[go: up one dir, main page]

WO2013046900A1 - 磁気共鳴撮像装置、高周波磁場照射方法およびプログラム - Google Patents

磁気共鳴撮像装置、高周波磁場照射方法およびプログラム Download PDF

Info

Publication number
WO2013046900A1
WO2013046900A1 PCT/JP2012/069239 JP2012069239W WO2013046900A1 WO 2013046900 A1 WO2013046900 A1 WO 2013046900A1 JP 2012069239 W JP2012069239 W JP 2012069239W WO 2013046900 A1 WO2013046900 A1 WO 2013046900A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
section
frequency magnetic
distribution
cross
Prior art date
Application number
PCT/JP2012/069239
Other languages
English (en)
French (fr)
Inventor
金子 幸生
悦久 五月女
尾藤 良孝
竹内 博幸
高橋 哲彦
秀太 羽原
陽介 大竹
Original Assignee
株式会社日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立メディコ filed Critical 株式会社日立メディコ
Priority to JP2013536022A priority Critical patent/JP5797765B2/ja
Priority to US14/241,515 priority patent/US9726744B2/en
Priority to EP12836712.5A priority patent/EP2762070B1/en
Priority to CN201280041946.1A priority patent/CN103874457B/zh
Publication of WO2013046900A1 publication Critical patent/WO2013046900A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/5659Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the RF magnetic field, e.g. spatial inhomogeneities of the RF magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/24Arrangements or instruments for measuring magnetic variables involving magnetic resonance for measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/246Spatial mapping of the RF magnetic field B1
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/483NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
    • G01R33/4833NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy using spatially selective excitation of the volume of interest, e.g. selecting non-orthogonal or inclined slices
    • G01R33/4835NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy using spatially selective excitation of the volume of interest, e.g. selecting non-orthogonal or inclined slices of multiple slices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5611Parallel magnetic resonance imaging, e.g. sensitivity encoding [SENSE], simultaneous acquisition of spatial harmonics [SMASH], unaliasing by Fourier encoding of the overlaps using the temporal dimension [UNFOLD], k-t-broad-use linear acquisition speed-up technique [k-t-BLAST], k-t-SENSE
    • G01R33/5612Parallel RF transmission, i.e. RF pulse transmission using a plurality of independent transmission channels

