WO2013044488A1 - 转向中心轴控制方法及液压控制系统 - Google Patents
转向中心轴控制方法及液压控制系统 Download PDFInfo
- Publication number
- WO2013044488A1 WO2013044488A1 PCT/CN2011/080387 CN2011080387W WO2013044488A1 WO 2013044488 A1 WO2013044488 A1 WO 2013044488A1 CN 2011080387 W CN2011080387 W CN 2011080387W WO 2013044488 A1 WO2013044488 A1 WO 2013044488A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steering
- steering angle
- target
- angle
- center shaft
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D7/00—Steering linkage; Stub axles or their mountings
- B62D7/06—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
- B62D7/14—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
- B62D7/15—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
- B62D7/1509—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels with different steering modes, e.g. crab-steering, or steering specially adapted for reversing of the vehicle
Definitions
- the present invention relates to the field of construction machinery, and in particular to a control method of a steering center shaft and a hydraulic control system.
- BACKGROUND OF THE INVENTION Wheeled vehicle steering systems have a direct relationship to the safety, maneuverability and handling stability of a vehicle. With the development of heavy vehicles, the load of the whole vehicle is getting larger and larger, and the number of axles is increasing.
- electro-hydraulic control steering system It is a follow-up steering control system, which inevitably has the action delay and the overshooting of the control system.
- the steering system of the linkage is greatly restricted in the application of multi-axle vehicles due to factors such as the frame layout space, the transmission mode of the linkage, the multi-axis steering linkage, and the deformation;
- the number of shafts when designing the steering system, usually sets the steering center on a certain axis or near a certain axis. This axis is usually called the steering center axis, and the steering center axis is not steered when the vehicle is running normally.
- the current popular steering mode is the crab-type steering mode.
- the crab-type steering mode requires that all axles, including the steering center axle, can be steered.
- most of them pass through oil and gas.
- the suspension system lifts the non-steering shaft, that is, lifts the steering center shaft through the oil and gas suspension system.
- This method can solve the contradiction between the normal road driving and the crab steering mode, but has the following disadvantages: First, the oil and gas suspension is required. The system and the steering system work together, the operation steps are complicated, and the process is cumbersome. Especially after the crab-type steering mode is over, the oil and gas suspension system needs to be re-leveled to perform normal road driving; Second, when the steering center shaft is lifted off the ground, the load is transferred to other shafts, increasing the load on the other shafts, adversely affecting other shafts and tires. Third, when the steering center shaft is lifted off the ground, the other The load of each axle needs to be redistributed.
- An object of the present invention is to provide a steering center axis control method and a hydraulic control system for solving the problem that a conventional multi-axle vehicle needs to use a suspension system to lift a steering center shaft during a crab-shaped steering when a crab-shaped steering is performed, resulting in The technical problems of cumbersome vehicle steering control, complicated suspension system and steering system structure.
- a steering center axis control method including: if a vehicle is in a normal driving mode, controlling a steering angle of a steering center axis to reach a first target steering angle, a first target steering angle Zero; if the vehicle is in the crab-shaped steering or anti-deflection driving mode, the steering angle of the control steering center shaft reaches the second target steering angle, and the second target steering angle is determined according to the steering angle of the first steering shaft of the vehicle.
- the method further includes: receiving a first target steering angle value and a real-time steering angle of the steering center axis; determining a difference between the real-time steering angle and the first target steering angle, The steering angle of the steering center axis is controlled to reach the first target steering angle according to the difference.
- the method further includes: receiving a second target steering angle value and a real-time steering angle of the steering center axis; determining a difference between the real-time steering angle and the second target steering angle, The steering angle of the steering center shaft is controlled to reach the second target steering angle according to the difference.
- a steering center shaft hydraulic control system comprising: a hydraulic oil supply device; a steering solenoid valve having an oil inlet port, a first working oil port and a second working oil port, and oil inlet The port is connected to the hydraulic oil supply device, and the first working port is connected to the rodless cavity of the left steering assist cylinder of the steering center shaft and the rod cavity of the right steering assist cylinder, and the second working port and the right steering assist cylinder are free of rods.
- the cavity is connected to the rod cavity of the left steering assist cylinder; the controller is configured to control the steering solenoid valve to connect the first working port or the second working port with the oil inlet port, so that the steering angle of the steering center shaft reaches the target steering
- the target steering angle includes a first target steering angle of the steering center shaft when the vehicle is in a normal running state and a second target steering angle of the steering center shaft when the vehicle is in a crab-shaped steering or anti-biasing steering.
- the first working port is connected to the rodless cavity of the left steering assist cylinder and the rod cavity of the right steering assist cylinder through the first branch and the second branch, respectively, and the first branch and the second branch are collected at the first node, a first check valve is disposed between the first node and the first working oil port; the second working oil port passes through the rodless cavity of the third branch and the fourth branch and the right steering assist cylinder, and the rod of the left steering assist cylinder
- the chambers are connected, the third branch and the fourth branch are collected in the second node, and the second one-way valve is disposed between the second node and the second working oil port.
- a first oil circuit and a second oil circuit are connected between the oil inlet of the steering solenoid valve and the hydraulic oil supply device, and the first oil circuit is provided with a first oil circuit for electrically controlling the first oil circuit.
- On-off solenoid valve Further, the oil inlet ends of the first oil passage and the second oil passage are collected at the third node, and the pressure reducing valve is disposed between the third node and the output end of the hydraulic oil supply device. Further, the first oil passage and the second oil passage are respectively provided with a first damping hole and a second damping hole, and the control oil port of the pressure reducing valve is connected to the first damping hole and the second damping hole outlet end.
