正面透射,并在第二个二向色镜
2642 的正面反射;而第二个 LED 输出的光能够从第一个二向色镜 2641 的背面反射,并经过第二个二向色镜 2642 的正面反射;第三个 LED
输出的光能够从第二个二向色镜 2642 的背面透过;最终从第二个二向色镜 2642 正面输出的三束光束共轴即可。当青色 LED261 、琥珀色 LED262
和宝蓝色 LED263 的位置确定后,则需要根据这三个 LED 的位置,正确选择两个二向色镜的类型,例如,对于青色 LED261 、琥珀色 LED262
和宝蓝色 LED263 采用图 4 中示出的位置,则靠下的第一个二向色镜 2641
需要选择能够透过宝蓝色光并反射其他波长范围光的二向色镜,靠上的第二个二向色镜 2642 需要选择能够透过青色光并反射其他波长范围光的二向色镜。
以图 4 为例,在补光发光器件组中,第一个二向色镜 2641 与第二个二向色镜 2642
沿水平方向的倾斜角为 45 度。宝蓝色 LED263 设置于第一个二向色镜 2641 的下方,该宝蓝色 LED263 所发光束透过该第一个二向色镜 2641
,经第二个二向色镜 2642 反射至透镜 31 上。琥珀色 LED262 设置于第一个二向色镜 2641 的后方,该琥珀色 LED262
所发光束依次经过一个二向色镜 2641 和第二个二向色镜 2642 的反射后,入射至透镜 31 上。青色 LED261 设置于第二个二向色镜 2642
的后方,该青色 LED261 所发光束透过第二个二向色镜 2642 ,入射至透镜 31 上。
从原始发光器件组 16 通过波长合光输出的光束,与从补光发光器件组 26
通过波长合光输出的光束,利用几何合光器件,进行几何合光,两束光束在透镜 31 的入射面上进行拼接。
由于原始发光器件组 16 最终输出的光束与其中一个 LED (在图 4 中为绿光 LED12
)输出的光束共轴,而补光发光器件组 26 最终输出的光束与其中的一个 LED (在图 4 中为青色 LED261 )输出的光束共轴,所以在调整原始发光器件组
16 和补光发光器件组 26 之间的位置时,可以将绿光 LED12 和青色 LED261 进行无缝拼接,这就可以尽量使得从原始发光器件组 1
最终输出的光束与从补光发光器件组 26 最终输出的光束进行无缝拼接,最大效率地利用器件空间。
本实施例中,原始发光器件组最终输出的光束(即红光 LED 、绿光 LED 和蓝光 LED
的光经波长合光后的输出光束),与补光发光器件组最终输出的光束(即青色 LED261 、琥珀色 LED262 和宝蓝色 LED263
的光经波长合光后的输出光束)分别入射到透镜 31 的上、下两个截面上,在该两个截面上进行几何合光。可以理解的是,绿光 LED162 输出光的光轴与青色
LED261 输出光的光轴分别位于此处的上、下两个截面上。
优选地,本实施例中,红光 LED11 、绿光 LED12 、青色 LED261 、琥珀色 LED262
沿第一直线排列;蓝光 LED13 、第一个二向色镜 14 与第二个二向色镜 15 、第二个二向色镜 2642 、第一个二向色镜 2641 与宝蓝色
LED263 沿第二直线排列,第一直线与第二直线平行,以使结构更为紧凑并便于 LED 的散热设计。
实施例三
上述实施例一和实施例二的技术方案中,补光发光器件组整体位于原始发光器件组的下方,当然补光发光器件组整体也可以位于原始发光器件组的上方。实际上,还可以将补光发光器件组置于原始发光器件组中的两个
LED 之间,例如图 5 中示出了本发明的光源的另一实施例。
本实施例中的光源与实施例一中的光源的区别在于,将作为补光发光器件组的白光 LED21
置于原始发光器件组中的红光 LED11 和绿光 LED12 之间。
原始发光器件组的内部结构,以及原始发光器件组中的 LED
与两个二向色镜之间的位置关系与实施例一中相同,这里不再赘述。
需要强调的是,本实施例中,白光 LED21
输出的光束要绕开原始发光器件组中的波长合光器件中的任一个二向色镜,例如在图 5 中,白光 LED21 输出的光束从第一个二向色镜 14 和第二个二向色镜 15
之间的空隙穿过,直接入射到透镜 31 上。
本实施例中的光源同样可以通过波长合光和几何合光相结合的方式,合入与原始发光器件组中的任一 LED
光谱交叠较大的另一 LED 发出的光束。
实施例四
为了进一步提高光源的紧凑程度,图 6A
中示出了另一种改进型的光源,该实施例中的光源的波长合光器件采用十字形二向色镜(简称为 X Plane )。具体地,本实施例中的光源的补光发光器件组仍然由白光
LED25 构成,而原始发光器件组包括至少两个彼此归一化光谱中重叠光谱的能量小于该两个中能量较小的 50% 的发光二极管 LED ,特别地,图 6A
以原始发光器件组包括红光 LED151 、绿光 LED152 和蓝光 LED153 为例。
红光 LED151 、绿光 LED152 和蓝光 LED153 输出的三束光分别从十字形二向色镜 154
的三个入射面入射,经过十字形二向色镜 154 的合光作用,从十字形二向色镜 154 输出的合束光束为白光光束。应该能够理解,红光 LED151 、绿光
LED152 和蓝光 LED153 的位置可以随意互换,红光 LED151 、绿光 LED152 和蓝光 LED153 的位置与十字形二向色镜 154
中的两个二向色镜的类型是对应的,其中一个因素定了之后,另一个也就确定了。
白光 LED25 环绕在原始发光器件组中输出光直接从十字形二向色镜 154 透射的 LED (在图 6A
中为绿光 LED152 )的周围,并且白光 LED25 输出的白光光束绕开十字形二向色镜 154 的外围入射到作为几何合光器件的透镜 31