Definitions

  • the present invention relates to a magnetic resonance imaging (MRI) apparatus (hereinafter referred to as an MRI apparatus).
  • MRI apparatus magnetic resonance imaging apparatus
  • the present invention relates to a technique for adjusting the spatial distribution of a rotating magnetic field that induces a magnetic resonance phenomenon.
  • the MRI apparatus is a medical image diagnostic apparatus that causes magnetic resonance to occur in nuclei in an arbitrary cross section that crosses the examination target, and obtains a tomographic image in the cross section from the generated magnetic resonance signal.
  • a radio wave (Radio Frequency wave, hereinafter referred to as high frequency or RF) is transmitted to the inspection object to excite the spins of the nuclei in the inspection object, and then nuclear magnetic resonance generated by the nuclear spins.
  • the signal is received and the inspection object is imaged. Transmission is performed by the RF transmission coil, and reception is performed by the RF reception coil.
  • the static magnetic field strength is increasing, and the high magnetic field MRI apparatus (3T MRI apparatus) having a static magnetic field intensity of 3T (Tesla) or more has started to spread. .
  • the captured image is more likely to be uneven. This is because the frequency of the RF used for inducing the magnetic resonance phenomenon increases as the magnetic field increases. For example, an RF having a frequency of 128 MHz is used in the 3T MRI apparatus, but the wavelength of the RF in the living body is about 30 cm, which is approximately the same scale as the abdominal section, and the phase of the RF changes in the living body.
  • the irradiation RF distribution and the spatial distribution of a rotating magnetic field (hereinafter referred to as B 1 ) that is generated by the RF and induces a magnetic resonance phenomenon become non-uniform, resulting in image unevenness. From such situation, the RF radiation carried out in high magnetic field MRI apparatus, in order to improve the image quality, a technique for reducing unevenness in the distribution of the rotating magnetic field B 1 is being required.
  • the B 1 distribution of each channel is measured in advance before actual imaging, and the B 1 distribution is used to calculate the RF amplitude and phase that reduce B 1 non-uniformity (for example, (See Patent Document 1 and Non-Patent Document 1).
  • a region of interest (ROI) is set and imaging is performed using at least one of RF amplitude or phase as an imaging condition so as to reduce B 1 non-uniformity in the ROI (see, for example, Patent Document 2).
  • a region of interest ROI
  • Patent Document 2 when a plurality of ROIs are set, at least one of the amplitude and phase of RF that can reduce the variation in data among the plurality of ROIs is acquired. This solves the problem that the influence of B 1 non-uniformity differs depending on the characteristics of each subject.
  • the amplitude and phase of an RF pulse that reduces B 1 non-uniformity are calculated by measuring the B 1 distribution of the imaging section in advance.
  • axial directions a plurality of cross-sectional images at various positions in directions orthogonal to various axes (hereinafter referred to as axial directions) are acquired.
  • AX axial
  • SAG sagittal
  • COR coronal
  • the number of cross sections is often several to several tens per direction.
  • Patent Literature 1 and Non-Patent Literature 1 are used, in order to maximize the B 1 non-uniformity reduction effect of all imaging sections, the B 1 distribution is measured for each imaging section, It is necessary to calculate the optimum RF amplitude and phase, which takes a lot of time. For this reason, the total imaging time is extended. On the other hand, if the B 1 distribution is measured only in a predetermined imaging section, and the calculated amplitude and phase values of one RF are applied to all other sections, the effect of reducing B 1 non-uniformity is sufficient in the other sections. May not be obtained.
  • the present invention has been made in view of the above circumstances, and is a technique for maximizing the B 1 non-uniformity reduction effect by RF shimming of an imaging cross section in an arbitrary axial direction and an arbitrary position while minimizing the extension of imaging time. I will provide a.
  • the invention and B 1 distribution of a predetermined number of the cross-section of a predetermined axial direction, B 1 nonuniformity reduction effect by using the RF amplitude and phase to maximize, any imaging section B 1 nonuniformity reduction effect Calculate the amplitude and phase of RF that maximizes.
  • the present invention includes a static magnetic field forming unit that forms a static magnetic field, a gradient magnetic field application unit that applies a gradient magnetic field, a high-frequency magnetic field transmission unit that has a plurality of channels that transmit different high-frequency magnetic fields to a subject, A signal receiving unit that receives a nuclear magnetic resonance signal generated from a subject, and a nuclear magnetic resonance signal received by the signal receiving unit after the high-frequency magnetic field is transmitted from the high-frequency magnetic field transmitting unit to the subject.
  • a first high-frequency magnetic field distribution that is a high-frequency magnetic field distribution of a first distribution measurement cross section orthogonal to the axis of the first, and any imaging that is to be imaged based on the first high-frequency magnetic field distribution
  • a condition calculation unit that calculates at least one of a phase and an amplitude of a high-frequency magnetic field irradiated from each of the plurality of channels in a cross-sectional imaging condition as a high-frequency magnetic field condition.
  • a high-frequency magnetic field of a magnetic resonance imaging apparatus comprising: a high-frequency magnetic field transmission unit having a plurality of channels that transmit different high-frequency magnetic fields to the subject; and a signal reception unit that receives a nuclear magnetic resonance signal generated from the subject
  • FIG. 1 It is a block diagram which shows the outline
  • A is an explanatory view of the rotating magnetic field B 1 distribution shows the simulation results for AX section in the phantom
  • (B) the simulation results described showing the rotating magnetic field B 1 distribution in SAG section in the phantom is a view
  • (C) is an explanatory view of a simulation result showing the rotating magnetic field B 1 distribution in COR section in the phantom. It is explanatory drawing for demonstrating an imaging cross section.
  • (A) is explanatory drawing for demonstrating the cross-sectional position in case the imaging cross section at the time of this imaging is a some AX cross section
  • (B) is an imaging cross section at the time of this imaging is a several SAG cross section. It is explanatory drawing for demonstrating the cross-sectional position in a case
  • (C) is explanatory drawing for demonstrating the cross-sectional position in case the imaging cross section at the time of this imaging is a some COR cross section.
  • (A) is an imaging cross section
  • (B) is an imaging cross section.
  • (C) is a case where an imaging section is a COR section. It is a flowchart of the imaging process of 1st embodiment.
  • (A) shows each set AX cross-sectional position and SAG cross-sectional position on the COR image of the pelvic region, and is an explanatory view for explaining a specific example of the first embodiment
  • (B) is a diagram of the pelvic region It is explanatory drawing which shows the cross
  • (A) is the case where the imaging section is AX section of the pelvic region, is a graph of B 1 uniformity index
  • (B) is a graph of B 1 uniformity index when imaging section is SAG section of the pelvic region
  • (C) is a graph of the B 1 uniformity index when the imaging section is a COR section of the pelvic region.
  • the present invention calculates the RF amplitude and phase that maximize the B 1 non-uniformity reduction effect of an arbitrary imaging cross section from the B 1 distribution of a predetermined number of cross sections in the predetermined axis direction.
  • B 1 distributions (hereinafter also referred to as high-frequency magnetic distributions) of a plurality of different cross sections perpendicular to one predetermined axis are measured. Then, by using the B 1 distribution, calculating at least one of the amplitude and phase of the RF magnetic field (RF) is used as an imaging condition when imaging any imaging section. It is assumed that the calculated RF amplitude and phase maximize the effect of reducing the B 1 distribution non-uniformity in the imaging section.
  • RF RF magnetic field
  • B 1 distribution cross section measured is called the distribution measurement section, called a distribution measurement axis an axis perpendicular to the distribution measurement section.
  • a distribution measurement axis an axis perpendicular to the distribution measurement section.
  • at least one of the amplitude and phase of RF calculated as the imaging condition is referred to as a high frequency magnetic field condition.
  • the high-frequency magnetic field condition that maximizes the B 1 distribution non-uniformity reduction effect is called the optimum high-frequency magnetic field condition.
  • a cross section perpendicular to a predetermined axis is referred to as a cross section in the axial direction.
  • the optimum high-frequency magnetic field condition of the imaging section at an arbitrary position in the B 1 distribution measurement axis direction is to interpolate the optimum high-frequency magnetic field condition of each distribution measurement section calculated from the B 1 distribution of a plurality of distribution measurement sections.
  • the optimum high-frequency magnetic field condition for the imaging cross section at an arbitrary position in the axial direction different from the B 1 distribution measurement axis is the intersection of the distribution measurement cross section and the imaging cross section from the B 1 distribution of each distribution measurement cross section.
  • B 1 values of the included region (hereinafter referred to as the intersecting region) are extracted and calculated so that the variation in those values is minimized.
  • the distribution measurement cross section may be one.
  • the high frequency magnetic field condition obtained from the B 1 distribution of the single distribution measurement section is used as it is as the optimum high frequency magnetic field condition of the imaging section at an arbitrary position in the B 1 distribution measurement axis direction.
  • the optimum high-frequency magnetic field condition of the imaging cross section at an arbitrary position in the axial direction different from the B 1 distribution measurement axis is calculated based on the B 1 value of the intersecting region extracted from this B 1 distribution.
  • FIG. 1 is a block diagram of the MRI apparatus 100 of the present embodiment.
  • the MRI apparatus 100 of the present embodiment includes a magnet 101 that generates a static magnetic field, a coil 102 that generates a gradient magnetic field, a shim coil 112 that adjusts the static magnetic field uniformity, a sequencer 104, and a high frequency
  • An RF transmitting coil (transmitting coil) 114 that irradiates (transmits) a magnetic field (RF), an RF receiving coil (receiving coil) 115 that detects (receives) a nuclear magnetic resonance signal generated from the subject 103, and a subject 103, a gradient magnetic field power source 105, a high frequency magnetic field generator 106, a receiver 108, a shim power source 113, and a calculator 109.
  • the gradient magnetic field coil 102 and the shim coil 112 are connected to the gradient magnetic field power source 105 and the shim power source 113, respectively.
  • the transmission coil 114 and the reception coil 115 are connected to the high-frequency magnetic field generator 106 and the receiver 108, respectively.
  • the sequencer 104 sends commands to the gradient magnetic field power supply 105, the shim power supply 113, and the high-frequency magnetic field generator 106 to generate a gradient magnetic field and RF, respectively.
  • RF is irradiated (transmitted) to the subject 103 through the transmission coil 114.
  • a nuclear magnetic resonance signal generated from the subject 103 by irradiating (transmitting) RF is detected (received) by the receiving coil 115 and detected by the receiver 108.
  • a magnetic resonance frequency used as a reference for detection by the receiver 108 is set by the computer 109 via the sequencer 104.
  • the detected signal is sent to the computer 109 through an A / D conversion circuit, where signal processing such as image reconstruction is performed.
  • the result is displayed on the display 110 connected to the computer 109.
  • the detected signals and measurement conditions are stored in the storage device 111 connected to the computer 109 as necessary.
  • the sequencer 104 normally performs control so that each device operates at a timing and intensity programmed in advance.
  • the magnet 101, shim coil 112, and shim power supply 113 constitute a static magnetic field forming unit that forms a static magnetic field space.
  • the gradient magnetic field coil 102 and the gradient magnetic field power source 105 constitute a gradient magnetic field application unit that applies a gradient magnetic field to the static magnetic field space.
  • the transmission coil 114 and the high-frequency magnetic field generator 106 constitute a high-frequency magnetic field transmission unit that irradiates (transmits) RF to the subject 103.
  • the receiving coil 115 and the receiver 108 constitute a signal receiving unit that detects (receives) a nuclear magnetic resonance signal generated from the subject 103.
  • FIG. 2 is a schematic diagram of the transmission coil 114 and the phantom 202.
  • 3A, 3B, and 3C are examples of the B 1 distribution in the phantom 202 calculated by electromagnetic field simulation.
  • 3 (A) is a simulation result showing the rotating magnetic field B 1 distribution in AX section in the phantom
  • FIG. 3 (B) the simulation results showing the rotating magnetic field B 1 distribution in SAG section in the phantom
  • FIG. 3 (C) is a simulation result showing the rotating magnetic field B 1 distribution in COR section in the phantom.
  • the B 1 intensity in FIGS. 3A, 3B, and 3C is normalized so that the maximum B 1 intensity in the phantom 202 is 1.
  • 3B and 3C show the B 1 distribution within a range of 300 mm in the z-axis direction.
  • a coordinate system in which the static magnetic field direction is z is used.
  • the phantom 202 used in this simulation had a rectangular parallelepiped shape, and the dimensions in the x, y, and z axis directions were 350 mm, 200 mm, and 600 mm, respectively. This is a dimension determined by assuming a cross section of the abdomen of the living body.
  • the physical properties of the phantom 202 are set to be 0.6 S / m for conductivity and 60 for relative dielectric constant. This is determined by assuming each physical property value in the living body.
  • a 24-lang birdcage coil was used as the transmission coil 114 for applying magnetic flux to the phantom 202.
  • the birdcage coil (transmission coil 114) has a cylindrical shape with a diameter of 615 mm and a rung length in the z-axis direction of 500 mm, and is arranged so that the central axis is parallel to the z-axis.
  • the RF frequency irradiated (transmitted) from the birdcage coil (transmitting coil 114) was set to 128 MHz assuming a 3T MRI apparatus.
  • the birdcage coil (transmission coil 114) has a feeding point 201 at two locations and has a structure capable of two-channel RF transmission.
  • Each channel is referred to as channel 1 (ch1) and channel 2 (ch2), respectively.
  • the number of power supply points 201 and the number of channels is not limited to two as long as it is plural.
  • a case where the transmission coil 114 has two channels will be described as an example.
  • the electromagnetic field simulation was performed by installing a cylindrical shield (not shown) having a diameter of 655 mm and a z-axis dimension of 900 mm outside the birdcage coil (transmission coil 114).
  • B_ch1 is the magnetic flux generated by channel 1
  • B_ch2 is channel 2
  • the magnetic fluxes B_ch1 and B_ch2 are generated by feeding the voltages A1sin ( ⁇ t + ⁇ 1) and A2sin ( ⁇ t + ⁇ 2) to each feeding point.
  • rotation field B 1 produced is represented by the following formula (1).
  • B 1 (B_ch1 + i ⁇ B_ch2) / 2 (1)
  • the amplitude ratio (A2 / A1) between B_ch1 and B_ch2 has been set to 1
  • the phase difference ( ⁇ 2 ⁇ 1) has been set to ⁇ / 2.
  • QD Quadrature Drive
  • the amplitude and phase of the RF transmitted from is adjusted.
  • FIG. 4 is a diagram for explaining an imaging section when a predetermined one section is imaged when the subject 103 is a human.
  • region 402 is shown.
  • the z-axis direction is the axial (AX) direction
  • the cross-section perpendicular to the z-axis is the AX cross-section
  • the cross section perpendicular to the x axis is the SAG cross section
  • the y axis direction is the coronal (COR) direction
  • the cross section perpendicular to the y axis is the COR cross section.
  • the B 1 distribution of the pelvic region 402 in the imaging cross section 401 is measured to obtain the B 1 distribution. Then, from the obtained B 1 distribution, to determine the optimum RF amplitude and phase to the imaging section 401. Then, it is set as an imaging condition.
  • B 1 a heterogeneous reduction effect can be maximized.
  • the imaging section at the time of actual imaging is not limited to one section. Multiple cross-sections are imaged in various axial directions.
  • 5A shows a case where a plurality of AX cross sections 411 are imaged
  • FIG. 5B shows a case where a plurality of SAG cross sections 412 are imaged
  • FIG. 5C shows a case where a plurality of COR cross sections 413 are imaged. It is an example of the imaging cross section in the case of doing.
  • the cross section in order to avoid the extension of the total imaging time, the cross section to measure the B 1 distribution, the number of imaging section, regardless of the direction, the predetermined direction and a predetermined number of sheets. Then, the B 1 distribution of the measured cross-section, calculated by, determining the optimum frequency magnetic field conditions for each imaging section.
  • the optimum amplitude and phase of RF transmitted from each channel is set as the optimum high-frequency magnetic field condition will be described.
  • FIG. 6 is a functional block diagram of the computer 109 according to this embodiment for realizing this.
  • the computer 109 of this embodiment includes an imaging position setting unit 310, a static magnetic field shimming unit 320, an RF shimming unit 330, and a main image imaging unit 340.
  • Each function of the computer 109 is realized by a CPU included in the computer 109 loading a program stored in the storage device 111 in advance into the memory and executing the program.
  • the imaging position setting unit 310 performs a scout scan or the like before performing the main imaging, positions the imaging cross section, and determines each parameter related to the positioning.
  • the parameters relating to the positioning are, for example, the axial direction, the number of sheets, and the position of the captured image. Then, the determined parameters are set as imaging conditions used for main image capturing.
  • the process performed by the imaging position setting unit 310 is referred to as an imaging position setting process.
  • the static magnetic field shimming unit 320 measures the static magnetic field distribution and performs a static magnetic field shimming process for determining each parameter related to the static magnetic field uniformity adjustment so that the static magnetic field is as uniform as possible. Then, the determined parameters are set as imaging conditions used for main image capturing.
  • the process performed by the static magnetic field shimming unit 320 is referred to as a static magnetic field shimming process. If a static magnetic field uniformity sufficient for imaging can be obtained, the static magnetic field shimming process may not be performed. When the static magnetic field shimming process is not performed, the static magnetic field shimming unit 320 may not be provided.
  • a case where static magnetic field shimming processing is not performed will be described as an example.
  • the RF shimming unit 330 determines a parameter (high frequency magnetic field condition) related to RF shimming for each imaging section.
  • the optimum RF amplitude and phase transmitted from each channel are calculated as the high-frequency magnetic field condition for each imaging section.
  • the calculated high-frequency magnetic field condition is set as an imaging condition used for the main image capturing. Processing performed by the RF shimming unit 330 is referred to as RF shimming processing. Details of the RF shimming processing of this embodiment will be described later.
  • the image main imaging unit 340 performs the main imaging based on the imaging conditions set in the imaging position setting unit 310, the static magnetic field shimming unit 320, and the RF shimming unit 330.
  • the RF shimming unit 330 includes a distribution calculation unit 331 that calculates a B 1 distribution (high-frequency magnetic field distribution) of a distribution measurement cross section orthogonal to a predetermined distribution measurement axis from a nuclear magnetic resonance signal, and the obtained B 1.
  • a condition calculation unit 332 that calculates a high-frequency magnetic field condition of an arbitrary imaging cross section using the distribution, and a condition setting unit 333 that sets the obtained high-frequency magnetic field condition as an imaging condition used for main image capturing.
  • the optimum RF amplitude and phase values for the imaging cross section calculated as the high-frequency magnetic field condition are set as the RF pulse parameter values in the sequencer 104.
  • the voltage having the calculated amplitude and phase is set to be transmitted to the feeding point 201 of each channel of the transmission coil 114.
  • the condition calculation unit 332 a region including the intersection of the imaging section and the distribution measurement section (hereinafter, intersecting region is referred to as a) B 1 distribution of the (1 value B), is extracted from the B 1 distribution of distribution measurement section A distribution extraction unit 334 is provided.
  • the intersection region is a region having a predetermined width in the measurement axis direction and the direction orthogonal to the imaging section.
  • the distribution calculation unit 331 performs measurement for obtaining a B 1 distribution in the imaging region, and calculates a B 1 distribution for each channel of a predetermined distribution measurement cross section from the measurement result. B 1 distribution in the imaging area by executing a predetermined sequence measures. Further, the measurement axis of the distribution measurement section, it is desirable that the change of B 1 distribution is set to a smaller direction. Alternatively, it is desirable to set the direction in which the shape change of the subject is the smallest.
  • the distribution measurement cross section is the AX cross section and the measurement axis is the z-axis direction. This is due to the following reason.
  • the B 1 distribution greatly depends on the shape of the imaging section, but when the shape change of the imaging section with respect to the z-axis direction is small, a plurality of AX sections with different z coordinates show substantially the same B 1 distribution. For example, when the imaging target is a pelvic region or an upper abdominal region, since the change in the cross-sectional shape with respect to the z-axis direction is relatively small, the B 1 distribution of any z coordinate shows the same tendency.
  • a subject 103 is a human, when using a birdcage coil shown in FIG. 2 as the transmission coil 114, z-axis direction (AX perpendicular to the cross section) is the change in B 1 distribution is most This is a small direction and the direction in which the shape change of the subject 103 is the least, and is desirable as the measurement axis direction.
  • the distribution measurement cross section it is desirable to set the distribution measurement cross section to be measured within an imaging region including all imaging cross sections.
  • the number of distribution measurement cross sections to be measured is N (N is an integer of 1 or more).
  • the measurement axis direction is the AX direction, and the number N of distribution measurement cross sections is three.
  • a plurality of imaging sections are set in the y-axis direction (AX section), the x-axis direction (SAG section), and the y-axis direction (COR section).
  • the distribution measurement cross section is set in the imaging region 420 shown in FIG. 7 including these imaging cross sections 411, 412, and 413.
  • the distribution measurement cross section includes both end portions 421 and 423 of the imaging region 420 in the AX direction and the central portion as shown in FIG. Set to 422.
  • the FOV Field of View
  • the center in the z-axis direction of the region 420 is the origin
  • z ⁇ 150 mm, 0 mm
  • the FOV of the distribution measurement cross section is about 300 to 500 mm
  • the slice width is about 5 to 20 mm.
  • the measurement of B 1 distribution of a plurality of distribution measurement section is carried out, for example, by using a multi-slice method.
  • condition calculation unit 332 calculates optimal high-frequency magnetic field conditions in different procedures depending on whether the imaging cross section is orthogonal to the measurement axis or not.
  • the condition calculation unit 332 first calculates the optimum high-frequency magnetic field for each channel of each distribution measurement cross section, and registers the calculation result in, for example, the storage device 111 or the like.
  • Each distribution measurement section, the optimum frequency magnetic field condition for each channel by using the B 1 distribution of each distribution measurement section can be calculated by the following equation (2).
  • Bx m (2)
  • B is a matrix representing the B 1 distribution of each channel
  • m is a matrix representing the ideal B 1 distribution
  • x is an optimum high-frequency magnetic field condition (here, RF amplitude and phase) to be obtained.
  • Matrix m for example, assuming the B 1 distribution of the ideal, the same value to all elements.
  • the equation (2) is solved using, for example, the least square method, and the value of x is calculated.
  • the obtained high frequency magnetic field condition is the optimum high frequency magnetic field condition.
  • B 1 distribution of each channel consists of 1000 points data, if the number of channels is 2, B is a 1000 ⁇ 2 matrix. Further, x is a 2 ⁇ 1 matrix, and m is a 1000 ⁇ 1 matrix. For example, when the number of channels is 2, the number N of distribution measurement sections is 3, and the RF amplitude and phase are calculated as the high-frequency magnetic field conditions, a total of three sets of amplitude / phase values (A1, A2, ⁇ 1, ⁇ 2) are calculated. Is done.
  • the condition calculation unit 332 extracts two or more distribution measurement cross-sections from them, and calculates the optimum high-frequency magnetic field condition for the imaging cross section by interpolation. For example, when interpolation is performed using two distribution measurement sections, it is desirable to use the high-frequency magnetic field conditions of the distribution measurement sections on both sides of the imaging section.
  • the distribution measurement cross section is three sheets 511, 512, and 513 in the AX direction (z-axis direction), and the imaging cross section 510 is the same direction and the distribution measurement cross section 511 and the distribution measurement cross section.
  • the high-frequency magnetic field condition is the amplitude and phase of RF.
  • the z coordinates of the measurement cross sections 511, 512, and 513 are z1, z2, and z3 (z1 ⁇ z2 ⁇ z3), respectively, and the z coordinate of the imaging cross section 510 is zi (z1 ⁇ zi ⁇ z2).
  • the optimum value A1 zi of the RF amplitude A1 of the channel 1 of the imaging section 510 can be calculated by the following equation (3), for example.
  • A1 z1 and A1 z2 are the optimum RF amplitudes of the channel 1 of the measurement sections 511 and 512, respectively.
  • the optimum RF amplitude A2 value A2 zi of the channel 2 of the imaging section is the same as A1 z1 and A1 z2 of the above equation (3), and the optimum RF amplitude A2 z1 of the channel 2 of the distribution measurement sections 511 and 512, respectively. , A2 Replace with z2 and calculate. Further, the optimum RF phase ⁇ 1 zi of the channel 1 is changed from the A1 z1 and A1 z2 of the above equation (3) to the optimum RF phases ⁇ 1 z1 and ⁇ 1 z2 of the channel 1 of the distribution measurement sections 511 and 512, respectively. Replace and calculate.
  • the optimal RF phase ⁇ 2 zi of channel 2 replaces A1 z1 and A1 z2 in the above equation (3) with the optimal RF phases ⁇ 2 z1 and ⁇ 2 z2 of channel 2 of the distribution measurement sections 511 and 512, respectively. calculate.
  • the optimum high frequency magnetic field condition of the matching distribution measurement cross section is directly used as the high frequency magnetic field condition of the imaging cross section. This may be calculated using equation (3).
  • the condition calculation unit 332 first causes the distribution extraction unit 334 to extract the B 1 distribution of the intersection region between the imaging cross section and the distribution measurement cross section for each channel. Then, from the obtained B 1 distribution of the intersecting region for each channel, the condition calculation unit 332 calculates the optimum high-frequency magnetic field condition of the imaging section using the above equation (2). At this time, the condition calculation unit 332 uses a matrix representing the B 1 distribution of the intersection region of each channel for B in the above equation (2).
  • the width of the intersecting region extracted by the distribution extracting unit 334 in the direction orthogonal to the imaging section is preferably about 10 to 80 mm. This is because if the width of the crossing region is made too small, the number of extracted B 1 values will be small and insufficient to calculate the optimal RF amplitude and phase, and conversely the length of the crossing region. This is because the position information is lost if the value is too large.