- the controller controls the on-off solenoid valve to be turned on in the first stage of the control process of controlling the steering solenoid valve to make the steering angle of the steering center shaft reach the target steering angle, and controls the on-off solenoid valve in the second stage of the control process. disconnect.
- the steering center shaft hydraulic control system further includes: a parameter input device for inputting a steering mode of the vehicle, and determining a calculation between a target steering angle and a rotation angle of the first steering shaft according to the steering mode a formula, determining a first target steering angle or a second target steering angle according to the corresponding calculation formula, the parameter input device is electrically connected with the controller; the angular displacement sensor is configured to detect a real-time rotation angle of the steering central axis, and the angular displacement sensor is set On the steering central axis, the controller is further configured to determine a difference between the real-time rotation angle and the first target steering angle or the second target steering angle, and control the steering solenoid valve according to the difference to make the first working port or the second A working port is connected to the oil inlet.
- a parameter input device for inputting a steering mode of the vehicle, and determining a calculation between a target steering angle and a rotation angle of the first steering shaft according to the steering mode a formula, determining a first target steering angle or
- the invention has the following beneficial effects:
- the steering central axis control method provided by the invention controls the steering central axis to track different target steering angles when the vehicle is in different driving modes, and ensures that the steering central axis does not turn during normal driving,
- the steering center shaft does not need to be lifted during crab-steering or anti-deflection, simplifying the structure of the steering system and suspension system.
- the steering center shaft hydraulic control system provided by the present invention controls the steering solenoid valve in real time by using a controller to realize a left turn or a right turn, and is controlled by the controller according to the difference between the actual rotation angle and the target rotation angle.
- FIG. 1 is a schematic flow chart of a steering center shaft control method according to a preferred embodiment of the present invention
- FIG. 2 is a schematic structural view of a vehicle chassis used in a steering center shaft hydraulic control system according to a preferred embodiment of the present invention
- FIG. 4 is a schematic block diagram showing the operation of a steering center shaft hydraulic control system according to a preferred embodiment of the present invention
- FIG. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention are described in detail below with reference to the accompanying drawings. As shown in FIG. 1 and FIG.
- the present invention provides a steering center axis control method, the method comprising: S01: controlling a steering angle of a steering center axis to reach a first target steering angle if the vehicle is in a normal driving mode, The first target steering angle is zero;
- the method further includes: receiving the first target steering angle value and the real-time steering angle of the steering center axis; determining the difference between the real-time steering angle and the first target steering angle And controlling the steering angle of the steering center axis to reach the first target steering angle according to the difference.
- the method further includes: receiving a second target steering angle value and a real-time steering angle of the steering center axis; determining a difference between the real-time steering angle and the second target steering angle, The steering angle of the steering center shaft is controlled to reach the second target steering angle according to the difference.
- the steering center shaft 50 is closed-loop controlled, that is, first, a target value is set, and then the real-time steering angle of the steering center shaft 50 is detected in real time, and the real-time steering angle is As a feedback value, compared with the target value, a difference is obtained, and the controller can control the steering center axis 50 according to the difference, so that the rotation amplitude of the steering center shaft 50 matches the difference to make the steering center
- the steering angle of the shaft 50 is capable of tracking the target steering angle.
- the first target steering angle is zero, that is, the steering angle of the steering center shaft 50 is always maintained at zero, and once the steering angle of the steering center shaft 50 is detected to be non-zero, then The steering position of the steering center shaft 50 is adjusted to ensure that the steering center shaft 50 is at the neutral position, so that the steering center shaft 50 does not steer during normal running.
- the second target steering angle is determined according to the steering angle of the first steering shaft 70 of the vehicle, and then the steering center shaft 50 is controlled to track the second target steering angle.
- the control process is similar to the above control process, and will not be described here. As shown in FIG. 3 and FIG.
- the present invention also provides a steering center shaft hydraulic control system, the system comprising: a hydraulic oil supply device 10; a steering solenoid valve 21 having The oil port 21a, the first working oil port 21b and the second working oil port 21c, the oil inlet port 21a is connected to the hydraulic oil supply device 10, and the first working oil port 21b and the left steering assist cylinder 31 of the steering center shaft have a rodless cavity.
- the second working port 21c is connected to the rodless cavity of the right steering assist cylinder 32 and the rod cavity of the left steering assist cylinder 31; and a controller for controlling the steering solenoid valve 21
- the first working port 21b or the second working port 21c is connected to the oil inlet 21a such that the steering angle of the steering center shaft reaches the target steering angle, and the target steering angle includes the first target of the steering center axis when the vehicle is in a normal driving state.
- the steering solenoid valve 21 can be a three-position four-way electromagnetic reversing valve.
- the first working port 21b is connected to the rodless cavity of the left steering assist cylinder 31 and the rod cavity of the right steering assist cylinder 32 through the first branch and the second branch, respectively, and the first branch and the second branch are collected at the first node A.
- a first check valve 23 is disposed between the first node A and the first working port 21b; the second working port 21c passes through the rodless cavity and the left side of the third branch and the fourth branch and the right steering assist cylinder 32, respectively.
- the rod-cavity of the steering assist cylinder 31 is connected, the third branch and the fourth branch are collected in the second node B, and the second one-way valve 25 is disposed between the second node B and the second working oil port 21c.
- a first oil passage and a second oil passage are connected between the oil inlet 21a of the steering solenoid valve 21 and the hydraulic oil supply device 10, and the first oil passage is provided with a first oil passage for electrically controlling the first oil passage.
- the on/off solenoid valve 22 is turned on and off.
- the on-off solenoid valve 22 can be a two-position two-way solenoid valve.
- the oil inlet ends of the first oil passage and the second oil passage are collected at the third node C, and the pressure reducing valve 24 is disposed between the third node C and the output end of the hydraulic oil supply device 10.