上。而经过十字形二向色镜 154 合束后的白光光束也入射到透镜 31 上,并且由于十字形二向色镜 154
合束后的白光光束与原始发光器件组中输出光直接从十字形二向色镜 154 透射的 LED 发出的光束在同一光轴上,所以在透镜 3 的入射面上,白光 LED25
输出的白光光束也仍然环绕在十字形二向色镜 154 合束的白光光束周围,实现白光 LED25 输出的光束与原始发光器件组输出的光束的几何合光。
需要说明的是,当十字形二向色镜 154 与作为几何合光器件的透镜 31
之间没有任何改变光束传输方向的器件时,上述原始发光器件组中输出光直接从十字形二向色镜 154 透射的 LED 就是正对透镜 31 入射面的 LED ,例如图
6A 中正对透镜 31 入射面的 LED 就是绿光 LED152 。
另外,白光 LED25 可以设计成多个小的白光 LED 拼接而成,只要能够环绕输出光直接从十字形二向色镜
154 透射的 LED 即可,例如,当图 6A 中的绿光 LED152 的形状为圆形时,则白光 LED25 可以排列成圆环形;而当图 6A 中的绿光
LED152 的形状为矩形时,则白光 LED25 可以排列成矩形框形。
经过透镜 31 合光的光束可以入射到匀光器件(在图 6A 中为匀光棒 4 )中,进一步进行匀光。
由此可见,本实施例中的光源不仅能够实现补光发光器件组输出的白光光束与原始发光器件组输出的合束光束进行几何合光,而且还可以使得整个光源的器件排布更为紧凑,减少光源的体积,有利于整个装置的小型化。
另外,一种可替换的实施例中,将图 6A 中的原始发光器件组中输出光直接从十字形二向色镜 154 透射的
LED 的位置与白光 LED25 的位置互换,即环绕关系进行互换,原始发光器件组中输出光直接从十字形二向色镜透射的 LED 环绕在补光发光器件组中的白光
LED25 的周围。此时白光 LED25 位于输出光直接从十字形二向色镜 154 透射的 LED 的中心,为了让白光 LED25
输出的光仍然能够绕开十字形二向色镜 154 的表面,需要对传统的十字形二向色镜 154 进行改进,例如可以将十字形二向色镜 154
的中心交叉区域挖出一个通孔,使得白光 LED25 输出的白光光束刚好全部能够从这个通孔穿过。在这个可替换的实施例中,在透镜 31 的入射面上,白光 LED25
输出的白光光束的入射位置在原始发光器件组输出的合束光束的入射位置的中间。这种设计同样可以使得整个光源的器件排布更为紧凑,减少光源的体积。
图 6B 示出了实施例十一的光源的俯视图,图 6C 示出了该实施例中的光源的侧视图。与图 6A
中光源的不同点在于,该实施例中的补光发光器件中的白光 LED25 位于十字形二向色镜 154 的光出口处,并且排列在从十字形二向色镜 154
输出的原始发光器件的光束的周围。如图 6C 所示,白光 LED25
排布为围绕原始发光器件的光束的菱形,也可以变换为矩形、圆形,此处不作限定。此外,在本实施例中,原始发光器件组中的 LED (包括红光 LED151 、绿光
LED152 和蓝光 LED153 )与十字二向色镜 154 之间都设置了透镜阵列 56 ,此外在白光 LED25 的输出光路径上也设置了透镜阵列。白光
LED25 输出的光束与红光 LED151 、绿光 LED152 和蓝光 LED153 合束得到的光束先入射到复眼透镜 57
中进行匀光,而后经过作为几何合光器件的透镜 31 合为一束光,聚焦到具有预定图案的图案盘 59 中。
在本实施例中,补光发光器件组最终输出的光束围绕在原始发光器件组最终输出的光束的周围,并利用几何合光的方式合为一束光束。
实施例五
在上面的实施例一到实施例三中,原始发光器件组和补光发光器件组最终输出的光束在几何合光器件的不同截面上。而在图 7
示出的本发明的光源的另一实施例中,原始发光器件组和补光发光器件组最终输出的光束在几何合光器件的同一个截面上。
请参见图 7 ,本实施例中原始发光器件组和补光发光器件组与图 3
中示出的光源中的原始发光器件组和补光发光器件组相同,只是在本实施例中调整了原始发光器件组和补光发光器件组的相对位置,使补光发光器件组位于原始发光器件组的左边或右边,本发明实施例中的从左边到右边的方向是指垂直于附图所在平面的方向。原始发光器件组最终输出的光束,即红光
LED11 、绿光 LED12 和蓝光 LED13 的光经波长合光后的输出光束与白光 LED21 的输出光束入射到透镜 31 的同个截面上,绿光 LED12
输出光的光轴与白光 LED21 输出光的光轴均位于该截面上。
以图 7 为例,构成补光发光器件组的白光 LED21 位于原始发光器件组中的绿光 LED12
的左边。
当然,原始发光器件组中的波长合光器件不仅可以采用如图 7
中的两个倾斜设置的二向色镜,而且还可以采用十字形二向色镜。
实施例六
以上实施例中,原始发光器件组最终输出的光束与补光发光器件组最终输出的光束要么在几何合光器件的不同截面上进行几何合光,要么在几何合光器件的同一截面上进行合光。实际上,当原始发光器件组和补光发光器件组为多组时,还可以至少一组原始发光器件组与至少一组补光发光器件组最终输出的光束在几何合光器件的不同截面上进行几何合光,而另外至少一组原始发光器件组与至少一组补光发光器件组最终输出的光束在几何合光器件的相同截面上进行几何合光。
在图 8
示出的本发明的光源的另一实施例中,原始发光器件组和补光发光器件均为两组。并且作为一个例子,每组原始发光器件组与实施例一中的原始发光器件组的结构相同,这里不再赘述,原始发光器件组和补光发光器件组的各自结构与图
3 中示出的原始发光器件组和补光发光器件组相同,这里不再赘述。