  • the spatial change of the B 1 distribution mainly depends on the RF wavelength, and the spatial change becomes more severe as the wavelength becomes shorter. For this reason, it is necessary to set a smaller width as the wavelength becomes shorter.
  • the distribution measurement cross section is three sheets 511, 512, and 513 in the AX direction.
  • the imaging section 520 is a SAG section as shown in FIG.
  • the distribution extracting unit 334, FIG. 8 (B) the out of B 1 distribution of the three distribution measurement section 511, 512 and 513, a predetermined region (intersection region) 521 and 522, Only 523 B 1 values are extracted.
  • the intersecting regions 521, 522, and 523 each include an intersection line (a dotted line portion in FIG. 8B) with the imaging section 520 that is a SAG section (a section in the SAG (x-axis) direction).
  • a strip-shaped region (521, 522, 523) only the B 1 value is extracted.
  • the imaging section 530 is a COR section as shown in FIG.
  • the distribution extraction unit 334 selects predetermined areas (intersection areas) 531, 532, among the B 1 distributions of the three distribution measurement sections 511, 512, and 513, It extracts only B 1 value of 533.
  • the intersecting regions 531, 532, and 533 include intersection lines (dotted lines in FIG. 8C) with the imaging section 530 that is a COR section (a section in the COR (y-axis) direction).
  • y 0 mm
  • the condition calculation unit 332 by Equation (2) from the B 1 value, to calculate the optimum frequency magnetic field conditions.
  • FIG. 9 is a processing flow of the imaging process of the present embodiment.
  • the measurement axis direction is the AX direction
  • the number of distribution measurement cross sections is N.
  • the number of imaging sections is M (M is an integer of 1 or more).
  • the imaging position setting unit 310 performs an imaging area setting process (step S1101).
  • the distribution calculator 331 performs B 1 distribution measurement, calculates the B 1 distribution of N pieces of distribution measurement section in the AX direction (step S1102).
  • the distribution calculation unit 331 refers to the parameters relating to the position of the captured image by the imaging position setting unit 310 calculates and determines the imaging area to measure the B 1 distribution.
  • the RF shimming unit 330 performs RF shimming processing for each imaging section set by the imaging position setting unit 310.
  • the condition calculation unit 332 calculates an optimum high-frequency magnetic field condition, and the high-frequency magnetic field condition calculated by the condition setting unit 333 is set.
  • the RF shimming unit 330 repeats the following processing M times for the total number of imaging sections (steps S1103, S1109, and S1110).
  • the condition calculation unit 332 determines whether the direction of the m-th imaging cross section (m is an integer satisfying 1 ⁇ m ⁇ M) to be processed is the measurement axis direction (step S1104). If the direction is the measurement axis direction, the condition calculation unit 332 determines whether or not the optimum high-frequency magnetic field condition for each distribution measurement section has been calculated (step S1105). Whether or not the calculation has been completed is determined based on, for example, whether or not the optimum high-frequency magnetic field condition for each distribution measurement section is registered in the storage device 111.
  • step S1105 If it is determined in step S1105 that the calculation has not been completed, the condition calculation unit 332 calculates the optimum high-frequency magnetic field condition for each distribution measurement section using the above method and registers it in the storage device 111 (step S1106). Then, using the calculated optimal high-frequency magnetic field condition for each distribution measurement cross section, the optimal high-frequency magnetic field condition for the m-th imaging cross section is calculated according to the above method (step S1107). On the other hand, if it has been calculated in step S1105, the process proceeds to step S1106, and the optimal high-frequency magnetic field condition for each distribution measurement cross section that has already been calculated is used, and the optimal high-frequency magnetic field condition for the m-th imaging cross section is determined according to the above method. Calculate
  • the condition setting unit 333 sets the calculated optimum high-frequency magnetic field condition as the imaging condition of the m-th imaging section (step S1108). Then, the condition setting unit 333 determines whether or not processing has been completed for all imaging sections (step S1109). If not, m is incremented by 1 (step S1110), and the process returns to step S1104 to repeat the processing. .
  • step S1109 When it is determined in step S1109 that all processing has been completed, the RF shimming unit 330 finishes the RF shimming processing, and the main image capturing unit 340 executes main image capturing (step S1111).
  • step S1104 determines whether the m-th imaging cross section to be processed is not a cross-section in the measurement axis direction.
  • the condition calculation unit 332 sends the m-th imaging cross-section and the distribution measurement cross-section to the distribution extraction unit 334. to extract the B 1 distribution of intersections of the (step S1112). Then, the condition calculation unit 332 calculates the optimum high-frequency magnetic field condition for the m-th imaging section from the extracted B 1 distribution according to the above method (step S1113). Then, control goes to a step S1108.
  • the interval between the AX sections was 75 mm in the z-axis direction
  • the interval between the SAG sections was 40 mm in the x-axis direction
  • the interval between the COR sections was 40 mm in the y-axis direction.
  • the position on the z axis of the cross section at the center in the AX direction of the five AX cross sections was set to 0 mm
  • the positions of the other four sheets on the z axis were set to ⁇ 150 mm, ⁇ 75 mm, 75 mm, and 150 mm, respectively.
  • the position on the x axis of the cross section at the center of the SAG direction of the seven SAG sections is 0 mm, and the other six positions on the x axis are ⁇ 120 mm, ⁇ 80 mm, ⁇ 40 mm, 40 mm, 80 mm, and 120 mm, respectively. It was. In addition, the position on the y axis of the cross section at the center in the COR direction of the three COR cross sections was set to 0 mm, and the positions of the other two sheets on the y axis were set to ⁇ 40 mm and 40 mm, respectively.
  • FIG. 10A is a diagram showing each set AX cross-sectional position 611 and SAG cross-sectional position 621 on the COR image 630 of the pelvic region. In order to confirm the effect of this embodiment in the entire pelvic region, such an imaging cross-sectional position was set.
  • RF amplitude and phase calculation method for five AX cross sections.
  • z -150mm, 0mm, for the imaging plane of the position of 150 mm, it was calculated RF amplitude and phase of a total of B 1 distribution measured at each coordinate.
  • RF amplitude and phase were calculated.
  • FIG. 10B shows an AX cross-sectional image 610 of the human pelvic region, a strip-shaped intersection region 622 centered on each imaging cross-section position in the SAG direction, and each imaging cross-section position for three COR directions. An intersection region 632 is shown. Note that the image 610 is an image showing the B 1 distribution of distribution measurement section.
  • the other imaging cross-sections were also calculated by extracting the B 1 value of the strip-shaped intersection region 622 centered on the imaging cross-section position, and calculating the value as B in the above equation (2).
  • the slice thickness is about several millimeters, but the length in the x-axis direction of the intersecting region 622 in the SAG direction in FIG. 10B is 40 mm. If the length of the intersection region 622 in the x-axis direction is too small, the number of extracted B 1 values is reduced, which may be insufficient when calculating the optimum RF amplitude and phase. Conversely, if the length in the x-axis direction of each intersection region 622 in the SAG direction is too large, the position information of the SAG cross section is impaired. For this reason, the length of the intersecting region 622 in the x-axis direction is preferably about 10 to 800 mm.
  • the optimum RF amplitude and phase calculation method for three COR sections was the same as that for the SAG section. In other words, using the B 1 distribution of strip-shaped intersection region 632 centered position each imaging section, and calculates the optimum RF amplitude and phase.
  • FIG. 11A is an imaging section in the AX direction in the pelvic region
  • FIG. 11B is an imaging section in the SAG direction
  • FIG. 11C is an imaging section in the COR direction.
  • U SD uniformity index
  • the result (uniformity index) by method 1 is 641
  • the result (uniformity index) by method 2 is 642
  • the result (uniformity index) by method 3 is 643, and QD without RF shimming is performed.
  • the result at the time of irradiation is indicated by 644.
  • FIG. 11B they are indicated by 651, 652, 653, and 654, respectively
  • FIG. 11C they are indicated by 661, 662, 663, and 664, respectively.
  • any of the method 1 (641), the method 2 (642), and the method 3 (643) is compared with the time of QD irradiation (644).
  • U SD decreases, it can be seen that B 1 nonuniformity is reduced.
  • Method 1 and Method 3 have substantially the same USD value in any imaging cross section, and it was shown that substantially the same B 1 nonuniformity reduction effect can be obtained by Method 1 and Method 3.
  • method 1 although it takes time for B 1 distribution measurement, for measuring all the B 1 distribution in the imaging section itself, the optimum RF amplitude and phase in all the imaging section can be calculated. Therefore, it can be said that the B 1 nonuniformity reduction effect realized by the method 1 is the maximum.
  • Method 2 although the B 1 distribution measurement time is as short as one sheet, the obtained amplitude and phase of one RF are applied to all 15 imaging sections. For this reason, the B 1 non-uniformity reduction effect may be reduced. However, compared to the time of QD irradiation (without the RF shimming), much the value of U SD is reduced, the uniformity of the B 1 represents increasing.
  • the method 3 B 1 measured time distribution is short, and, B 1 nonuniformity reduction effect becomes substantially identified degree of Method 1.
  • the method 3 which is the method of the present embodiment obtains the B 1 non-uniformity reducing effect substantially the same as the method 1 in which the B 1 non-uniformity reducing effect is maximized. It was shown that Therefore, it was shown that the B 1 nonuniformity reduction effect by RF shimming can be maximized in all imaging cross sections by the method of the present embodiment. Therefore, the usefulness of the method (method 3) of this embodiment was shown.
  • the cervical spine region has a larger change in the AX cross-sectional shape with respect to the z-axis direction than the pelvic region.
  • the usefulness of this embodiment for such a region having a large shape change was examined.
  • the experimental apparatus was a 3T MRI apparatus as in the above pelvic region, and the optimum high-frequency magnetic field conditions to be calculated were the amplitude and phase of RF.
  • the effect of this embodiment was confirmed for nine AX cross sections, five SAG cross sections, and three COR cross sections.
  • the AX section was 30 mm in the z-axis direction
  • the SAG section was 25 mm in the x-axis direction
  • the COR section was 25 mm in the y-axis direction. Further, the position on each axis of the central imaging section in each direction was set to 0 mm.
  • FIG. 12 is a diagram showing the set AX cross-sectional positions 711 and SAG cross-sectional positions 721 on the COR image 730 of the cervical spine region.
  • a cross-sectional position was set.
  • the distribution of B 1 was measured by using three distribution measurement cross-sections at ⁇ 120 mm, 0 mm, and 120 mm in the AX direction.
  • the uniformity index U SD imaging section in each direction shown in FIG. 13. 13A is an imaging section in the AX direction in the cervical spine region, FIG. 13B is an imaging section in the SAG direction, and FIG. 13C is an imaging section in the COR direction. is the value of the uniformity index U SD in the case of applying the method.
  • the results obtained by the respective methods are shown as line graphs 741, 742, 743 in FIG. 13A, as line graphs 751, 752, 753 in FIG. 13B, and as shown in FIG. 13C, respectively. These are indicated by line graphs 761, 762, and 763.
  • uniformity index U SD value at QD irradiation without the RF shimming respectively, shown in 744,754,764.
  • any of the method 1 (741), the method 2 (742), and the method 3 (743) is performed at the time of QD irradiation (744).
  • U SD decreases, it can be seen that B 1 nonuniformity is reduced.
  • Method 1 and Method 3 have substantially the same U SD value in any cross section, and it can be seen that Method 1 and Method 3 show the same B 1 non-uniformity reducing effect.
  • the imaging cross sections in the SAG and COR directions also show the same tendency as shown in FIGS. 13 (B) and 13 (C). That is, in the method 2, the value of U SD in some imaging section is increased, B 1 is heterogeneous reduction effect can not be sufficiently obtained, the method 1 and the method 3, substantially the same U SD at any cross-section It becomes the value of. Therefore, it can be seen that Method 1 and Method 3 show the same B 1 non-uniformity reducing effect.
  • the method of this embodiment can maximize the effect of reducing B 1 nonuniformity by RF shimming in all cross-sections.
  • the MRI apparatus 100 of the present embodiment includes a static magnetic field forming unit that forms a static magnetic field, a gradient magnetic field application unit that applies a gradient magnetic field, and a plurality of channels that transmit different high-frequency magnetic fields to the subject.
  • a high-frequency magnetic field transmission unit, a signal reception unit that receives a nuclear magnetic resonance signal generated from the subject, and the signal reception unit that receives the high-frequency magnetic field transmitted from the high-frequency magnetic field transmission unit to the subject A distribution calculation unit 331 that calculates a first high-frequency magnetic field distribution that is a high-frequency magnetic field distribution of a first distribution measurement cross section orthogonal to the first axis from the nuclear magnetic resonance signal, and the first high-frequency magnetic field distribution
  • the high-frequency magnetic field condition includes a condition calculation section 332 for calculating, the.
  • the distribution calculation unit 331 further calculates a second high-frequency magnetic field distribution, which is a high-frequency magnetic field distribution of a second distribution measurement section orthogonal to the first axis, from the nuclear magnetic resonance signal, and the condition
  • the calculation unit 332 may calculate the high-frequency magnetic field condition further based on the second high-frequency magnetic field distribution.
  • the condition calculation unit 332 calculates an intersection line between the imaging cross section and the first distribution measurement cross section.
  • a distribution extraction unit 334 for extracting a cross-region high-frequency magnetic field distribution, which is a high-frequency magnetic field distribution of the region including the distribution region, from the first high-frequency magnetic field distribution, and using the cross-region high-frequency magnetic field distribution, May be calculated.
  • the condition calculation unit 332 By interpolating the first high-frequency magnetic field condition calculated from the first high-frequency magnetic field distribution and the second high-frequency magnetic field condition calculated from the second high-frequency magnetic field distribution, the high-frequency magnetic field condition of the imaging cross section is calculated. Also good.
  • each high frequency magnetic field condition that maximizes the uniform reduction effect is calculated. For example, after measuring the B 1 distribution of only a few sheets of AX direction, for optimum high frequency magnetic field conditions for imaging the cross-section of an arbitrary position in the AX direction, the optimal calculated from two B 1 distribution close to the imaging section For the optimum high-frequency magnetic field condition obtained by interpolating from the high-frequency magnetic field condition and for the imaging section at an arbitrary position in the SAG and COR directions, only the B 1 value in the intersection region with the imaging section is extracted from the B 1 distribution. , Use it to find out.
  • the high-frequency magnetic field condition for each channel of an arbitrary imaging cross section is calculated using the B 1 distribution of the distribution measurement cross section in the uniaxial direction. Therefore, since the time required to measure the B 1 distribution is small, the extension of the total imaging time can be suppressed. Further, the high-frequency magnetic field condition of the imaging cross section is calculated by an optimum method for each of the measurement axis direction and the other directions using the characteristics of the change in the B 1 distribution due to the properties of the transmission coil, the shape of the subject, and the like. .
  • the optimum high-frequency magnetic field condition for each imaging section can be obtained with substantially the same accuracy as the optimum high-frequency magnetic field condition actually obtained from the B 1 distribution of the imaging section, and the same B 1 non-uniformity reduction effect can be obtained. be able to.
  • the measurement axis is in particular one direction.
  • the multi-slice method can be used for the B 1 distribution measurement. Accordingly, it is possible to measure the necessary B 1 distribution of all distribution measurement cross sections in the same measurement time as when measuring the B 1 distribution of one cross section, and to suppress the time required for the B 1 distribution measurement.
  • the B 1 distribution of each distribution measurement section method of calculating the high-frequency magnetic field conditions (RF amplitude and phase) is not limited to this.
  • the method described in Patent Document 2 may be used.
  • the RF amplitude and phase may be changed at certain intervals to calculate the uniformity, and the RF phase and amplitude with the highest uniformity may be set as the optimum RF phase and amplitude.
  • the RF amplitude and the phase that are optimum for reducing the nonuniformity of the B 1 distribution are calculated as the high-frequency magnetic field condition.
  • both the amplitude and the phase of the RF are necessarily calculated. There is no need, and either one may be sufficient. For example, when it is desired to control only the phase, it is only necessary to calculate x while fixing the amplitude value when solving Equation (2). Similarly, when it is desired to control only the amplitude, the value of the phase is fixed and equation (2) is solved to calculate x.
  • the imaging cross section is mainly a cross section in three directions of the AX cross section, the SAG cross section, and the COR cross section
  • the imaging cross section is not limited thereto. It may be an axial cross section inclined by a predetermined angle from these directions. That is, the imaging cross section may be an imaging cross section of oblique imaging.
  • the condition calculation unit 332 causes the distribution extraction unit 334 to extract the B 1 value of the intersection region between the imaging cross section and the distribution measurement cross section, and uses this to calculate the optimum of the imaging cross section, unless the imaging cross section is parallel to the distribution measurement cross section.
  • the high frequency magnetic field conditions are calculated.
  • Figure 14 is a diagram for explaining a region (intersection region) to be extracted, and the B 1 value when performing oblique imaging of a predetermined angle inclined cross section from SAG section and the imaging section.
  • the distribution measurement cross section is assumed to be three cross sections 511, 512, and 513 in the AX direction as in the above embodiment.
  • predetermined areas including intersection lines between the imaging section 540 and the distribution measurement sections 511, 512, and 513 are defined as the intersection areas 541, 542, and 543, and the intersection areas. extracting the B 1 value. Then, the same processing as in the case where the imaging section 540 is orthogonal to an axis other than the measurement axis is performed, and an optimum high-frequency magnetic field condition is calculated.
  • an error message may be displayed.
  • the B 1 distribution of three AX cross sections is acquired as the distribution measurement cross section, and the B 1 value extracted when the distribution extracting unit 334 extracts the B 1 distribution in the intersection area with the imaging cross section of the oblique imaging.
  • An error message is output if there is a distribution measurement section where the number of is zero. Thereafter, the user may be configured to take measures such as increasing the number of distribution measurement cross sections or reducing the interval between distribution measurement cross sections.
  • the distribution calculation unit 331 increases the number of distribution measurement cross sections by a predetermined number, or the interval between distribution measurement cross sections is a predetermined length. only reduced, such to change the conditions for distribution calculation process, again, it may be configured to perform the B 1 distribution measurement. By introducing such a flow, the optimum RF amplitude and phase can be calculated even when the oblique angle of the imaging section is large.
  • the distribution measurement cross section number N may be one.
  • the change in the cross-sectional shape of the subject 103 with respect to the measurement axis direction is small.
  • there is little change in the shape of the AX cross section of the subject 103 with respect to the z-axis direction which is almost the same.
  • the optimum high-frequency magnetic field condition of the distribution measurement section is directly used as the high-frequency magnetic field condition of the imaging section for the imaging section in the measurement axis direction.
  • the high frequency magnetic field condition calculated using the B1 distribution in the region intersecting with the distribution measurement cross section is set as the optimum high frequency magnetic field condition.
  • N when it is known in advance that the change in the cross-sectional shape of the subject 103 in the measurement axis direction is large, the number of N is set large. That is, in the above specific example, when the shape change of the AX section with respect to the z-axis direction is large, N may be 4 or more.
  • the number of distribution measurement cross sections may be determined in accordance with the change in the cross sectional shape of the subject in the measurement axis direction, the size of the FOV, and the like.
  • the distribution measurement cross section for measuring the B 1 distribution is, as a general rule, the direction of the measurement axis, the direction in which the change in the B 1 distribution is small, and / or the shape change of the subject is small.
  • the direction is desirable.
  • the case where the AX direction satisfying these conditions is set as the measurement axis direction has been described as an example.
  • the measurement axis direction does not necessarily satisfy these conditions.
  • the SAG direction or the COR direction may be used.
  • the importance of the cross section other than the direction satisfying the above condition is higher than the importance of the cross section in the direction, or when the cross section in the direction is not captured.
  • the measurement axis with the direction of the imaging section having a high importance level, it is possible to more reliably obtain the B 1 non-uniformity reduction effect of the imaging section having a high importance level.
  • the distribution measurement cross section with the measurement axis as the SAG direction or the COR direction is used.
  • the optimum RF amplitude and phase may be calculated by using the SAG cross section as the distribution measurement cross section and acquiring the B 1 distribution.
  • the measurement axis is made into 1 direction, it is good also as 2 directions. That is, the direction of the distribution measurement section which measures the B 1 distribution may be two directions. For example, by acquiring the B 1 distribution in two directions of the AX direction and the SAG direction, the amount of information related to the B 1 distribution increases. Therefore, compared with the case of calculating the optimum frequency magnetic field conditions from one direction of B 1 distribution, it can achieve a higher B 1 nonuniformity reduction effect.
  • the width of the intersecting region extracted by the distribution extracting unit 334 in the direction orthogonal to the imaging section may be optimally adjusted by changing the setting value of the width as a parameter.
  • the width for obtaining a high-frequency magnetic field condition exhibiting the highest B 1 non-uniformity reduction effect is set as an optimum value. This is because if the width of the crossing region is made too small, the number of extracted B 1 values will be small and insufficient to calculate the optimal RF amplitude and phase, and conversely the length of the crossing region. This is because the position information is lost if the value is too large.
  • the optimum high-frequency magnetic field condition is obtained and set for each imaging section, but the acquisition of the high-frequency magnetic field condition is not limited to each imaging section.
  • One optimal high-frequency magnetic field condition may be calculated and set for each region having a predetermined width in each axial direction.
  • FIG. 15 shows an AX cross section 810 of the human pelvic region, regions 821, 822, and 823 divided into three in the x-axis direction, and regions 831, 832, and 833 divided into three in the y-axis direction.
  • the entire imaging region is divided into three areas: a left side 821, a center 822, and a right side 823 in the figure.
  • the entire imaging region is divided into three areas: an upper side 831, a center 832, and a lower side 833 in the drawing.
  • the distribution extraction unit 334 extracts the B 1 value for each of the left side 821, the center 822, and the right side 823 regions. And the condition calculation part 332 calculates the optimal high frequency magnetic field conditions about each area
  • the RF amplitude and phase of each channel (A1_L, A2_L, ⁇ 1_L, ⁇ 2_L ) and, using the B 1 value in the central region 822, the amplitude of the RF of each channel and phase (A1_C, A2_C, ⁇ 1_C, ⁇ 2_C ) and, using the B 1 value in the right region 823, RF amplitude and phase of each channel (A1_R, A2_R, ⁇ 1_R, ⁇ 2_R ) to be calculated.
  • the RF amplitude and phase (A1_C, A2_C, ⁇ 1_C, ⁇ 2_C) are calculated.
  • the optimal RF amplitude and phase (A1_C, A2_C, ⁇ 1_C, ⁇ 2_C) of the central region 822 are all used for the imaging cross section that is the SAG cross section with the x coordinate in the range of ⁇ 75 mm to 75 mm.
  • condition calculation unit 332 determines the high-frequency magnetic field condition of each divided region obtained by dividing an imaging region including all imaging cross sections into a predetermined number in the same direction as the imaging cross section.
  • the high-frequency magnetic field condition of the sectioned region including the imaging section in the sectioned region is set as the high-frequency magnetic field condition of the imaging section.
  • one optimum high-frequency magnetic field condition is calculated and set for each imaging section in the sequencer 104. It is possible to reduce time and labor when setting the parameter value of each RF pulse.
  • the MRI apparatus of this embodiment basically has the same configuration as that of the first embodiment.
  • the functional configuration of the computer 109 that realizes this is different from that of the first embodiment.
  • the present embodiment will be described focusing on the configuration different from the first embodiment.
  • FIG. 16 is a functional block diagram of the computer 109 of this embodiment. Similar to the first embodiment, the computer 109 according to this embodiment includes an imaging position setting unit 310, a static magnetic field shimming unit 320, an RF shimming unit 330, and a main image imaging unit 340. Each function of the computer 109 is realized by a CPU included in the computer 109 loading a program stored in the storage device 111 in advance into the memory and executing the program.
  • RF shimming unit 330 of this embodiment like the first embodiment, distribution calculation for calculating B 1 distribution of distribution measurement section perpendicular to the predetermined distribution measurement axis from the nuclear magnetic resonance signals (high-frequency magnetic field distribution)
  • a condition calculation unit 332 that calculates a high-frequency magnetic field condition of an arbitrary imaging section using the unit 331 and the obtained B 1 distribution; and a condition setting that sets the obtained high-frequency magnetic field condition as an imaging condition used for main image capturing Unit 333.
  • a distribution extraction unit 334 is provided.
  • Each of these functions is basically the same as the function of the same name in the first embodiment.
  • condition calculation unit 332 of the present embodiment further includes an average value calculation unit 335 that calculates an average value (B 1 average value) of B 1 values in each distribution measurement cross section.
  • the condition calculation unit 332 of the present embodiment when calculating the optimal frequency magnetic field conditions for each distribution measurement section, consider the B 1 average values within each distribution measurement section which average value calculating unit 335 is calculated.