- the first oil passage and the second oil passage are respectively provided with a first orifice 27 and a second orifice 29.
- the switches of the two orifices are calculated and controlled to achieve the two-stage speed (steering speed).
- the controller is in the first stage of the control process of controlling the steering angle of the steering center shaft to reach the target steering angle by controlling the steering solenoid valve 21, the on-off solenoid valve 22 is not energized, and the first orifice 27 is in an on state, at this time, A damper hole 27 and a second damper hole 29 simultaneously supply oil to the two steering assist cylinders, so that the steering assist cylinder has a faster moving speed.
- the first stage is a phase in which the steering center shaft 50 has a faster steering speed.
- the on/off solenoid valve 22 is electrically disconnected.
- the passage where the second orifice 29 is located supplies oil to the steering assist cylinder, the amount of oil is small, and the movement of the steering assist cylinder Slower, the steering speed of the steering center shaft 50 is slower, and it can be said that the second phase is a phase in which the steering speed of the steering center shaft 50 is slow.
- the control port of the pressure reducing valve 24 is connected to the first orifice 27 and the second orifice 29.
- the steering center shaft hydraulic control system further comprises: a parameter input device, configured to input a steering mode of the vehicle, determine different calculation formulas according to different steering modes, and thereby obtain a first target steering angle and a second target steering Angle, the parameter input device is electrically connected to the controller; the angular displacement sensor 80 is configured to detect the real-time rotation angle of the steering central axis 50, the angular displacement sensor 80 is disposed on the steering central axis, and the controller is further configured to determine the real-time rotation angle and the A difference between the target steering angle and the second target steering angle, and the output oil amount of the first working port 21b and the second working port 21c of the steering solenoid valve 21 is controlled according to the difference.
- a parameter input device configured to input a steering mode of the vehicle, determine different calculation formulas according to different steering modes, and thereby obtain a first target steering angle and a second target steering Angle
- the parameter input device is electrically connected to the controller
- the angular displacement sensor 80 is configured to detect the real-time rotation angle
- the target rotation angle is a function of the first steering shaft rotation angle, and different steering modes correspond to different functional relationships. Therefore, during the steering process, the rotation angle of the first steering shaft is acquired by the angular displacement sensor 80 in real time, and is subjected to a function relationship by the controller. Real-time calculations result in a target corner of the steering center shaft 50. The actual rotation angle of the steering center shaft is also acquired by the angular displacement sensor 80 in real time. At this time, the controller compares the actual rotation angle of the steering center shaft 50 with the target steering, and sends a command to the steering control valve group 20, wherein the steering solenoid valve 21 controls the left and right steering of the steering center shaft 50.
- the controller sends an electric signal to the first working port 21b of the steering solenoid valve 21, at which time the first working port 21b of the steering solenoid valve 21 is connected to the oil inlet 21a, the pressure oil Entering the rodless cavity of the left steering assist cylinder 31 connected to point A and the rod cavity of the right steering assist cylinder 32, the two cylinders jointly push the tire steering of the steering center shaft 50 (assuming a left turn at this time);
- the value is negative, the controller sends an electric signal to the second working port 21c of the steering solenoid valve 21, at which time the second working port 21c of the steering solenoid valve 21 is connected to the oil inlet 21a, and the pressure oil enters the connection with the point B.
- the difference is positive or negative, which means that the actual rotation angle of the steering center shaft 50 is leftward or rightward compared with the target rotation angle, and the controller controls whether the steering solenoid valve 21 is the first working oil port 21b or the second working oil.
- the port 21c is connected to the oil inlet 21a.
- a pressure reducing valve 24, an on/off solenoid valve (two-position two-way solenoid valve) 22, a first orifice 27 and a second orifice 29 For example, when the difference is greater than 3°, the on-off solenoid valve 22 is not energized. At this time, the flow entering the steering assist cylinder 30 is a superposition of two orifices, and the speed is fast, and the process is the first stage of the control process; At 3 °, the on-off solenoid valve 22 is energized. At this time, the flow rate into the cylinder is only the flow of the orifice 29, and the speed is slow. This process is the second stage of the control process.
- the pressure reducing valve 24 functions as a pressure compensating force so that the differential pressure before and after passing through the orifice is kept constant, and the flow rate is constant, so that the steering center shaft 50 operates smoothly during the steering, and the steering speed is independent of the load. This ensures that the steering center axis always tracks the corresponding target steering angle.
- the first check valve 23 and the second check valve 25 lock the steering assist cylinder 30 to maintain the steering center shaft 50 at the target steering angle.
- the control method of the steering center shaft provided by the invention has the advantages of convenient operation, high reliability, low cost, and can meet the requirements of high steady state precision and low dynamic precision requirements.
- the hydraulic control system provided by the invention has the advantages of simple structure, all hydraulic components are on-off valves, low requirements on cleanliness, simple control algorithm, safe and reliable, low cost, and can meet the requirements of steady state precision and low dynamic precision requirements.