但是本实施例中对于这些原始发光器件组和补光发光器件组之间的位置关系有比较优选的限定。第一组原始发光器件组
18a 输出的光束与第一组补光发光器件组 28a 输出的光束在几何合光器件(在图 8 中为透镜 31 )上的相同截面进行几何合光,第一组原始发光器件组 18a
输出的光束与第二组补光发光器件组 28b 输出的光束在透镜 3 上的不同截面上进行几何合光。同理,第二组原始发光器件组 18b
输出的光束与第一组补光发光器件组 28a 输出的光束在透镜 31 上的不同截面进行几何合光,第二组原始发光器件组 18b 输出的光束与第二组补光发光器件组
28b 输出的光束在透镜 3 上的相同截面上进行几何合光。
为了更好地改善最终光源输出的光束的亮度均匀性,可以设置两组原始发光器件组输出的两个光束在透镜 31
的入射面上关于原点对称,两组补光发光器件组的输出的两个光束在透镜 31
的入射面上也是关于原点对称的。比较容易达到上述目的的实现方式是,将两组原始发光器件组和两组补光发光器件组在平行于透镜 31
的平面上进行拼接(该平面以下也称为拼接面),使得两组原始发光器件组在该平面上关于原点对称(例如图 8
中位于一、三象限),两组补光发光器件组在该平面上关于原点对称(例如图 8 中位于二、四象限)。
这样可以使得最终合束得到的光的亮度的均匀性更高。
为了进一步满足更理想的亮度均匀性,一种更优的实施例中,上述两组原始发光器件组中的任意相同颜色的两个
LED 在拼接面上也是关于原点对称的。例如,在图 8 中,位于右上方的一组原始发光器件组中的红光 LED11a ,与位于左下方的一组原始发光器件组中的红光
LED11b 是关于原点对称的;位于右上方的一组原始发光器件组中的绿光 LED12a ,与位于左下方的一组原始发光器件组中的绿光 LED12b
是关于原点对称的。这样的设计,不仅能够从最细节上实现发光器件的对称排布。而且还可以让上下两组原始发光器件组在结构上完全相同,上下两组补光发光器件组在结构上也完全相同,进而不需要设计并生产两种结构的原始发光器件组,以及两种结构的补光发光器件组,降低了设计和制造成本。
实施例七
本实施例提供的光源与实施例六类似,原始发光器件组和补光发光器件组也为多组,与实施例六的区别仅在于,补光发光器件组的结构采用如图 4
所示实施例中的补光发光器件组的结构。
具体地,图 9 和图 10 分别详细示出了该光源中原始发光器件组和补光发光器件组的光束传播路径。
在图 9 和图 10 中,两组原始发光器件组分别记为 17a 和 17b ,两组补光发光器件组分别记为
27a 和 27b 。
为了更好地改善最终光源输出的光束的亮度均匀性,可以设置两组原始发光器件组 17a 和 17b
输出的两个光束在透镜 31 的入射面上关于原点对称,两组补光发光器件组 27a 和 27b 输出的两个光束在透镜 31 的入射面上也关于原点对称。
比较容易达到上述目的的实现方式是,将两组原始发光器件组和两组补光发光器件组在平行于透镜 31
的平面上进行拼接,使得两组原始发光器件组 17a 和 17b 在该平面上关于原点对称(例如图 9 中位于一、三象限),两组补光发光器件组 27a 和 27b
在该平面上关于原点对称(例如图 9 中位于二、四象限)。
为了进一步满足更理想的亮度均匀性,一种更优的实施例中,上述两组原始发光器件组中的任意相同颜色的两个
LED 在拼接面上也是关于原点对称的,上述两组补光发光器件组中的任意相同颜色的两个 LED 在拼接面上也是关于原点对称的
。这样的设计,不仅能够从最细节上实现发光器件的对称排布。而且还可以让上下两组原始发光器件组在结构上完全相同,上下两组补光发光器件组在结构上也完全相同,进而不再需要设计并生产两种结构的原始发光器件组,以及两种结构的补光发光器件组,降低了设计和制造成本。
实施例八
在上述各个实施例中,几何合光器件均只有透镜,在图 11
示出的光源的另一实施例中,几何合光器件中包括两个透镜(分别记为 391 和 392 )以及反射镜 393 。
在本实施例中,原始发光器件组 19 包括红光 LED191 、绿光 LED192 和蓝光 LED193
,应该可以理解,在实际中原始发光器件组中的 LED 的个数和类型并没有任何限定,可以根据实际显示的需要灵活选择。该原始发光器件组中的 LED
之间的波长光谱不存在重叠。
在本实施例中,原始发光器件组 19 中的红光 LED191 (图中记为 R )、绿光 LED192
(图中记为 G )和蓝光 LED193 (图中记为 B )通过十字形二向色镜 194 进行波长合光,波长合光的细节以及原始发光器件组中的各个 LED
的位置与上述实施例四中的原始发光器件组中的相关内容相同,这里不再赘述。
需要说明的是,原始发光器件组 19 中的波长合光器件也可以采用除了十字形二向色镜 194
以外的其他类型的波长合光器件,例如两个相互平行并且倾斜设置的二向色镜,可以参见实施例一中的原始发光器件组的具体结构。
原始发光器件组 19 最终输出的一束光束经过一个透镜 391 进行聚焦。
在本实施例中,补光发光器件组 29 包括一个白光 LED291 。应该可以理解,补光发光器件组 29
也可以借鉴实施例二中的补光发光器件组的方案,包括至少一个 LED ,并且补光发光器件组的任一 LED 与原始发光器件组中的至少一 LED
的归一化光谱中重叠光谱的能量大于等于两者中能量较小的 10% 。
补光发光器件组 29 最终输出的光束通过透镜 392 聚焦后,再经过反射镜 393 的反射,与从透镜
391 聚焦的原始发光器件组 19 输出的光束进行几何合光。几何合光后得到的光束可以入射到匀光器件 4 (在图 11 中为匀光棒)中。