  • Condition calculation unit 332 of the present embodiment when the imaging cross section measuring axis direction, the optimum frequency magnetic field conditions for each distribution measurement section calculated, adjusted to B 1 average value is constant, the imaging cross-section measuring axis If the direction is not the direction, an optimum high frequency magnetic field condition is calculated after adjusting so that the B 1 average value of the extracted B 1 distribution of each intersection region is constant.
  • three distribution measurement cross sections are arranged in the AX direction (for example, 511, 512, 513 in FIG. 8A, FIG. 8B, and FIG. 8C, hereinafter D1, D2, referred to as D3.) and the (to get the three B 1 distribution AX direction), condition calculation unit 332, the imaging cross-section of the measuring axis direction, i.e., distribution measurement section parallel to an imaging section (AX section, For example, the optimum high frequency magnetic field condition of 510) in FIG. 8A is calculated by the following procedure.
  • the condition calculation unit 332 calculates the optimum high-frequency magnetic field condition for each distribution measurement section (D1, D2, D3) in the same procedure as in the first embodiment. Also, the average value calculation unit 335 calculates the B 1 average value of each distribution measurement cross section (D1, D2, D3), and registers the average value in the storage device 111, for example. Here, the B 1 average value of the distribution measurement section obtained (D1, D2, D3), respectively, and 0.8,1.0,0.8.
  • the condition calculation unit 332 adjusts the B 1 average value of each distribution measurement cross section (D 1, D 2, D 3) so that the B 1 average value of all distribution measurement cross sections becomes constant, and registers the B 1 average value in the storage device 111.
  • B 1 average of all the distribution measurement section is 1.0
  • the distribution measurement section D1 and D3 the optimal frequency magnetic field conditions, to 1.25 times.
  • the optimal high-frequency magnetic field condition of the imaging section is calculated by interpolation or the like in the same procedure as in the first embodiment.
  • the condition calculation unit 332 includes an imaging cross section other than the measurement axis direction, for example, a SAG cross section (for example, 520 in FIG. 8B), a COR cross section (for example, As shown in FIG. 8C, 530), the optimum high-frequency magnetic field condition of the imaging section that is not parallel to the distribution measurement section is calculated in the following procedure.
  • the condition calculation unit 332 first causes the distribution extraction unit 334 to extract the B 1 value of the intersection region between the imaging cross section and each distribution measurement cross section (D1, D2, D3) in the same procedure as in the first embodiment.
  • each of the intersection regions of the first captured image and the distribution measurement cross section for example, 521 in FIG. 8B).
  • E1_1, E1_2, and E1_3 in the present embodiment
  • the intersection regions of the second captured image and the distribution measurement cross section are respectively (for example, 521 in FIG. 8B).
  • E2_1, E2_2, and E2_3 in this embodiment.
  • the average value calculation unit 335 calculates the B 1 average value of the entire intersection regions (E1_1, E1_2, E1_3) and the B 1 average value of the entire intersection regions (E2_1, E2_2, E2_3).
  • the condition calculation unit 332 determines the optimum high-frequency magnetic field condition for the imaging cross section in the procedure of the first embodiment so that the B 1 average value of all the imaging cross-sectional positions (here, two positions) is constant. calculate.
  • the condition calculation unit 332 determines that the B 1 average values of all distribution measurement cross-sections are, for example, 1.0 so as, B 1 average value optimal frequency magnetic field conditions in the imaging section of 0.8 to 1.25.
  • FIG. 17 is a processing flow of imaging processing according to the present embodiment.
  • the measurement axis direction is the AX direction
  • the number of distribution measurement cross sections is N (N is an integer of 2 or more).
  • the number of imaging sections is M (M is an integer of 1 or more).
  • the imaging position setting unit 310 performs an imaging area setting process (step S2101).
  • the distribution calculator 331 performs B 1 distribution measurement, calculates the B 1 distribution of N pieces of distribution measurement section in the AX direction (step S2102).
  • the distribution calculation unit 331 refers to the parameters relating to the position of the captured image by the imaging position setting unit 310 calculates and determines the imaging area to measure the B 1 distribution.
  • the RF shimming unit 330 performs RF shimming processing for each imaging section set by the imaging position setting unit 310.
  • the condition calculation unit 332 calculates an optimum high-frequency magnetic field condition, and the high-frequency magnetic field condition calculated by the condition setting unit 333 is set.
  • the RF shimming unit 330 repeats the following process M times for the total number of imaging sections (steps S2103, S2110, and S2111).
  • the condition calculation unit 332 determines whether the direction of the m-th imaging cross section (m is an integer satisfying 1 ⁇ m ⁇ M) to be processed is the measurement axis direction (step S2104). If the direction is the measurement axis direction, the condition calculation unit 332 determines whether or not the optimal high-frequency magnetic field condition after adjustment of each distribution measurement section has been calculated (step S2105). Whether or not the calculation has been completed is determined based on, for example, whether or not the optimum high-frequency magnetic field condition after adjustment of each distribution measurement section is registered in the storage device 111.
  • step S2105 If it is determined in step S2105 that the calculation has not been completed, the condition calculation unit 332 first calculates the optimum high-frequency magnetic field condition and B 1 average value of each distribution measurement section (step S2106). As mentioned above, B 1 average, is calculated on the average value calculation section 321. The condition calculation unit 332, using the calculated B 1 average value, and adjust the optimum frequency magnetic field conditions for each distribution measurement section above method, is registered in the storage unit 111 as a high-frequency magnetic field conditions after the adjustment (Step S2107 ). Then, using the obtained optimum high-frequency magnetic field condition after adjusting each distribution measurement cross section, the optimum high-frequency magnetic field condition of the m-th imaging cross section is calculated according to the above method (step S2108). On the other hand, if the calculation has been completed in step S2105, the process proceeds to step S2108, and the optimum high-frequency magnetic field condition for each distribution measurement cross section that has already been calculated is used. Calculate
  • the condition setting unit 333 sets the calculated optimum high-frequency magnetic field condition as the imaging condition of the m-th imaging section (step S2109). Then, the condition setting unit 333 determines whether or not processing has been completed for all imaging sections (step S2110). If not, m is incremented by 1 (step S2111), and the process returns to step S2103 to repeat the processing. .
  • step S2110 If it is determined in step S2110 that all the processes have been completed, the RF shimming unit 330 finishes the RF shimming process, and the main image capturing unit 340 executes the main image capturing (step S2112).
  • step S2104 determines whether the m-th imaging section to be processed is not a section in the measurement axis direction. If it is determined in step S2104 that the m-th imaging section to be processed is not a section in the measurement axis direction, the condition calculation unit 332 sends the m-th imaging section and the distribution measurement section to the distribution extraction unit 334. to extract the B 1 distribution of intersections of the (step S2113). Then, the condition calculation unit 332 causes the average value calculation unit 335 to calculate the average value of the B 1 distribution (B 1 value) of each intersection region (step S2114). Then, the condition calculation unit 332 calculates the optimum high-frequency magnetic field condition for the m-th imaging section according to the above method (step S2115). Then, control goes to a step S2109.
  • the MRI apparatus 100 of the present embodiment includes a static magnetic field forming unit that forms a static magnetic field, a gradient magnetic field application unit that applies a gradient magnetic field, and a plurality of channels that transmit different high-frequency magnetic fields to the subject.
  • a high-frequency magnetic field transmission unit, a signal reception unit that receives a nuclear magnetic resonance signal generated from the subject, and the signal reception unit that receives the high-frequency magnetic field transmitted from the high-frequency magnetic field transmission unit to the subject A distribution calculation unit 331 that calculates a first high-frequency magnetic field distribution that is a high-frequency magnetic field distribution of a first distribution measurement cross section orthogonal to the first axis from the nuclear magnetic resonance signal, and the first high-frequency magnetic field distribution
  • the high-frequency magnetic field condition includes a condition calculation section 332 for calculating, the.
  • the first distribution measurement cross section is plural, and the imaging cross section is perpendicular to the first axis and is different from any of the plurality of first distribution measurement cross sections, the condition calculation is performed.
  • the unit 332 further includes, for each of the plurality of first distribution measurement cross sections, an average value calculation unit 335 that calculates a magnetic field average value that is an average value of the high-frequency magnetic field values in each first distribution measurement cross section.
  • the high-frequency magnetic field condition of the first cross section is adjusted so that the average value of each magnetic field is constant, and the high-frequency magnetic field condition of the imaging cross section is calculated by interpolating the adjusted high-frequency magnetic field conditions.
  • the condition calculation unit 332 includes the first distribution measurement cross section.
  • a distribution extraction unit 334 that extracts a cross-region high-frequency magnetic field distribution, which is a high-frequency magnetic field distribution of each region including an intersection line between a cross-section and the imaging cross-section, from each of the first high-frequency magnetic field distributions;
  • An average value calculation unit 335 that calculates a magnetic field average value that is an average value of the high-frequency magnetic field values in the region, and sets the high-frequency magnetic field condition of the imaging cross section so that each magnetic field average value is constant. calculate.
  • the B 1 distribution of the uniaxial distribution measurement cross section is used and the characteristics of the change in the B 1 distribution are used to optimize each imaging cross section.
  • the optimum high-frequency magnetic field condition for the imaging section is calculated by a simple method.
  • the measurement axis direction is one direction.
  • the optimum high-frequency magnetic field condition for each imaging section can be obtained with substantially the same accuracy as the optimum high-frequency magnetic field condition actually obtained from the B 1 distribution of the imaging section.
  • B 1 non-uniformity reduction effect can be obtained.
  • the B 1 non-uniformity reduction effect by RF shimming can be maximized regardless of the imaging cross section while minimizing the extension of the imaging time, and the efficiency is improved regardless of the imaging cross section.
  • a high-quality image can be obtained well.
  • the B 1 average value between a plurality of distribution measurement cross sections is also adjusted, the B 1 non-uniformity reduction effect can be further enhanced, and the higher image quality can be achieved. An image can be obtained.
  • the B 1 distribution calculation method may be used as the B 1 distribution calculation method.
  • the optimum high-frequency magnetic field condition either the amplitude or the phase of RF may be used.
  • the direction of the imaging cross section may be oblique. In this case, you may comprise so that the same countermeasure as 1st embodiment may be performed.
  • the number of distribution measurement cross sections may be determined according to a change in the cross sectional shape of the subject in the measurement axis direction, the size of the FOV, and the like.
  • the measurement axis direction a desired direction may be selected according to the imaging condition and the imaging target.
  • the number of measurement axis directions may be two directions.
  • an optimum high-frequency magnetic field condition may be set for each region.
  • the RF amplitude and phase are determined as optimum high-frequency magnetic field conditions under the restriction that the upper limit value of the high-frequency magnetic field (RF) output is not exceeded.
  • the upper limit value of the RF output is determined by, for example, the upper limit value of the RF energy amount (SAR; Specific Absorption Ratio) absorbed by the human body, the output limit value of the RF amplifier, or the like.
  • SAR Specific Absorption Ratio
  • the upper limit value of the RF output is determined so as to suppress the whole body SAR or the local SAR to such an extent that the human body is not affected.
  • the upper limit value of the RF output is determined based on, for example, the correspondence relationship between the RF output, the magnetic field (B 1 value), and the SAR value obtained by electromagnetic field analysis simulation.
  • the MRI apparatus 100 of this embodiment has basically the same configuration as that of the first embodiment. However, as described above, in this embodiment, the upper limit value of the RF output is taken into consideration when setting the optimum high-frequency magnetic field condition. Therefore, the functional configuration of the computer 109 that realizes this is different from that of the first embodiment.
  • the present embodiment will be described focusing on the configuration different from the first embodiment.
  • FIG. 18 is a functional block diagram of the computer 109 of this embodiment.
  • the computer 109 of this embodiment includes an imaging position setting unit 310, a static magnetic field shimming unit 320, an RF shimming unit 330, and a main image imaging unit 340, as in the first embodiment.
  • Each function of the computer 109 is realized by a CPU included in the computer 109 loading a program stored in the storage device 111 in advance into the memory and executing the program.
  • RF shimming unit 330 of this embodiment like the first embodiment, distribution calculation for calculating B 1 distribution of distribution measurement section perpendicular to the predetermined distribution measurement axis from the nuclear magnetic resonance signals (high-frequency magnetic field distribution)
  • a condition calculation unit 332 that calculates a high-frequency magnetic field condition of an arbitrary imaging section using the unit 331 and the obtained B 1 distribution; and a condition setting that sets the obtained high-frequency magnetic field condition as an imaging condition used for main image capturing Unit 333.
  • a distribution extraction unit 334 is provided.
  • Each of these functions is basically the same as the function of the same name in the first embodiment.
  • condition calculation unit 332 of the present embodiment further includes an output calculation unit 336 that calculates a ratio of the SAR to the predetermined upper limit value of the SAR when RF is transmitted under the calculated optimum high-frequency magnetic field condition.
  • the RF output and the SAR value are associated in advance by an electromagnetic field analysis simulation, and the SAR value corresponding to the predetermined RF output is obtained from the correspondence.
  • the SAR upper limit value is determined from the SAR value determined in consideration of safety to the human body.
  • the output calculation unit 336 calculates the ratio by dividing the SAR value by the SAR upper limit value.
  • the condition calculation unit 332 calculates the RF amplitude of the optimum high frequency magnetic field condition of the distribution measurement cross section. Is adjusted so as not to exceed the SAR upper limit value.
  • three distribution measurement cross sections are arranged in the AX direction (for example, 511, 512, 513 in FIG. 8A, FIG. 8B, and FIG. 8C, hereinafter D1, D2, referred to as D3.) and the (to get the three B 1 distribution AX direction), condition calculation unit 332, the imaging cross-section of the measuring axis direction, i.e., distribution measurement section parallel to an imaging section (AX section, For example, the optimum high frequency magnetic field condition of 510) in FIG. 8A is calculated by the following procedure.
  • the condition calculation unit 332 calculates optimum high-frequency magnetic field conditions for each distribution measurement section (D1, D2, D3) in the same procedure as in the first embodiment.
  • the output calculation unit 336 calculates the ratio based on the SAR value and the SAR upper limit value in each distribution measurement section (D1, D2, D3). Then, the condition calculation unit 332 divides the calculated optimum high-frequency magnetic field condition by the ratio for the distribution measurement cross section with the ratio exceeding 1, and obtains the adjusted optimum high-frequency magnetic field condition.
  • the condition calculation unit 332 sets the optimum high-frequency magnetic field condition of the distribution measurement section D1.
  • the RF amplitude is divided by 1.25, that is, multiplied by 0.8 to obtain the optimum high-frequency magnetic field condition after adjustment.
  • the optimal high-frequency magnetic field condition of the imaging section is calculated by interpolation or the like in the same procedure as in the first embodiment.
  • the condition calculation unit 332 includes an imaging cross section other than the measurement axis direction, for example, a SAG cross section (for example, 520 in FIG. 8B), a COR cross section (for example, As shown in FIG. 8C, 530), the optimum high-frequency magnetic field condition of the imaging section that is not parallel to the distribution measurement section is calculated in the following procedure.
  • the condition calculation unit 332 first causes the distribution extraction unit 334 to extract the B 1 value of the intersection region between the imaging cross section and each distribution measurement cross section (D1, D2, D3) in the same procedure as in the first embodiment.
  • each of the intersection regions of the first captured image and the distribution measurement cross section for example, 521 in FIG. 8B).
  • E1_1, E1_2, and E1_3 in the present embodiment
  • the intersection regions of the second captured image and the distribution measurement cross section are respectively (for example, 521 in FIG. 8B).
  • E2_1, E2_2, and E2_3 in this embodiment.
  • the output calculation unit 336 calculates a ratio based on the SAR value and the SAR upper limit value in each distribution measurement cross section. Then, an optimum high-frequency magnetic field condition is calculated using the B 1 value of each adjusted crossing region.
  • the condition calculation unit 332 divides the optimum high-frequency magnetic field condition at the imaging cross-section with the ratio of 1.25 by 1.25. . That is, it is multiplied by 0.8. Then, an optimum high-frequency magnetic field condition for the imaging cross section is calculated.
  • FIG. 19 is a processing flow of the imaging process of the present embodiment.
  • the measurement axis direction is the AX direction
  • the number of distribution measurement cross sections is N (N is an integer of 2 or more).
  • the number of imaging sections is M (M is an integer of 1 or more).
  • the imaging position setting unit 310 performs an imaging area setting process (step S3101).
  • the distribution calculator 331 performs B 1 distribution measurement, calculates the B 1 distribution of N pieces of distribution measurement section in the AX direction (step S3102).
  • the distribution calculation unit 331 refers to the parameters relating to the position of the captured image by the imaging position setting unit 310 calculates and determines the imaging area to measure the B 1 distribution.
  • the RF shimming unit 330 performs RF shimming processing for each imaging section set by the imaging position setting unit 310.
  • the condition calculation unit 332 calculates an optimum high-frequency magnetic field condition, and the high-frequency magnetic field condition calculated by the condition setting unit 333 is set.
  • the RF shimming unit 330 repeats the following processing M times for the total number of imaging sections (steps S3103, S3111, and S3112).
  • the condition calculation unit 332 determines whether or not the direction of the m-th imaging cross section (m is an integer satisfying 1 ⁇ m ⁇ M) to be processed is the measurement axis direction (step S3104). If the direction is the measurement axis direction, the condition calculation unit 332 determines whether or not the optimum high-frequency magnetic field condition for each distribution measurement section has been calculated (step S3105). Whether or not the calculation has been completed is determined based on, for example, whether or not the optimum high-frequency magnetic field condition after adjustment of each distribution measurement section is registered in the storage device 111.
  • step S3105 If it is determined in step S3105 that the calculation has not been completed, the condition calculation unit 332 first calculates the optimum high-frequency magnetic field condition for each distribution measurement section (step S3106). Then, the condition calculation unit 332 calculates a ratio based on the SAR value and the SAR upper limit value in each distribution measurement cross section (step S3107). The calculation is performed by the output calculation unit 336 as described above.
  • the condition calculation unit 332 adjusts the optimum high-frequency magnetic field condition of each distribution measurement section according to the obtained ratio by the above-described method, and registers the adjusted high-frequency magnetic field condition in the storage device 111 (step S3108). . Then, using the obtained optimum high-frequency magnetic field condition after adjusting each distribution measurement cross section, the optimum high-frequency magnetic field condition of the m-th imaging cross section is calculated according to the above method (step S3109). On the other hand, if it has been calculated in step S3105, the process proceeds to step S3109, and the optimum high-frequency magnetic field condition for each distribution measurement section that has already been calculated is used. Calculate
  • the condition setting unit 333 sets the calculated optimum high-frequency magnetic field condition as the imaging condition of the m-th imaging section (step S3110). Then, the condition setting unit 333 determines whether or not the processing has been completed for all imaging sections (step S3111). If not, m is incremented by 1 (step S3112), and the process returns to step S3104 to repeat the processing. .
  • step S3111 If it is determined in step S3111 that all processing has been completed, the RF shimming unit 330 finishes the RF shimming processing, and the main image capturing unit 340 executes main image capturing (step S3113).
  • step S3104 if it is determined in step S3104 that the m-th imaging section to be processed is not a section in the measurement axis direction, the condition calculation unit 332 sends the m-th imaging section and the distribution measurement section to the distribution extraction unit 334. to extract the B 1 distribution of intersections of the (step S3114).
  • the condition calculation unit 332 causes the output calculation unit 336 to calculate the SAR ratio according to the above method (step S3115). Then, the optimum high-frequency magnetic field condition for the m-th imaging section is calculated (step S3116). Then, control goes to a step S3110.
  • the MRI apparatus 100 of the present embodiment includes a static magnetic field forming unit that forms a static magnetic field, a gradient magnetic field application unit that applies a gradient magnetic field, and a plurality of channels that transmit different high-frequency magnetic fields to the subject.
  • a high-frequency magnetic field transmission unit, a signal reception unit that receives a nuclear magnetic resonance signal generated from the subject, and the signal reception unit that receives the high-frequency magnetic field transmitted from the high-frequency magnetic field transmission unit to the subject A distribution calculation unit 331 that calculates a first high-frequency magnetic field distribution that is a high-frequency magnetic field distribution of a first distribution measurement cross section orthogonal to the first axis from the nuclear magnetic resonance signal, and the first high-frequency magnetic field distribution
  • the high-frequency magnetic field condition includes a condition calculation section 332 for calculating, the.
  • condition calculation unit 332 uses either the first high-frequency magnetic field distribution or the calculated high-frequency magnetic field condition, and the SAR when the high-frequency magnetic field is irradiated from the high-frequency magnetic field irradiation unit under the calculated high-frequency magnetic field condition.
  • the B 1 distribution of the uniaxial distribution measurement cross section is used and the characteristics of the change in the B 1 distribution are used to optimize each imaging cross section.
  • the optimum high-frequency magnetic field condition for the imaging section is calculated by a simple method.
  • the measurement axis direction is one direction.
  • the optimum high-frequency magnetic field condition for each imaging section can be obtained with substantially the same accuracy as the optimum high-frequency magnetic field condition actually obtained from the B 1 distribution of the imaging section.
  • B 1 non-uniformity reduction effect can be obtained.
  • the B 1 non-uniformity reduction effect by RF shimming can be maximized regardless of the imaging cross section while minimizing the extension of the imaging time, and the efficiency is improved regardless of the imaging cross section.
  • a high-quality image can be obtained well.
  • the RF output is adjusted so as not to exceed a predetermined upper limit of the SAR. Therefore, an MRI apparatus with high safety can be provided.
  • the SAR value and the upper limit value of the SAR are determined based on the electromagnetic field analysis simulation data, but the definition of these values is not limited to this.
  • a system that measures SAR may be used. For example, previously grasping the relationship between actually measured B 1 value and SAR, it may define values and SAR upper limit value of the SAR on the basis thereof.
  • the RF output is adjusted based on the SAR upper limit value.
  • the RF output may be adjusted based on the output limit value of the RF amplifier.
  • the condition calculation unit 332 calculates a ratio between a certain RF output value and an RF amplifier output limit value, and when the ratio exceeds 1, the RF amplitude of the optimum high-frequency magnetic field condition of the distribution measurement section is calculated as follows: The RF amplifier output value is adjusted so as not to exceed by dividing by the obtained ratio.
  • the B 1 distribution calculation method may be used as the B 1 distribution calculation method.
  • the optimum high-frequency magnetic field condition either the amplitude or the phase of RF may be used.
  • the direction of the imaging cross section may be oblique. In this case, you may comprise so that the same countermeasure as 1st embodiment may be performed.
  • the number of distribution measurement cross sections may be determined according to a change in the cross sectional shape of the subject in the measurement axis direction, the size of the FOV, and the like.
  • the measurement axis direction a desired direction may be selected according to the imaging condition and the imaging target.
  • the number of measurement axis directions may be two directions.
  • an optimum high-frequency magnetic field condition may be set for each region.
  • the B 1 non-uniformity reduction of the entire imaging region may be considered. That is, in the RF shimming process, as in the second embodiment, the B 1 average value is used to adjust the optimum high-frequency magnetic field condition of the distribution measurement cross section, or the intersection area B 1 average value is used. Do. By comprising in this way, the effect by 2nd embodiment can further be acquired.
  • the RF shimming unit 330 is constructed on the computer 109 provided in the MRI apparatus 100, but is not limited to this configuration.
  • it may be constructed on a general information processing apparatus that can transmit and receive data to and from the MRI apparatus 100 and is independent of the MRI apparatus 100.
  • 100 MRI apparatus, 101: magnet, 102: gradient coil, 103: subject, 104: sequencer, 105: gradient magnetic field power supply, 106: high-frequency magnetic field generator, 107: table, 108: receiver, 109: shim power supply , 109: computer, 110: display, 111: storage device, 112: shim coil, 113: shim power source, 114: transmission coil, 115: reception coil, 201: feeding point, 202: phantom, 310: imaging position setting unit, 320 : Static magnetic field shimming section, 321: Average value calculation section, 330: RF shimming section, 331: Distribution calculation section, 332: Condition calculation section, 333: Condition setting section, 334: Distribution extraction section, 335: Average calculation section, 336 : Output calculation unit, 340: main image imaging unit, 401: imaging cross section, 402: human pelvis region, 411: AX cross section 412: SAG cross section, 413: COR cross section,