- the characteristics of the crab type, and the crab type operation is simple. The above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
一种转向中心轴控制方法及液压控制系统。控制方法包括:车辆处于正常行驶模式,控制转向中心轴(50)的转向角度为零;车辆处于蟹形转向或防偏摆行驶模式,控制转向中心轴的转向角度达到目标转向角度,该目标转向角度根据车辆的第一转向轴(70)的转向角度确定。液压控制系统,包括:液压油供给装置(10);转向电磁阀(21),与转向中心轴的转向助力油缸(31、32)相连;控制器(40),用于控制转向电磁阀使转向中心轴的转向角达到目标转向角。该控制方法操作方便,能满足稳态精度要求高,动态精度要求不高的工况特点。该控制系统结构简单,对清洁度要求低,安全可靠,成本低廉。
Description
转向中心轴控制方法及液压控制系统 技术领域 本发明涉及工程机械领域, 特别地, 涉及一种转向中心轴的控制方法及液压控制 系统。 背景技术 轮式车辆转向系统对于车辆行驶的安全性,机动性和操纵稳定性都有直接的关系。 随着重型车辆的发展, 整车负载越来越大, 车轴数量也越来越多, 从而车身越来 越长, 车辆的行驶空间和作业空间使得对转向系统有了更高的要求: 一方面减小转弯 半径, 这需要增多转向轴数量, 使得前后轴都能转向; 另一方面需要多种转向模式, 以满足不同的作业空间要求。 电液控制技术的发展使得电液控制转向系统也得到了应用, 并能够轻松实现最小 转弯半径和多种转向模式, 但电液控制转向系统也有其自身的缺点: 第一, 电液控制 转向系统是一种随动转向控制系统, 不可避免的会出现动作延迟、 控制系统的超调震 荡的现象; 第二, 为提高转向性能, 主要是平稳性, 动态精度和稳态精度, 需要各轴 配有角度传感器和控制器, 以及价格昂贵的高频响应的电液比例阀或电液伺服阀, 成 本较高; 第三, 液压系统属于阀控系统, 压力损失大, 能耗大; 第四, 由于涉及的元 件较多, 控制系统复杂且要求较高, 因此可靠性较低。 从车辆行驶的稳定性、 安全性方面考虑, 传统的液压助力杆系转向系统依然是目 前的主流转向形式。 但是, 杆系转向系统因车架布置空间、 杆系传递方式、 多轴转向 杆系受合力较大、 易变形等因素, 在多轴车辆的应用受到了很大的制约; 为了尽可能 减少转向轴的数量, 在设计转向系统的时候通常将转向中心定在某一根轴上或某一根 轴附近, 该轴通常被称为转向中心轴, 转向中心轴在车辆正常行驶时是不转向的。 从 转向模式来说, 目前较为流行的转向模式是蟹型转向模式, 然而, 蟹型转向模式要求 所有轴包括转向中心轴都能转向, 但是, 采用蟹型转向模式进行转向时, 多数是通过 油气悬挂系统将非转向轴提起, 也就是通过油气悬挂系统将转向中心轴提起, 此种方 法能够解决正常公路行驶和蟹型转向模式之间的矛盾, 但却存在如下缺点: 第一, 需要油气悬挂系统和转向系统配合操作, 操作步骤复杂, 过程繁琐, 尤其 是蟹型转向模式结束后, 油气悬挂系统需要重新调平才能进行正常公路行驶;
第二, 当转向中心轴被提离地面时, 负载会转移到其他轴上, 增加其他轴的负载, 对其他轴及轮胎产生不利影响; 第三, 因转向中心轴被提离地面时, 其他各轴负载需要重新分配, 如果油气悬挂 处于弹性状态, 则车身姿态无法保证, 虽然此时悬挂多处于刚性状态, 但对各轴危害 较大。 发明内容 本发明目的在于提供一种转向中心轴控制方法及液压控制系统, 以解决现有的多 轴车辆在进行蟹形转向时, 需要利用悬挂系统将转向中心轴在蟹形转向时提起, 导致 车辆转向控制过程繁琐、 悬挂系统和转向系统结构复杂的技术问题。 为实现上述目的, 根据本发明的一个方面, 提供了一种转向中心轴控制方法, 包 括: 若车辆处于正常行驶模式, 控制转向中心轴的转向角度达到第一目标转向角度, 第一目标转向角度为零; 若车辆处于蟹形转向或防偏摆行驶模式, 控制转向中心轴的 转向角度达到第二目标转向角度, 第二目标转向角度根据车辆的第一转向轴的转向角 度确定。 进一步地, 控制转向中心轴的转向角度达到第一目标转向角度之前还包括: 接收 第一目标转向角度值和转向中心轴的实时转向角度; 确定实时转向角度与第一目标转 向角度的差值, 根据该差值控制转向中心轴的转向角度达到第一目标转向角度。 进一步地, 控制转向中心轴的转向角度达到第二目标转向角度之前还包括: 接收 第二目标转向角度值和转向中心轴的实时转向角度; 确定实时转向角度与第二目标转 向角度的差值, 根据该差值控制转向中心轴的转向角度达到第二目标转向角度。 根据本发明的另一个方面, 还提供了一种转向中心轴液压控制系统, 包括: 液压 油供给装置; 转向电磁阀, 具有进油口、 第一工作油口和第二工作油口, 进油口与液 压油供给装置相连, 第一工作油口与转向中心轴的左转向助力油缸的无杆腔和右转向 助力油缸的有杆腔相连, 第二工作油口与右转向助力油缸的无杆腔和左转向助力油缸 的有杆腔相连; 控制器, 用于控制转向电磁阀, 使第一工作油口或第二工作油口与进 油口相连, 使转向中心轴的转向角达到目标转向角, 目标转向角包括车辆处于正常行 驶状态时转向中心轴的第一目标转向角和车辆处于蟹形转向或防偏摆转向时转向中心 轴的第二目标转向角。