如图 11 所示, 原始发光器件组 19 最终输出的光束,即红光 LED191 、绿光 LED192
和蓝光 LED193 的光经波长合光后的输出光束与反射镜 393 的输出光束入射到匀光棒 4 入光口的不同水平截面上,可以理解的是,也可以通过调整白光
LED291 与反射镜 393 的位置,将反射镜 393 的输出光束调整到与原始发光器件组 19 最终输出的光束入射到匀光棒 4
入光口的相同水平截面上。
实施例九
本实施例中的光源相对于其他实施例中的光源的区别仅在于对原始发光器件组的结构进行了改进。在图 12
示出的本实施例中,原始发光器件组为多组,并且每组发光器件组中的
波长合光器件也是两个相互平行并且倾斜设置的二向色镜,每个发光器件组中的波长合光器件也是倾斜并且平行的两个二向色镜。需要说明的是,在本实施例中,不同原始发光器件组中的对应
LED 拼接在一起,相应地,两组原始发光器件组中的滤光片也可以拼接在一起。
以图 12 为例,第一组原始发光器件组中包括绿光 LED G1 ,红光 LED R2 ,蓝光 LED
B2 。第二组原始发光器件组中包括绿光 LED G2 ,红光 LED R1 和蓝光 LED B1 。通过二向色镜 1A 和 1B 将绿光 LED G1 ,红光
LED R2 和蓝光 LED B2 输出的光束以波长合光的方式进行合光。通过二向色镜 2A 和 2B 将绿光 LED G2 ,红光 LED R1 和蓝光
LED B1 输出的光束以波长合光的方式进行合光。
在图 12 中,将不同组原始发光器件组中 归一化光谱较接近的 LED 拼接在一起,例如 绿光 LED
G1 和绿光 LED G2 拼接在一起,红光 LED R1 和红光 LED R2 拼接在一起,蓝光 LED B1 和蓝光 LED B2
拼接在一起。拼接在一起的两个 LED 的归一化光谱可以存在较大的重叠。
相应地,二向色镜 1A 和二向色镜 2A 拼接在一起,二向色镜 1B 和二向色镜 2B
拼接在一起。
需要说明的是,每组原始发光器件组中的 LED 的位置与二向色镜的类型和位置是对应的。例如在图 12
中,绿光 LED G1 在二向色镜 1A 的后方,绿光 LED G2 在二向色镜 2A 的后方;红光 LED R2 在二向色镜 1A 的下方,红光 LED
R1 在二向色镜 2A 的下方;蓝光 LED B2 在二向色镜 1A 的下方,蓝光 LED B1 在二向色镜 2A 的下方;拼接在一起的二向色镜 1A 和
2A 位于拼接在一起的二向色镜 1B 和 2B 的后方。
可以在二向色镜 1B 和 2B
的前方可设置一几何合光器件,如透镜(图未示),用于将第一、第二组原始发光器件组最终输出的光束合为一束光。本发明中,以光线箭头指示的方向为前方,反之为后方。
图 12 中示出的波长合光器件的结构也可以兼容只有一组红光 LED G 绿光 LED G 和蓝光 LED
B 的情况。
此外,在图 12 中的拼接在一起的 LED 也可以只有一组,例如如图 13
中示出的原始发光器件组中,蓝光 LED 只有一组(在图 13 中记为 B ),此时由于只有一组的蓝光 LED 输出的光束与绿光 LED G1 和绿光 LED
G2 都没有交叠,因此位于蓝光 LED 上方只需要使用一块二向色镜 1B 就可以实现蓝光 LED B 分别与绿光 LED G1 和绿光 LED G2
的合光。
从以上描述可知,第一组原始发光器件组和第二组原始发光器件组也可以被理解为是原始发光器件组和补光发光器件组,两组内部的不同颜色的光源通过波长合光方式合光,两组各自合光后的光束则可以通过几何合光方式做合光。图
12
中虚线上方为原始发光器件组的光通道,虚线下方是补光发光器件组的光通道,两个光通道依靠空间位置的不同组合成一束光。实际上,第二组原始发光器件组也可以被理解为补光发光器件组,同时第一组原始发光器件组也可以被理解为原始发光器件组。
实施例十
本实施例中的光源相对于其他实施例中的光源的区别仅在于对原始发光器件组的结构进行了改进。在图 14
示出的本实施例中,原始发光器件组为两组,并且两组二向色镜也呈十字形放置。
如图 14 所示,第一组原始发光器件组中包括绿光 LED G1 ,红光 LED R2 ,蓝光 LED
B2 。第二组原始发光器件组中包括绿光 LED G2 ,红光 LED R1 和蓝光 LED B1 。通过二向色镜 1A 和 1B 将绿光 LED G1 ,红光
LED R2 和蓝光 LED B2 输出的光束以波长合光的方式进行合光。通过二向色镜 2A 和 2B 将绿光 LED G2 ,红光 LED R1 和蓝光
LED B1 输出的光束以波长合光的方式进行合光。
同样,在图 14 中,将不同组原始发光器件组中 归一化光谱较接近的 LED 拼接在一起,例如 绿光
LED G1 和绿光 LED G2 拼接在一起,红光 LED R1 和红光 LED R2 拼接在一起,蓝光 LED B1 和蓝光 LED B2
拼接在一起。拼接在一起的两个 LED 的归一化光谱可以存在较大的重叠。
相应地,二向色镜 1A 和二向色镜 2A 拼接在一起,二向色镜 1B 和二向色镜 2B
拼接在一起。同时拼接在一起的二向色镜 1A 和二向色镜 2A ,与拼接在一起的二向色镜 1B 和二向色镜 2B
组成十字形二向色镜组,该二向色镜组的前方可设置一几何合光器件,如透镜(图未示),用于将第一、第二组原始发光器件组最终输出的光束合为一束光。
从以上描述可知,第一组原始发光器件组和第二组原始发光器件组也可以被理解为是原始发光器件组和补光发光器件组,两组内部的不同颜色的光源通过波长合光方式合光,两组各自合光后的光束则可以通过几何合光方式做合光。图