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Signal Processing (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

撮像時間の延長を最小限に抑えつつ、任意軸方向、任意位置の撮像断面の、RFシミングによるB不均一低減効果を最大とする。予め定めた1方向の数枚のB分布のみを計測し、そのB分布データから、任意方向、任意位置の撮像断面に対して、B不均一低減効果を最大とする高周波磁場条件を各々計算する。たとえば、AX方向に数枚のみのB分布を計測した上で、AX方向の任意位置の撮像断面に対する最適な高周波磁場条件については、撮像断面に近い2つのB分布から計算された最適な高周波磁場条件から補間することによって求め、SAG、COR方向の任意位置の撮像断面に対する最適な高周波磁場条件については、B分布のうち、撮像断面との交差領域内のB値のみを抽出し、それを用いて求める。

Description

磁気共鳴撮像装置、高周波磁場照射方法およびプログラム
 本発明は、磁気共鳴撮像(MRI:Magnetic Resonance Imaging)装置(以下、MRI装置)に関する。特に、磁気共鳴現象を誘起する回転磁界の空間分布の調整技術に関する。
 MRI装置は、検査対象を横切る任意の断面内の原子核に磁気共鳴を起こさせ、発生する磁気共鳴信号からその断面内における断層像を得る医用画像診断装置である。検査対象に電磁波の一種であるラジオ波(Radio Frequency wave、以下、高周波またはRFと呼ぶ。)を送信し、検査対象内の原子核のスピンを励起すると共に、その後、核スピンにより発生する核磁気共鳴信号を受信し、検査対象を画像化する。送信は、RF送信用コイルによって行われ、受信は、RF受信用コイルによって行われる。
 近年、画像のSNR(Signal to Noise ratio)を向上させるため、静磁場強度が高まる方向にあり、静磁場強度が3T(テスラ)以上の高磁場MRI装置(3T MRI装置)の普及が始まっている。しかし、静磁場強度が大きくなるほど、撮像画像にムラが生じやすくなる。これは、高磁場化に伴って、磁気共鳴現象を誘起するために使用されるRFの周波数が高くなるためである。例えば、3T MRI装置では周波数128MHzのRFが使用されているが、このRFの生体内での波長は腹部断面とほぼ同スケールの30cm程度となり、生体内においてRFの位相に変化が生じる。そのため、照射RF分布、および、そのRFにより生成され磁気共鳴現象を誘起する回転磁界(以下、B)の空間分布が不均一となり、画像ムラが生じる。このような現状より、高磁場MRI装置で行われるRF照射において、画質を向上させるため、回転磁界Bの分布の不均一を低減する技術が必要とされている。
 B分布の不均一を低減する方法として、RF照射方法を工夫する手法がいくつか提案されている。その中で近年、「RFシミング」という手法が登場し、注目されている。これは、複数のチャンネルを持つRF送信用コイルを用いて、各チャンネルに与えるRFの位相と振幅とを制御して、撮像領域のB不均一を低減させる方法である。
 RFシミングでは、一般的に、本撮像前に各チャンネルのB分布を予め計測し、そのB分布を用いて、B不均一を低減するRFの振幅と位相とを算出する(例えば、特許文献1、非特許文献1参照)。また、関心領域(ROI)を設定し、ROI内のB不均一を低減するようRFの振幅または位相の少なくとも一方を撮像条件としてイメージングを行う技術がある(例えば、特許文献2参照)。特許文献2に記載の技術では、複数のROIを設定した場合、複数のROI間におけるデータのばらつきが低減されるようなRFの振幅または位相の少なくとも一方を取得する。これにより、被検体ごとの特徴により、B不均一性の影響が異なる問題を解決している。
米国特許第7078901号明細書 特開2010―29640号公報
Nistler J他著、 "Homogeneity Improvement Using A 2 Port Birdcage Coil" Proceedings of International Society of Magnetic Resonance in Medicine 2007 p.1063
 特許文献1および非特許文献1によれば、撮像断面のB分布を予め計測することによって、B不均一を低減するRFパルスの振幅と位相とを算出する。しかし、実際の画像撮像時は、様々な軸に直交する方向(以下、軸方向と呼ぶ)の、様々な位置の断面の画像を複数枚取得する。軸方向は、一般に、アキシャル(以下、AX)、サジタル(以下、SAG)、コロナル(以下、COR)の3方向があり、さらにこれらの方向からある角度だけ傾けた軸方向(オブリーク)もある。また、断面数は1方向あたり数~数十となることが多い。
 従って、特許文献1および非特許文献1の技術を用いる場合、全ての撮像断面のB不均一低減効果を最大とするためには、全ての撮像断面について各々B分布を計測して、各々最適なRFの振幅と位相とを計算する必要があり、多大な時間がかかる。このため、総撮像時間が延長する。一方、所定の撮像断面のみB分布を計測して、算出された一つのRFの振幅および位相の値を、他のすべての断面にも適用すると、他断面においてB不均一低減効果が十分に得られない場合がある。
 特許文献2に記載の技術においても、全ての撮像断面のB分布を計測するためには多くの時間がかかり、総撮像時間が延長する。
 本発明は、上記事情に鑑みてなされたもので、撮像時間の延長を最小限に抑えつつ、任意軸方向、任意位置の撮像断面の、RFシミングによるB不均一低減効果を最大とする技術を提供する。
 本発明は、所定軸方向の所定数の断面のB分布と、B不均一低減効果を最大とするRFの振幅および位相と、を用いて、任意の撮像断面のB不均一低減効果を最大とするRFの振幅および位相を算出する。
 本発明の代表的なものの一例を示せば以下の通りである。すなわち、本発明は、静磁場を形成する静磁場形成部と、傾斜磁場を印加する傾斜磁場印加部と、被検体にそれぞれ異なる高周波磁場を送信する複数のチャンネルを有する高周波磁場送信部と、前記被検体から発生する核磁気共鳴信号を受信する信号受信部と、前記高周波磁場送信部から前記被検体に前記高周波磁場が送信された後に前記信号受信部が受信した核磁気共鳴信号から、第一の軸に直交する第一の分布計測断面の高周波磁場分布である第一の高周波磁場分布を算出する分布計算部と、前記第一の高周波磁場分布に基づいて、撮像の対象とする任意の撮像断面の撮像条件の中の前記複数のチャンネル各々から照射する高周波磁場の位相および振幅の少なくとも一方を高周波磁場条件として算出する条件計算部と、を備えることを特徴とする磁気共鳴撮像装置を提供する。
 また、被検体にそれぞれ異なる高周波磁場を送信する複数のチャンネルを有する高周波磁場送信部と、前記被検体から発生する核磁気共鳴信号を受診する信号受信部と、を備える磁気共鳴撮像装置の高周波磁場の不均一を低減する撮像条件決定方法であって、前記高周波磁場照射部から前記被検体に前記高周波磁場が送信された後に前記信号受信部が検出した核磁気共鳴信号から、第一の軸に直交する第一の分布計測断面の高周波磁場分布である第一の高周波磁場分布を算出する分布計算ステップと、前記第一の高周波磁場分布に基づいて、撮像の対象とする任意の撮像断面の撮像条件の中の前記複数のチャンネル各々から照射する高周波磁場の位相および振幅の少なくとも一方を高周波磁場条件として算出する条件計算ステップと、を備えることを特徴とする撮像条件決定方法を提供する。
 本発明によれば、撮像時間の延長を最小限に抑えつつ、かつ、任意軸方向、任意位置の撮像断面すべてにおいて、RFシミングによるB不均一低減効果を最大にできる。
第一の実施形態のMRI装置の概要を示す構成図である。 第一の実施形態の送信コイル、ファントムおよび回転磁界を説明するための説明図である。 (A)は、ファントム内におけるAX断面での回転磁界B分布を示すシミュレーション結果の説明図であり、(B)は、ファントム内におけるSAG断面での回転磁界B分布を示すシミュレーション結果の説明図であり、(C)は、ファントム内におけるCOR断面での回転磁界B分布を示すシミュレーション結果の説明図である。 撮像断面を説明するための説明図である。 (A)は、本撮像時の撮像断面が複数のAX断面である場合の断面位置を説明するための説明図であり、(B)は、本撮像時の撮像断面が複数のSAG断面である場合の断面位置を説明するための説明図であり、(C)は、本撮像時の撮像断面が複数のCOR断面である場合の断面位置を説明するための説明図である。 第一の実施形態の計算部の機能ブロック図である。 第一の実施形態の撮像領域およびB分布計測断面を説明するための説明図である。 第一の実施形態の撮像断面の最適な高周波磁場条件を計算する手法を説明するための説明図であり、(A)は、撮像断面がAX断面である場合、(B)は、撮像断面がSAG断面である場合、(C)は、撮像断面がCOR断面である場合である。 第一の実施形態の撮像処理のフローチャートである。 (A)は、骨盤領域のCOR画像上に、設定した各AX断面位置およびSAG断面位置を示し、第一の実施形態の具体例を説明する説明図であり、(B)は、骨盤領域のAX画像上に、SAG、CORの各方向の交差領域を示し、第一の実施形態の具体例を説明する説明図である。 (A)は、撮像断面が骨盤領域のAX断面の場合の、B均一度指標のグラフであり、(B)は、撮像断面が骨盤領域のSAG断面の場合のB均一度指標のグラフであり、(C)は、撮像断面が骨盤領域のCOR断面の場合の、B均一度指標のグラフである。 頸椎領域のCOR画像上に、AX、SAGの各方向の断面位置を示し、第一の実施形態の具体例を説明する説明図である。 (A)は、撮像断面が頸椎領域のAX断面の場合の、B均一度指標のグラフであり、(B)は、撮像断面が頸椎領域のSAG断面の場合のB均一度指標のグラフであり、(C)は、撮像断面が頸椎領域のCOR断面の場合の、B均一度指標のグラフである。 第一の実施形態の、撮像断面がオブリーク断面の場合のRFシミングの手法を説明するための説明図である。 骨盤領域のAX画像上に、SAG、CORの各方向の領域を示し、第一の実施形態の変形例を説明する説明図である。 第二の実施形態の計算機の機能ブロック図である。 第二の実施形態の撮像処理のフローチャートである。 第三の実施形態の計算機の機能ブロック図である。 第三の実施形態の撮像処理のフローチャートである。
 はじめに、本発明の概要を説明する。本発明は、上述のように、所定軸方向の所定数の断面のB分布から、任意の撮像断面のB不均一低減効果を最大とするRFの振幅および位相を算出する。
 具体的には、予め定めた1軸に垂直な複数の異なる断面のB分布(以下、高周波磁分布とも呼ぶ)を計測する。そして、このB分布を用いて、任意の撮像断面を撮像する際に撮像条件として用いる高周波磁場(RF)の振幅および位相の少なくとも一方を算出する。算出するRFの振幅および位相は、当該撮像断面の、B分布不均一低減効果を最大とするものとする。
 以下、本明細書では、B分布を計測する断面を分布計測断面と呼び、分布計測断面に垂直な軸を分布計測軸と呼ぶ。また、撮像条件として算出するRFの振幅および位相の少なくとも一方を高周波磁場条件と呼ぶ。また、B分布不均一低減効果を最大とする高周波磁場条件を最適な高周波磁場条件と呼ぶ。さらに、所定の軸に垂直な断面を、当該軸方向の断面と呼ぶ。
 このB分布計測軸方向の、任意の位置の撮像断面の最適な高周波磁場条件は、複数の分布計測断面のB分布から計算した、各分布計測断面の最適な高周波磁場条件を補間することにより算出する。
 また、B分布計測軸と異なる軸方向の、任意の位置の撮像断面の最適な高周波磁場条件は、各分布計測断面のB分布の中から、分布計測断面と撮像断面との交線を含む領域(以下、交差領域と呼ぶ。)のB値を抽出し、それらの値のばらつきが最小となるよう算出する。
 なお、分布計測断面は1枚であってもよい。この場合、B分布計測軸方向の任意位置の撮像断面の最適な高周波磁場条件には、この1枚の分布計測断面のB分布から得た高周波磁場条件をそのまま用いる。また、B分布計測軸と異なる軸方向の任意位置の撮像断面の最適な高周波磁場条件は、このB分布から交差領域のB値を抽出し、その値に基づいて計算する。
 <<第一の実施形態>>
 以下、本発明の第一の実施形態について説明する。まず、本実施形態のMRI装置の全体構成について説明する。図1は、本実施形態のMRI装置100のブロック図である。本図に示すように、本実施形態のMRI装置100は、静磁場を発生するマグネット101と、傾斜磁場を発生するコイル102と、静磁場均一度を調整するシムコイル112と、シーケンサ104と、高周波磁場(RF)を照射(送信)するRF送信用コイル(送信コイル)114と、被検体103から発生する核磁気共鳴信号を検出(受信)するRF受信用コイル(受信コイル)115と、被検体103を載置するテーブル107と、傾斜磁場電源105と、高周波磁場発生器106と、受信器108と、シム電源113と、計算機109と、を備える。
 傾斜磁場コイル102およびシムコイル112は、それぞれ傾斜磁場電源105およびシム電源113に接続される。また、送信コイル114および受信コイル115は、それぞれ、高周波磁場発生器106および受信器108に接続される。シーケンサ104は、傾斜磁場電源105とシム電源113、および高周波磁場発生器106に命令を送り、それぞれ傾斜磁場およびRFを発生させる。RFは、送信コイル114を通じて被検体103に照射(送信)される。RFを照射(送信)することにより被検体103から発生する核磁気共鳴信号は、受信コイル115によって検出(受信)され、受信器108で検波が行われる。受信器108での検波の基準とする磁気共鳴周波数は、計算機109によりシーケンサ104を介してセットされる。検波された信号はA/D変換回路を通して計算機109に送られ、ここで画像再構成などの信号処理が行われる。その結果は、計算機109に接続されるディスプレイ110に表示される。検波された信号や測定条件は、必要に応じて、計算機109に接続される記憶装置111に保存される。シーケンサ104は通常、予めプログラミングされたタイミング、強度で各装置が動作するように制御を行う。
 マグネット101とシムコイル112とシム電源113とは、静磁場空間を形成する静磁場形成部を構成する。傾斜磁場コイル102と傾斜磁場電源105とは、静磁場空間に傾斜磁場を印加する傾斜磁場印加部を構成する。また、送信コイル114と高周波磁場発生器106とは、被検体103にRFを照射(送信)する高周波磁場送信部を構成する。受信コイル115と受信器108とは、被検体103から発生する核磁気共鳴信号検出(受信)する信号受信部を構成する。
 次に、B不均一を低減するRFシミングについて図2および図3を用いて簡単に説明する。まず、被検体103を模擬したファントム202に対して、送信コイル114からRFを照射した際に、ファントム202内で生成される回転磁界(B)の様子を説明する。
 図2は、送信コイル114およびファントム202の模式図である。図3(A)、図3(B)、および、図3(C)は、それぞれ、電磁場シミュレーションにより計算されたファントム202内のB分布の一例である。図3(A)は、ファントム内におけるAX断面での回転磁界B分布を示すシミュレーション結果であり、図3(B)は、ファントム内におけるSAG断面での回転磁界B分布を示すシミュレーション結果であり、図3(C)は、ファントム内におけるCOR断面での回転磁界B分布を示すシミュレーション結果である。なお、図3(A)、図3(B)、および、図3(C)内のB強度は、ファントム202内の最大B強度が1となるよう規格化している。また、図3(B)および図3(C)には、z軸方向に300mmの範囲内のB分布を示す。ここでは、静磁場方向をzとする座標系を用いる。
 本シミュレーションで用いたファントム202は、直方体形状を有し、そのx、y、z軸方向の寸法は、それぞれ、350mm、200mm、600mmとした。これは、生体の腹部断面を想定し、決定した寸法である。また、ファントム202の物性値は、導電率を0.6S/m、比誘電率を60とした。これは、生体における各物性値を想定した上で決定されたものである。
 このファントム202に対して磁束を与えるための送信コイル114として、24ラングのバードケージコイルを使用した。このバードケージコイル(送信コイル114)は、直径が615mm、z軸方向のラング長が500mmの円筒形状を有し、中心軸がz軸と平行になるよう配置される。バードケージコイル(送信コイル114)から照射(送信)するRFの周波数は、3T MRI装置を想定して、128MHzとした。また、バードケージコイル(送信コイル114)は、2箇所に給電点201を有し、2チャンネルのRF送信ができる構造とした。各チャンネルを、それぞれ、チャンネル1(ch1)、チャンネル2(ch2)と呼ぶ。なお、給電点201及びチャンネルの数は複数であればよく、2つに限定されるものではない。以下、本実施形態では、送信コイル114が2チャンネルの場合を例にあげて説明する。
 なお、電磁場シミュレーションは、バードケージコイル(送信コイル114)の外側に、直径655mm、z軸方向の寸法が900mmの円筒シールド(不図示)を設置して行った。
 各給電点201にsine波形の電圧を給電することによって、直交する2つの磁束が生成される。具体的には、A1、φ1をチャンネル1に供給する電圧の振幅および位相、A2、φ2をチャンネル2に供給する電圧の振幅および位相、B_ch1をチャンネル1によって生成される磁束、B_ch2をチャンネル2によって生成される磁束とすると、各給電点にA1sin(ωt+φ1)およびA2sin(ωt+φ2)の電圧を給電することにより、磁束B_ch1およびB_ch2が生成されることになる。
 このとき、生成される回転磁場Bは、以下の式(1)で表される。
   B=(B_ch1+i×B_ch2)/2・・・(1)
従来のMRI装置においては、このBを最も効率よく生成するために、B_ch1とB_ch2との、振幅比(A2/A1)を1、位相差(φ2-φ1)をπ/2に設定してきた。これは、QD(Quadrature Drive)と呼ばれるRF照射方法で、標準的な設定である。
 図3(A)は、このように振幅比および位相差を設定した場合(QD照射時)の、AX断面のB分布である。この場合、ファントム202内において、B強度が大きくばらつき不均一になっている様子がみられる。これが、現在高磁場MRI装置において課題とされているB不均一である。
 RFシミングでは、このB不均一を低減するために、チャンネル1(ch1)およびチャンネル2(ch2)各々に供給する電圧の振幅(A1、A2)および位相(φ1、φ2)、すなわち、各チャンネルから送信するRFの振幅および位相の調整を行う。
 次に、撮像断面について説明する。図4は、被検体103がヒトである場合に、所定の1断面を撮像する場合の撮像断面を説明するための図である。なお、本図では、ヒト骨盤領域402のアキシャル(AX)断面401を撮像する例を示す。以下、本明細書では、被検体103がヒトである場合を例にあげ、z軸方向をアキシャル(AX)方向、z軸に垂直な断面(z軸方向の断面)をAX断面、x軸方向をサジタル(SAG)方向、x軸に垂直な断面(x軸方向の断面)をSAG断面、y軸方向をコロナル(COR)方向、y軸に垂直な断面(y軸方向の断面)をCOR断面とする。
 本図に示すように、所定の1断面を撮像する場合は、まず、この撮像断面401内の骨盤領域402のB分布を計測し、B分布を得る。そして、得られたB分布から、この撮像断面401に最適なRFの振幅および位相を決定する。そして、それを撮像条件に設定する。これにより、B不均一低減効果を最大とすることができる。
 しかし、実際の撮像時(画像本撮像時)の撮像断面は1断面に限られない。様々な軸方向に、複数断面の撮像を行う。図5(A)は、複数のAX断面411を撮像する場合を、図5(B)は、複数のSAG断面412を撮像する場合を、図5(C)は、複数のCOR断面413を撮像する場合の、撮像断面の例である。
 このように、様々な方向に複数の撮像断面を撮像する場合、上述のように、全ての撮像断面のB分布を計測し、撮像断面ごとに最適なRFの振幅および位相を各々計算すると、各撮像断面のB不均一低減効果を最大とすることができるが、撮像時間が延長する。
 本実施形態では、この総撮像時間の延長を避けるため、B分布を計測する断面は、撮像断面の枚数、方向によらず、予め定めた方向の、予め定めた枚数とする。そして、その計測した断面のB分布から、計算により、各撮像断面の最適な高周波磁場条件を決定する。以下、本実施形態では、最適な高周波磁場条件として、各チャンネルから送信するRFの最適な振幅および位相とする場合を例にあげて説明する。
 図6は、これを実現する本実施形態の計算機109の機能ブロック図である。本図に示すように、本実施形態の計算機109は、撮像位置設定部310と、静磁場シミング部320と、RFシミング部330と、画像本撮像部340と、を備える。計算機109の各機能は、計算機109が備えるCPUが、予め記憶装置111に格納されるプログラムをメモリにロードして実行することにより実現される。
 撮像位置設定部310は、本撮像を行う前にスカウトスキャン等を実施し、撮像断面の位置決めを行い、位置決めに係る各パラメータを決定する。位置決めに係るパラメータは、例えば、本撮像画像の軸方向、枚数、位置などである。そして、決定した各パラメータを、画像本撮像に用いる撮像条件として設定する。撮像位置設定部310が行う処理を撮像位置設定処理と呼ぶ。
 静磁場シミング部320は、静磁場分布を計測し、静磁場が出来る限り均一となるよう、静磁場均一度調整に係る各パラメータを決定する静磁場シミング処理を行う。そして、決定した各パラメータを、画像本撮像に用いる撮像条件として設定する。静磁場シミング部320が行う処理を、静磁場シミング処理と呼ぶ。撮像に十分な静磁場均一度が得られる場合は、静磁場シミング処理は行わなくてもよい。静磁場シミング処理を行わない場合、静磁場シミング部320は、備えなくてもよい。以下、本実施形態では、静磁場シミング処理を行わない場合を例にあげて説明する。
 RFシミング部330は、撮像断面毎にRFシミングに係るパラメータ(高周波磁場条件)を決定する。本実施形態では、撮像断面毎に、各チャンネルから送信する最適なRFの振幅および位相を高周波磁場条件として算出する。そして、算出した高周波磁場条件を画像本撮像に用いる撮像条件として設定する。RFシミング部330による処理をRFシミング処理と呼ぶ。本実施形態のRFシミング処理の詳細は後述する。
 画像本撮像部340は、撮像位置設定部310と、静磁場シミング部320と、RFシミング部330と、に設定された撮像条件に基づいて、本撮像を実施する。
 以下、本実施形態のRFシミング部330によるRFシミング処理について説明する。本実施形態のRFシミング部330は、核磁気共鳴信号から予め定めた分布計測軸に直交する分布計測断面のB分布(高周波磁場分布)を計算する分布計算部331と、得られたB分布を用いて、任意の撮像断面の高周波磁場条件を計算する条件計算部332と、得られた高周波磁場条件を画像本撮像に用いる撮像条件として設定する条件設定部333と、を備える。ここでは、高周波磁場条件として算出された撮像断面に対する最適なRF振幅および位相の値を、シーケンサ104内のRFパルスのパラメータ値として設定する。本実施形態では、計算された振幅および位相の電圧を、送信コイル114の各チャンネルの給電点201に送信するよう設定する。
 また、条件計算部332は、撮像断面と分布計測断面との交線を含む領域(以下、交差領域と呼ぶ)のB分布(B値)を、分布計測断面のB分布から抽出する分布抽出部334を備える。交差領域は、計測軸方向および撮像断面に直交する方向に所定幅を有する領域とする。
 以下、分布計算部331および条件計算部332の処理の詳細を、具体例を用いて説明する。
 まず、分布計算部331による処理の詳細について説明する。分布計算部331は、撮像領域内のB分布を得るための計測を行い、計測結果から、予め定めた分布計測断面の、チャンネル毎のB分布を計算する。撮像領域内のB分布は、予め定めたシーケンスを実行することにより、計測する。また、分布計測断面の計測軸は、B分布の変化が小さい方向に設定することが望ましい。あるいは、被検体の形状変化が最も少ない方向とすることが望ましい。
 例えば、被検体103がヒトであり、送信コイル114として図2に示すバードケージコイルを用いる場合、分布計測断面はAX断面とし、計測軸はz軸方向とすることが望ましい。これは、以下の理由による。
 図2に示す形状のバードケージコイルの、z軸方向に直線状に伸びるラングの各々の電流分布を考えると、z軸方向の電流変化は小さく、ほぼ一様である。よって、このような形状のバードケージコイルでは、z軸方向に生成される磁場の分布もほぼ一様となり、z軸方向のBの変化も小さいと考えられる。
 図3(B)、図3(C)に示す、SAG断面(yz平面)およびCOR断面(xz平面)におけるB分布から、z軸方向に対するBの変化は比較的小さいことがわかる。一方、図3(A)に示されるように、AX断面(xy平面)内においては、B分布は大きく変化している。よって、撮像領域のBの3次元分布を考えると、xおよびy軸方向のB変化に比べ、z軸方向のB変化は小さいといえる。
 なお、B分布は撮像断面の形状にも大きく依存するが、z軸方向に対する撮像断面の形状変化が小さい場合、z座標の異なる複数のAX断面においては、ほぼ同様のB分布を示す。例えば、撮像対象が骨盤領域や上腹部領域である場合、z軸方向に対する断面形状の変化が比較的小さいため、どのz座標のB分布も比較的同じ傾向を示す。
 以上の理由より、例えば、被検体103がヒトであり、送信コイル114として図2に示すバードケージコイルを用いる場合、z軸方向(AX断面に垂直な方向)が、B分布の変化が最も小さい方向であり、かつ、被検体103の形状変化が最も少ない方向であり、計測軸方向として望ましい。
 また、計測する分布計測断面は、全撮像断面が含まれる撮像領域内で設定することが望ましい。以下、本実施形態では、計測する分布計測断面の枚数をN枚(Nは1以上の整数)とする。具体例では、計測軸方向をAX方向、分布計測断面の枚数Nを3とする。
 例えば、撮像断面が、図5(A)~図5(C)に示すようにy軸方向(AX断面)、x軸方向(SAG断面)、y軸方向(COR断面)に、それぞれ複数枚設定される場合、分布計測断面は、これらの撮像断面411、412、413を包含する、図7に示す撮像領域420内で設定する。例えば、計測軸をAX方向とし、分布計測断面の枚数Nを3とする場合、分布計測断面は、図7に示すように、AX方向の、撮像領域420の両端部421、423と、中央部422に設定する。
 例えば、骨盤領域の撮像を想定した場合、SAG、COR方向の画像のz軸方向のFOV(Field of View)を300mmとし、領域420のz軸方向の中心を原点とすると、z=―150mm、0mm、150mmの3箇所を通る分布計測断面421、422、423のB分布を計測する。このとき、分布計測断面のFOVは300~500mm程度、スライス幅は5~20mm程度とする。
 なお、複数の分布計測断面のB分布の計測は、例えば、マルチスライス法などを用いて行う。
 次に、条件計算部332による処理の詳細について説明する。条件計算部332は、撮像断面が、計測軸と直交する場合とそれ以外とで異なる手順で最適な高周波磁場条件を計算する。
 まず、撮像断面が計測軸に直交する場合、すなわち、撮像断面が分布計測断面と平行な場合の、条件計算部332による最適な高周波磁場条件の算出手順を説明する。この場合、条件計算部332は、まず、各分布計測断面の、チャンネル毎の最適な高周波磁場を計算し、計算結果を、例えば、記憶装置111などに登録する。各分布計測断面の、チャンネル毎の最適な高周波磁場条件は、それぞれの分布計測断面のB分布を用いて、以下の式(2)で計算できる。
   Bx=m・・・(2)
ここで、Bは、各チャンネルのB分布を表す行列、mは、理想のB分布を表す行列、xは、求めたい最適な高周波磁場条件(ここでは、RFの振幅および位相)である。行列mは、例えば、理想のB分布を想定し、全ての要素を同じ値とする。上記式(2)を、例えば、最小二乗法を用いて解き、xの値を算出する。得られた高周波磁場条件が、最適な高周波磁場条件である。
 例えば、各チャンネルのB分布が1000点のデータから構成され、チャンネル数が2の場合、Bは1000×2の行列となる。また、xは2×1の行列、mは1000×1の行列となる。例えば、チャンネル数が2、分布計測断面数Nが3で、高周波磁場条件としてRFの振幅および位相を算出する場合、計3組の振幅・位相の値(A1、A2、φ1、φ2)が計算される。
 各分布計測断面の最適な高周波磁場条件を得ると、条件計算部332は、その中から2枚以上の分布計測断面を抽出し、補間により、撮像断面の最適な高周波磁場条件を計算する。例えば、2枚の分布計測断面を用いて補間を行う場合、撮像断面の両側の分布計測断面の高周波磁場条件を用いることが望ましい。
 ここで、補間により撮像断面の高周波磁場条件を算出する手法を、具体例を用いて説明する。ここでは、図8(A)に示すように、分布計測断面がAX方向(z軸方向)の3枚511、512、513であり、撮像断面510が同方向で分布計測断面511と分布計測断面512と間とし、高周波磁場条件をRFの振幅および位相とする。また、各計測断面511、512、513のz座標をそれぞれ、z1、z2、z3(z1≦z2≦z3)とし、撮像断面510のz座標をzi(z1≦zi≦z2)とする。
 被検体の断面形状および最適なRFの振幅および位相のz軸方向の変化は、ほぼ線形と考えられる。従って、撮像断面510のチャンネル1の最適なRFの振幅A1の値A1ziは、例えば、以下の式(3)で計算できる。
Figure JPOXMLDOC01-appb-M000001
ここで、A1z1、A1z2は、それぞれ、計測断面511および512のチャンネル1の最適なRFの振幅である。