进一步地, 第一工作油口分别通过第一分支和第二分支与左转向助力油缸的无杆 腔和右转向助力油缸的有杆腔相连, 第一分支和第二分支汇集于第一节点, 第一节点 与第一工作油口之间设置有第一单向阀; 第二工作油口分别通过第三分支和第四分支 与右转向助力油缸的无杆腔和左转向助力油缸的有杆腔相连, 第三分支和第四分支汇 集于第二节点, 第二节点与第二工作油油口之间设置有第二单向阀。 进一步地, 转向电磁阀的进油口与液压油供给装置之间设置有并联的第一油路和 第二油路,第一油路上设置有与控制器电连接的用于控制第一油路通断的通断电磁阀。 进一步地, 第一油路和第二油路的进油端汇集于第三节点, 第三节点与液压油供 给装置的输出端之间设置有减压阀。 进一步地, 第一油路和第二油路上分别设置有第一阻尼孔和第二阻尼孔, 减压阀 的控制油口与第一阻尼孔和第二阻尼孔出口端相连。 进一步地, 控制器在控制转向电磁阀使转向中心轴的转向角达到目标转向角的控 制过程的第一阶段, 控制通断电磁阀接通, 在控制过程的第二阶段, 控制通断电磁阀 断开。 进一步地, 本发明提供的转向中心轴液压控制系统, 还包括: 参数输入装置, 用 于输入所述车辆的转向模式, 并根据转向模式确定目标转向角与第一转向轴的转角之 间的计算公式,根据相应的所述计算公式确定第一目标转向角度或第二目标转向角度, 参数输入装置与控制器电连接; 角位移传感器,用于检测转向中心轴的实时转动角度, 角位移传感器设置于转向中心轴上, 控制器还用于确定实时转动角度与第一目标转向 角度或第二目标转向角度的差值, 并根据该差值控制转向电磁阀, 使第一工作油口或 第二工作油口与所述进油口相连。 本发明具有以下有益效果: 本发明提供的转向中心轴控制方法, 在车辆处于不同的行驶模式时, 控制转向中 心轴跟踪不同的目标转向角度进行转向, 保证转向中心轴在正常行驶时不转向、 在蟹 形转向或防偏摆行驶时无需再将转向中心轴提起,简化了转向系统和悬挂系统的结构。 为了实现上述控制方法, 本发明提供的转向中心轴液压控制系统, 利用控制器实时控 制转向电磁阀, 实现左转或右转, 并根据实际转角与目标转角的差值大小, 由控制器 控制通断电磁阀实现两级速度控制, 能够保证转向中心轴始终跟踪相应的目标转向角 度, 提高转向中心轴的控制精度。
除了上面所描述的目的、特征和优点之外, 本发明还有其它的目的、特征和优点。 下面将参照图, 对本发明作进一步详细的说明。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性实 施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1是本发明优选实施例的转向中心轴控制方法的流程示意图; 图 2是本发明优选实施例的转向中心轴液压控制系统所应用的车辆底盘结构示意 图; 图 3是本发明优选实施例的转向中心轴液压控制系统的原理结构示意图; 以及 图 4是本发明优选实施例的转向中心轴液压控制系统的工作原理示意框图。 具体实施方式 以下结合附图对本发明的实施例进行详细说明, 但是本发明可以由权利要求限定 和覆盖的多种不同方式实施。 如图 1和图 2所示, 本发明提供了一种转向中心轴控制方法, 该方法包括: S01 :若车辆处于正常行驶模式,控制转向中心轴的转向角度达到第一目标转向角 度, 所述第一目标转向角度为零;
S02:若车辆处于蟹形转向或防偏摆行驶模式,控制所述转向中心轴的转向角度达 到第二目标转向角度, 所述第二目标转向角度根据所述车辆的第一转向轴的转向角度 确定。 具体地说, 控制转向中心轴的转向角度达到第一目标转向角度之前还包括: 接收 第一目标转向角度值和转向中心轴的实时转向角度; 确定实时转向角度与第一目标转 向角度的差值, 根据该差值控制转向中心轴的转向角度达到第一目标转向角度。 相应地, 控制转向中心轴的转向角度达到第二目标转向角度之前还包括: 接收第 二目标转向角度值和转向中心轴的实时转向角度; 确定实时转向角度与第二目标转向 角度的差值, 根据该差值控制转向中心轴的转向角度达到第二目标转向角度。
实际上, 无论车辆处于哪种行驶模式, 都是对转向中心轴 50进行了闭环控制, 也 就是说, 首先设定一个目标值, 然后实时检测转向中心轴 50的实时转向角度, 该实时 转向角度作为一个反馈值, 再与目标值进行比较, 得到一个差值, 控制器可以根据该 差值对转向中心轴 50进行控制, 使转向中心轴 50的转动幅度与该差值相匹配以使得 转向中心轴 50的转向角度能够跟踪目标转向角度。当车辆处于正常行驶状态时,第一 目标转向角度为零, 也就是说, 转向中心轴 50的转向角度始终保持为零, 一旦检测到 转向中心轴 50的转向角度不为零, 那么就会对转向中心轴 50的转向位置进行调整, 保证转向中心轴 50处于中位, 实现转向中心轴 50在正常行驶时不转向的目的。 同样 地, 当车辆处于蟹形转向或防偏摆的行驶状态时,根据车辆的第一转向轴 70的转向角 度, 确定第二目标转向角度, 然后再控制转向中心轴 50跟踪第二目标转向角度, 该控 制过程与上述控制过程相似, 在此不再赘述。 如图 3和图 4所示, 为了实现上述转向中心轴的控制方法, 本发明还提供了一种 转向中心轴液压控制系统, 该系统包括: 液压油供给装置 10; 转向电磁阀 21, 具有进 油口 21a、 第一工作油口 21b和第二工作油口 21c, 进油口 21a与液压油供给装置 10 相连,第一工作油口 21b与转向中心轴的左转向助力油缸 31的无杆腔和右转向助力油 缸 32的有杆腔相连, 第二工作油口 21c与右转向助力油缸 32的无杆腔和左转向助力 油缸 31的有杆腔相连; 控制器, 用于控制转向电磁阀 21的第一工作油口 21b或第二 工作油口 21c与进油口 21a连接, 使转向中心轴的转向角达到目标转向角, 目标转向 角包括车辆处于正常行驶状态时转向中心轴的第一目标转向角和车辆处于蟹形转向或 防偏摆时转向中心轴的第二目标转向角。 转向电磁阀 21可以为三位四通电磁换向阀。 第一工作油口 21b分别通过第一分支和第二分支与左转向助力油缸 31的无杆腔和 右转向助力油缸 32的有杆腔相连,第一分支和第二分支汇集于第一节点 A,第一节点 A与第一工作油口 21b之间设置有第一单向阀 23 ; 第二工作油口 21c分别通过第三分 支和第四分支与右转向助力油缸 32的无杆腔和左转向助力油缸 31的有杆腔相连, 第 三分支和第四分支汇集于第二节点 B, 第二节点 B与第二工作油油口 21c之间设置有 第二单向阀 25。 转向电磁阀 21的进油口 21a与液压油供给装置 10之间设置有并联的第一油路和 第二油路, 第一油路上设置有与控制器电连接的用于控制第一油路通断的通断电磁阀 22。通断电磁阀 22可以采用两位两通电磁阀。第一油路和第二油路的进油端汇集于第 三节点 C, 第三节点 C与液压油供给装置 10的输出端之间设置有减压阀 24。