14
中虚线上方为原始发光器件组的光通道,虚线下方是补光发光器件组的光通道,两个光通道依靠空间位置的不同组合成一束光。实际上,第二组原始发光器件组也可以被理解为补光发光器件组,同时第一组原始发光器件组也可以被理解为原始发光器件组。
本实施例中的原始发光器件组可以显著地节省体积。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (16)
- 一种光源,其特征在于,包括:至少一个原始发光器件组和至少一个补光发光器件组,所述原始发光器件组包括至少两个彼此归一化光谱中重叠光谱的能量小于该两个中能量较小的 50% 的固态发光器件,以及利用波长合光方式将原始发光器件组中的所有固态发光器件输出的光进行合光的波长合光器件;所述补光发光器件组包括至少一个固态发光器件,补光发光器件组的任一固态发光器件与原始发光器件组中的至少一固态发光器件的归一化光谱中重叠光谱的能量大于等于两者中能量较小的 10% ;所述光源还包括几何合光器件,所述几何合光器件将原始发光器件组最终输出的光束与补光发光器件组最终输出的光束利用几何合光的方式合为一束光束。
- 根据权利要求 1 所述的光源,其特征在于,补光发光器件组的任一固态发光器件与原始发光器件组中的至少一固态发光器件的归一化光谱中重叠光谱的能量大于等于两者中能量较小的 50% 。
- 根据权利要求 1 所述的光源,其特征在于,所述原始发光器件组中的波长合光器件为十字形二向色镜或至少一个倾斜放置的二向色镜。
- 根据权利要求 1 至 3 中任意一项 所述的光源,其特征在于,所述原始发光器件组最终输出的光束与补光发光器件组最终输出的光束在几何合光器件的不同截面上进行几何合光。
- 根据权利要求 4 所述的光源,其特征在于,所述补光发光器件组位于原始发光器件组的上方或者下方。
- 根据权利要求 4 所述的光源,其特征在于,所述补光发光器件组位于原始发光器件组中的两个固态发光器件之间。
- 根据权利要求 1 至 3 中任意一项所述的光源,其特征在于,所述原始发光器件组最终输出的光束与补光发光器件组最终输出的光束在几何合光器件的相同截面上进行几何合光。
- 根据权利要求 7 所述的光源,其特征在于,所述补光发光器件组位于原始发光器件组的左边或右边。
- 据权利要求 1 至 3 中任意一项所述的光源,其特征在于,所述原始发光器件组为多组,所述补光发光器件组为多组;其中,至少一组原始发光器件组与至少一组补光发光器件组最终输出的光束在几何合光器件的不同截面上进行几何合光,至少一组原始发光器件组与至少一组补光发光器件组最终输出的光束在几何合光器件的相同截面上进行几何合光。
- 根据权利要求 9 所述的光源,其特征在于,所述原始发光器件组为偶数组,所述补光发光器件组为偶数组;所述原始发光器件组输出的光束在几何合光器件的截面两两关于原点对称,所述补光发光器件组输出的光束在几何合光器件的截面两两关于原点对称。
- 根据权利要求 9 所述的光源,其特征在于,所述至少两组原始发光器件组中的任意相同颜色的两个固态发光器件在平行于几何合光器件的拼接面上关于原点对称;所述补光发光器件组中的任意相同颜色的两个固态发光器件在拼接面上关于原点对称。
- 根据权利要求 1 至 3 中任意一项所述的光源,其特征在于,补光发光器件组最终输出的光束围绕在原始发光器件组最终输出的光束的周围,并利用几何合光的方式合为一束光束。
- 根据权利要求 1 至 12 中任意一项所述的光源,其特征在于,所述补光发光器件组包括一个白光固态发光器件。
- 根据权利要求 1 至 12 中任意一项所述的光源,其特征在于,所述几何合光器件包括一个透镜,原始发光器件组最终输出的光束与补光发光器件组最终输出光束在透镜的入射面上进行拼接。
- 根据权利要求 1 至 12 中任意一项所述的光源,其特征在于,所述几何合光器件包括两个透镜和一个反射镜,其中,原始发光器件组最终输出的光束入射到一个透镜中,补光发光器件组最终输出光束入射到另一个透镜中,并经过所述反射镜的反射,使得原始发光器件组最终输出的光束与补光发光器件组最终输出的光束几何合光。
- 一种显示系统,其特征在于,包括如权利要求 1 至 15 中任一项所述的光源。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12841287.1A EP2770363A4 (en) | 2011-10-17 | 2012-08-13 | LIGHT SOURCE AND DISPLAY SYSTEM |
US14/352,532 US10585293B2 (en) | 2011-10-17 | 2012-08-13 | Light source and display system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110315025 | 2011-10-17 | ||
CN201110315025.7 | 2011-10-17 | ||
CN201110420930.9 | 2011-12-15 | ||
CN2011104209309A CN102734659A (zh) | 2011-10-17 | 2011-12-15 | 一种光源和显示系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013056594A1 true WO2013056594A1 (zh) | 2013-04-25 |
Family