 撮像断面のチャンネル2の最適なRFの振幅A2の値A2ziは、上記式(3)のA1z1、A1z2を、それぞれ、分布計測断面511および512のチャンネル2の最適なRFの振幅A2z1、A2z2に置き換え、算出する。また、チャンネル1の最適なRFの位相Φ1ziは、上記式(3)のA1z1、A1z2を、それぞれ、分布計測断面511および512のチャンネル1の最適なRFの位相Φ1z1、Φ1z2に置き換え、算出する。チャンネル2の最適なRFの位相Φ2ziは、上記式(3)のA1z1、A1z2を、それぞれ、分布計測断面511および512のチャンネル2の最適なRFの位相Φ2z1、Φ2z2に置き換え、算出する。
 なお、撮像断面が分布計測断面に合致する場合(ziがz1、z2、z3のいずれかと等しい場合)、合致する分布計測断面の最適な高周波磁場条件をそのまま当該撮像断面の高周波磁場条件とする。これは、式(3)を用いて算出してもよい。
 次に、撮像断面が計測軸以外の軸に直交する場合、すなわち、撮像断面が分布計測断面と非平行な場合の、条件計算部332による最適な高周波磁場条件の算出手順を説明する。この場合、条件計算部332は、まず、分布抽出部334に撮像断面と分布計測断面との交差領域のB分布を、チャンネル毎に抽出させる。そして、得られたチャンネル毎の交差領域のB分布から、条件計算部332は、上記式(2)を用い、撮像断面の最適な高周波磁場条件を計算する。このとき、条件計算部332は、上記式(2)のBに、各チャンネルの交差領域のB分布を表す行列を用いる。
 なお、このとき、分布抽出部334が抽出する交差領域の、撮像断面に直交する方向の幅は、10~80mm程度であることが望ましい。これは、交差領域の幅を小さくしすぎると、抽出されるB値の数が少なくなり、最適なRFの振幅および位相を計算する際に不十分であり、逆に、交差領域の長さを大きくしすぎると、位置情報が損なわれるためである。B分布の空間的変化は、主にRF波長に依存し、波長が短くなるほど、空間的変化も激しくなる。このため、波長が短くなるほど、より小さい幅に設定する必要がある。
 撮像断面が分布計測断面と非平行な場合の、最適な高周波磁場条件を算出する手法を、具体例を用いて説明する。分布計測断面は、図8(A)の場合と同様に、AX方向の3枚511、512、513とする。
 例えば、撮像断面520を、図8(B)に示すように、SAG断面とする。このとき、分布抽出部334は、図8(B)に示すように、3枚の分布計測断面511、512、513のB分布の中から、予め定めた領域(交差領域)521、522、523のB値のみを抽出する。このとき、交差領域521、522、523は、SAG断面(SAG(x軸)方向の断面)である撮像断面520との交線(図8(B)の点線箇所)をそれぞれ含む。例えば、撮像断面520のx軸方向の位置が、x=0mmである場合、図8(B)に示すように、x=0mmを中心としてy軸方向に長い短冊状の領域(521、522、523)のB値のみを抽出する。そして、条件計算部332は、このB値から式(2)により、最適な高周波磁場条件を算出する。
 また、撮像断面530を、図8(C)に示すように、COR断面とする。このとき、分布抽出部334は、図8(C)に示すように、3枚の分布計測断面511、512、513のB分布の中から、予め定めた領域(交差領域)531、532、533のB値のみを抽出する。このとき、交差領域)531、532、533は、COR断面(COR(y軸)方向の断面)である撮像断面530との交線(図8(C)の点線箇所)を含む。例えば、撮像断面530のy軸方向の位置が、y=0mmである場合、図8(C)に示すように、y=0mmを中心としてx軸方向に長い短冊状の領域(531、532、533)のB値のみを抽出する。そして、条件計算部332は、このB値から式(2)により、最適な高周波磁場条件を算出する。
 以下、本実施形態の計算機109による撮像処理の流れを、図9を用いて説明する。図9は、本実施形態の撮像処理の処理フローである。ここでは、計測軸方向を、AX方向とし、分布計測断面の枚数をN枚とする。また、撮像断面数をM(Mは1以上の整数)とする。
 まず、撮像位置設定部310は、撮像領域設定処理を行う(ステップS1101)。次に、分布計算部331は、B分布計測を行い、AX方向にN枚の分布計測断面のB分布を計算する(ステップS1102)。このとき、分布計算部331は、撮像位置設定部310が算出した本撮像画像の位置に係る各パラメータを参照し、B分布を計測する撮像領域を決定する。
 そして、RFシミング部330は、撮像位置設定部310が設定した撮像断面毎に、RFシミング処理を行う。ここでは、撮像断面毎に、条件計算部332が最適な高周波磁場条件を計算し、条件設定部333が計算した高周波磁場条件を設定する。
 RFシミング処理として、RFシミング部330は、以下の処理を、全撮像断面数、M回繰り返す(ステップS1103、ステップS1109、S1110)。
 まず、条件計算部332は、処理対象のm番目(mは、1≦m≦Mを満たす整数)の撮像断面の方向が、計測軸方向であるか否かを判別する(ステップS1104)。そして、計測軸方向であれば、条件計算部332は、各分布計測断面の最適な高周波磁場条件が算出済みであるか否かを判別する(ステップS1105)。算出済みであるか否かは、例えば、各分布計測断面の最適な高周波磁場条件が記憶装置111に登録されているか否かで判別する。
 ステップS1105で、算出済みでないと判別した場合、条件計算部332は、各分布計測断面の最適な高周波磁場条件を、上記手法を用いて計算し、記憶装置111に登録する(ステップS1106)。そして、算出した各分布計測断面の最適な高周波磁場条件を用い、上記手法に従って、m番目の撮像断面の最適な高周波磁場条件を計算する(ステップS1107)。一方、ステップS1105で算出済みである場合は、ステップS1106へ進み、既に算出されている各分布計測断面の最適な高周波磁場条件を用い、上記手法に従って、m番目の撮像断面の最適な高周波磁場条件を計算する。
 条件設定部333は、算出された最適な高周波磁場条件を、m番目の撮像断面の撮像条件として設定する(ステップS1108)。そして、条件設定部333は、全ての撮像断面について処理を終えたか否かを判別し(ステップS1109)、終えていなければ、mを1インクリメントし(ステップS1110)、ステップS1104へ戻り、処理を繰り返す。
 ステップS1109で、全ての処理を終えていると判別された場合、RFシミング部330は、RFシミング処理を終え、画像本撮像部340は、画像本撮像を実行する(ステップS1111)。
 一方、ステップS1104で、処理対象のm番目の撮像断面が、計測軸方向の断面ではないと判別された場合、条件計算部332は、分布抽出部334に、m番目の撮像断面と分布計測断面との交差領域のB分布を抽出させる(ステップS1112)。そして、条件計算部332は、抽出されたB分布から、上記手法に従って、m番目の撮像断面の最適な高周波磁場条件を計算する(ステップS1113)。そして、ステップS1108へ移行する。
 以上、本実施形態のRFシミングを含む撮像処理全体の流れを説明した。
 ここで、本実施形態のRFシミングを、実際のヒト撮像に適用した実験結果の一例を以下に示す。
 まず、骨盤領域に対して本実施形態のRFシミングを適用した結果を示す。まず、具体的な実験条件を記す。実験装置として3T MRI装置を用いて、撮像断面は、AX断面5枚、SAG断面7枚、COR断面3枚とした。最適な高周波磁場条件として、RFの振幅および位相を計算した。
 なお、AX断面の間隔はz軸方向に75mm、SAG断面の間隔はx軸方向に40mm、COR断面の間隔はy軸方向に40mmとした。AX断面5枚のAX方向中央の断面のz軸上の位置を0mm、他の4枚のz軸上の位置をそれぞれ、-150mm、-75mm、75mm、150mmとした。また、SAG断面7枚の、SAG方向中央の断面のx軸上の位置を0mm、他の6枚のx軸上の位置を、それぞれ、-120mm、-80mm、-40mm、40mm、80mm、120mmとした。また、COR断面3枚の、COR方向中央の断面のy軸上の位置を0mm、他の2枚のy軸上の位置を、それぞれ、-40mm、40mmとした。
 図10(A)は、骨盤領域のCOR画像630上に、設定した各AX断面位置611およびSAG断面位置621を示した図である。骨盤領域全体において本実施形態の効果を確認するために、このような撮像断面位置を設定した。
 ここで、本実施形態の効果を検証するために、3種類のRFの振幅および位相の計算方法を実施して比較した。比較した各方法は、(方法1)全撮像断面(AX断面5枚、SAG断面7枚、COR断面3枚;計15枚)について全てB分布を計測し、撮像断面ごとの最適なRFの振幅および位相の計算を行うもの、(方法2)AX方向の中央のAX断面1枚のみのB分布から、撮像断面毎の最適なRFの振幅および位相のみの計算を行うもの(本実施形態の、分布計測断面を1枚とする場合に相当する)、(方法3)AX断面3枚のB分布から、撮像断面ごとの最適なRFの振幅および位相の計算を行うもの(本実施形態の分布計測断面を3枚とする場合に相当する)の3種類である。
 ここで、方法3の具体的な処理方法を説明する。ここでは、分布計測断面は、-150mm、0mm、150mmの位置のAX断面とした。すなわち、z=-150mm、0mm、150mmの位置でB分布を計測した。
 まず、AX断面5枚に対する最適なRFの振幅および位相の計算方法を説明する。z=―150mm、0mm、150mmの位置の撮像断面に対しては、各々の座標で計測した計B分布からRFの振幅および位相を計算した。また、z=75mmの位置の撮像断面位置については、z=0mmおよびz=150mmの2枚の分布計測断面のB分布から算出されたRFの振幅および位相の値を用いて、補間により最適なRFの振幅および位相を算出した。z=―75mmの位置の撮像断面については、z=0mmおよびz=―150mmの2枚のB分布を用いて算出されたRFの振幅および位相の値を用いて、補間により最適なRFの振幅および位相を算出した。
 次に、SAG断面7枚に対する最適なRFの振幅および位相の計算方法を説明する。図10(B)に、ヒト骨盤領域のAX断面の画像610、および、SAG方向の各撮像断面位置を中心とする短冊状の交差領域622、およびCOR方向3枚分の各撮像断面位置を中心とする交差領域632、を示す。なお、画像610は、分布計測断面のB分布を示す画像である。
 SAG方向の中心断面(x=0mmの位置の断面)の最適なRFの振幅および位相は、交差領域622のうち、中央にある交差領域622のB値を抽出し、上記式(2)のBとし、計算した。他の撮像断面も同様に、当該撮像断面位置を中心とする短冊状の交差領域622のB値を抽出し、上記式(2)のBとし、それぞれ計算した。
 なお、本撮像を想定すると、スライス厚は数mm程度であるが、図10(B)内のSAG方向の交差領域622のx軸方向の長さは40mmとした。交差領域622のx軸方向の長さを小さくしすぎると、抽出されるB値の数が少なくなり、最適なRFの振幅および位相を計算する際に不十分な場合がある。逆に、SAG方向の各交差領域622のx軸方向の長さを大きくしすぎると、SAG断面の位置情報が損なわれる。このため、交差領域622のx軸方向の長さは、10~800mm程度が望ましい。
 COR断面3枚に対する最適なRF振幅および位相の計算方法は、SAG断面の場合と同様とした。すなわち、各撮像断面を中心位置とする短冊状の交差領域632のB分布を用い、最適なRFの振幅および位相を算出する。
 以上の3種類の方法に対して、B不均一低減効果を確認した。ここで、B分布の不均一について、以下の式(4)に示す定量的な指標USDを用いて評価した。
Figure JPOXMLDOC01-appb-M000002
なお、m(B)、σ(B)はそれぞれ、Bの平均値、標準偏差である。式(4)に示す均一度指標USDは、標準偏差を平均値で除した値である。このUSDの値は、Bのばらつきが小さいほど小さくなる。従って、USDの値が小さいほど、B均一度が高いということになる。
 上記各方法による、各方向の撮像断面の均一度指標USDを図11に示す。図11(A)は、骨盤領域におけるAX方向の各撮像断面の、図11(B)は、SAG方向の各撮像断面の、図11(C)は、COR方向の各撮像断面の、それぞれ、上記各方法を適用した場合の均一度指標USDの値である。また、合わせて、RFシミングをしないQD照射時の均一度指標USDの値も示す。なお、各図において、縦軸はUSDの値、横軸は各方向の位置である。図11(A)において、方法1による結果(均一度指標)を641で、方法2による結果(均一度指標)を642で、方法3による結果(均一度指標)を643、RFシミングをしないQD照射時の結果を644で示す。同様に、図11(B)では、それぞれ、651、652、653、654で、図11(C)では、それぞれ、661、662、663、664で示す。
 図11(A)に示すように、AX方向の撮像断面では、方法1(641)、方法2(642)、方法3(643)いずれの方法であっても、QD照射時(644)に比べ、USDが小さくなり、B不均一が低減していることがわかる。さらに詳しくみると、方法1、方法3に比べ、方法2において、z=150mmの位置の撮像断面でUSDの値が大きくなり、B不均一の低減効果が小さいことがわかる。これは、AX中心断面(z=0mm)のB分布のみから計算したRFの振幅および位相を用いた影響が現れたものと考えられる。一方、方法1と方法3とは、いずれの撮像断面でもほぼ同じUSDの値となり、方法1と方法3とにより、略同等のB不均一低減効果を得られることが示された。
 SAG断面、COR断面においてもAX断面の場合と同様の傾向がみられる。図11(B)および図11(C)に示すとおり、方法2では、一部の撮像断面でUSDの値が大きくなり、B不均一低減効果が十分に得られていないが、方法1と方法3とは、いずれの撮像断面でもほぼ同じUSDの値となる。これにより、方法1と方法3とにより、略同等のB不均一低減効果を得られることが示された。
 方法1では、B分布計測の時間がかかるものの、撮像断面そのものでB分布を全て計測するため、全ての撮像断面において最適なRFの振幅および位相が計算できる。よって、方法1で実現されたB不均一低減効果は最大であるといえる。方法2は、B分布計測時間は1枚分のみと短いものの、得られた1つのRFの振幅および位相を15枚全ての撮像断面に適用する。このため、B不均一低減効果は小さくなる場合がある。ただし、QD照射時(RFシミングをしない場合)と比べ、はるかにUSDの値が小さくなり、Bの均一度は増している。一方、方法3は、B分布の計測時間も短く、かつ、B不均一低減効果も、方法1とほぼ同定度となる。
 以上の検討結果より、撮像領域が骨盤領域の場合、本実施形態の方法である方法3は、B不均一低減効果が最大となる方法1とほぼ同程度のB不均一低減効果を得られることが示された。従って、本実施形態の方法によって、全ての撮像断面においてRFシミングによるB不均一低減効果を最大にできることが示された。従って、本実施形態の方法(方法3)の有用性が示された。
 次に、頸椎領域に対して本実施形態のRFシミングを適用した結果を示す。頸椎領域は骨盤領域に比べ、z軸方向に対するAX断面形状の変化が大きい。そのような形状変化の大きい領域に対する本実施形態の有用性について検討した。本検討では、実験装置は、上記骨盤領域同様、3T MRI装置とし、計算する最適な高周波磁場条件は、RFの振幅および位相とした。また、AX断面9枚、SAG断面5枚、COR断面3枚に対して、本実施形態の効果の確認を行った。なお、AX断面はz軸方向に30mm、SAG断面はx軸方向に25mm、COR断面はy軸方向に25mmの間隔とした。また、各方向の中央の撮像断面の各軸上の位置を0mmとした。
 図12は、頸椎領域のCOR画像730上に、設定した各AX断面位置711、SAG断面位置721を示した図である。頸椎領域全体において本実施形態の効果を確認するために、このような断面位置を設定した。なお、方法3において、Bの分布は、AX方向の-120mm、0mm、120mmの位置の3箇所を分布計測断面として計測とした。
 上記各方法による、各方向の撮像断面の均一度指標USDを、図13に示す。図13(A)は、頸椎領域におけるAX方向の各撮像断面の、図13(B)は、SAG方向の各撮像断面の、図13(C)はCOR方向の各撮像断面の、それぞれ、各方法を適用した場合の均一度指標USDの値である。各方法による結果を、図13(A)では、それぞれ、折れ線グラフ741、742、743で、図13(B)では、それぞれ、折れ線グラフ751、752、753で、図13(C)では、それぞれ、折れ線グラフ761、762、763で示す。また、合わせて、RFシミングをしないQD照射時の均一度指標USDの値も、それぞれ、744、754、764で示す。
 図13(A)に示すように、AX方向の撮像断面では、方法1(741)、方法2(742)、方法3(743)のいずれの方法であっても、QD照射時(744)に比べ、USDが小さくなり、B不均一が低減していることがわかる。さらに詳しくみると、方法1、方法3に比べ、方法2において、z=0mm以外の断面ではUSDの値が大きくなり、B不均一の低減効果が小さいことがわかる。一方、方法1と方法3とはいずれの断面でもほぼ同じUSDの値となり、方法1と方法3とが同等のB不均一低減効果を示すことがわかる。
 SAG、COR方向の撮像断面も、図13(B)および図13(C)に示すように同様の傾向を示す。すなわち、方法2では、一部の撮像断面でUSDの値が大きくなり、B不均一低減効果が十分に得られないが、方法1と方法3とは、いずれの断面でもほぼ同じUSDの値となる。従って、方法1と方法3とが同等のB不均一低減効果を示すことがわかる。
 以上より、z軸方向にAX断面形状の変化の大きい頸椎領域においても、本実施形態の方法によって、全ての断面においてRFシミングによるB不均一低減効果を最大にできることが示された。
 以上説明したように、本実施形態のMRI装置100は、静磁場を形成する静磁場形成部と、傾斜磁場を印加する傾斜磁場印加部と、被検体にそれぞれ異なる高周波磁場を送信する複数のチャンネルを有する高周波磁場送信部と、前記被検体から発生する核磁気共鳴信号を受信する信号受信部と、前記高周波磁場送信部から前記被検体に前記高周波磁場が送信された後に前記信号受信部が受信した核磁気共鳴信号から、第一の軸に直交する第一の分布計測断面の高周波磁場分布である第一の高周波磁場分布を算出する分布計算部331と、前記第一の高周波磁場分布に基づいて、撮像の対象とする任意の撮像断面の撮像条件の中の前記複数のチャンネル各々から照射する高周波磁場の位相および振幅の少なくとも一方を高周波磁場条件として算出する条件計算部332と、を備える。
 このとき、前記分布計算部331は、前記核磁気共鳴信号から、前記第一の軸に直交する第二の分布計測断面の高周波磁場分布である第二の高周波磁場分布をさらに算出し、前記条件計算部332は、第二の高周波磁場分布にさらに基づいて、前記高周波磁場条件を算出してもよい。
 また、前記撮像断面は、前記第一の軸とは異なる第二の軸に直交する断面であるとき、前記条件計算部332は、前記撮像断面と前記第一の分布計測断面との交線を含む領域の高周波磁場分布である交差領域高周波磁場分布を、前記第一の高周波磁場分布から抽出する分布抽出部334を備え、前記交差領域高周波磁場分布を用いて、前記撮像断面の前記高周波磁場条件を算出してもよい。一方、前記撮像断面は、前記第一の軸に直交し、かつ、前記第一の分布計測断面および前記第二の分布計測断面のいずれとも異なる断面であるとき、前記条件計算部332は、前記第一の高周波磁場分布から算出した第一の高周波磁場条件と前記第二の高周波磁場分布から算出した第二の高周波磁場条件とを補間することにより、前記撮像断面の高周波磁場条件を算出してもよい。
 このように、本実施形態によれば、予め定めた1方向の数枚のB分布のみを計測し、そのB分布データから、任意方向、任意位置の撮像断面に対して、B不均一低減効果を最大とする高周波磁場条件を各々計算する。たとえば、AX方向に数枚のみのB分布を計測した上で、AX方向の任意位置の撮像断面に対する最適な高周波磁場条件については、撮像断面に近い2つのB分布から計算された最適な高周波磁場条件から補間することによって求め、SAG、COR方向の任意位置の撮像断面に対する最適な高周波磁場条件については、B分布のうち、撮像断面との交差領域内のB値のみを抽出し、それを用いて求める。
 すなわち、本実施形態によれば、1軸方向の分布計測断面のB分布を用いて、任意の撮像断面のチャンネル毎の高周波磁場条件を計算する。従って、B分布の計測にかかる時間が少ないため、総撮像時間の延長が抑えられる。また、撮像断面の高周波磁場条件は、送信コイルの性質、被検体の形状等によるB分布の変化の特性を利用し、計測軸方向と、その他の方向とについて、それぞれ最適な手法で算出する。従って、実際に撮像断面のB分布から得た最適な高周波磁場条件と略同等の精度で、各撮像断面の最適な高周波磁場条件を得ることができ、同等のB不均一低減効果を得ることができる。
 また、本実施形態では、特に、計測軸を1方向としている。このように、B分布計測を行う断面の方向を1方向とすることによって、B分布計測にマルチスライス法を用いることが可能となる。従って、1断面のB分布を計測する場合と同じ計測時間で、必要な全分布計測断面のB分布を計測することができ、B分布計測にかかる時間を抑えることができる。
 以上説明したように、本実施形態によれば、撮像時間の延長を最小限に抑えながら、撮像断面を問わず、RFシミングによるB不均一低減効果を最大とすることができる。従って、撮像断面を問わず、効率よく高画質の画像を得ることができる。
 なお、上記実施形態では、上記式(2)を用いて、分布計測断面のB分布から最適な高周波磁場条件を計算している。しかし、各分布計測断面のB分布から、高周波磁場条件(RFの振幅および位相)を算出する手法は、これに限られない。例えば、特許文献2に記載の手法を用いてもよい。すなわち、RFの振幅および位相をある一定間隔で変化させて、各々の均一度を算出し、均一度が最も高くなるRFの位相および振幅を最適なRFの位相および振幅としてもよい。
 また、上記実施形態では、高周波磁場条件として、B分布の不均一を低減するために最適なRFの振幅および位相を算出するよう構成しているが、必ずしもRFの振幅および位相を両方算出する必要はなく、いずれか一方であってもよい。例えば、位相のみを制御したい場合は、式(2)を解く際に振幅の値を固定してxを算出すればよい。振幅のみを制御したい場合も同様に、位相の値を固定して式(2)を解き、xを算出する。
 また、本実施形態の中では、撮像断面が、主にAX断面、SAG断面、COR断面の3方向の断面である場合を例にあげて説明したが、撮像断面は、これらに限られない。これらの方向から所定の角度だけ傾けた軸方向の断面であってもよい。すなわち、撮像断面は、オブリーク撮像の撮像断面であってもよい。条件計算部332は、撮像断面が分布計測断面と平行でない限り、分布抽出部334に、撮像断面と分布計測断面との交差領域のB値を抽出させ、それを用いて、撮像断面の最適な高周波磁場条件を算出する。
 図14は、SAG断面から所定角度傾けた断面を撮像断面とするオブリーク撮像を行う場合の、B値を抽出する領域(交差領域)を説明するための図である。分布計測断面は、上記実施形態同様、AX方向の3断面511、512、513とする。
 本図に示すように、オブリーク撮像の場合も、その撮像断面540と分布計測断面511、512、513との交線を含む、予め定めた領域を交差領域541、542、543とし、その交差領域のB値を抽出する。そして、上記、撮像断面540が計測軸以外の軸に直交する場合と同様の処理を行い、最適な高周波磁場条件を計算する。
 ただし、オブリーク撮像の場合、オブリーク角が大きくなるほど、撮像断面が、全ての分布計測断面と交差しない可能性が高くなる。よって、オブリーク撮像時は、必要に応じて、分布計測断面の枚数Nを多くする、もしくは、計測する分布計測断面の間隔を小さくするといった対処を行う。
 また、例えば、少なくとも1枚、撮像断面540と交差しない分布計測断面がある場合、エラーメッセージを表示するよう構成してもよい。具体的には、分布計測断面としてAX断面3枚のB分布を取得し、分布抽出部334がオブリーク撮像の撮像断面との交差領域のB分布を抽出する際、抽出されるB値の数がゼロとなる分布計測断面がある場合、エラーメッセージを出力する。その後、ユーザが分布計測断面数を多くする、または、分布計測断面間の間隔を小さくするといった対処を行うよう構成してもよい。あるいは、分布抽出部334がエラーメッセージを出力したことを受け、分布計算部331が、分布計測断面数を予め定めた数だけ多くする、または、分布計測断面間の間隔を、予め定めた長さだけ小さくする、といった分布計算処理の条件の変更を行い、再度、B分布計測を行うよう構成してもよい。このようなフローを導入することによって、撮像断面のオブリーク角が大きい場合でも最適なRF振幅および位相を計算することができる。
 また、上記実施形態では、具体例として分布計測断面数Nを3とする場合を例にあげて説明したが、分布計測断面数Nは、1であってもよい。例えば、計測軸方向に対する被検体103の断面形状の変化が少ない場合などである。上述の具体例で言えば、z軸方向に対する被検体103のAX断面の形状の変化が少なく、ほぼ同様の場合である。これは、被検体103のAX断面の形状がほぼ同じであれば、どの断面位置におけるB分布もほぼ同様となるためである。このような場合、N=1とすることによって、B分布を計測する分布計測断面の位置の設定が容易になる。また、計測軸方向のFOVが小さい場合もN=1としてもよい。上述の具体例で言えば、z軸方向のFOVが小さい場合である。
 なお、分布計測断面を1枚(N=1)とする場合、計測軸方向の撮像断面については、分布計測断面の最適な高周波磁場条件を、そのまま撮像断面の高周波磁場条件とする。また、計測軸方向以外の撮像断面については、当該分布計測断面との交差領域のB1分布を用いて算出した高周波磁場条件を最適な高周波磁場条件とする。
 一方、逆に、計測軸方向の被検体103の断面形状の変化が大きいことが予めわかっている場合は、Nの数を大きく設定する。すなわち、上記具体例で言えば、z軸方向に対するAX断面の形状変化が大きい場合、N=4以上としても良い。
 また、分布計測断面数を、計測軸方向の被検体の断面形状の変化、FOVの大きさ、等に応じて決定するよう構成してもよい。
 また、上記実施形態で説明したように、B分布を計測する分布計測断面は、原則、その計測軸方向を、B分布の変化が少ない方向、および/または、被検体の形状変化が少ない方向とすることが望ましい。このため、上記実施形態では、これらの条件を満たすAX方向を計測軸方向とする場合を例にあげて説明した。しかし、計測軸方向は、これらの条件を必ずしも満たす必要はない。例えば、SAG方向もしくはCOR方向としても良い。
 例えば、本撮像において、上記条件を満たす方向以外の断面の重要度が、当該方向の断面の重要度より高い場合、もしくは、当該方向の断面の撮像を行わない場合などである。このような場合、計測軸を重要度の高い撮像断面の方向に合致させることにより、重要度の高い撮像断面のB不均一低減効果をより確実に得ることができる。
 例えば、上記具体例では、AX断面の重要度が低く、SAG、COR断面の重要度が高い場合、もしくは、AX断面の撮像をしない場合など、計測軸をSAG方向もしくはCOR方向とした分布計測断面でB分布を取得することにより、SAG、COR断面のB不均一低減効果をより確実に得ることができる。
 例えば、頸椎撮像や腰椎撮像において、SAG断面画像の重要度が高い場合がある。このような場合、SAG断面を分布計測断面とし、B分布を取得することによって最適なRF振幅および位相を算出してもよい。
 また、上記実施形態では、計測軸は1方向としているが、2方向としてもよい。すなわち、B分布を計測する分布計測断面の方向を2方向としてもよい。例えば、AX方向とSAG方向の2方向でB分布を取得することにより、B分布に関する情報量が多くなる。このため、1方向のB分布から最適な高周波磁場条件を算出する場合に比べ、より高いB不均一低減効果を実現できる。
 また、分布抽出部334が抽出する交差領域の、撮像断面に直交する方向の幅については、幅の設定値をパラメータとして変化させて最適調整をするよう構成してもよい。このとき、最も高いB不均一低減効果を示す高周波磁場条件を得る幅を最適値とする。これは、交差領域の幅を小さくしすぎると、抽出されるB値の数が少なくなり、最適なRFの振幅および位相を計算する際に不十分であり、逆に、交差領域の長さを大きくしすぎると、位置情報が損なわれるためである。
 また、上記実施形態では、最適な高周波磁場条件を撮影断面毎に得、設定するよう構成しているが、高周波磁場条件を得るのは、撮影断面毎に限られない。各軸方向に所定の幅を有する領域ごとに、1つの最適な高周波磁場条件を計算し、設定するよう構成してもよい。
 所定の領域毎に1つの最適な高周波磁場条件を計算し、設定する場合の詳細を、具体例をあげて説明する。図15に、ヒト骨盤領域のAX断面810、x軸方向に3つに区分された領域821、822、823、および、y軸方向に3つに区分された領域831、832、833を示す。x軸方向については、全撮像領域を、図の左側821、中央822、右側823の3つに区分する。また、y軸方向については、全撮像領域を、図の上側831、中央832、下側833の3つに区分する。
 分布抽出部334は、例えば、x軸方向については、左側821、中央822、右側823の領域ごとにB値を抽出する。そして条件計算部332は、各々の領域について最適な高周波磁場条件を計算する。すなわち、左側領域821のB値を用いて、各チャンネルのRFの振幅および位相(A1_L、A2_L、φ1_L、φ2_L)を、中央領域822のB値を用いて、各チャンネルのRFの振幅および位相(A1_C、A2_C、φ1_C、φ2_C)を、右側領域823のB値を用いて、各チャンネルのRFの振幅および位相(A1_R、A2_R、φ1_R、φ2_R)を、それぞれ計算する。
 たとえば、x軸方向に3つに区分された領域のうち、中央の短冊状の領域822のx軸方向の長さを150mm(その位置をx=-75mm~75mmの範囲)と設定し、最適なRFの振幅および位相(A1_C、A2_C、φ1_C、φ2_C)を計算する。x座標が-75mm~75mmの範囲のSAG断面である撮像断面には、全て中央の領域822の最適なRFの振幅および位相(A1_C、A2_C、φ1_C、φ2_C)を用いる。