第一油路和第二油路上分别设置有第一阻尼孔 27和第二阻尼孔 29。 通过转向中 心轴 50上的角度反馈, 计算并控制两个阻尼孔的开关, 以达到两级速度 (转向速度) 的目的。控制器在通过控制转向电磁阀 21使转向中心轴的转向角达到目标转向角的控 制过程的第一阶段, 通断电磁阀 22不得电, 第一阻尼孔 27处于接通状态, 此时, 第 一阻尼孔 27和第二阻尼孔 29同时向两个转向助力油缸中送油, 使转向助力油缸的运 动速度较快, 也可以说, 第一阶段是转向中心轴 50的转向速度较快的阶段; 而在控制 过程的第二阶段, 通断电磁阀 22得电断开, 此时, 只有第二阻尼孔 29所在的通路向 转向助力油缸里送油, 油量较小, 转向助力油缸的动作较慢, 使得转向中心轴 50的转 向速度较慢, 也可以说, 第二阶段是转向中心轴 50的转向速度较慢的阶段。 通过两级速度的控制, 使得转向中心轴 50能够针对性的满足稳态精度要求高,动 态精度要求不高的工况特点。 前述减压阀 24的控制油口连接于第一阻尼孔 27和第二 阻尼孔 29之后。 本发明提供的转向中心轴液压控制系统, 还包括: 参数输入装置, 用于输入车辆 的转向模式, 根据不同的转向模式确定不同的计算公式, 进而得出第一目标转向角度 和第二目标转向角度, 参数输入装置与控制器电连接; 角位移传感器 80, 用于检测转 向中心轴 50的实时转动角度, 角位移传感器 80设置于转向中心轴上, 控制器还用于 确定实时转动角度与第一目标转向角度、 第二目标转向角度的差值, 并根据差值控制 转向电磁阀 21的第一工作油口 21b和第二工作油口 21c的输出油量。 目标转角是第一转向轴转角的函数, 不同的转向模式, 对应不同的函数关系, 因 此在转向过程中,第一转向轴的转角由角位移传感器 80实时采集得到, 并经过控制器 按照函数关系实时计算, 从而得到转向中心轴 50的目标转角。 转向中心轴的实际转角也由角位移传感器 80实时采集得到,这时由控制器将转向 中心轴 50的实际转角与目标转向进行比较, 并发送指令给转向控制阀组 20, 其中的 转向电磁阀 21控制转向中心轴 50的左、 右转向。 比如: 如果差值为正, 控制器向转 向电磁阀 21的第一工作油口 21b端发出得电信号, 此时转向电磁阀 21的第一工作油 口 21b与进油口 21a相连, 压力油进入与 A点连接的左转向助力油缸 31的无杆腔和 右转向助力油缸 32的有杆腔, 由两个油缸共同推动转向中心轴 50的轮胎转向 (假定 此时为左转); 如果差值为负, 控制器向转向电磁阀 21的第二工作油口 21c发出得电 信号, 此时转向电磁阀 21 的第二工作油口 21c与进油口 21a相连, 压力油进入与 B 点连接的左转向助力油缸 31的无杆腔和右转向助力油缸 32的有杆腔, 由两个油缸共 同推动转向中心轴 50的轮胎转向 (假定此时为右转)。
上述差值为正或负,代表此时转向中心轴 50的实际转角与目标转角相比是偏左或 偏右,由控制器控制转向电磁阀 21是第一工作油口 21b还是第二工作油口 21c与进油 口 21a相连。 另外, 根据差值的大小来决定通断电磁阀 22是否得电, 进而实现两级速度控制。 这是由减压阀 24, 通断电磁阀 (两位两通电磁阀) 22, 第一阻尼孔 27和第二阻尼孔 29实现的。 比如差值大于 3°时, 通断电磁阀 22不得电, 此时进入转向助力油缸 30的 流量为两个阻尼孔的叠加,速度较快,此过程为控制过程的第一阶段; 差值小于 3°时, 通断电磁阀 22得电, 此时进入油缸的流量为仅为阻尼孔 29的流量, 速度较慢, 此过 程为控制过程的第二阶段。减压阀 24起到压力补偿的作用, 使得经过阻尼孔的前后压 差保持恒定, 进而流量恒定, 使得转向中心轴 50在转向过程中动作平稳, 并且转向速 度与负载无关。 这样可以保证转向中心轴始终跟踪相应的目标转向角度。 第一单向阀 23和第二单向阀 25将转向助力油缸 30锁定, 保持转向中心轴 50处 于目标转向角度。 本发明提供的转向中心轴的控制方法, 操作方便, 可靠性高, 成本低, 且能满足 稳态精度要求高, 动态精度要求不高的工况特点。 本发明提供的液压控制系统结构简单, 液压元件全部为开关阀,对清洁度要求低, 控制算法简单, 安全可靠, 成本低, 并且能针对性的满足稳态精度要求高, 动态精度 要求不高的蟹型工况特点, 而且蟹型工况操作简单。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。
Claims
1. 一种转向中心轴控制方法, 其特征在于, 包括:
若车辆处于正常行驶模式, 控制转向中心轴的转向角度达到第一目标转向 角度, 所述第一目标转向角度为零;
若车辆处于蟹形转向或防偏摆行驶模式, 控制所述转向中心轴的转向角度 达到第二目标转向角度, 所述第二目标转向角度根据所述车辆的第一转向轴的 转向角度确定。
2. 根据权利要求 1所述的转向中心轴控制方法, 其特征在于, 控制转向中心轴的 转向角度达到第一目标转向角度之前还包括:
接收第一目标转向角度值和所述转向中心轴的实时转向角度; 确定所述实时转向角度与所述第一目标转向角度的差值, 根据所述差值控 制所述转向中心轴的转向角度达到所述第一目标转向角度。
3 根据权利要求 1所述的转向中心轴控制方法, 其特征在于, 控制所述转向中心 轴的转向角度达到第二目标转向角度之前还包括:
接收第二目标转向角度值和所述转向中心轴的实时转向角度; 确定所述实时转向角度与所述第二目标转向角度的差值, 根据所述差值控 制所述转向中心轴的转向角度达到所述第二目标转向角度。