ID=48140352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/080058 WO2013056594A1 (zh) | 2011-10-17 | 2012-08-13 | 一种光源和显示系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10585293B2 (zh) |
EP (1) | EP2770363A4 (zh) |
WO (1) | WO2013056594A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150316775A1 (en) * | 2014-05-02 | 2015-11-05 | Coretronic Corporation | Illumination system and projection apparatus |
EP2998641A4 (en) * | 2013-05-17 | 2016-07-13 | Appotronics China Corp | LIGHT-EMITTING DEVICE AND STAGE LAMP SYSTEM |
US10386710B2 (en) | 2017-03-31 | 2019-08-20 | Coretronic Corporation | Projector and illumination system thereof |
US10732495B2 (en) | 2014-05-02 | 2020-08-04 | Coretronic Corporation | Illumination system, projection apparatus and method for driving illumination system |
US11022867B2 (en) | 2018-07-10 | 2021-06-01 | Coretronic Corporation | Illumination system having wavelength conversion device and projection device having the same |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3330685A1 (de) * | 2016-12-05 | 2018-06-06 | Sick Ag | Messvorrichtung für absorptionsspektroskopie |
KR102663850B1 (ko) * | 2017-03-21 | 2024-05-03 | 매직 립, 인코포레이티드 | 공간 광 변조기들을 조명하기 위한 방법들, 디바이스들, 및 시스템들 |
JP7020315B2 (ja) * | 2018-06-20 | 2022-02-16 | セイコーエプソン株式会社 | 光源装置及びプロジェクター |
JP7154603B2 (ja) * | 2019-11-13 | 2022-10-18 | フェニックス電機株式会社 | 露光装置用光源 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101093287A (zh) * | 2006-06-19 | 2007-12-26 | 精碟科技股份有限公司 | 合光模组及投影装置 |
US7547114B2 (en) | 2007-07-30 | 2009-06-16 | Ylx Corp. | Multicolor illumination device using moving plate with wavelength conversion materials |
TW200925650A (en) * | 2007-08-02 | 2009-06-16 | Koninkl Philips Electronics Nv | Etendue conserving, color-mixed, and high brightness LED light source |
CN101702063A (zh) * | 2009-11-25 | 2010-05-05 | 山东大学 | 一种激光背光源液晶显示系统 |
CN201589089U (zh) * | 2009-10-26 | 2010-09-22 | 红蝶科技(深圳)有限公司 | 混合型rgb照明光源装置及使用其的投影光学引擎 |
CN101968170A (zh) * | 2010-08-09 | 2011-02-09 | 上海光隧光电科技有限公司 | 采用led补色光的led照明光源装置 |
CN102073139A (zh) * | 2010-11-29 | 2011-05-25 | 广东威创视讯科技股份有限公司 | 一种led照明光源及投影机 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8403523B2 (en) * | 2003-03-18 | 2013-03-26 | Electronic Theatre Controls, Inc. | Methods, luminaires and systems for matching a composite light spectrum to a target light spectrum |
US7427146B2 (en) | 2004-02-11 | 2008-09-23 | 3M Innovative Properties Company | Light-collecting illumination system |