 すなわち、ここでは、前記条件計算部332は、全撮像断面が含まれる撮像領域を、前記撮像断面と同方向に所定数に分割することにより得た各区分領域の前記高周波磁場条件を、前記第一の高周波磁場分布に基づいて算出し、前記区分領域の中の、前記撮像断面が含まれる区分領域の高周波磁場条件を、当該撮像断面の高周波磁場条件とする。
 このように、所定の幅を有する領域単位で最適な高周波磁場条件を算出するよう構成すると、撮像断面ごとにそれぞれ1つの最適な高周波磁場条件を計算し、設定する場合と比べ、シーケンサ104内において各RFパルスのパラメータ値を設定する際の手間を軽減できる。
 <<第二の実施形態>>
 次に、本発明の第二の実施形態を説明する。第一の実施形態では、撮像断面毎に、当該撮像断面においてB不均一低減効果が最大となるよう、最適な高周波磁場条件を設定している。一方、本実施形態では、撮像領域全体のB不均一低減効果を考慮し、最適な高周波磁場条件を設定する。
 本実施形態のMRI装置は、基本的に第一の実施形態と同様の構成を有する。ただし、上述のように、本実施形態では、最適な高周波磁場条件を設定するにあたり、撮像領域全体のB不均一低減効果を考慮する。従って、これを実現する計算機109の機能構成が第一の実施形態と異なる。以下、本実施形態について、第一の実施形態と異なる構成に主眼をおいて説明する。
 図16は、本実施形態の計算機109の機能ブロック図である。本実施形態の計算機109は、第一の実施形態同様、撮像位置設定部310と、静磁場シミング部320と、RFシミング部330と、画像本撮像部340と、を備える。計算機109の各機能は、計算機109が備えるCPUが、予め記憶装置111に格納されるプログラムをメモリにロードして実行することにより実現される。
 また、本実施形態のRFシミング部330は、第一の実施形態同様、核磁気共鳴信号から予め定めた分布計測軸に直交する分布計測断面のB分布(高周波磁場分布)を計算する分布計算部331と、得られたB分布を用いて、任意の撮像断面の高周波磁場条件を計算する条件計算部332と、得られた高周波磁場条件を画像本撮像に用いる撮像条件として設定する条件設定部333と、を備える。また、条件計算部332は、撮像断面と分布計測断面との交線を含む領域(以下、交差領域と呼ぶ)のB分布(B値)を、分布計測断面のB分布から抽出する分布抽出部334を備える。これらの各機能は、基本的に第一の実施形態の同名の機能と同様である。
 ただし、本実施形態の条件計算部332は、さらに、各分布計測断面内のB値の平均値(B平均値)を計算する平均値計算部335を備える。そして、本実施形態の条件計算部332は、各分布計測断面の最適な高周波磁場条件を算出する際、平均値計算部335が算出した各分布計測断面内のB平均値を考慮する。本実施形態の条件計算部332は、撮像断面が計測軸方向の場合、算出した各分布計測断面の最適な高周波磁場条件を、B平均値が一定となるよう調整し、撮像断面が計測軸方向でない場合、抽出した各交差領域のB分布のB平均値が一定となるよう調整後、最適な高周波磁場条件を計算する。
 例えば、分布計測断面を、AX方向の3枚(例えば、図8(A)、図8(B)、図8(C)の511、512、513、以下、本実施形態では、D1、D2、D3と呼ぶ。)とする(AX方向に3枚のB分布を取得する)と、条件計算部332は、計測軸方向の撮像断面、すなわち、分布計測断面と平行な撮像断面(AX断面、例えば、図8(A)の510)の最適な高周波磁場条件を、以下の手順で算出する。
 まず、条件計算部332は、第一の実施形態同様の手順で、各分布計測断面(D1、D2、D3)の最適な高周波磁場条件を計算する。また、平均値計算部335に、各分布計測断面(D1、D2、D3)のB平均値をそれぞれ算出させ、例えば、記憶装置111に登録させる。ここで、得られた各分布計測断面(D1、D2、D3)のB平均値を、それぞれ、0.8、1.0、0.8とする。
 そして、条件計算部332は、全ての分布計測断面のB平均値が一定となるよう各分布計測断面(D1、D2、D3)のB平均値を調整し、記憶装置111に登録する。ここでは、例えば、全ての分布計測断面のB平均値が1.0となるよう、分布計測断面D1およびD3の、最適な高周波磁場条件を、1.25倍する。そして、調整後の各分布計測断面の最適な高周波磁場条件を用い、第一の実施形態同様の手順で、補間等により、撮像断面の最適な高周波磁場条件を計算する。
 また、条件計算部332は、分布計測断面が上記D1、D2、D3の場合、計測軸方向以外の撮像断面、例えば、SAG断面(例えば、図8(B)の520)、COR断面(例えば、図8(C)の530)のように、分布計測断面と非平行な撮像断面の、最適な高周波磁場条件を、以下の手順で計算する。
 条件計算部332は、まず、第一の実施形態同様の手順で、分布抽出部334に、撮像断面と各分布計測断面(D1、D2、D3)との交差領域のB値を抽出させる。例えば、SAG断面(例えば、図8(B)の520)2枚の画像を撮像する場合、1枚目の撮像画像と分布計測断面との交差領域を各々(例えば、図8(B)の521、522、523、以下、本実施形態では、E1_1、E1_2、E1_3と呼ぶ。)とし、2枚目の撮像画像と分布計測断面との交差領域を各々(例えば、図8(B)の521、522、523、以下、本実施形態では、E2_1、E2_2、E2_3と呼ぶ。)とする。そして、平均値計算部335に、各交差領域(E1_1、E1_2、E1_3)全体のB平均値と、各交差領域(E2_1、E2_2、E2_3)全体のB平均値と、を算出させる。そして、条件計算部332は、全撮像断面位置(ここでは2枚の位置)のB平均値が一定となるように、第一の実施形態の手順で、撮像断面の最適な高周波磁場条件を計算する。
 例えば、上記の例で、2つの撮像断面位置のB平均値を、それぞれ、0.8、1.0とすると、条件計算部332は、例えば、全ての分布計測断面のB平均値が1.0となるよう、B平均値が0.8の撮像断面における最適な高周波磁場条件を、1.25倍する。
 なお、本実施形態は、分布計測断面の枚数が2枚以上の場合に適用される。
 以下、本実施形態の計算機109による撮像処理の流れを、図17を用いて説明する。図17は、本実施形態の撮像処理の処理フローである。ここでは、計測軸方向を、AX方向とし、分布計測断面の枚数をN枚(Nは2以上の整数)とする。また、撮像断面数をM(Mは1以上の整数)とする。
 まず、撮像位置設定部310は、撮像領域設定処理を行う(ステップS2101)。次に、分布計算部331は、B分布計測を行い、AX方向にN枚の分布計測断面のB分布を計算する(ステップS2102)。このとき、分布計算部331は、撮像位置設定部310が算出した本撮像画像の位置に係る各パラメータを参照し、B分布を計測する撮像領域を決定する。
 そして、RFシミング部330は、撮像位置設定部310が設定した撮像断面毎に、RFシミング処理を行う。ここでは、撮像断面毎に、条件計算部332が最適な高周波磁場条件を計算し、条件設定部333が計算した高周波磁場条件を設定する。
 RFシミング処理として、RFシミング部330は、以下の処理を、全撮像断面数、M回繰り返す(ステップS2103、ステップS2110、S2111)。
 まず、条件計算部332は、処理対象のm番目(mは、1≦m≦Mを満たす整数)の撮像断面の方向が、計測軸方向であるか否かを判別する(ステップS2104)。そして、計測軸方向であれば、条件計算部332は、各分布計測断面の、調整後の最適な高周波磁場条件が算出済みであるか否かを判別する(ステップS2105)。算出済みであるか否かは、例えば、各分布計測断面の調整後の最適な高周波磁場条件が記憶装置111に登録されているか否かで判別する。
 ステップS2105で、算出済みでないと判別した場合、条件計算部332は、まず、各分布計測断面の最適な高周波磁場条件およびB平均値を算出する(ステップS2106)。上述のように、B平均値は、平均値計算部321に計算させる。そして、条件計算部332は、算出したB平均値を用い、上記手法で各分布計測断面の最適な高周波磁場条件を調整し、調整後の高周波磁場条件として記憶装置111に登録する(ステップS2107)。そして、得られた各分布計測断面の調整後の最適な高周波磁場条件を用い、上記手法に従って、m番目の撮像断面の最適な高周波磁場条件を計算する(ステップS2108)。一方、ステップS2105で算出済みである場合は、ステップS2108へ進み、既に算出されている各分布計測断面の最適な高周波磁場条件を用い、上記手法に従って、m番目の撮像断面の最適な高周波磁場条件を計算する。
 条件設定部333は、算出された最適な高周波磁場条件を、m番目の撮像断面の撮像条件として設定する(ステップS2109)。そして、条件設定部333は、全ての撮像断面について処理を終えたか否かを判別し(ステップS2110)、終えていなければ、mを1インクリメントし(ステップS2111)、ステップS2103へ戻り、処理を繰り返す。
 ステップS2110で、全ての処理を終えていると判別された場合、RFシミング部330は、RFシミング処理を終え、画像本撮像部340は、画像本撮像を実行する(ステップS2112)。
 一方、ステップS2104で、処理対象のm番目の撮像断面が、計測軸方向の断面ではないと判別された場合、条件計算部332は、分布抽出部334に、m番目の撮像断面と分布計測断面との交差領域のB分布を抽出させる(ステップS2113)。そして、条件計算部332は、平均値計算部335に、各交差領域のB分布(B値)の平均値を算出させる(ステップS2114)。そして、条件計算部332は、上記手法に従って、m番目の撮像断面の最適な高周波磁場条件を計算する(ステップS2115)。そして、ステップS2109へ移行する。
 以上、本実施形態のRFシミングを含む撮像処理全体の流れを説明した。
 以上説明したように、本実施形態のMRI装置100は、静磁場を形成する静磁場形成部と、傾斜磁場を印加する傾斜磁場印加部と、被検体にそれぞれ異なる高周波磁場を送信する複数のチャンネルを有する高周波磁場送信部と、前記被検体から発生する核磁気共鳴信号を受信する信号受信部と、前記高周波磁場送信部から前記被検体に前記高周波磁場が送信された後に前記信号受信部が受信した核磁気共鳴信号から、第一の軸に直交する第一の分布計測断面の高周波磁場分布である第一の高周波磁場分布を算出する分布計算部331と、前記第一の高周波磁場分布に基づいて、撮像の対象とする任意の撮像断面の撮像条件の中の前記複数のチャンネル各々から照射する高周波磁場の位相および振幅の少なくとも一方を高周波磁場条件として算出する条件計算部332と、を備える。
 また、前記第一の分布計測断面は複数であり、前記撮像断面は、前記第一の軸に直交し、かつ、前記複数の第一の分布計測断面のいずれとも異なる断面の場合、前記条件計算部332は、前記複数の第一の分布計測断面それぞれについて、各第一の分布計測断面内の高周波磁場値の平均値である磁場平均値を計算する平均値計算部335をさらに備え、前記各第一の計測断面の高周波磁場条件を、前記各磁場平均値が一定になるよう調整し、調整後の前記各高周波磁場条件を補間することにより、前記撮像断面の高周波磁場条件を算出する。
 前記第一の分布計測断面は複数であり、前記撮像断面は、前記第一の軸とは異なる第二の軸に垂直な断面の場合、前記条件計算部332は、前記各第一の分布計測断面と前記撮像断面との交線を含む各領域の高周波磁場分布である交差領域高周波磁場分布を、それぞれ、前記各第一の高周波磁場分布から抽出する分布抽出部334と、前記交線を含む領域毎に、当該領域内の高周波磁場値の平均値である磁場平均値を計算する平均値計算部335と、を備え、前記各磁場平均値が一定になるよう前記撮像断面の高周波磁場条件を算出する。
 すなわち、本実施形態によれば、第一の実施形態同様、1軸方向の分布計測断面のB分布を用いて、B分布の変化の特性を利用して、撮像断面毎に、それぞれ最適な手法で当該撮像断面の最適な高周波磁場条件を計算する。また、計測軸方向を1方向としている。このため、第一の実施形態同様、実際に撮像断面のB分布から得た最適な高周波磁場条件と略同等の精度で、各撮像断面の最適な高周波磁場条件を得ることができ、同等のB不均一低減効果を得ることができる。
 従って、第一の実施形態同様、撮像時間の延長を最小限に抑えながら、撮像断面を問わず、RFシミングによるB不均一低減効果を最大とすることができ、撮像断面を問わず、効率よく高画質の画像を得ることができる。
 さらに、本実施形態によれば、複数枚の分布計測断面間のB平均値を一定にする調整も行っているため、さらに、B不均一低減効果を高めることができ、より高画質の画像を得ることができる。
 なお、本実施形態においても、第一の実施形態同様、B分布の算出法は、他の手法を用いてもよい。また、最適な高周波磁場条件として、RFの振幅および位相のいずれか一方でもよい。また、撮像断面の方向は、オブリークであってもよい。この場合、第一の実施形態と同様の対処を行うよう構成してもよい。また、分布計測断面数を、計測軸方向の被検体の断面形状の変化、FOVの大きさ、等に応じて決定するよう構成してもよい。また、計測軸方向は、撮像条件、撮像対象に応じて所望の方向を選択してもよい。また、計測軸方向の数も2方向としてもよい。また、本実施形態においても、第一の実施形態同様、領域単位で最適な高周波磁場条件を設定するよう構成してもよい。
 <<第三の実施形態>>
 以下、本発明の第三の実施形態について説明する。本実施形態では、高周波磁場(RF)出力の上限値を超えないという制約の下に、最適な高周波磁場条件としてRFの振幅および位相を決定する。
 RF出力の上限値は、例えば、人体に吸収されるRFのエネルギー量(SAR;Specific Absorption Ratio)の上限値、もしくは、RFアンプの出力限界値、等により決められる。また、SARには、人体全体に吸収されるエネルギーが考慮された全身SARと、人体内に局所的に吸収されるエネルギーが考慮された局所SARの二つがある。本実施形態では、人体に影響を及ぼさない程度に全身SARもしくは局所SARを抑えるように、RF出力の上限値を決定する。RF出力の上限値は、例えば、電磁場解析シミュレーションにより求めた、RF出力と、磁場(B値)およびSAR値との対応関係に基づいて決定する。
 本実施形態のMRI装置100は、基本的に第一の実施形態と同様の構成を有する。ただし、上述のように、本実施形態では、最適な高周波磁場条件を設定するにあたり、RF出力の上限値を考慮する。従って、これを実現する計算機109の機能構成が第一の実施形態と異なる。以下、本実施形態について、第一の実施形態と異なる構成に主眼をおいて説明する。
 図18は、本実施形態の計算機109の機能ブロック図である。本図に示すように、本実施形態の計算機109は、第一の実施形態同様、撮像位置設定部310と、静磁場シミング部320と、RFシミング部330と、画像本撮像部340と、を備える。計算機109の各機能は、計算機109が備えるCPUが、予め記憶装置111に格納されるプログラムをメモリにロードして実行することにより実現される。
 また、本実施形態のRFシミング部330は、第一の実施形態同様、核磁気共鳴信号から予め定めた分布計測軸に直交する分布計測断面のB分布(高周波磁場分布)を計算する分布計算部331と、得られたB分布を用いて、任意の撮像断面の高周波磁場条件を計算する条件計算部332と、得られた高周波磁場条件を画像本撮像に用いる撮像条件として設定する条件設定部333と、を備える。また、条件計算部332は、撮像断面と分布計測断面との交線を含む領域(以下、交差領域と呼ぶ)のB分布(B値)を、分布計測断面のB分布から抽出する分布抽出部334を備える。これらの各機能は、基本的に第一の実施形態の同名の機能と同様である。
 ただし、本実施形態の条件計算部332は、さらに、算出した最適な高周波磁場条件でRFを送信した場合のSARの、予め定めたSARの上限値に対する比率を算出する出力計算部336と、を備える。本実施形態では、例えば、予め電磁場解析シミュレーションによりRF出力とSARの値とを対応づけておき、その対応関係から、所定のRF出力に応じたSARの値を得る。また、SAR上限値は、人体への安全性を考慮して決められたSARの値などから決定される。出力計算部336は、SARの値をSAR上限値で除し、上記比率を算出する。
 条件計算部332は、撮像断面が計測軸方向の場合、出力計算部336が計算した比率が1を超えた場合、当該分布計測断面の最適な高周波磁場条件のRFの振幅を、得られた比率で除すことにより、SAR上限値を超えないよう調整する。
 例えば、分布計測断面を、AX方向の3枚(例えば、図8(A)、図8(B)、図8(C)の511、512、513、以下、本実施形態では、D1、D2、D3と呼ぶ。)とする(AX方向に3枚のB分布を取得する)と、条件計算部332は、計測軸方向の撮像断面、すなわち、分布計測断面と平行な撮像断面(AX断面、例えば、図8(A)の510)の最適な高周波磁場条件を、以下の手順で算出する。
 まず、条件計算部332は、第一の実施形態同様の手順で、各分布計測断面(D1、D2、D3)の最適な高周波磁場条件を計算する。出力計算部336は、各分布計測断面(D1、D2、D3)におけるSARの値およびSAR上限値に基づいて、比率を算出する。そして、条件計算部332は、比率が1を超える分布計測断面について、計算した最適な高周波磁場条件を当該比率で除し、調整後の最適な高周波磁場条件を得る。
 例えば、ここで、得られた各分布計測断面(D1、D2、D3)の比率が、1.25、1、1の場合、条件計算部332は、分布計測断面D1の最適な高周波磁場条件のRFの振幅を、1.25で除し、すなわち、0.8倍し、調整後の最適な高周波磁場条件を得る。そして、調整後の各分布計測断面の最適な高周波磁場条件を用い、第一の実施形態同様の手順で、補間等により、撮像断面の最適な高周波磁場条件を計算する。
 また、条件計算部332は、分布計測断面が上記D1、D2、D3の場合、計測軸方向以外の撮像断面、例えば、SAG断面(例えば、図8(B)の520)、COR断面(例えば、図8(C)の530)のように、分布計測断面と非平行な撮像断面の、最適な高周波磁場条件を、以下の手順で計算する。
 条件計算部332は、まず、第一の実施形態同様の手順で、分布抽出部334に、撮像断面と各分布計測断面(D1、D2、D3)との交差領域のB値を抽出させる。例えば、SAG断面(例えば、図8(B)の520)2枚の画像を撮像する場合、1枚目の撮像画像と分布計測断面との交差領域を各々(例えば、図8(B)の521、522、523、以下、本実施形態では、E1_1、E1_2、E1_3と呼ぶ。)とし、2枚目の撮像画像と分布計測断面との交差領域を各々(例えば、図8(B)の521、522、523、以下、本実施形態では、E2_1、E2_2、E2_3と呼ぶ。)とする。そして、出力計算部336は、各分布計測断面におけるSARの値およびSAR上限値に基づいて、比率を算出する。そして、調整後の各交差領域のB値を用いて、最適な高周波磁場条件を計算する。
 例えば、2つの撮像断面位置における比率を、それぞれ、1.25、1、とすると、条件計算部332は、比率が1.25の撮像断面における最適な高周波磁場条件を、1.25で除す。すなわち、0.8倍する。そして、撮像断面の最適な高周波磁場条件を計算する。
 なお、SARの上限値を超えているかどうかの判定は、例えば、全ての分布計測断面または、全ての交差領域に対して行う。これは、所定の撮像断面の撮像を行う場合でも、RFは被検体103全体に照射されるためである。
 以下、本実施形態の計算機109による撮像処理の流れを、図19を用いて説明する。図19は、本実施形態の撮像処理の処理フローである。ここでは、計測軸方向を、AX方向とし、分布計測断面の枚数をN枚(Nは2以上の整数)とする。また、撮像断面数をM(Mは1以上の整数)とする。
 まず、撮像位置設定部310は、撮像領域設定処理を行う(ステップS3101)。次に、分布計算部331は、B分布計測を行い、AX方向にN枚の分布計測断面のB分布を計算する(ステップS3102)。このとき、分布計算部331は、撮像位置設定部310が算出した本撮像画像の位置に係る各パラメータを参照し、B分布を計測する撮像領域を決定する。
 そして、RFシミング部330は、撮像位置設定部310が設定した撮像断面毎に、RFシミング処理を行う。ここでは、撮像断面毎に、条件計算部332が最適な高周波磁場条件を計算し、条件設定部333が計算した高周波磁場条件を設定する。
 RFシミング処理として、RFシミング部330は、以下の処理を、全撮像断面数、M回繰り返す(ステップS3103、ステップS3111、S3112)。
 まず、条件計算部332は、処理対象のm番目(mは、1≦m≦Mを満たす整数)の撮像断面の方向が、計測軸方向であるか否かを判別する(ステップS3104)。そして、計測軸方向であれば、条件計算部332は、各分布計測断面の、最適な高周波磁場条件が算出済みであるか否かを判別する(ステップS3105)。算出済みであるか否かは、例えば、各分布計測断面の調整後の最適な高周波磁場条件が記憶装置111に登録されているか否かで判別する。
 ステップS3105で、算出済みでないと判別した場合、条件計算部332は、まず、各分布計測断面の最適な高周波磁場条件を算出する(ステップS3106)。そして、条件計算部332は、各分布計測断面におけるSARの値およびSAR上限値に基づいて、比率を算出する(ステップS3107)。算出は、上述のように出力計算部336に行わせる。
 そして、条件計算部332は、上述の手法で、得られた比率に従って、各分布計測断面の最適な高周波磁場条件を調整し、調整後の高周波磁場条件として記憶装置111に登録する(ステップS3108)。そして、得られた各分布計測断面の調整後の最適な高周波磁場条件を用い、上記手法に従って、m番目の撮像断面の最適な高周波磁場条件を計算する(ステップS3109)。一方、ステップS3105で算出済みである場合は、ステップS3109へ進み、既に算出されている各分布計測断面の最適な高周波磁場条件を用い、上記手法に従って、m番目の撮像断面の最適な高周波磁場条件を計算する。
 条件設定部333は、算出された最適な高周波磁場条件を、m番目の撮像断面の撮像条件として設定する(ステップS3110)。そして、条件設定部333は、全ての撮像断面について処理を終えたか否かを判別し(ステップS3111)、終えていなければ、mを1インクリメントし(ステップS3112)、ステップS3104へ戻り、処理を繰り返す。
 ステップS3111で、全ての処理を終えていると判別された場合、RFシミング部330は、RFシミング処理を終え、画像本撮像部340は、画像本撮像を実行する(ステップS3113)。
 一方、ステップS3104で、処理対象のm番目の撮像断面が、計測軸方向の断面ではないと判別された場合、条件計算部332は、分布抽出部334に、m番目の撮像断面と分布計測断面との交差領域のB分布を抽出させる(ステップS3114)。条件計算部332は、出力計算部336に、上記手法に従って、SARの比率を計算させる(ステップS3115)。そして、m番目の撮像断面の最適な高周波磁場条件を計算する(ステップS3116)。そして、ステップS3110へ移行する。
 以上、本実施形態のRFシミングを含む撮像処理全体の流れを説明した。
 以上説明したように、本実施形態のMRI装置100は、静磁場を形成する静磁場形成部と、傾斜磁場を印加する傾斜磁場印加部と、被検体にそれぞれ異なる高周波磁場を送信する複数のチャンネルを有する高周波磁場送信部と、前記被検体から発生する核磁気共鳴信号を受信する信号受信部と、前記高周波磁場送信部から前記被検体に前記高周波磁場が送信された後に前記信号受信部が受信した核磁気共鳴信号から、第一の軸に直交する第一の分布計測断面の高周波磁場分布である第一の高周波磁場分布を算出する分布計算部331と、前記第一の高周波磁場分布に基づいて、撮像の対象とする任意の撮像断面の撮像条件の中の前記複数のチャンネル各々から照射する高周波磁場の位相および振幅の少なくとも一方を高周波磁場条件として算出する条件計算部332と、を備える。
 また、前記条件計算部332は、前記第一の高周波磁場分布および算出した前記高周波磁場条件のいずれか一方を用い、前記算出した高周波磁場条件で高周波磁場照射部から高周波磁場を照射した場合のSARの、予め定めたSARの上限値に対する比率を算出する出力計算部336を備え、前記出力計算部336による算出結果が1を超える場合、前記高周波磁場条件を、前記算出結果が1以下となるよう調整する。
 すなわち、本実施形態によれば、第一の実施形態同様、1軸方向の分布計測断面のB分布を用いて、B分布の変化の特性を利用して、撮像断面毎に、それぞれ最適な手法で当該撮像断面の最適な高周波磁場条件を計算する。また、計測軸方向を1方向としている。このため、第一の実施形態同様、実際に撮像断面のB分布から得た最適な高周波磁場条件と略同等の精度で、各撮像断面の最適な高周波磁場条件を得ることができ、同等のB不均一低減効果を得ることができる。
 従って、第一の実施形態同様、撮像時間の延長を最小限に抑えながら、撮像断面を問わず、RFシミングによるB不均一低減効果を最大とすることができ、撮像断面を問わず、効率よく高画質の画像を得ることができる。
 さらに、本実施形態によれば、RFの出力が予め定めたSARの上限を超えないよう調整している。従って、安全性の高いMRI装置を提供することができる。
 なお、上記実施形態では、SARの値およびSARの上限値を、電磁場解析シミュレーションのデータに基づいて決定しているが、これらの値の規定はこれに限られない。例えば、SARを実測するシステムを用いるよう構成してもよい。例えば、実測されたB値とSARとの関係性を予め把握し、それに基づいてSARの値およびSAR上限値を定めてもよい。
 また、上記手法の中ではSAR上限値を基準にRF出力を調整しているが、RFアンプの出力限界の値をもとにRF出力を調整してもよい。この場合、条件計算部332は、あるRF出力値とRFアンプ出力限界値との比率を算出し、比率が1を超えた場合、当該分布計測断面の最適な高周波磁場条件のRFの振幅を、得られた比率で除すことにより、RFアンプ出力値を超えないよう調整する。
 なお、本実施形態においても、第一の実施形態同様、B分布の算出法は、他の手法を用いてもよい。また、最適な高周波磁場条件として、RFの振幅および位相のいずれか一方でもよい。また、撮像断面の方向は、オブリークであってもよい。この場合、第一の実施形態と同様の対処を行うよう構成してもよい。また、分布計測断面数を、計測軸方向の被検体の断面形状の変化、FOVの大きさ、等に応じて決定するよう構成してもよい。また、計測軸方向は、撮像条件、撮像対象に応じて所望の方向を選択してもよい。また、計測軸方向の数も2方向としてもよい。また、本実施形態においても、第一の実施形態同様、領域単位で最適な高周波磁場条件を設定するよう構成してもよい。
 また、本実施形態において、さらに、第二の実施形態同様、分布計測断面が複数枚の場合、撮像領域全体のB不均一低減を考慮するよう構成してもよい。すなわち、RFシミング処理の中で、第二の実施形態同様、B平均値を用い、分布計測断面の最適な高周波磁場条件を調整する、または、交差領域のB平均値を用いるといった処理を行う。このように構成することにより、第二の実施形態による効果もさらに得ることができる。
 なお、上記各実施形態では、3T MRI装置、および2チャンネルのRF送信コイルを用いて説明したが、上記各実施形態は、3Tよりも高い静磁場、もしくは、2チャンネルよりも多いチャンネル数のRF送信コイルを用いた場合でも、適用可能である。
 また、上記各実施形態では、RFシミング部330を、MRI装置100が備える計算機109上に構築しているが、本構成に限られない。例えば、MRI装置100とデータの送受信が可能な、MRI装置100から独立した一般の情報処理装置上に構築されていてもよい。
 100:MRI装置、101:マグネット、102:傾斜磁場コイル、103:被検体、104:シーケンサ、105:傾斜磁場電源、106:高周波磁場発生器、107:テーブル、108:受信器、109:シム電源、109:計算機、110:ディスプレイ、111:記憶装置、112:シムコイル、113:シム電源、114:送信コイル、115:受信コイル、201:給電点、202:ファントム、310:撮像位置設定部、320:静磁場シミング部、321:平均値計算部、330:RFシミング部、331:分布計算部、332:条件計算部、333:条件設定部、334:分布抽出部、335:平均計算部、336:出力計算部、340:画像本撮像部、401:撮像断面、402:ヒト骨盤領域、411:AX断面、412:SAG断面、413:COR断面、420:撮像領域、421:分布計測断面、422:分布計測断面、423:分布計測断面、510:撮像断面、511:分布計測断面、512:分布計測断面、513:分布計測断面、520:撮像断面、521;交差領域、522;交差領域、523;交差領域、530:撮像断面、531;交差領域、532;交差領域、533;交差領域、540:撮像断面、541:交差領域、542;交差領域、543;交差領域、610:AX画像、611:AX断面位置、621:SAG断面位置、622:交差領域、630:COR画像、632:交差領域、641:均一度指標、642:均一度指標、643:均一度指標、644:均一度指標、651:均一度指標、652:均一度指標、653:均一度指標、654:均一度指標、661:均一度指標、662:均一度指標、663:均一度指標、664:均一度指標、711:AX断面位置、721:SAG断面位置、730:COR画像、741:均一度指標、742:均一度指標、743:均一度指標、744:均一度指標、751:均一度指標、752:均一度指標、753:均一度指標、754:均一度指標、761:均一度指標、762:均一度指標、763:均一度指標、764:均一度指標、810:AX画像、821:左側領域、822:中央領域、823:右側領域、831:上側領域、832:中央領域、833:下側領域