4. 一种转向中心轴液压控制系统, 其特征在于, 包括:
液压油供给装置 (10);
转向电磁阀 (21 ), 具有进油口 (21a)、 第一工作油口 (21b) 和第二工作 油口 (21c), 所述进油口 (21a) 与所述液压油供给装置 (10)相连, 所述第一 工作油口 (21b)与转向中心轴的左转向助力油缸(31 )的无杆腔和右转向助力 油缸(32)的有杆腔相连,所述第二工作油口(21c)与所述右转向助力油缸(32) 的无杆腔和所述左转向助力油缸 (31 ) 的有杆腔相连;
控制器, 用于控制所述转向电磁阀 (21 ), 使所述第一工作油口 (21b) 或 所述第二工作油口 (21c) 与所述进油口 (21a) 相连, 使所述转向中心轴的转 向角达到目标转向角, 所述目标转向角包括车辆处于正常行驶状态时所述转向
中心轴的第一目标转向角和所述车辆处于蟹形转向或防偏摆转向时所述转向中 心轴的第二目标转向角。 根据权利要求 4所述的转向中心轴液压控制系统, 其特征在于,
所述第一工作油口(21b)分别通过第一分支和第二分支与所述左转向助力 油缸 (31 ) 的无杆腔和所述右转向助力油缸 (32) 的有杆腔相连, 所述第一分 支和所述第二分支汇集于第一节点 (A), 所述第一节点 (A) 与所述第一工作 油口 (21b) 之间设置有第一单向阀 (23 );
所述第二工作油口(21c)分别通过第三分支和第四分支与所述右转向助力 油缸 (32) 的无杆腔和所述左转向助力油缸 (31 ) 的有杆腔相连, 所述第三分 支和所述第四分支汇集于第二节点 (B), 所述第二节点 (B) 与所述第二工作 油油口 (21c) 之间设置有第二单向阀 (25 )。 根据权利要求 4所述的转向中心轴液压控制系统, 其特征在于, 所述转向电磁 阀 (21 ) 的所述进油口 (21a) 与所述液压油供给装置 (10)之间设置有并联的 第一油路和第二油路, 所述第一油路上设置有与所述控制器电连接的用于控制 所述第一油路通断的通断电磁阀 (22)。 根据权利要求 6所述的转向中心轴液压控制系统, 其特征在于, 所述第一油路 和所述第二油路的进油端汇集于第三节点 (C), 所述第三节点 (C) 与所述液 压油供给装置 (10) 的输出端之间设置有减压阀 (24)。 根据权利要求 7所述的转向中心轴液压控制系统, 其特征在于, 所述第一油路 和所述第二油路上分别设置有第一阻尼孔(27)和第二阻尼孔(29), 所述减压 阀 (24) 的控制油口 (24a) 与所述第一阻尼孔 (27) 和所述第二阻尼孔 (29) 出口端相连。 根据权利要求 6所述的转向中心轴液压控制系统, 其特征在于:
所述控制器在通过控制所述转向电磁阀 (21 ) 使所述转向中心轴的转向角 达到目标转向角的控制过程的第一阶段, 控制所述通断电磁阀 (22) 接通, 在 所述控制过程的第二阶段, 控制所述通断电磁阀 (22) 断开。 根据权利要求 4至 9中任一项所述的转向中心轴液压控制系统, 其特征在于, 还包括:
参数输入装置, 用于输入所述车辆的转向模式, 并根据转向模式确定所述 目标转向角与第一转向轴的转角之间的计算公式, 根据相应的所述计算公式确 定所述第一目标转向角度或所述第二目标转向角度, 所述参数输入装置与所述 控制器电连接;
角位移传感器(80), 用于检测所述转向中心轴的实时转动角度, 所述角位 移传感器 (80) 设置于所述转向中心轴 (50) 上, 所述控制器还用于确定所述 实时转动角度与所述第一目标转向角度或所述第二目标转向角度的差值, 并根 据所述差值控制所述转向电磁阀 (21 ), 使所述第一工作油口 (21b) 或所述第 二工作油口 (21c) 与所述进油口 (21a) 相连。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2011/080387 WO2013044488A1 (zh) | 2011-09-29 | 2011-09-29 | 转向中心轴控制方法及液压控制系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2011/080387 WO2013044488A1 (zh) | 2011-09-29 | 2011-09-29 | 转向中心轴控制方法及液压控制系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013044488A1 true WO2013044488A1 (zh) | 2013-04-04 |
Family
ID=47994154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/080387 WO2013044488A1 (zh) | 2011-09-29 | 2011-09-29 | 转向中心轴控制方法及液压控制系统 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2013044488A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6012540A (en) * | 1996-04-25 | 2000-01-11 | Daimlerchrysler Ag | Vehicle steering system utilizing desired-value-dependent control segment |
DE19929428A1 (de) * | 1999-06-26 | 2000-12-28 | Bosch Gmbh Robert | Elektrohydraulisches Lenksystem für Kraftfahrzeuge |
CN2869112Y (zh) * | 2005-12-31 | 2007-02-14 | 三一重工股份有限公司 | 铣刨机单、双手柄可切换转向的控制装置 |
CN101516715A (zh) * | 2006-12-26 | 2009-08-26 | 日立建机株式会社 | 作业车辆的转向系统 |
CN101670851A (zh) * | 2009-09-29 | 2010-03-17 | 长沙中联重工科技发展股份有限公司 | 车辆后桥电控转向轮随动控制方法及控制系统 |
EP2332808A1 (en) * | 2009-12-09 | 2011-06-15 | Deere & Company | Steering control system and method |
CN201961369U (zh) * | 2010-12-06 | 2011-09-07 | 中国三江航天工业集团公司特种车辆技术中心 | 一种多模式全轮转向装置 |
-
2011
- 2011-09-29 WO PCT/CN2011/080387 patent/WO2013044488A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6012540A (en) * | 1996-04-25 | 2000-01-11 | Daimlerchrysler Ag | Vehicle steering system utilizing desired-value-dependent control segment |
DE19929428A1 (de) * | 1999-06-26 | 2000-12-28 | Bosch Gmbh Robert | Elektrohydraulisches Lenksystem für Kraftfahrzeuge |
CN2869112Y (zh) * | 2005-12-31 | 2007-02-14 | 三一重工股份有限公司 | 铣刨机单、双手柄可切换转向的控制装置 |
CN101516715A (zh) * | 2006-12-26 | 2009-08-26 | 日立建机株式会社 | 作业车辆的转向系统 |
CN101670851A (zh) * | 2009-09-29 | 2010-03-17 | 长沙中联重工科技发展股份有限公司 | 车辆后桥电控转向轮随动控制方法及控制系统 |
EP2332808A1 (en) * | 2009-12-09 | 2011-06-15 | Deere & Company | Steering control system and method |
CN201961369U (zh) * | 2010-12-06 | 2011-09-07 | 中国三江航天工业集团公司特种车辆技术中心 | 一种多模式全轮转向装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104443025B (zh) | 一种面向多轴车辆纯滚动的电液伺服转向系统及控制方法 | |
EP2927093B1 (en) | Follow-up steering control system of multi-axle automobile crane and multi-axle automobile crane | |
CN102372022A (zh) | 多轴车辆电液伺服转向系统、转向控制方法和多轴车辆 | |
CN108820035B (zh) | 一种商用车线控液压转向系统的转向控制方法 | |
CN108045432B (zh) | 转向油缸、液压助力转向系统、转向车桥及车辆 | |
CN109250657B (zh) | 一种高空作业平台转向系统及控制方法 | |
CN106828597B (zh) | 转向控制系统、起重机和转向控制方法 | |
CN104608819B (zh) | 用于多轴车辆的多轴转向系统和多轴车辆 | |
CN112172918B (zh) | 一种多轴电液转向系统双闭环控制系统和方法 | |
CN103863390A (zh) | 四轮平衡重式叉车平衡控制系统 | |
CN102490781B (zh) | 工程车辆的转向系统及转向方法 | |
CN105438256A (zh) | 转向控制方法、装置及起重机 | |
CN110285102B (zh) | 具有主动悬挂的多轴应急救援车辆液压转向控制系统 | |
CN102390428B (zh) | 转向中心轴控制方法及液压控制系统 | |
CN104742966A (zh) | 一种用于多轴车辆纯滚动转向的机液伺服控制装置 | |
CN104960570B (zh) | 一种基于gmm的转向控制器及叉车主动后轮转向系统 | |
CN110371185A (zh) | 多模式电控转向液压系统及行走设备 | |
WO2021223120A1 (zh) | 液压转向系统及移动式起重机 | |
CN118457711A (zh) | 一种复合转向机构、系统、控制方法及轮式工程车辆 | |
WO2013044488A1 (zh) | 转向中心轴控制方法及液压控制系统 | |
CN209098137U (zh) | 一种高空作业平台转向系统 | |
CN112983903B (zh) | 一种具有自动转向功能的高地隙喷雾机全液压转向系统 | |
CN114655306A (zh) | 一种重型车辆电液伺服转向系统及可抑制超调的控制方法 | |
WO2014047874A1 (zh) | 比例转向阀、比例转向液压回路、比例转向系统及车辆 | |
CN112455536B (zh) | 一种电液冗余全轮转向系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11873161 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11873161 Country of ref document: EP Kind code of ref document: A1 |