JP2005321524A (ja) * | 2004-05-07 | 2005-11-17 | Seiko Epson Corp | 光源装置およびプロジェクタ |
US20050264173A1 (en) | 2004-05-28 | 2005-12-01 | Harvatek Corporation | White light emitting diode light source and method for manufacturing the same |
EP2418522A1 (en) * | 2004-07-06 | 2012-02-15 | RealD Inc. | Illumination systems |
TW200734747A (en) * | 2005-04-13 | 2007-09-16 | Koninkl Philips Electronics Nv | Lighting system comprising 2D LED stack |
JP4535928B2 (ja) * | 2005-04-28 | 2010-09-01 | シャープ株式会社 | 半導体発光装置 |
US7410261B2 (en) * | 2005-05-20 | 2008-08-12 | 3M Innovative Properties Company | Multicolor illuminator system |
DE102005054184B4 (de) * | 2005-11-14 | 2020-10-29 | Carl Zeiss Microscopy Gmbh | Multispektrale Beleuchtungsvorrichtung und Messverfahren |
US8746891B2 (en) * | 2009-07-13 | 2014-06-10 | Martin Professional A/S | Color-combining illumination device |
US8870384B2 (en) * | 2009-09-28 | 2014-10-28 | Nec Corporation | Projection display device having light source device with color synthesis unit |
US8662670B2 (en) * | 2010-05-28 | 2014-03-04 | Alcon Research, Ltd. | Spectrally-adjustable ophthalmic illumination with discrete sources |
DE102011004047B4 (de) * | 2011-02-14 | 2013-04-11 | Glp German Light Products Gmbh | Leuchte mit einem optischen Element mit zwei Zuständen und Verfahren zum Betreiben der Leuchte |
-
2012
- 2012-08-13 US US14/352,532 patent/US10585293B2/en active Active
- 2012-08-13 WO PCT/CN2012/080058 patent/WO2013056594A1/zh active Application Filing
- 2012-08-13 EP EP12841287.1A patent/EP2770363A4/en not_active Ceased
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101093287A (zh) * | 2006-06-19 | 2007-12-26 | 精碟科技股份有限公司 | 合光模组及投影装置 |
US7547114B2 (en) | 2007-07-30 | 2009-06-16 | Ylx Corp. | Multicolor illumination device using moving plate with wavelength conversion materials |
TW200925650A (en) * | 2007-08-02 | 2009-06-16 | Koninkl Philips Electronics Nv | Etendue conserving, color-mixed, and high brightness LED light source |
CN201589089U (zh) * | 2009-10-26 | 2010-09-22 | 红蝶科技(深圳)有限公司 | 混合型rgb照明光源装置及使用其的投影光学引擎 |
CN101702063A (zh) * | 2009-11-25 | 2010-05-05 | 山东大学 | 一种激光背光源液晶显示系统 |
CN101968170A (zh) * | 2010-08-09 | 2011-02-09 | 上海光隧光电科技有限公司 | 采用led补色光的led照明光源装置 |
CN102073139A (zh) * | 2010-11-29 | 2011-05-25 | 广东威创视讯科技股份有限公司 | 一种led照明光源及投影机 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2770363A4 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2998641A4 (en) * | 2013-05-17 | 2016-07-13 | Appotronics China Corp | LIGHT-EMITTING DEVICE AND STAGE LAMP SYSTEM |
US10125927B2 (en) | 2013-05-17 | 2018-11-13 | Appotronics China Corporation | Light-emitting device and stage lamp system |
US20150316775A1 (en) * | 2014-05-02 | 2015-11-05 | Coretronic Corporation | Illumination system and projection apparatus |
US9897907B2 (en) * | 2014-05-02 | 2018-02-20 | Coretronic Corporation | Illumination system and projection apparatus |
US10732495B2 (en) | 2014-05-02 | 2020-08-04 | Coretronic Corporation | Illumination system, projection apparatus and method for driving illumination system |
US10386710B2 (en) | 2017-03-31 | 2019-08-20 | Coretronic Corporation | Projector and illumination system thereof |
US11022867B2 (en) | 2018-07-10 | 2021-06-01 | Coretronic Corporation | Illumination system having wavelength conversion device and projection device having the same |
Also Published As
Publication number | Publication date |
---|---|
EP2770363A1 (en) | 2014-08-27 |
US20150023012A1 (en) | 2015-01-22 |
US10585293B2 (en) | 2020-03-10 |
EP2770363A4 (en) | 2015-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013056594A1 (zh) | 一种光源和显示系统 | |
WO2018166038A1 (zh) | 光源装置及投影系统 | |
WO2014135040A1 (zh) | 发光装置及相关投影系统 | |
WO2018166120A1 (zh) | 光源装置及投影系统 | |
WO2015149700A1 (zh) | 一种光源系统及投影系统 | |
JP6084666B2 (ja) | 投影装置 | |
WO2014084489A1 (ko) | 광원유닛과 이를 포함하는 영상투사장치 | |
WO2017020855A1 (zh) | 光源系统和投影系统 | |
JP5089606B2 (ja) | Ledベースの多色偏光照明光源 | |
WO2014117704A2 (zh) | 一种led光源系统和led照明装置 | |
WO2016161932A1 (zh) | 发光装置和投影显示设备 | |
WO2016165569A1 (zh) | 发光装置和投影系统 | |
WO2018028240A1 (zh) | 光源系统及投影设备 | |
US8905554B2 (en) | Illumination unit having a plurality of light sources including a light source emitting two or more different wavelengths | |
WO2018209723A1 (zh) | 一种投影照明光路及其投影装置 | |
WO2018028277A1 (zh) | 光源装置及投影系统 | |
WO2018107634A1 (zh) | 光源系统及投影装置 | |
WO2016161924A1 (zh) | 光源系统和投影系统 | |
WO2016180298A1 (zh) | 一种发光装置及其发光控制方法、投影设备 | |
WO2016197888A1 (zh) | 投影系统、光源系统以及光源组件 | |
CN202886821U (zh) | 光源系统及相关投影系统 | |
WO2018076716A1 (zh) | 光源系统及显示设备 | |
CN102608854A (zh) | 光源装置和投射型显示装置 | |
WO2014146536A1 (zh) | 发光装置及相关投影系统 | |
WO2018214288A1 (zh) | 光源系统及显示设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12841287 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012841287 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14352532 Country of ref document: US |