Claims (20)

  1.  静磁場を形成する静磁場形成部と、
     傾斜磁場を印加する傾斜磁場印加部と、
     被検体にそれぞれ異なる高周波磁場を送信する複数のチャンネルを有する高周波磁場送信部と、
     前記被検体から発生する核磁気共鳴信号を受信する信号受信部と、
     前記高周波磁場送信部から前記被検体に前記高周波磁場が送信された後に前記信号受信部が受信した核磁気共鳴信号から、第一の軸に直交する第一の分布計測断面の高周波磁場分布である第一の高周波磁場分布を算出する分布計算部と、
     前記第一の高周波磁場分布に基づいて、撮像の対象とする任意の撮像断面の撮像条件の中の前記複数のチャンネル各々から照射する高周波磁場の位相および振幅の少なくとも一方を高周波磁場条件として算出する条件計算部と、を備えること
     を特徴とする磁気共鳴撮像装置。
  2.  請求項1記載の磁気共鳴撮像装置であって、
     前記分布計算部は、前記核磁気共鳴信号から、前記第一の軸に直交する第二の分布計測断面の高周波磁場分布である第二の高周波磁場分布をさらに算出し、
     前記条件計算部は、第二の高周波磁場分布にさらに基づいて、前記高周波磁場条件を算出すること
     を特徴とする磁気共鳴撮像装置。
  3.  請求項1記載の磁気共鳴撮像装置であって、
     前記撮像断面は、前記第一の軸とは異なる第二の軸に直交する断面であり、
     前記条件計算部は、
     前記撮像断面と前記第一の分布計測断面との交線を含む領域の高周波磁場分布である交差領域高周波磁場分布を、前記第一の高周波磁場分布から抽出する分布抽出部を備え、
     前記交差領域高周波磁場分布を用いて、前記撮像断面の前記高周波磁場条件を算出すること
     を特徴とする磁気共鳴撮像装置。
  4.  請求項2記載の磁気共鳴撮像装置であって、
     前記撮像断面は、前記第一の軸に直交し、かつ、前記第一の分布計測断面および前記第二の分布計測断面のいずれとも異なる断面であり、
     前記条件計算部は、前記第一の高周波磁場分布から算出した第一の高周波磁場条件と前記第二の高周波磁場分布から算出した第二の高周波磁場条件とを補間することにより、前記撮像断面の高周波磁場条件を算出すること
     特徴とする磁気共鳴撮像装置。
  5.  請求項1記載の磁気共鳴撮像装置であって、
     前記第一の軸の方向は、撮像空間内で磁場分布の変化が最も少ない方向であること
     を特徴とする磁気共鳴撮像装置。
  6.  請求項1記載の磁気共鳴撮像装置であって、
     前記第一の軸の方向は、被検体の形状変化が最も少ない方向であること
     を特徴とする磁気共鳴撮像装置。
  7.  請求項1記載の磁気共鳴撮像装置であって、
     前記第一の軸の方向は、アキシャル方向であること
     を特徴とする磁気共鳴撮像装置。
  8.  請求項3記載の磁気共鳴撮像装置であって、
     前記第二の軸は、前記第一の軸に直交すること
     を特徴とする磁気共鳴撮像装置。
  9.  請求項8記載の磁気共鳴撮像装置であって、
     前記第一の軸の方向は体軸方向であり、前記第二の軸の方向はコロナル方向、もしくはサジタル方向であること
     を特徴とする磁気共鳴撮像装置。
  10. [規則91に基づく訂正 14.09.2012] 
     請求項3記載の磁気共鳴撮像装置であって、
     前記交線を含む領域は、前記撮像断面のスライス厚より大きい領域とすること
     を特徴とする磁気共鳴撮像装置。
  11.  請求項10記載の磁気共鳴撮像装置であって、
     前記交線を含む領域は、当該交線を中心として、幅が10~80mmの短冊状の領域であること
     を特徴とする磁気共鳴撮像装置。
  12.  請求項1記載の磁気共鳴撮像装置であって、
     前記条件計算部は、全撮像断面が含まれる撮像領域を前記撮像断面と同方向に所定数に分割することにより得た各区分領域の前記高周波磁場条件を、前記第一の高周波磁場分布に基づいて算出し、前記区分領域の中の前記撮像断面が含まれる区分領域の高周波磁場条件を、当該撮像断面の高周波磁場条件とすること
     を特徴とする磁気共鳴撮像装置。
  13.  請求項1記載の磁気共鳴撮像装置であって
     前記第一の分布計測断面は複数であり、
     前記撮像断面は、前記第一の軸に直交し、かつ、前記複数の第一の分布計測断面のいずれとも異なる断面であり、
     前記条件計算部は、前記複数の第一の分布計測断面それぞれについて、各第一の分布計測断面内の高周波磁場値の平均値である磁場平均値を計算する平均値計算部をさらに備え、
     前記各第一の計測断面の高周波磁場条件を前記各磁場平均値が一定になるよう調整し、調整後の前記各高周波磁場条件を補間することにより、前記撮像断面の高周波磁場条件を算出すること
     を特徴とする磁気共鳴撮像装置。
  14.  請求項1記載の磁気共鳴撮像装置であって、
     前記第一の分布計測断面は複数であり、
     前記撮像断面は、前記第一の軸とは異なる第二の軸に垂直な断面であり、
     前記条件計算部は、
     前記各第一の分布計測断面と前記撮像断面との交線を含む各領域の高周波磁場分布である交差領域高周波磁場分布を、それぞれ、前記各第一の高周波磁場分布から抽出する分布抽出部と、
     前記交線を含む領域毎に、当該領域内の高周波磁場値の平均値である磁場平均値を計算する平均値計算部と、を備え、
     前記各磁場平均値が一定になるよう前記撮像断面の高周波磁場条件を算出すること
     を特徴とする磁気共鳴撮像装置。
  15.  請求項1記載の磁気共鳴撮像装置であって
     前記条件計算部は、
     前記第一の高周波磁場分布および算出した前記高周波磁場条件のいずれか一方を用い、前記算出した高周波磁場条件で高周波磁場照射部から高周波磁場を照射した場合のSARの予め定めたSARの上限値に対する比率を算出する出力計算部を備え、
     前記出力計算部による算出結果が1を超える場合、前記算出結果が1以下となるよう前記高周波磁場条件を調整すること
     を特徴とする磁気共鳴撮像装置。
  16.  請求項2記載の磁気共鳴撮像装置であって、
     前記第一の分布計測断面は、全撮像断面を含む撮像領域の、前記第一の軸方向の一方の端部の断面であり、
     前記第二の分布計測断面は、前記撮像領域の前記第一の軸方向の他方の端部の断面であること
     を特徴とする磁気共鳴撮像装置。
  17.  請求項1記載の磁気共鳴撮像装置であって、
     前記分布計算部は、前記第一の軸とは異なる第三の軸に直交する第三の分布計測断面の高周波磁場分布である第三の高周波磁場分布をさらに算出し、
     前記条件計算部は、前記第三の高周波磁場分布にさらに基づいて、前記高周波磁場条件を算出すること
     を特徴とする磁気共鳴撮像装置。
  18.  請求項12記載の磁気共鳴撮像装置であって、
     前記撮像領域の分割数は3であること
     を特徴とする磁気共鳴撮像装置。
  19.  被検体にそれぞれ異なる高周波磁場を送信する複数のチャンネルを有する高周波磁場送信部と、前記被検体から発生する核磁気共鳴信号を受診する信号受信部と、を備える磁気共鳴撮像装置の高周波磁場照射方法であって、
     前記高周波磁場照射部から前記被検体に前記高周波磁場が送信された後に前記信号受信部が検出した核磁気共鳴信号から、第一の軸に直交する第一の分布計測断面の高周波磁場分布である第一の高周波磁場分布を算出する分布計算ステップと、
     前記第一の高周波磁場分布に基づいて、撮像の対象とする任意の撮像断面の撮像条件の中の前記複数のチャンネル各々から照射する高周波磁場の位相および振幅の少なくとも一方を高周波磁場条件として算出する条件計算ステップと、を備えること
     を特徴とする高周波磁場照射方法。
  20.  コンピュータを、
     磁気共鳴撮像装置の信号受信部が検出した核磁気共鳴信号から、第一の軸に直交する第一の分布計測断面の高周波磁場分布である第一の高周波磁場分布を算出する分布計算部と、
     前記第一の高周波磁場分布に基づいて、撮像の対象とする任意の撮像断面の撮像条件の中の前記複数のチャンネル各々から照射する高周波磁場の位相および振幅の少なくとも一方を高周波磁場条件として算出する条件計算部と、として機能させるためのプログラム。
PCT/JP2012/069239 2011-09-29 2012-07-27 磁気共鳴撮像装置、高周波磁場照射方法およびプログラム WO2013046900A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013536022A JP5797765B2 (ja) 2011-09-29 2012-07-27 磁気共鳴撮像装置、高周波磁場照射方法およびプログラム
US14/241,515 US9726744B2 (en) 2011-09-29 2012-07-27 Magnetic resonance imaging equipment, high frequency magnetic field irradiation method and program
EP12836712.5A EP2762070B1 (en) 2011-09-29 2012-07-27 Magnetic resonance imaging equipment, high frequency magnetic field irradiation method and program
CN201280041946.1A CN103874457B (zh) 2011-09-29 2012-07-27 磁共振摄像装置以及高频磁场照射方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011214865 2011-09-29
JP2011-214865 2011-09-29

Publications (1)

Publication Number Publication Date
WO2013046900A1 true WO2013046900A1 (ja) 2013-04-04

Family

ID=47994954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069239 WO2013046900A1 (ja) 2011-09-29 2012-07-27 磁気共鳴撮像装置、高周波磁場照射方法およびプログラム

Country Status (5)

Country Link
US (1) US9726744B2 (ja)
EP (1) EP2762070B1 (ja)
JP (1) JP5797765B2 (ja)
CN (1) CN103874457B (ja)
WO (1) WO2013046900A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106028928A (zh) * 2014-04-16 2016-10-12 株式会社日立制作所 核磁共振成像装置以及rf匀场方法
JP2019195589A (ja) * 2018-05-11 2019-11-14 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置およびマルチスライス撮像方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143460A1 (ja) * 2015-03-06 2016-09-15 株式会社日立製作所 磁気共鳴イメージング装置およびrfシミングパラメータの設定方法
DE102016207264A1 (de) * 2016-04-28 2017-11-02 Siemens Healthcare Gmbh Einhalten von Grenzwerten beim Erfassen von Daten mittels einer Magnetresonanzanlage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078901B2 (en) 2004-03-18 2006-07-18 Siemens Aktiengesellschaft Method and magnetic resonance system for homogenizing the B1 field
JP2007283104A (ja) * 2006-04-13 2007-11-01 Siemens Ag 磁気共鳴システムの制御方法、磁気共鳴システム及びコンピュータプログラムプロダクト
JP2010029640A (ja) 2008-06-26 2010-02-12 Toshiba Corp 磁気共鳴イメージング装置
JP2010508054A (ja) * 2006-10-31 2010-03-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 複数の送信コイルを使用したmrirf符号化

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2159590A1 (en) * 2001-02-23 2010-03-03 Hitachi Medical Corporation Magnetic resonance imaging apparatus and method
JP4152381B2 (ja) * 2002-04-30 2008-09-17 株式会社日立メディコ 磁気共鳴イメージング装置
CN102385044B (zh) * 2004-02-26 2014-12-10 株式会社东芝 磁共振成象装置及磁共振成象装置的数据处理方法
JP2005288026A (ja) * 2004-04-05 2005-10-20 Toshiba Corp 磁気共鳴イメージング装置、渦磁場分布推定方法、及び静磁場補正方法
JP2005296461A (ja) * 2004-04-14 2005-10-27 Toshiba Corp 磁気共鳴イメージング装置
JP2009511106A (ja) * 2005-10-07 2009-03-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ マルチチャネル送信磁気共鳴
GB2476433B (en) * 2008-09-17 2013-01-09 Koninkl Philips Electronics Nv B1 Mapping and B1L-Shimming for MRI
RU2534724C2 (ru) * 2009-03-31 2014-12-10 Конинклейке Филипс Электроникс Н.В. Ускоренное отображение поля b1
US9194923B2 (en) * 2010-06-09 2015-11-24 Hitachi Medical Corporation Magnetic resonance imaging device and transmitting sensitivity distribution calculation method
JP5885845B2 (ja) * 2012-08-03 2016-03-16 株式会社日立メディコ 磁気共鳴撮像装置および高周波磁場条件決定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078901B2 (en) 2004-03-18 2006-07-18 Siemens Aktiengesellschaft Method and magnetic resonance system for homogenizing the B1 field
JP2007283104A (ja) * 2006-04-13 2007-11-01 Siemens Ag 磁気共鳴システムの制御方法、磁気共鳴システム及びコンピュータプログラムプロダクト
JP2010508054A (ja) * 2006-10-31 2010-03-18 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 複数の送信コイルを使用したmrirf符号化
JP2010029640A (ja) 2008-06-26 2010-02-12 Toshiba Corp 磁気共鳴イメージング装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NISTLER J. ET AL.: "Homogeneity Improvement Using A 2 Port Birdcage Coil", PROCEEDINGS OF INTERNATIONAL SOCIETY OF MAGNETIC RESONANCE IN MEDICINE, 2007, pages 1063
See also references of EP2762070A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106028928A (zh) * 2014-04-16 2016-10-12 株式会社日立制作所 核磁共振成像装置以及rf匀场方法
JP2019195589A (ja) * 2018-05-11 2019-11-14 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置およびマルチスライス撮像方法
JP7163061B2 (ja) 2018-05-11 2022-10-31 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置およびマルチスライス撮像方法

Also Published As

Publication number Publication date
EP2762070A4 (en) 2015-06-10
US20140292334A1 (en) 2014-10-02
CN103874457A (zh) 2014-06-18
EP2762070A1 (en) 2014-08-06
EP2762070B1 (en) 2021-06-09
CN103874457B (zh) 2016-02-03
JP5797765B2 (ja) 2015-10-21
JPWO2013046900A1 (ja) 2015-03-26
US9726744B2 (en) 2017-08-08

Similar Documents

Publication Publication Date Title
CN104101849B (zh) 磁共振系统控制序列的确定
JP5885845B2 (ja) 磁気共鳴撮像装置および高周波磁場条件決定方法
KR101685253B1 (ko) 금속 물체를 포함하는 목표 영역의 자기 공명 데이터를 획득하기 위한 방법, 및 자기 공명 장치
US9689941B2 (en) Passive B1 field shimming
JP2022169728A (ja) 片面式mriシステムにおけるボリューム取得のためのシステムおよび方法
JP6101352B2 (ja) 磁気共鳴撮像装置および撮像パラメータ決定方法
JP2007289690A (ja) 並列rf送信を伴うmr撮像におけるsar低減
US20120319689A1 (en) Magnetic resonance imaging apparatus
EP3187890B1 (en) Radio frequency coil selection in a magnetic resonance imaging system
US9170315B2 (en) Magnetic resonance imaging apparatus and method
JP5984816B2 (ja) 磁気共鳴イメージング装置および補正値算出方法
JP5797765B2 (ja) 磁気共鳴撮像装置、高周波磁場照射方法およびプログラム
JP2007503904A (ja) 高磁場磁気共鳴撮像のための適応的画像均一性補正
JP6936696B2 (ja) 磁気共鳴イメージング装置及びその制御方法
JP6513493B2 (ja) 磁気共鳴撮像装置
WO2016181868A1 (ja) 磁気共鳴撮像装置、情報処理装置および高周波磁場シミング方法
WO2015159664A1 (ja) 核磁気共鳴撮像装置およびrfシミング方法
JP2016214277A5 (ja)
WO2016125572A1 (ja) 磁気共鳴イメージング装置および磁気共鳴イメージング方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836712

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536022

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012836712

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14241515

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE